WorldWideScience

Sample records for zero-valent iron barrier

  1. Zero-Valent Iron Permeable Reactive Barriers: A Review of Performance

    International Nuclear Information System (INIS)

    Korte, NE

    2001-01-01

    This report briefly reviews issues regarding the implementation of the zero-valent iron permeable reactive barrier (PRB) technology at sites managed by the U.S. Department of Energy (DOE). Initially, the PRB technology, using zero-valent iron for the reactive media, was received with great enthusiasm, and DOE invested millions of dollars testing and implementing PRBs. Recently, a negative perception of the technology has been building. This perception is based on the failure of some deployments to satisfy goals for treatment and operating expenses. The purpose of this report, therefore, is to suggest reasons for the problems that have been encountered and to recommend whether DOE should invest in additional research and deployments. The principal conclusion of this review is that the most significant problems have been the result of insufficient characterization, which resulted in poor engineering implementation. Although there are legitimate concerns regarding the longevity of the reactive media, the ability of zero-valent iron to reduce certain chlorinated hydrocarbons and to immobilize certain metals and radionuclides is well documented. The primary problem encountered at some DOE full-scale deployments has been an inadequate assessment of site hydrology, which resulted in misapplication of the technology. The result is PRBs with higher than expected flow velocities and/or incomplete plume capture

  2. Removal of chromate in a permeable reactive barrier using zero-valent iron

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Locht, T

    2002-01-01

    Chromate is a commonly found groundwater contaminant. Permeable reactive barriers containing zero-valent iron as iron filings are able to remove the chromate by a combined reduction/precipitation reaction. However, due to the passivation of the reduction capability of the iron surfaces by the pre......). Mixing in sand had no significant enhancing effect on the removal capacity, in contrast to a pH adjustment of the groundwater to pH 4, which significantly increased the removal capacity....

  3. Long-term Performance of Permeable Reactive Barriers Using Zero-valent Iron: An Evaluation at Two Sites

    National Research Council Canada - National Science Library

    Wilkin, Richard T; Puls, Robert W; Sewell, Guy W

    2002-01-01

    Research described in this research brief explores the geochemical and microbiological processes occurring within zero-valent iron treatment zones in permeable reactive barriers that may contribute...

  4. Zero-valent iron nanoparticles preparation

    International Nuclear Information System (INIS)

    Oropeza, S.; Corea, M.; Gómez-Yáñez, C.; Cruz-Rivera, J.J.; Navarro-Clemente, M.E.

    2012-01-01

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  5. Zero-valent iron nanoparticles preparation

    Energy Technology Data Exchange (ETDEWEB)

    Oropeza, S. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Corea, M., E-mail: mcoreat@yahoo.com.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Gómez-Yáñez, C. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Cruz-Rivera, J.J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra Leona 550, San Luis Potosí, C.P. 78210 (Mexico); Navarro-Clemente, M.E., E-mail: mnavarroc@ipn.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  6. Hybrid composites of nano-sized zero valent iron and covalent organic polymers for groundwater contaminant degradation

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, J.; Hwang, Yuhoon

    Zero valent iron is commonly used in a variety of treatment technologies (e.g. permeable reactive barriers), though recently a heavier focus has been placed on nano-sized zero valent iron (nZVI). Having superior reductive properties and large surface areas, nZVI is ideal for the degradation of ch...

  7. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    International Nuclear Information System (INIS)

    Weathers, Lenly J.; Katz, Lynn E.

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  8. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  9. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria; FINAL

    International Nuclear Information System (INIS)

    Lenly J. Weathers; Lynn E. Katz

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  10. GROUND WATER REMEDIATION OF CHROMIUM USING ZERO-VALENT IRON IN A PERMEABLE REACTIVE BARRIER

    Science.gov (United States)

    A series of laboratory experiments were performed to elucidate the chromium transformation and precipitation reactions caused by the corrosion of zero-valent iron in water-based systems. Reaction rates were determined for chromate reduction in the presence of different types of ...

  11. Application of Emulsified Zero-Valent Iron to Marine Environments

    Science.gov (United States)

    Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.

    2005-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the contaminant's potential bioaccumulation in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water run-off. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. However, the application to marine environments is only just being explored. This paper discusses the potential use of EZVI in brackish and saltwater environments, with supporting laboratory data detailed. Laboratory studies were performed in 2005 to establish the effectiveness of EZVI to degrade trichloroethylene (TCE) in saltwater. Headspace vials were setup to determine the kinetic rate of TCE degradation using EZVI in seawater. The reaction vials were analyzed by Gas Chromatographic/Flame Ionization Detection (GC/FID) for ethene production after a 48 day period using a GC/FID Purge and Trap system. Analytical results showed that EZVI was very effective at degrading TCE. The reaction by-products (ethene, acetylene and ethane) were produced at 71% of the rate in seawater as in the fresh water controls. Additionally, iron within the EZVI particles was protected from oxidation of the corrosive seawater, allowing EZVI to perform in an environment where zero-valent iron alone could not compete. Laboratory studies were also performed to establish the effectiveness of emulsified zero-valent metal (EZVM) to remove dissolved-phase cadmium and lead found in seawater. EZVM is comprised of a combination of magnesium and iron metal surrounded by the

  12. Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Zhang, Libo; Peng, Jinhui; Ma, Aiyuan; Xia, Hong Ying; Guo, Wen Qian; Yu, Xia [Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming (China); Hu, Jinming; Yang, Lifeng [Nuclear Group Two Seven Two Uranium Industry Limited Liability Company, Hengyang (China)

    2016-06-15

    Uranium removal from uranium plant wastewater using zero-valent iron in an ultrasonic field was investigated. Batch experiments designed by the response surface methodology (RSM) were conducted to study the effects of pH, ultrasonic reaction time, and dosage of zero-valent iron on uranium removal efficiency. From the experimental data obtained in this work, it was found that the ultrasonic method employing zero-valent iron powder effectively removes uranium from uranium plant wastewater with a uranium concentration of 2,772.23 μg/L. The pH ranges widely from 3 to 7 in the ultrasonic field, and the prediction model obtained by the RSM has good agreement with the experimental results.

  13. DDT, DDD, AND DDE DECHLORINATION BY ZERO-VALENT IRON

    Science.gov (United States)

    Traditionally, destruction of DDT [1,1,1-trichIoro-2,2-bis(p-chlorophenyl)ethane] for environmental remediation required high-energy processes such as incineration. Here, the capability of powdered zero-valent iron to dechlorinate DDT and related compounds at room tempera...

  14. Remediation of U(VI)-contaminated water using zero-valent iron

    International Nuclear Information System (INIS)

    Abdelouas, A.; Gong, W.; Lutze, W.; Nuttall, E.

    1999-01-01

    We investigated the possibility of U(VI) reduction by zero-valent iron (Fe 0 ). We conducted batch experiments with granular iron and solutions containing 0.25 and 9.3 mg L -1 U(VI) at 24 deg C. The solution pH ranges between 2 and 9. In all experiments uranium removal was complete within several hours to several days regardless of the pH value. The reduced uranium precipitated as poorly crystallized hydrated uraninite, UO 2 .nH 2 O. The reduction of U(VI) to U(IV) by Fe 0 was found to be the principal mechanism of U removal from the solution. Other mechanisms such as U(VI) sorption on the newly formed Fe(III) hydroxides are insignificant. These results show that zero-valent iron can be used to remedy U-contaminated waters from uranium mines and mill tailings sites, the pH of which usually ranges between 2 and 9. (authors)

  15. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    Science.gov (United States)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  16. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    Science.gov (United States)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  17. Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Winther, K.; Kjeldsen, Peter

    2000-01-01

    Transformation of gaseous CCl3F and CCl4 by zero-valent iron was studied in systems unsaturated with water under anaerobic conditionssin an N2 gas and in a landfill gas atmosphere. The transformation was studied in batch as well as flow-through column tests. In both systems, the transformation....... During continuous aerobic conditions, the transformation of CCl3F decreased toward zero. Model calculations show that use of zero-valent iron in landfill top covers is a potential treatment technology for emission reduction of halogenated trace compounds from landfills....

  18. The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron

    International Nuclear Information System (INIS)

    Zhu Xiuping; Ni Jinren

    2011-01-01

    Boron-doped diamond (BDD) electrodes are promising anode materials in electrochemical treatment of wastewaters containing bio-refractory organic compounds due to their strong oxidation capability and remarkable corrosion stability. In order to further improve the performance of BDD anode system, electrochemical degradation of p-nitrophenol were initially investigated at the BDD anode in the presence of zero-valent iron (ZVI). The results showed that under acidic condition, the performance of BDD anode system containing zero-valent iron (BDD-ZVI system) could be improved with the joint actions of electrochemical oxidation at the BDD anode (39.1%), Fenton's reaction (28.5%), oxidation–reduction at zero-valent iron (17.8%) and coagulation of iron hydroxides (14.6%). Moreover, it was found that under alkaline condition the performance of BDD-ZVI system was significantly enhanced, mainly due to the accelerated release of Fe(II) ions from ZVI and the enhanced oxidation of Fe(II) ions. The dissolved oxygen concentration was significantly reduced by reduction at the cathode, and consequently zero-valent iron corroded to Fe(II) ions in anaerobic highly alkaline environments. Furthermore, the oxidation of released Fe(II) ions to Fe(III) ions and high-valent iron species (e.g., FeO 2+ , FeO 4 2− ) was enhanced by direct electrochemical oxidation at BDD anode.

  19. Synthesis of Zero Valent Iron Nanoparticles (nZVI and its Efficiency in Arsenic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2011-03-01

    Full Text Available The aim of this study to synthesize nanoparticle zero valent iron and to determine its efficiency in arsenic removal from aqueous solutions. Nanoparticles were synthesized by reduction of ferric chloride using sodium borohydrid. The experiments were conducted in a batch system and the effects of pH, contact time, and the concentrations of arsenit, arsenat, and nano zero valent iron were investigated. SEM and XRD were applied for the determination of particle size and characterization of the nanoparticles synthesized. SEM results revealed that synthesized particles were of nano size (1-100 nanometers. At pH=7.0, 99% of arsenit and arsenat was removed when nano zero valent iron concentration was 1 (g L-1  over a retention time of  10 min. Based on the results obtained, the removal efficiency was enhanced with increasing nano zero valent iron dosage and reaction time, but decreased with increasing initial concentration and initial solution pH. The significant removal efficiency, high rate of process and short reaction time showed that iron nano particles are of a significant potential for the removal of arsenic from aqueous solutions.

  20. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community.

    Science.gov (United States)

    Zabetakis, Kara M; Niño de Guzmán, Gabriela T; Torrents, Alba; Yarwood, Stephanie

    2015-01-01

    The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect.

  1. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    International Nuclear Information System (INIS)

    Son, Ahjeong; Schmidt, Carl J.; Shin, Hyejin; Cha, Daniel K.

    2011-01-01

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  2. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ahjeong, E-mail: ason@auburn.edu [Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Schmidt, Carl J. [Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 (United States); Shin, Hyejin [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2011-01-30

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  3. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-01

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  4. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zheng, Shuilin [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Ayoko, Godwin A.; Frost, Ray L. [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Xi, Yunfei, E-mail: y.xi@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-12-15

    Graphical abstract: Nanosized zero-valent iron (nZVI) particles were deposited onto acid-leached diatomite through centrifugation or rotary evaporation. The synthesis schematic diagram and morphology of the prepared nZVI/diatomite composites are shown in the illustration. The removal efficiency for herbicide simazine by nZVI/diatomite composites was compared with that of the pristine nZVI and the commercial iron powder. -- Highlights: • Diatomite-supported nanosized zero-valent iron composite was synthesised. • The obtained composites were characterised by XRD, SEM–EDS, TEM and XPS. • The removal efficiency for simazine in water were studied. • The prepared composite showed potential prospects in environmental remediation. -- Abstract: A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI/diatomite composites were characterised by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI/diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesised nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilising nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent

  5. Sulfur-Modified Zero-Valent Iron for Remediation Applications at DOE Sites - 13600

    Energy Technology Data Exchange (ETDEWEB)

    Fogwell, Thomas W. [Fogwell Consulting, P.O. Box 20221, Piedmont, CA 94620 (United States); Santina, Pete [SMI-PS, Inc., 2073 Prado Vista, Lincoln, CA 95648 (United States)

    2013-07-01

    Many DOE remediation sites have chemicals of concern that are compounds in higher oxidation states, which make them both more mobile and more toxic. The chemical reduction of these compounds both prevents the migration of these chemicals and in some cases reduces the toxicity. It has also been shown that zero-valent iron is a very effective substance to use in reducing oxygenated compounds in various treatment processes. These have included the treatment of halogenated hydrocarbons in the form volatile organic compounds used as solvents and pesticides. Zero-valent iron has also been used to reduce various oxidized metals such as chromium, arsenic, and mercury in order to immobilize them, decrease their toxicity, and prevent further transport. In addition, it has been used to immobilize or break down other non-metallic species such as selenium compounds and nitrates. Of particular interest at several DOE remediation sites is the fact that zero-valent iron is very effective in immobilizing several radioactive metals which are mobile in their oxidized states. These include both technetium and uranium. The main difficulty in using zero-valent iron has been its tendency to become inactive after relatively short periods of time. While it is advantageous to have the zero-valent iron particles as porous as possible in order to provide maximum surface area for reactions to take place, these pores can become clogged when the iron is oxidized. This is due to the fact that ferric oxide has a greater volume for a given mass than metallic iron. When the surfaces of the iron particles oxidize to ferric oxide, the pores become narrower and will eventually shut. In order to minimize the degradation of the chemical activity of the iron due to this process, a modification of zero-valent iron has been developed which prevents or slows this process, which decreases its effectiveness. It is called sulfur-modified iron, and it has been produced in high purity for applications in

  6. An Experimental Study of Micron-Size Zero-Valent Iron Emplacement in Permeable Porous Media Using Polymer-Enhanced Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2005-12-22

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. One possible cause for premature chromate breakthrough is associated with the presence of high-permeability zones in the aquifer. In these zones, groundwater moves relatively fast and is able to oxidize iron more rapidly. There is also a possibility that the high-permeability flow paths are deficient in reducing equivalents (e.g. reactive iron), required for barrier performance. One way enhancement of the current barrier reductive capacity can be achieved is by the addition of micron-scale zero-valent iron to the high-permeability zones within the aquifer. The potential emplacement of zero-valent iron (Fe0) into high-permeability Hanford sediments (Ringold Unit E gravels) using shear-thinning fluids containing polymers was investigated in three-dimensional wedge-shaped aquifer models. Polymers were used to create a suspension viscous enough to keep the Fe0 in solution for extended time periods to improve colloid movement into the porous media without causing a permanent detrimental decrease in hydraulic conductivity. Porous media were packed in the wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone in between two low-permeability zones or a high-permeability channel surrounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments.

  7. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A., E-mail: jimfield@email.arizona.edu

    2016-05-05

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  8. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    International Nuclear Information System (INIS)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A.

    2016-01-01

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  9. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weijiang [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); South China Institute of Environmental Science, MEP, Guangzhou 510655 (China); Fu, Fenglian, E-mail: fufenglian2006@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Zihang; Tang, Bing; Wu, Shijiao [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-01-25

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+}) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  10. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    International Nuclear Information System (INIS)

    Zboril, Radek; Andrle, Marek; Oplustil, Frantisek; Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek; Sharma, Virender K.

    2012-01-01

    Highlights: ► Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. ► Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). ► Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3′-imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants (∼10 −2 s −1 ) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10 −8 –10 −6 s −1 ). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  11. Formation of a barrier to groundwater contaminants by the injection of zero-valent iron colloids: Suspension properties

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Cantrell, K.J.; Wietsma, T.W.

    1994-01-01

    Zero-valent iron (Fe 0 ) (metallic iron) is a strong chemical reductant that is capable of degrading several halogenated-hydrocarbon compounds (e.g., trichloroethene and tetrachloroethene) and chemically reducing several highly mobile oxidized oxyanions and oxycations to their immobile forms. A series of studies was undertaken to develop methods of injecting micrometer-sized Fe 0 colloids into the subsurface environment to form a chemical barrier to these highly mobile contaminants. Forming a barrier by means of this technique may have the distinct advantage over traditional trench-and-fill technologies: it may be safer, more cost-effective, and may be used at greater depths. Several commercially available Fe 0 colloids were evaluated. One type was selected for further study based on its small size (1 to 2 microm) and the presence of an organic coating. This organic coating was weathered away within 7 days by Hanford ground water (CaCO 3 system, pH 8.1) and exposed the chemically active Fe 0 -colloid surface. Through the use of surfactants in a low ionic strength solution, the length of time that these extremely dense (7.8 g cm -3 ) colloids remained in suspension increased as much as 250%. The efficiency of quartz-sand columns to remove surfactant-coated Fe 0 colloids appeared to be at least partially controlled by injection rate; the filter coefficient values at injection rates of 6, 124, and 248 ml min -1 were 0.30, 0.05, and 0.02 cm -1 , respectively. Studies are underway to develop further understanding of this relationship and to determine the interactive effect of influent colloid concentration and injection flow rate on colloid placement in aquifer sediments for barrier formation

  12. Dehalogenation of aromatic halides by polyaniline/zero-valent iron composite nanofiber: Kinetics and mechanisms

    CSIR Research Space (South Africa)

    Giri, S

    2016-03-01

    Full Text Available Dehalogenation of aryl halides was demonstrated using polyaniline/zero valent iron composite nanofiber (termed as PANI/Fe0) as a cheap, efficient and environmentally friendly heterogeneous catalyst. The catalyst was prepared via rapid mixing...

  13. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: A comparative study

    International Nuclear Information System (INIS)

    Lee, Hongshin; Lee, Hye-jin; Kim, Hyung-Eun; Kweon, Jihyang; Lee, Byeong-Dae; Lee, Changha

    2014-01-01

    Highlights: • Oxidants from zero-valent iron were quantified in the presence of oxygen and EDTA. • The oxidant yields of nano- and microparticulate zero-valent iron were compared. • Microparticulate zero-valent iron produced higher oxidant yields. • The factors affecting the oxidant production from zero-valent iron were discussed. -- Abstract: In aqueous solution, zero-valent iron (ZVI, Fe 0 ) is known to activate oxygen (O 2 ) into reactive oxidants such as hydroxyl radical and ferryl ion capable of oxidizing contaminants. However, little is known about the effect of the particle size of ZVI on the yield of reactive oxidants. In this study, the production of reactive oxidants from nanoparticulate and microparticulate ZVIs (denoted as nZVI and mZVI, respectively) was comparatively investigated in the presence of O 2 and EDTA. To quantify the oxidant yield, excess amount of methanol was employed, and the formation of its oxidation product, formaldehyde (HCHO), was monitored. The concentration of HCHO in the nZVI/O 2 system rapidly reached the saturation value, whereas that in the mZVI/O 2 system gradually increased throughout the entire reaction time. The mZVI/O 2 system exhibited higher yields of HCHO than the nZVI/O 2 system under both acidic and neutral pH conditions. The higher oxidant yields in the mZVI/O 2 system are mainly attributed to the less reactivity of the mZVI surface with hydrogen peroxide (H 2 O 2 ) relative to the surface of nZVI, which minimize the loss of H 2 O 2 by ZVI (i.e., the two-electron reduction of H 2 O 2 into water). In addition, the slow dissolution of Fe(II) from mZVI was found to be partially responsible for the higher oxidant yields at neutral pH

  14. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    Energy Technology Data Exchange (ETDEWEB)

    Zboril, Radek, E-mail: zboril@prfnw.upol.cz [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Andrle, Marek; Oplustil, Frantisek [Military Institute VOP-026 Sternberk, Division in Brno, Rybkova 8, 602 00 Brno (Czech Republic); Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Sharma, Virender K., E-mail: vsharma@fit.edu [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Center of Ferrate Excellence, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. Black-Right-Pointing-Pointer Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). Black-Right-Pointing-Pointer Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Moessbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3 Prime -imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants ({approx}10{sup -2} s{sup -1}) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10{sup -8}-10{sup -6} s{sup -1}). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  15. Simple colorimetric assay for dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2015-01-01

    Despite the wide application of nanoscale zero valent iron (nZVI) for the treatment of a plethora of pollutants through reductive reactions, reactivity evaluation of nZVI towards dehalogenation has not been standardized. In this light, it was desired to develop a simple colorimetric assay...

  16. Uranium Removal from Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies

    Directory of Open Access Journals (Sweden)

    Borys Kornilovych

    2018-06-01

    Full Text Available Zhovty Vody city, located in south-central Ukraine, has long been an important center for the Ukrainian uranium and iron industries. Uranium and iron mining and processing activities during the Cold War resulted in poorly managed sources of radionuclides and heavy metals. Widespread groundwater and surface water contamination has occurred, which creates a significant risk to drinking water supplies. Hydrogeologic and geochemical conditions near large uranium mine tailings storage facility (TSF were characterized to provide data to locate, design and install a permeable reactive barrier (PRB to treat groundwater contaminated by leachate infiltrating from the TSF. The effectiveness of three different permeable reactive materials was investigated: zero-valent iron (ZVI for reduction, sorption, and precipitation of redox-sensitive oxyanions; phosphate material to transform dissolved metals to less soluble phases; and organic carbon substrates to promote bioremediation processes. Batch and column experiments with Zhovty Vody site groundwater were conducted to evaluate reactivity of the materials. Reaction rates, residence time and comparison with site-specific clean-up standards were determined. Results of the study demonstrate the effectiveness of the use of the PRB for ground water protection near uranium mine TSF. The greatest decrease was obtained using ZVI-based reactive media and the combined media of ZVI/phosphate/organic carbon combinations.

  17. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Qiang, E-mail: kongqiang0531@hotmail.com [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China); Ngo, Huu Hao [School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Shu, Li [School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria 3216 (Australia); Fu, Rong-shu; Jiang, Chun-hui [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China); Miao, Ming-sheng, E-mail: mingshengmiao@163.com [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China)

    2014-08-30

    Highlights: • Zero-valent iron (ZVI) was used firstly to enhance the aerobic granulation. • ZVI significantly decreased the start-up time of the aerobic granulation. • ZVI had the function of enhancing organic material diversity identified by 3-D EEM. • ZVI could enhance the diversity of microbial community. - Abstract: This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe{sup 2+} dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation.

  18. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor

    International Nuclear Information System (INIS)

    Kong, Qiang; Ngo, Huu Hao; Shu, Li; Fu, Rong-shu; Jiang, Chun-hui; Miao, Ming-sheng

    2014-01-01

    Highlights: • Zero-valent iron (ZVI) was used firstly to enhance the aerobic granulation. • ZVI significantly decreased the start-up time of the aerobic granulation. • ZVI had the function of enhancing organic material diversity identified by 3-D EEM. • ZVI could enhance the diversity of microbial community. - Abstract: This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe 2+ dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation

  19. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate.

    Science.gov (United States)

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo

    2015-06-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, J.; Hwang, Yuhoon

    2015-01-01

    Nanoscale zero-valent iron (nZVI), with its reductive potentials and wide availability, offers degradative remediation of environmental contaminants. Rapid aggregation and deactivation hinder its application in real-life conditions. Here, we show that by caging nZVI into the micropores of porous ...

  1. Source zone remediation by zero valent iron technologies

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann

    at a fifth of these contaminated sites. These source zones pose a serious threat to soil and groundwater quality. Remediation of the heterogeneous source zones is challenging due to irregular downwards migration patterns in the subsurface, low aqueous solubility and matrix diffusion. To protect the soil...... and groundwater resources from long-term deterioration, the development of in situ technologies suitable for remediation of DNAPL is warranted. Currently, an array of aggressive in situ remediation technologies remediation exists. These technologies may be suitable under various site specific conditions; however......, most of them are limited by subsurface heterogeneities and/or the risk of inadvertent DNAPL displacement during field application. This thesis presents the results of an investigation of the potential for remediation of chlorinated solvent source zones by emerging zero valent iron (ZVI) based...

  2. Effect of magnetic field on the zero valent iron induced oxidation reaction

    International Nuclear Information System (INIS)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-01-01

    Highlights: → We investigate the zero valent iron induced oxidation in the presence of magnetic field. → The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. → ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. → The magnetic field affects the mass transfer of O 2 and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O 2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H 2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O 2 and Fe 0 are paramagnetic, the diffusion of O 2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe 0 and O 2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  3. Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Uthuppu, Basil; Thirion, Damien

    2018-01-01

    Granular activated carbon was customized with a chemical grafting procedure of a nanoporous polymeric network for the purpose of nanoscale zero-valent iron impregnation and subsequent water contaminant remediation. Characterization of the prepared composite material revealed that not only was the...

  4. Data of furfural adsorption on nano zero valent iron (NZVI synthesized from Nettle extract

    Directory of Open Access Journals (Sweden)

    Mehdi Fazlzadeh

    2018-02-01

    Full Text Available Among various water and wastewater treatment methods, adsorption techniques are widely used to remove certain classes of pollutants due to its unique features. Thus, the aim of this data article is to synthesize zero valent iron nanoparticles (NZVI from Nettle leaf extract by green synthesis method as an environmentally friendly technique, and to evaluate it's efficiency in the removal of furfural from aqueous solutions. The data of possible adsorption mechanism and isotherm of furfural on the synthesized adsorbent are depicted in this data article. The data acquired showed that the adsorption trend follows the pseudo-second order kinetic model and that the Langmuir isotherm was suitable for correlation of equilibrium data with the maximum adsorption capacity of 454.4 mg/g. The information of initial furfural concentration, pH, adsorbent dosage and contact time effects on the removal efficiency are presented. Considering the findings data, the developed nanoparticle from Nettle leaf extract, as a low cost adsorbent, could be considered as promising adsorbent for furfural and probably similar organic pollutants removal from aqueous solutions. Keywords: Green synthesis method, Furfural, Nettle zero valent iron nanoparticles (NNZVI, Low cost adsorbents

  5. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    International Nuclear Information System (INIS)

    Cornejo, Lorena; Lienqueo, Hugo; Arenas, Maria; Acarapi, Jorge; Contreras, David; Yanez, Jorge; Mansilla, Hector D.

    2008-01-01

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L -1 . Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L -1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L -1 . This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed

  6. Nanoscale zero-valent iron impregnation of covalent organic polymer grafted activated carbon for water treatment

    DEFF Research Database (Denmark)

    Mines, Paul D.; Uthuppu, Basil; Thirion, Damien

    2016-01-01

    The use of nanoscale zero valent iron (nZVI) has quickly become a leading research material for the treatment of typically hard to degrade contaminants found in groundwater. These contaminants include antibiotics, pesticides, halogenated organics, heavy metals, among others. However, the effectiv......The use of nanoscale zero valent iron (nZVI) has quickly become a leading research material for the treatment of typically hard to degrade contaminants found in groundwater. These contaminants include antibiotics, pesticides, halogenated organics, heavy metals, among others. However...... polymeric network already previously proven to stabilize nZVI and a long-standing water treatment material,1 activated carbon; we have developed an advanced material that allows for the not only the stabilization of nZVI, but also the improved degradation of various water contaminants. This was done...... by performing a series of surface modification techniques to the surface of the activated carbon, then physically grafting the covalent organic polymer to the carbon in a shell-like manner, and ultimately synthesizing nZVI in situ within the pores of both the activated carbon and the polymeric network. Not only...

  7. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, Lorena [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile)], E-mail: lorenacp@uta.cl; Lienqueo, Hugo; Arenas, Maria [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Acarapi, Jorge [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile); Contreras, David; Yanez, Jorge; Mansilla, Hector D. [Facultad de Ciencias Quimicas, Universidad de Concepcion, Casilla 160C, Concepcion (Chile)

    2008-12-15

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 {mu}g L{sup -1}. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L{sup -1} of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 {mu}g L{sup -1}. This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed.

  8. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials.

    Science.gov (United States)

    Sun, Zhiming; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L; Xi, Yunfei

    2013-12-15

    A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI/diatomite composites were characterised by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI/diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesised nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilising nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent iron composite materials have potential applications in environmental remediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Removal of Perfluorinated Compounds From Water using Nanoscale Zero-Valent Iron

    DEFF Research Database (Denmark)

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus

    Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond......, the application of biological and conventional physicochemical treatment methods does not seem to remove sufficient these compounds from water and wastewater. In the current study, the removal efficiency of four PFCs using three different types of nanoscale zero-valent iron (nZVI) was investigated. Influencing...... factors such as, initial pH solution, reaction temperature and nZVI dosage were also studied. According to the results, target compounds were removed in the presence of chemically synthesized nZVI modified with Mg-aminoclay (MgAC) than under commercial iron powder and chemically synthesized uncoated n...

  10. Reductive Degradation of Perfluorinated Compounds in Water using Mg-aminoclay coated Nanoscale Zero Valent Iron

    OpenAIRE

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus; Stasinakis, Athanasios S.; Thomaidis , Nikolaos S.; Aloupi, Maria

    2015-01-01

    Perfluorinated Compounds (PFCs) are extremely persistent micropollutants that are detected worldwide. We studied the removal of PFCs (perfluorooctanoic acid; PFOA, perfluorononanoic acid; PFNA, perfluorodecanoic acid; PFDA and perfluorooctane sulfonate; PFOS) from water by different types of nanoscale zero-valent iron (nZVI). Batch experiments showed that an iron dose of 1 g•L-1 in the form of Mg-aminoclay (MgAC) coated nZVI, at an initial pH of 3.0 effectively removed 38 % to 96 % of individ...

  11. Effect of zero-valent iron and trivalent iron on UASB rapid start-up.

    Science.gov (United States)

    Wang, Jie; Fang, Hongyan; Jia, Hui; Yang, Guang; Gao, Fei; Liu, Wenbin

    2018-01-01

    In order to realize the rapid start-up of upflow anaerobic sludge blanket (UASB) reactor, the iron ion in different valence state was added to UASB. The results indicated that the start-up time of R3 (FeCl 3 ) was 48 h faster than that of R2 (zero-valent iron (ZVI)). It was because the FeCl 3 could rapidly promote granulation of sludge as a flocculant. However, ZVI released Fe 2+ through corrosion slowly, and then the Fe 2+ increased start-up speed by enhancing enzyme activity and enriching methanogens. In addition, the ZVI and FeCl 3 could promote hydrolysis acidification and strengthen the decomposition of long-chain fatty acids. The detection of iron ions showed that iron ions mainly existed in the sludge. Because the high concentration of Fe 2+ could inhibit anaerobic bacteria activity, excess Fe 3+ could be changed into iron hydroxide precipitation to hinder the mass transfer process of anaerobic bacteria under the alkaline condition. The FeCl 3 was suitable to be added at the initial stage of UASB start-up, and the ZVI was more fitted to be used in the middle stage of reactor start-up to improve the redox ability.

  12. Micron-Size Zero-Valent Iron Emplacement in Porous Media Using Polymer Additives: Column and Flow Cell Ex-periments

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2006-03-20

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. Laboratory experiments have been conducted to investigate whether barrier reductive capacity can be enhanced by adding micron-scale zero-valent iron to the high-permeability zones within the aquifer using shear-thinning fluids containing polymers. Porous media were packed in a wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone between two low-permeability zones or a high-permeability channel sur-rounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments. The flow cell experiments indicated that iron concentration enhancements of at least 0.6% (w/w) could be obtained using moderate flow rates and injection of 30 pore volumes. The 0.6% amended Fe0 concentration would provide approximately 20 times the average reductive capacity that is provided by the dithionite-reduced iron in the ISRM barrier. Calculations show that a 1-m-long Fe0 amended zone with an average concentration of 0.6% w/w iron subject to a groundwater velocity of 1 m/day will have an estimated longevity of 7.2 years.

  13. Data of furfural adsorption on nano zero valent iron (NZVI) synthesized from Nettle extract

    OpenAIRE

    Fazlzadeh, Mehdi; Ansarizadeh, Mohammad; Leili, Mostafa

    2017-01-01

    Among various water and wastewater treatment methods, adsorption techniques are widely used to remove certain classes of pollutants due to its unique features. Thus, the aim of this data article is to synthesize zero valent iron nanoparticles (NZVI) from Nettle leaf extract by green synthesis method as an environmentally friendly technique, and to evaluate it's efficiency in the removal of furfural from aqueous solutions. The data of possible adsorption mechanism and isotherm of furfural on t...

  14. Electrochemical depassivation of zero-valent iron for trichloroethene reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States); Advanced Environmental Technologies, LLC, Fort Collins, CO 80524 (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Swoboda-Colberg, Norbert G. [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States); Liu, Fei [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Colberg, Patricia J.S., E-mail: pczoo@uwyo.edu [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Electrical current may depassivate ZVI and restore its capacity to reduce TCE. Black-Right-Pointing-Pointer Electrical current may defer or even prevent surface oxidation of ZVI. Black-Right-Pointing-Pointer Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0-12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete 'depassivation' of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.

  15. Electrochemical depassivation of zero-valent iron for trichloroethene reduction

    International Nuclear Information System (INIS)

    Chen, Liang; Jin, Song; Fallgren, Paul H.; Swoboda-Colberg, Norbert G.; Liu, Fei; Colberg, Patricia J.S.

    2012-01-01

    Highlights: ► Electrical current may depassivate ZVI and restore its capacity to reduce TCE. ► Electrical current may defer or even prevent surface oxidation of ZVI. ► Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0–12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete “depassivation” of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.

  16. A Study of Efficiency of Zero-valent Iron Nanoparticles in Degradation of Trichlorethylene from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Samaneh Dehghan

    2016-12-01

    mg/l, and contact time= 86 min. The results of kinetic studies revealed that TCE degradation by nZVI follows first-order kinetic model. Conclusion: It is conclude that zero-valent iron nanoparticles have a good efficiency in the degradation of TCE. On the other hand, separation of these nanoparticles is simple due to its magnetism properties, which can improve the use of these nanoparticles. 

  17. Remediation of Chlorpyrifos-Contaminated Soils by Laboratory-Synthesized Zero-Valent Nano Iron Particles: Effect of pH and Aluminium Salts

    Directory of Open Access Journals (Sweden)

    A. Vijaya Bhaskar Reddy

    2013-01-01

    Full Text Available Degradation of the insecticide chlorpyrifos in contaminated soils was investigated using laboratory synthesized zero-valent nano iron (ZVNI particles. The synthesized ZVNI particles were characterized as nanoscale sized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The zero-valent state (Fe0 of iron was confirmed by EDAX analysis and the morphology of the ZVNI particles was studied by XRD. Batch experiments were conducted by treating the chlorpyrifos contaminated soil with ZVNI, our results indicate that 90% of chlorpyrifos was degraded after 10 days of incubation. Only 32% degradation was observed with micro zero-valent iron (mZVI and no considerable degradation was attained without ZVNI. The degradation of chlorpyrifos followed the first-order kinetics with a rate constant and a half-life of 0.245 day−1 and 2.82 days, respectively. Degradation was monitored at two different pH values, that is, pH 10 and pH 4. Chlorpyrifos degradation rate constant increased as the pH decreases from 10 to 4. The corresponding rate constant and half-lives were 0.43 day−1 and 1.57days for pH 4, 0.18 day−1 and 3.65 days for pH 10. In addition, an attempt was made by augmenting Al2(SO43 with ZVNI and it was found that the degradation rate of chlorpyrifos was greatly enhanced and the rate constant was rapidly increased from 0.245 day−1 to 0.60 day−1. Hydrolysis and stepwise dechlorination pathway of chlorpyrifos with ZVNI was the dominant reaction.

  18. Study on degradation of nitrobenzene in groundwater using emulsified nano-zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jun, E-mail: dongjun@jlu.edu.cn; Wen, Chunyu, E-mail: 13756014702@163.com; Liu, Dengfeng, E-mail: 862337789@qq.com [Jilin University, College of Environment and Resources (China); Zhang, Wenjing, E-mail: zhangwj@caep.org.cn [Chinese Academy for Environmental Planning (CAEP) (China); Li, Jintong, E-mail: 1535448369@qq.com; Jiang, Hanjie, E-mail: 1932639992@qq.com; Qin, Chongwei, E-mail: 476158689@qq.com; Hong, Mei, E-mail: hongmei@jlu.edu.cn [Jilin University, College of Environment and Resources (China)

    2015-01-15

    Emulsified nano-zero-valent iron (EZVI) is a modified form of bare nanoiron with improved transportability and targetability for the remediation of organic-solvents polluted soil and groundwater. In this work, EZVI (50–150 nm) was prepared by coating an emulsified vegetable oil membrane on the surface of Fe nanoparticles. EZVI was well-dispersed and less aggregation was observed. Batch experiments were conducted in anaerobic conditions to investigate the kinetics of nitrobenzene reduction by EZVI and the influences of oil concentration, initial iron content, and initial pH. Results indicated that the kinetics of nitrobenzene reduction by EZVI followed a pseudo-first-order kinetics. The observed rate constant of nitrobenzene is 0.0942 min{sup −1}. The oil concentration of 1 and 2 % tended to be preferred concentrations. The rate of nitrobenzene degradation and aniline formation increased with increasing iron content. The low pH is favorable to the nitrobenzene reduction by EZVI.

  19. Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products

    International Nuclear Information System (INIS)

    Adeleye, Adeyemi S.; Keller, Arturo A.; Miller, Robert J.; Lenihan, Hunter S.

    2013-01-01

    The use of nanoscale zero-valent iron (nZVI) for in situ remediation of a wide scale of environmental pollutants is increasing. Bench and field pilot studies have recorded successful cleanup of many pollutants using nZVI and other iron-mediated nanoparticles. However, a major question remains unanswered: what is the long-term environmental fate of the iron nanoparticles used for remediation? We aged three types of commercial nZVI in different aqueous media, including a groundwater sample, under aerobic and anaerobic conditions for 28 days, and found that the bulk of the nZVI injected into polluted sites will end up in the sediment phase of the aquifer. This is mainly due to aggregation-induced sedimentation of the nZVI and the insoluble iron oxides formed when nZVI undergoes corrosion. Iron concentrations >500 g/kg were detected in sediment, a loading level of iron that may potentially affect some organisms and also reduce the permeability of aquifers. Dissolved and suspended iron concentrations initially surged when nZVI was applied, but iron decreased steadily in the supernatant and suspended sediment as the bulk of the iron partitioned into the sediment. Solution and surface chemistry of the iron species showed that nZVI remains reactive for more than 1 month, and that the reactivity of iron and its transformations are governed by environmental factors, including the presence of different ions, ionic strength, natural organic matter, and pH.

  20. Comparison of the Efficiencies of Zero-Valent Iron Nanoparticles and Stabilized Iron Nanoparticles for Nitrate Reduction from Polluted Waters

    Directory of Open Access Journals (Sweden)

    Fatemeh Nooralivand

    2015-12-01

    Full Text Available The present study was conducted to evaluate the feasibility of zero-valent iron nanoparticles (ZVIN for the removal of nitrate from aqueous solutions. For this purpose, bare zero-valent iron nanoparticles (bare-ZVIN and CMC-ZVIN were synthesized using the borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD, and Fourier Transmission Infrared Spectroscopy (FTIR. The effects of pH of the aqueous solution, initial nitrate concentration, ZVIN concentration, and contact time on nitrate reduction were investigated as operational parameters and the kinetics of nitrate reduction was studied in batch experiments. The results showed that 93.65% of nitrate was removed by stabilized nanoparticles at pH=6 while non-stabilized nanoparticles at pH=2 were able to remove 85.55% of the nitrate.Furthermore, nitrate reduction was enhanced by increasing ZVIN concentration and contact time while it was decreased as a result of increasing initial nitrate concentration. The major product of nitrate reduction at an acidic pH was found to be ammonium; at an alkaline pH, however, nitrate was converted to nitrogen and nitrite production dropped to less than 2%. Kinetic analysis demonstrated that denitrification of nitrate by the nanoparticles fitted well with first-order and second-order reaction models. The results also demonstrated that the stabilized ZVI nanoparticles were more effective than bare-ZVIN for nitrate reduction in aqueous solutions.

  1. Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): Effect of ionic strength and initial pH

    DEFF Research Database (Denmark)

    Kim, Do-Gun; Hwang, Yuhoon; Shin, Hang-Sik

    2016-01-01

    Kinetic models for pollutants reduction by Nano-scale Zero Valent Iron (NZVI) were tested in this study to gain a better understanding and description of the reaction. Adsorption kinetic models and a heterogeneous catalytic reaction kinetic equation were proposed for nitrate removal and for ammon...

  2. Degradation of bis- p -nitrophenyl phosphate using zero-valent iron nanoparticles

    International Nuclear Information System (INIS)

    Valle-Orta, Maiby; Guerrero, Rubén Saldivar; Díaz, David; Dubé, Inti Zumeta; Quiñonez, José Luis Ortiz

    2017-01-01

    Phosphate esters are employed in some agrochemical formulations and have long life time in the Environment. They are neurotoxic to mammals and it is very difficult to hydrolyze them. It is easy to find papers in the literature dealing with transition metal complexes used in the hydrolysis processes of organophosphorous compounds. However, there are few reports related with degradation of phosphate esters with inorganic nanoparticles. In this work bis-4-nitrophenyl phosphate (BNPP) was used as an agrochemical agent model. The BNPP interaction with zero-valent iron nanoparticles (ZVI NPs), in aqueous media, was searched. The concentration of BNPP was 1000 times higher than the ZVI NPs concentration. The average size of the used iron nanoparticles was 10.2 ± 3.2 nm. The BNPP degradation process was monitored by means of UV-visible method. Initially, the BNPP hydrolysis happens through the P-O bonds breaking-off under the action of the ZVI NPs. Subsequently, the nitro groups were reduced to amine groups. The overall process takes place in 10 minutes. The reaction products were identified employing standard substances in adequate concentrations. The iron by-products were isolated and characterized by X-RD. These iron derivatives were identified as magnetite (Fe 3 O 4 ) and/or maghemite (γ-Fe 2 O 3 ) and lepidocrocite (γ-FeOOH). A suggested BNPP degradation mechanism will be discussed. (paper)

  3. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.

    Science.gov (United States)

    Klas, Sivan; Kirk, Donald W

    2013-05-15

    The removal of toxic arsenic species from contaminated waters by zero-valent iron (ZVI) has drawn considerable attention in recent years. In this approach, arsenic ions are mainly removed by adsorption to the iron corrosion products. Reduction to zero-valent arsenic on the ZVI surface is possible in the absence of competing oxidants and can reduce arsenic mobility and sludge formation. However, associated removal rates are relatively low. In the current study, simultaneous high reduction and removal rates of arsenite (H3AsO3), the more toxic and mobile environmentally occurring arsenic species, was demonstrated by reacting it with ZVI under limited aeration and relatively low pH. 90% of the removed arsenic was attached to the ZVI particles and 60% of which was in the elemental state. Under the same non-acidic conditions, only 40-60% of the removed arsenic was attached to the ZVI with no change in arsenic oxidation state. Under anaerobic conditions, reduction occurred but total arsenic removal rate was significantly lower and ZVI demand was higher. The effective arsenite removal under acidic oxygen-limited conditions was explained by formation of Fe(II)-solid intermediate on the ZVI surface that provided high surface area and reducing power. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Ferro zero: uma nova abordagem para o tratamento de águas contaminadas com compostos orgânicos poluentes Zero-valent iron: a new approach for treatment of waters contamined with organic pollutants

    Directory of Open Access Journals (Sweden)

    Wellington S. Pereira

    2005-02-01

    Full Text Available Anthropogenic pollution of groundwater and surface water has become a very serious environmental problem around the world. A wide range of toxic pollutants is recalcitrant to the conventional treatment methods, thus there is much interest in the development of more efficient remediation processes. Degradation of organic pollutants by zero-valent iron is one of the most promising approaches for water treatment, mainly because it is of low cost, easy to obtain and effective. After a general introduction to water pollution and current treatments, this work highlights the advances, applications and future trends of water remediation by zero-valent iron. Special attention is given to degradation of organochloride and nitroaromatic compounds, which are commonly found in textile and paper mill effluents.

  5. Zero-valent iron/iron oxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinated biphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography-mass spectrometry.

    Science.gov (United States)

    Karamani, Anna A; Douvalis, Alexios P; Stalikas, Constantine D

    2013-01-04

    A composite magnetic material consisting of zero-valent iron, iron oxide-oxyhydroxide and graphene was synthesized and used successfully as a sorbent for the micro solid-phase extraction of PAHs, PCBs and phthalic acid esters. The components endow the composite with multiple characteristics such as adsorption capability and facile removal due to its magnetic properties. Due to the π-π electrostatic stacking property of graphene, the high specific surface area and the adsorption capability of both components, the resulting black flaky Fe(0)/iron oxide-oxyhydroxide/graphene composite showed high extraction efficiency for the target analytes from water samples. Compared with the neat graphene, the composite material has improved properties in terms of microextraction capabilities as both the hydrophobic graphene and zero-valent iron participate in the adsorption of the hydrophobic molecules. The precision from the extraction of all three groups of compounds was lower than 7% and the recoveries were from 90 to 93% from a spiked lake water sample. The high recoveries in relation to the low final volume of the desorption solvent ensure high preconcentration efficiency and a promising sorbent for analytical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Emplacement of zero-valent metal for remediation of deep contaminant plumes

    International Nuclear Information System (INIS)

    Hubble, D.W.; Gillham, R.W.; Cherry, J.A.

    1997-01-01

    Some groundwater plumes containing chlorinated solvent contaminants are found to be so deep that current in situ remediation technologies cannot be economically applied. Also, source zones are often found to be too deep for removal or inaccessible due to surface features. Plumes emanating from these sources require containment or treatment. Containment technologies are available for shallow sites (< 15 m) and are being developed for greater depths. However, it is important to advance the science of reactive treatment - both for cut off of plumes and to contain and treat source zones. Zero-valent metal technology has been used for remediation of solvent plumes at sites in Canada, the UK and at several industrial and military sites in the USA. To date, all of the plumes treated with zero-valent metal (granular iron) have been at depths less than 15 m. This paper gives preliminary results of research into methods to emplace granular iron at depths in the range of 15 to 60 m. The study included review of available and emerging methods of installing barrier or reactive material and the selection, preliminary design and costing of several methods. The design of a treatment system for a 122 m wide PCE plume that, immediately down gradient from its source, extends from a depth of 24 to 37 m below the ground surface is used as a demonstration site. Both Permeable Reactive Wall and Funnel-and-Gate trademark systems were considered. The emplacement methods selected for preliminary design and costing were slurry wall, driven/vibrated beam, deep soil mixing and hydrofracturing injection. For each of these methods, the iron must be slurried for ease of pumping and placement using biodegradable polymer viscosifiers that leave the iron reactive

  7. Fluidized bed bioreactors coupled to zero-valent iron filters for removal of high concentrations of perchloroethylene

    International Nuclear Information System (INIS)

    Poggi-Varaldo, H. M.; Herrera-Lopez, D.; Garcia-Mena, J.; Rios-Leal, E.

    2009-01-01

    The aim of this work was to evaluate the effect of coupling continuous bioreactors with zero-valent iron filters on removal of PCE. Two types of reactors with simultaneous electron acceptors were used: partially aerated methanogenic (PAM) and methanogenic-denitrifying (M-D). Lab-scale fluidized-bed reactors (FBBR) were operated as follows: PAM at λ=135 g COD/g O 2 and M-D at λ=9 g COD/g N-NO 3 with 80 mg/L of PCE in the influent. (Author)

  8. Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Salatas, Apostolos; Mines, Paul D.

    2015-01-01

    Even though nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, quantification of nZVI reactivity has not yet been standardized. Here, we adapted colorimetric assays for determining reductive activity of n...... with different compounds, combined with the use of a multi-well microplate based color assay, promises to be a useful and simple tool in various nZVI related research topics....

  9. Ecotoxicity of nanoscale zero-valent iron particles – a review

    Directory of Open Access Journals (Sweden)

    José Tomás Albergaria

    2013-11-01

    Full Text Available The use of nanoscale zero-valent iron particles (nZVIs in the environmental remediation of water and soil is increasing. This increase is related to the higher reactivity and mobility of nZVIs compared with that of macro- or micro-sized iron particles. The introduction of nZVIs into the environment raises concerns related to their fate and effect on aquatic and terrestrial biota. Knowledge of these issues will allow a better understanding not only of the remediation process but also of the long-term effects and impact of nZVIs on ecosystems, leading to a safer and more efficient application of these particles. This paper presents the current state of play concerning the toxic effects of nZVIs on organisms at different stages of the food chain. The majority of studies show that nZVIs have a negative impact on bacteria, aquatic invertebrates, such as Daphnia mag-na, terrestrial organisms, such as Eisenia fetida, and seed germination. However, the number of published studies related to this issue is clearly insufficient. This reinforces the need for further research in order to specify the toxic concentrations of nZVIs that affect the most important target organisms. Furthermore, an evaluation of the effects of the coating of nanoparticles should also be pursued

  10. Analytical Characterisation of Nanoscale Zero-Valent Iron: A ...

    Science.gov (United States)

    Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Both the mobility and reactivity of nZVI mainly depends on properties such as particle size, surface chemistry and bulk composition. In order to ensure efficient remediation, it is crucial to accurately assess and understand the implications of these properties before deploying these materials into contaminated environments. Many analytical techniques are now available to determine these parameters and this paper provides a critical review of their usefulness and limitations for nZVI characterisation. These analytical techniques include microscopy and light scattering techniques for the determination of particle size, size distribution and aggregation state, and X-ray techniques for the characterisation of surface chemistry and bulk composition. Example characterisation data derived from commercial nZVI materials is used to further illustrate method strengths and limitations. Finally, some important challenges with respect to the characterisation of nZVI in groundwater samples are discussed. In recent years, manufactured nanoparticles (MNPs) have attracted increasing interest for their potential applications in the treatment of contaminated soil and water. In compar

  11. Aqueous phosphate removal using nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Almeelbi, Talal; Bezbaruah, Achintya

    2012-01-01

    Nanoscale zero-valent iron (NZVI) particles have been used for the remediation of a wide variety of contaminants. NZVI particles have high reactivity because of high reactive surface area. In this study, NZVI slurry was successfully used for phosphate removal and recovery. Batch studies conducted using different concentrations of phosphate (1, 5, and 10 mg PO 4 3− -P/L with 400 mg NZVI/L) removed ∼96 to 100 % phosphate in 30 min. Efficacy of the NZVI in phosphate removal was found to 13.9 times higher than micro-ZVI (MZVI) particles with same NZVI and MZVI surface area concentrations used in batch reactors. Ionic strength, sulfate, nitrate, and humic substances present in the water affected in phosphate removal by NZVI but they may not have any practical significance in phosphate removal in the field. Phosphate recovery batch study indicated that better recovery is achieved at higher pH and it decreased with lowering of the pH of the aqueous solution. Maximum phosphate recovery of ∼78 % was achieved in 30 min at pH 12. The successful rapid removal of phosphate by NZVI from aqueous solution is expected to have great ramification for cleaning up nutrient rich waters.

  12. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron.

    Science.gov (United States)

    Zhang, Zhi-Yong; Lu, Mang; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min

    2012-12-01

    In this study, nanoscale zero-valent iron (NZVI) particles were synthesized and used for the reductive dehalogenation of short chain chlorinated paraffins (SCCPs) in the laboratory. The results show that the dechlorination rate of chlorinated n-decane (CP(10)) by NZVI increased with decreased solution pH. Increasing the loading of NZVI enhanced the dechlorination rate of CP(10). With an increase in temperature, the degradation rate increased. The reduction of CP(10) by NZVI was accelerated with increasing the concentration of humic acid up to 15 mg/L but then was inhibited. The dechlorination of CP(10) within the initial 18 h followed pseudo-first order rate model. The formation of intermediate products indicates a stepwise dechlorination pathway of SCCPs by NZVI. The carbon chain length and chlorination degree of SCCPs have a polynominal impact on dechlorination reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Inhibition of Nitrate Reduction by NaCl Adsorption on a Nano-Zero-Valent Iron Surface during a Concentrate Treatment for Water Reuse

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (Na...

  14. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Dongmei Zhou; Yujun Wang; Xiangdong Zhu; Shengyang Jin

    2011-01-01

    Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation.The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated.The results showed that the de chlorination of 4-CIBP by NZVI increased with decreased solution pH.When the initial pH value was 4.0,5.5,6.8,and 9.0,the de chlorination efliciencies of 4-C1BP after 48 hr were 53.8%,47.8%,35.7%,and 35.6%,respectively.The presence of humic acid inhibited the reduction of 4-ClBP in the first 4 hr,and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr.Divalent metal ions,Co2+,Cu2+,and Ni2+,were reduced and formed bimetals with NZVI,thereby enhanced the dechlorination of 4-CIBP.The dechlorination percentages of 4-CIBP in the presence of 0.1 mmol/L Co2+,Cu2+ and Ni2+ were 66.1%,66.0% and 64.6% in 48 hr,and then increased to 67.9%,71.3% and 73.5%,after 96 hr respectively.The dechlorination kinetics of 4-CIBP by the NZVI in all cases followed pseudo-first order model.The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment.

  15. Application of Recycled Zero-Valent Iron Nanoparticle to the Treatment of Wastewater Containing Nitrobenzene

    Directory of Open Access Journals (Sweden)

    Heon Lee

    2015-01-01

    Full Text Available Zero-valent iron (ZVI was synthesized using iron oxide, a byproduct of pickling line at a steel work. ZVI with a mean particle size of 500 nm was synthesized. The reaction activity of the synthesized ZVI was much higher than commercial ZVI. When applied to the decomposition of nitrobenzene (NB, the ZVI particles underwent corrosion and passivation oxide film formation, resulting in particle size decrease. The NB decomposition rate increased with increasing ZVI dosage level and with decreasing pH. The solution pH increased monotonously with increasing reaction duration, whereas the aniline concentration showed a maximum at 50 min. Based on the GC/MS analysis, NB is presumed to be reduced into aniline via reductive intermediates such as azobenzene and azoxybenzene. When combined with a subsequent biological process, the synthesized ZVI will be able to decompose NB in wastewater effectively.

  16. Kinetic and Thermodynamics of Methylene Blue Adsorption onto Zero Valent Iron Supported on Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Atyaf Khalid Hameed

    2016-08-01

    Full Text Available Zero valent iron supported on mesoporous silicanano particles (NZVI/MSNs was prepared by the aqueous phase borohydride reduction methods. Prior to the reduction, mesoporous silica nanoparticles (MSNs were prepared through the activation of fumed silica with concentrated HCl by refluxing at 90 °C. FTIR, XRD, FESEM, EDX and BET were used to characterize theadsorbents prepared. BET surface areas of MSNs, NZVI, and NZVI/MSNs were 126, 41, and 72 m2/g for, respectively. The performance of NZVI/MSNs as adsorbent was examined by adsorption of methylene blue (MB, performed in series of batch experiments. In the kinetic studies, pseudo first order and pseudo second order kinetic models were examined. The pseudo second order equation provided the best fit with the experimental data. Thermodynamic studies indicated that the adsorption process is endothermic with ΔH° was 90.53 kJ/mol. Positive ΔS° (300 J/mol and negative ΔG° (-6.42 kJ/mol was recorded, indicating the spontaneous of the adsorption process and naturally favorable. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th March 2016; Revised: 18th March 2016; Accepted: 18th March 2016 How to Cite: Hameed, A.K., Dewayanto, N., Dongyun, D., Nordin, M.R., Mohd Hasbi Ab. Rahim, M.H.A. (2016. Kinetic and Thermodynamics of Methylene Blue Adsorption onto Zero Valent Iron Supported on Mesoporous Silica. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 250-261 (doi:10.9767/bcrec.11.2.443.250-261 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.443.250-261

  17. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron

    International Nuclear Information System (INIS)

    Liu, C.-C.; Tseng, D.-H.; Wang, C.-Y.

    2006-01-01

    The surface characteristics of zero-valent iron (ZVI) and the efficiency of reductive dechlorination of trichloroethylene (TCE) in the presence of ferrous ions were studied. The experimental results indicated that the acid-washing of a metallic iron sample enhanced the efficiency of TCE degradation by ZVI. This occurred because acid-washing changed the conformation of oxides on the surface of iron from maghemite (γ-Fe 2 O 3 ) to the more hydrated goethite (α-FeOOH), as was confirmed by XPS analysis. However, when ferrous ions were simultaneous with TCE in water, the TCE degradation rate decreased as the concentration of ferrous ion increased. This was due to the formation of passive precipitates of ferrous hydroxide, including maghemite and magnetite (Fe 3 O 4 ), that coated on the surface of acid-washed ZVI, which as a result inhibited the electron transfer and catalytic hydrogenation mechanisms. On the other hand, in an Fe 0 -TCE system without the acid-washing pretreatment of ZVI, ferrous ions were adsorbed into the maghemite lattice which was then converted to semiconductive magnetite. Thus, the electrons were transferred from the iron surface and passed through the precipitates, allowing for the reductive dechlorination of TCE

  18. Arsenic Removal Efficiency in Aqueous Solutions Using Reverse Osmosis and Zero-Valent Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Niloofar Saboori

    2018-01-01

    Full Text Available Arsenic is one of the most hazardous pollutants of water resources which threaten human health as well as animals. Therefore arsenic removal from water resources is the priority of health programs. There are several ways to remove arsenic. In this study, reverse osmosis and zero-valent iron nanoparticles methods have been used in a laboratory scale. To perform the test, the variables of temperature, arsenic concentration, pH, iron nanoparticle concentration and mixing time were considered. The results indicated that in both methods of reverse osmosis and iron nanoparticle, through increasing arsenic concentration, arsenic removal efficiency has been also increased. At concentration of 1.5 mg per litre in reverse osmosis method, the maximum efficiency was achieved by 98% and 95.2% removal of arsenic respectively. The effect of temperature and pH were similar in reverse osmosis; by increasing these two variables, arsenic removal percentage also increased. The highest removal rates of 95.98% and 95.56% were observed at pH 9 and Temperature 30oC respectively. The results indicated that in iron nanoparticles method the arsenic removal efficiency increases by increasing mixing time and temperature, while it decreases with increasing pH.

  19. Antimony Adsorption from Zarshouran Gold Mineral Processing Plant Wastewater by Nano Zero Valent Iron Coated on Bentonite

    Directory of Open Access Journals (Sweden)

    nader nosrati

    2015-03-01

    Full Text Available The effluent from Zarshouran gold mineral processing plant contains high quantities of arsenic, antimony, mercury, and bismuth. These metals and metalloids are soluble in water and very toxic when they enter the environment. Their solubility in water causes the polluted area to extend beyond their point of origin. In this article, different methods of antimony removal from water and wastewater were reviewed and the zero-valent iron nanoparticles coated on Bentonite were selected as an effective and low cost material for removing antimony from wastewater. For the purposes of this study, zero-valent iron nanoparticles of 40-100 nanometers in size were synthesized by dropwise addition of sodium borohydride solution to an Iron (III aqueous solution at  ambient temperature and mixed with nitrogen gas. To avoid particle agglomeration and to enhance the product’s environmentally safe application, the  nanoparticles were coated on Bentonite and characterized by SEM/EDAX and BET. The experiments were carried out by intense mixing of the adsorbent with 10ml of real/synthtic wastewater samples in 20ml bottles.  The effects of pH, contact time, temperature, and adsorbent dosage on antimony removal efficiency were investigated under intense mixing using a magnetic mixer. Finally, the effluents were filtered upon completion of the experiments and used for atomic adsorption analysis. The results of the experiments showed that the adsorption isotherms of the synthesized nanoparticles obeyed the Langmuir and Freundlich models. The experiments carried out on real samples showed that antimony adsorption capacity for B-nZVI was 2.6 mg/g of the adsorbent and that the highest antimony removal efficiency was 99.56%.

  20. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  1. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO_4·"−). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe"0 activated persulfate. • The enrichment factors was independent of Fe"0, SO_4"2"−, or HCO_3"− concentration. • Cl"− significantly influenced the carbon isotope fractionation.

  2. Monothioarsenate Occurrence in Bangladesh Groundwater and Its Removal by Ferrous and Zero-Valent Iron Technologies.

    Science.gov (United States)

    Planer-Friedrich, Britta; Schaller, Jörg; Wismeth, Fabian; Mehlhorn, Judith; Hug, Stephan J

    2018-05-15

    In most natural groundwaters, sulfide concentrations are low, and little attention has been paid to potential occurrence of thioarsenates (As V S n -II O 4- n 3- with n = 1-4). Thioarsenate occurrence in groundwater could be critical with regard to the efficiency of iron (Fe)-based treatment technologies because previous studies reported less sorption of thioarsenates to preformed Fe-minerals compared to arsenite and arsenate. We analyzed 273 groundwater samples taken from different wells in Bangladesh over 1 year and detected monothioarsenate (MTA), likely formed via solid-phase zero-valent sulfur, in almost 50% of all samples. Concentrations ranged up to >30 μg L -1 (21% of total As). MTA removal by locally used technologies in which zero-valent or ferrous Fe is oxidized by aeration and As sorbs or coprecipitates with the forming Fe(III)hydroxides was indeed lower than for arsenate. The presence of phosphate required up to three times as much Fe(II) for comparable MTA removal. However, in contrast to previous sorption studies on preformed Fe minerals, MTA removal, even in the presence of phosphate, was still higher than that of arsenite. The more efficient MTA removal is likely caused by a combination of coprecipitation and adsorption rendering the tested Fe-based treatment technologies suitable for As removal also in the presence of MTA.

  3. Zero-valent iron for the removal of soluble uranium in simulated DOE site groundwater

    International Nuclear Information System (INIS)

    Bostick, W.D.; Jarabek, R.J.; Fiedor, J.N.

    1997-01-01

    Groundwater at the Bear Creek Valley Characterization Area, located at the Oak Ridge Y-12 Plant, is contaminated with regulated metals and volatile organic compounds (VOCs) due to former site activities and disposal practices. The contaminant of principle concern, from the perspective of protecting human health, is soluble uranium, which is present in some waters at concentrations up to a few parts-per-million. We present product speciation and relative reaction kinetics; for removal of soluble uranium under oxic and anoxic conditions with use of zero-valent iron. Under oxic conditions, U(VI) is rapidly and strongly sorbed to hydrous ferric oxide particulate (open-quotes rustclose quotes), whereas uranium is slowly and incompletely reduced to U(IV) under anoxic conditions

  4. The sorption of metal ions on nanoscale zero-valent iron

    Directory of Open Access Journals (Sweden)

    Suponik Tomasz

    2017-01-01

    Full Text Available The injection of the colloidal suspensions of nano-iron (nZVI into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II and Zn(II, on Green Tea nanoscale Zero-Valent Ion (GT-nZVI was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested range of concentrations and temperature. The value of determination coefficient (R2 for the Sips model, for copper and zinc, was 0.9735 to 0.9995, respectively. GT-nZVI has very good properties in removing Cu(II and Zn(II from acidic water. The high values of qmaxS, the maximum adsorption capacity in the Sips model, amounting to 348.0 and 267.3 mg/g for Cu(II and Zn(II, indicate the high adsorption capacity of GT-nZVI. The analyzed metals have good or very good affinity with GT-nZVI.

  5. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-C. [Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan 32001 (China); Tseng, D.-H. [Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan 32001 (China)]. E-mail: dhtseng@ncuen.ncu.edu.tw; Wang, C.-Y. [Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan 32001 (China)

    2006-08-25

    The surface characteristics of zero-valent iron (ZVI) and the efficiency of reductive dechlorination of trichloroethylene (TCE) in the presence of ferrous ions were studied. The experimental results indicated that the acid-washing of a metallic iron sample enhanced the efficiency of TCE degradation by ZVI. This occurred because acid-washing changed the conformation of oxides on the surface of iron from maghemite ({gamma}-Fe{sub 2}O{sub 3}) to the more hydrated goethite ({alpha}-FeOOH), as was confirmed by XPS analysis. However, when ferrous ions were simultaneous with TCE in water, the TCE degradation rate decreased as the concentration of ferrous ion increased. This was due to the formation of passive precipitates of ferrous hydroxide, including maghemite and magnetite (Fe{sub 3}O{sub 4}), that coated on the surface of acid-washed ZVI, which as a result inhibited the electron transfer and catalytic hydrogenation mechanisms. On the other hand, in an Fe{sup 0}-TCE system without the acid-washing pretreatment of ZVI, ferrous ions were adsorbed into the maghemite lattice which was then converted to semiconductive magnetite. Thus, the electrons were transferred from the iron surface and passed through the precipitates, allowing for the reductive dechlorination of TCE.

  6. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    Science.gov (United States)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  7. Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier.

    Science.gov (United States)

    Sun, Yuchao; Gao, Ke; Zhang, Yun; Zou, Hua

    2017-12-01

    Zero-valent iron/activated carbon (Fe/C) particles can degrade persistent organic pollutants via micro-electrolysis and therefore, they may be used to develop materials for permeable reactive barriers (PRBs). In this study, surfactant-enhanced electrokinetics (EK) was coupled with a Fe/C-PRB to treat phenanthrene (PHE) and 2,4,6-trichlorophenol (TCP) co-contaminated clay soil. An environment-friendly biosurfactant, rhamnolipid, was selected as the solubility-enhancing agent. Five bench-scale tests were conducted to investigate the performance of EK-PRB on PHE and TCP removal from soil as well as the impact of pH and rhamnolipid concentration. The results show that both PHE and TCP, driven by electro-osmotic flow (EOF), moved toward the cathode and reacted with the Fe/C-PRB. Catholyte acidification and rhamnolipid concentration increase improved the removal efficiencies of PHE and TCP. The highest removal efficiency of PHE in soil column was five times the efficiency of the control group on which only EK was applied (49.89 versus 9.40%). The highest removal efficiency of TCP in soil column was 4.5 times the efficiency of the control group (64.60 versus 14.30%). Desorption and mobility of PHE and TCP improved with the increase of rhamnolipid concentration when this exceeded the critical micelle concentration. This study indicates that the combination of EK and a Fe/C-PRB is efficient and promising for removing persistent organic pollutants (POPs) from contaminated soil with the enhancement of rhamnolipid.

  8. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Wei, Yu-Ting; Wu, Shian-chee; Yang, Shi-Wei; Che, Choi-Hong; Lien, Hsing-Lung; Huang, De-Huang

    2012-01-01

    Highlights: ► Biodegradable surfactant stabilized nanoscale zero-valent iron (NZVI) is tested. ► Vinyl chloride and 1,2-dichloroethane are remediated by NZVI in the field. ► Multiple functions of biodegradable surfactants are confirmed. ► Biodegradable surfactants stabilize NZVI and facilitate the bioremediation. ► NZVI creates reducing conditions beneficial to an anaerobic bioremediation. - Abstract: Nanoscale zero-valent iron (NZVI) stabilized with dispersants is a promising technology for the remediation of contaminated groundwater. In this study, we demonstrated the use of biodegradable surfactant stabilized NZVI slurry for successful treatment of vinyl chloride (VC) and 1,2-dichloroethane (1,2-DCA) in a contaminated site in Taiwan. The biodegradable surfactant stabilized NZVI was coated with palladium and synthesized on-site. From monitoring the iron concentration breakthrough and distribution, it was found that the stabilized NZVI is capable of transporting in the aquifer at the test plot (200 m 2 ). VC was effectively degraded by NZVI while the 1,2-DCA degradation was relatively sluggish during the 3-month field test. Nevertheless, as 1,2-DCA is known to resist abiotic reduction by NZVI, the observation of 1,2-DCA degradation and hydrocarbon production suggested a bioremediation took place. ORP and pH results revealed that a reducing condition was achieved at the testing area facilitating the biodegradation of chlorinated organic hydrocarbons. The bioremediation may be attributed to the production of hydrogen gas as electron donor from the corrosion of NZVI in the presence of water or the added biodegradable surfactant serving as the carbon source as well as electron donor to stimulate microbial growth.

  9. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.

    Science.gov (United States)

    El-Temsah, Yehia S; Sevcu, Alena; Bobcikova, Katerina; Cernik, Miroslav; Joner, Erik J

    2016-02-01

    Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg(-1) DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Nanoscale Zero-Valent Iron for Sulfide Removal from Digested Piggery Wastewater

    Directory of Open Access Journals (Sweden)

    Sheng-Hsun Chaung

    2014-01-01

    Full Text Available The removal of dissolved sulfides in water and wastewater by nanoscale zero-valent iron (nZVI was examined in the study. Both laboratory batch studies and a pilot test in a 50,000-pig farm were conducted. Laboratory studies indicated that the sulfide removal with nZVI was a function of pH where an increase in pH decreased removal rates. The pH effect on the sulfide removal with nZVI is attributed to the formation of FeS through the precipitation of Fe(II and sulfide. The saturated adsorption capacities determined by the Langmuir model were 821.2, 486.3, and 359.7 mg/g at pH values 4, 7, and 12, respectively, for nZVI, largely higher than conventional adsorbents such as activated carbon and impregnated activated carbon. The surface characterization of sulfide-laden nZVI using XPS and TGA indicated the formation of iron sulfide, disulfide, and polysulfide that may account for the high adsorption capacity of nZVI towards sulfide. The pilot study showed the effectiveness of nZVI for sulfide removal; however, the adsorption capacity is almost 50 times less than that determined in the laboratory studies during the testing period of 30 d. The complexity of digested wastewater constituents may limit the effectiveness of nZVI. Microbial analysis suggested that the impact of nZVI on the change of microbial species distribution was relatively noticeable after the addition of nZVI.

  11. Cellulose nanocrystal zero-valent iron nanocomposites for groundwater remediation†

    Science.gov (United States)

    Bossa, Nathan; Carpenter, Alexis Wells; Kumar, Naresh; de Lannoy, Charles-François

    2018-01-01

    Zero-valent iron nanoparticles (nano-ZVIs) have been widely studied for in situ remediation of groundwater and other environmental matrices. Nano-ZVI particle mobility and reactivity are still the main impediments in achieving efficient in situ groundwater remediation. Compared to the nano-ZVI “coating” strategy, nano-ZVI stabilization on supporting material allows direct contact with the contaminant, reduces the electron path from the nano-ZVI to the target contaminant and increases nano-ZVI reactivity. Herein, we report the synthesis of nano-ZVI stabilized by cellulose nanocrystal (CNC) rigid nanomaterials (CNC-nano-ZVI; Fe/CNC = 1 w/w) with two different CNC functional surfaces (–OH and –COOH) using a classic sodium borohydride synthesis pathway. The final nanocomposites were thoroughly characterized and the reactivity of CNC-nano-ZVIs was assessed by their methyl orange (MO) dye degradation potential. The mobility of nanocomposites was determined in (sand/glass bead) porous media by utilizing a series of flowthrough transport column experiments. The synthesized CNC-nano-ZVI provided a stable colloidal suspension and demonstrated high mobility in porous media with an attachment efficiency (α) value of less than 0.23. In addition, reactivity toward MO increased up to 25% compared to bare ZVI. The use of CNC as a delivery vehicle shows promising potential to further improve the capability and applicability of nano-ZVI for in situ groundwater remediation and can spur advancements in CNC-based nanocomposites for their application in environmental remediation. PMID:29725541

  12. Alkyl Bromides as Mechanistic Probes of Reductive Dehalogenation: Reactions of Vicinal Dibromide Stereoisomers with Zero-Valent Metals

    National Research Council Canada - National Science Library

    Totten, Lisa

    2000-01-01

    The mechanism through which zero-valent metals (most notably iron and zinc) reduce alkyl polyhalides in aqueous solution at room temperature was investigated using several stereoisomers of vicinal dibromides as probe compounds...

  13. An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater

    International Nuclear Information System (INIS)

    Chang, M.-C.; Shu, H.-Y.; Yu, H.-H.

    2006-01-01

    The zero-valent iron (ZVI) reduction succeeds for decolorization, while UV/H 2 O 2 oxidation process results into mineralization, so that this study proposed an integrated technique by reduction coupling with oxidation process in order to acquire simultaneously complete both decolorization and mineralization of C.I. Acid Black 24. From the experimental data, the zero-valent iron addition alone can decolorize the dye wastewater yet it demanded longer time than ZVI coupled with UV/H 2 O 2 processes (Red-Ox). Moreover, it resulted into only about 30% removal of the total organic carbon (TOC), which was capable to be effectively mineralized by UV/H 2 O 2 process. The proposed sequential ZVI-UV/H 2 O 2 integration system cannot only effectively remove color and TOC in AB 24 wastewater simultaneously but also save irradiation power and time demand. Furthermore, the decolorization rate constants were about 3.77-4.0 times magnitude comparing with that by UV/H 2 O 2 process alone

  14. Application of coupled zero-valent iron/biochar system for degradation of chlorobenzene-contaminated groundwater.

    Science.gov (United States)

    Zhang, Xu; Wu, Yanqing

    2017-02-01

    A novel iron-carbon micro-electrolysis system, bamboo-derived biochar coupled with zero-valent iron (ZVI), was investigated for chlorobenzene (CB)-contaminated groundwater removal. Influences of initial pH value, mass ratio of the ZVI/Biochar, initial CB concentration and ionic strength of the ZVI/Biochar micro-electrolysis were studied. The results indicated that the increase of initial pH led to the decrease of the CB removal efficiency. While the optimum mass ratio of ZVI to biochar was 2:1, the improved initial concentration and reaction time were 33.68 mg/L and 4 h, respectively. When pH of 2, mass ratio of 2:1 and reaction time of 4 h were applied, the CB removal efficiency was 99.92%. Enhanced degradation of CB was observed with increased Cl - concentration. When the Cl - concentration of 1,000 mg/L and reaction time of 1 h were applied, the CB removal efficiency arrived at 98.2%. Additionally, considering that biochar is cost-effective and readily produced, the coupled ZVI/Biochar micro-electrolysis could represent an effective approach for the treatment of groundwater containing chlorinated organic compounds in the future.

  15. Polyelectrolyte multilayer film-assisted formation of zero-valent iron nanoparticles onto polymer nanofibrous mats

    International Nuclear Information System (INIS)

    Xiao Shili; Shi Xiangyang; Wu Siqi; Shen Mingwu; Guo Rui; Wang Shanyuan

    2009-01-01

    A facile approach that combines the electrospinning technique and layer-by-layer (LbL) assembly method has been developed to synthesize and immobilize zero-valent iron nanoparticles (ZVI NPs) onto the surface of nanofibers for potential environmental applications. In this approach, negatively charged cellulose acetate (CA) nanofibers fabricated by electrospinning CA solution were modified with bilayers composed of positively charged poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) and negatively charged poly(acrylic acid) (PAA) through electrostatic LbL assembly approach to form composite nanofibrous mats. The composite nanofibrous mats were immersed into the ferrous iron solution to allow Fe(II) ions to complex with the free carboxyl groups of PAA, and then ZVI NPs were immobilized onto the composite nanofibrous mats instantly by reducing the ferrous cations. Combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetry analysis demonstrated that the ZVI NPs are successfully synthesized and uniformly distributed into the polyelectrolyte (PE) multilayer films assembled onto the CA nanofibers. The present approach to synthesis ZVI NPs opens a new avenue to fabricating various materials with high surface area for environmental, catalytic, and sensing applications.

  16. Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent

    International Nuclear Information System (INIS)

    Khan, M. S.; Ahmad, A.; Bangash, F. K.; Shah, S. S.; Khan, P.

    2013-01-01

    Nano scale zero valent iron (NZVI) was synthesized and tested for the purification of waste water contaminated by the organic pollutants. In the present study removal of basic blue 3 dye was investigated by NZVI adsorbent. NZVI adsorbent was prepared in the presence of N/sub 2/ gas atmosphere by sodium boro- hydrate (NaHB/sub 4/) reduction method. The particle size of the prepared adsorbent was approximately in the range of 1 x 10/sup -2/nm to 2 x 10/sup -2/nm. The adsorption of basic blue 3 dyes was confirmed with various parameters such as ionic strength, contact time and initial dye concentrations. The experiments were carried out in a batch mode technique. The surface morphology was studied by SEM analysis technique. (author)

  17. Improvements in nanoscale zero-valent iron production by milling through the addition of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, D. [Fundació CTM Centre Tecnològic de Manresa (Spain); Cernik, M. [Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovation (Czech Republic); Martí, V.; Benito, J. A., E-mail: josep.a.benito@upc.edu [Fundació CTM Centre Tecnològic de Manresa (Spain)

    2016-07-15

    A new milling procedure for a cost-effective production of nanoscale zero-valent iron for environmental remediation is presented. Conventional ball milling of iron in an organic solvent as Mono Ethylene Glycol produces flattened iron particles that are unlikely to break even after very long milling times. With the aim of breaking down these iron flakes, in this new procedure, further milling is carried out by adding an amount of fine alumina powder to the previously milled solution. As the amount of added alumina increases from 9 to 54 g l{sup −1}, a progressive decrease of the presence of flakes is observed. In the latter case, the appearance of the particles formed by fragments of former flakes is rather homogeneous, with most of the final nanoparticles having an equivalent diameter well below 1 µm and with an average particle size in solution of around 400 nm. An additional increase of alumina content results in a highly viscous solution showing worse particle size distribution. Milled particles, in the case of alumina concentrations of 54 g l{sup −1}, have a fairly large specific surface area and high Fe(0) content. These new particles show a very good Cr(VI) removal efficiency compared with other commercial products available. This good reactivity is related to the absence of an oxide layer, the large amount of superficial irregularities generated by the repetitive fracture process during milling and the presence of a fine nanostructure within the iron nanoparticles.

  18. Recovery of indium ions by nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen; Su, Yiming [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China); Wen, Zhipan [Wuhan Institute of Technology, School of Chemistry and Environmental Engineering (China); Zhang, Yalei; Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn; Dai, Chaomeng, E-mail: daichaomeng@tongji.edu.cn [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China)

    2017-03-15

    Indium and its compounds have plenty of industrial applications and high demand. Therefore, indium recovery from various industrial effluents is necessary. It was sequestered by nanoscale zero-valent iron (nZVI) whose size mainly ranged from 50 to 70 nm. Adsorption kinetics and isotherm, influence of pH, and ionic strength were thoroughly investigated. The reaction process was well fitted to a pseudo second-order model, and the maximum adsorption capacity of In(III) was 390 mg In(III)/g nZVI similar to 385 mg In(III)/g nZVI at 298 K calculated by Langmuir model. The mole ratio of Fe(II) released to In(III) immobilized was 3:2, which implied a special chemical process of co-precipitation combined Fe(OH){sub 2} with In(OH){sub 3}. Transmission electron microscopy with an energy-disperse X-ray (TEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology, corrosion products, and valence state of indium precipitate formed on nanoparticles. The structural evolution changed from core-shell structure of iron oxide to sheet structure of co-precipitation, to sphere structure that hydroxide gradually dissolved as the pH decreased, and to cavity structures for the pH continually decreased. Furthermore, below pH 4.7, the In(III) enrichment was inhibited for the limited capacity of co-precipitation. Also, it was found that Ca{sup 2+} and HPO{sub 4}{sup 2−} have more negative influence on In(III) recovery compared with Na{sup +}, NO{sub 3}{sup −}, HCO{sub 3}{sup −}, and SO{sub 4}{sup 2−}. Therefore, the In(III) recovery can be described by a mechanism which consists of adsorption, co-precipitation, and reduction and was over 78% even after 3 cycles. The results confirmed that it was applicable to employ nZVI for In(III) immobilization.

  19. Zero-valent iron particles embedded on the mesoporous silica–carbon for chromium (VI) removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kun, E-mail: kunxiong312@gmail.com; Gao, Yuan [Chongqing Technology and Business University, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Key Laboratory of Catalysis & Environmental New Materials (China); Zhou, Lin [Chengdu Radio and TV University (China); Zhang, Xianming [Chongqing Technology and Business University, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Key Laboratory of Catalysis & Environmental New Materials (China)

    2016-09-15

    Nanoscale zero-valent iron (nZVI) particles were embedded on the walls of mesoporous silica–carbon (MSC) under the conditions of high-temperature carbonization and reduction and used to remove chromium (VI) from aqueous solution. The structure and textural properties of nZVI–MSC were characterized by the powder X-ray diffraction, transmission electron microscopy and N{sub 2} adsorption and desorption. The results show that nZVI–MSC has highly ordered mesoporous structure and large surface area, indistinguishable with that of MSC. Compared with the support MSC and iron particles supported on the activated carbon (nZVI/AC), nZVI–MSC exhibited much higher Cr(VI) removal efficiency with about 98 %. The removal process obeys a pseudo first-order model. Such excellent performance of nZVI–MSC could be ascribed to the large surface and iron particles embedded on the walls of the MSC, forming an intimate contact with the MSC. It is proposed that this feature might create certain micro-electrode on the interface of iron particles and MSC, which prevented the formation of metal oxide on the surface and provided fresh Fe surface for Cr(VI) removal.

  20. Synergetic treatment of uranium-bearing waste water with sulfate reducing bacteria and zero-valent iron

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Zeng Sheng; Liu Dong

    2009-01-01

    The treatment of uranium-bearing wastewater from uranium mine and using microorganism to treat wastewater were paid much attention to environmental researchers. Based on column experiments, we investigated the potential using sulfate reducing bacteria (SRB) and zero-valent iron (ZVI) to synergetic treat contamination in wastewater such as sulfate, uranium, etc. SRB+ZVI can effectively remove contamination U(VI) and SO 4 2- in wastewater. The removal rate is 99.4% and 86.2% for U(VI) and SO 4 2- , respectively. The pH of wastewater can be basified to neutral. U(VI) and SO 4 2- as electron acceptor of sulfate reducing bacteria are removed by biological reduction. The corrosion of ZVI is benefit to enhance the pH of wastewater, forms anaerobic reducing environment, strengthens survival and metabolism reaction of SRB, and plays a synergetic enhancement. (authors)

  1. Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract

    Science.gov (United States)

    Sunardi; Ashadi; Budi Rahardjo, Sentot; Inayati

    2017-01-01

    In this study, nano Zero Valent Iron (nZVI) were synthesized from banana peel extract (BPE) and ferrous sulfate. During the synthesis of nZVI both the precursor and the reducing agent were mixed in a clean sterilized flask in 1:1 proportion. For the reduction of Fe ions, 5 ml of filtered BPE was mixed to 5 ml of freshly prepared 0.001 M - 0.005 M aqueous of FeSO4 solution with constant stirring at room temperature. Within a particular time change in colour from brown to black color obtained by nanoparticles synthesis. A systematic characterization of nZVI was performed using UV-Vis. UV-visible absorption is used to investigate SPR. Characteristic surface plasmon absorption band was observed at 210 nm for the black colored nZVI synthesized from 0.001-0.005 M ferrous sulfate with BPE concentration 5 ml. It has been found that the optimum concentration for the synthesis of nZVI is 0.001M Fe2+ ions. There is small decrease in the intensity of SPR band from 0.001 to 0.005 M. The characterization size of nZVI was performed using TEM. The result shows that formation of particles size of nZVI was more 100 nm.

  2. Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract

    International Nuclear Information System (INIS)

    Sunardi; Ashadi; Rahardjo, Sentot Budi; Inayati

    2017-01-01

    In this study, nano Zero Valent Iron (nZVI) were synthesized from banana peel extract (BPE) and ferrous sulfate. During the synthesis of nZVI both the precursor and the reducing agent were mixed in a clean sterilized flask in 1:1 proportion. For the reduction of Fe ions, 5 ml of filtered BPE was mixed to 5 ml of freshly prepared 0.001 M – 0.005 M aqueous of FeSO 4 solution with constant stirring at room temperature. Within a particular time change in colour from brown to black color obtained by nanoparticles synthesis. A systematic characterization of nZVI was performed using UV-Vis. UV–visible absorption is used to investigate SPR. Characteristic surface plasmon absorption band was observed at 210 nm for the black colored nZVI synthesized from 0.001–0.005 M ferrous sulfate with BPE concentration 5 ml. It has been found that the optimum concentration for the synthesis of nZVI is 0.001M Fe 2+ ions. There is small decrease in the intensity of SPR band from 0.001 to 0.005 M. The characterization size of nZVI was performed using TEM. The result shows that formation of particles size of nZVI was more 100 nm. (paper)

  3. Tailoring the properties of a zero-valent iron-based composite by mechanochemistry for nitrophenols degradation in wastewaters.

    Science.gov (United States)

    Cagnetta, Giovanni; Huang, Jun; Lomovskiy, Igor O; Yu, Gang

    2017-11-01

    Zero-valent iron (ZVI) is a valuable material for environmental remediation, because of its safeness, large availability, and inexpensiveness. Moreover, its reactivity can be improved by addition of (nano-) particles of other elements such as noble metals. However, common preparation methods for this kind of iron-based composites involve wet precipitation of noble metal salt precursors, so they are often expensive and not green. Mechanochemical procedures can provide a solvent-free alternative, even at a large scale. The present study demonstrates that it is possible to tailor functional properties of ZVI-based materials, utilizing high-energy ball milling. All main preparation parameters are investigated and discussed. Specifically, a copper-carbon-iron ternary composite was prepared for fast degradation of 4-nitrophenol (utilized as model pollutant) to 4-aminophenol and other phenolic compounds. Copper and carbon are purposely chosen to insert specific properties to the composite: Copper acts as efficient nano-cathode that enhances electron transfer from iron to 4-nitrophenol, while carbon protects the iron surface from fast oxidation in open air. In this way, the reactive material can rapidly reduce high concentration of nitrophenols in water, it does not require acid washing to be activated, and can be stored in open air for one week without any significant activity loss.

  4. Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon.

    Science.gov (United States)

    Wu, Limei; Liao, Libing; Lv, Guocheng; Qin, Faxiang; He, Yujuan; Wang, Xiaoyu

    2013-06-15

    In this paper we prepared a novel material of activated carbon/nanoscale zero-valent iron (C-Fe(0)) composite. The C-Fe(0) was proved to possess large specific surface area and outstanding reducibility that result in the rapid and stable reaction with Cr (VI). The prepared composite has been examined in detail in terms of the influence of solution pH, concentration and reaction time in the Cr (VI) removal experiments. The results showed that the C-Fe(0) formed a micro-electrolysis which dominated the reaction rate. The Micro-electrolysis reaches equilibrium is ten minutes. Its reaction rate is ten times higher than that of traditional adsorption reaction, and the removal rate of Cr reaches up to 99.5%. By analyzing the obtained profiles from the cyclic voltammetry, PXRD and XPS, we demonstrate that the Cr (VI) is reduced to insoluble Cr (III) compound in the reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Enhancing the efficiency of zero valent iron by electrolysis: Performance and reaction mechanism.

    Science.gov (United States)

    Xiong, Zhaokun; Lai, Bo; Yang, Ping

    2018-03-01

    Electrolysis was applied to enhance the efficiency of micron-size zero valent iron (mFe 0 ) and thereby promote p-nitrophenol (PNP) removal. The rate of PNP removal by mFe 0 with electrolysis was determined in cylindrical electrolysis reactor that employed annular aluminum plate cathode as a function of experimental factors, including initial pH, mFe 0 dosage and current density. The rate constants of PNP removal by Ele-mFe 0 were 1.72-144.50-fold greater than those by pristine mFe 0 under various tested conditions. The electrolysis-induced improvement could be primarily ascribed to stimulated mFe 0 corrosion, as evidenced by Fe 2+ release. The application of electrolysis could extend the working pH range of mFe 0 from 3.0 to 6.0 to 3.0-10.0 for PNP removal. Additionally, intermediates analysis and scavengers experiments unraveled the reduction capacity of mFe 0 was accelerated in the presence of electrolysis instead of oxidation. Moreover, the electrolysis effect could also delay passivation of mFe 0 under acidic condition, as evidenced by SEM-EDS, XRD, and XPS analysis after long-term operation. This is mainly due to increased electromigration meaning that iron corrosion products (iron hydroxides and oxides) are not primarily formed in the vicinity of the mFe 0 or at its surface. In the presence of electrolysis, the effect of electric field significantly promoted the efficiency of electromigration, thereby enhanced mFe 0 corrosion and eventually accelerated the PNP removal rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Investigation of Pb(II Removal from Aqueous Solutions Using Modified Nano Zero-Valent Iron Particles

    Directory of Open Access Journals (Sweden)

    Amirhossein Ramezanpoor

    2014-05-01

    Full Text Available This research was conducted in experimental scale with the aim of investigation effect of polyacrylic acid-stabilized zero-valent iron nanoparticles (PAA-nZVI on lead removal from aqueous solution. In this regards, NZVI was synthesized with polyacrylic acid and their size and morphological characteristics were examined via X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Fourier Transmission Infrared Spectroscopy (FTIR. To study the effect of PAA-nZVI on lead removal, pH of aqueous solution, contact time, PAA-NZVI concentration  and initial Pb(II concentration were considered as variables. Furthermore, the experimental data of Pb(II  removal were fitted using three kinetic models, namely Zero-order, First-order and Second-order.The results of experiments showed that maximum Pb(II removal efficiency was observed at pH=5, 15 min contact time and 5 g/L PAA-nZVI concentration. Moreover, the results of kinetic studies indicated that among all applied kinetic models, First-order kinetic model had more better prediction than other kinetic models ofPb(II removal. Based on the results of present research, PAA-NZVI is an efficient agent to remove Pb(II from aqueous solutions.

  7. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching.

    Science.gov (United States)

    Klimkova, Stepanka; Cernik, Miroslav; Lacinova, Lenka; Filip, Jan; Jancik, Dalibor; Zboril, Radek

    2011-02-01

    Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation-reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Effectiveness and ecotoxicity of zero-valent iron nanoparticles during rhizoremediation of soil contaminated with Zn, Cu, Cd and diesel

    Directory of Open Access Journals (Sweden)

    Rafael G. Lacalle

    2018-04-01

    Full Text Available The remediation of soils simultaneously contaminated with organic and inorganic compounds is still a challenging task. The application of metallic nanoparticles, such as zero-valent iron nanoparticles (nZVI, for soil remediation is highly promising, but their effectiveness and potential ecotoxicity must be further investigated. In addition, the performance of nZVI when combined with other remediation strategies is a topic of great interest. Here, we present data on soil chemical (pseudo-total and CaCl2-extractable metal concentrations; petroleum hydrocarbon concentrations and biological properties (microbial properties and phytotoxicity after the application of nZVI to soil simultaneously contaminated with Zn, Cu, Cd and diesel, in the absence and presence of other remediation treatments such as the application of an organic amendment and the growth of Brassica napus plants. Soils were artificially contaminated with the abovementioned contaminants. Then, after an aging period of one month, nZVI were applied to the soil and, subsequently, B. napus seeds were sown. Plants were left to grow for one month. Soil samples were collected immediately after artificially contaminating the soil (T1, at sowing (T2 and at harvesting (T3. Overall, the application of nZVI had no effect on contaminant removal, nor on soil microbial parameters. In contrast, it did cause an indirect toxic effect on plant root elongation due to the interaction of nZVI with soil organic matter. These data are useful for researchers and companies interested in the effectiveness and ecotoxicity of zero-valent iron nanoparticles during the remediation of soil contaminated with metals and hydrocarbons, especially when combined with Gentle Remediation Options.

  9. Optimization of Reactive Blue 21 removal by Nanoscale Zero-Valent Iron using response surface methodology

    Directory of Open Access Journals (Sweden)

    Mahmood Reza Sohrabi

    2016-07-01

    Full Text Available Since Reactive Blue 21 (RB21 is one of the dye compounds which is harmful to human life, a simple and sensitive method to remove this pollutant from wastewater is using Nano Zero-Valent Iron (NZVI catalyst. In this paper, a Central Composite Rotatable Design (CCRD was employed for response surface modeling to optimize experimental conditions of the RB21 removal from aqueous solution. The significance and adequacy of the model were analyzed using analysis of variance (ANOVA. Four independent variables—including catalyst amount (0.1–0.9 g, pH (3.5–9.5, removal time (30–150 s and dye concentration (10–50 mg/L—were transformed to coded values and consequently second order quadratic model was built to predict the responses. The result showed that under optimized experimental conditions the removal of RB21 was over 95%.

  10. Investigation of washing and storage strategy on aging Of Mg-aminoclay (MgAC) coated nanoscale zero-valent iron (nZVI) particles

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    The tendency towards agglomeration and oxidation of nanoscale zero-valent iron (nZVI) particles limits its application for in situ groundwater and soil remediation. Although the effect of surface coatings on nanoparticle stabilization has been commonly practiced, the effect of preparation...... correlations (r2 > 0.95, p one another. Pre-storage washing, followed by addition of MgAC, exhibits high stability as pre-storage washing, as well as high reactivity as post-storage washing. Here, it is found that the proper washing procedure is crucial in coated nZVI preparation...

  11. Enhanced removal of ethanolamine from secondary system of nuclear power plant wastewater by novel hybrid nano zero-valent iron and pressurized ozone initiated oxidation process.

    Science.gov (United States)

    Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho

    2017-07-01

    Monoethanolamine (shortly ethanolamine (ETA)), usually used as a corrosion inhibitor, is a contaminant of wastewater from the secondary cooling system of nuclear power plants (NPPs) and is not readily biodegradable. We conducted various experiments, including treatments with nano zero-valent iron (nZVI), nano-iron/calcium, and calcium oxide (nFe/Ca/CaO) with ozone (O 3 ) or hydrogen peroxide (H 2 O 2 ) to reduce the concentration of ETA and to decrease the chemical demand of oxygen (COD) of these wastewaters. During this study, wastewater with ETA concentration of 7465 mg L -1 and COD of 6920 mg L -1 was used. As a result, the ETA concentration was reduced to 5 mg L -1 (a decrease of almost 100%) and COD was reduced to 2260 mg L -1 , a reduction of 67%, using doses of 26.8 mM of nZVI and 1.5 mM of H 2 O 2 at pH 3 for 3 h. Further treatment for 48 h allowed a decrease of COD by almost 97%. Some mechanistic considerations are proposed in order to explain the degradation pathway. The developed hybrid nano zero-valent iron-initiated oxidation process with H 2 O 2 is promising in the treatment of ETA-contaminated wastewaters.

  12. Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    Nanoscale zero-valent iron (nZVI) has often been explored as a reductant for detoxification of pollutants in environmental clean-ups. Despite the large surface area and superior reactivity of nZVI, its limited stability is a major obstacle in applying nZVI for in situ subsurface remediation, e......ZVI particles with higher crystallinity were produced. Stability of nZVI particles were evaluated using a sedimentation test and a dynamic light scattering technique. The characteristic time increased from 6.71 to 83.8 min, and particle (aggregate diameter) size decreased from 5132 to 186 nm with increasing...

  13. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling

    Science.gov (United States)

    Morrison, Stan J.; Metzler, Donald R.; Dwyer, Brian P.

    2002-05-01

    Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe 3O 4), calcite (CaCO 3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH) 2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO 2, V 2O 3), sulfides (As 2S 3, ZnS), iron minerals (FeSe 2, FeMoO 4) and carbonate (MnCO 3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.

  14. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite

    International Nuclear Information System (INIS)

    Li, Zi-Jie; Wang, Lin; Yuan, Li-Yong; Xiao, Cheng-Liang; Mei, Lei; Zheng, Li-Rong; Zhang, Jing; Yang, Ju-Hua; Zhao, Yu-Liang; Zhu, Zhen-Tai; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-01-01

    Highlights: • Uranium removal by ZVI-nps: independent of pH, the presence of CO 3 2− , humic acid, or mimic groundwater constituents. • Rapid removal kinetics and sorption capacity of ZVI-nps is 8173 mg U/g. • Two reaction mechanisms: sufficient Fe 0 → reductive precipitation as U 3 O 7 ; insufficient Fe 0 → hydrolysis precipitation of U(VI). • Fe/graphene composites: improved kinetics and higher U(VI) reduction ratio. - Abstract: Zero-valent iron nanoparticle (ZVI-np) and its graphene composites were prepared and applied in the removal of uranium under anoxic conditions. It was found that solutions containing 24 ppm U(VI) could be completely cleaned up by ZVI-nps, regardless of the presence of NaHCO 3 , humic acid, mimic groundwater constituents or the change of solution pH from 5 to 9, manifesting the promising potential of this reactive material in permeable reactive barrier (PRB) to remediate uranium-contaminated groundwater. In the measurement of maximum sorption capacity, removal efficiency of uranium kept at 100% until C 0 (U) = 643 ppm, and the saturation sorption of 8173 mg U/g ZVI-nps was achieved at C 0 (U) = 714 ppm. In addition, reaction mechanisms were clarified based on the results of SEM, XRD, XANES, and chemical leaching in (NH 4 ) 2 CO 3 solution. Partially reductive precipitation of U(VI) as U 3 O 7 was prevalent when sufficient iron was available; nevertheless, hydrolysis precipitation of U(VI) on surface would be predominant as iron got insufficient, characterized by releases of Fe 2+ ions. The dissolution of Fe 0 cores was assigned to be the driving force of continuous formation of U(VI) (hydr)oxide. The incorporation of graphene supporting matrix was found to facilitate faster removal rate and higher U(VI) reduction ratio, thus benefitting the long-term immobilization of uranium in geochemical environment

  15. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles.

    Science.gov (United States)

    Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong

    2017-03-03

    Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL -1 and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Assessment of Pb (II Removal from Aqueous Solutions by Ascorbic Acid-stabilized Zero-valent Iron Nanoparticles Using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Mohaddeseh Savasari

    2017-07-01

    Full Text Available The growing pollution of water resources and the limited availability of water supplies have led to a growing interest by researchers to develop novel methods of water remediation and reuse. One such method is the use of ascorbic acid-stabilized zero-valent iron nanoparticles (AAS-ZVIN for the removal of lead (Pb from aqueous solutions. Using zero-valent iron nanoparticles stabilized with acid ascorbic under aerobic conditions, the present study was conducted to assess the efficiency of Pb removal from aqueous solutions and its optimization by the response surface methodology (RSM. For this purpose, use was made of the central composite design and the response surface methodology with the four input variables of ASS- ZVIN dose (0.5, 1, and 2 g L-1, pH (2, 5, and 7, contact time (5, 20, and 60 min, and initial Pb concentration (5, 10, and 20 mg L-1 to determine the optimal conditions for the process. Numerical optimization revealed that the optimum conditions for Pb removal (97.93% included an ASS-ZVIN dose of 2 g L-1, an initial Pb (II concentration of 25 mg L-1, a contact time of 60 min, and an initial solution pH of 7. The results also imply that not only does ASS-ZVIN offer a good potential for the remediation of water bodies contaminated with Pb, given its high reactivity for Pb removal, but that  the RSM optimization process can be successfully employed for the optimization of the process in question.

  17. Data of furfural adsorption on nano zero valent iron (NZVI) synthesized from Nettle extract.

    Science.gov (United States)

    Fazlzadeh, Mehdi; Ansarizadeh, Mohammad; Leili, Mostafa

    2018-02-01

    Among various water and wastewater treatment methods, adsorption techniques are widely used to remove certain classes of pollutants due to its unique features. Thus, the aim of this data article is to synthesize zero valent iron nanoparticles (NZVI) from Nettle leaf extract by green synthesis method as an environmentally friendly technique, and to evaluate it's efficiency in the removal of furfural from aqueous solutions. The data of possible adsorption mechanism and isotherm of furfural on the synthesized adsorbent are depicted in this data article. The data acquired showed that the adsorption trend follows the pseudo-second order kinetic model and that the Langmuir isotherm was suitable for correlation of equilibrium data with the maximum adsorption capacity of 454.4 mg/g. The information of initial furfural concentration, pH, adsorbent dosage and contact time effects on the removal efficiency are presented. Considering the findings data, the developed nanoparticle from Nettle leaf extract, as a low cost adsorbent, could be considered as promising adsorbent for furfural and probably similar organic pollutants removal from aqueous solutions.

  18. High temperature fluidized bed zero valent iron process for flue gas nitrogen monoxide removal

    International Nuclear Information System (INIS)

    Cheng, C.Y.; Chen, S.S.; Tang, C.H.; Chang, Y.M.; Cheng, H.H.; Liu, H.L.

    2008-01-01

    Nitrogen oxides (NO x ) are generated from a variety of sources, and are critical components of photochemical smog. Zero valent iron (ZVI) has been used to remove NO x in a number of studies. The ZVI process requires no extra chemicals or catalysts. In this study, a fluidized ZVI process for removing NO x from flue gases was proposed. The study examined the effects of temperature, ZVI dosage and influent NO concentrations, and observed the kinetic effects between the fluidized ZVI and NO x . A life cycle analysis of the process was also provided. The parametric analysis was conducted in a series of column studies using a continuous emissions monitoring system. Minimum fluidization velocity equations were provided, and the drag coefficient was determined. Capacities of ZVI for NO removal at different temperatures were calculated. Results of the study suggested that temperature, influent concentrations, and flow rates all influenced kinetic coefficients. Different temperatures resulted in different rates of NO removal. It was concluded that between 673 K and 773 K, almost complete NO removals were achieved. 14 refs., 2 tabs., 9 figs

  19. Ferro zero: uma nova abordagem para o tratamento de águas contaminadas com compostos orgânicos poluentes Zero-valent iron: a new approach for treatment of waters contamined with organic pollutants

    OpenAIRE

    Wellington S. Pereira; Renato S. Freire

    2005-01-01

    Anthropogenic pollution of groundwater and surface water has become a very serious environmental problem around the world. A wide range of toxic pollutants is recalcitrant to the conventional treatment methods, thus there is much interest in the development of more efficient remediation processes. Degradation of organic pollutants by zero-valent iron is one of the most promising approaches for water treatment, mainly because it is of low cost, easy to obtain and effective. After a general int...

  20. Reducing As availability in calcareous soils using nanoscale zero valent iron.

    Science.gov (United States)

    Azari, Prisa; Bostani, Abdol Amir

    2017-09-01

    Different methods, including the use of nanoscale zero-valent iron (NZVI), have been used to treat arsenic (As)-contaminated environments, with much less data on the use of NZVI in arsenic-calcareous-polluted soils. Accordingly, two different experiments were conducted to investigate the effects of NZVI on the removal of As from three different calcareous-polluted soils. In the first experiment, the effects of soil type (differing in the rate of clay particles and organic carbon including S1 (8.0 and 0.05%), S2 (20 and 0.2%), and S3 (20.5 and 0.8%)) and NZVI concentration (0, 50, and 100 g kg -1 of dry soil) on the removal of As extractable with distilled water were evaluated using a factorial design with three replicates. In the second experiment, the NZVI concentrations were reduced to 0, 2.5, 5.0, and 25 g kg -1 , and the NZVI contact time (0.5, 48, 96, 192, 384, and 768 h) was also tested. The analysis of variance in both experiments indicated the significant effects (P soils, with increasing NZVI concentration and contact time, the concentration of available As in the solution phase significantly decreased (P = 0.01). S3, due to a higher rate of organic matter, was less responsive to the NZVI treatments than the other soils. The effectiveness of the nanoremediation method, tested in this research work, on the stabilization of As in calcareous soils, is verified.

  1. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.

    Science.gov (United States)

    Li, Furong; Bao, Jianguo; Zhang, Tian C; Lei, Yutian

    2015-01-01

    In this study, the feasibility of using a combined adsorption and Fenton-like oxidation process (with zero-valent iron (ZVI) residue from heat wraps as an absorbent and catalyst) to remove furfural in the solution was evaluated. The influencing parameters (e.g. pH, H2O2 concentration, initial furfural concentration) and the reusability of ZVI residue (to replace the iron powder) were estimated. The ZVI residue was found to have much better adsorption effect on furfural at pH 2.0 compared with pH 6.7. For Fenton-like reaction alone with ZVI residue, the highest furfural removal of 97.5% was observed at the concentration of 0.176 mol/L H2O2, and all of the samples had >80% removal efficiency at different initial furfural concentrations of 2, 10, 20, 30 and 40 mmol/L. However, with a combined adsorption and Fenton-like oxidation, the removal efficiency of furfural was nearly 100% for all treatments. The ZVI residue used for furfural removal was much better than that of iron powder in the Fenton-like reaction at a seven-cycle experiment. This study suggests the combined process of adsorption and Fenton-like oxidation using ZVI residue is effective for the treatment of furfural in the liquid.

  2. Synthesis of Highly Reactive Subnano-sized Zero-valent Iron using Smectite Clay Templates

    Science.gov (United States)

    Gu, Cheng; Jia, Hanzhang; Li, Hui; Teppen, Brian J.; Boyd, Stephen A.

    2010-01-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH4, resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of discrete regions of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of ~ 5 Å. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the XRD results since the diameter of elemental Fe is 2.5 Å. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene:non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnano-scale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, e.g. as components of constructed reactive domains such as reactive caps for contaminated sediments. PMID:20446730

  3. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates.

    Science.gov (United States)

    Gu, Cheng; Jia, Hanzhong; Li, Hui; Teppen, Brian J; Boyd, Stephen A

    2010-06-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH(4), resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of approximately 5 A. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the X-ray diffraction (XRD) results since the diameter of elemental Fe is 2.5 A. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene/non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnanoscale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, for example, as components of constructed reactive domains such as reactive caps for contaminated sediments.

  4. Removal of Reactive Red 198 by Nanoparticle Zero Valent Iron in the Presence of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Siroos Shojaei

    2017-04-01

    Full Text Available Although dyes are widely used in textile industries, they are carcinogenic, teratogenic and mutagenic. Industries discharge their wastewater containing a variety of colors into water resources and make harmful effect on the environment. The present study aims to Evaluate removal of reactive red 198 by nanoparticle zero valent iron (NZVI in the presence of hydrogen peroxide from aqueous solution. The effective parameters on the removal of dye such as the hydrogen peroxide concentration of NZVI, contact time, pH and dye concentration were investigated and optimized. According to the results, the combination of NZVI with hydrogen peroxide is more effective than single hydrogen peroxide. At pH = 4, contact time= 40 min, 200 M of hydrogen peroxide, dye concentration= 75 mg/L and concentration of NZVI 2g/L, color removal was achieved 91% approximately. Based on the results of experiments, using hydrogen peroxide- NZVI has high efficiency in removal of azo dye type.

  5. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Removal of Cr(VI from Water Using a New Reactive Material: Magnesium Oxide Supported Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-08-01

    Full Text Available The chromium pollution of water is an important environmental and health issue. Cr(VI removal by means of metallic iron is an attractive method. Specifically, nanoscopic zero valent iron (NZVI shows great reactivity, however, its applicability needs to be further investigated. In the present paper, NZVI was supported on MgO grains to facilitate the treatments for remediation of chromium-contaminated waters. The performances and mechanisms of the developed composite, in the removal of hexavalent chromium, were investigated by means of batch and continuous tests. Kinetic studies, under different operating conditions, showed that reduction of Cr(VI could be expressed by a pseudo second-order reaction kinetic. The reaction rate increased with the square of Fe(0 amount, while it was inversely proportional to the initial chromium concentration. The process performance was satisfactory also under uncontrolled pH, and a limited influence of temperature was observed. The reactive material was efficiently reusable for many cycles without any regeneration treatment. The performances in continuous tests were close to 97% for about 80 pore volume of reactive material.

  7. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.

    Science.gov (United States)

    Lewis, Ariel S; Huntington, Thomas G; Marvin-DiPasquale, Mark C; Amirbahman, Aria

    2016-05-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    Science.gov (United States)

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  9. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process

    International Nuclear Information System (INIS)

    Lai Peng; Zhao Huazhang; Zeng Ming; Ni Jinren

    2009-01-01

    Experiments were conducted to investigate the behavior of the integrated system with biofilm reactors and zero-valent iron (ZVI) process for coking wastewater treatment. Particular attention was paid to the performance of the integrated system for removal of organic and inorganic nitrogen compounds. Maximal removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N) and total inorganic nitrogen (TIN) were up to 96.1, 99.2 and 92.3%, respectively. Moreover, it was found that some phenolic compounds were effectively removed. The refractory organic compounds were primarily removed in ZVI process of the integrated system. These compounds, with molecular weights either ranged 10,000-30,000 Da or 0-2000 Da, were mainly the humic acid (HA) and hydrophilic (HyI) compounds. Oxidation-reduction and coagulation were the main removal mechanisms in ZVI process, which could enhance the biodegradability of the system effluent. Furthermore, the integrated system showed a rapid recovery performance against the sudden loading shock and remained high efficiencies for pollutants removal. Overall, the integrated system was proved feasible for coking wastewater treatment in practical applications

  10. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.

    Science.gov (United States)

    Xin, Jia; Han, Jun; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2015-03-01

    This report focuses on the enhancement in trichloroethylene (TCE) removal from contaminated groundwater using xanthan gum (XG)-modified, microscale, zero-valent iron (mZVI). Compared with bare mZVI, XG-coated mZVI increased the TCE removal efficiency by 30.37% over a 480-h experimental period. Because the TCE removal is attributed to both sorption and reduction processes, the contributions from sorption and reduction were separately investigated to determine the mechanism of XG on TCE removal using mZVI. The results showed that the TCE sorption capacity of mZVI was lower in the presence of XG, whereas the TCE reduction capacity was significantly increased. The FTIR spectra confirmed that XG, which is rich in hydrophilic functional groups, was adsorbed onto the iron surface through intermolecular hydrogen bonds, which competitively repelled the sorption and mass transfer of TCE toward reactive sites. The variations in the pH, Eh, and Fe(2+) concentration as functions of the reaction time were recorded and indicated that XG buffered the solution pH, inhibited surface passivation, and promoted TCE reduction by mZVI. Overall, the XG-modified mZVI was considered to be potentially effective for the in-situ remediation of TCE contaminated groundwater due to its high stability and dechlorination reactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron.

    Science.gov (United States)

    Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai

    2017-10-01

    In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.

  12. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available Application of zero-valent iron nanoparticles (nZVI for Zn²⁺ removal and its mechanism were discussed. It demonstrated that the uptake of Zn²⁺ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn²⁺ could be removed within 2 h. The pH value and dissolved oxygen (DO were the important factors of Zn²⁺ removal by nZVI. The DO enhanced the removal efficiency of Zn²⁺. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxyhydroxide, which could show high adsorption affinity. The removal efficiency of Zn²⁺ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn²⁺ by nZVI because the existing H⁺ inhibited the formation of iron (oxyhydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn²⁺ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn²⁺ were higher than Cd²⁺. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn²⁺.

  13. Nanoscale zero-valent iron incorporated with nanomagnetic diatomite for catalytic degradation of methylene blue in heterogeneous Fenton system.

    Science.gov (United States)

    Zha, Yiming; Zhou, Ziqing; He, Haibo; Wang, Tianlin; Luo, Liqiang

    2016-01-01

    Nanoscale zero-valent iron (nZVI) incorporated with nanomagnetic diatomite (DE) composite material was prepared for catalytic degradation of methylene blue (MB) in heterogeneous Fenton system. The material was constructed by two facile steps: Fe3O4 magnetic nanoparticles were supported on DE by chemical co-precipitation method, after which nZVI was incorporated into magnetic DE by liquid-phase chemical reduction strategy. The as-prepared catalyst was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, magnetic properties measurement and nitrogen adsorption-desorption isotherm measurement. The novel nZVI@Fe3O4-diatomite nanocomposites showed a distinct catalytic activity and a desirable effect for degradation of MB. MB could be completely decolorized within 8 min and the removal efficiency of total organic carbon could reach to 90% after reaction for 1 h.

  14. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides.

    Science.gov (United States)

    Gunawardana, Buddhika; Swedlund, Peter J; Singhal, Naresh; Nieuwoudt, Michel K

    2018-04-20

    The dechlorination of chlorinated organic pollutants by zero valent iron (ZVI) is an important water treatment process with a complex dependence on many variables. This complexity means that there are reported inconsistencies in terms of dechlorination with ZVI and the effect of ZVI acid treatment, which are significant and are as yet unexplained. This study aims to decipher some of this complexity by combining Raman spectroscopy with gas chromatography-mass spectrometry (GC-MS) to investigate the influence of the mineralogy of the iron oxide phases on the surface of ZVI on the reductive dechlorination of pentachlorophenol (PCP). Two electrolytic iron samples (ZVI-T and ZVI-H) were found to have quite different PCP dechlorination reactivity in batch reactors under anoxic conditions. Raman analysis of the "as-received" ZVI-T indicated the iron was mainly covered with the ferrous oxide (FeO) wustite, which is non-conducting and led to a low rate of PCP dechlorination. In contrast, the dominant oxide on the "as-received" ZVI-H was magnetite which is conducting and, compared to ZVI-T, the ZVI-H rate of PCP dechlorination was four times faster. Treating the ZVI-H sample with 1 N H 2 SO 4 made small change to the composition of the oxide layers and also minute change to the rate of PCP dechlorination. However, treating the ZVI-T sample with H 2 SO 4 led to the loss of wustite so that magnetite became the dominant oxide and the rate of PCP dechlorination increased to that of the ZVI-H material. In conclusion, this study clearly shows that iron oxide mineralogy can be a contributing factor to apparent inconsistencies in the literature related to ZVI performance towards dechlorination and the effect of acid treatment on ZVI reactivity.

  15. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hojeong [Division of Water and Environment, Korea Environment Institute (KEI), Seoul (Korea, Republic of); Hong, Hye-Jin; Jung, Juri; Kim, Seong-Hye [Dept. of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejon (Korea, Republic of); Yang, Ji-Won, E-mail: jwyang@kaist.ac.kr [Dept. of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejon (Korea, Republic of)

    2010-04-15

    Abstracts: Nowadays, many researchers have studied the environmental application of the nanoscale zero-valent iron (nZVI) and several field applications for the groundwater remediation have been reported. Still, there are many concerns on the fate and transport of the nZVI and the corresponding risks. To avoid such concerns, it was investigated to immobilize nZVI in a support and then it was applied to degrade trichloroethylene (TCE). The nZVI and palladium-doped nZVI (Fe(0)- and Fe/Pd-alginate) were immobilized in the alginate bead where ferric and barium ions are used as the cross-linking cations of the bead. According to TEM (transmission electron microscopy), the size of the immobilized ZVI was as small as a few nanometers. From the surface analysis of the Fe/Pd-alginate, it is found that the immobilized nZVI has the core-shell structure. The core is composed of single crystal Fe{sup 0}, while most of irons on the surface are oxidized to Fe{sup 3+}. When 50 g/L of Fe/Pd-alginate (3.7 g Fe/L) was introduced to the aqueous solution, >99.8% of TCE was removed and the release of metal from the support was <3% of the loaded iron. The removal of TCE by Fe/Pd-alginate followed pseudo-first-order kinetics. The observed pseudo-first-order reaction constant (k{sub obs}) of Fe/Pd-alginate was 6.11 h{sup -1} and the mass normalized rate constant (k{sub m}) was 1.6 L h{sup -1} g{sup -1}. The k{sub m} is the same order of magnitude with that of iron nanoparticles. In conclusion, it is considered that Fe/Pd-alginate can be used efficiently in the treatment of chlorinated solvent.

  16. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation

    Directory of Open Access Journals (Sweden)

    Min-Hee Jang

    2014-12-01

    Full Text Available Objectives Nanoscale zero-valent iron (nZVI particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1 the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2 assessing their potential environmental risks using in situ field scale applications.

  17. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation

    International Nuclear Information System (INIS)

    Wang, Jie; Fang, Zhanqiang; Cheng, Wen; Yan, Xiaomin; Tsang, Pokeung Eric; Zhao, Dongye

    2016-01-01

    In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg"−"1 of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg"−"1 nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg"−"1 nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI. - Highlights: • Higher concentrations of nZVI induced iron deficiency in rice seedlings visibly. • nZVI was taken in rice seedlings and transported form root to shoot. • The pathway of active iron transport from root to shoot was inhibited. • The cortex tissues

  18. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes.

    Science.gov (United States)

    Singh, Ritu; Misra, Virendra; Singh, Rana Pratap

    2012-02-01

    The illegal disposal of tannery wastes at Rania, Kanpur has resulted in accumulation of hexavalent chromium [Cr(VI)], a toxic heavy metal in soil posing risk to human health and environment. 27 soil samples were collected at various depths from Rania for the assessment of Cr(VI) level in soil. Out of 27 samples, five samples had shown significant level of Cr(VI) with an average concentration of 15.84 mg Kg(-1). Varied doses of nanoscale zero-valent iron (nZVI) were applied on Cr(VI) containing soil samples for remediation of Cr(VI). Results showed that 0.10 g L(-1) nZVI completely reduces Cr(VI) within 120 min following pseudo first order kinetics. Further, to test the efficacy of nZVI in field, soil windrow experiments were performed at the contaminated site. nZVI showed significant Cr(VI) reduction at field also, indicating it an effective tool for managing sites contaminated with Cr(VI).

  19. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yankai [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Dong, Haoran, E-mail: dongh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China)

    2017-01-05

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H{sub 2}) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  20. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    International Nuclear Information System (INIS)

    Xie, Yankai; Dong, Haoran; Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi

    2017-01-01

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H_2) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  1. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Chang; Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Kim, Byung J. [U.S. Army Engineer Research and Development Center, Champaign, IL 61826-9005 (United States); Oh, Seok-Young, E-mail: quartzoh@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2011-08-30

    Highlights: {yields} Ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. {yields} DNAN is identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. {yields} Iron treatment not only removes energetic compounds but also eliminates the toxic constituents that inhibit the subsequent microbial process. - Abstract: US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO{sub 4}{sup -}) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21

  2. Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport

    Science.gov (United States)

    Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.

    2011-12-01

    Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.

  3. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.

    Science.gov (United States)

    Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A

    2013-02-01

    Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.

  4. Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater

    International Nuclear Information System (INIS)

    Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Song, J.S.

    2009-01-01

    This study investigated reductive transformation of iodine by zero-valent iron (ZVI), and the subsequent detoxification of iodine-laden wastewater. ZVI completely reduced aqueous iodine to non-toxic iodide. Respirometric bioassay illustrated that the presence of iodine increase the lag phase before the onset of oxygen consumption. The length of lag phase was proportional to increasing iodine dosage. The reduction products of iodine by ZVI did not exhibit any inhibitory effect on the biodegradation. The cumulative biological oxidation associated with iodine toxicity was closely fitted to Gompertz model. When iodine-laden wastewater was continuously fed to a bench-scale activated sludge unit, chemical oxygen demand (COD) removal efficiencies decreased from above 90% to below 80% along with a marked decrease in biomass concentration. On the other hand, the COD removal efficiency and biomass concentration remained constant in the integrated ZVI-activated sludge system. Respirometric bioassay with real iodine-laden LCD manufacturing wastewater demonstrated that ZVI was effective for detoxifying iodine and consequently enhancing biodegradability of wastewater. This result suggested that ZVI pretreatment may be a feasible option for the removal of iodine in LCD processing wastewater, instead of more costly processes such as adsorption and chemical oxidation, which are commonly in the iodine-laden LCD wastewater treatment facility

  5. Combined zero-valent iron and fenton processes for the treatment of Brazilian TNT industry wastewater

    International Nuclear Information System (INIS)

    Barreto-Rodrigues, Marcio; Silva, Flavio T.; Paiva, Teresa C.B.

    2009-01-01

    The environmental impact caused by the production of explosives made from nitroaromatic compounds such as 2,4,6-trinitrotoluene (TNT) is currently a major concern, mainly due to their toxic nature, a fact that makes these compounds highly harmful. This work evaluated a continual system treatment reactor (CSTR) consisting of column zero-valent iron and a system to promote a fenton reaction in order to create possible definitive routines for treating effluents originating from the TNT production process. The spectrophotometric results demonstrated that this combination of processes was highly efficient in promoting the removal of all the absorbed species at 290 nm and the visible region of the specter. The results also revealed that the combination of treatments was significantly efficient in terms of correcting the effluent's main parameters of relevance, mainly COD (95.5% reduction) and TNT concentration, whose total was converted into nitrous and phenolic compounds and, additionally, the acute toxicity was also significantly reduced (95%). These results indicate that the strategy can serve as an efficient option for effluent treatment, for release into the receiving body, or eventually for use as industrial reuse water.

  6. Effect of Stabilized Zero-Valent Iron Nanoparticles on Nitrate Removal from Sandy Soil

    Directory of Open Access Journals (Sweden)

    F. Nooralivand

    2016-02-01

    Full Text Available Introduction: During the recent decades, the use of N fertilizers has undeniable development regardless of their effects on the soil and environment. Increasing nitrate ion concentration in soil solution and then, leaching it into groundwater causes increase nitrate concentration in the water and raise the risk suffering from the people to some diseases. World health organization recommended maximum concentration level for nitrate and nitrite in the drinking water 50 and 3 mg/l, respectively. There are different technologies for the removal of nitrate ions from aqueous solution. The conventional methods are ion exchange, biological denitrification, reverse osmosis and chemical reduction. Using nanoscale Fe0 particles compared to other methods of nitrate omission was preferred because of; its high surface area, more reactive, lower cost and higher efficiency. More studies on the reduction of nitrate by zero-valent iron nanoparticles have been in aqueous solutions or in the soil in batch scale. Nanoparticles surface modified with poly-electrolytes, surfactants and polymers cause colloidal stability of the particles against the forces of attraction between particles and increases nanoparticle transport in porous media. The objectives of this study were to synthesize carboxymethyl cellulose stabilized zero-valent iron nanoparticles and consideration of their application for nitrate removal from sandy soil. Materials and Methods: The nanoparticles were synthesized in a lab using borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD and Fourier Transmission Infrared Spectroscopy (FTIR. Experiments were conducted on packed sand column (40 cm length and 2.5 cm inner diameter under conditions of different nanoparticle concentration (1, 2, and 3 g1-1and high initial NO3- concentration (150, 250, and 350 mgl-1. Homogeneous soil column was filled with the wet packed

  7. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1

    DEFF Research Database (Denmark)

    Lee, Young-Chul; Lee, Kyubock; Hwang, Yuhoon

    2014-01-01

    Synthesis of aminoclay-templated nanoscale zero-valent iron (nZVI) for efficient harvesting of oleaginous microalgae was demonstrated. According to various aminoclay loadings (0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 aminoclay/nZVI ratios), the stability of nZVI was investigated as a function......ZVI composite (ratio 1.0) exhibited a highly positively charged surface (~+40 mV) and a ferromagnetic property (~30 emu/g). On the basis of these characteristics, oleaginous Chlorella sp. KR-1 was harvested within 3 min at a > 20 g/L loading under a magnetic field. In a scaled-up (24L) microalga harvesting...... process using magnetic rods, microalgae were successfully collected by attachment to the magnetic rods or by precipitation. It is believed that this approach, thanks to the recyclability of aminoclay-nZVI composites, can be applied in a continuous harvesting mode....

  8. The nanotoxicology of a newly developed zero-valent iron nanomaterial for groundwater remediation and its remediation efficiency assessment combined with in vitro bioassays for detection of dioxin-like environmental pollutants

    OpenAIRE

    Schiwy, Andreas Herbert

    2016-01-01

    The assessment of chemicals and new compounds is an important task of ecotoxicology. In this thesis a newly developed zero-valent iron material for nanoremediation of groundwater contaminations was investigated and in vitro bioassays for high throughput screening were developed. These two elements of the thesis were combined to assess the remediation efficiency of the nanomaterial on the groundwater contaminant acridine. The developed in vitro bioassays were evaluated for quantification of th...

  9. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process

    International Nuclear Information System (INIS)

    Chen, S.-S.; Cheng, C.-Y.; Li, C.-W.; Chai, P.-H.; Chang, Y.-M.

    2007-01-01

    Fluidized zero valent iron (ZVI) process was conducted to reduce hexavalent chromium (chromate, CrO 4 2- ) to trivalent chromium (Cr 3+ ) from electroplating wastewater due to the following reasons: (1) Extremely low pH (1-2) for the electroplating wastewater favoring the ZVI reaction. (2) The ferric ion, produced from the reaction of Cr(VI) and ZVI, can act as a coagulant to assist the precipitation of Cr(OH) 3(s) to save the coagulant cost. (3) Higher ZVI utilization for fluidized process due to abrasive motion of the ZVI. For influent chromate concentration of 418 mg/L as Cr 6+ , pH 2 and ZVI dosage of 3 g (41 g/L), chromate removal was only 29% with hydraulic detention time (HRT) of 1.2 min, but was increased to 99.9% by either increasing HRT to 5.6 min or adjusting pH to 1.5. For iron species at pH 2 and HRT of 1.2 min, Fe 3+ was more thermodynamically stable since oxidizing agent chromate was present. However, if pH was adjusted to 1.5 or 1, where chromate was completely removed, high Fe 2+ but very low Fe 3+ was present. It can be explained that ZVI reacted with chromate to produce Fe 2+ first and the presence of chromate would keep converting Fe 2+ to Fe 3+ . Therefore, Fe 2+ is an indicator for complete reduction from Cr(VI) to Cr(III). X-ray diffraction (XRD) was conducted to exam the remained species at pH 2. ZVI, iron oxide and iron sulfide were observed, indicating the formation of iron oxide or iron sulfide could stop the chromate reduction reaction

  10. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin et al

    2008-01-01

    Full Text Available The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM, transmission electron microscopy (TEM, and x-ray diffraction (XRD to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. Experimentally, ZVIN of this study was prepared by sodium borohydride reduction method at room temperature and ambient pressure. The morphology of as-synthesized ZVIN shows that the nearly ball and ultrafine particles ranged of 20–50 nm were observed with FE–SEM or TEM analysis. The kinetic model of nitrites or nitrates reductive reaction by ZVIN is proposed as a pseudo first-order kinetic equation. The nitrite and nitrate removal efficiencies using ZVIN were found 65–83% and 51–68%, respectively, based on three different initial concentrations. Based on the XRD pattern analyses, it is found that the quantitative relationship between nitrite and Fe(III or Fe(II is similar to the one between nitrate and Fe(III in the ZVIN study. The possible reason is due to the faster nitrite reduction by ZVIN. In fact, the occurrence of the relative faster nitrite reductive reaction suggested that the passivation of the ZVIN have a significant contribution to iron corrosion. The extended x-ray absorption fine structure (EXAFS or x-ray absorption near edge structure (XANES spectra show that the nitrites or nitrates reduce to N2 or NH3 while oxidizing the ZVIN to Fe2O3 or Fe3O4 electrochemically. It is also very clear that decontamination of nitrate or nitrite species in groundwater via the in-situ remediation with a ZVIN permeable reactive barrier would be environmentally attractive.

  11. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system.

    Science.gov (United States)

    Khalil, Ahmed M E; Eljamal, Osama; Saha, Bidyut Baran; Matsunaga, Nobuhiro

    2018-04-01

    Nanoscale zero-valent iron (nZVI) is a versatile treatment reagent that should be utilized in an effective application for nitrate remediation in water. For this purpose, a laboratory-scale continuous-flow system (LSCFS) was developed to evaluate nZVI performance in removal of nitrate in different contaminated-water bodies. The equipment design (reactor, settler, and polisher) and operational parameters of the LSCFS were determined based on nZVI characterization and nitrate reduction kinetics. Ten experimental runs were conducted at different dosages (6, 10 and 20 g) of nZVI-based reagents (nZVI, bimetallic nZVI-Cu, CuCl 2 -added nZVI). Effluent concentrations of nitrogen and iron compounds were measured, and pH and ORP values were monitored. The major role exhibited by the recirculation process of unreacted nZVI from the settler to the reactor succeeded in achieving overall nitrate removal efficiency (RE) of >90%. The similar performance of both nZVI and copper-ions-modified nZVI in contaminated distilled water was an indication of LSCFS reliability in completely utilizing iron nanoparticles. In case of treating contaminated river water and simulated groundwater, the nitrate reduction process was sensitive towards the presence of interfering substances that dropped the overall RE drastically. However, the addition of copper ions during the treatment counteracted the retardation effect and greatly enhanced the nitrate RE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A Case Study of Using Zero-Valent Iron Nanoparticles for Groundwater Remediation

    Science.gov (United States)

    Xiong, Z.; Kaback, D.; Bennett, P. J.

    2011-12-01

    Zero-valent iron nanoparticle (nZVI) is a promising technology for rapid in situ remediation of numerous contaminants, including chlorinated solvents, in groundwater and soil. Because of the high specific surface area of nZVI particles, this technology achieves treatment rates that are significantly faster than micron-scale and granular ZVI. However, a key technical challenge facing this technology involves agglomeration of nZVI particles. To improve nZVI mobility/deliverability and reactivity, an innovative method was recently developed using a low-cost and bio-degradable organic polymer as a stabilizer. This nZVI stabilization strategy offers unique advantages including: (1) the organic polymer is cost-effective and "green" (completely bio-compatible), (2) the organic polymer is highly effective in stabilizing nZVI particles; and (3) the stabilizer is applied during particle preparation, making nZVI particles more stable. Through a funding from the U.S. Air Force Center for Engineering and the Environment (AFCEE), AMEC performed a field study to test the effectiveness of this innovative technology for degradation of chlorinated solvents in groundwater at a military site. Laboratory treatability tests were conducted using groundwater samples collected from the test site and results indicated that trichloroethene (main groundwater contaminant at the site) was completely degraded within four hours by nZVI particles. In March and May 2011, two rounds of nZVI injection were performed at the test site. Approximately 700 gallons of nZVI suspension with palladium as a catalyst were successfully prepared in the field and injected into the subsurface. Before injection, membrane filters with a pore size of 450 nm were used to check the nZVI particle size and it was observed that >85% of nZVI particles were passed through the filter based on total iron measurement, indicating particle size of <450 nm. During field injections, nZVI particles were observed in a monitoring well

  13. The removal of uranium onto carbon-supported nanoscale zero-valent iron particles

    Energy Technology Data Exchange (ETDEWEB)

    Crane, Richard A., E-mail: richardandrewcrane@gmail.com; Scott, Thomas [University of Bristol, School of Physics, Interface Analysis Centre (United Kingdom)

    2014-12-15

    In the current work carbon-supported nanoscale zero-valent iron particles (CS nZVI), synthesised by the vacuum heat treatment of ferric citrate trihydrate absorbed onto carbon black, have been tested for the removal of uranium (U) from natural and synthetic waters. Two types of CS nZVI were tested, one vacuum annealed at 600 °C for 4 h and the other vacuum annealed at 700 °C for 4 h, with their U removal behaviour compared to nZVI synthesised via the reduction of ferrous iron using sodium borohydride. The batch systems were analysed over a 28-day reaction period during which the liquid and nanoparticulate solids were periodically analysed to determine chemical evolution of the solutions and particulates. Results demonstrate a well-defined difference between the two types of CS nZVI, with greater U removal exhibited by the nanomaterial synthesised at 700 °C. The mechanism has been attributed to the CS nZVI synthesised at 700 °C exhibiting (i) a greater proportion of surface oxide Fe{sup 2+} to Fe{sup 3+} (0.34 compared to 0.28); (ii) a greater conversion of ferric citrate trihydrate [2Fe(C{sub 6}H{sub 5}O{sub 7})·H{sub 2}O] to Fe{sup 0}; and (iii) a larger surface area (108.67 compared to 88.61 m{sup 2} g{sup −1}). Lower maximum U uptake was recorded for both types of CS nZVI in comparison with the borohydride-reduced nZVI. A lower decrease in solution Eh and DO was also recorded, indicating that less chemical reduction of U was achieved by the CS nZVI. Despite this, lower U desorption in the latter stages of the experiment (>7 days) was recorded for the CS nZVI synthesised at 700 °C, indicating that carbon black in the CS nZVI is likely to have contributed towards U sorption and retention. Overall, it can be stated that the borohydride-reduced nZVI were significantly more effective than CS nZVI for U removal over relatively short timescales (e.g. <48 h), however, they were more susceptible to U desorption over extended time periods.

  14. Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism.

    Science.gov (United States)

    Fu, Fenglian; Lu, Jianwei; Cheng, Zihang; Tang, Bing

    2016-03-01

    In this paper, the performance and application of zero-valent iron (ZVI) assisted by ultrasonic irradiation for the removal of selenite (Se(IV)) in wastewater was evaluated and reaction mechanism of Se(IV) with ZVI in such systems was investigated. A series of batch experiments were conducted to determine the effects of ultrasound power, pH, ZVI concentration, N2 and air on Se(IV) removal. ZVI before and after reaction with Se(IV) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results indicated that ultrasound can lead to a significant synergy in the removal of Se(IV) by ZVI because ultrasound can promote the generation of OH and accelerate the advanced Fenton process. The primary reaction products of ZVI and Se(IV) were Se(0), ferrihydrite, and Fe2O3. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. DIRECT INFUSION ESI-MS APPLIED IN THE DETECTION OF BYPRODUCTS DUE TO REDUCTIVE DEGRADATION OF ACETAMIPRID BY ZERO-VALENT IRON

    Directory of Open Access Journals (Sweden)

    Jean C. Cruz

    2015-09-01

    Full Text Available This study investigated the reductive degradation of acetamiprid (5 mg L-1 in aqueous medium (at pH 2.0 induced by zero-valent iron (50 mg. The process was monitored using high-performance liquid chromatography (HPLC to determine the degradation rate as a function of reaction time, and direct infusion electrospray ionization mass spectrometry (DI-ESI-MS to search for (and potentially characterize any possible byproducts formed during degradation. The results obtained via HPLC showed that after 60 min, the degradation of the substrate reached nearly 100% in an acidic medium, whereas the mineralization rate (as determined by total organic carbon measurements was as low as 3%. Data obtained by DI-ESI-MS showed that byproducts were formed mainly by insertions of hydrogen atoms into the nitrile, imine, and pyridine ring moieties, in addition to the observation of chlorine substitution by hydrogen replacement (hydrodechlorination reactions.

  16. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates.

    Science.gov (United States)

    Kong, Xin; Wei, Yonghong; Xu, Shuang; Liu, Jianguo; Li, Huan; Liu, Yili; Yu, Shuyao

    2016-07-01

    Excessive acidification occurs frequently in food waste (FW) anaerobic digestion (AD) due to the high carbon-to-nitrogen ratio of FW. In this study, zero-valent iron (ZVI) was applied to prevent the excessive acidification. All of the control groups, without ZVI addition (pH∼5.3), produced little methane (CH4) and had high volatile fatty acids/bicarbonate alkalinity (VFA/ALK). By contrast, at OLR of 42.32gVS/Lreactor, the pH of effluent from the reactors with 0.4g/gVSFWadded of ZVI increased to 7.8-8.2, VFA/ALK decreased to <0.1, and the final CH4 yield was ∼380mL/gVSFWadded, suggesting inhibition of excessive acidification. After adding powdered or scrap metal ZVI to the acidogenic reactors, the fractional content of butyric acid changed from 30-40% to 0%, while, that of acetic acid increased. These results indicate that adding ZVI to FW digestion at high OLRs could eliminate excessive acidification by promoting butyric acid conversion and enhancing methanogen activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism.

    Science.gov (United States)

    Zhang, Xin; Lin, Shen; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2011-05-01

    The use of nanoscale zero-valent iron (nZVI) to remediate contaminated groundwater is limited due to its lack of durability and mechanical strength. To address this issue, 20% (w/w) nZVI was loaded onto kaolinite as a support material (K-nZVI). More than 96% of Pb(2+) was removed from aqueous solution using K-nZVI at an initial condition of 500 mg/L Pb(2+) within 30 min under the conditions of 10 g/L of K-nZVI, pH 5.10 and a temperature of 30 °C. To understand the mechanism of removal of Pb(2+), various techniques were implemented to characterize K-nZVI. Scanning electron microscopy (SEM) indicated that K-nZVI had a suitable dispersive state with a lower aggregation, where the mean specific surface area and average particle size as determined by the BET-N(2) method and X-ray diffraction (XRD), were 26.11 m(2)/g and 44.3 nm, respectively. The results obtained from XRD, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) indicated that a small number of iron oxides formed on the surface of K-nZVI, suggesting that free Pb(2+) was adsorbed onto K-nZVI and subsequently reduced to Pb(0). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-15

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment.

  19. Zero-Valent Metallic Treatment System and Its Application for Removal and Remediation of Polychlorinated Biphenyls (Pcbs)

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Brooks, Kathleen B. (Inventor)

    2012-01-01

    PCBs are removed from contaminated media using a treatment system including zero-valent metal particles and an organic hydrogen donating solvent. The treatment system may include a weak acid in order to eliminate the need for a coating of catalytic noble metal on the zero-valent metal particles. If catalyzed zero-valent metal particles are used, the treatment system may include an organic hydrogen donating solvent that is a non-water solvent. The treatment system may be provided as a "paste-like" system that is preferably applied to natural media and ex-situ structures to eliminate PCBs.

  20. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.

    Science.gov (United States)

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate.

  1. Capture and storage of hydrogen gas by zero-valent iron.

    Science.gov (United States)

    Reardon, Eric J

    2014-02-01

    Granular Fe(o), used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Fe(o) lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Fe(o) treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Fe(o) injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Fe(o) for remediation purposes and may be accessible using physical or chemical means. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge.

    Science.gov (United States)

    Wang, Tongyu; Qin, Yujie; Cao, Yan; Han, Bin; Ren, Junyi

    2017-10-01

    The performance of biogas generation and sludge degradation was studied under different zero-valent iron/activated carbon (ZVI/AC) ratios in detail in mesophilic anaerobic digestion of sludge. A good enhancement of methane production was obtained at the 10:1 ZVI/AC ratio, and the cumulative methane production was 132.1 mL/g VS, 37.6% higher than the blank. The methane content at the 10:1 ZVI/AC ratio reached 68.8%, which was higher than the blank (55.2%) and the sludge-added AC alone (59.6%). For sludge degradation, the removal efficiencies of total chemical oxygen demand (TCOD), proteins, and polysaccharides were all the highest at the 10:1 ZVI/AC ratio. The concentration of available phosphorus (AP) decreased after anaerobic digestion process. On the other hand, the concentrations of available nitrogen (AN) and available potassium (AK) increased after the anaerobic digestion process and showed a gradually decreasing trend with increasing ZVI/AC ratio. The concentrations of AN and AK were 2303.1-4200.3 and 274.7-388.3 mg/kg, showing a potential for land utilization.

  3. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design.

    Science.gov (United States)

    Tanboonchuy, Visanu; Grisdanurak, Nurak; Liao, Chih-Hsiang

    2012-02-29

    This study describes the removal of arsenic species in groundwater by nano zero-valent iron process, including As(III) and As(V). Since the background species may inhibit or promote arsenic removal. The influence of several common ions such as phosphate (PO4(3-)), bicarbonate (HCO3-)), sulfate (SO4(2-)), calcium (Ca2+), chloride (Cl-), and humic acid (HA) were selected to evaluate their effects on arsenic removal. In particular, a 2(6-2) fractional factorial design (FFD) was employed to identify major or interacting factors, which affect arsenic removal in a significant way. As a result of FFD evaluation, PO4(3-) and HA play the role of inhibiting arsenic removal, while Ca2+ was observed to play the promoting one. As for HCO3- and Cl-, the former one inhibits As(III) removal, whereas the later one enhances its removal; on the other hand, As(V) removal was affected only slightly in the presence of HCO3- or Cl-. Hence, it was suggested that the arsenic removal by the nanoiron process can be improved through pretreatment of PO4(3-) and HA. In addition, for the groundwater with high hardness, the nanoiron process can be an advantageous option because of enhancing characteristics of Ca2+. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaolin, E-mail: lishaolin@tongji.edu.cn; Wang, Wei; Liang, Feipeng; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • nZVI is able to perform fast and simultaneous removal of different heavy metal ions. • Fast separation and seeding effect of nZVI facilities its application in wastewater. • A novel process of E{sub h}-controlled reactor, nZVI separator and reuse is proposed. • E{sub h}-controlled system and nZVI recirculation increase material efficiency of nZVI. • The process produces stable effluent and is effective in wastewater treatment. - Abstract: Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E{sub h}, enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E{sub h}-controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E{sub h}-controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245 mg As + 226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment.

  5. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil.

    Science.gov (United States)

    Gil-Díaz, M; Alonso, J; Rodríguez-Valdés, E; Gallego, J R; Lobo, M C

    2017-04-15

    Nanoscale zero valent iron (nZVI) particles obtained by different methods differ in their structure, which lead to different reactivity, and therefore a likely difference in the remediation efficiency. The present study compares the effectiveness of three commercial ZVI nanoparticles to immobilize As and Hg in two soils (A and B) collected from a brownfield highly contaminated by mining and metallurgy activities. Scarce data are available on the effectiveness of nZVI for Hg immobilization in soil. Two commercial nZVI slurries from Toda (RNIP and RNIP-D) and one from Nano Iron (25S) were used at different doses (1, 5 and 10%). The metal(loid) availability and mobility was evaluated with the TCLP test and Tessier extraction procedure. The influence of nZVI application on As and Hg speciation was also evaluated as well as its impact on soil pH, electrical conductivity and soil phytotoxicity to vetch germination. The three commercial nZVI particles significantly reduced As and Hg availability in the two soils studied, which led to a decrease in soil phytotoxicity. At the dose of 5% of nZVI a decrease of exchangeable-As higher than 70% was observed for both soils, whereas in the case of Hg, a higher dose of nZVI (10%) was necessary to achieve reductions of exchangeable-Hg between 63 and 90% depending on the type of nZVI and soil. No impact on soil pH and electrical conductivity was observed. The effectiveness of metal(loid) immobilization depended on type of nZVI, soil properties and metal(loid) characteristics. Nanoparticles from Nano Iron showed better results for As immobilization whereas RNIP nanoparticles were more effective for Hg. Overall, 25S at the dose of 5% resulted more effective than RNIP nanoparticles for the reduction of exchangeable-As (in the range of 6-14%), whereas RNIP and RNIP-D were 10 and 13% more effective, respectively, for the reduction of exchangeable-Hg at the dose of 10% in soil B. Thus, nZVI can be used for the remediation of highly As and

  6. Synergistic degradation of chlorinated hydrocarbons with microorganisms and zero valent iron

    Science.gov (United States)

    Schöftner, Philipp; Summer, Dorothea; Leitner, Simon; Watzinger, Andrea; Wimmer, Bernhard; Reichenauer, Thomas

    2016-04-01

    Sites contaminated with chlorinated hydrocarbons (CHC) are located mainly within build-up regions. Therefore in most cases only in-situ technologies without excavation of soil material can be used for remediation. This project examines a novel in-situ remediation method, in which the biotic degradation via bacteria is combined with abiotic degradation via zero-valent iron particles (ZVI). ZVI particles are injected into the aquifer where CHC-molecules are reductively dechlorinated. However Fe0 is also oxidized by reaction with water leading to generation of H2 without any CHC degradation. To achieve biotic degradation often strictly anaerobic strains of the bacteria Dehalococcoides are used. These bacteria can dechlorinate CHC by utilizing H2. By combining these processes the H2, produced during the anaerobic corrosion of Fe0, could be used by bacteria for further CHC degradation. Therefore the amount of used Fe0 and as a consequence also remediation costs could be reduced. Additionally the continuous supply of H2 could make the bacterial degradation more controllable. Different Fe0 particles (nano- and micro-scale) were tested for their perchloroethene (PCE) degradation rate and H2 production rate in microcosms. PCE-degradation rate by different bacterial cultures was investigated in the same microcosm system. In course of these experiments the 13C enrichment factors of the PCE degradation of the different particles and cultures were determined to enable the differentiation of biotic and abiotic degradation. Preliminary results showed, that the nano-scale particles reacted faster with PCE and water than their micro-scaled counterparts. The PCE degradation via micro-scaled particles lead to 13C enrichment factors in the range of -3,6 ‰ ± 0,6 to -9,5 ‰ ± 0,2. With one of the examined bacterial cultures a fast reduction of PCE to ethene was observed. Although PCE and TCE were completely degraded by this culture the metabolites DCE and VC could still be detected

  7. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions.

    Science.gov (United States)

    Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke

    2015-06-01

    Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Ivan, E-mail: ivan.mikhailov@misis.ru [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation); Komarov, Sergey [Tohoku University, 6-6-02 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8576 (Japan); Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation)

    2017-01-05

    Highlights: • nZVI is used as Fenton-like reagent for activation of Zn leaching from the BFS. • nZVI has positive effect on kinetics of Zn leaching though with some loss of efficiency. • A complex ultrasonic-assisted method for BFS recycling is proposed. - Abstract: Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1 g/l addition of nZVI and 0.05 M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5 min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15 min treatment with 0.1 M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  9. Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI Removal

    Directory of Open Access Journals (Sweden)

    Chaoxia Zhao

    2017-01-01

    Full Text Available Well-dispersed nanoscale zero-valent iron (NZVI supported inside the pores of macroporous silica foams (MOSF composites (Mx-NZVI has been prepared as the Cr(VI adsorbent by simply impregnating the MOSF matrix with ferric chloride, followed by the chemical reduction with NaHB4 in aqueous solution at ambient atmosphere. Through the support of MOSF, the reactivity and stability of NZVI are greatly improved. Transmission electron microscopy (TEM results show that NZVI particles are spatially well-dispersed with a typical core-shell structure and supported inside MOSF matrix. The N2 adsorption-desorption isotherms demonstrate that the Mx-NZVI composites can maintain the macroporous structure of MOSF and exhibit a considerable high surface area (503 m2·g−1. X-ray photoelectron spectroscopy (XPS and powder X-ray diffraction (XRD measurements confirm the core-shell structure of iron nanoparticles composed of a metallic Fe0 core and an Fe(II/Fe(III species shell. Batch experiments reveal that the removal efficiency of Cr(VI can reach 100% when the solution contains 15.0 mg·L−1 of Cr(VI at room temperature. In addition, the solution pH and the composites dosage can affect the removal efficiency of Cr(VI. The Langmuir isotherm is applicable to describe the removal process. The kinetic studies demonstrate that the removal of Cr(VI is consistent with pseudo-second-order kinetic model.

  10. Fundamental Studies of The Removal of Contaminants from Ground and Waste Waters Via Reduction By Zero-Valent metals

    International Nuclear Information System (INIS)

    Yarmoff, Jory A.; Amrhein, Christopher

    2002-01-01

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites, and in other areas of the U.S.. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the physical and chemical understanding that is necessary for the development of cleanup techniques and procedures

  11. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    Science.gov (United States)

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo

  12. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    Science.gov (United States)

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  13. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2018-02-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  15. Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal.

    Science.gov (United States)

    Lv, Xiaoshu; Zhang, Yuling; Fu, Wenyang; Cao, Jiazhen; Zhang, Jiao; Ma, Hanbo; Jiang, Guangming

    2017-11-15

    Zero-valent iron nanoparticles (Fe 0 NPs) technologies are often challenged by poor dispersibility, chemical instability to oxidation, and mobility during processing, storage and use. This work reports a facile approach to synthesize Fe 0 NPs embedded reduced graphene oxide-alginate beads (Fe@GA beads) via the immobilization of pre-synthesized Fe 0 NPs into graphene oxide modified alginate gel followed by a modelling and in-situ reduction process. The structure/composition characterization of the beads finds that the graphene sheets and the Fe 0 NPs (a shape of ellipsoid and a size of beads. We demonstrate that these Fe@GA beads show a robust performance in aqueous Cr(VI) removal. With a optimized Fe and alginate content, Fe@GA bead can achieve a high Cr(VI) removal efficiency and an excellent mechanical strength. The initial Cr(VI) concentration, ionic strength, temperature and especially solution pH are all critical factors to control the Fe@GA beads performance in Cr(VI) removal. Fitness of the pseudo second-order adsorption model with data suggests adsorption is the rate-controlling step, and both Langmuir and Freundlich adsorption isotherm are suitable to describe the removal behavior. The possible Cr(VI) removal path by Fe@GA beads is put forward, and the synergistic effect in this ternary system implies the potentials of Fe@GA beads in pollutant removal from water body. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor

    Science.gov (United States)

    Mines, Paul D.; Kaarsholm, Kamilla M. S.; Droumpali, Ariadni; Andersen, Henrik R.; Lee, Wontae; Hwang, Yuhoon

    2017-09-01

    Remediation of contaminated groundwater by nanoscale zero-valent iron (nZVI) is widely becoming a leading environmentally friendly solution throughout the globe. Since a wide range of various nZVI-containing materials have been developed for effective remediation, it is necessary to determine an appropriate way to terminate the reactivity of any nZVI-containing material for a practical experimental procedure. In this study, bimetallic Ni/Fe-NPs were prepared to enhance overall reduction kinetics owing to the catalytic reactivity of nickel on the surface of nZVI. We have tested several chemical strategies in order to terminate nZVI reactivity without altering the concentration of volatile compounds in the solution. The strategies include surface passivation in alkaline conditions by addition of carbonate, and consumption of nZVI by a reaction competitor. Four halogenated chemicals, trichloroethylene, 1,1,1-trichloroethane, atrazine, and 4-chlorophenol, were selected and tested as model groundwater contaminants. Addition of carbonate to passivate the nZVI surface was not effective for trichloroethylene. Nitrate and then bromate were applied to competitively consume nZVI by their faster reduction kinetics. Bromate proved to be more effective than nitrate, subsequently terminating nZVI reactivity for all four of the tested halogenated compounds. Furthermore, the suggested termination method using bromate was successfully applied to obtain trichloroethylene reduction kinetics. Herein, we report the simple and effective method to terminate the reactivity of nZVI by addition of a reducing reactivity competitor.

  17. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  18. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Haoran, E-mail: dongh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Zhao, Feng; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Lihua; Zeng, Yalan; He, Qi; Xie, Yankai; Wu, Yanan [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China)

    2016-07-15

    Highlights: • The chemical transformation and structural evolution of CMC-nZVI were investigated. • CMC could slow down the aging rate of nZVI and alter the species transformation. • Fe{sub 3}O{sub 4} and/or γ-Fe{sub 2}O{sub 3} are the dominant corrosion products of bare nZVI after aging. • γ-FeOOH is the primary corrosion product of CMC-nZVI after aging. - Abstract: To assess the long-term fate and the associated risks of nanoscale zero-valent iron (nZVI) used in the water remediation, it is essential to understand the chemical transformations during aging of nZVI in water. This study investigated the compositional and structural evolution of bare nZVI and carboxymethyl cellulose (CMC) coated nZVI in static water over a period of 90 days. Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the corrosion products of nZVI and CMC-nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging, but the coating of CMC could slow down the aging rate of nZVI (as indicated by the slower drop in Fe{sup 0} intensity in XRD pattern). For the bare nZVI, magnetite (Fe{sub 3}O{sub 4}) and/or maghemite (γ-Fe{sub 2}O{sub 3}) are the dominant corrosion products after 90 days of aging. However, for the CMC-nZVI, the core-shell spheres collapses to acicular-shaped structures after aging with crystalline lepidocrocite (γ-FeOOH) as the primary end product. Moreover, more lepidocrocite present in the corrosion products of CMC-nZVI with higher loading of CMC, which reveals that the CMC coating could influence the transformation of iron oxides.

  19. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution

    International Nuclear Information System (INIS)

    Dong, Haoran; Zhao, Feng; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Lihua; Zeng, Yalan; He, Qi; Xie, Yankai; Wu, Yanan

    2016-01-01

    Highlights: • The chemical transformation and structural evolution of CMC-nZVI were investigated. • CMC could slow down the aging rate of nZVI and alter the species transformation. • Fe_3O_4 and/or γ-Fe_2O_3 are the dominant corrosion products of bare nZVI after aging. • γ-FeOOH is the primary corrosion product of CMC-nZVI after aging. - Abstract: To assess the long-term fate and the associated risks of nanoscale zero-valent iron (nZVI) used in the water remediation, it is essential to understand the chemical transformations during aging of nZVI in water. This study investigated the compositional and structural evolution of bare nZVI and carboxymethyl cellulose (CMC) coated nZVI in static water over a period of 90 days. Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the corrosion products of nZVI and CMC-nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging, but the coating of CMC could slow down the aging rate of nZVI (as indicated by the slower drop in Fe"0 intensity in XRD pattern). For the bare nZVI, magnetite (Fe_3O_4) and/or maghemite (γ-Fe_2O_3) are the dominant corrosion products after 90 days of aging. However, for the CMC-nZVI, the core-shell spheres collapses to acicular-shaped structures after aging with crystalline lepidocrocite (γ-FeOOH) as the primary end product. Moreover, more lepidocrocite present in the corrosion products of CMC-nZVI with higher loading of CMC, which reveals that the CMC coating could influence the transformation of iron oxides.

  20. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.

    Science.gov (United States)

    Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori

    2016-12-01

    The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xingmao, E-mail: ma@engr.siu.edu [Civil and Environmental Engineering, Southern Illinois University Carbondale, IL 62901 (United States); Gurung, Arun [Civil and Environmental Engineering, Southern Illinois University Carbondale, IL 62901 (United States); Deng, Yang [Earth and Environmental Studies, Montclair State University, NJ 07403 (United States)

    2013-01-15

    Use of nano-scale zero valent iron (nZVI) for the treatment of various environmental pollutants has been proven successful. However, large scale introduction of engineered nanomaterials such as nZVI into the environment has recently attracted serious concerns. There is an urgent need to investigate the environmental fate and impact of nZVI due to the scope of its application. The goal of this study was to evaluate the toxicity and accumulation of bare nZVI by two commonly encountered plant species: cattail (Typha latifolia) and hybrid poplars (Populous deltoids × Populous nigra). Plant seedlings were grown hydroponically in a greenhouse and dosed with different concentrations of nZVI (0–1000 mg/L) for four weeks. The nZVI exhibited strong toxic effect on Typha at higher concentrations (> 200 mg/L) but enhanced plant growth at lower concentrations. nZVI also significantly reduced the transpiration and growth of hybrid poplars at higher concentrations. Microscopic images indicated that large amount of nZVI coated on plant root surface as irregular aggregates and some nZVI penetrated into several layers of epidermal cells. Transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the internalization of nZVI by poplar root cells but similar internalization was not observed for Typha root cells. The upward transport to shoots was minimal for both plant species. - Highlights: ► nZVI may exert phytotoxic effects on plants at concentrations (> 200 mg/L) often encountered in site remediation practices. ► nZVI deposits on plant root surface as aggregates and some could internalize in plant root cells. ► Plant uptake and accumulation of nZVI are plant species-dependent. ► Upward transport from roots to shoots was not observed.

  2. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    Science.gov (United States)

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L -1 . The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (k sa ) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn 2+ to ZnCl 3 - and ZnCl 4 2- ; from CrO 4 2- to CaCrO 4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanxuan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); Wan, Jinquan, E-mail: ppjqwan@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, Yongwen [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China)

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO{sub 4}·{sup −}) and hydroxyl radical (·OH) were found to be primary oxidants at pH 3.0 and pH 7.0, respectively while ·OH was the major specie to oxidize DBP at pH 11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to ·OH, superoxide radical (O{sub 2}·{sup −}) was detected at pH 11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH 3.0 by GC–MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH 3.0. - Highlights: • Both SO{sub 4}{sup −}· and ·OH were found to be the major active species at pH 3.0 and pH 7.0. • ·OH and ·O2– were the primary oxidants pH 11.0. • The intermediate products were investigated as well as the degradation pathway. • Dealkylation, hydroxylation, decarboxylation, H-extraction were the major mechanisms.

  4. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Du, Jingjing; Lu, Jinsuo; Wu, Qiong; Jing, Chuanyong

    2012-01-01

    Highlights: ► COPR remediation mechanism using nZVI was investigated. ► PHREEQC model calculation agreed well with our GANC experimental results. ► Incubation COPR and nZVI with >27% water content could reduce Cr(VI) in solids. ► Water content is the key factor to assist electron transfer between nZVI and COPR. - Abstract: Chromite ore processing residue (COPR) poses a great environmental and health risk with persistent Cr(VI) leaching. To reduce Cr(VI) and subsequently immobilize in the solid matrix, COPR was incubated with nanoscale zero-valent iron (nZVI) and the Cr(VI) speciation and leachability were studied. Multiple complementary analysis methods including leaching tests, X-ray powder diffraction, X-ray absorption near edge structure (XANES) spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to investigate the immobilization mechanism. Geochemical PHREEQC model calculation agreed well with our acid neutralizing capacity experimental results and confirmed that when pH was lowered from 11.7 to 7.0, leachate Cr(VI) concentrations were in the range 358–445 mg L −1 which contributed over 90% of dissolved Cr from COPR. Results of alkaline digestion, XANES, and XPS demonstrated that incubation COPR with nZVI under water content higher than 27% could result in a nearly complete Cr(VI) reduction in solids and less than 0.1 mg L −1 Cr(VI) in the TCLP leachate. The results indicated that remediation approaches using nZVI to reduce Cr(VI) in COPR should be successful with sufficient water content to facilitate electron transfer from nZVI to COPR.

  5. The Effect of Vacuum Annealing of Magnetite and Zero-Valent Iron Nanoparticles on the Removal of Aqueous Uranium

    Directory of Open Access Journals (Sweden)

    R. A. Crane

    2013-01-01

    Full Text Available As-formed and vacuum annealed zero-valent iron nanoparticles (nano-Fe0 and magnetite nanoparticles (nano-Fe3O4 were tested for the removal of uranium from carbonate-rich mine water. Nanoparticles were introduced to batch systems containing the mine water under oxygen conditions representative of near-surface waters, with a uranyl solution studied as a simple comparator system. Despite the vacuum annealed nano-Fe0 having a 64.6% lower surface area than the standard nano-Fe0, similar U removal (>98% was recorded during the initial stages of reaction with the mine water. In contrast, ≤15% U removal was recorded for the mine water treated with both as-formed and vacuum annealed nano-Fe3O4. Over extended reaction periods (>1 week, appreciable U rerelease was recorded for the mine water solutions treated using nano-Fe0, whilst the vacuum annealed material maintained U at <50 μg L−1 until 4 weeks reaction. XPS analysis of reacted nanoparticulate solids confirmed the partial chemical reduction of UVI to UIV in both nano-Fe0 water treatment systems, but with a greater amount of UIV detected on the vacuum annealed particles. Results suggest that vacuum annealing can enhance the aqueous reactivity of nano-Fe0 and, for waters of complex chemistry, can improve the longevity of aqueous U removal.

  6. Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite.

    Science.gov (United States)

    Fu, Jie; Xu, Zhen; Li, Qing-Shan; Chen, Song; An, Shu-Qing; Zeng, Qing-Fu; Zhu, Hai-Liang

    2010-01-01

    A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaClO) and the combination of ZVI/AC-MDEL/NaClO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaClO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaClO, we found that in the ZVI/AC-MEDL/NaClO process, ZVI/AC could break the azo bond firstly and then MEDL/NaClO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.

  7. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xiaoying; Chen, Zhengxian [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Zhou, Rongbing [Institute of Environ Sci and Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018 (China); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-01-15

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe{sup 0} nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L{sup −1} (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min.

  8. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    International Nuclear Information System (INIS)

    Jin, Xiaoying; Chen, Zhengxian; Zhou, Rongbing; Chen, Zuliang

    2015-01-01

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe 0 nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L −1 (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min

  9. Applications of surface analysis in the environmental sciences: dehalogenation of chlorocarbons with zero-valent iron and iron-containing mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Molly M.; Carlson, Daniel L.; Vikesland, Peter J.; Kohn, Tamar; Grenier, Adam C.; Langley, Laura A.; Roberts, A. Lynn; Fairbrother, D. Howard

    2003-10-31

    Halogenated organic compounds are common pollutants in groundwater. Consequently, there is widespread interest in understanding the reactions of these compounds in the environment and developing remediation strategies. One area of ongoing research involves the reductive dechlorination of organohalides with zero-valent metals or metal sulfide minerals. These processes have been studied almost exclusively from the perspective of the aqueous phase. In this paper we illustrate the utility of surface analysis techniques, including electron spectroscopies, vibrational spectroscopies, and atomic force microscopy in elucidating the roles played by the surface. A dual analysis approach to the study of reductive dechlorination, combining traditional solution phase analysis with surface analytical techniques, also is demonstrated using a liquid cell coupled to an ultrahigh vacuum surface analysis chamber.

  10. Removal of Acid Red 18 dye from Aqueous Solutions Using Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2015-08-01

    Full Text Available Background and Purpose:Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim was to evaluate the performance nanoscalezero-valent iron (NZVI in the removal of dye acid red 18 (AR18 from aqueous solutions. Materials and Methods:This study was conducted at the laboratory scale. In this study, the removal efficiency of AR18 from a synthetic solution by NZVI was investigated. As well as the effect of solution pH, dye concentration, the concentration of NZVI and contact time in decolorization efficiency was investigated. Results:The results show that in pH = 3, contact time of 80 minutes, dye concentration of 25 mg/l and concentration of NZVI of 2 g/l, the removal efficiency was about 94%. Conclusion:According to the results of experiments, NZVI has high efficiency in removal of AR18 from aqueous solution.

  11. Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters via Reduction by Zero-Valent Metals

    International Nuclear Information System (INIS)

    Yarmoff, Jory A.; Amrhein, Christopher

    1999-01-01

    Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental

  12. Removal of residual functionalized ionic liquids from water by ultrasound-assisted zero-valent iron/activated carbon.

    Science.gov (United States)

    Zhou, Haimei; Lv, Ping; Qi, Hang; Ma, Jinqi; Wang, Jianji

    2018-03-02

    Numerous applications of ionic liquids (ILs) are often accompanied by the generation of aqueous wastes. Due to the high toxicity and poor biodegradability of ILs, effective chemical treatment is of great importance for their removal from aqueous solution. In this work, an ultrasound-assisted zero-valent iron/activated carbon (US-ZVI/AC) micro-electrolysis technique was used to degrade residual functionalized ILs, 1-butyl-3-methyl benzimidazolium bromide ([BMBIM]Br) and 1-allyl-3-methylimidazolium chloride ([AMIM]Cl) in aqueous solution, and the degradation degree, degradation kinetics and possible degradation pathways were investigated. It was shown that the degradation of these functionalized ILs was highly efficient in the US-ZVI/AC system, and the degradation degree was as high as 96.1% and 92.9% in 110 min for [BMBIM]Br and [AMIM]Cl, respectively. The degradation of [BMBIM]Br could be described by the second-order kinetics model, and [BMBIM] + was decomposed in two ways: (i) sequential cleavage of N-alkyl side chain of the cation produced three intermediates; (ii) the 2-positioned H atoms of the benzimidazolium ring were first oxidized, and then the imidazolium ring was opened. The degradation of [AMIM]Cl followed the first-order kinetics rule, and the 2,4,5-positioned H atoms of the imidazolium ring were oxidized to induce ring opening. In addition, the removal of total organic carbon was found to be >87%, which indicates that most of the ILs was mineralized in the degradation process. These results suggest that ultrasound-assisted ZVI/AC micro-electrolysis is highly effective for the removal of residual functionalized ILs from aqueous environment.

  13. Assessing the capacity of zero valent iron nanofluids to remediate NAPL-polluted porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tsakiroglou, Christos, E-mail: ctsakir@iceht.forth.gr [Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences, Stadiou street, Platani, 26504 Patras (Greece); Terzi, Katerina; Sikinioti-Lock, Alexandra [Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences, Stadiou street, Platani, 26504 Patras (Greece); Department of Chemical Engineering, University of Patras, 26504 Patras (Greece); Hajdu, Kata; Aggelopoulos, Christos [Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences, Stadiou street, Platani, 26504 Patras (Greece)

    2016-09-01

    A variety of aqueous suspensions (nanofluids) of zero-valent nano-particles (nZVI) are prepared by wet chemistry techniques, their stability and longevity is evaluated by physic-chemical methods of characterization, and their reactivity toward the dechlorination of per-chloro-ethylene (PCE) is examined with tests in batch reactors. For assessing the mobility, longevity and reactivity of nZVI suspensions (nanofluids), under flow-through conditions, visualization multiphase flow and transport tests are performed on a glass-etched pore network. The nZVI breakthrough curves are constructed by measuring the transient variation of the iron concentration in the effluent with atomic absorption spectroscopy. The capacity of nZVI to remediate the bulk phase of PCE is quantified by detecting the mass loss rate of PCE ganglia trapped in glass-etched pore networks during the continuous injection of nZVI suspension or pure water. The nZVI injection in porous media is simulated as an advection- dispersion process by accounting for the attachment/detachment of nanoparticles on the pore-walls, and describing the kinetics of PCE dissolution and reaction by 1st order equations. Visualization experiments reveal that the gradual elimination of PCE ganglia by the injected nZVI is associated with the preferential “erosion” of the upstream interfacial regions. The step controlling the overall process kinetics might be either (i) the enhanced PCE dissolution or (ii) the direct reaction of bulk PCE with the nZVI deposited upon the ganglia interfaces. Inverse modeling of the experiments under the simplifying assumption of one active mechanism indicates that the estimated kinetic coefficients are increasing functions of the flow rate. - Highlights: • The PCE remediation by nZVI is studied with visualization tests on pore networks. • The remediation of PCE ganglia by nZVI follows a non-uniform “erosion” pattern. • The preferential erosion of the upstream interfacial regions of

  14. Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes.

    Science.gov (United States)

    Kowalski, Krzysztof P; Søgaard, Erik G

    2014-12-01

    Arsenic in drinking water is concerning millions of people around the world, even though many solutions to the problem have come up in recent years. One of the promising solutions for removing arsenic from water is by implementation of a zero-valent iron (ZVI) in the drinking water production. The purpose of this work was to study a treatment of As pollution based on the ZVI, aeration and sand filtration that was monitored for period of 45 months. In applied configuration and conditions ZVI was not able to remove arsenic alone, but it worked as a source of ferrous ions that during its oxidation enabled to co-precipitate arsenic compounds in the sand filter. The results show that after a lag phase of about 6 months, it was possible to achieve water production with an As content from 20 μg L(-1) to below 5 μg L(-1). The treatment also enabled to remove phosphates that were present in groundwater and affected As uptake by hindering its co-precipitation with Fe compounds. Determination of colony forming units on As amended agar helped to find arsenic resistant bacteria at each stage of treatment and also in the sand filter backwash sludge. Bacterial communities found in groundwater, containing low concentration of As, were found to have high As resistance. The results also indicate that the lag phase might have been also needed to initiate Fe ions release by corrosion from elemental Fe by help of microbial activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Removal of polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system.

    Science.gov (United States)

    Man, Xiaoyuan; Ning, Xun-An; Zou, Haiyuan; Liang, Jieying; Sun, Jian; Lu, Xingwen; Sun, Jiekui

    2018-01-01

    This paper proposes a combined ultrasound (US) and zero-valent iron/EDTA/Air (ZEA) system to remove polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge. The removal efficiencies of 16 PAHs using ZEA, US/Air (air injected into the US process), and US/ZEA treatments were investigated, together with the effects of various operating parameters. The enhanced mechanisms of US and the role of reactive oxygen species (ROS) in removing PAHs in the US/ZEA system were explored. Results showed that only 42.5% and 32.9% of ∑16 PAHs were removed by ZEA and US/Air treatments respectively, whereas 70.1% were removed by US/ZEA treatment, (with favorable operating conditions of 2.0 mM EDTA, 15 g/L ZVI, and 1.08 w/cm 3 ultrasonic density). The US/ZEA system could be used with a wide pH range. US led to synergistic improvement of PAHs removal in the ZEA system by enhancing sludge disintegration to release PAHs and promoting ZVI corrosion and oxygen activation. In the US/ZEA system, PAHs could be degraded by ROS (namely OH, O 2 - /HO 2 , and Fe(IV)) and adsorbed by ZVI, during which the ROS made the predominant contribution. This study provides important insights into the application of a US/ZEA system to remove PAHs from sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chunwoo, E-mail: clee@doosanhydro.com [Department of Research and Development, Doosan Hydro Technology, Inc, Tampa, FL 33619 (United States); Batchelor, Bill [Zachry Department of Civil Engineering, Texas A and M University, College Station, TX 77840 (United States); Park, Sung Hyuk [Environmental and Engineering Research Team, GS Engineering and Construction Research Institute, Youngin, Kyunggi-do 449-831 (Korea, Republic of); Han, Dong Suk; Abdel-Wahab, Ahmed [Chemical Engineering Program, Texas A and M University at Qatar, Education City, Doha, PO Box 23874 (Qatar); Kramer, Timothy A.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. Black-Right-Pointing-Pointer Perchlorate is effectively reduced to chloride by soluble titanium species. Black-Right-Pointing-Pointer Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 {+-} 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  17. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    International Nuclear Information System (INIS)

    Lee, Chunwoo; Batchelor, Bill; Park, Sung Hyuk; Han, Dong Suk; Abdel-Wahab, Ahmed; Kramer, Timothy A.

    2011-01-01

    Highlights: ► ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. ► Perchlorate is effectively reduced to chloride by soluble titanium species. ► Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 ± 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  18. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    Science.gov (United States)

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  19. Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats

    Science.gov (United States)

    Shevtsov, M. A.; Parr, M. A.; Ryzhov, V. A.; Zemtsova, E. G.; Arbenin, A. Yu; Ponomareva, A. N.; Smirnov, V. M.; Multhoff, G.

    2016-01-01

    Mesoporous silica nanoparticles (MSNs) impregnated with zero-valent Fe (Fe(0) @ MCM-41) represent an attractive nanocarrier system for drug delivery into tumor cells. The major goal of this work was to assess whether MSNs can penetrate the blood-brain barrier in a glioblastoma rat model. Synthesized MSNs nanomaterials were characterized by energy dispersive X-ray spectroscopy, measurements of X-ray diffraction, scanning electron microscopy and Mössbauer spectroscopy. For the detection of the MSNs by MR and for biodistribution studies MSNs were labeled with zero-valent Fe. Subsequent magnetometry and nonlinear-longitudinal-response-M2 (NLR-M2) measurements confirmed the MR negative contrast enhancement properties of the nanoparticles. After incubation of different tumor (C6 glioma, U87 glioma, K562 erythroleukemia, HeLa cervix carcinoma) and normal cells such as fibroblasts and peripheral blood mononuclear cells (PBMCs) MSNs rapidly get internalized into the cytosol. Intracellular residing MSNs result in an enhanced cytotoxicity as Fe(0) @ MCM-41 promote the reactive oxygen species production. MRI and histological studies indicated an accumulation of intravenously injected Fe(0) @ MCM-41 MSNs in orthotopic C6 glioma model. Biodistribution studies with measurements of second harmonic of magnetization demonstrated an increased and dose-dependent retention of MSNs in tumor tissues. Taken together, this study demonstrates that MSNs can enter the blood-brain barrier and accumulate in tumorous tissues. PMID:27386761

  20. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk.

    Science.gov (United States)

    Chu, Wenhai; Li, Xin; Bond, Tom; Gao, Naiyun; Bin, Xu; Wang, Qiongfang; Ding, Shunke

    2016-12-15

    The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Weizhou, E-mail: jwz0306@126.com; Qin, Yuejiao [North University of China, Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (China); Luo, Shuai [Virginia Polytechnic Institute and State University, Department of Civil and Environmental Engineering (United States); Feng, Zhirong; Liu, Youzhi [North University of China, Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (China)

    2017-02-15

    Nanoscale zero-valent iron (nZVI) was continuously prepared by high-gravity reaction precipitation through a novel impinging stream-rotating packed bed (IS-RPB). Reactant solutions of FeSO{sub 4} and NaBH{sub 4} were conducted into the IS-RPB with flow rates of 60 L/h and rotating speed of 1000 r/min for the preparation of nZVI. As-prepared nZVI obtained by IS-RPB were quasi-spherical morphology and almost uniformly distributed with a particle size of 10–20 nm. The reactivity of nZVI was estimated by the degradation of 100 ml nitrobenzene (NB) with initial concentration of 250 mg/L. The optimum dosage of nZVI obtained by IS-RPB was 4.0 g/L as the NB could be completely removed within 10 min, which reduced 20% compared with nZVI obtained by stirred tank reactor (STR). The reduction of NB and production of aniline (AN) followed pseudo-first-order kinetics, and the pseudo-first-order rate constants were 0.0147 and 0.0034 s{sup −1}, respectively. Furthermore, the as-prepared nZVI using IS-RPB reactor in this work can be used within a relatively wide range pH of 1–9.

  2. Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene

    Science.gov (United States)

    Jiao, Weizhou; Qin, Yuejiao; Luo, Shuai; Feng, Zhirong; Liu, Youzhi

    2017-02-01

    Nanoscale zero-valent iron (nZVI) was continuously prepared by high-gravity reaction precipitation through a novel impinging stream-rotating packed bed (IS-RPB). Reactant solutions of FeSO4 and NaBH4 were conducted into the IS-RPB with flow rates of 60 L/h and rotating speed of 1000 r/min for the preparation of nZVI. As-prepared nZVI obtained by IS-RPB were quasi-spherical morphology and almost uniformly distributed with a particle size of 10-20 nm. The reactivity of nZVI was estimated by the degradation of 100 ml nitrobenzene (NB) with initial concentration of 250 mg/L. The optimum dosage of nZVI obtained by IS-RPB was 4.0 g/L as the NB could be completely removed within 10 min, which reduced 20% compared with nZVI obtained by stirred tank reactor (STR). The reduction of NB and production of aniline (AN) followed pseudo-first-order kinetics, and the pseudo-first-order rate constants were 0.0147 and 0.0034 s-1, respectively. Furthermore, the as-prepared nZVI using IS-RPB reactor in this work can be used within a relatively wide range pH of 1-9.

  3. Removal of 4-chlorophenol from aqueous solution by granular activated carbon/nanoscale zero valent iron based on Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Majlesi Monireh

    2017-12-01

    Full Text Available The phenolic compounds are known as priority pollutants, even in low concentrations, as a result of their toxicity and non-biodegradability. For this reason, strict standards have been established for them. In addition, chlorophenols are placed in the 38th to 43th in highest priority order of toxic pollutants. As a consequence, contaminated water or wastewaters with phenolic compounds have to be treated before discharging into the receiving water. In this study, Response Surface Methodology (RSM has been used in order to optimize the effect of main operational variables responsible for the higher 4-chlorophenol removal by Activated Carbon-Supported Nanoscale Zero Valent Iron (AC/NZVI. A Box-Behnken factorial Design (BBD with three levels was applied to optimize the initial concentration, time, pH, and adsorbent dose. The characterization of adsorbents was conducted by using SEM-EDS and XRD analyses. Furthermore, the adsorption isotherm and kinetics of 4-chlorophenol on AC and AC/NZVI under various conditions were studied. The model anticipated 100% removal efficiency for AC/NZVI at the optimum concentration (5.48 mg 4-chlorophenol/L, pH (5.44, contact time (44.7 min and dose (0.65g/L. Analysis of the response surface quadratic model signified that the experiments are accurate and the model is highly significant. Moreover, the synthetic adsorbent is highly efficient in removing of 4-chlorophenol.

  4. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Airong, E-mail: liuairong@tongji.edu.cn; Liu, Jing; Han, Jinhao; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • A comprehensive study of corrosion products for nZVI under both oxic and anoxic conditions is performed. • Under anoxic conditions, the oxidation products contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). • Under oxic conditions, the final products are mainly crystalline lepidocrocite (γ-FeOOH) with acicular-shaped structures. • Morphological and structural evolution of nZVI under both oxic and anoxic conditions are substantially different. - Abstract: Knowledge on the transformation of nanoscale zero-valent iron (nZVI) in water is essential to predict its surface chemistry including surface charge, colloidal stability and aggregation, reduction and sorption of organic contaminants, heavy metal ions and other pollutants in the environment. In this work, transmission electronic microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy are applied to study the compositional and structural evolution of nZVI under oxic and anoxic conditions. Under anoxic conditions, the core–shell structure of nZVI is well maintained even after 72 h, and the corrosion products usually contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). Under oxic conditions, the core–shell structure quickly collapses to flakes or acicular-shaped structures with crystalline lepidocrocite (γ-FeOOH) as the primary end product. This work provides detailed information and fills an important knowledge gap on the physicochemical characteristics and structural evolution of engineered nanomaterials in the environment.

  5. Reversible formation of high-valent-iron-oxo-porphyrin intermediate in heme-based catalysis: revisiting the kinetic model for horseradish peroxidase.

    NARCIS (Netherlands)

    Haandel, van M.J.H.; Primus, J.L.; Teunis, C.; Boersma, M.G.; Osman, A.M.; Veeger, C.; Rietjens, I.M.C.M.

    1998-01-01

    Many heme-containing biocatalysts exert their catalytic action through the initial formation of so-called high-valent-iron-oxo porphyrin intermediates. For horseradish peroxidase the initial intermediate formed has been identified as a high-valent-iron-oxo porphyrin π-radical cation, called compound

  6. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Jiang, Chenghong; Xu, Xuping; Megharaj, Mallavarapu; Naidu, Ravendra; Chen, Zuliang

    2015-01-01

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50 mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100 mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD 600 = 0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. - Highlights: • Biodenitrification by Paracoccus sp. in the presence of nZVI was studied. • Biodegradation was promoted at a low nZVI concentration. • Biodegradation was inhibited at a high nZVI concentration. • nZVI that adhered to microorganism cell membranes was characterized

  7. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chenghong; Xu, Xuping [School of Life Science, Fujian Normal University, Fuzhou 350108, Fujian Province (China); Megharaj, Mallavarapu; Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-10-15

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50 mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100 mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD{sub 600} = 0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. - Highlights: • Biodenitrification by Paracoccus sp. in the presence of nZVI was studied. • Biodegradation was promoted at a low nZVI concentration. • Biodegradation was inhibited at a high nZVI concentration. • nZVI that adhered to microorganism cell membranes was characterized.

  8. A new method to produce nanoscale iron for nitrate removal

    International Nuclear Information System (INIS)

    Chen, S.-S.; Hsu, H.-D.; Li, C.-W.

    2004-01-01

    This article proposes a novel technology combining electrochemical and ultrasonic methods to produce nanoscale zero valent iron (NZVI). With platinum placed in the cathode and the presence of the dispersion agent, 0.2g/l cetylpyridinium chloride (CPC), a cation surfactant, in the solution, the nanoscale iron particle was successfully produced with diameter of 1-20 nm and specific surface area of 25.4m 2 /g. The produced NZVI was tested in batch experiments for nitrate removal. The results showed that the nitrate reduction was affected by pH. Al low pH, nitrate was shown faster decline and more reduction in term of g NO 3 - -N/g NZVI. The reaction was first order and kinetic coefficients for the four pHs were directly related to pH with R 2 >0.95. Comparing with microscale zero-valent iron (45μm, 0.183m 2 /g), microscale zero-valent iron converted nitrate to ammonia completely, but NZVI converted nitrate to ammonia partially from 36.2 to 45.3% dependent on pH. For mass balance of iron species, since the dissolved iron in the solution was very low ( 2 O 3 was recognized. Thus the reaction mechanisms can be determined

  9. Impacts of zero valent iron, natural zeolite and Dnase on the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of swine manure.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Zhong, Hui; Meng, Xiaoshan; Wang, Ziyue; Wang, Yawei; Wei, Yuansong

    2018-06-01

    This study investigated the fate of antibiotic resistance genes (ARGs) during mesophilic (mAD) and thermophilic digestion (tAD) of swine manure through zero valent iron (ZVI), natural zeolite and Dnase addition. Changes of microbial community, intI1, heavy metal resistance genes (MRGs) and virulence factors (VFs) were followed to clarify the influencing factors to ARGs reduction. Results showed that AD could realize ARGs reduction with tAD superior to mAD, and ZVI and natural zeolite could further enhance the reduction, especially for natural zeolite addition at mAD. The reduction efficiency of the relative abundance of ARGs was increased by 33.3% and 138.5% after ZVI and natural zeolite addition, respectively, but Dnase deteriorated ARGs reduction at mAD. Most of ARGs could be reduced effectively except sulII and tetM. Network analysis and partial redundancy analysis indicated that co-occurrence of MRGs followed by microbial community contributed the most to the variation of ARGs fate among treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.

    Science.gov (United States)

    Jing, C; Landsberger, S; Li, Y L

    2017-09-01

    In this study, nanoscale zero valent iron I-NZVI was investigated as a remediation strategy for uranium contaminated groundwater from the former Cimarron Fuel Fabrication Site in Oklahoma, USA. The 1 L batch-treatment system was applied in the study. The result shows that 99.9% of uranium in groundwater was removed by I-NZVI within 2 h. Uranium concentration in the groundwater stayed around 27 μg/L, and there was no sign of uranium release into groundwater after seven days of reaction time. Meanwhile the release of iron was significantly decreased compared to NZVI which can reduce the treatment impact on the water environment. To study the influence of background pH of the treatment system on removal efficiency of uranium, the groundwater was adjusted from pH 2-10 before the addition of I-NZVI. The pH of the groundwater was from 2.1 to 10.7 after treatment. The removal efficiency of uranium achieved a maximum in neutral pH of groundwater. The desorption of uranium on the residual solid phase after treatment was investigated in order to discuss the stability of uranium on residual solids. After 2 h of leaching, 0.07% of the total uranium on residual solid phase was leached out in a HNO 3 leaching solution with a pH of 4.03. The concentration of uranium in the acid leachate was under 3.2 μg/L which is below the EPA's maximum contaminant level of 30 μg/L. Otherwise, the concentration of uranium was negligible in distilled water leaching solution (pH = 6.44) and NaOH leaching solution (pH = 8.52). A desorption study shows that an acceptable amount of uranium on the residuals can be released into water system under strong acid conditions in short terms. For long term disposal management of the residual solids, the leachate needs to be monitored and treated before discharge into a hazardous landfill or the water system. For the first time, I-NZVI was applied for the treatment of uranium contaminated groundwater. These results provide proof that I-NZVI has

  11. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism.

    Science.gov (United States)

    Guo, Yige; Huang, Wenli; Chen, Bin; Zhao, Ying; Liu, Dongfang; Sun, Yu; Gong, Bin

    2017-10-05

    In this study, nano zero valent iron (NZVI) modified MCM-41-zeolite A (Fe-MCM-41-A) composite as a novel adsorbent was prepared by precipitation method and applied for tetracycline (TC) removal from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and N 2 -BET analysis. Hysteresis loops indicated that the sample has a desirable magnetic property and can be separated quickly. Adsorption studies were carried out to evaluate its potential for TC removal. Results showed that the optimal Fe-MCM-41-A dosage, initial pH and reaction time at initial TC concentration of 100mgL -1 solution are 1gL -1 , pH=5, and 60 min respectively, at which the removal efficiency of TC was 98.7%. The TC adsorption results fitted the Langmuir isotherm model very well and the adsorption process could be described by a pseudo-second-order kinetic model. A maximum TC adsorption capacity of 526.32mgg -1 was achieved. This study demonstrates that Fe-MCM-41-A is a promising and efficient material for TC adsorption from aqueous solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling.

    Science.gov (United States)

    Vilardi, Giorgio; Mpouras, Thanasis; Dermatas, Dimitris; Verdone, Nicola; Polydera, Angeliki; Di Palma, Luca

    2018-06-01

    Carbon Nanotubes (CNTs) and nano Zero-Valent Iron (nZVI) particles, as well as two nanocomposites based on these novel nanomaterials, were employed as nano-adsorbents for the removal of hexavalent chromium, selenium and cobalt, from aqueous solutions. Nanomaterials characterization included the determination of their point of zero charge and particle size distribution. CNTs were further analyzed using scanning electron microscopy, thermogravimetric analysis and Raman spectroscopy to determine their morphology and structural properties. Batch experiments were carried out to investigate the removal efficiency and the possible competitive interactions among metal ions. Adsorption was found to be the main removal mechanism, except for Cr(VI) treatment by nZVI, where reduction was the predominant mechanism. The removal efficiency was estimated in decreasing order as CNTs-nZVI > nZVI > CNTs > CNTs-nZVI* independently upon the tested heavy metal. In the case of competitive adsorption, Cr(VI) exhibited the highest affinity for every adsorbent. The preferable Cr(VI) removal was also observed using binary systems of the tested metals by means of the CNTs-nZVI nanocomposite. Single species adsorption was better described by the non-linear Sips model, whilst competitive adsorption followed the modified Langmuir model. The CNTs-nZVI nanocomposite was tested for its reusability, and showed high adsorption efficiency (the q max values decreased less than 50% with respect to the first use) even after three cycles of use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. One-pot synthesis of ternary zero-valent iron/phosphotungstic acid/g-C3N4 composite and its high performance for removal of arsenic(V) from water

    Science.gov (United States)

    Chen, Chunhua; Xu, Jia; Yang, Zhihua; Zhang, Li; Cao, Chunhua; Xu, Zhihua; Liu, Jiyan

    2017-12-01

    Ternary zero-valent iron/phos photungstic acid/g-C3N4 composite (Fe0@PTA/g-C3N4) was synthesized via photoreduction of iron (II) ions assisted by phosphotungstic acid (PTA) over g-C3N4 flakes. The as-prepared Fe0@PTA/g-C3N4 was investigated for removal of As(III) and As(V) species from water. The result showed that Fe0@PTA/g-C3N4 exhibited a better performance for As(V) removal than As(III) species from water, and the maximum adsorption capacity for As(V) was 70.3 mg/g, much higher than most of the reported adsorbents. As(V) removal by the Fe0@PTA/g-C3N4 adsorbent is mainly via a chemical process, synergistically occurring of reduction of As(V) and oxidation of Fe0. Moreover, the Fe0@PTA/g-C3N4 adsorbent showed effective As(V) removal from the simulated industrial wastewater and underground water. This study demonstrates that Fe0@PTA/g-C3N4 can be a potential adsorbent for As(V) removal due to its high performance, and simple one-pot synthesis process.

  14. The effect of ascorbic acid-stabilized zero valent iron nanoparticles on the distribution of different forms of cadmium in three spiked soils

    Directory of Open Access Journals (Sweden)

    Mohaddese Savasari

    2017-01-01

    Full Text Available Introduction: Increases in pollution of water resources due to the contaminants have made researchers to develop the various methods in the remediation and the reuses of polluted resources contamination of soils with heavy metals is one of great environmental concerns for the human beings. Cadmium (Cd as a toxic heavy metal is of significant environmental and occupational concern. Contamination of soils with heavy metals is one of great environmental concerns for the human beings. The numbers of sorbents that have been used for Cd (II reductive removal are biopolymers, fly ash, activated carbon, metal oxides, clays, zeolites, dried plant parts, microorganisms, and sewage sludge. However, most of the mentioned sorbents had limitations of cost and durability that call a needed approach by cost effective remediation technique with high efficiency. Application of zero valent iron nanoparticles (ZVINs as a promising technique for remediation of heavy metals are being increasingly considered by researchers. This study was conducted to synthesis and characterize the ZVINs stabilized with ascorbic acid (AAS - ZVIN in aerobic conditions and to assess their ability for removal efficiency of cadmium (Cd from the soils and changes in different fraction of Cd in three spiked soils including sandy, acidity and calcareous soils were also studied. Materials and Methods: The stabilized ZVINs were prepared in cold distilled water by reducing Fe (III to Fe0 using sodium borohydride in the presence of ascorbic acid as stabilizer and reducing agent. The freshly synthesized AAS-ZVIN washed three times and then used for the subsequent analysis. Characterization of the synthesized AAS-ZVIN was carried out by scanning electron microscope (SEM. X-ray diffraction (XRD was performed using a Philips D500 diffract meter with Ni-filtered Cu ka radiation. To determine the availability of Cd, the DTPA-extractable amounts of Cd in the spiked soils so sandy, acid and calcareous

  15. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    Science.gov (United States)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  16. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    Science.gov (United States)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-01-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community. PMID:28300176

  17. Integrated Nanozero Valent Iron and Biosurfactant-Aided Remediation of PCB-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    He Zhang

    2016-01-01

    Full Text Available Polychlorobiphenyls (PCBs have been identified as environmental hazards for years. Due to historical issues, a considerable amount of PCBs was released deep underground in Canada. In this research, a nanoscale zero valent iron- (nZVI- aided dechlorination followed by biosurfactant enhanced soil washing method was developed to remove PCBs from soil. During nZVI-aided dechlorination, the effects of nZVI dosage, initial pH level, and temperature were evaluated, respectively. Five levels of nZVI dosage and two levels of initial pH were experimented to evaluate the PCB dechlorination rate. Additionally, the temperature changes could positively influence the dechlorination process. In soil washing, the presence of nanoiron particles played a key role in PCB removal. The crude biosurfactant was produced using a bacterial stain isolated from the Atlantic Ocean and was applied for soil washing. The study has led to a promising technology for PCB-contaminated soil remediation.

  18. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron

    International Nuclear Information System (INIS)

    Cong, Xin; Xue, Nandong; Wang, Shijie; Li, Keji; Li, Fasheng

    2010-01-01

    Several experiments and a model were constructed using conventional granular zero-valent iron (ZVI) particles as the reducing agent to study the reductive dechlorination characteristics of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in soils from a former pesticide-manufacturing site. The results showed that ZVI had good ability for the reductive dechlorination for both HCHs and DDTs. The reductive dechlorination of HCHs and DDTs proceeded at different rates. The pseudo first-order constants of HCHs were greater than those of DDTs. The reductive dechlorination rates in a descending order were γ-HCH > δ-HCH > β-HCH > α-HCH > o,p'-DDT > p,p'-DDT > p,p'-DDE. To discuss the major influential factors over the reductive dechlorination rates of HCHs and DDTs by ZVI, 22 quantum chemical descriptors were computed with the density functional theory at B3LYP/6-31G * level, which characterizes different molecular structures and physicochemical properties of HCHs and DDTs. A polyparameter linear free energy relationship (LFER) model was established, which correlates the reductive dechlorination properties of pollutants with their structural descriptors. Using the partial least squares (PLS) analysis, an optimal two-parameter LFER model was established. q + and q Cl - were more important factors in determining the dechlorination rate of OCPs in the chemical reductive reaction. This optimal model was stable and had good predictability. The model study also showed that the coefficient value of q + was 0.511, which positively correlated with the reductive dechlorination rate constant, whereas q Cl - was negatively correlated with it. The reductive dechlorination rate of pollutants appears to be limited mainly by the rate of dissolution in the aqueous phase. This model can be used to explain the degradation potential of organochlorine pesticides (OCPs) and the trend of residues changing during the soil remediation. Therefore, the study is of

  19. Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    2017-11-01

    Full Text Available Abstract Background Zero-valent iron nanoparticles (ZVI NPs have been used extensively for the remediation of contaminated soil and groundwater. Owing to their large active surface area, they serve as strong and effective reductants. However, the ecotoxicity and bioavailability of ZVI NPs in diverse ecological media have not been evaluated in detail and most studies have focused on non-nano ZVI or Fe0. In addition, the antimicrobial properties of ZVI NPs have rarely been investigated, and the underlying mechanism of their toxicity remains unknown. Results In the present study, we demonstrate that ZVI NPs exhibited significant toxicity at 1000 ppm against two distinct gram-positive bacterial strains (Bacillus subtilis 3610 and Bacillus thuringiensis 407 but not against two gram-negative strains (Escherichia coli K12 and ATCC11634. Specifically, ZVI NPs caused at least a 4-log and 1-log reductions in cell numbers, respectively, in the two Bacillus strains, whereas no change was detected in the two E. coli strains. X-ray photoelectron spectroscopy, X-ray absorption near-edge, and extended X-ray absorption fine structure spectra confirmed that Bacillus cells exposed to ZVI NPs contained mostly Fe2O3 with some detectable FeS. This finding indicated that Fe0 nanoparticles penetrated the bacterial cells, where they were subsequently oxidized to Fe2O3 and FeS. RedoxSensor analysis and propidium iodide (PI staining showed decreased reductase activity and increased PI in both Bacillus strains treated with a high (1000 ppm concentration of ZVI NPs. Conclusion Taken together, these data show that the toxicity of ZVI NPs was derived from their oxidative properties, which may increase the levels of reactive oxygen species and lead to cell death.

  20. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    International Nuclear Information System (INIS)

    Wang, Shengsen; Gao, Bin; Li, Yuncong; Creamer, Anne Elise; He, Feng

    2017-01-01

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg −1 . As(V) (100 mg L −1 ) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L −1 and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  1. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengsen [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Gao, Bin, E-mail: bg55@ufl.edu [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Li, Yuncong [Tropical Research and Education Center, University of Florida, Homestead, FL 33031 (United States); Creamer, Anne Elise [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); He, Feng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014 (China)

    2017-01-15

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg{sup −1}. As(V) (100 mg L{sup −1}) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L{sup −1} and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  2. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    Sivavec, T.M.; Mackenzie, P.D.; Horney, D.P.; Baghel, S.S.

    1997-01-01

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe 3 O 4 ), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  3. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays.

    Science.gov (United States)

    Shi, Li-Na; Zhou, Yan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2013-06-01

    Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu(2+) and Zn(2+) from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu(2+) and Zn(2+) from a aqueous solution containing a 100 mg/l of Cu(2+) and Zn(2+), where 92.9 % Cu(2+) and 58.3 % Zn(2+) were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu(2+) and Zn(2+). A kinetics study indicated that removing Cu(2+) and Zn(2+) with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn(2+) on bentonite and the degradation of Cu(2+)and Zn(2+) by nZVI on the bentonite. However, Cu(2+) removal by B-nZVI was reduced rather than adsorption, while Zn(2+) removal was main adsorption. Finally, Cu(2+), Zn(2+), Ni(2+), Pb(2+) and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

  4. RCRA corrective measures using a permeable reactive iron wall US Coast Guard Support Center, Elizabeth City, North Carolina

    International Nuclear Information System (INIS)

    Schmithors, W.L.; Vardy, J.A.

    1997-01-01

    A chromic acid release was discovered at a former electroplating shop at the U.S. Coast Guard Support Center in Elizabeth City, North Carolina. Initial investigative activities indicated that chromic acid had migrated into the subsurface soils and groundwater. In addition, trichloroethylene (TCE) was also discovered in groundwater during subsequent investigations of the hexavalent chromium (Cr VI) plume. Corrective measures were required under the Resource Conservation and Recovery Act (RCRA). The in-situ remediation method, proposed under RCRA Interim Measures to passively treat the groundwater contaminants, uses reactive zero-valent iron to reductively dechlorinate the chlorinated compounds and to mineralize the hexavalent chromium. A 47 meter by 0.6 meter subsurface permeable iron wall was installed downgradient of the source area to a depth of 7 meters using a direct trenching machine. The iron filings were placed in the ground as the soils were excavated from the subsurface. This is the first time that direct trenching was used to install reactive zero-valent iron filings. Over 250 metric tons of iron filings were used as the reactive material in the barrier wall. Installation of the iron filings took one full day. Extensive negotiations with regulatory agencies were required to use this technology under the current facility Hazardous Waste Management Permit. All waste soils generated during the excavation activities were contained and treated on site. Once contaminant concentrations were reduced the waste soils were used as fill material

  5. Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zero-valent iron: kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lei; Liang, Bin; Fang, Zhanqiang, E-mail: sunmoon124@163.com; Xie, Yingying [South China Normal University, School of Chemistry and Environment (China); Tsang, Eric Pokeung [Guangdong Technology Research Centre for Ecological Management and Remediation of Water System (China)

    2014-12-15

    E-waste sites are one of the main sources of the pollutant decabromodiphenyl ether (BDE209); contaminated farmland and water bodies urgently need to be remediated. As a potential in situ remediation technology, nano zero-valent iron (nZVI) technology effectively removes PBDEs. However, the humic acid (HA) and heavy metals in the contaminated sites affect the remediation effects. In this study, we explored the influence of HA and transition metals on the removal of PBDEs by nZVI. The specific surface area and average size of the nZVI particles we prepared were 35 m{sup 2}/g and 50–80 nm, respectively. The results showed that HA inhibited the removal of PBDEs; as the concentration of HA increased, its inhibitory effect intensified and the k{sub obs} decreased. However, the three metal ions (Cu{sup 2+}, Co{sup 2+}, and Ni{sup 2+}) enhanced the removal of PBDEs. The enhancement effect was followed the order Ni{sup 2+} > Cu{sup 2+} > Co{sup 2+}. As the concentration of metal ions increased, the promotion effect improved. The synergistic effect of HA and the metal ions was manifested in the combination of the inhibitory effect and the enhancement effect. The values of the first-order kinetic constants (k{sub obs}) under the combined effect were between the values of the rate constants under the individual components. The inhibitory mechanism was the chemisorption of HA, i.e., the benzene carboxylic and phenolic hydroxyl groups in HA occupied the surfactant reactive sites of nZVI, thus inhibiting the removal of BDE209. The promotion mechanism of Cu{sup 2+}, Co{sup 2+}, and Ni{sup 2+} can be explained by their reduction to zero valence on the nZVI surface; furthermore, Ni{sup 2+} strongly affects the debromination and dehydrogenation of BDE209, leading to a stronger promotability than Cu{sup 2+}or Co{sup 2+}.

  6. Artificial Intelligence Based Optimization for the Se(IV) Removal from Aqueous Solution by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron Composites.

    Science.gov (United States)

    Cao, Rensheng; Fan, Mingyi; Hu, Jiwei; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui

    2018-03-15

    Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms.

  7. Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO Composites Used for Pb(II Removal

    Directory of Open Access Journals (Sweden)

    Mingyi Fan

    2016-08-01

    Full Text Available Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO composites were prepared by chemical deposition method and were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, Raman spectroscopy, N2-sorption and X-ray photoelectron spectroscopy (XPS. Operating parameters for the removal process of Pb(II ions, such as temperature (20–40 °C, pH (3–5, initial concentration (400–600 mg/L and contact time (20–60 min, were optimized using a quadratic model. The coefficient of determination (R2 > 0.99 obtained for the mathematical model indicates a high correlation between the experimental and predicted values. The optimal temperature, pH, initial concentration and contact time for Pb(II ions removal in the present experiment were 21.30 °C, 5.00, 400.00 mg/L and 60.00 min, respectively. In addition, the Pb(II removal by nZVI/rGO composites was quantitatively evaluated by using adsorption isotherms, such as Langmuir and Freundlich isotherm models, of which Langmuir isotherm gave a better correlation, and the calculated maximum adsorption capacity was 910 mg/g. The removal process of Pb(II ions could be completed within 50 min, which was well described by the pseudo-second order kinetic model. Therefore, the nZVI/rGO composites are suitable as efficient materials for the advanced treatment of Pb(II-containing wastewater.

  8. In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying-Fei; Cheng, Yi-Hsien; Liao, Chung-Min, E-mail: cmliao@ntu.edu.tw

    2016-11-05

    Highlights: • Fe{sup 0} NPs induced infertility risk in C. elegans. • A C.elegans-based probabilistic risk assessment model is developed. • In situ remediation-released Fe{sup 0} NPs impair soil ecosystems health. - Abstract: There is considerable concern over the potential ecotoxicity to soil ecosystems posed by zero-valent iron nanoparticles (Fe{sup 0} NPs) released from in situ environmental remediation. However, a lack of quantitative risk assessment has hampered the development of appropriate testing methods used in environmental applications. Here we present a novel, empirical approach to assess Fe{sup 0} NPs-associated soil ecosystems health risk using the nematode Caenorhabditis elegans as a model organism. A Hill-based dose-response model describing the concentration–fertility inhibition relationships was constructed. A Weibull model was used to estimate thresholds as a guideline to protect C. elegans from infertility when exposed to waterborne or foodborne Fe{sup 0} NPs. Finally, the risk metrics, exceedance risk (ER) and risk quotient (RQ) of Fe{sup 0} NPs in various depths and distances from remediation sites can then be predicted. We showed that under 50% risk probability (ER = 0.5), upper soil layer had the highest infertility risk (95% confidence interval: 13.18–57.40%). The margins of safety and acceptable criteria for soil ecosystems health for using Fe{sup 0} NPs in field scale applications were also recommended. Results showed that RQs are larger than 1 in all soil layers when setting a stricter threshold of ∼1.02 mg L{sup −1} of Fe{sup 0} NPs. This C. elegans biomarker-based risk model affords new insights into the links between widespread use of Fe{sup 0} NPs and environmental risk assessment and offers potential environmental implications of metal-based NPs for in situ remediation.

  9. Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction.

    Science.gov (United States)

    Dong, Haoran; Guan, Xiaohong; Lo, Irene M C

    2012-09-01

    Nano zero-valent iron (NZVI) offers a promising approach for arsenic remediation, but the spent NZVI with elevated arsenic content could arouse safety concerns. This study investigated the fate of As(V)-treated NZVI (As-NZVI), by examining the desorption potential of As under varying conditions. The desorption kinetics of As from As-NZVI as induced by phosphate was well described by a biphasic rate model. The effects of As(V)/NZVI mass ratio, pH, and aging time on arsenic desorption from As-NZVI by phosphate were investigated. Less arsenic desorption was observed at lower pH or higher As(V)/NZVI mass ratio, where stronger complexes (bidentate) formed between As(V) and NZVI corrosion products as indicated by FTIR analysis. Compared with the fresh As-NZVI, the amount of phosphate-extractable As significantly decreased in As-NZVI aged for 30 or 60 days. The results of the sequential extraction experiments demonstrated that a larger fraction of As was sorbed in the crystalline phases after aging, making it less susceptible to phosphate displacement. However, at pH 9, a slightly higher proportion of phosphate-extractable As was observed in the 60-day sample than in the 30-day sample. XPS results revealed the transformation of As(V) to more easily desorbed As(III) during aging and a higher As(III)/As(V) ratio in the 60-day sample at pH 9, which might have resulted in the higher desorption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process

    International Nuclear Information System (INIS)

    Shen, Jinyou; Ou, Changjin; Zhou, Zongyuan; Chen, Jun; Fang, Kexiong; Sun, Xiuyun; Li, Jiansheng; Zhou, Lin; Wang, Lianjun

    2013-01-01

    Highlights: • ZVI-Fenton process was conducted for DNAN producing wastewater pretreatment. • Transformation of nitro to amino group by ZVI overcomes the oxidative hindrance. • Subsequent Fenton process is efficient for the removal of aromatic compounds. • ABR-MBBR process is efficient for the polishing of ZVI-Fenton effluent. -- Abstract: A combined zero-valent iron (ZVI) reduction and Fenton oxidation process was tested for the pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater. Operating conditions were optimized and overall performance of the combined process was evaluated. For ZVI process, almost complete reduction of nitroaromatic compounds was observed at empty bed contact time (EBCT) of 8 h. For Fenton process, the optimal pH, H 2 O 2 to Fe(II) molar ratio, H 2 O 2 dosage and hydraulic retention time (HRT) were found to be 3.0, 15, 0.216 mol/L and 5 h, respectively. After pretreatment by the combined ZVI-Fenton process under the optimal conditions, aromatic organic compound removal was as high as 77.2%, while the majority of COD remained to be further treated by sequent biological process. The combined anaerobic-aerobic process consisted of an anaerobic baffled reactor (ABR) and a moving-bed biofilm reactor (MBBR) was operated for 3 months, fed with ZVI-Fenton effluent. The results revealed that the coupled ZVI-Fenton-ABR-MBBR system was significantly efficient in terms of correcting the effluent's main parameters of relevance, mainly aromatic compounds concentration, COD concentration, color and acute toxicity. These results indicate that the combined ZVI-Fenton process offers bright prospects for the pretreatment of wastewater containing nitroaromatic compounds

  11. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers

    International Nuclear Information System (INIS)

    Pagnanelli, Francesca; Viggi, Carolina Cruz; Mainelli, Sara; Toro, Luigi

    2009-01-01

    Solid reactive mixtures were tested as filling material for the development of biological permeable reactive barriers for the treatment of heavy metals contaminated waters. Mixture selection was performed by taking into account the different mechanisms operating in sulphate and cadmium removal with particular attention to bioprecipitation and sorption onto the organic matrices in the mixtures. Suspensions of eight reactive mixtures were tested for sulphate removal (initial concentration 3 g L -1 ). Each mixture was made up of four main functional components: a mix of organic sources for bacterial growth, a neutralizing agent, a porous medium and zero-valent iron. The best mixture among the tested ones (M8: 6% leaves, 9% compost, 3% zero-valent iron, 30% silica sand, 30% perlite, 22% limestone) presented optimal conditions for SRB growth (pH 7.8 ± 0.1; E h = -410 ± 5 mV) and 83% sulphate removal in 22 days (25% due to bioreduction, 32% due to sorption onto compost and 20% onto leaves). M8 mixture allowed the complete abatement of cadmium with a significant contribution of sorption over bioprecipitation (6% Cd removal due to SRB activity). Sorption properties, characterised by potentiometric titrations and related modelling, were mainly due to carboxylic sites of organic components used in reactive mixtures.

  12. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants?

    Science.gov (United States)

    Wang, Shanquan; Chen, Siyuan; Wang, Yu; Low, Adrian; Lu, Qihong; Qiu, Rongliang

    2016-12-01

    Due to massive production and improper handling, organohalide compounds are widely distributed in subsurface environments, primarily in anoxic groundwater, soil and sediment. Compared to traditional pump-and-treat or dredging-and-disposal treatments, in situ remediation employing abiotic or biotic reductive dehalogenation represents a sustainable and economic solution for the removal of organohalide pollutants. Both nanoscale zero-valent iron (nZVI) and organohalide-respiring bacteria remove halogens through reductive dehalogenation and have been extensively studied and successfully applied for the in situ remediation of chloroethenes and other organohalide pollutants. nZVI and microbial reductive dehalogenation (Bio-RD) complement each other to boost reductive dehalogenation efficiency, suggesting that the integration of nZVI with Bio-RD (Bio-nZVI-RD) may constitute an even more promising strategy for the in situ remediation of organohalide pollutants. In this review, we first provide an overview of the current literature pertaining to nZVI- and organohalide-respiring bacteria-mediated reductive dehalogenation of organohalide pollutants and compare the pros and cons of individual treatment methods. We then highlight recent studies investigating the implementation of Bio-nZVI-RD to achieve rapid and complete dehalogenation and discuss the halogen removal mechanism of Bio-nZVI-RD and its prospects for future remediation applications. In summary, the use of Bio-nZVI-RD facilitates opportunities for the effective in situ remediation of a wide range of organohalide pollutants. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS.

    Science.gov (United States)

    Vidmar, Janja; Oprčkal, Primož; Milačič, Radmila; Mladenovič, Ana; Ščančar, Janez

    2018-04-12

    Zero-valent iron nanoparticles (nZVI) exhibit great potential for the removal of metal contaminants from wastewater. After their use, there is a risk that nZVI will remain dispersed in remediated water and represent potential nano-threats to the environment. Therefore, the behaviour of nZVI after remediation must be explored. To accomplish this, we optimised a novel method using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) for the sizing and quantification of nZVI in wastewater matrices. H 2 reaction gas was used in MS/MS mode for the sensitive and interference-free determination of low concentrations of nZVI with a low size limit of detection (36nm). This method was applied to study the influence of different iron (Fe) loads (0.1, 0.25, 0.5 and 1.0gL -1 ) and water matrices (Milli-Q water, synthetic and effluent wastewater) on the behaviour of nZVI, their interactions with Cd 2+ and the efficiency of Cd 2+ removal. The aggregation and sedimentation of nZVI increased with settling time. Sedimentation was slower in effluent wastewater than in Milli-Q water or synthetic wastewater. Consequently, Cd 2+ was more efficiently (86%) removed from effluent wastewater than from synthetic wastewater (73%), while its removal from Milli-Q water was inefficient (19%). The trace amounts of Cd 2+ that remained in the remediated water were either dissolved or sorbed to residual nZVI. The results of the nanoremediation of effluent wastewater with varying Fe loads showed that sedimentation was faster at higher initial concentrations of nZVI. After seven days of settling, low concentrations of Fe remained in the effluent wastewater at Fe loads of 0.5gL -1 or higher, which could indicate that the use of nZVI in nanoremediation under the described conditions may not represent an environmental nano-threat. However, further studies are needed to assess the ecotoxicological impact of Fe-related NPs used for the nanoremediation of wastewaters. Copyright © 2018

  14. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils.

    Science.gov (United States)

    Qiao, Jiang-Tao; Liu, Tong-Xu; Wang, Xiang-Qin; Li, Fang-Bai; Lv, Ya-Hui; Cui, Jiang-Hu; Zeng, Xiao-Duo; Yuan, Yu-Zhen; Liu, Chuan-Ping

    2018-03-01

    The fates of cadmium (Cd) and arsenic (As) in paddy fields are generally opposite; thus, the inconsistent transformation of Cd and As poses large challenges for their remediation. In this study, the impacts of zero valent iron (ZVI) and/or biochar amendments on Cd and As bioavailability were examined in pot trials with rice. Comparison with the untreated soil, both Cd and As accumulation in different rice tissues decreased significantly in the ZVI-biochar amendments and the Cd and As accumulation in rice decreased with increasing ZVI contents. In particular, the concentrations of Cd (0.15 ± 0.01 mg kg -1 ) and As (0.17 ± 0.01 mg kg -1 ) in rice grains were decreased by 93% and 61% relative to the untreated soil, respectively. A sequential extraction analysis indicated that with increasing Fe ratios in the ZVI-biochar mixtures, bioavailable Cd and As decreased, and the immobilized Cd and As increased. Furthermore, high levels of Fe, Cd, and As were detected in Fe plaque of the ZVI-biochar amendments in comparison with the single biochar or single ZVI amendments. The ZVI-biochar mixture may have a synergistic effect that simultaneously reduces Cd and As bioavailability by increasing the formation of amorphous Fe and Fe plaque for Cd and As immobilization. The single ZVI amendment significantly decreased As bioavailability, while the single biochar amendment significantly reduced the bioavailability of Cd compared with the combined amendments. Hence, using a ZVI-biochar mixture as a soil amendment could be a promising strategy for safely-utilizing Cd and As co-contaminated sites in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO_3/Ca–U(VI)–CO_3 complexes

    International Nuclear Information System (INIS)

    Zhang, Zhibin; Liu, Jun; Cao, Xiaohong; Luo, Xuanping; Hua, Rong; Liu, Yan; Yu, Xiaofeng; He, Likai

    2015-01-01

    Highlights: • NZVI can be used for adsorbing U(VI)–CO_3 complexes. • Use of NZVI is feasible for remediation of uranium-contaminated soils. • The mechanism of U(VI)–CO_3 complexes adsorbing onto NZVI has been explained. - Abstract: The influence of U(VI)–CO_3 and Ca–U(VI)–CO_3 complexes on U(VI) adsorption onto red soil and nanoscale zero-valent iron (NZVI) was investigated using batch adsorption and fixed-bed column experiments to simulate the feasibility of NZVI as the reactive medium in permeable- reactive barriers (PRB) for in situ remediation of uranium-contaminated red soils. The adsorption capacity (q_e) and distribution constant (K_d) of NZVI and red soil decreased with increasing pH, dissolved carbonate and calcium concentrations, but the q_e and K_d values of NZVI were 5–10 times higher than those of red soil. The breakthrough pore volume (PV) values increased with the decrease of pH, dissolved carbonate and calcium concentration; however, the breakthrough PV values of the PRB column filled with 5% NZVI were 2.0–3.5 times higher than the 100% red soil column. The U(VI)–CO_3 complexes adsorbed onto the surface of red soil/NZVI (≡SOH) to form SO–UO_2CO_3"− or SO–UO_2 (CO_3)_2"3"−. XPS and XRD analysis further confirmed the reduction of U(VI) to U(IV) and the formation of FeOOH on NZVI surfaces. The findings of this study are significant to the remediation of uranium-contaminated red soils and the consideration of practical U(VI) species in the natural environment.

  16. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.

    Science.gov (United States)

    El-Temsah, Yehia S; Joner, Erik J

    2013-06-01

    Nano-sized zero valent iron (nZVI) has been studied for in situ remediation of contaminated soil and ground water. However, little is known about its effects on organisms in soil and aquatic ecosystems. In this study, the effect of nZVI on degradation of DDT and its ecotoxicological effects on collembola (Folsomia candida) and ostracods (Heterocypris incongruens) were investigated. Two soils were used in suspension incubation experiments lasting for 7 and 30 d; a spiked (20 mg DDT kg(-1)) sandy soil and an aged (>50 years) DDT-polluted soil (24 mg DDT kg(-1)). These were incubated with 1 or 10 g nZVI kg(-1), and residual toxicity in soil and the aqueous phase tested using ecotoxicological tests with collembola or ostracods. Generally, addition of either concentration of nZVI to soil led to about 50% degradation of DDT in spiked soil at the end of 7 and 30 d incubation, while the degradation of DDT was less in aged DDT-polluted soil (24%). Severe negative effects of nZVI were observed on both test organisms after 7 d incubation, but prolonged incubation led to oxidation of nZVI which reduced its toxic effects on the tested organisms. On the other hand, DDT had significant negative effects on collembolan reproduction and ostracod development. We conclude that 1 g nZVI kg(-1) was efficient for significant DDT degradation in spiked soil, while a higher concentration was necessary for treating aged pollutants in soil. The adverse effects of nZVI on tested organisms seem temporary and reduced after oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Identification of precipitates formed on zero-valent iron in anaerobic aqueous solutions

    International Nuclear Information System (INIS)

    Schuhmacher, T.; Odziemkowski, M.S.; Reardon, E.J.; Gillham, R.W.

    1997-01-01

    The formation of precipitates has been identified as a possible limitation in the use of granular iron for in situ remediation of groundwater. This study was undertaken to identify the precipitates that form on the iron surfaces under conditions of differing water chemistry. Two laboratory column tests were performed using 100 mesh, 99% pure electrolytic iron. A 120 mg/L calcium carbonate (CaCO 3 ) solution passed through one column and a 40 mg/L potassium bromide (KBr) solution through the other. The CaCO, treated iron formed a whitish gray coating on the first centimeter of the column but the KBr treated iron did not display any visible precipitates. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to identify the precipitates. Calcium carbonate and ferrous carbonate (FeCO 3 ) phases were only present on the surface of the iron removed from the influent end of the column treated with a CaCO 3 solution. Iron surfaces analyzed from both the influent and the effluent end of the KBr treated iron and the effluent end of the CaCO 3 treated iron indicated the presence of magnetite (Fe 3 O 4 ) precipitates

  18. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism.

    Science.gov (United States)

    Zhou, Haimei; Lv, Ping; Shen, Yuanyuan; Wang, Jianji; Fan, Jing

    2013-06-15

    Ionic liquids (ILs) have potential applications in many areas of chemical industry because of their unique properties. However, it has been shown that the ILs commonly used to date are toxic and not biodegradable in nature, thus development of efficient chemical methods for the degradation of ILs is imperative. In this work, degradation of imidazolium, piperidinium, pyrrolidinium and morpholinium based ILs in an ultrasound and zero-valent iron activated carbon (ZVI/AC) micro-electrolysis system was investigated, and some intermediates generated during the degradation were identified. It was found that more than 90% of 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 2, 4, 6, 8, 10) could be degraded within 110 min, and three intermediates 1-alkyl-3-methyl-2,4,5-trioxoimidazolidine, 1-alkyl-3-methylurea and N-alkylformamide were detected. On the other hand, 1-butyl-1-methylpiperidinium bromide ([C4mpip]Br), 1-butyl-1-methylpyrrolidinium bromide ([C4mpyr]Br) and N-butyl-N-methylmorpholinium bromide ([C4mmor]Br) were also effectively degraded through the sequential oxidization into hydroxyl, carbonyl and carboxyl groups in different positions of the butyl side chain, and then the N-butyl side chain was broken to form the final products of N-methylpiperidinium, N-methylpyrrolidinium and N-methylmorpholinium, respectively. Based on these intermediate products, degradation pathways of these ILs were suggested. These findings may provide fundamental information on the assessment of the factors related to the environmental fate and environmental behavior of these commonly used ILs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron

    DEFF Research Database (Denmark)

    Astrup, Thomas; Stipp, S. L. S.; Christensen, Thomas Højlund

    2000-01-01

    The purpose of this investigation was (i) to test the effectiveness of a barrier engineered to remove Cr(VI) from leachates of higher pH and salinity typical of coal burning ashes and (ii) to determine which geochemical processes control Cr immobilization. Laboratory column and batch desorption e...

  20. Use of Electrophoresis for Transporting Nano-Iron in Porous Media

    Science.gov (United States)

    Research was conducted to evaluate if electrophoresis could transport surface stabilized nanoscale zero-valent iron (nZVI) through fine grained sand with the intent of remediating a contaminant in situ. The experimental procedure involved determining the transport rates of poly...

  1. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO{sub 3}/Ca–U(VI)–CO{sub 3} complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhibin [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Liu, Jun [State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Cao, Xiaohong, E-mail: xhcao@ecit.cn [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Luo, Xuanping [Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Hua, Rong; Liu, Yan [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Yu, Xiaofeng; He, Likai [Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); and others

    2015-12-30

    Highlights: • NZVI can be used for adsorbing U(VI)–CO{sub 3} complexes. • Use of NZVI is feasible for remediation of uranium-contaminated soils. • The mechanism of U(VI)–CO{sub 3} complexes adsorbing onto NZVI has been explained. - Abstract: The influence of U(VI)–CO{sub 3} and Ca–U(VI)–CO{sub 3} complexes on U(VI) adsorption onto red soil and nanoscale zero-valent iron (NZVI) was investigated using batch adsorption and fixed-bed column experiments to simulate the feasibility of NZVI as the reactive medium in permeable- reactive barriers (PRB) for in situ remediation of uranium-contaminated red soils. The adsorption capacity (q{sub e}) and distribution constant (K{sub d}) of NZVI and red soil decreased with increasing pH, dissolved carbonate and calcium concentrations, but the q{sub e} and K{sub d} values of NZVI were 5–10 times higher than those of red soil. The breakthrough pore volume (PV) values increased with the decrease of pH, dissolved carbonate and calcium concentration; however, the breakthrough PV values of the PRB column filled with 5% NZVI were 2.0–3.5 times higher than the 100% red soil column. The U(VI)–CO{sub 3} complexes adsorbed onto the surface of red soil/NZVI (≡SOH) to form SO–UO{sub 2}CO{sub 3}{sup −} or SO–UO{sub 2} (CO{sub 3}){sub 2}{sup 3−}. XPS and XRD analysis further confirmed the reduction of U(VI) to U(IV) and the formation of FeOOH on NZVI surfaces. The findings of this study are significant to the remediation of uranium-contaminated red soils and the consideration of practical U(VI) species in the natural environment.

  2. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.

    Science.gov (United States)

    Su, Yan; Zhao, Yong S; Li, Lu L; Qin, Chuan Y; Wu, Fan; Geng, Nan N; Lei, Jian S

    2014-01-01

    This study investigated the transport properties of nanoscale zero-valent iron (Fe(0)) (nZVI) carried by three vehicles: water, sodium dodecyl sulfate (SDS) solution, and SDS foam. Batch experiments were conducted to assess the sedimentation capability of nZVI particles in these three vehicles. Column experiments were conducted to investigate the transport properties of nZVI in porous media formed with different sizes of sand (0.25 mm to 0.5 mm, 0.5 mm to 0.9 mm, and 0.9 mm to 1.4 mm). Three main results were obtained. First, the batch experiments revealed that the stabilities of nZVI particles in SDS solution and SDS foam were improved, compared with that of nZVI particles in water. Moreover, the sedimentation of nZVI in foam was closely associated with the foam drainage volume. The nZVI content in foam was similar to that in the original foaming suspension, and the nZVI particle distribution in foam became significantly more uniform at a stirring speed of 3000 r/min. Second, the transport of nZVI was enhanced by foam compared with water and SDS solution for 0.25 mm to 0.5 mm diameter sand. For sand with diameters of 0.5 mm to 0.9 mm and 0.9 mm to 1.4 mm, the mobility of nZVI carried by SDS solution was optimal, followed by that of nZVI carried by foam and water. Thus, the mobility of nZVI in finer sand was significantly enhanced by foam, compared with that in coarse sand. In contrast, compared with the bare nZVI suspension and nZVI-laden foam, the spatial distribution of nZVI particles carried by SDS solution was significantly uniform along the column length. Third, the SDS concentration significantly influenced the migration of nZVI in porous media. The enhancement in the migration of nZVI carried by SDS solution was greater at an SDS dose of 0.25% compared with that at the other three doses (0.2%, 0.5%, and 1%) for sand with a 0.25 mm to 0.5 mm diameter. Increased SDS concentrations positively affected the transport of nZVI by foam for sand with a

  3. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    Science.gov (United States)

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ultrasound-assisted activation of zero-valent magnesium for nitrate denitrification: identification of reaction by-products and pathways.

    Science.gov (United States)

    Ileri, Burcu; Ayyildiz, Onder; Apaydin, Omer

    2015-07-15

    Zero-valent magnesium (Mg(0)) was activated by ultrasound (US) in an aim to promote its potential use in water treatment without pH control. In this context, nitrate reduction was studied at batch conditions using various doses of magnesium powder and ultrasound power. While neither ultrasound nor zero-valent magnesium alone was effective for reducing nitrate in water, their combination removed up to 90% of 50 mg/L NO3-N within 60 min. The rate of nitrate reduction by US/Mg(0) enhanced with increasing ultrasonic power and magnesium dose. Nitrogen gas (N2) and nitrite (NO2(-)) were detected as the major reduction by-products, while magnesium hydroxide Mg(OH)2 and hydroxide ions (OH(-)) were identified as the main oxidation products. The results from SEM-EDS measurements revealed that the surface oxide level decreased significantly when the samples of Mg(0) particles were exposed to ultrasonic treatment. The surface passivation of magnesium particles was successfully minimized by mechanical forces of ultrasound, which in turn paved the way to sustain the catalyst activity toward nitrate reduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.; Cha, Judy J.; Reed, Bryan W.; Wessells, Colin D.; Kong, Desheng; Cui, Yi

    2012-01-01

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  6. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  7. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.

    Science.gov (United States)

    Vítková, Martina; Rákosová, Simona; Michálková, Zuzana; Komárek, Michael

    2017-01-15

    Nano zero-valent iron (nZVI) is currently investigated as a stabilising amendment for contaminated soils. The effect of pH (4-8) and time (48 and 192 h) on the behaviour of nZVI-treated Pb-Zn and As-contaminated soil samples was assessed. Additionally, soil leachates were subsequently used to study the direct interaction between soil solution components and nZVI particles in terms of mineralogical changes and contaminant retention. A typical U-shaped leaching trend as a function of pH was observed for Cd, Pb and Zn, while As was released predominantly under alkaline conditions. Oxidising conditions prevailed, so pH was the key controlling parameter rather than redox conditions. Generally, longer contact time resulted in increased soluble concentrations of metal(loid)s. However, the stabilisation effect of nZVI was only observed after the direct soil leachate-nZVI interactions, showing enhanced redox and sorption processes for the studied metals. A significant decrease of dissolved As concentrations was observed for both experimental soils, but with different efficiencies depending on neutralisation capacity, organic matter content or solid fractionation of As related to the origin of the soils. Scorodite (FeAsO 4 ·2H 2 O) was predicted as a potential solubility-controlling mineral phase for As. Sorption of metal(loid)s onto secondary Fe- and Al-(oxyhydr)oxides (predicted to precipitate at pH > 5) represents an important scavenger mechanism. Moreover, transmission electron microscopy confirmed the retention of Zn and Pb under near-neutral and alkaline conditions by newly formed Fe oxides or aluminosilicates. This study shows that the efficiency of nZVI application strongly depends not only on soil pH-Eh conditions and contaminant type, but also on the presence of organic matter and other compounds such as Al/Fe/Mn oxyhydroxides and clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites.

    Science.gov (United States)

    Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wei, Xionghui; Shi, Xuedan; Ruan, Wenqian

    2017-05-17

    Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency of Cd(II) and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II) adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R² value than the pseudo-first-order model.

  9. The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste.

    Science.gov (United States)

    Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan

    2017-03-15

    Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe 0 ) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P  0.05) were found for all gene targets between digesters with Fe 0 dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe 0 . Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe 0 could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe 0 can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Treatment of Arsenic, Heavy Metals, and Acidity Using a Mixed ZVI-Compost PRB

    Science.gov (United States)

    A 30-month performance evaluation of a pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel installed at a former phosphate fertilizer manufacturing facility was conducted. The PRB is designed to remove ...

  11. GROUND WATER ARSENIC AND METALS TREATMENT USING A COMBINATION COMPOST-ZVI PRB

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The PRB is designed to treat arsenic an...

  12. TREATMENT OF ARSENIC AND METALS IN GROUND WATER USING A COMPOST-ZVI PRB

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The PRB is designed to treat arsenic an...

  13. GROUND WATER ARSENIC AND METALS TREATMENT USING A COMBINATION COMPOST-ZVI PRB (ABSTRACT ONLY)

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The PRB is designed to treat arsenic an...

  14. Contamination movement around a permeable reactive barrier at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2009

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Conlon, Kevin J.

    2010-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. In early 2004, groundwater contaminants began moving around the southern end of a permeable reactive barrier (PRB) installed by a consultant in December 2002. The PRB is a 130-foot-long and 3-foot-wide barrier consisting of varying amounts of zero-valent iron with or without sand mixture. Contamination moving around the PRB probably has been transported at least 75 feet downgradient from the PRB at a rate of about 15 to 29 feet per year.

  15. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  16. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO Composites

    Directory of Open Access Journals (Sweden)

    Mingyi Fan

    2017-05-01

    Full Text Available Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. The nZVI/rGO composites prepared were utilized for Cd(II removal from aqueous solutions in batch mode at different initial Cd(II concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM and artificial neural network hybridized with genetic algorithm (ANN-GA were used for modeling the removal efficiency of Cd(II and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II, the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R isotherms. It was found that the Cd(II adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II removal with a good R2 value than the pseudo-first-order model.

  17. Tetrylones: An Intriguing Class of Monoatomic Zero-valent Group 14 Compounds.

    Science.gov (United States)

    Majhi, Paresh Kumar; Sasamori, Takahiro

    2018-02-13

    Tetrylones (ylidones) represent a class of zero-valent group 14 compounds with the general formula EL 2 (E=C, Si, Ge, Sn, or Pb; L=neutral σ-donating ligand), wherein the tetrel atom, E(0), possess its four valence electrons in the form of two electron lone pairs, and is moreover coordinated by two ligands (L) via donor-acceptor interactions (L→E←L). This review focuses on the synthesis, structure, reactivity, and computational examination of the isolable heavier tetrylones (Si, Ge, Sn) that have been discovered recently. A comprehensive review on carbone chemistry is beyond the scope of this review. It should also be noted that tetrylones contain two different types of lone pairs, that is, one that exhibits p-type and one that exhibits s-type characteristics. Different behavior should thus be expected when these lone pairs react with Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. TREATMENT OF ARSENIC AND METALS IN GROUND WATER USING A COMPOST/ZVI PRB

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of 30% yard waste compost, 20% zero-valent iron (ZVI), 5% limestone and 45% pea gravel by volume was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The pilo...

  19. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    Directory of Open Access Journals (Sweden)

    Rosická Dana

    2011-01-01

    Full Text Available Abstract Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed.

  20. High-valent iron (Fe(VI), Fe(V), and Fe(IV)) species in water: characterization and oxidative transformation of estrogenic hormones

    Czech Academy of Sciences Publication Activity Database

    Machalová-Šišková, K.; Jančula, Daniel; Drahoš, B.; Machala, L.; Babica, Pavel; Godoy Alonso, Paula; Trávníček, Z.; Tuček, J.; Maršálek, Blahoslav; Sharma, V. K.; Zbořil, R.

    2016-01-01

    Roč. 18, č. 28 (2016), s. 18802-18810 ISSN 1463-9076 R&D Projects: GA MPO FR-TI3/196 Institutional support: RVO:67985939 Keywords : high-valent iron species * estrogenic hormones * oxidative transformation Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.123, year: 2016

  1. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  2. Surface carbon influences on the reductive transformation of TCE in the presence of granular iron.

    Science.gov (United States)

    Firdous, R; Devlin, J F

    2018-04-05

    To gain insight into the processes of transformations in zero-valent iron systems, electrolytic iron (EI) has been used as a surrogate for the commercial products actually used in barriers. This substitution facilitates mechanistic studies, but may not be fully representative of all the relevant processes at work in groundwater remediation. To address this concern, the kinetic iron model (KIM) was used to investigate sorption and reactivity differences between EI and Connelly brand GI, using TCE as a probe compound. It was observed that retardation factors (R app ) for GI varied non-linearly with influent concentrations to the columns (C o ), and declined significantly as GI aged. In contrast, R app values for EI were small and insensitive to C o , and changed minimally with iron aging. Moreover, although declines in the rate constants (k) and increases in the sorption coefficients were observed for both iron types, they were most pronounced in the case of EI. SEM scans of the EI surface before and after aging (90 days) established the appearance of carbon on the older surface. This work provides evidence that iron with a higher surface carbon content outperforms pure iron, suggesting that the carbon is actively involved in promoting TCE reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Man [Auburn University, Auburn, Alabama; He, Feng [ORNL; Zhao, Dongye [Auburn University, Auburn, Alabama; Hao, Xiaodi [Beijing University of Civil Engineering and Architecture

    2011-01-01

    Zero valent iron (ZVI) nanoparticles have been studied extensively for degradation of chlorinated solvents in the aqueous phase, and have been tested for in-situ remediation of contaminated soil and groundwater. However, little is known about its effectiveness for degrading soil-sorbed contaminants. This work studied reductive dechlorination of trichloroethylene (TCE) sorbed in two model soils (a potting soil and Smith Farm soil) using carboxymethyl cellulose (CMC) stabilized Fe-Pd bimetallic nanoparticles. Effects of sorption, surfactants and dissolved organic matter (DOC) were determined through batch kinetic experiments. While the nanoparticles can effectively degrade soil-sorbed TCE, the TCE degradation rate was strongly limited by desorption kinetics, especially for the potting soil which has a higher organic matter content of 8.2%. Under otherwise identical conditions, {approx}44% of TCE sorbed in the potting soil was degraded in 30 h, compared to {approx}82% for Smith Farm soil (organic matter content = 0.7%). DOC from the potting soil was found to inhibit TCE degradation. The presence of the extracted SOM at 40 ppm and 350 ppm as TOC reduced the degradation rate by 34% and 67%, respectively. Four prototype surfactants were tested for their effects on TCE desorption and degradation rates, including two anionic surfactants known as SDS (sodium dodecyl sulfate) and SDBS (sodium dodecyl benzene sulfonate), a cationic surfactant hexadecyltrimethylammonium (HDTMA) bromide, and a non-ionic surfactant Tween 80. All four surfactants were observed to enhance TCE desorption at concentrations below or above the critical micelle concentration (cmc), with the anionic surfactant SDS being most effective. Based on the pseudo-first-order reaction rate law, the presence of 1 x cmc SDS increased the reaction rate by a factor of 2.5 when the nanoparticles were used for degrading TCE in a water solution. SDS was effective for enhancing degradation of TCE sorbed in Smith Farm

  4. Cryptic Role of Zero-Valent Sulfur in Metal and Metalloid Geochemistry in Euxinic Waters

    Science.gov (United States)

    Helz, G. R.

    2014-12-01

    Natural waters that are isolated from the atmosphere in confined aquifers, euxinic basins and sediment pore waters often become sulfidic. These waters are conventionally described simply as reducing environments. But because nature does not constrain their exposure to reducing equivalents (e.g. from organic matter) and oxidizing equivalents (e.g. from Fe,Mn oxides), these reducing environments in fact vary cryptically in their redox characteristics. The implications for trace metal and metalloid cycles are only beginning to be explored. The activity of zero-valent sulfur (aS0), a virtual thermodynamic property, is a potentially useful index for describing this variation. At a particular temperature and ionic strength, aS0 can be quantified from knowledge of pH and the total S(0) to total S(-II) ratio. Although data are incomplete, the deep waters of the Black Sea (aS0 ca. 0.3) appear to be more reducing than the deep waters of the Cariaco Basin (aS0 ca. 0.5) even though both are perennially sulfidic. An apparent manifestation is a greater preponderance of greigite relative to mackinawite in the Cariaco Basin. Interestingly, greigite is stable relative to mackinawite in both basins but predominates only at the higher aS0. Values of aS0 in sulfidic natural waters span the range over which Hg-polysulfide complexes gain predominance over Hg sulfide complexes. Competition between these ligands is thought to influence biological methylation, mercury's route into aquatic and human food chains. In sulfidic deep ground waters, the redox state and consequent mobility of As, a global human hazard, will depend on aS0. At intermediate sulfide concentrations, higher aS0 favors more highly charged and thus less mobile As(V) species relative to As(III) species despite the overall reducing characteristics of such waters. Helz, G.R. (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem. Trans. In press.

  5. INFLUENCE OF GROUNDWATER GEOCHEMISTRY ON THE LONG-TERM PERFORMANCE OF IN-SITU PERMEABLE REACTIVE BARRIERS CONTAINING ZERO-VALENT IRON

    Science.gov (United States)

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  6. Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron

    International Nuclear Information System (INIS)

    Fiuza, Antonio; Silva, Aurora; Carvalho, Goreti; Fuente, Antonio V. de la; Delerue-Matos, Cristina

    2010-01-01

    Zero valent iron (ZVI) has been extensively used as a reactive medium for the reduction of Cr(VI) to Cr(III) in reactive permeable barriers. The kinetic rate depends strongly on the superficial oxidation of the iron particles used and the preliminary washing of ZVI increases the rate. The reaction has been primarily modelled using a pseudo-first-order kinetics which is inappropriate for a heterogeneous reaction. We assumed a shrinking particle type model where the kinetic rate is proportional to the available iron surface area, to the initial volume of solution and to the chromium concentration raised to a power α which is the order of the chemical reaction occurring at surface. We assumed α = 2/3 based on the likeness to the shrinking particle models with spherical symmetry. Kinetics studies were performed in order to evaluate the suitability of this approach. The influence of the following parameters was experimentally studied: initial available surface area, chromium concentration, temperature and pH. The assumed order for the reaction was confirmed. In addition, the rate constant was calculated from data obtained in different operating conditions. Digital pictures of iron balls were periodically taken and the image treatment allowed for establishing the time evolution of their size distribution.

  7. Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

    DEFF Research Database (Denmark)

    Lee, Nara; Choi, Kyunghoon; Uthuppu, Basil

    2014-01-01

    This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with spe...

  8. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Audí-Miró, Carme, E-mail: carmeaudi@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Cretnik, Stefan [Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg (Germany); Torrentó, Clara; Rosell, Mònica [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Shouakar-Stash, Orfan [Department of Earth & Environmental Sciences, 200 University Ave. W, N2L 3G1 Waterloo, Ontario (Canada); Otero, Neus [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Palau, Jordi [Université de Neuchâtel, CHYN - Centre d' Hydrogéologie, Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); and others

    2015-12-15

    Highlights: • {sup 13}C to evaluate natural chlorinated ethenes biodegradation. • {sup 13}C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • {sup 13}C-{sup 37}Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • {sup 13}C-{sup 37}Cl-{sup 2}H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using {sup 13}C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element {sup 13}C-{sup 37}Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using {sup 13}C-{sup 37}Cl-{sup 2}H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the {sup 13}C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element {sup 13}C-{sup 37}Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. {sup 2}H combined with {sup 13}C and {sup 37}Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ{sup 2}H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  9. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Torrentó, Clara; Rosell, Mònica; Shouakar-Stash, Orfan; Otero, Neus; Palau, Jordi

    2015-01-01

    Highlights: • 13 C to evaluate natural chlorinated ethenes biodegradation. • 13 C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • 13 C- 37 Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • 13 C- 37 Cl- 2 H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using 13 C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element 13 C- 37 Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using 13 C- 37 Cl- 2 H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the 13 C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element 13 C- 37 Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. 2 H combined with 13 C and 37 Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ 2 H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  10. Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl: Effect of solution chemistry and mechanism investigation.

    Science.gov (United States)

    Shan, Chao; Chen, Jiajia; Yang, Zhe; Jia, Huichao; Guan, Xiaohong; Zhang, Weiming; Pan, Bingcai

    2018-04-15

    Although the removal of Se(VI) from water by using zero-valent iron (ZVI) is a promising method, passivation of ZVI severely inhibits its performance. To overcome such issue, we proposed an efficient technique to enhance Se(VI) removal via pre-corrosion of ZVI with H 2 O 2 /HCl in a short time (15 min). The resultant pcZVI suspension was weakly acidic (pH 4.56) and contained abundant aqueous Fe 2+ . 57 Fe Mössbauer spectroscopy showed that pcZVI mainly consisted of Fe 0 (66.2%), hydrated ferric oxide (26.3%), and Fe 3 O 4 (7.5%). Efficient removal of Se(VI) from sulfate-rich solution was achieved by pcZVI compared with ZVI (in the absence and presence of H 2 O 2 ) and acid-pretreated ZVI. Moreover, the efficient removal of Se(VI) by pcZVI sustained over a broad pH range (3-9) due to its strong buffering power. The presence of chloride, carbonate, nitrate, and common cations (Na + , K + , Ca 2+ , and Mg 2+ ) posed negligible influence on the removal of Se(VI) by pcZVI, while the inhibitory effect induced by sulfate, silicate, and phosphate indicated the significance of Se(VI) adsorption as a prerequisite step for its removal. The consumption of aqueous Fe 2+ was associated with Se(VI) removal, and X-ray absorption near edge structure revealed that the main pathway for Se(VI) removal by pcZVI was a stepwise reduction of Se(VI) to Se(IV) and then Se 0 as the dominant final state (78.2%). Moreover, higher electron selectivity of pcZVI was attributed to the enhanced enrichment of Se oxyanions prior to their reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Zero Learning: Case explorations of barriers to organizational learning

    DEFF Research Database (Denmark)

    Jørgensen, Frances; S., Jacob

    2003-01-01

    that the existence of learning barriers may not only inhibit on-going learning process, but also lead to a negative cycle of non-learning in the organization. The implications of a "zero learning" cycle caused by learning barriers are discussed and insights are provided as to how barriers may be resolved so...

  12. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers

    International Nuclear Information System (INIS)

    Li Lin; Benson, Craig H.

    2010-01-01

    Ground water flow and geochemical reactive transport models were used to assess the effectiveness of five strategies used to limit fouling and to enhance the long-term hydraulic behavior of continuous-wall permeable reactive barriers (PRBs) employing granular zero valent iron (ZVI). The flow model accounted for geological heterogeneity and the reactive transport model included a geochemical algorithm for simulating iron corrosion and mineral precipitation reactions that have been observed in ZVI PRBs. The five strategies that were evaluated are pea gravel equalization zones, a sacrificial pre-treatment zone, pH adjustment, large ZVI particles, and mechanical treatment. Results of simulations show that installation of pea gravel equalization zones results in flow equalization and a more uniform distribution of residence times within the PRB. Residence times within the PRB are less affected by mineral precipitation when a pre-treatment zone is employed. pH adjustment limits the total amount of hydroxide ions in ground water to reduce porosity reduction and to retain larger residence times. Larger ZVI particles reduce porosity reduction as a result of the smaller iron surface area for iron corrosion, and retain longer residence time. Mechanical treatment redistributes the porosity uniformly throughout the PRB over time, which is effective in maintaining residence time.

  13. Phosphate Barriers for Immobilization of Uranium Plumes

    International Nuclear Information System (INIS)

    Burns, Peter C.

    2004-01-01

    Uranium contamination of the subsurface remains a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB?s) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB?s, such as zero-valent iron, may be a temporary solution to a problem that will persist for thousands of years. Alternatives to the standard treatment methods are therefore warranted. The core objective of our research is to demonstrate that a phosphorus amendment strategy will result in a reduction of dissolved uranium to below the proposed drinking water standard. Our hypothesis is that long-chain sodium polyphosphate compounds forestall precipitation of sparingly soluble uranyl phosphate compounds, which is paramount to preventing fouling of wells at the point of injection

  14. Phosphate Barriers for Immobilization of Uranium Plumes

    International Nuclear Information System (INIS)

    Icenhower, Jonathan P.; Burns, Peter C.

    2005-01-01

    Uranium contamination of the subsurface remains a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB?s) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB's, such as zero-valent iron, may be a temporary solution to a problem that will persist for thousands of years. Alternatives to the standard treatment methods are therefore warranted. The core objective of our research is to demonstrate that a phosphorous amendment strategy will result in a reduction of dissolved uranium to below the proposed drinking water standard. Our hypothesis is that long-chain sodium polyphosphate compounds forestall precipitation of sparingly soluble uranyl phosphate compounds, which is paramount to preventing fouling of wells at the point of injection

  15. Amoxicillin Oxidative Degradation Synthesized by Nano Zero Valent Iron

    Directory of Open Access Journals (Sweden)

    AR Yazdanbakhsh

    2016-03-01

    Full Text Available Introduction: Amoxicillin is one of the most important groups of pharmaceuticals that benefits humans and animals. However, antibiotics excertion in wastewaters and environment have emerged as a serious risk to the biotic environment, and their toxic effects can harm the organisms. Iron-based metallic nanoparticles have received special attention in regard with remediation of groundwater contaminants. In the typical nZVI-based bimetallic particle system, Fe acts as the reducing agent. Thus, the present study aimed to evaluate the synthesis and characteristics of nZVI in regard with degrading AMX. Methods: In this study, nZVI nanoparticles were synthesized using the liquid-phase reduction method by EDTA as a stabilizer material. Structure and properties of nanoparticles were characterized by BET, SEM, XRD and EDX analysis. A multi-variate analysis was applied using a response surface methodology (RSM in order to develop a quadratic model as a functional relationship between AMX removal efficiency and independent variables ( initial pH values, dosage of nZVI, contact time and amoxicillin concentration. The four independent variables of solution pH (2–10, AMX concentration (5-45mg/l, contact time (5-85 min and nanoparticles dose (0.25 – 1.25 g were transformed to the coded values. Results: The study results demonstrated that more than 69 % of AMX was removed by nZVI. The optimal AMX removal conditions using nZVI were found as 1.25 g of nZVI, pH 4, contact time of 80 min and concentration of 30 mg/l. Conclusions: The ability of nZVI in degradation of AMX revealed that these materials can serve as a potential nano material with respect to the environmental remediation.

  16. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    Science.gov (United States)

    Hosseini, Seiyed Mossa; Tosco, Tiziana; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-03-01

    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial NO3-=132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were NO2-, NH4+, and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic

  17. Theoretical Modelling of Immobilization of Cadmium and Nickel in Soil Using Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vaidotas Danila

    2017-09-01

    Full Text Available Immobilization using zero valent using iron nanoparticles is a soil remediation technology that reduces concentrations of dissolved contaminants in soil solution. Immobilization of heavy metals in soil can be achieved through heavy metals adsorption and surface complexation reactions. These processes result in adsorption of heavy metals from solution phase and thus reducing their mobility in soil. Theoretical modelling of heavy metals, namely, cadmium and nickel, adsorption using zero valent iron nanoparticles was conducted using Visual MINTEQ. Adsorption of cadmium and nickel from soil solutions were modelled separately and when these metals were dissolved together. Results have showed that iron nanoparticles can be successfully applied as an effective adsorbent for cadmium and nickel removal from soil solution by producing insoluble compounds. After conducting the modelling of dependences of Cd+2 and Ni+2 ions adsorption on soil solution pH using iron nanoparticles, it was found that increasing pH of solution results in the increase of these ions adsorption. Adsorption of cadmium reached approximately 100% when pH ≥ 8.0, and adsorption of nickel reached approximately 100% when pH ≥ 7.0. During the modelling, it was found that adsorption of heavy metals Cd and Ni mostly occur, when one heavy metal ion is chemically adsorbed on two sorption sites. During the adsorption modelling, when Cd+2 and Ni+2 ions were dissolved together in acidic phase, it was found that adsorption is slightly lower than modelling adsorption of these metals separately. It was influenced by the competition of Cd+2 and Ni+2 ions for sorption sites on the surface of iron nanoparticles.

  18. Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Otero, Neus; Palau, Jordi; Shouakar-Stash, Orfan; Soler, Albert

    2013-01-01

    Highlights: ► TCE and cis-DCE Cl isotope fractionation was investigated for the first time with ZVI. ► A C–Cl bond is broken in the rate-limiting step during ethylene ZVI dechlorination. ► Dual C/Cl isotope plot is a promising tool to discriminate abiotic degradation. ► Product-related carbon isotopic fractionation gives evidence of abiotic degradation. ► Hydrogenolysis and β-dichloroelimination pathways occur simultaneously. - Abstract: This study investigated C and, for the first time, Cl isotope fractionation of trichloroethene (TCE) and cis-dichloroethene (cis-DCE) during reductive dechlorination by cast zero-valent iron (ZVI). Hydrogenolysis and β-dichloroelimination pathways occurred as parallel reactions, with ethene and ethane deriving from the β-dichloroelimination pathway. Carbon isotope fractionation of TCE and cis-DCE was consistent for different batches of Fe studied. Transformation of TCE and cis-DCE showed Cl isotopic enrichment factors (ε Cl ) of −2.6‰ ± 0.1‰ (TCE) and −6.2‰ ± 0.8‰ (cis-DCE), with Apparent Kinetic Isotope Effects (AKIE Cl ) for Cl of 1.008 ± 0.001 (TCE) and 1.013 ± 0.002 (cis-DCE). This indicates that a C–Cl bond breakage is rate-determining in TCE and cis-DCE transformation by ZVI. Two approaches were investigated to evaluate if isotope fractionation analysis can distinguish the effectiveness of transformation by ZVI as opposed to natural biodegradation. (i) Dual isotope plots. This study reports the first dual (C, Cl) element isotope plots for TCE and cis-DCE degradation by ZVI. The pattern for cis-DCE differs markedly from that reported for biodegradation of the same compound by KB-1, a commercially available Dehalococcoides-containing culture. The different trends suggest an expedient approach to distinguish abiotic and biotic transformation, but this needs to be confirmed in future studies. (ii) Product-related isotope fractionation. Carbon isotope ratios of the hydrogenolysis product cis

  19. In situ synthesis of zero-valent silver nanoparticles in polymethylmethacrylate under high temperature

    International Nuclear Information System (INIS)

    Xiong Yuanlu; Luo Guoqiang; Chen Cheng; Yuan Huan; Shen Qiang; Li Meijuan

    2012-01-01

    In this work, the silver nanoparticles were synthesized in polymethylmethacrylate (PMMA) matrix under high temperature with polyvinylpyrrolidone (PVP) as additional stabilizer and N,N-dimethylformamide (DMF) as reaction medium. The UV-vis spectroscopy and transmission electron microscopy (TEM) were adopted to investigate the growth and shape conversion of Ag nanoparticles with the lacking of additional Ag source. The results showed that the stable zero-valent Ag in PMMA was obtained successfully. Two types of Ag nanoparticles, single-crystal and twinned ones, could form in the initial period. While the twinned ones will gradually disappear along with the reaction processed, the single-crystal ones could survive and slowly grow by consuming the Ag atoms which were etched form twinned ones. The single-crystal ones will take shape conversion from sphere to nanocube with nearly the same particle size after the total disappearance of twinned ones. The size and shape of Ag nanoparticles can be well controlled by reaction time. The high viscosity PMMA matrix plays the important role of controlling the growth of the Ag nanoparticles, and the PVP takes the responsibility of the shape conversion.

  20. Removal of Nitrate by Zero Valent Iron in the Presence of H2O2

    Directory of Open Access Journals (Sweden)

    M.R. Samarghandi

    2014-01-01

    Full Text Available Background & Aims: Nitrate is the oxidation state of nitrogen compounds, which is founded in water resources that contaminated by municipal, industrial and agricultural waste water. If nitrate leek in to ground water resources, it can cause health problems. Material and Methods: Removal of nitrate from ground water by iron powder in the presence of H2O2 was investigated. Experiments have been done by use of 250 ml of water samples containing 100 mg/L nitrate in various condition. Various parameters such as pH (3, 5, 7, 9, iron dosage (10, 15, 20, 30 g/L, initial H2O2 concentration (5, 10, 15, 20 ml/L and contact time (10-120 min. Results: Obtained results shows the removal of nitrate was increased by pH reduction, increment of iron mass and contact time. In addition, nitrate reduction was increased by increment of initial H2O2 concentration up to 15 ml/L. High removal was observed at pH=3, iron mass=30 g/L, contact time equal 120 min and H2O2 concentration=15 ml/L. At above condition, upon 98% of nitrate was removed. Conclusion: In summary, this method is simple, low cost and effective for removal of nitrate from ground water and industrial activity.

  1. Wastewater screening method for evaluating applicability of zero-valent iron to industrial wastewater

    International Nuclear Information System (INIS)

    Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Jin, S.H.

    2010-01-01

    This study presents a screening protocol to evaluate the applicability of the ZVI pretreatment to various industrial wastewaters of which major constituents are not identified. The screening protocol consisted of a sequential analysis of UV-vis spectrophotometry, high-performance liquid chromatograph (HPLC), and bioassay. The UV-vis and HPLC analyses represented the potential reductive transformation of unknown constituents in wastewater by the ZVI. The UV-vis and HPLC results were quantified using principal component analysis (PCA) and Euclidian distance (ED). The short-term bioassay was used to assess the increased biodegradability of wastewater constituents after ZVI treatment. The screening protocol was applied to seven different types of real industrial wastewaters. After identifying one wastewater as the best candidate for the ZVI treatment, the benefit of ZVI pretreatment was verified through continuous operation of an integrated iron-sequencing batch reactor (SBR) resulting in the increased organic removal efficiency compared to the control. The iron pretreatment was suggested as an economical option to modify some costly physico-chemical processes in the existing wastewater treatment facility. The screening protocol could be used as a robust strategy to estimate the applicability of ZVI pretreatment to a certain wastewater with unknown composition.

  2. Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyl by Bimetallic, Impregnated, and Nanoscale Zerovalent Iron

    Science.gov (United States)

    Zhuang, Yuan; Ahn, Sungwoo; Seyfferth, Angelia L.; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    Nanoscale zerovalent iron particles (nZVI), bimetallic nanoparticles (nZVI/Pd), and nZVI/Pd impregnated activated carbon (nZVI/Pd-AC) composite particles were synthesized and investigated for their effectiveness to remove polybrominated diphenyl ethers (PBDEs) and/or polychlorinated biphenyls (PCBs). Palladization of nZVI promoted the dehalogenation kinetics for mono- to tri-BDEs and 2,3,4-trichlorobiphenyl (PCB 21). Compared to nZVI, the iron-normalized rate constants for nZVI/Pd were about 2-, 3-, and 4-orders of magnitude greater for tri-, di-, and mono-BDEs, respectively, with diphenyl ether as a main reaction product. The reaction kinetics and pathways suggest an H-atom transfer mechanism. The reaction pathways with nZVI/Pd favor preferential removal of para-halogens on PBDEs and PCBs. X-ray fluorescence mapping of nZVI/Pd-AC showed that Pd mainly deposits on the outer part of particles, while Fe was present throughout the activated carbon particles. While BDE 21 was sorbed onto activated carbon composites quickly, debromination was slower compared to reaction with freely dispersed nZVI/Pd. Our XPS and chemical data suggest about 7% of the total iron within the activated carbon was zero-valent, which shows the difficulty with in-situ synthesis of a significant fraction of zero-valent iron in the micro-porous material. Related factors that likely hinder the reaction with nZVI/Pd-AC are the heterogenous distribution of nZVI and Pd on activated carbon and/or immobilization of hydrophobic organic contaminants at the adsorption sites thereby inhibiting contact with nZVI. PMID:21557574

  3. Total aerobic destruction of azo contaminants with nanoscale zero-valent copper at neutral pH: promotion effect of in-situ generated carbon center radicals.

    Science.gov (United States)

    Dong, Guohui; Ai, Zhihui; Zhang, Lizhi

    2014-12-01

    In this study, nanoscale zero-valent copper (nZVC) was synthesized with a facile solvothermal method and used for the aerobic removal of azo contaminants at neutral pH for the first time. We found that both Cu(I) and OH generated during the nZVC induced molecular oxygen activation process accounted for the rapid total destruction of azo contaminants in the nZVC/Air system, where nZVC could activate molecular oxygen to produce H2O2, and also release Cu(I) to break the -NN- bond of azo contaminants via the sandmeyer reaction for the generation of carbon center radicals. The in-situ generated carbon center radicals would then react with OH produced by the Cu(I) catalyzed decomposition of H2O2, resulting in the generation of low molecular weight organic acids and their subsequent mineralization. The indispensible role of Cu(I) catalyzed sandmeyer reaction and the promotion effect of in-situ generated carbon center radicals on the rapid total destruction of azo contaminants in the nZVC/Air system were confirmed by gas chromatography-mass spectrometry analysis. This study can deepen our understanding on the degradation of organic pollutant with molecular oxygen activated by zero valent metal, and also provide a new method to remove azo contaminants at neutral pH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Iron coated pottery granules for arsenic removal from drinking water.

    Science.gov (United States)

    Dong, Liangjie; Zinin, Pavel V; Cowen, James P; Ming, Li Chung

    2009-09-15

    A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 microg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 microg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q(e)) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP

  5. Iron coated pottery granules for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Dong Liangjie; Zinin, Pavel V.; Cowen, James P.; Ming, Li Chung

    2009-01-01

    A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15 L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 μg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 μg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1 L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q e ) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP) analysis

  6. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles.

    Science.gov (United States)

    Ozkan, Z Y; Cakirgoz, M; Kaymak, E S; Erdim, E

    2018-01-01

    The effectiveness of green tea (Camellia sinensis) and pomegranate (Punica granatum) extracts for the production of iron nanoparticles and their application for color removal from a textile industry wastewater was investigated. Polyphenols in extracts act as reducing agents for iron ions in aqueous solutions, forming iron nanoparticles. Pomegranate extract was found to have almost a 10-fold higher polyphenolic content than the same amount of green tea extract on a mass basis. However, the size of the synthesized nanoparticles did not show a correlation with the polyphenolic content. 100 ppm and 300 ppm of iron nanoparticles were evaluated in terms of color removal efficiency from a real textile wastewater sample. 300 ppm of pomegranate nanoscale zero-valent iron particles showed more than 95% color removal and almost 80% dissolved organic carbon removal. The degradation mechanisms are is considered to be adsorption and precipitation to a major extent, and mineralization to a minor extent.

  7. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (I): Pretreatment of cationic triphenylmethane dyes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Li, Zhaoyong; Kang, Juan; Wang, Xiaoyan; Zhang, Yukui; Fang, Jiande [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-02-11

    Graphical abstract: - Highlights: • Millimetric s-Fe{sup 0} particles effectively reduce BG, MG, CV, and EV dyes. • s-Fe{sup 0} displays similar contaminant removal efficiency compared to nZVI. • s-Fe{sup 0} shows greater economic advantages than nZVI, iron powder, and iron scurf. • The reductive mechanism of BG over s-Fe{sup 0} under US condition is elucidated. - Abstract: To investigate the removal capability of millimetric zero valent iron (mmZVI), sponge iron (s-Fe{sup 0}) particles were characterized with XRD, XPS, TEM, HRSEM and EDS techniques. Moreover, the roles of particle size, catalyst dosage, dye concentration, mixing conditions (e.g. ultrasound (US), stirring or shaking), and regeneration treatment were studied with the removal of cationic triphenylmethane dyes. Notably, the reduction process was also revealed as compared to nanoscale zero valent iron (nZVI), microscale iron power, and iron scurf. Furthermore, the reductive mechanism was exemplified with brilliant green. The results demonstrated that (1) the synergetic effect between US and s-Fe{sup 0} greatly enhanced the removal of dyes, (2) the dosage of preferred s-Fe{sup 0} (1–3 mm) particles was optimized as 30.0 g/L; (3) reuse cycles of s-Fe{sup 0} catalyst were enhanced with the assistance of diluted HCl solution; (4) the main degradation routes included the cleavage of conjugated structure reactions, N-de-ethylation reactions, hydroxylation reactions, the removal of benzene ring reactions, and opening ring reactions. Accordingly, the pretreatment of aqueous solution over s-Fe{sup 0} was hypothesized to achieve mainly through direct reduction reaction by electron transfer and indirect reductive reactions by the highly activated hydrogen atom. Additionally, decoration with noble metals was utilized to reveal the reaction mechanism.

  8. Synthesis and nature of heterogeneous catalysts of low-valent tungsten supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, A.; Hucul, D.A.

    1980-01-01

    Temperature-programed decomposition of catalysts prepared from zero-valent W(CO)/sub 6/ and alumina under rigorously air-free conditions showed a low-temperature carbon monoxide desorption peak at 110/sup 0/-172/sup 0/C, depending on alumina pretreatment, in which a relatively stable surface W(CO)/sub 3/ complex was formed; and a high-temperature carbon monoxide desorption peak at 257/sup 0/ to > 400/sup 0/C, which gave zero-valent tungsten if the ratio of hydroxyl groups of alumina to tungsten surface complexes was low, and hexavalent tungsten if the ratio was high. Up to about half the W(CO)/sub 6/ sublimated from the alumina during activation.

  9. Sustaining 1,2-Dichloroethane Degradation in Nanoscale Zero-Valent Iron induced Fenton system by using Sequential H2O2 Addition at Natural pH

    Science.gov (United States)

    Phenrat, T.; Le, T. S. T.

    2017-12-01

    1,2-Dichloroethane (1,2-DCA) is a prevalent subsurface contaminant found in groundwater and soil around the world. Nanoscale zero-valent iron (NZVI) is a promising in situ remediation agent for chlorinated organics. Nevertheless, 1,2-DCA is recalcitrant to reductive dechlorination using NZVI. Chemical oxidation using Fenton's reaction with conventional Fe2+ is a valid option for 1,2-DCA remediation with a major technical challenge, i.e. aquifer acidification is needed to maintain Fe2+ for catalytic reaction. In this work, NZVI Fenton's process at neutral pH was applied to degrade 1,2-DCA at high concentration (2,000 mg/L) representing dissolved 1,2-DCA concentration close to non-aqueous phase liquid source zone. Instead of using acidification to maintain dissolved Fe2+ concentration, NZVI Fenton's process is self-catalytic based on oxidative dissolution of NZVI in the present of H2O2. Interfacial H+ is produced at NZVI surface to provide appropriate local pH which continuously releases Fe2+ for Fenton's reaction. Approximately, 87% of 1,2-DCA was degraded at neutral pH with the pseudo first-order rate constant of 0.98 hour-1 using 10 g/L of NZVI and 200 mM of H2O2. However, the reaction was prohibited quickly within 3 hours presumably due to the rapid depletion of H2O2. The application of sequential H2O2 addition provided a better approach to prevent rapid inhibition via controlling the H2O2 concentration in the system to be sufficient but not excess, thus resulting in the higher degradation efficiency (the pseudo first-order rate constant of 0.49 hour-1 and 99 % degradation in 8 hours). Using NZVI with sequential H2O2 addition was also successful in degrading 1,2-DCA sorbed on to soil, yielding 99% removal of 1,2-DCA within 16 hours at the rate constant of 0.23 hour-1, around two times slower than in the system without soil presumably due to rate-limited 1,2-DCA desorption from soil. Mechanistic understanding of how sequential addition of H2O2, in comparison to

  10. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae

    Czech Academy of Sciences Publication Activity Database

    Pádrová, K.; Lukavský, Jaromír; Nedbalová, L.; Čejková, A.; Cajthaml, Tomáš; Sigler, Karel; Vítová, Milada; Řezanka, Tomáš

    2015-01-01

    Roč. 27, č. 4 (2015), 1443-1451 ISSN 0921-8971 R&D Projects: GA TA ČR TE01020080; GA ČR(CZ) GAP503/11/0215; GA MŠk ED2.1.00/03.0110; GA ČR GA14-00227S; GA TA ČR TE01020218 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : zero-valent iron * nanoparticles * cyanobacterium * lipid profile Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.372, year: 2015

  11. 改性零价铁降解多溴二苯醚的研究进展%Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron

    Institute of Scientific and Technical Information of China (English)

    韩文亮; 陈海明; 陈兴童

    2017-01-01

    多溴二苯醚(PBDEs)是一类持久性有机污染物(POPs),其无害降解技术是一个研究热点.PBDEs的降解方法包括生物降解、光降解、电解降解、零价铁(ZVI)还原降解、Fenton试剂氧化降解等.其中,零价铁因其优良的还原性能,被逐渐应用于PBDEs等POPs的还原降解,但零价铁因比表面积小、易团聚、易氧化等缺点,需通过改性以改善其降解效果.本文重点从减小铁颗粒粒径、应用搭载系统、加入活性金属、添加表面活性剂、使用辅助手段(超声或微波等)等5个方面综述了改性零价铁降解PBDEs的研究进展,讨论了各改性方法的优缺点,介绍了卤代有机污染物脱卤产物的后续降解方法,并展望了今后的研究重点.%Green degradation of polybrominated diphenyl ethers (PBDEs),a class of persistent organic pollutants (POPs),is a research hot spot.The degradation methods of PBDEs include biodegradation,photolysis degradation,electrolysis degradation,zero valent iron (ZVI) reductive degradation and Fenton reagent oxidative degradation etc.Because of its excellent reductive capability,ZVI has been gradually applied to the reductive dehalogenation of PBDEs and other POPs.However,since there are so many weakness for the conventional ZVI,such as the limited specific surface area,easy aggregation and oxidation,modification of ZVI is needed to improve its degradation efficiency.Five modification approaches for ZVI were reviewed on the research progress of PBDEs degradation,such as reducing iron particle size,using carriers,supplementing with active metals,adding surfactants,and employing auxiliary means (ultrasound or microwave) etc.Advantages and disadvantages for each modification method were discussed.Moreover,the subsequent degradation methods of the dehalogenated products were also introduced,and perspective on the future research focus of modified ZVI were also discussed.

  12. Reactive Membrane Barriers for Containment of Subsurface Contamination

    Energy Technology Data Exchange (ETDEWEB)

    William A. Arnold; Edward L. Cussler

    2007-02-26

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a

  13. Reactive Membrane Barriers for Containment of Subsurface Contamination

    International Nuclear Information System (INIS)

    William A. Arnold; Edward L. Cussler

    2007-01-01

    The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe 0 ) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe 0 and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu 2+ ) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe 0 barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when

  14. Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols

    Science.gov (United States)

    A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no added surfactants/polymers as a capping or reducing agents. The expeditious reaction between polyphenols and ferric nitrate occurs within few minutes at room te...

  15. Formulation design for target delivery of iron nanoparticles to TCE zones.

    Science.gov (United States)

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  16. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    Science.gov (United States)

    Saif, Sadia; Tahir, Arifa; Chen, Yongsheng

    2016-01-01

    Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe2O3/Fe3O4) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles. PMID:28335338

  17. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    Directory of Open Access Journals (Sweden)

    Sadia Saif

    2016-11-01

    Full Text Available Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI and iron oxide (Fe2O3/Fe3O4 nanoparticles (NPs and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.

  18. Dechlorination of Hexachloroethane in Water Using Iron Shavings and Amended Iron Shavings: Kinetics and Pathways

    Directory of Open Access Journals (Sweden)

    D. L. Wu

    2014-01-01

    Full Text Available In contrast to previous studies which employed zero-valent iron powder, this paper investigated reductive dechlorination of hexachloroethane (HCA using iron shavings and bimetallic iron shavings modified with Cu, Ag, or Pd. Results clearly show that iron shavings offer superior reductive dechlorination of HCA. In addition, surface-normalized pseudo first-order dechlorination rates of 0.0073 L·m−2·h−1, 0.0136 L·m−2·h−1, 0.0189 L·m−2·h−1, and 0.0084 L·m−2·h−1 were observed in the presence of iron shavings (Fe0 and the bimetallic iron shavings Cu/Fe, Ag/Fe, and Pd/Fe, respectively. Bimetallic iron shavings consisting of Cu/Fe and Ag/Fe could greatly enhance the reductive reaction rate; Pd/Fe was used to achieve complete dechlorination of HCA within 5 hours. The additives of Ag and Pd shifted product distributions, and the reductive dechlorination of HCA occurred via β reductive elimination and sequential hydrogenolysis in the presence of all iron shavings. This study consequently designed a reaction pathway diagram which reflected the reaction pathway and most prevalent dechlorination products. Iron shavings are a common byproduct of mechanical processing plants. While the purity of such Fe metals may be low, these shavings are readily available at low costs and could potentially be used in engineering applications such as contamination control technologies.

  19. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type.

    Science.gov (United States)

    Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2015-07-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Arancibia-Miranda, Nicolás, E-mail: nicolas.arancibia@usach.cl [Facultad de Química y Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Casilla 40, Santiago C.P. 33 (Chile); Baltazar, Samuel E. [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago 9170124 (Chile); García, Alejandra [CIMAV, S.C. Alianza Norte 202, Carretera Monterrey-Aeropuerto Km 10, C.P. 66600, Apodaca Nuevo León (Mexico); University of Texas at San Antonio, Physics and Astronomy Department, One UTSA circle 78249, San Antonio, Texas (United States); Muñoz-Lira, Daniela [Facultad de Química y Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Casilla 40, Santiago C.P. 33 (Chile); Facultad de Ciencias, Universidad de Chile, UCH, Las Palmeras 3425, Santiago 7800024 (Chile); Sepúlveda, Pamela; Rubio, María A. [Facultad de Química y Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Casilla 40, Santiago C.P. 33 (Chile); Altbir, Dora [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago 9170124 (Chile)

    2016-01-15

    Highlights: • The Z–nZVI and Mt–nZVI composites showed a high efficiency in the removal of Pb{sup 2+} present in aqueous solutions. • The fastest removal of Pb{sup 2+} was obtained with Mt–nZVI. • The adsorption intensity increased 300 times in the composites, respect to the pristine materials. • The magnetic behavior of the composites reveals a high presence of nZVI particles. • These composites have potential industrial and environmental applications. - Abstract: In this work, we have studied the Pb{sup 2+} sorption capacity of Zeolite (Z) and Montmorillonite (Mt) functionalized with nanoscale zero-valent iron (nZVI), at 50% w/w, obtained by means of an impregnating process with a solvent excess. The composites were characterized by several techniques including X-ray diffraction; scanning electron microscopy (SEM); BET area; isoelectric point (IEP); and, finally a magnetic response. Comparatively significant differences in terms of electrophoretic and magnetic characteristics were found between the pristine materials and the composites. Both structures show a high efficiency and velocity in the removal of Pb{sup 2+} up to 99.0% (200.0 ppm) after 40 min of reaction time. The removal kinetics of Pb{sup 2+} is adequately described by the pseudo second-order kinetic model, and the maximum adsorbed amounts (q{sub e}) of this analyte are in close accordance with the experimental results. The intraparticle diffusion model shows that this is not the only rate-limiting step, this being the Langmuir model which was well adjusted to our experimental data. Therefore, maximum sorption capacities were found to be 115.1 ± 11.0, 105.5 ± 9.0, 68.3 ± 1.3, 54.2 ± 1.3, and 50.3 ± 4.2 mg g{sup −1}, for Mt–nZVI, Z–nZVI, Zeolite, Mt, and nZVI, respectively. The higher sorption capacities can be attributed to the synergetic behavior between the clay and iron nanoparticles, as a consequence of the clay coating process with nZVI. These results suggest that both

  1. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.

    Science.gov (United States)

    Luo, Ximing; Liu, Haifei; Huang, Guoxin; Li, Ye; Zhao, Yan; Li, Xu

    2016-01-01

    A modified montmorillonite (MMT) was prepared using an acid activation-sodium activation-iron oxide coating method to improve the adsorption capacities of natural MMTs. For MMT, its interlamellar distance increased from 12.29 to 13.36 Å, and goethite (α-FeOOH) was intercalated into its clay layers. Two novel media-injected permeable reactive barrier (MI-PRB) configurations were proposed for removing arsenic from groundwater. Sand tank experiments were conducted to investigate the performance of the two MI-PRBs: Tank A was filled with quartz sand. Tank B was packed with quartz sand and zero-valent iron (ZVI) in series, and the MMT slurry was respectively injected into them to form reactive zones. The results showed that for tank A, total arsenic (TA) removal of 98.57% was attained within the first 60 mm and subsequently descended slowly to 88.84% at the outlet. For tank B, a similar spatial variation trend was observed in the quartz sand layer, and subsequently, TA removal increased to ≥99.80% in the ZVI layer. TA removal by MMT mainly depended on both surface adsorption and electrostatic adhesion. TA removal by ZVI mainly relied on coagulation/precipitation and adsorption during the iron corrosion. The two MI-PRBs are feasible alternatives for in situ remediation of groundwater with elevated As levels.

  2. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract

    Directory of Open Access Journals (Sweden)

    Khairia M. Al-Qahtani

    2017-12-01

    Full Text Available Cadmium (II is an important element used in various industries, however, it is a poisonous element that affects the health of plants, animals and humans alike. It’s very important to remove this element from contaminated waters. This study aims at synthesizing zero valent silver nanoparticles by environmentally ecofriendly method without using hazardous compounds (via green approach. In this work, silver nanoparticles were prepared using hot water for the Ficus tree (Ficus Benjamina leaf extract (FBLE. The size of crystalline for AgNPs was measured by UV–vis spectroscopy and flourier transform infrared (FTIR. The properties of nano-silver particles (AgNPs have been studied using scanning electron microscope (SEM. The capability of nanoparticles to remove Cd2+ from contaminated solution was then studied. Parameter like adsorbent dose, heavy metal concentration, pH, agitation speed and contact time were studied. Cadmium removal increased when the dosage of biosorbent increases, pH increased from 1 to 6, contact time from 5 to 40 and initial concentration of Cd decrease. Isotherm adsorption was also described by the Freundleich model with a constant correlation (R2 higher than 0.973.

  3. Iron uptake and transport at the blood-brain barrier

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    The mechanism by which iron is transported across the blood-brain barrier (BBB) remains controversial, and in this study we aimed to further clarify mechanisms by which iron is transported into the brain. We analyzed and compared the mRNA and protein expression of a variety of proteins involved...... in the transport of iron (transferrin receptor, divalent metal transporter I (DMT1), steap 2, steap 3, ceruloplasmin, hephaestin and ferroportin) in both primary rat brain capillary endothelial cells (BCEC) and immortalized rat brain capillary endothelial cell line (RBE4) grown in co-culture with defined polarity....... The mRNA expression of the iron-related molecules was also investigated in isolated brain capillaries from iron deficiency, iron reversible and normal rats. We also performed iron transport studies to analyze the routes by which iron is transported through the brain capillary endothelial cells: i) We...

  4. Automated Impedance Tomography for Monitoring Permeable Reactive Barrier Health

    Energy Technology Data Exchange (ETDEWEB)

    LaBrecque, D J; Adkins, P L

    2009-07-02

    The objective of this research was the development of an autonomous, automated electrical geophysical monitoring system which allows for near real-time assessment of Permeable Reactive Barrier (PRB) health and aging and which provides this assessment through a web-based interface to site operators, owners and regulatory agencies. Field studies were performed at four existing PRB sites; (1) a uranium tailing site near Monticello, Utah, (2) the DOE complex at Kansas City, Missouri, (3) the Denver Federal Center in Denver, Colorado and (4) the Asarco Smelter site in East Helena, Montana. Preliminary surface data over the PRB sites were collected (in December, 2005). After the initial round of data collection, the plan was modified to include studies inside the barriers in order to better understand barrier aging processes. In September 2006 an autonomous data collection system was designed and installed at the EPA PRB and the electrode setups in the barrier were revised and three new vertical electrode arrays were placed in dedicated boreholes which were in direct contact with the PRB material. Final data were collected at the Kansas City, Denver and Monticello, Utah PRB sites in the fall of 2007. At the Asarco Smelter site in East Helena, Montana, nearly continuous data was collected by the autonomous monitoring system from June 2006 to November 2007. This data provided us with a picture of the evolution of the barrier, enabling us to examine barrier changes more precisely and determine whether these changes are due to installation issues or are normal barrier aging. Two rounds of laboratory experiments were carried out during the project. We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in zero valent iron (ZVI) columns. In the second round of laboratory experiments we observed the electrical response from simulation of actual field PRBs at two sites: the

  5. Innocuous oil as an additive for reductive reactions involving zero valence iron

    International Nuclear Information System (INIS)

    Cary, J.W.; Cantrell, K.J.

    1994-11-01

    Reductive reactions involving zero valence iron appear to hold promise for in situ remediation of sites containing chlorinated hydrocarbon solvents and certain reducible metals and radionuclides. Treatment involves the injection of metallic iron and the creation of low levels of dissolved oxygen in the aqueous phase through oxidation of the metallic iron. The use of a biodegradable immiscible and innocuous organic liquid such as vegetable oil as an additive offers several intriguing possibilities. The oil phase creates a large oil-water interface that is immobile with respect to flow in the aqueous phase. This phase will act as a trap for chlorinated hydrocarbons and could potentially increase the reaction efficiency of reductive dehalogenation of chlorinated hydrocarbons by the metallic iron. When iron particles are suspended in the oil before injection they are preferentially held in the oil phase and tend to accumulate at the oil-water interface. Thus oil injection can serve as a mechanism for creating a stable porous curtain of metallic iron in the vadose to maintain a low oxygen environment which will minimize the consumption of the iron by molecular oxygen

  6. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    Science.gov (United States)

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first

  7. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater

    International Nuclear Information System (INIS)

    Dong Jun; Zhao Yongsheng; Zhang Weihong; Hong Mei

    2009-01-01

    Permeable reactive barrier (PRB) was a promising technology for groundwater remediation. Landfill leachate-polluted groundwater riches in various hazardous contaminants. Two lab-scale reactors (reactors A and B) were designed for studying the feasibility of PRB to remedy the landfill leachate-polluted groundwater. Zero valent iron (ZVI) and the mixture of ZVI and zeolites constitute the first section of the reactors A and B, respectively; the second section of two reactors consists of oxygen releasing compounds (ORCs). Experimental results indicated that BOD 5 /COD increased from initial 0.32 up to average 0.61 and 0.6 through reactors A and B, respectively. Removal efficiency of mixed media for pollutants was higher than that of single media (ZVI only). Zeolites exhibited selective removal of Zn, Mn, Mg, Cd, Sr, and NH 4 + , and removal efficiency was 97.2%, 99.6%, 95.9%, 90.5% and 97.4%, respectively. The maximum DO concentration of reactors A and B were 7.64 and 6.78 mg/L, respectively, while the water flowed through the ORC. Therefore, sequenced PRB system was effective and was proposed as an alternative method to remedy polluted groundwater by landfill leachate

  8. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    Science.gov (United States)

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  9. [Stabilization and long-term effect of chromium contaminated soil].

    Science.gov (United States)

    Wang, Jing; Luo, Qi-Shi; Zhang, Chang-Bo; Tan, Liang; Li, Xu

    2013-10-01

    Short-term (3 d and 28 d) and long-term (1 a) stabilization effects of Cr contaminated soil were investigated through nature curing, using four amendments including ferrous sulfide, ferrous sulfate, zero-valent iron and sodium dithionite. The results indicated that ferrous sulfide and zero-valent iron were not helpful for the stabilization of Cr(VI) when directly used because of their poor solubility and immobility. Ferrous sulfate could effectively and rapidly decrease total leaching Cr and Cr(VI) content. The stabilization effect was further promoted by the generation of iron hydroxides after long-term curing. Sodium dithionite also had positive effect on soil stabilization. Appropriate addition ratio of the two chemicals could help maintain the soil pH in range of 6-8.

  10. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    Directory of Open Access Journals (Sweden)

    Pattanathu K S M Rahman

    2014-06-01

    Full Text Available Ochre, consequence of acid mine drainage, is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588 in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the iron present in ochre and to determine the rate of the reduction process. The physico-chemical changes in the ochre sample after the microbial reduction process were observed by the production of zero-valent iron which was later confirmed by the detection of elemental Fe in XRD spectrum. The XRF results revealed that 69.16% and 84.82% of iron oxide can be reduced using G. sulfurreducens and S. denitrificans respectively after 8 days of incubation. These results could provide the basis for the development of a biohydrometallurgical process for the production of elemental iron from ochre sediments.

  11. Chemical stabilization of metals in mine wastes by transformed red mud and other iron compounds: laboratory tests.

    Science.gov (United States)

    Ardau, C; Lattanzi, P; Peretti, R; Zucca, A

    2014-01-01

    A series of static and kinetic laboratory-scale tests were designed in order to evaluate the efficacy of transformed red mud (TRM) from bauxite refining residues, commercial zero-valent iron, and synthetic iron (III) hydroxides as sorbents/reagents to minimize the generation of acid drainage and the release of toxic elements from multi-contaminant-laden mine wastes. In particular, in some column experiments the percolation of meteoric water through a waste pile, alternated with periods of dryness, was simulated. Wastes were placed in columns together with sorbents/reagents in three different set-ups: as blended amendment (mixing method), as a bed at the bottom of the column (filtration method), or as a combination of the two previous methods. The filtration methods, which simulate the creation of a permeable reactive barrier downstream of a waste pile, are the most effective, while the use of sorbents/reagents as amendments leads to unsatisfactory results, because of the selective removal of only some contaminants. The efficacy of the filtration method is not significantly affected by the periods of dryness, except for a temporary rise of metal contents in the leachates due to dissolution of soluble salts formed upon evaporation in the dry periods. These results offer original information on advantages/limits in the use of TRM for the treatment of multi-contaminant-laden mine wastes, and represent the starting point for experimentation at larger scale.

  12. Quantal and thermal zero point motion formulae of barrier transmission probability

    International Nuclear Information System (INIS)

    Takigawa, N.; Alhassid, Y.; Balantekin, A.B.

    1992-01-01

    A Green's function method is developed to derive quantal zero point motion formulae for the barrier transmission probability in heavy ion fusion reactions corresponding to various nuclear intrinsic degrees of freedom. In order to apply to the decay of a hot nucleus, the formulae are then generalized to the case where the intrinsic degrees of freedom are in thermal equilibrium with a heat bath. A thermal zero point motion formula for vibrational coupling previously obtained through the use of influence functional methods naturally follows, and the effects of rotational coupling are found to be independent of temperature if the deformation is rigid

  13. Regulatory mechanisms for iron transport across the blood-brain barrier.

    Science.gov (United States)

    Duck, Kari A; Simpson, Ian A; Connor, James R

    2017-12-09

    Many critical metabolic functions in the brain require adequate and timely delivery of iron. However, most studies when considering brain iron uptake have ignored the iron requirements of the endothelial cells that form the blood-brain barrier (BBB). Moreover, current models of BBB iron transport do not address regional regulation of brain iron uptake or how neurons, when adapting to metabolic demands, can acquire more iron. In this study, we demonstrate that both iron-poor transferrin (apo-Tf) and the iron chelator, deferoxamine, stimulate release of iron from iron-loaded endothelial cells in an in vitro BBB model. The role of the endosomal divalent metal transporter 1 (DMT1) in BBB iron acquisition and transport has been questioned. Here, we show that inhibition of DMT1 alters the transport of iron and Tf across the endothelial cells. These data support an endosome-mediated model of Tf-bound iron uptake into the brain and identifies mechanisms for local regional regulation of brain iron uptake. Moreover, our data provide an explanation for the disparity in the ratio of Tf to iron transport into the brain that has confounded the field. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Removal of Nitrate from Aqueous Solutions by Starch Stabilized nano Zero-Valent Iron(nZVI

    Directory of Open Access Journals (Sweden)

    Kaveh Yaghmaeian

    2016-09-01

    Full Text Available Background and Objective: Nitrate is one of the inorganic anions derived as a result of oxidation of elemental nitrogen. Urban and industrial wastewater, animal and vegetable waste products in large cities that have organic nitrogen are excreted along the soil. The primary risk of Nitrate in drinking water occurs when nitrate in the gastrointestinal tract switch to nitrite. Nitrite causes the oxidation of iron in hemoglobin of red blood cells, result in red blood cells could not carry the oxygen, a condition called methemoglobinemia. Therefore, achieving the new technologies for nitrate removal is necessary. Material and Methods: The present study was conducted at laboratory Scale in non-continuous batches. Stabilized adsorbent was produced through reducing Iron sulfate by sodium borohydride (NaBH4 in presence of Starch (0.2W % as a stabilizer. At first, the effect of various parameters such as contact time (10-90min, pH (3-11, adsorbent dose (0.5-3 g/L and initial concentration of arsenate (50-250 mg/L were investigated on process efficiency. Freundlich and Langmuir isotherm model equilibrium constant, were calculated. Residual nitrate were measured by using the DR5000 spectrophotometer. Results: The optimum values based on RSM for pH, absorbent dose, contact time, and initial concentration of nitrate were 5.87, 2.25 g/L, 55.7 min, and 110.35 mg/L respectively. Langmuir isotherm with R2= 0.9932 for nitrate was the best graph for the experimental data. The maximum amount of nitrate adsorption was 138.88mg/g. Conclusion: Stabilized absorbent due to have numerous absorption sites and Fe0 as a reducing agent could have great potential in nitrate removal from water.

  15. Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2014-01-01

    Polychlorinated biphenyls (PCB) are persistent organic pollutants (POP) that strongly adsorb in soils and sediments. There is a need to develop new and cost-effective solutions for the remediation of PCB contaminated soils. The suspended electrodialytic remediation combined with zero valent iron......ZVI showed encouraging tendencies and a base is thus formed for further optimization towards a new method for remediation of PCB polluted soils....... nanoparticles (nZVI) could be a competitive alternative to the commonly adapted solutions of incineration or landfilling. Surfactants can enhance the PCB desorption, dechlorination, and the contaminated soil cleanup. In this work, two different surfactants (saponin and Tween 80) were tested to enhance PCB...

  16. Degradação de corantes reativos pelo sistema ferro metálico/peróxido de hidrogênio Degradation of reactive dyes by the metallic iron/ hydrogen peroxide system

    Directory of Open Access Journals (Sweden)

    Cláudio Roberto Lima de Souza

    2005-03-01

    Full Text Available In this work the degradation of aqueous solutions of reactive azo-dyes is reported using a combined reductive/advanced oxidative process based in the H2O2/zero-valent iron system. At optimized experimental conditions (pH 7, H2O2 100 mg L-1, iron 7 g L-1 and using a continuous system containing commercial iron wool, the process afforded almost total discolorization of aqueous solutions of three reactive azo-dyes (reactive orange 16, reactive black 5 and brilliant yellow 3G-P at a hydraulic retention time of 2.5 min. At these conditions the hydrogen peroxide is almost totally consumed while the released total soluble iron reaches a concentration compatible with the current Brazilian legislation (15 mg L-1.

  17. Uranium(VI) Reduction by Nanoscale Zerovalent Iron in Anoxic Batch Systems

    International Nuclear Information System (INIS)

    Yan, Sen; Hua, Bin; Bao, Zhengyu; Yang, John; Liu, Chongxuan; Deng, Baolin

    2010-01-01

    This study investigated the influences of pH, bicarbonate, and calcium on U(VI) adsorption and reduction by synthetic nanosize zero valent iron (nano Fe 0 ) particles under an anoxic condition. The results showed that about 87.1%, 82.7% and 78.3% of U(VI) could be reduced within 96 hours in the presence of 10 mM bicarbonate at pHs 6.92, 8.03 and 9.03, respectively. The rates of U(VI) reduction and adsorption by nano Fe 0 , however, varied significantly with increasing pH and concentrations of bicarbonate and/or calcium. Solid phase analysis by X-ray photoelectron spectroscopy confirmed the formation of UO 2 and iron (hydr)oxides as a result of the redox interactions between adsorbed U(VI) and nano Fe 0 . This study highlights the potential important role of groundwater chemical composition in controlling the rates of U(VI) reductive immobilization using nano Fe 0 in subsurface environments.

  18. Effect of the addition of zero valent iron (Fe0) on the batch biological sulphate reduction using grass cellulose as carbon source

    CSIR Research Space (South Africa)

    Mulopo, J

    2013-09-01

    Full Text Available of grass cuttings and iron filings. Reactors A and B received twice as much grass (100 g) as C (50 g). Reactor A received no iron filings to act as a control, while reactors B and C received 50-g iron filings for the experimental duration. The results...

  19. Environmental transformations and ecological effects of iron-based nanoparticles.

    Science.gov (United States)

    Lei, Cheng; Sun, Yuqing; Tsang, Daniel C W; Lin, Daohui

    2018-01-01

    The increasing application of iron-based nanoparticles (NPs), especially high concentrations of zero-valent iron nanoparticles (nZVI), has raised concerns regarding their environmental behavior and potential ecological effects. In the environment, iron-based NPs undergo physical, chemical, and/or biological transformations as influenced by environmental factors such as pH, ions, dissolved oxygen, natural organic matter (NOM), and biotas. This review presents recent research advances on environmental transformations of iron-based NPs, and articulates their relationships with the observed toxicities. The type and extent of physical, chemical, and biological transformations, including aggregation, oxidation, and bio-reduction, depend on the properties of NPs and the receiving environment. Toxicities of iron-based NPs to bacteria, algae, fish, and plants are increasingly observed, which are evaluated with a particular focus on the underlying mechanisms. The toxicity of iron-based NPs is a function of their properties, tolerance of test organisms, and environmental conditions. Oxidative stress induced by reactive oxygen species is considered as the primary toxic mechanism of iron-based NPs. Factors influencing the toxicity of iron-based NPs are addressed and environmental transformations play a significant role, for example, surface oxidation or coating by NOM generally lowers the toxicity of nZVI. Research gaps and future directions are suggested with an aim to boost concerted research efforts on environmental transformations and toxicity of iron-based NPs, e.g., toxicity studies of transformed NPs in field, expansion of toxicity endpoints, and roles of laden contaminants and surface coating. This review will enhance our understanding of potential risks of iron-based NPs and proper uses of environmentally benign NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Removal of uranium (VI) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Ioana-Carmen, E-mail: ioana.popescu@icpmrr.ro [R and D National Institute for Metals and Radioactive Resources – ICPMRR Bucharest B-dul Carol I No. 70, Sector 2, 202917 Bucharest (Romania); Filip, Petru [C. D. Nenitescu Institute of Organic Chemistry, Splaiul Independentei 202B, Sector 6, 71141 Bucharest (Romania); Humelnicu, Doina, E-mail: doinah@uaic.ro [Al.I. Cuza University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Humelnicu, Ionel [Al.I. Cuza University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Scott, Thomas Bligh; Crane, Richard Andrew [Interface Analysis Centre, University of Bristol, 121 St. Michael’s Hill, Bristol BS2 8BS (United Kingdom)

    2013-11-15

    Carboxy-methyl-cellulose (CMC), a common “delivery vehicle” for the subsurface deployment of iron nanoparticles (INP) has been tested in the current work for the removal of aqueous uranium from synthetic water samples. A comparison of the removal of aqueous uranium from solutions using carboxy-methyl-cellulose with and without iron nanoparticles (CMC–INP and CMC, respectively) was tested over a 48 h reaction period. Analysis of liquid samples using spectrophotometry determined a maximum sorption capacity of uranium, Q{sub max}, of 185.18 mg/g and 322.58 mg/g for CMC and CMC–INP respectively, providing strong evidence of an independent aqueous uranium removal ability exhibited by CMC. The results point out that CMC provides an additional capacity for aqueous uranium removal. Further tests are required to determine whether similar behaviour will be observed for other aqueous contaminant species and if the presence of CMC within a INP slurry inhibits or aids the reactivity, reductive capacity and affinity of INP for aqueous contaminant removal.

  1. Remediation of Ni(2+)-contaminated water using iron powder and steel manufacturing byproducts.

    Science.gov (United States)

    Jin, Jian; Zhao, Wei-Rong; Xu, Xin-Hua; Hao, Zhi-Wei; Liu, Yong; He, Ping; Zhou, Mi

    2006-01-01

    Steel manufacturing byproducts and commercial iron powders were tested in the treatment of Ni(2+)-contaminated water. Ni2+ is a priority pollutant of some soils and groundwater. The use of zero-valent iron, which can reduce Ni2+ to its neural form appears to be an alternative approach for the remediation of Ni(2+)-contaminated sites. Our experimental data show that the removal efficiencies of Ni2+ were 95.15% and 94.68% at a metal to solution ratio of 20 g/L for commercial iron powders and the steel manufacturing byproducts in 60 min at room temperature, respectively. The removal efficiency reached 98.20% when the metal to solution ratio was 40 g/L for commercial iron powders. Furthermore, we found that the removal efficiency was also largely affected by other factors such as the pHs of the treated water, the length of time for the metal to be in contact with the Ni(2+)-contaminated water, initial concentrations of metal solutions, particle sizes and the amount of iron powders. Surprisingly, the reaction temperature appeared to have little effect on the removal efficiency. Our study opens the way to further optimize the reaction conditions of in situ remediation of Ni2+ or other heavy metals on contaminated sites.

  2. Implementation of fluidized granulated iron reactors in a chromate remediation process

    International Nuclear Information System (INIS)

    Müller, P.; Lorber, K.E.; Mischitz, R.; Weiß, C.

    2014-01-01

    A new approach concerning in-situ remediation on source (‘hot-spot’) decontamination of a chromate damage in connection with an innovative pump-and-treat-technique has been developed. Iron granulates show significant higher reduction rates, using fluidized bed conditions, than a literature study with a fixed bed installation of small-sized iron granules. First results from an abandoned tannery site concerning injections of sodium dithionite as a chromate reductant for the vadose zone in combination with a pump-and-treat-method, allying the advantages of granulated zero valent iron (ZVI), are reported. Reduction amounts of chromate have been found up to 88% compared with initial values in the soil after a soil water exchange of 8 pore volumes within 2.5 months. Chromate concentrations in the pumped effluent have been reduced to under the detection limit of 0.005 mg/L by treatment with ZVI in the pilot plant. - Highlights: • Fe-granules show high Cr(VI)-reduction rates using fluidized bed conditions. • No respective negligible passivation effects on the surface of the iron granulates. • P and T-method by using ZVI in a FBR is very effective for Cr(VI) remediation. • The process provides no increase in salinity of the treated effluent

  3. Reciprocal classes of p-valently spirallike and p-valently Robertson functions

    Directory of Open Access Journals (Sweden)

    Shiraishi Hitoshi

    2011-01-01

    Full Text Available Abstract For p-valently spirallike and p-valently Robertson functions in the open unit disk U , reciprocal classes S p ( α , β , and C p ( α , β are introduced. The object of the present paper is to discuss some interesting properties for functions f(z belonging to the classes Sp(α,β and Cp(α,β . 2010 Mathematics Subject Classification Primary 30C45

  4. Permeable reactive barrier - innovative technology for ground-water remediation

    International Nuclear Information System (INIS)

    Vidic, D.R.

    2002-01-01

    Significant advances in the application of permeable reactive barriers (PRBs) for ground-water remediation have been witnessed in the last 5 years. From only a few full-scale systems and pilot-scale demonstrations, there are currently at least 38 full-scale PRBs using zero-valent iron (ZVI) as a reactive material. Of those, 26 are continuous reactive walls, 9 are funnel-and- gate systems and 3 are in situ reactive vessels. Most of the PRB systems have used granular iron media and have been applied to address the control of contamination caused by chlorinated volatile organic compounds or heavy metals. Many regulatory agencies have expressed interest in PRB systems and are becoming more comfortable in issuing permits. The main advantage of PRB systems is that the installation costs are comparable with those of other ground-water remediation technologies, while the O and M costs are significantly lower and are mostly due to monitoring requirements, which are required for all remediation approaches. In addition, the land use can resume after the installation of the PRB systems, since there are few visible signs of the installation above grounds except for the monitoring wells. It is difficult to make any definite conclusions about the long-term performance of PRB systems because there is no more than 5 years of the record of performance that can be used for such analysis. The two main challenges still facing this technology are: (1) evaluating the longevity (geochemistry) of a PRB; and (2) ensuring/verifying hydraulic performance. A number of public/private partnerships have been established in recent years that are working together to resolve some of these problems. This organized approach by combining the efforts of several government agencies and private companies will likely result in better understanding and, hopefully, better acceptance of this technology in the future. (author)

  5. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    Science.gov (United States)

    Bedford, Robin B

    2015-05-19

    catalytic cycle. Meanwhile, the reactivity required of the lowest-oxidation-state species has been observed with model compounds in higher oxidation states, implying that there is no need to invoke such low oxidation states. While subzero-valent complexes do indeed act as effective precatalysts, it is important to recognize that this tells us that they are efficiently converted to an active catalyst but says nothing about the oxidation states of the species in the catalytic cycle. Zero-valent heterogeneous iron nanoparticles can be formed under typical catalytic conditions, but there is no evidence to suggest that homogeneous Fe(0) complexes can be produced under comparable conditions. It seems likely that the zero-valent nanoparticles act as a reservoir for soluble higher-oxidation-state species. Fe(II) complexes can certainly be formed under catalytically relevant conditions, and when bulky nucleophilic coupling partners are exploited, potential intermediates can be isolated. However, the bulky reagents act as poor proxies for most nucleophiles used in cross-coupling, as they give Fe(II) organometallic intermediates that are kinetically stabilized with respect to reductive elimination. When more realistic substrates are exploited, reduction or disproportionation to Fe(I) is widely observed, and while it still has not been conclusively proved, this oxidation state currently represents a likely candidate for the lowest one active in many iron-catalyzed cross-coupling processes.

  6. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  7. Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation

    International Nuclear Information System (INIS)

    Bezbaruah, Achintya N.; Shanbhogue, Sai Sharanya; Simsek, Senay; Khan, Eakalak

    2011-01-01

    Nanoscale zero-valent iron (NZVI) particles (10–90 nm) were encapsulated in biodegradable calcium-alginate capsules for the first time for application in environmental remediation. Encapsulation is expected to offers distinct advances over entrapment. Trichloroethylene (TCE) degradation was 89–91% in 2 h, and the reaction followed pseudo first order kinetics for encapsulated NZVI systems with an observed reaction rate constant (k obs ) of 1.92–3.23 × 10 −2 min −1 and a surface normalized reaction rate constant (k sa ) of 1.02–1.72 × 10 −3 L m −2 min −1 . TCE degradation reaction rates for encapsulated and bare NZVI were similar indicating no adverse affects of encapsulation on degradation kinetics. The shelf-life of encapsulated NZVI was found to be four months with little decrease in TCE removal efficiency.

  8. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal

    Science.gov (United States)

    Wei, Yufen; Fang, Zhanqiang; Zheng, Liuchun; Tsang, Eric Pokeung

    2017-03-01

    Eichhornia crassipes (water hyacinth), a species of invasive weeds has caused serious ecological damage due to its extraordinary fertility and growth rate. However, it has not yet been exploited for use as a resource. This paper reported the synthesis and characterization of amorphous iron nanoparticles (Ec-Fe-NPs) from Fe(III) salts in aqueous extracts of Eichhornia crassipes. The nanoparticles were characterized by SEM, EDS, TEM, XPS, FTIR, DLS and the zeta potential methods. The characterization results confirmed the successful synthesis of amorphous iron nanoparticles with diameters of 20-80 nm. Moreover, the nanoparticles were mainly composed of zero valent iron nanoparticles which were coated with various organic matters in the extracts as a capping or stabilizing agents. Batch experiments showed that 89.9% of Cr(VI) was removed by the Ec-Fe-NPs much higher than by the extracts alone (20.4%) and Fe3O4 nanoparticles (47.3%). Based on the kinetics study and the XPS analysis, a removal mechanism dominated by adsorption and reduction with subsequently co-precipitation was proposed.

  9. Health and Economic Impact of Switching from a 4-Valent to a 9-Valent HPV Vaccination Program in the United States.

    Science.gov (United States)

    Brisson, Marc; Laprise, Jean-François; Chesson, Harrell W; Drolet, Mélanie; Malagón, Talía; Boily, Marie-Claude; Markowitz, Lauri E

    2016-01-01

    Randomized clinical trials have shown the 9-valent human papillomavirus (HPV) vaccine to be highly effective against types 31/33/45/52/58 compared with the 4-valent. Evidence on the added health and economic benefit of the 9-valent is required for policy decisions. We compare population-level effectiveness and cost-effectiveness of 9- and 4-valent HPV vaccination in the United States. We used a multitype individual-based transmission-dynamic model of HPV infection and disease (anogenital warts and cervical, anogenital, and oropharyngeal cancers), 3% discount rate, and societal perspective. The model was calibrated to sexual behavior and epidemiologic data from the United States. In our base-case, we assumed 95% vaccine-type efficacy, lifelong protection, and a cost/dose of $145 and $158 for the 4- and 9-valent vaccine, respectively. Predictions are presented using the mean (80% uncertainty interval [UI] = 10(th)-90(th) percentiles) of simulations. Under base-case assumptions, the 4-valent gender-neutral vaccination program is estimated to cost $5500 (80% UI = 2400-9400) and $7300 (80% UI = 4300-11 000)/quality-adjusted life-year (QALY) gained with and without cross-protection, respectively. Switching to a 9-valent gender-neutral program is estimated to be cost-saving irrespective of cross-protection assumptions. Finally, the incremental cost/QALY gained of switching to a 9-valent gender-neutral program (vs 9-valent girls/4-valent boys) is estimated to be $140 200 (80% UI = 4200->1 million) and $31 100 (80% UI = 2100->1 million) with and without cross-protection, respectively. Results are robust to assumptions about HPV natural history, screening methods, duration of protection, and healthcare costs. Switching to a 9-valent gender-neutral HPV vaccination program is likely to be cost-saving if the additional cost/dose of the 9-valent is less than $13. Giving females the 9-valent vaccine provides the majority of benefits of a gender-neutral strategy. © The Author

  10. Transformation of Reactive Iron Minerals in a Permeable Reactive Barrier (Biowall) Used to Treat TCE in Groundwater

    Science.gov (United States)

    Abstract: Iron and sulfur reducing conditions are generally created in permeable reactive barrier (PRB) systems constructed for groundwater treatment, which usually leads to formation of iron sulfide phases. Iron sulfides have been shown to play an important role in degrading ch...

  11. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Science.gov (United States)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-03-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO4·7H2O or FeCl3), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  12. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction

    Czech Academy of Sciences Publication Activity Database

    Jeon, J.-R.; Murugesan, K.; Baldrian, Petr; Schmidt, S.; Chang, Y.-S.

    2016-01-01

    Roč. 38, APR 2016 (2016), s. 71-78 ISSN 0958-1669 Institutional support: RVO:61388971 Keywords : ZERO-VALENT IRON * POLYBROMINATED DIPHENYL ETHERS * CHEMICAL-BIOLOGICAL TREATMENT Subject RIV: EE - Microbiology, Virology Impact factor: 9.294, year: 2016

  13. Synthesis, Characterization and Application of Nano Lepidocrocite ...

    African Journals Online (AJOL)

    NICO

    Degradation of halogenated organic compounds using nanoparticles is one of the innovative ... way as the synthesis of nano zero-valent iron by using sodium .... +. −. 2и High. 2и Low. FWHM. Crystallite. /counts. /counts. /degree. /degree.

  14. Sustainable Zero-Valent Metal (ZVM Water Treatment Associated with Diffusion, Infiltration, Abstraction, and Recirculation

    Directory of Open Access Journals (Sweden)

    David D.J. Antia

    2010-09-01

    Full Text Available Socio-economic, climate and agricultural stress on water resources have resulted in increased global demand for water while at the same time the proportion of potential water resources which are adversely affected by sodification/salinisation, metals, nitrates, and organic chemicals has increased. Nano-zero-valent metal (n-ZVM injection or placement in aquifers offers a potential partial solution. However, n-ZVM application results in a substantial reduction in aquifer permeability, which in turn can reduce the amount of water that can be abstracted from the aquifer. This study using static diffusion and continuous flow reactors containing n-ZVM and m-ZVM (ZVM filaments, filings and punchings has established that the use of m-ZVM does not result in a reduction in aquifer permeability. The experimental results are used to design and model m-ZVM treatment programs for an aquifer (using recirculation or static diffusion. They also provide a predictive model for water quality associated with specific abstraction rates and infiltration/injection into an aquifer. The study demonstrates that m-ZVM treatment requires 1% of the weight required for n-ZVM treatment for a specific flow rate. It is observed that 1 t Fe0 will process 23,500 m3 of abstracted or infiltrating water. m-ZVM is able to remove >80% of nitrates from flowing water and adjust the water composition (by reduction in an aquifer to optimize removal of nitrates, metals and organic compounds. The experiments demonstrate that ZVM treatment of an aquifer can be used to reduce groundwater salinity by 20 –> 45% and that an aquifer remediation program can be designed to desalinate an aquifer. Modeling indicates that widespread application of m-ZVM water treatment may reduce global socio-economic, climate and agricultural stress on water resources. The rate of oxygen formation during water reduction [by ZVM (Fe0, Al0 and Cu0] controls aquifer permeability, the associated aquifer pH, aquifer Eh

  15. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron.

    Science.gov (United States)

    Yu, Kai; Gu, Cheng; Boyd, Stephen A; Liu, Cun; Sun, Cheng; Teppen, Brian J; Li, Hui

    2012-08-21

    Subnanoscale zerovalent iron (ZVI) synthesized using smectite clay as a template was utilized to investigate reduction of decabromodiphenyl ether (DBDE). The results revealed that DBDE was rapidly debrominated by the prepared smectite-templated ZVI with a reaction rate 10 times greater than that by conventionally prepared nanoscale ZVI. This enhanced reduction is plausibly attributed to the smaller-sized smectite-templated ZVI clusters (∼0.5 nm) vs that of the conventional nanoscale ZVI (∼40 nm). The degradation of DBDE occurred in a stepwise debromination manner. Pentabromodiphenyl ethers were the terminal products in an alkaline suspension (pH 9.6) of smectite-templated ZVI, whereas di-, tri-, and tetrabromodiphenyl ethers formed at the neutral pH. The presence of tetrahydrofuran (THF) as a cosolvent at large volume fractions (e.g., >70%) in water reduced the debromination rates due to enhanced aggregation of clay particles and/or diminished adsorption of DBDE to smectite surfaces. Modification of clay surfaces with tetramethylammonium (TMA) attenuated the colsovent effect on the aggregation of clay particles, resulting in enhanced debromination rates. Smectite clay provides an ideal template to form subnanoscale ZVI, which demonstrated superior debromination reactivity with DBDE compared with other known forms of ZVIs. The ability to modify the nature of smectite clay surface by cation exchange reaction utilizing organic cations can be harnessed to create surface properties compatible with various contaminated sites.

  16. Mitigation of Irrigation Water Using Zero-Valent Iron Treatment

    Science.gov (United States)

    Significant problems have occurred in the U.S. with regard to the contamination of produce by pathogenic bacteria. Minimally processed produce lacks the processing and preparation hurdles, such as cooking, to aid in reduction or elimination of the occasional and incidental contamination that can le...

  17. Degradation of Energetic Compounds using Zero-Valent Iron (ZVI)

    Science.gov (United States)

    2012-03-01

    aquatic plants, thermophilic biological regeneration of GAC, Fenton’s oxidation, electrolytic oxidation and anaerobic fluidized bed reactor. However...attack by oxygenase enzymes (Bruhn et al., 1987). Therefore, these energetic compounds are often removed from wastewater by costly physical-chemical... enzymes (Bruhn et al., 1987; Knackmuss, 1996). Chemical oxidation methods (e.g., advanced oxidation processes) are also ineffective because of the

  18. Ambient iron-mediated aeration (IMA) for water reuse.

    Science.gov (United States)

    Deng, Yang; Englehardt, James D; Abdul-Aziz, Samer; Bataille, Tristan; Cueto, Josenrique; De Leon, Omar; Wright, Mary E; Gardinali, Piero; Narayanan, Aarthi; Polar, Jose; Tomoyuki, Shibata

    2013-02-01

    Global water shortages caused by rapidly expanding population, escalating water consumption, and dwindling water reserves have rendered water reuse a strategically significant approach to meet current and future water demand. This study is the first to our knowledge to evaluate the technical feasibility of iron-mediated aeration (IMA), an innovative, potentially economical, holistic, oxidizing co-precipitation process operating at room temperature, atmospheric pressure, and neutral pH, for water reuse. In the IMA process, dissolved oxygen (O₂) was continuously activated by zero-valent iron (Fe⁰) to produce reactive oxygen species (ROS) at ambient pH, temperature, and pressure. Concurrently, iron sludge was generated as a result of iron corrosion. Bench-scale tests were conducted to study the performance of IMA for treatment of secondary effluent, natural surface water, and simulated contaminated water. The following removal efficiencies were achieved: 82.2% glyoxylic acid, ~100% formaldehyde as an oxidation product of glyoxylic acid, 94% of Ca²⁺ and associated alkalinity, 44% of chemical oxygen demand (COD), 26% of electrical conductivity (EC), 98% of di-n-butyl phthalate (DBP), 80% of 17β-estradiol (E2), 45% of total nitrogen (TN), 96% of total phosphorus (TP), 99.8% of total Cr, >90% of total Ni, 99% of color, 3.2 log removal of total coliform, and 2.4 log removal of E. Coli. Removal was attributed principally to chemical oxidation, precipitation, co-precipitation, coagulation, adsorption, and air stripping concurrently occurring during the IMA treatment. Results suggest that IMA is a promising treatment technology for water reuse. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    Murdoch, L.

    1997-01-01

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed

  20. Environmental Electrokinetics for a sustainable subsurface

    DEFF Research Database (Denmark)

    Lima, A.T.; Hofmann, A.; Reynolds, D.R.

    2017-01-01

    notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, and excavation and disposal. Decades of field applications have shown that these techniques can successfully treat or control...

  1. Quantum-chemical consideration of extermal valent forms of actinides

    International Nuclear Information System (INIS)

    Ionova, G.V.; Pershina, V.G.; Spitsyn, V.I.

    1982-01-01

    Stability of valent forms of actinides that has not yet studied experimentally, is considered within the framework of quantum-chemical considerations. Oxidizing potentials E 0 for actinide elements are determined theoretically. A dependence of the definite valent state stability on relativistic effect is shown. A conclusion is made that oxidizing potential E 0 (4-5) for americium should be higher than E 0 (4-5) for plutonium. A relatively small oxidizing potential E 0 (4-5) for curium speaks about principle possibility of production of five-valent curium in solution, though it is less stable than the six-valent one. Oxidizing potential corresponding to transition of three-valent californium into the four-valent state should be less than the value adopted in literature. A relatively small oxidizing potential of californium E 0 (4-5) speaks about possible existence of five-valent californium in solution

  2. Phosphate Barriers for Immobilization of Uranium Plumes

    International Nuclear Information System (INIS)

    Burns, Peter C.

    2005-01-01

    Uranium contamination of the subsurface has remained a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of fissile uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB's) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB?s, such as zero-valent iron, are a temporary solution to a problem that will persist for thousands of years. Alternatives to the standard treatment methods are therefore warranted. The core objective of our research is to demonstrate that a phosphorus amendment strategy will result in a reduction of dissolved uranium to below the proposed drinking water standard. Our hypothesis is that long-chain polyphosphate compounds forestall precipitation of sparingly soluble uranyl phosphate compounds, which is key to preventing fouling of wells at the point of injection. Our other fundamental objective is to synthesize and correctly characterize the uranyl phosphate phases that form in the geochemical conditions under consideration. This report summarizes work conducted at the University of Notre Dame through November of 2003 under DOE grant DE-FG07-02ER63489, which has been funded since September, 2002. The objectives at Notre Dame are development of synthesis techniques for uranyl phosphate phases, together with detailed structural and chemical characterization of the myriad of uranyl phosphate phases that may form under geochemical conditions under consideration

  3. Potential and barrier study. Passive house and near-zero energy buildings; Potensial- og barrierestudie. Passivhus og naer nullenergibygninger

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The main conclusion from the analysis is that the barriers to realize both passive and near zero-energy buildings are significant. In addition to being a mere economic assessment indicates that 30-70% of the technical potential is not profitable depending on energy price levels, the barriers is reducing the economic potential with approximately another half as a realistic market potential.(eb)

  4. Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use

    Science.gov (United States)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Christian

    2013-01-01

    simpler and cheaper than previously used methods for producing hydrogenation catalysts. Preferably, the hydrogenation catalyst is a bimetallic particle formed from a zero-valent iron or zero-valent magnesium particle coated with palladium that is impregnated onto a high-surface-area graphite support. The zero-valent metal particles should be microscale or nanoscale zero-valent magnesium or zero-valent iron particles. Other zero-valent metal particles and combinations may be used. Additionally, the base material may be selected from a variety of minerals including, but not limited to, alumina and zeolites. The catalytic metal is preferably selected from the group consisting of noble metals and transition metals, preferably palladium. The mechanical milling process includes milling the base material with a catalytic metal impregnated into a high-surface-area support to form the hydrogenation catalyst. In a preferred mechanical milling process, a zero-valent metal particle is provided as the base material, preferably having a particle size of less than about 10 microns, preferably 0.1 to 10 microns or smaller, prior to milling. The catalytic metal is supported on a conductive carbon support structure prior to milling. For example, palladium may be impregnated on a graphite support. Other support structures such as semiconductive metal oxides may also be used.

  5. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Nikki; Greenlee, Lauren F., E-mail: lauren.greenlee@nist.gov [National Institute of Standards and Technology, Materials Reliability Division (United States)

    2012-03-15

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO{sub 4}{center_dot}7H{sub 2}O or FeCl{sub 3}), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  6. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    International Nuclear Information System (INIS)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-01-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO 4 ·7H 2 O or FeCl 3 ), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05–0.9) and borohydride-to-iron (0.5–8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  7. Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study.

    Science.gov (United States)

    Neumann, Anke; Kaegi, Ralf; Voegelin, Andreas; Hussam, Abul; Munir, Abul K M; Hug, Stephan J

    2013-05-07

    The main arsenic mitigation measures in Bangladesh, well-switching and deep tube wells, have reduced As exposure, but water treatment is important where As-free water is not available. Zero-valent iron (ZVI) based SONO household filters, developed in Bangladesh, remove As by corrosion of locally available inexpensive surplus iron and sand filtration in two buckets. We investigated As removal in SONO filters in the field and laboratory, covering a range of typical groundwater concentrations (in mg/L) of As (0.14-0.96), Fe (0-17), P (0-4.4), Ca (45-162), and Mn (0-2.8). Depending on influent Fe(II) concentrations, 20-80% As was removed in the top sand layer, but As removal to safe levels occurred in the ZVI-layer of the first bucket. Residual As, Fe, and Mn were removed after re-aeration in the sand of the second bucket. New and over 8-year-old filters removed As to iron matrix (CIM) of newer filters and predominantly magnetite in older filters. As mass balances indicated that users filtered less than reported volumes of water, pointing to the need for more educational efforts. All tested SONO filters provided safe drinking water without replacement for up to over 8 years of use.

  8. Kinetics of Transferrin and Transferrin-Receptor during Iron Transport through Blood Brain Barrier

    Science.gov (United States)

    Khan, Aminul; Liu, Jin; Dutta, Prashanta

    2017-11-01

    Transferrin and its receptors play an important role during the uptake and transcytosis of iron by blood brain barrier (BBB) endothelial cells to maintain iron homeostasis in BBB endothelium and brain. In the blood side of BBB, ferric iron binds with the apo-transferrin to form holo-transferrin which enters the endothelial cell via transferrin receptor mediated endocytosis. Depending on the initial concentration of iron inside the cell endocytosed holo-transferrin can either be acidified in the endosome or exocytosed through the basolateral membrane. Acidification of holo-transferrin in the endosome releases ferrous irons which may either be stored and used by the cell or transported into brain side. Exocytosis of the holo-transferrin through basolateral membrane leads to transport of iron bound to transferrin into brain side. In this work, kinetics of internalization, recycling and exocytosis of transferrin and its receptors are modeled by laws of mass action during iron transport in BBB endothelial cell. Kinetic parameters for the model are determined by least square analysis. Our results suggest that the cell's initial iron content determines the extent of the two possible iron transport pathways, which will be presented in this talk Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  9. Zero carbon homes: Perceptions from the UK construction industry

    International Nuclear Information System (INIS)

    Heffernan, Emma; Pan, Wei; Liang, Xi; Wilde, Pieter de

    2015-01-01

    The take-up of the many voluntary energy efficiency standards which exist in the UK and internationally has been limited. As a result, governments have recognised the need to introduce mandatory schemes through legislation, e.g. from 2016 all new build homes in the UK will be required to achieve zero carbon in regulated energy consumption. However, as 2016 approaches, very few zero carbon homes are being delivered. This paper explores the drivers and barriers for zero carbon homebuilding. The perceptions of the wider construction industry were gathered through a series of semi-structured interviews with professionals involved in commissioning, designing, constructing and regulating housing. The results show that, whilst drivers for zero carbon homebuilding exist, the barriers are currently perceived to be greater than the drivers. The barriers are categorised into five groups: economic, skills and knowledge, industry, legislative and cultural. Mechanisms for policy and industry support for the delivery of zero carbon homes are identified to address these barriers. The research findings highlight the need for a clear and robust policy framework for the forthcoming standard. The Government and industry must prioritise raising public awareness of the need for and benefits of zero carbon homes to help develop market demand. - Highlights: • The strongest drivers were perceived to be in the legislative and economic themes. • More barriers were identified than drivers or potential support mechanisms. • Economic and skills and knowledge barriers were perceived as the most significant. • Uncertainty in zero carbon homes policy is a barrier to zero carbon homebuilding. • Proposed support mechanisms include zero carbon champions and self-build homes

  10. Backfill barriers: the use of engineered barriers based on geologic materials to assure isolation of radioactive wastes in a repository. [Nickel-iron alloys

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.; Cook, N.G.W.

    1981-06-01

    A preliminary assessment is made to show that canisters fabricated of nickel-iron alloys, and surrounded by a suitable backfill, may produce an engineered barrier where the canister material is thermodynamically stable with respect to its environment. As similar conditions exist in nature, the performance of such systems as barriers to isolate radionuclides can be predicted over very long periods, of the order of 10/sup 6/ years.

  11. Removal of nitrate by zero-valent iron and pillared bentonite

    International Nuclear Information System (INIS)

    Li Jianfa; Li Yimin; Meng Qingling

    2010-01-01

    The pillared bentonite prepared by intercalating poly(hydroxo Al(III)) cations into bentonite interlayers was used together with Fe(0) for removing nitrate in column experiments. The obvious synergetic effect on nitrate removal was exhibited through uniformly mixing the pillared bentonite with Fe(0). In such a mixing manner, the nitrate was 100% removed, and the removal efficiency was much higher than the simple summation of adsorption by the pillared bentonite and reduction by Fe(0). The influencing factors such as bentonite type, amount of the pillared bentonite and initial pH of nitrate solutions were investigated. In this uniform mixture, the pillared bentonite could adsorb nitrate ions, and facilitated the mass transfer of nitrate onto Fe(0) surface, then accelerated the nitrate reduction. The pillared bentonite could also act as the proton-donor, and helped to keep the complete nitrate removal for at least 10 h even when the nitrate solution was fed at nearly neutral pH.

  12. Decolourisation and degradation of reactive blue 2 by sulphate ...

    African Journals Online (AJOL)

    This work was performed to determine the influence of heat treatment on sewage sludge and addition of zero valent iron (ZVI) on the degradation and decolourisation of an anthraquinone dye, reactive blue 2 (RB 2). A consortium of sulphate reducing bacteria (SRB) in a biosulphidogenic batch reactor with biodigester ...

  13. Impurity model for mixed-valent Mn3+/Mn4+ ions

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1997-01-01

    Intermediate valent tri- and tetravalent manganese ions play an important role in LaMnO 3 -based systems. We consider a Mn impurity with five orbitals in cubic symmetry which hybridize with conduction electrons. The exchange interaction in the d shell maximizes the impurity spin. We study the valence of the Mn impurity as a function of the splitting of the e g to t 2g orbitals in zero magnetic field and for the totally spin-polarized state. The lifting of the degeneracy of the e g levels due to a small quadrupolar field, related to the Mn-O bond length or a Jahn-Teller effect, is also investigated. Possible implications on the magnetoresistance are discussed. copyright 1997 The American Physical Society

  14. Study on the application of permeable reactive barriers for remediation of uranium mine pit water

    International Nuclear Information System (INIS)

    Li Na'na; Zhu Yucheng

    2012-01-01

    Permeable reactive barrier (PRB) is economical and convenient on in suit remediation of polluted groundwater. In this paper, according to characteristics of uranium mine pit water, laboratory-scale PRB reactors were designed with the mixture of valent iron, active carbon, hydrated lime and quartz sands as reaction media. The feasibility and effectiveness of treating uranium mine pit water by PRB were tested under 3 different proportions of contaminants through dynamic simulation tests, which came out the optimal proportion of contaminants. The result indicated that the remediation effect of reactor B was the best, whose average removal rate to U was up to 99%. The quality of effluent attained the relevant standards, which indicated that the PRB technology is a feasible method for the treatment of uranium mine pit water. (authors)

  15. Enhanced ozonation degradation of di-n-butyl phthalate by zero-valent zinc in aqueous solution: Performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Gang [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Wang, Sheng-Jun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Beijing General Municipal Engineering Design and Research Institute, Beijing 100082 (China); Ma, Jun, E-mail: majun@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Huang, Ting-Lin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); Liu, Zheng-Qian, E-mail: liuzhengqian@gmail.com [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhao, Lei [School of Civil Engineering, Harbin Institute of Technology, Harbin 150090 (China); Su, Jun-Feng [State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Highlights: • ZVZ showed an obvious enhanced effect on DBP degradation in ozonation. • The recycling use of ZVZ resulted in the enhancement of DBP degradation. • The formed ZnO and reactive intermediates were responsible for the enhanced effect. • The enhanced effect on DBP degradation by ZVZ was also effective in actual waters. -- Abstract: Enhanced ozonation degradation of di-n-butyl phthalate (DBP) by zero-valent zinc (ZVZ) has been investigated using a semi-continuous reactor in aqueous solution. The results indicated that the combination of ozone (O{sub 3}) and ZVZ showed an obvious synergetic effect, i.e. an improvement of 54.8% on DBP degradation was obtained by the O{sub 3}/ZVZ process after 10 min reaction compared to the cumulative effect of O{sub 3} alone and O{sub 2}/ZVZ. The degradation efficiency of DBP increased gradually with the increase of ZVZ dosage, enhanced as solution pH increasing from 2.0 to 10.0, and more amount of DBP was degraded with the initial concentration of DBP arising from 0.5 to 2.0 mg L{sup −1}. Recycling use of ZVZ resulted in the enhancement of DBP degradation, because the newly formed zinc oxide took part in the reaction. The mechanism investigation demonstrated that the enhancement effect was attributed to the introduction of ZVZ, which could promote the utilization of O{sub 3}, enhance the formation of superoxide radical by reducing O{sub 2} via one-electron transfer, accelerate the production of hydrogen peroxide and the generation of hydroxyl radical. Additionally, the newly formed zinc oxide on ZVZ surface also contributed to the enhancement of DBP degradation in the recycling use of ZVZ. Most importantly, the O{sub 3}/ZVZ process was also effective in enhanced ozonation degradation of DBP under the background of actual waters.

  16. Zero field reversal probability in thermally assisted magnetization reversal

    Science.gov (United States)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  17. Enhancement of Methane Concentration by Removing Contaminants from Biogas Mixtures Using Combined Method of Absorption and Adsorption

    OpenAIRE

    Al Mamun, Muhammad Rashed; Torii, Shuichi

    2017-01-01

    We report a laboratory scale combined absorption and adsorption chemical process to remove contaminants from anaerobically produced biogas using cafeteria (food), vegetable, fruit, and cattle manure wastes. Iron oxide (Fe2O3), zero valent iron (Feo), and iron chloride (FeCl2) react with hydrogen sulfide (H2S) to deposit colloidal sulfur. Silica gel, sodium sulfate (Na2SO4), and calcium oxide (CaO) reduce the water vapour (H2O) and carbon dioxide (CO2). It is possible to upgrade methane (CH4) ...

  18. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.

    Science.gov (United States)

    Bae, Sungjun; Hanna, Khalil

    2015-09-01

    While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).

  20. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  1. Tratamento de água subterrânea contaminada com compostos organoclorados usando ferro elementar e o reagente de Fenton Treatment of groundwater contaminated with chlorinated compounds using elemental iron and Fenton's reagent

    Directory of Open Access Journals (Sweden)

    Tatiana Langbeck de Arruda

    2007-01-01

    Full Text Available The remediation of groundwater containing organochlorine compounds was evaluated using a reductive system with zero-valent iron, and the reductive process coupled with Fenton's reagent. The concentration of the individual target compounds reached up to 400 mg L-1 in the sample. Marked reductions in the chlorinated compounds were observed in the reductive process. The degradation followed pseudo-first-order kinetics in terms of the contaminant and was dependent on the sample contact time with the solid reducing agent. An oxidative test with Fenton's reagent, followed by the reductive assay, showed that tetrachloroethylene was further reduced up to three times the initial concentration. The destruction of chloroform, however, demands an additional treatment.

  2. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    Science.gov (United States)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  3. Enhancing the reactivity of bimetallic Bi/Fe{sup 0} by citric acid for remediation of polluted water

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianyu; Lee, Chung-Seop; Kim, Eun-Ju [School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Chang, Yoon-Young [Department of Environmental Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Chang, Yoon-Seok, E-mail: yschang@postech.ac.kr [School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2016-06-05

    Highlights: • A novel bismuth modified zero valent iron (Bi/Fe{sup 0}) was synthesized. • The Bi/Fe{sup 0} + CA(citric acid) + O{sub 2} system could produce ·OH and ·O{sub 2}{sup −}. • Some recalcitrant pollutants could be treated by Bi/Fe{sup 0} + CA + O{sub 2} in a short time. • The formation of Fe(III)-citric results in the generation of ·OH and ·O{sub 2}{sup −}. - Abstract: In this study, the environmentally benign citric acid (CA) was utilized to improve the aerobic degradation of 4-chlorophenol (4-CP) over bismuth modified nanoscale zero-valent iron (Bi/Fe{sup 0}). The characterization results revealed the existence of bismuth covering on the Fe{sup 0} surface under zero-valent state. And, the Bi/Fe{sup 0}-CA + O{sub 2} system performed excellent reactivity in degradation of 4-CP due to the generation of reactive oxygen species (ROS), which was confirmed by electron spin resonance (ESR) spectroscopy. After 30 min of reaction, 80% of 4-CP was removed using Bi/Fe{sup 0}-CA + O{sub 2} accompanying with high dechlorination rate. The oxidative degradation intermediates were analyzed by HPLC and LC-MS. We found that CA could promote the bismuth-iron system to produce much reactive oxygen species ROS under both aerobic and anaerobic conditions due to its ligand function, which could react with Fe{sup 3+} to form a ligand complex (Fe(III)Cit), accompanying with a considerable production of Fe{sup 2+} and H{sub 2}O{sub 2}. This study provides a new strategy for generating ROS on nZVI and suggests its application for the mineralization of many recalcitrant pollutants.

  4. Effectiveness of various sorbents and biological oxidation in the removal of arsenic species from groundwater

    NARCIS (Netherlands)

    Corsini, A.; Cavalca, L.; Muyzer, G.; Zaccheo, P.

    2014-01-01

    The AsIII and AsV adsorption capacity of biochar, chabazite, ferritin-based material, goethite and nano zero-valent iron was evaluated in artificial systems at autoequilibrium pH (i.e. MilliQ water without adjusting the pH) and at approximately neutral pH (i.e. TRIS-HCl, pH 7.2). At autoequilibrium

  5. Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter in reverse osmosis concentrate

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Shin, Hang-Sik

    2013-01-01

    , the influence of hardness, alkalinity, and organic matter on NZVI reactivity was evaluated by the response surface method (RSM). Hardness (Ca2 ) had a positive effect on NZVI reactivity by accelerating iron corrosion. In contrast, alkalinity (bicarbonate; HCO3-) and organic matter (humic acid; HA) had negative...... effects on NZVI reactivity due to morphological change to carbonate green rust, and to competitive adsorption of HA, respectively. The validity of the statistical prediction model derived from RSM was confirmed by an additional confirmation experiment, and the experimental result was within the 95......% confidential interval. Therefore, it can be said that the RSM model produced results that were statistically significant....

  6. Photoemission studies of mixed valent systems

    International Nuclear Information System (INIS)

    Parks, R.D.; Raaen, S.; denBoer, M.L.; Williams, G.P.

    1984-01-01

    Photoemission spectroscopy has been used to study a number of aspects of the mixed valent state (corresponding to non-integral 4f occupation) in rare earth systems. Deep core photoemission (e.g., from 3d or 4d levels) allows the measurement of the 4f occupancy and surface valence shifts, and, as well, the indirect measurement of the effect of solid state environment on the energy of hybridization between 4f electrons and conduction electrons. 4f-Derived photoemission has been used to study surface valance and chemical shifts and to infer the nature of the mixed valent ground state. A combination of 4f-derived photoemission and add-electron spectroscopy provides a measurement of the rf Coulomb correlation energy, an important parameter in the mixed valent problem. A review of these approaches will be presented, with emphasis on Ce-based systems, whose behavior falls outside the usual description of 4f-unstable systems

  7. Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

    Science.gov (United States)

    Siskova, Karolina; Tucek, Jiri; Machala, Libor; Otyepkova, Eva; Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek

    2012-03-01

    We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.

  8. Electrosynthèse assistée par ultrasons de nanoparticules de fer à valence zéro : étude de la croissance de dépôts et de leur dispersion par ondes acoustiques

    OpenAIRE

    Iranzo , Audrey

    2016-01-01

    This study concerns the coupling of the ultrasounds with the electrodeposition process for the synthesis of zero-valent iron nanoparticles; it is structured in two sections. The first focuses on the electrode substrate used for the iron electrodeposition and aims to determine its influence on both the deposit growth and its dispersion by ultrasonication. The interfacial and the adhesion energies of the deposit on the substrate (Y_(Fe/substrate) and W_(Fe/substrate) respectively) being related...

  9. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.

    Science.gov (United States)

    Ju, Yongming; Liu, Xiaowen; Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande; Dionysiou, Dionysios D

    2015-04-28

    To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe(0)), Cu(2+) ions were deposited on the surface of s-Fe(0) using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu(0) loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3∼5 millimeter s-Fe(0) particles (s-Fe(0)(3∼5mm)) with 5wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu(0)-s-Fe(0) showed excellent stability after five reuse cycles. Cu(0)-s-Fe(0) possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu(0) apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe2O3 and Fe3O4 played minor role for the removal of RhB. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. In-situ Lead Removal by Iron Nano Particles Coated with Nickel

    Directory of Open Access Journals (Sweden)

    Mohammadreza Fadaei-tehrani

    2016-01-01

    Full Text Available This study investigates the potential of nano-zero-valent iron particles coated with nickel in the removal of lead (Pb2+ from porous media. For this purpose, the nano-particles were initially synthesized and later stablilized using the strach biopolymer prior to conducting batch and continuous experiments. The results of the batch experiments revealed that the reaction kinetics fitted well with the pseudo-first-order adsorption model and that the reaction rate ranged from 0.001 to 0.035 g/mg/min depending on solution pH and the molar ratio of Fe/Pb. Continuous experiments showed that lead remediation was mostly influenced not only by seepage velocity but also by the quantity and freshness of nZVI as well as the grain type of the porous media. Maximum Pb2+ removal rates obtained in the batch and lab models were 95% and 80%, respectively. Based on the present study, S-nZVI may be suggested as an efficient agent for in-situ remediation of groundwater contaminated with lead.

  11. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3......The iron complex of the hexadentate ligand N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena) efficiently catalyzes selective oxidations of electron-rich olefins and sulfides by insoluble iodosylbenzene (PhIO). Surprisingly, these reactions are faster and more selective than homogenous...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  12. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram

    2013-08-01

    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  13. Bonding in Heavier Group 14 Zero-Valent Complexes-A Combined Maximum Probability Domain and Valence Bond Theory Approach.

    Science.gov (United States)

    Turek, Jan; Braïda, Benoît; De Proft, Frank

    2017-10-17

    The bonding in heavier Group 14 zero-valent complexes of a general formula L 2 E (E=Si-Pb; L=phosphine, N-heterocyclic and acyclic carbene, cyclic tetrylene and carbon monoxide) is probed by combining valence bond (VB) theory and maximum probability domain (MPD) approaches. All studied complexes are initially evaluated on the basis of the structural parameters and the shape of frontier orbitals revealing a bent structural motif and the presence of two lone pairs at the central E atom. For the VB calculations three resonance structures are suggested, representing the "ylidone", "ylidene" and "bent allene" structures, respectively. The influence of both ligands and central atoms on the bonding situation is clearly expressed in different weights of the resonance structures for the particular complexes. In general, the bonding in the studied E 0 compounds, the tetrylones, is best described as a resonating combination of "ylidone" and "ylidene" structures with a minor contribution of the "bent allene" structure. Moreover, the VB calculations allow for a straightforward assessment of the π-backbonding (E→L) stabilization energy. The validity of the suggested resonance model is further confirmed by the complementary MPD calculations focusing on the E lone pair region as well as the E-L bonding region. Likewise, the MPD method reveals a strong influence of the σ-donating and π-accepting properties of the ligand. In particular, either one single domain or two symmetrical domains are found in the lone pair region of the central atom, supporting the predominance of either the "ylidene" or "ylidone" structures having one or two lone pairs at the central atom, respectively. Furthermore, the calculated average populations in the lone pair MPDs correlate very well with the natural bond orbital (NBO) populations, and can be related to the average number of electrons that is backdonated to the ligands. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Removal of Perfluorinated Compounds From Water using Nanoscale Zero-Valent Iron

    OpenAIRE

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus; Nikolaos, Thomaidis S.; Athanasios, Stasinakis S.

    2014-01-01

    Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond, the application of biological and conventional physicochemical treatment methods does not seem to remove sufficient these compounds from water and wastewater. In the current study, the removal efficiency of four ...

  15. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis.

    Science.gov (United States)

    Zhang, Zhengwen; Han, Yuxing; Xu, Chunyan; Ma, Wencheng; Han, Hongjun; Zheng, Mengqi; Zhu, Hao; Ma, Weiwei

    2018-04-21

    Mixotrophic denitrification coupled biological denitrification with iron and carbon micro-electrolysis (IC-ME) is a promising emerging bioprocess for nitrate removal of biologically enhanced treated coal gasification wastewater (BECGW) with low COD to nitrate ratio. TN removal efficiency in R1 with IC-ME assisted was 16.64% higher than R2 with scrap zero valent iron addition, 23.05% higher than R3 with active carbon assisted, 30.51% higher than R4 with only active sludge addition, 80.85% higher than R5 utilizing single IC-ME as control. Fe 2+ generated from IC-ME decreased the production of N 2 O and enriched more Nitrate-reducing Fe(Ⅱ) oxidation bacteria (NRFOB) Acidovorax and Thiobacillus, which could convert nitrate to nitrogen gas. And the presence of Fe 3+ , as the Fe 2+ oxidation product, could stimulate the growth of Fe(III)-reducing strain (FRB) that indicated by redundancy analysis. Microbial network analysis demonstrated FRB Geothrix had a co-occurrence relationship with other bacteria, revealing its dominant involvement in nitrate removal of BECGW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Synchrotron speciation data for zero-valent iron nanoparticles: Linear combination fitting table(#6) and figure(#9), and extended x-ray absorption fine structure figure(#10) and table(#7)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include...

  17. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water

    Czech Academy of Sciences Publication Activity Database

    Vinod, V.T.P.; Waclawek, S.; Senan, Ch.; Kupčík, Jaroslav; Pešková, K.; Černík, M.; Somashekarappa, H. M.

    2017-01-01

    Roč. 7, č. 23 (2017), s. 13997-14009 ISSN 2046-2069 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : nanoscale zerovalent iron * ray photoelectron-spectroscopy * groundwater remediation * hexavalent chromium * xanthan gum * guar gum * waste-water Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 3.108, year: 2016

  18. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum.

    Science.gov (United States)

    Jones, Stephanie R; Wilson, Tiffany D; Brown, Margaret E; Rahn-Lee, Lilah; Yu, Yi; Fredriksen, Laura L; Ozyamak, Ertan; Komeili, Arash; Chang, Michelle C Y

    2015-03-31

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. To dissect the biological components that control this process, we have carried out a genetic and biochemical study of proteins proposed to function in iron mineralization. In this study, we show that the redox sites of c-type cytochromes of the Magnetospirillum magneticum AMB-1 magnetosome island, MamP and MamT, are essential to their physiological function and that ablation of one or both heme motifs leads to loss of function, suggesting that their ability to carry out redox chemistry in vivo is important. We also develop a method to heterologously express fully heme-loaded MamP from AMB-1 for in vitro biochemical studies, which show that its Fe(III)-Fe(II) redox couple is set at an unusual potential (-89 ± 11 mV) compared with other related cytochromes involved in iron reduction or oxidation. Despite its low reduction potential, it remains competent to oxidize Fe(II) to Fe(III) and mineralize iron to produce mixed-valent iron oxides. Finally, in vitro mineralization experiments suggest that Mms mineral-templating peptides from AMB-1 can modulate the iron redox chemistry of MamP.

  19. Development of an integrated, in-situ remediation technology. Topical report for task No. 9. Part I. TCE degradation using nonbiological methods, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Shapiro, A.P.; Sivavec, T.M.; Baghel, S.S.

    1997-01-01

    Contamination in low-permeability soils poses a significant technical challenge for in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low-permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is used to move the contaminants back and forth through those zones until the treatment is completed. The present Draft Topical Report for Task No. 9 summarizes laboratory investigations into TCE degradation using nonbiological methods. These studies were conducted by the General Electric Company. The report concentrates on zero valent iron as the reducing agent and presents data on TCE and daughter product degradation rates in batch experiments, column studies, and electroosmotic cells. It is shown that zero valent iron effectively degrades TCE in electroosmotic experiments. Daughter product degradation and gas generation are shown to be important factors in designing field scale treatment zones for the Lasagna trademark process

  20. EFFECT OF REACTIVE MATERIALS ON THE CONTENT OF SELECTED ELEMENTS IN INDIAN MUSTARD GROWN IN CR(VI-CONTAMINATED SOILS

    Directory of Open Access Journals (Sweden)

    Maja Radziemska

    2016-04-01

    Full Text Available Reactive materials represent a promising agent for environmental co-remediation. The research was aimed to determine the influence of hexavalent chromium in doses of 0, 25, 50, and 150 mg Cr(VI.kg-1 of soil as well as zero valent-iron, and lignite additives on the content of macroelements in the Indian mustard (Brassica juncea L.. The average accumulation of the analysed elements in Indian mustard grown in Cr(VI contaminated soil were found to follow the decreasing order Mg>Na>P>Ca>K. Soil contamination at 150 mg Cr(VI.kg-1 of soil led to the highest increase in magnesium, calcium, sodium, and potassium content in Indian mustard. The application of zero-valent iron had a positive influence on the average Na and K content of the tested plant. The application of lignite had a positive influence on the average magnesium, sodium and calcium content in the above-ground parts of the studied plant. In the non-amended treatments (without reactive materials, the increasing rates of chromium (VI had an explicitly positive effect on the content of phosphorous and sodium in Indian mustard.

  1. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles

    International Nuclear Information System (INIS)

    Xiong Zhong; Zhao Dongye; Pan Gang

    2009-01-01

    Highly reactive zero-valent iron (ZVI) nanoparticles stabilized with carboxymethyl cellulose (CMC) were tested for reduction of nitrate in fresh water and brine. Batch kinetic tests showed that the pseudo first-order rate constant (k obs ) with the stabilized nanoparticles was five times greater than that for non-stabilized counterparts. The stabilizer not only increased the specific surface area of the nanoparticles, but also increased the reactive particle surface. The allocation between the two reduction products, NH 4 + and N 2 , can be manipulated by varying the ZVI-to-nitrate molar ratio and/or applying a Cu-Pd bimetallic catalyst. Greater CMC-to-ZVI ratios lead to faster nitrate reduction. Application of a 0.05 M HEPES buffer increased the k obs value by 15 times compared to that without pH control. Although the presence of 6% NaCl decreased k obs by 30%, 100% nitrate was transformed within 2 h in the saline water. The technology provides a powerful alternative for treating water with concentrated nitrate such as ion exchange brine.

  2. Invasive pneumococcal infection despite 7-valent conjugated vaccine

    Directory of Open Access Journals (Sweden)

    Sebastien Joye

    2013-03-01

    Full Text Available Despite good cover with 7-valent vaccination, invasive pneumococcal infections may still be misdiagnosed and may lead to lifethreatening situations or death in young children. New serotypes are emerging and, therefore, clinicians must keep a high level of suspicion in young children regardless of their vaccination status. We report three cases of invasive pneumococcal infection due to new serotypes not covered by the 7-valent conjugated vaccine, two of which led children to death.

  3. Influence of Ligand Architecture in Tuning Reaction Bifurcation Pathways for Chlorite Oxidation by Non-Heme Iron Complexes

    NARCIS (Netherlands)

    Barman, Prasenjit; Faponle, Abayomi S; Vardhaman, Anil Kumar; Angelone, Davide; Löhr, Anna-Maria; Browne, Wesley R; Comba, Peter; Sastri, Chivukula V; de Visser, Sam P

    2016-01-01

    Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes,

  4. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate.

    Science.gov (United States)

    Manquián-Cerda, Karen; Cruces, Edgardo; Angélica Rubio, María; Reyes, Camila; Arancibia-Miranda, Nicolás

    2017-11-01

    The application of iron nanoparticles (FeNPs) to the removal of various pollutants has received wide attention over the last few decades. A synthesis alternative to obtain these nanoparticles without using harmful chemical reagents, such as NaBH 4 , is the use of extracts from different natural sources that allow a lesser degree of agglomeration, in a process known as green synthesis. In this study, FeNPs were synthesized by 'green' (hereafter, BB-Fe NPs) and 'chemical' (hereafter, nZVI) methods. Extracts of leaves and blueberry shoots (Vaccinium corymbosum) were used as reducing agents for FeCl 3 ·6H 2 O solution in the green synthesis method. FeNPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), electrophoretic migration, Brunauer-Emmett-Teller (BET) surface area analysis and X-ray diffraction (XRD) and evaluated for the removal of As(V) from aqueous systems. In both synthesis methods, XRD analysis confirmed the presence of the different kinds of iron nanoparticles. SEM analysis showed that the average size of BB-Fe NPs was 52.4nm and that a variety of nanoparticles of different forms and associated structures, such as lepidocrocite, magnetite, and nZVI, were present, while the dimensions of nZVI were 80.2nm. Comparatively significant differences regarding the electrophoretic mobility were found between both materials pre- and post-sorption of As(V). The velocity of As(V) removal by BB-Fe NPs was slower than that by nZVI, reaching equilibrium at 120min compared to 60min for nZVI. The removal kinetics of As(V) were adequately described by the pseudo-second-order kinetic model, and the maximum adsorbed amounts of this analyte are in close accordance with the experimental results. The Langmuir-Freundlich model is in good agreement with our experimental data, where the sorption capacity of nZVI and BB-Fe NPs was found to be 52.23 ± 6.06 and 50.40 ± 5.90 (mg·g -1 ), respectively. The use of leaves of Vaccinium

  5. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn; Zhang, Lizhi

    2017-01-30

    Highlights: • Bimetallic iron-nickel nanoparticles possessed an enhanced performance on aerobic degradation of 4-CP. • Hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI. • Superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. • The 4-CP degradation pathways were dependent on the generated superoxide radicals in the nZVIN/Air process. - Abstract: In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.

  6. I. Hole-transporting dendrimers and their use in organic light-emitting devices (OLEDs) and II. Novel layered catalysts containing bipyridinium and zero-valent metal species

    Science.gov (United States)

    Koene, Shannon Carol

    A series of polyaromatic ether/ester dendrimers containing a hole transporting naphthylphenylbenzyl amine at the periphery and a variety of fluorescent dyes at the core has been studied in an effort to observe energy transfer in these species. The dyes incorporated in these dendrimers include 1,4-dihydroxyanthraquinone (quinizarin), Coumarin 343, and a benzopentathiophene. These dendrimers have been incorporated into both single layer and heterostructure organic light emitting devices (OLEDs). In the case of first generation dendrimer OLEDs, excimer/exciplex formation was predominant. In third generation dendrimers, complete energy transfer from the periphery to the dye at the core was observed both in photoluminescence spectra and electroluminescence in OLEDs. Dendrimers containing different dye cores can be combined to achieve color mixing/tuning. In addition, layered catalysts were prepared via both covalent and electrostatic means to achieve the catalytic production of hydrogen peroxide from hydrogen and oxygen. Covalent catalysts were prepared by first growing layers of zirconium and a bipyridinium containing bisphosphonate onto silica particles. Palladium and/or platinum was ion-exchanged into the structure and reduced to the zero valent metal by hydrogen gas. A second set of catalysts was prepared by electrostatically depositing polycations/polyanions onto carboxylate or amine functionalized polystyrene microspheres. Anionic colloidal particles were adsorbed to the polycationic surface. An octacationic viologen oligomer was used in an attempt to increase the affinity of adsorption of the Pd particles to the surface of the microspheres. Catalytic studies of both types of catalysts are herein reported.

  7. Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems.

    Science.gov (United States)

    Ahn, Joo Sung; Chon, Chul-Min; Moon, Hi-Soo; Kim, Kyoung-Woong

    2003-05-01

    Steel manufacturing byproducts were tested as a means of treating mine tailing leachate with a high As concentration. Byproduct materials can be placed in situ as permeable reactive barriers to control the subsurface release of leachate from tailing containment systems. The tested materials had various compositions of elemental Fe, Fe oxides, Ca-Fe oxides and Ca hydroxides typical of different steel manufacturing processes. Among these materials, evaporation cooler dust (ECD), oxygen gas sludge (OGS), basic oxygen furnace slag (BOFS) and to a lesser degree, electrostatic precipitator dust (EPD) effectively removed both As(V) and As(III) during batch experiments. ECD, OGS and BOFS reduced As concentrations to <0.5mg/l from 25mg/l As(V) or As(III) solution in 72 h, exhibiting higher removal capacities than zero-valent iron. High Ca concentrations and alkaline conditions (pH ca. 12) provided by the dissolution of Ca hydroxides may promote the formation of stable, sparingly soluble Ca-As compounds. When initial pH conditions were adjusted to 4, As reduction was enhanced, probably by adsorption onto iron oxides. The elution rate of retained As from OGS and ECD decreased with treatment time, and increasing the residence time in a permeable barrier strategy would be beneficial for the immobilization of As. When applied to real tailing leachate, ECD was found to be the most efficient barrier material to increase pH and to remove As and dissolved metals.

  8. Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0.

    Science.gov (United States)

    Jia, Hanzhong; Gu, Cheng; Li, Hui; Fan, Xiaoyun; Li, Shouzhu; Wang, Chuanyi

    2012-09-01

    Zero-valent iron holds great promise in treating groundwater, and its reactivity and efficacy depend on many surrounding factors. In the present work, the effects of solution chemistry such as pH, humic acid (HA), and inorganic ions on pentachlorophenol (PCP) dechlorination by smectite-templated Pd(0)/Fe(0) were systematically studied. Smectite-templated Pd(0)/Fe(0) was prepared by saturating the negatively charged sites of smectite clay with Fe(III) and a small amount of Pd(II), followed by borohydride reduction to convert Fe(III) and Pd(II) into zero-valent metal clusters. Batch experiments were conducted to investigate the effects of water chemistry on PCP remediation. The PCP dechlorination rate critically depends on the reaction pH over the range 6.0~10.0; the rate constant (k (obs)) increases with decreasing the reaction pH value. Also, the PCP remediation is inhibited by HA, which can be attributed to the electron competition of HA with H(+). In addition, the reduction of PCP can be accelerated by various anions, following the order: Cl(-) > HCO (3) (-) > SO (4) (2-) ~no anion. In the case of cations, Ca(2+) and Mg(2+) (10 mM) decrease the dechlorination rate to 0.7959 and 0.7798 from 1.315 h(-1), respectively. After introducing HA into the reaction systems with cations or/and anions, the dechlorination rates are similar to that containing HA alone. This study reveals that low pH and the presence of some anions such as Cl(-) facilitate the PCP dechlorination and induce the rapid consumption of nanosized zero-valent iron simultaneously. However, the dechlorination rate is no longer correlated to the inhibitory or accelerating effects by cations and anions in the presence of 10 mg/L HA.

  9. Dielectric Sensing of Toxic and Explosive Chemicals via Impedance Spectroscopy and Plasmonic Resonance

    Science.gov (United States)

    2017-05-07

    who thoroughly characterized the rapid decontamination of chemical warfare agents VX, soman (GD) and distilled mustard gas (HD)18. The work shows...Joshua J. Phillips, Jennifer R. Soliz, and Adam J. Hauser, “XMCD and Impedance Analysis of Fe2O3 Nanoparticles for Explosive and Chemical Warfare ...Virender K Sharma,"Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate (VI)/(III) composite" Journal of hazardous

  10. Effect of pH on the dissolution kinetics of zero-valent iron in the presence of EDDHA and EDTA

    International Nuclear Information System (INIS)

    Lodge, Alexander M.; Pierce, Eric M.; Wellman, Dawn M.; Rodriguez, Elsa A.

    2007-01-01

    The effect of environmental factors (e.g., pH, solution composition, and temperature) that affect the longevity of Fe(0) barriers in the subsurface are difficult to quantify independently from changes that occur to the passivating layer. Therefore, to quantify the rate of Fe(0) dissolution under conditions which maintain the pO2 at a relatively constant level and minimize the formation of a passivating layer on the metal surface, a series of experiments have been conducted with the single-pass flow-through (SPFT) apparatus. These experiments were conducted over the pH range from 7.0 to 12.0 at 90 C in the presence of 5 mM EDDHA or 5 mM EDTA. The organic acids, EDDHA and EDTA, helped to maintain the aqueous Fe concentration below saturation with respect to Fe-bearing alteration phases and minimize the formation of a partially oxidized surface film. Results suggest the corrosion of Fe(0) is relatively insensitive to pH and the forward or maximum dissolution rate is 3 to 4 orders of magnitude higher than when a passive film and corrosion products are present

  11. Photo Degradation of Methyl Orange by Persulfate Activated with Zero Valent Iron

    Science.gov (United States)

    Munkoeva, V. A.; Sizykh, M. R.; Batoeva, A. A.

    2017-11-01

    The oxidative degradation of Methyl Orange (MO) subjected to direct photolysis (Solar) and various oxidative systems was studied. The comparative experiments have shown that MO conversion and mineralization increases in the following order: Solar ∼ Solar/Fe0 ∼ Solar/S2O82- influence of the main factors (duration of exposure, the ratio of initial concentrations of MO:S2O82-:Fe0, pH and temperature of the reaction medium) on the degree of MO conversion and mineralization was studied. The optimal pH and temperature of the reaction medium were 5.8 and 25°C, respectively. The rate of MO decomposition and mineralization increased proportionally to the initial concentration of the oxidant at the molar ratios [S2O82-] :[MO] ≤ 12. Judging by the nature of the kinetic curves, a further increase of this ratio is impractical. However, an increase in the oxidant concentration had a positive effect on the degrees of conversion and mineralization of total organic carbon (TOC). Thus, at the ratios of 12:1 and 48:1, the conversion efficiency of TOC was 23 and 60 %, respectively. The optimal concentration of Fe0 was 100 mg/l.

  12. Bactericidal effect of starch-stabilized zero-valent iron nanoparticles on Escherichia coli

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2016-01-01

    Conclusion: The present study showed that nonstabilized Fe 0 nanoparticles have higher bactericidal efficiency than that of S-NZVI. This investigation also suggests that NZVI can be used as an effective and strong agent for antimicrobial applications.

  13. Optimization of Nanoscale Zero-Valent Iron for the Remediation of Groundwater Contaminants

    Science.gov (United States)

    2012-03-22

    2010), pp. 2360-2370. [7] P.G. Tratnyek and R.L. Johnson, Nanotechnologies for environmental cleanup, Nano Today 1 (2006), pp. 44-48. [8] A.D...Venkatakrishnan, F. Gheorghiu, L. Walata, R. Nash, and W.X. Zhang, Nanotechnology takes roots, Civil Eng. 73 (2003), pp. 64-69. [16] A. Gavaskar, L. Tatar...nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of para- nitrochlorobenzene in water, Desalination 271 (2011), pp. 11-19. [61] W.X

  14. Enhancement of stability and reactivity of nanosized zero-valent iron with polyhydroxybutyrate

    Czech Academy of Sciences Publication Activity Database

    Waclawek, S.; Chronopoulou, L.; Petrangeli Papini, M.; Vinod, V.T.P.; Palocci, C.; Kupčík, Jaroslav; Černík, M.

    2017-01-01

    Roč. 69, MAR (2017), s. 302-307 ISSN 1944-3994. [EDS Conference on Desalination for the Environment - Clean Water and Energy. Roma, 22.05.2016-26.05.2016] Institutional support: RVO:61388980 Keywords : Cr(VI) * nZVI * PHB * Remediation * Stabilization * VOC Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.631, year: 2016

  15. Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer.

    Science.gov (United States)

    Chen, Meng-yi; Su, Yuh-fan; Shih, Yang-hsin

    2014-11-01

    Stable nanoscale zero-valent iron (NZVI) particles have been developed to remediate chlorinated compounds. The degradation kinetics and efficiency of trichloroethylene (TCE) by a commercial stabilized NZVI with Na-acrylic copolymer (acNZVI) were investigated and compared with those by laboratory-synthesized NZVI and carboxymethyl cellulose (CMC)-stabilized NZVI particles. Results show that the degradation of TCE by acNZVI was faster than that by NZVI and CMC-NZVI. Increase in temperature enhanced the degradation rate and efficiency of TCE with acNZVI. The activation energy of TCE degradation by acNZVI was estimated to be 23 kJ/mol. The degradation rate constants of TCE decreased from 0.064 to 0.026 min(-1) with decrease in initial pH from 9.03 to 4.23. Common groundwater anions including NO3(-), Cl(-), HCO3(-), and SO4(2-) inhibited slightly the degradation efficiencies of TCE by acNZVI. The Na-acrylic copolymer-stabilized NZVI, which exhibited high degradation kinetics and efficiency, could be a good remediation agent for chlorinated organic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effects of Metal Micro and Nano-Particles on hASCs: An In Vitro Model

    OpenAIRE

    Palombella, Silvia; Pirrone, Cristina; Rossi, Federica; Armenia, Ilaria; Cherubino, Mario; Valdatta, Luigi; Raspanti, Mario; Bernardini, Giovanni; Gornati, Rosalba

    2017-01-01

    As the knowledge about the interferences of nanomaterials on human staminal cells are scarce and contradictory, we undertook a comparative multidisciplinary study based on the size effect of zero-valent iron, cobalt, and nickel microparticles (MPs) and nanoparticles (NPs) using human adipose stem cells (hASCs) as a model, and evaluating cytotoxicity, morphology, cellular uptake, and gene expression. Our results suggested that the medium did not influence the cell sensitivity but, surprisingly...

  17. Treatment technology of low concentration uranium-bearing wastewater and its research progress

    International Nuclear Information System (INIS)

    Wei Guangzhi; Xu Lechang

    2007-01-01

    With growth of the discharged uranium-bearing wastewater capacity, a low cost and effective treatment technology is required to avoid transferring and diffusion of the radioactive nuclides. On the basis of analyses of the source and characteristics of the low-concentration uranium-bearing wastewater, the conventional treatment technologies, such as, flocculating settling, ion exchange, concentration, adsorption, and some innovatory technologies, such as, membrane, microorganism, phytoremediation and zero-valent iron technology are introduced. (authors)

  18. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Yeol [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Na Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Shin, Dong Yun [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Park, Hee-Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Lee, Sang-Soo [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Joon Kwon, S. [Korea Institute of Science and Technology, Nanophotonics Research Center (Korea, Republic of); Lim, Dong-Hee [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Bong, Ki Wan [Korea University, Department of Chemical and Biological Engineering (Korea, Republic of); Son, Jeong Gon, E-mail: jgson@kist.re.kr [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Jin Young, E-mail: jinykim@kist.re.kr [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of)

    2017-03-15

    Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe{sub 2}O{sub 3}) microparticles with melamine. The heat treatment leads to transformation of Fe{sub 2}O{sub 3} microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E{sub 1/2} of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm{sup −2} indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

  19. On New p-Valent Meromorphic Function Involving Certain Differential and Integral Operators

    Directory of Open Access Journals (Sweden)

    Aabed Mohammed

    2014-01-01

    Full Text Available We define new subclasses of meromorphic p-valent functions by using certain differential operator. Combining the differential operator and certain integral operator, we introduce a general p-valent meromorphic function. Then we prove the sufficient conditions for the function in order to be in the new subclasses.

  20. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Llaneza, Verónica [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rodea-Palomares, Ismael [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Zhou, Zuo [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rosal, Roberto [Univ. de Alcalá, Dept. de Ingeniería Química (Spain); Fernández-Pina, Francisca [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States)

    2016-08-15

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} NPs with particle sizes ranging from 20 to 50 nm, and Fe{sup 0}-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe{sup 0}-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe{sup 0}-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  1. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    International Nuclear Information System (INIS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-01-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe_3O_4 and γ-Fe_2O_3 NPs with particle sizes ranging from 20 to 50 nm, and Fe"0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe"0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe"0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  2. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Science.gov (United States)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  3. Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates

    Science.gov (United States)

    Farina, Robert M.

    Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via

  4. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  5. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies

  6. Reflectionlessness, kurtosis and top curvature of potential barriers

    International Nuclear Information System (INIS)

    Ahmed, Zafar

    2006-01-01

    Apart from the rectangular barrier, other barriers having a single maximum generally display reflectivity, R(E), as a smoothly decreasing function of energy. We conjecture that symmetric potential barriers with a single maximum entail zeros or sharp minima in R(E) provided they have either their coefficient of kurtosis lying in the range (1.8, 3.0), or their top curvature as zero, or both

  7. Removal of iron and manganese using granular activated carbon and zeolite in artificial barrier of riverbank filtration

    Science.gov (United States)

    Ismail, Abustan; Harmuni, Halim; Mohd, Remy Rozainy M. A. Z.

    2017-04-01

    Iron and Manganese was examined from riverbank filtration (RBF) and river water in Sungai Kerian, Lubok Buntar, Serdang Kedah. Water from the RBF was influenced by geochemical and hydro chemical processes in the aquifer that made concentrations of iron (Fe), and manganese (Mn) high, and exceeded the standard values set by the Malaysia Ministry of Health. Therefore, in order to overcome the problem, the artificial barrier was proposed to improve the performance of the RBF. In this study, the capability and performance of granular activated carbon, zeolite and sand were investigated in this research. The effects of dosage, shaking speed, pH and contact time on removal of iron and manganese were studied to determine the best performance. For the removal of iron using granular activated carbon (GAC) and zeolite, the optimum contact time was at 2 hours with 200rpm shaking speed with 5g and 10g at pH 5 with percentage removal of iron was 87.81% and 83.20% respectively. The removal of manganese and zeolite arose sharply in 75 minutes with 90.21% removal, with 100rpm shaking speed. The GAC gave the best performance with 99.39% removal of manganese. The highest removal of manganese was achieved when the adsorbent dosage increased to 10g with shaking speed of 200rpm.

  8. Assessment of combined electro–nanoremediation of molinate contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helena I., E-mail: hrg@campus.fct.unl.pt [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Fan, Guangping [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), East Beijing Road, Nanjing 210008 (China); Mateus, Eduardo P. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias-Ferreira, Celia [CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Ribeiro, Alexandra B. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-09-15

    Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte. - Highlights: • Molinate is degraded in soil by zero valent iron nanoparticles (nZVI). • Higher contact time of nZVI with soil facilitates molinate degradation. • Soil type was the most significant factor influencing iron and molinate transport. • When using nZVI and EK molinate is not only transported to catholyte, but also degraded.

  9. Material Barriers to Diffusive Mixing

    Science.gov (United States)

    Haller, George; Karrasch, Daniel

    2017-11-01

    Transport barriers, as zero-flux surfaces, are ill-defined in purely advective mixing in which the flux of any passive scalar is zero through all material surfaces. For this reason, Lagrangian Coherent Structures (LCSs) have been argued to play the role of mixing barriers as most repelling, attracting or shearing material lines. These three kinematic concepts, however, can also be defined in different ways, both within rigorous mathematical treatments and within the realm of heuristic diagnostics. This has lead to a an ever-growing number of different LCS methods, each generally identifying different objects as transport barriers. In this talk, we examine which of these methods have actual relevance for diffusive transport barriers. The latter barriers are arguably the practically relevant inhibitors in the mixing of physically relevant tracers, such as temperature, salinity, vorticity or potential vorticity. We demonstrate the role of the most effective diffusion barriers in analytical examples and observational data. Supported in part by the DFG Priority Program on Turbulent Superstructures.

  10. Stationary responses of a Rayleigh viscoelastic system with zero barrier impacts under external random excitation.

    Science.gov (United States)

    Wang, Deli; Xu, Wei; Zhao, Xiangrong

    2016-03-01

    This paper aims to deal with the stationary responses of a Rayleigh viscoelastic system with zero barrier impacts under external random excitation. First, the original stochastic viscoelastic system is converted to an equivalent stochastic system without viscoelastic terms by approximately adding the equivalent stiffness and damping. Relying on the means of non-smooth transformation of state variables, the above system is replaced by a new system without an impact term. Then, the stationary probability density functions of the system are observed analytically through stochastic averaging method. By considering the effects of the biquadratic nonlinear damping coefficient and the noise intensity on the system responses, the effectiveness of the theoretical method is tested by comparing the analytical results with those generated from Monte Carlo simulations. Additionally, it does deserve attention that some system parameters can induce the occurrence of stochastic P-bifurcation.

  11. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers.

    Science.gov (United States)

    Liu, Tingyi; Yang, Xi; Wang, Zhong-Liang; Yan, Xiaoxing

    2013-11-01

    The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Barriers and enablers for iron folic acid (IFA) supplementation in pregnant women.

    Science.gov (United States)

    Siekmans, Kendra; Roche, Marion; Kung'u, Jacqueline K; Desrochers, Rachelle E; De-Regil, Luz Maria

    2017-12-22

    In order to inform large scale supplementation programme design, we review and summarize the barriers and enablers for improved coverage and utilization of iron and folic acid (IFA) supplements by pregnant women in 7 countries in Africa and Asia. Mixed methods were used to analyse IFA supplementation programmes in Afghanistan, Bangladesh, Indonesia, Ethiopia, Kenya, Nigeria, and Senegal based on formative research conducted in 2012-2013. Qualitative data from focus-group discussions and interviews with women and service providers were used for content analysis to elicit common themes on barriers and enablers at internal, external, and relational levels. Anaemia symptoms in pregnancy are well known among women and health care providers in all countries, yet many women do not feel personally at risk. Broad awareness and increased coverage of facility-based antenatal care (ANC) make it an efficient delivery channel for IFA; however, first trimester access to IFA is hindered by beliefs about when to first attend ANC and preferences for disclosing pregnancy status. Variable access and poor quality ANC services, including insufficient IFA supplies and inadequate counselling to encourage consumption, are barriers to both coverage and adherence. Community-based delivery of IFA and referral to ANC provides earlier and more frequent access and opportunities for follow-up. Improving ANC access and quality is needed to facilitate IFA supplementation during pregnancy. Community-based delivery and counselling can address problems of timely and continuous access to supplements. Renewed investment in training for service providers and effective behaviour change designs are urgently needed to achieve the desired impact. © 2018 John Wiley & Sons Ltd.

  13. Performance of a Zerovalent Iron Reactive Barrier for the Treatment of Arsenic in Groundwater: Part 2. Geochemical Modeling and Solid Phase Studies

    Science.gov (United States)

    Arsenic uptake processes were evaluated in a zerovalent iron reactive barrier installed at a lead smelting facility using geochemical modeling, solid-phase analysis, and X-ray absorption spectroscopy techniques. Aqueous speciation of arsenic plays a key role in directing arsenic...

  14. The X-625 Groundwater Treatment Facility: A field-scale test of trichloroethylene dechlorination using iron filings for the X-120/X-749 groundwater plume

    International Nuclear Information System (INIS)

    Liang, L.; West, O.R.; Korte, N.E.

    1997-09-01

    The dehalogenation of chlorinated solvents by zero-valence iron has recently become the subject of intensive research and development as a potentially cost-effective, passive treatment for contaminated groundwater through reactive barriers. Because of its successful application in the laboratory and other field sites, the X-625 Groundwater Treatment Facility (GTF) was constructed to evaluate reactive barrier technology for remediating trichloroethylene (TCE)-contaminated groundwater at the Portsmouth Gaseous Diffusion Plant (PORTS). The X-625 GTF was built to fulfill the following technical objectives: (1) to test reactive barrier materials (e.g., iron filings) under realistic groundwater conditions for long term applications, (2) to obtain rates at which TCE degrades and to determine by-products for the reactive barrier materials tested, and (3) to clean up the TCE-contaminated water in the X-120 plume. The X-625 is providing important field-scale and long-term for the evaluation and design of reactive barriers at PORTS. The X-625 GTS is a unique facility not only because it is where site remediation is being performed, but it is also where research scientists and process engineers can test other promising reactive barrier materials. In addition, the data collected from X-625 GTF can be used to evaluate the technical and economic feasibility of replacing the activated carbon units in the pump-and-treat facilities at PORTS

  15. Redox control of iron biomineralization in Magnetospirillum magneticum AMB-1

    Science.gov (United States)

    Jones, Stephanie Rhianon

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. In order to dissect the biological components that control this process, we have carried out genetic and biochemical studies of proteins proposed to function in iron mineralization in Magnetospirillum magneticum AMB-1. As iron biomineralization by magnetotactic bacteria represents a particularly interesting case for understanding how the production of nanomaterials can be programmed at the genetic level, we also apply synthetic biology techniques towards the production of new cellular materials and new cellular functions. As the production of magnetite requires both the formation of Fe(II) and Fe(III), the redox components of the magnetosome play an essential role in this process. Using genetic complementation studies, we show that the redox cofactors or heme sites of the two putative redox partners, MamP and MamT, are required for magnetite biomineralization in vivo and that removal of one or both sites leads to defects in mineralization. We develop and optimize a heterologous expression method in the E. coli periplasm to cleanly isolate fully heme-loaded MamP for biochemical studies. Spectrochemical redox titrations show that the reduction potential of MamP lies in a different range than other c-type cytochrome involved in either Fe(III) reduction or Fe(II) oxidation. Nonetheless, in vitro mineralization studies with MamP and Fe(II) show that it is able to catalyze the formation of mixed-valent Fe(II)/Fe(III) oxides such as green rust. Biomineralization also requires lattice-templating proteins that guide the growth of the functional crystalline material. We

  16. Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Baun, Anders; Vastrup, Troels

    2013-01-01

    including synthesis intermediates and degradation products of organophosphates. The ZVI treatment showed that all the contaminants were degraded with the exception of two diesters (phosphorothioates). The most rapid reduction was found for methyl parathion, ethyl parathion and malathion, which had first...

  17. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    Science.gov (United States)

    2010-04-01

    point (knot>~) $0 th~t tha tube hanqs cle~1 o( tha wei l C3&in9 1o14ll. fluml’ .., atar ttam tnc "’t ’ll by Of"H•tinq h.Jnd le •t a tate of o~t...Number Name Printed Name Printed Meeting Conducted By Supervisor Signature Protective Clothing / Equipment Chemical Hazards Physical Hazards

  18. Theoretical Analyses of Superconductivity in Iron Based ...

    African Journals Online (AJOL)

    fire7-

    using double time temperature dependent Green's function formalism and a suitable decoupling approximation technique, we ... phenomenon of zero electric resistivity in mercury was soon followed by the observation of the superconducting state in ... The iron, Fe2+ forms tetrahedron within the layers. This means that, iron-.

  19. In Situ Wetland Restoration Demonstration

    Science.gov (United States)

    2016-06-01

    bituminous coal based activated carbon, 10% bentonite clay , and 85% aggregate by weight.  SediMiteTM – SediMiteTM is a proprietary composite...its associated marsh. Portions of the marsh associated with Canal Creek were used for landfilling of sanitary wastes and production waste disposal...u c ti o n i n P C B C o n c e n tr a ti o n ( % ) Treatment Replicate 1 Replicate 2 Powdered Activated Organo Clay Zero Valent Iron 1 stdev -270

  20. Rapid treatment of water contaminated with Atrazine and Parathion with sero-valent iron

    International Nuclear Information System (INIS)

    Rima, Jamil; Amine, Charbel; Ghauch, Antoine; Martin-Bouyer, Michel

    1999-01-01

    Full text.Experiments were conducted in order to assess the utility of fine-grained iron metal in the remediation of water contaminated with pesticides. The two pesticides that were chosen for this study were Atrazine and Parathion. batch procedures under water treatment conditions (ambient temperature and circumneutral pH) indicated that these pesticides degrade rapidly in the presence of iron powder (40-60 mes, 40 g/L). The decline in the concentration of pesticide was monitored by HPLC analysis supplemented with programmable multiwavelength UV/VIS detector. Experiments were run in buffered solutions. Tests were also performed on an industrial effluent solution containing a variety of pesticides. Our HPLC results indicating the disappearance of all the parent pollutants

  1. Theoretical Study of Spin Crossover in 30 Iron Complexes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    Spin crossover was studied in 30 iron complexes using density functional theory to quantify the direction and magnitude of dispersion, relativistic effects, zero-point energies, and vibrational entropy. Remarkably consistent entropy−enthalpy compensation was identified. Zero-point energies favor...

  2. Microtiter plate based colorimetric assay for characterization of dehalogenation activity of GAC/Fe0 composite

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Salatas, Apostolos; Mines, Paul D.

    2015-01-01

    of nZVI and its composite with granular activated carbon (GAC). The assay focused on analysis of reaction products rather than its mother compounds, which gives more accurate quantification of reductive activity. The colorimetric assays were developed to quantify three reaction products, ammonia......Even though nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, a quantification of nZVI reactivity has not been standardized. Here, we developed series of colorimetric assays for determining reductive activity...

  3. Costs and cost-effectiveness of 9-valent human papillomavirus (HPV) vaccination in two East African countries.

    Science.gov (United States)

    Kiatpongsan, Sorapop; Kim, Jane J

    2014-01-01

    Current prophylactic vaccines against human papillomavirus (HPV) target two of the most oncogenic types, HPV-16 and -18, which contribute to roughly 70% of cervical cancers worldwide. Second-generation HPV vaccines include a 9-valent vaccine, which targets five additional oncogenic HPV types (i.e., 31, 33, 45, 52, and 58) that contribute to another 15-30% of cervical cancer cases. The objective of this study was to determine a range of vaccine costs for which the 9-valent vaccine would be cost-effective in comparison to the current vaccines in two less developed countries (i.e., Kenya and Uganda). The analysis was performed using a natural history disease simulation model of HPV and cervical cancer. The mathematical model simulates individual women from an early age and tracks health events and resource use as they transition through clinically-relevant health states over their lifetime. Epidemiological data on HPV prevalence and cancer incidence were used to adapt the model to Kenya and Uganda. Health benefit, or effectiveness, from HPV vaccination was measured in terms of life expectancy, and costs were measured in international dollars (I$). The incremental cost of the 9-valent vaccine included the added cost of the vaccine counterbalanced by costs averted from additional cancer cases prevented. All future costs and health benefits were discounted at an annual rate of 3% in the base case analysis. We conducted sensitivity analyses to investigate how infection with multiple HPV types, unidentifiable HPV types in cancer cases, and cross-protection against non-vaccine types could affect the potential cost range of the 9-valent vaccine. In the base case analysis in Kenya, we found that vaccination with the 9-valent vaccine was very cost-effective (i.e., had an incremental cost-effectiveness ratio below per-capita GDP), compared to the current vaccines provided the added cost of the 9-valent vaccine did not exceed I$9.7 per vaccinated girl. To be considered very cost

  4. Cellular iron transport.

    Science.gov (United States)

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.

  5. Cost-effectiveness of 2 + 1 dosing of 13-valent and 10-valent pneumococcal conjugate vaccines in Canada

    Directory of Open Access Journals (Sweden)

    Earnshaw Stephanie R

    2012-04-01

    Full Text Available Abstract Background Thirteen-valent pneumococcal conjugate vaccine (PCV13 and 10-valent pneumococcal conjugate vaccine (PCV10 are two recently approved vaccines for the active immunization against Streptococcus pneumoniae causing invasive pneumococcal disease in infants and children. PCV13 offers broader protection against Streptococcus pneumoniae; however, PCV10 offers potential protection against non-typeable Haemophilus influenza (NTHi. We examined public health and economic impacts of a PCV10 and PCV13 pediatric national immunization programs (NIPs in Canada. Methods A decision-analytic model was developed to examine the costs and outcomes associated with PCV10 and PCV13 pediatric NIPs. The model followed individuals over the remainder of their lifetime. Recent disease incidence, serotype coverage, population data, percent vaccinated, costs, and utilities were obtained from the published literature. Direct and indirect effects were derived from 7-valent pneumococcal vaccine. Additional direct effect of 4% was attributed to PCV10 for moderate to severe acute otitis media to account for potential NTHi benefit. Annual number of disease cases and costs (2010 Canadian dollars were presented. Results In Canada, PCV13 was estimated to prevent more cases of disease (49,340 when considering both direct and indirect effects and 7,466 when considering direct effects only than PCV10. This translated to population gains of 258 to 13,828 more quality-adjusted life-years when vaccinating with PCV13 versus PCV10. Annual direct medical costs (including the cost of vaccination were estimated to be reduced by $5.7 million to $132.8 million when vaccinating with PCV13. Thus, PCV13 dominated PCV10, and sensitivity analyses showed PCV13 to always be dominant or cost-effective versus PCV10. Conclusions Considering the epidemiology of pneumococcal disease in Canada, PCV13 is shown to be a cost-saving immunization program because it provides substantial public

  6. ARSENATE AND ARSENITE SORPTION AND ARSENITE OXIDATION BY IRON (II, III) HYDROXYCARBONATE GREEN RUST

    Science.gov (United States)

    Iron (II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron that is being used in permeable reactive barriers to remediate groundwater arsenic contamination. To optimize the design of iron barriers, it is important to evaluate the influence of geoch...

  7. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (III): The effect of surface silver

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Zhang, Sukun [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Liu, Runlong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Fu, Jianping; Han, Jinglei; Fang, Jiande [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-12-15

    Highlights: • Direct reductive deposition reaction achieves surfaced decoration of s-Fe{sup 0} particles. • Ag{sup 0}-s-Fe{sup 0} displays similar removal efficiency of PCP as compared to bimetal of nZVI. • Ag{sup 0}-s-Fe{sup 0} can be utilized under mild reaction condition compared to bimetal of nZVI. • The catalytic mechanism over Ag{sup 0}-s-Fe{sup 0} under US condition is elucidated. - Abstract: To enhance the dechlorination reactivity of millimetric sponge iron (s-Fe{sup 0}), a facile one-pot method was used to decorate s-Fe{sup 0} with Ag{sup +} ions under ambient conditions. The results recorded by X-ray diffraction patterns, X-ray photoelectron spectra and high-resolution transmission electron microscopy demonstrated that the growth of Ag{sup 0} was dominated primarily by (1 1 1) plane with a mean length of ∼20 nm. The roles of Ag{sup 0} loading, catalyst dosage, particle size, initial pH and contaminant concentration were assessed during the removal of pentachlorophenol (PCP). Catalyst recyclability was also studied. The results revealed that 3–5 mm s-Fe{sup 0} particles with 5 wt% Ag{sup 0} loading exhibited the best performance with a dose of 3.0 g per 60 mL PCP solution. In addition, the dechlorination of PCP followed two-step, pseudo-first-order reaction kinetics, and Ag{sup 0}-s-Fe{sup 0} was advantageous compared with bimetals of nanoscale zero-valent iron, iron power and iron flakes. The dechlorination mechanism of PCP over Ag{sup 0}-s-Fe{sup 0} was attributed to the surface Ag{sup 0} decoration, which catalyzed the formation of reactive hydrogen atoms for indirect reaction, and the direct electron transfer via Fe–Ag{sup 0} galvanic cells for direct reaction. This suggests that Ag-based bimetals of s-Fe{sup 0} have great potential in the pretreatment of organic halogen compounds in aqueous solution.

  8. Mono- and binuclear complexes of low-valent zirconium

    NARCIS (Netherlands)

    Wielstra, IJtsen

    1990-01-01

    This thesis is a study on the synthesis and reactivity of low-valent zirconium. The investigation can be divided in two parts: the first describes the chemistry of mono-cyclopentadienyl Zr (II) complexes (Chapter II, III and IV), and the second describes some synthetic pathways successfully used for

  9. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

    2012-06-01

    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  10. Sulfur and iron accumulation in three marine-archaeological shipwrecks in the Baltic Sea: The Ghost, the Crown and the Sword

    Science.gov (United States)

    Fors, Yvonne; Grudd, Håkan; Rindby, Anders; Jalilehvand, Farideh; Sandström, Magnus; Cato, Ingemar; Bornmalm, Lennart

    2014-02-01

    Sulfur and iron concentrations in wood from three 17th century shipwrecks in the Baltic Sea, the Ghost wreck, the Crown and the Sword, were obtained by X-ray fluorescence (XRF) scanning. In near anaerobic environments symbiotic microorganisms degrade waterlogged wood, reduce sulfate and promote accumulation of low-valent sulfur compounds, as previously found for the famous wrecks of the Vasa and Mary Rose. Sulfur K-edge X-ray absorption near-edge structure (XANES) analyses of Ghost wreck wood show that organic thiols and disulfides dominate, together with elemental sulfur probably generated by sulfur-oxidizing Beggiatoa bacteria. Iron sulfides were not detected, consistent with the relatively low iron concentration in the wood. In a museum climate with high atmospheric humidity oxidation processes, especially of iron sulfides formed in the presence of corroding iron, may induce post-conservation wood degradation. Subject to more general confirmation by further analyses no severe conservation concerns are expected for the Ghost wreck wood.

  11. Environmental effects of engineered nanomaterials

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Hartmann, Nanna B.; Brinch, Anna

    This report presents ecotoxicological data and Predicted No-Effect Concentrations (PNECs) for nine selected nanomaterials which are considered to be environmentally relevant due to high usage or how they are used. These data will together with data from other reports/projects be used in an overall...... assessment of the environmental risk of nanomaterials in Denmark. The nine investigated nanomaterials are: Titanium Dioxide, Zinc Oxide, Silver, Carbon Nanotubes, Copper Oxide, Nano Zero Valent Iron, Cerium Dioxide, Quantum Dots and Carbon Black. To support the assessment of the data found in the peer...

  12. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

    2008-01-01

    Zero-field and in-field Moessbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  13. Nanoparticle Zere-valent Iron Affect on As (V Removal from Drinking Water

    Directory of Open Access Journals (Sweden)

    Hamed Koohpayehzadeh

    2012-10-01

    Full Text Available Arsenic which is present in the underground and surface water is one of the most toxic elements threating human health and animals. Arsenic has been removed in different type of ways. In this study Arsenic removal from drinking water and its decreasing rates were investigated by NZVI (nanoparticle zerovalent iron to standard limit (I.e.  0.01 mg/lit . The tests were conducted on reactor containing 100 ml water containing 1mg/L. Arsenic by virtue of Batch method. The mixture was executed in mixing was done an Oultrasnic device in order to have better mixture and complete distribution of nanoparticles in water. Then the arsenic was removed from the water by VATMAN paper of 0.45 Hm. The remained arsenic in the water was measured by ICP device. In this article the influence of the parameters including mixture time , PH ,NZVI and arcenic doses were examined . Having perfomed many tests the results showed that 1 mg arsenic can be removed 100 percent by 0.05 g NZVI in 8 min. It is possible to remove by 98 percent arsenic in 5-10 PH range. Iron nanopaticle way is an effective and rapid way to remove arsenic from water and various conditions have not considerable effect on it.

  14. Separation of valent forms of chromium (3) and chromium (6) by coprecipitation with iron (3) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1988-01-01

    Soption 9.62x10 -5 mol/l of 51 Cr radioactive isotope in oxidation states 3 and 6 by iron(3) hydroxide in 1 mol/l of KNO 3 and KCl depending on pH medium is investigated. The region of practically total concentration of Cr(3) and Cr(6 + ) (pH=3-6.5) is determined. The results of spectrophotometric investigations, calculational data on distribution of hydroxocation forms of chromium (3) and of chromium (6) anions and sorption by iron (3) hydroxide permit to characterize sorption of chromium forms in different stages of oxidation. The methods of chromium (3) and chromium (6) separation by coprecipitation of iron (3) hydroxide and their precipitation from it is developed on the above foundation

  15. Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon

    DEFF Research Database (Denmark)

    Mines, Paul D.; Andersen, Henrik Rasmus; Hwang, Yuhoon

    2016-01-01

    economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing...

  16. Nano-Sized Zero Valent Iron and Covalent Organic Polymer Composites for Azo Dye Remediation

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, Jeehye; Hwang, Yuhoon

    2014-01-01

    . In this study, the effect of various covalent organic polymers (COPs) as effective supporting materials for nZVI for optimal pollutant degradation was assessed. These COPs demonstrate promising results for the ability to adsorb and remove carbon dioxide, yielding the notion that they are capable of groundwater...... in chlorinated organics, heavy metals, and various other groundwater contaminants....

  17. Environmental application of millimeter-scale sponge iron (s-Fe{sup 0}) particles (II): The effect of surface copper

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, Ohio 45221-0012 (United States)

    2015-04-28

    Highlights: • Facile reduction reaction achieves decoration of Cu{sup 0} onto the surface of s-Fe{sup 0}. • The removal efficiency of RhB over Cu{sup 0}–s-Fe{sup 0} was similar to that of Cu{sup 0}–nZVI. • Cu{sup 0}–s-Fe{sup 0} can operate under mild condition with lower cost compared to nZVI. • The reductive mechanism over Cu{sup 0}–s-Fe{sup 0} under US condition is also elucidated. - Abstract: To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe{sup 0}), Cu{sup 2+} ions were deposited on the surface of s-Fe{sup 0} using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu{sup 0} loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3 ∼ 5 millimeter s-Fe{sup 0} particles (s-Fe{sup 0}(3 ∼ 5 mm)) with 5 wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu{sup 0}–s-Fe{sup 0} showed excellent stability after five reuse cycles. Cu{sup 0}–s-Fe{sup 0} possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu{sup 0} apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} played minor role for the removal of RhB.

  18. Space and Matter in the Poetic and Artistic Perception of José Ángel Valente

    Directory of Open Access Journals (Sweden)

    Ching Yu Lin

    2015-04-01

    Full Text Available The poetry of José Ángel Valente brings up fundamental issues of space and matter, combining the poetic voice with the artistic and philosophical thought. It reveals the sense of forms of arc and circle that correspond to the wisdom of Taoism and Zen. Valente composed some poems that responded to the concept of matter represented by Spanish artists, such as Eduardo Chillida, Luis Fernández and Antoni Tàpies. Furthermore, from an ethical perspective, in the poem “Hibakusha”, Valente´s matter offers audio experiences which indicate a space of historical memory and representation of human beings. We are invited to listen to the material and corporal space ruined by atomic bombs.          

  19. Synergistic efficiency of the desilication of brackish underground water in Saudi Arabia by coupling γ-radiation and Fenton process: Membrane scaling prevention in reverse osmosis process

    Science.gov (United States)

    Aljohani, Mohammed S.

    2017-12-01

    One of the main water resources in arid Saudi Arabia is underground water. However, this brackish water has high silica content which can cause a recalcitrant deposit on the membrane in the reverse osmosis units during its desalination. In this study, we examined the synergistic efficiency of the removal of silica from the Buwaib water sample, when combining two advanced oxidation processes, γ-irradiation and the Fenton process, using hydrogen peroxide and zero valent metal iron as source of Fe3+. This latter adsorbs effectively on silica and co-precipitate. The influence of absorbed dose, iron dosage and pH effect were investigated. This preliminary study showed that these attractive and effective hybrid processes are very efficient in removing silica.

  20. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  1. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  2. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  3. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead...... involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells...

  4. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    Science.gov (United States)

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  5. Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Awadallah, Ahmed E., E-mail: ahmedelsayed_epri@yahoo.com [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Aboul-Enein, Ateyya A. [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Kandil, Usama F. [Petroleum Application Department, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Taha, Mahmoud Reda [Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2017-04-15

    High quality few-layered graphene nano-platelets (GNPs) were successfully prepared via catalytic chemical vapor deposition of methane under ambient pressure using substrate-free unsupported iron, cobalt, and nickel metallic sheets as catalysts. The bulk catalysts were prepared via combustion method using citric acid as a fuel. Various analytical techniques, including high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), temperature programmed reduction (TPR) and Raman spectroscopy were employed to characterize the fresh and reduced catalysts and to identify the morphological structure of the as-grown GNPs. TEM images of the reduced metal catalysts showed that polycrystalline metallic sheets were easily produced after complete reduction of unsupported metal oxides. The data demonstrated that the formation of zero-valent metallic sheets could effectively promote the growth of GNPs on their surfaces. The unsupported Ni catalyst exhibits higher catalytic growth activity in terms of GNPs yield (254 wt%) compared with all other catalysts. Raman spectra and TEM results established that a few layers of GNPs with high crystallinity and good graphitization were produced. TGA results further demonstrated that the as-grown GNPs exhibit significantly higher thermal stability in air atmosphere compared with other synthesis methods. - Highlights: • Few-layered graphene nanoplatelets were prepared via methane catalytic decomposition. • Metallic sheets of iron group metals were used as novel catalysts. • The surfaces of metallic sheets were found to be very effective for GNPs growth. • The number of layers is dependent on the morphological structure of the catalysts. • The unsupported metallic Ni catalyst exhibited higher catalytic growth activity.

  6. Degradação redutiva de azo-corantes utilizando-se ferro metálico Reductive degradation of azo-dyes by metallic iron

    Directory of Open Access Journals (Sweden)

    Cláudio Lima de Souza

    2006-03-01

    Full Text Available Corantes azo são extensivamente utilizados em processos de tingimento de fibras têxteis, sendo caracterizados por elevada resistência frente a processos aeróbios de biodegradação e, por conseqüência, persistência nos processos convencionais de tratamento de resíduos. Neste trabalho reporta-se a degradação redutiva de corantes azo, utilizando-se ferro metálico. Em condições experimentais otimizadas (pH 7 e 10 g de lã de aço comercial a completa descoloração do corante modelo (preto reativo 5 foi conseguida em um sistema contínuo, operando com tempos de retenção de 6 min. Nestas condições, o ferro solubilizado alcança concentrações compatíveis com os limites impostos pela atual legislação brasileira (12 mg L-1. Trata-se de um resultado bastante promissor, principalmente levando-se em consideração o caráter recalcitrante dos azo corantes e a simplicidade do sistema proposto.Azo dyes are extensively used in textile dying processes and are characterized by extreme resistance to biodegradation and consequently persistence during conventional wastewater treatment processes. In this work the reductive degradation of azo dyes was studied using zero-valent iron. At optimized experimental conditions (pH 7 and 10 g of commercial iron wool complete decolorization of the model dye (reactive black 5 was afforded in a continuous system operating with hydraulic retention time of 6 min. At these conditions the released total soluble iron reaches a concentration compatible with the limits imposed by the current Brazilian legislation (12 mg L-1. That is a very promising result, mainly taking into account the high recalcitrant character of azo dyes and the simplicity of the proposed system.

  7. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    International Nuclear Information System (INIS)

    Han, Zhenbang; Han, Xu; Zhao, Xiaoming; Yu, Jiantao; Xu, Hang

    2016-01-01

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H 2 O 2 activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H 2 O 2 decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H 2 O 2 . In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  8. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubing [School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei, 230031 (China); Ding, Congcong; Cheng, Wencai [Institute of Plasma Physics, Chinese Academy of Science, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke, E-mail: xkwang@ipp.ac.cn [School of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206 (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-09-15

    Graphical abstract: - Highlights: • Sorption and in-situ reduction of U(VI) is observed. • The composites are more effective for U(VI) removal and solidification. • The inner-sphere surface complexes are observed. - Abstract: The reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized by chemical deposition method and were characterized by SEM, high resolution TEM, Raman and potentiometric acid-base titrations. The characteristic results showed that the nZVI nanoparticles can be uniformly dispersed on the surface of rGO. The removal of U(VI) on nZVI/rGO composites as a function of contact time, pH and U(VI) initial concentration was investigated by batch technique. The removal kinetics of U(VI) on nZVI and nZVI/rGO were well simulated by a pseudo-first-order kinetic model and pseudo-second-order kinetic model, respectively. The presence of rGO on nZVI nanoparticles increased the reaction rate and removal capacity of U(VI) significantly, which was attributed to the chemisorbed OH{sup −} groups of rGO and the massive enrichment of Fe{sup 2+} on rGO surface by XPS analysis. The XRD analysis revealed that the presence of rGO retarded the transformation of iron corrosion products from magnetite/maghemite to lepidocrocite. According to the fitting of EXAFS spectra, the U-C (at ∼2.9 Å) and U-Fe (at ∼3.2 Å) shells were observed, indicating the formation of inner-sphere surface complexes on nZVI/rGO composites. Therefore, the nZVI/rGO composites can be suitable as efficient materials for the in-situ remediation of uranium-contaminated groundwater in the environmental pollution management.

  9. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Hosny KM

    2015-01-01

    Full Text Available Khaled Mohamed Hosny,1,2 Zainy Mohammed Banjar,3 Amani H Hariri,4 Ali Habiballah Hassan5 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt; 3Department of Clinical Biochemistry, Faculty of medicine, King Abdulaziz University, Jeddah, Saudi Arabia; 4Consultant Obstetrics and Gynecology, Hera Genaral Hospital, Makkah, Saudi Arabia; 5Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: According to the World Health Organization, 46% of the world’s children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In

  10. EXPERIENCE OF USE OF PNEUMOCOCCAL CONJUGATED 7-VALENT VACCINE IN SOME REGIONS OF RUSSIA

    Directory of Open Access Journals (Sweden)

    A.A. Ruleva

    2010-01-01

    Full Text Available An experience of immunization with pneumococcal conjugated 7-valent vaccine Prevenar in 234 children under 5 years old with different state of health was analyzed. There were no any severe reactions, postvaccinal complications or local reactions to the vaccine injection. Mild and moderate postvaccinal reactions were detected in 3,4% (n = 8 of children. The vaccine can be used in children under 5 years old.Key words: children, vaccination, pneumococcal conjugated 7-valent vaccine, safety.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2010;9(2:119-123

  11. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  12. Brillouin spectroscopy with surface acoustic waves on intermediate valent, doped SmS

    International Nuclear Information System (INIS)

    Schaerer, U.; Jung, A.; Wachter, P.

    1998-01-01

    Brillouin scattering on surface acoustic waves is a very powerful tool to determine the elastic constants of intermediate valent crystals, since the method is non-destructive and no mechanical contact is needed. A strong evidence for intermediate valence is a negative value of Poisson's ratio, which describes the behavior of the volume under uniaxial pressure. SmS by itself makes a semiconductor-metal transition at a pressure of more than 6.5 kbar. When substituting the divalent Sm by a trivalent cation, like Y, La or Tm, SmS can become - depending on the doping concentration - intermediate valent without any applied, external pressure. In this work, we will present measurements of the velocities of the surface acoustic waves and the calculation of the elastic constants of La- and Tm-doped SmS compounds. We found a clear dependence of Poisson's ratio on the doping concentration and on the valence of the materials. Furthermore, we will discuss the mechanism leading to intermediate valence when substituting Sm. Besides the internal, chemical pressure, which is produced by the built in trivalent cations with their smaller ionic radii, we have clear evidence, that the free electrons in the 5d band, induced by the substituting atoms, also play an important role in making doped SmS intermediate valent. (orig.)

  13. TNX GeoSiphon Cell (TGSC-1) Phase II Minimum Flushing Velocity Deployment/Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.A.

    1999-10-25

    The TNX Area is a semi-works facility for the Savannah River Technology Center (SRTC), which is located one-quarter mile from the Savannah river at the Savannah River Site. As the result of TNX operation, groundwater contamination has occurred. The predominant contaminants detected in the flood plain downgradient from TNX are trichloroethylene (TCE) and nitrate.Treatability studies into the applicability of a groundwater remediation system combining GeoSiphon Cell and zero-valent iron technologies for treatment of the TCE-contaminated groundwater at TNX have been conducted. These treatability studies have been conducted by SRTC under the sponsorship of the Environmental Restoration Department.

  14. TNX GeoSiphon Cell (TGSC-1) Phase II Minimum Flushing Velocity Deployment/Demonstration Final Report

    International Nuclear Information System (INIS)

    Phifer, M.A.

    1999-01-01

    The TNX Area is a semi-works facility for the Savannah River Technology Center (SRTC), which is located one-quarter mile from the Savannah river at the Savannah River Site. As the result of TNX operation, groundwater contamination has occurred. The predominant contaminants detected in the flood plain downgradient from TNX are trichloroethylene (TCE) and nitrate.Treatability studies into the applicability of a groundwater remediation system combining GeoSiphon Cell and zero-valent iron technologies for treatment of the TCE-contaminated groundwater at TNX have been conducted. These treatability studies have been conducted by SRTC under the sponsorship of the Environmental Restoration Department

  15. Cathode fall measurement in a dielectric barrier discharge in helium

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2013-11-15

    A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

  16. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology.

    Science.gov (United States)

    Skjørringe, Tina; Burkhart, Annette; Johnsen, Kasper Bendix; Moos, Torben

    2015-01-01

    Iron is required in a variety of essential processes in the body. In this review, we focus on iron transport in the brain and the role of the divalent metal transporter 1 (DMT1) vital for iron uptake in most cells. DMT1 locates to cellular membranes and endosomal membranes, where it is a key player in non-transferrin bound iron uptake and transferrin-bound iron uptake, respectively. Four isoforms of DMT1 exist, and their respective characteristics involve a complex cell-specific regulatory machinery all controlling iron transport across these membranes. This complexity reflects the fine balance required in iron homeostasis, as this metal is indispensable in many cell functions but highly toxic when appearing in excess. DMT1 expression in the brain is prominent in neurons. Of serious dispute is the expression of DMT1 in non-neuronal cells. Recent studies imply that DMT1 does exist in endosomes of brain capillary endothelial cells denoting the blood-brain barrier. This supports existing evidence that iron uptake at the BBB occurs by means of transferrin-receptor mediated endocytosis followed by detachment of iron from transferrin inside the acidic compartment of the endosome and DMT1-mediated pumping iron into the cytosol. The subsequent iron transport across the abluminal membrane into the brain likely occurs by ferroportin. The virtual absent expression of transferrin receptors and DMT1 in glial cells, i.e., astrocytes, microglia and oligodendrocytes, suggest that the steady state uptake of iron in glia is much lower than in neurons and/or other mechanisms for iron uptake in these cell types prevail.

  17. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    Science.gov (United States)

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.

  18. EXPERIENCE OF APPLICATION AND SAFETY ASSESSMENT OF THE 13-VALENT PNEUMOCOCCAL CONJUGATE VACCINE IN UNDER-5 CHILDREN

    Directory of Open Access Journals (Sweden)

    M. V. Fedoseenko

    2014-01-01

    Full Text Available Compulsory use of the 7-valent pneumococcal conjugate vaccine in the framework of national pediatric immunization schedules of the developed countries resulted in significant decrease in the prevalence of the pneumococcal infections induced by the vaccinal serotypes. However, a growth in prevalence of the pneumonia and acute otitis media caused by non-vaccinal strains has also been observed. This required introduction of a new 13-valent pneumococcal conjugate vaccine with a wider range of pneumococcal population coverage. The experience of application accumulated in various countries (2010 onwards and results of the authors’ observations indicate high safety of the 13-valent pneumococcal conjugate vaccine for both healthy under-5 children and patients with various medical issues. The article presents results of the 13-valent pneumococcal conjugate vaccination tolerance assessment. The study involved 110 children from 2 months to 5 years of age. In most cases immunization concurred with other pediatric vaccines. The incidence of local reactions in vaccinated children did not exceed 33%, of generalized reactions – 11%. The authors observed a comparable incidence of side reactions in both virtually healthy children and children with various medical issues.

  19. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites.

    Science.gov (United States)

    Xiao, Dianne J; Bloch, Eric D; Mason, Jarad A; Queen, Wendy L; Hudson, Matthew R; Planas, Nora; Borycz, Joshua; Dzubak, Allison L; Verma, Pragya; Lee, Kyuho; Bonino, Francesca; Crocellà, Valentina; Yano, Junko; Bordiga, Silvia; Truhlar, Donald G; Gagliardi, Laura; Brown, Craig M; Long, Jeffrey R

    2014-07-01

    Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species.

  20. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    Science.gov (United States)

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  1. Geochemical investigations by the U.S. Geological Survey on uranium mining, milling, and environmental restoration

    Science.gov (United States)

    Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.

    2000-01-01

    Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.

  2. Nutrition knowledge and food consumption practices and barriers in ...

    African Journals Online (AJOL)

    ... and barriers in rural Ghana: The case of foods for preventing vitamin A and iron deficiencies. ... of the occurrence of iron deficiency anaemia especially in pregnant women; however, only 8 FGs had knowledge of the causes of anaemia.

  3. The preparation of magnetite from iron(III) and iron(II) salt solutions

    International Nuclear Information System (INIS)

    Segal, D.L.

    1980-10-01

    Methods are described for the preparation of magnetite from iron(III) and iron(II) salt solutions at temperatures between 295 to 373 K. The effect of the reagent concentration, a chelating agent and different alkali-metal cations on the formation of magnetite has been investigated. The magnetite samples have been examined by X-ray diffraction, transmission electron microscopy, adsorption of nitrogen, emission spectroscopy, X-ray photoelectron spectroscopy and by determination of the point of zero charge. A review of previous work on the preparation of magnetite in an aqueous environment is also included. This work is relevant to the corrosion processes which can occur in the water coolant circuits of nuclear reactors. (author)

  4. Impacto y efectividad de la vacunación infantil con la vacuna neumocócica conjugada 13-valente en Navarra

    OpenAIRE

    Guevara Eslava, Marcela

    2015-01-01

    La vacuna neumocócica conjugada 7 valente (VNC7) comenzó a estar disponibles en España en 2001, la 10-valente (VNC10) en 2009 y la 13-valente (VNC13) en 2010. En Navarra, sin estar incluidas en el calendario oficial de vacunaciones, se ha extendido su uso en los niños. Los objetivos de este estudio han sido evaluar el impacto de la vacunación infantil con la VNC13 sobre la epidemiología de la enfermedad neumocócica invasiva (ENI) en la población de Navarra de todas las edade...

  5. Reductive Degradation of Perfluorinated Compounds in Water using Mg-aminoclay coated Nanoscale Zero Valent Iron

    DEFF Research Database (Denmark)

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus

    2015-01-01

    Perfluorinated Compounds (PFCs) are extremely persistent micropollutants that are detected worldwide. We studied the removal of PFCs (perfluorooctanoic acid; PFOA, perfluorononanoic acid; PFNA, perfluorodecanoic acid; PFDA and perfluorooctane sulfonate; PFOS) from water by different types...... of the nZVI. A maximum removal was observed for all PFCs with high nZVI concentration, freshly synthesized nZVI, low pH and low temperature. A mass balance experiment with PFOS in a higher concentration of nZVI revealed that the removal was due to both sorption and degradation. Fluoride production...

  6. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhenbang, E-mail: hzbang@aliyun.com [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Han, Xu [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Xiaoming, E-mail: zhaoxiaoming@tjpu.edu.cn [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Yu, Jiantao; Xu, Hang [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-12-15

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H{sub 2}O{sub 2} activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H{sub 2}O{sub 2} decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H{sub 2}O{sub 2}. In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  7. Mechanism and developmental changes in iron transport across the blood-brain barrier.

    Science.gov (United States)

    Morgan, Evan H; Moos, Torben

    2002-01-01

    Transferrin and iron uptake by the brain were measured using [(59)Fe-(125)I]transferrin injected intravenously in rats aged from 15 days to 22 weeks. The values for both decreased with age. In rats aged 18 and 70 days the uptake was measured at short time intervals after the injection. When expressed as the volume of distribution (Vd), which represents the volume of plasma from which the transferrin and iron were derived, the results for iron were greater than those of transferrin as early as 7 min after injection and the difference increased rapidly with time, especially in the younger animals. A very similar time course was found for uptake by bone marrow (femurs) where iron uptake involves receptor-mediated endocytosis of Fe-transferrin, release of iron in the cell and recycling of apo-transferrin to the blood. It is concluded that, during transport of transferrin-bound plasma iron into the brain, a similar process occurs in brain capillary endothelial cells (BCECs) and that transcytosis of transferrin into the brain interstitium is only a minor pathway. Also, the high rate of iron transport into the brain in young animals, when iron requirements are high due to rapid growth of the brain, is a consequence of the level of expression and rate of recycling of transferrin receptors on BCECs. As the animal and brain mature both decrease. Copyright 2002 S. Karger AG, Basel

  8. Arsenic in groundwaters of rural India: its geochemistry and mitigation approaches

    Science.gov (United States)

    Chatterjee, Debashis; Majumder, Santanu; Kundu, Amit; Barman, Sandipan; Chatterjee, Debankur; Bhattacharya, Prosun

    2016-04-01

    During the last few decades, arsenic (As) has been recognized as the most threatening contaminant in natural waters (especially groundwater). It has become a menace to the health of millions of people worldwide. Many large and small communities experience As contamination in groundwater and/or drinking water supplies in south-east Asia and the problem is grave in West Bengal and Bangladesh (Bengal Delta Plain, BDP) both in terms of human exposure as well as spatial coverage. It is frequently observed that As concentration in contaminated wells exceeds both WHO guideline value (10 mg/l) and stipulated National standard (50 mg/l) for both Bangladesh and India. Dissolved forms of As in the BDP water include arsenite (~50-70%), arsenate (~30-50%) and ultra-trace amount of monomethylarsonic acid and dimethylarsinic acid. Arsenite and arsenate species can interchange depending on redox potential (Eh), pH and biological processes. The prevailing local geomorphological features (surface water, sanitation, agricultural activity) can also influence the mobilization of As in addition to the dominant geological factors. Therefore, the local sedimentology and hydrogeology should also be given importance prior to implement or consider any policy to mitigate the As contamination of groundwater. Conventional treatment techniques to remove As from groundwater are costly and difficult to practice in rural areas of the BDP. There are several techniques available for groundwater As removal. Iron and Alum coagulation, softening [mediated by calcite or Mg(OH)2 formation], by reverse osmosis, using zero-valent iron and nanoparticulate zero-valent iron, several natural/synthetic metal oxides, naturally found minerals like siderite, hematite, using iron doped activated carbons, development of bio-physicochemical techniques, using granular TiO2 adsorbent are some of the many proposed removal techniques investigated by various researchers. Instead of using hazardous chemicals (e.g. chlorine

  9. Acoustic cloaking by a near-zero-index phononic crystal

    KAUST Repository

    Zheng, Li-Yang

    2014-04-21

    Zero-refractive-index materials may lead to promising applications in various fields. Here, we design and fabricate a near Zero-Refractive-Index (ZRI) material using a phononic crystal (PC) composed of a square array of densely packed square iron rods in air. The dispersion relation exhibits a nearly flat band across the Brillouin zone at the reduced frequency f  = 0.5443c/a, which is due to Fabry-Perot (FP) resonance. By using a retrieval method, we find that both the effective mass density and the reciprocal of the effective bulk modulus are close to zero at frequencies near the flat band. We also propose an equivalent tube network model to explain the mechanisms of the near ZRI effect. This FP-resonance-induced near ZRI material offers intriguing wave manipulation properties. We demonstrate both numerically and experimentally its ability to shield a scattering obstacle and guide acoustic waves through a bent structure.

  10. Quantum finance Hamiltonian for coupon bond European and barrier options.

    Science.gov (United States)

    Baaquie, Belal E

    2008-03-01

    Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.

  11. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs)

    DEFF Research Database (Denmark)

    Muchitsch, Nanna; Nooten, Thomas Van; Bastiaens, Leen

    2011-01-01

    An important issue of concern for permeable reactive iron barriers is the long-term efficiency of the barriers due to the long operational periods required. Mineral precipitation resulting from the anaerobic corrosion of the iron filings and bacteria present in the barrier may play an important...... performed equally well as virgin granular iron of the same type based on determined degradation rates despite that parts of the cored iron material were covered by mineral precipitates (especially iron sulfides, carbonate green rust and aragonite). The PCR analysis performed on the iron core samples...

  12. The functionalization of limonite to prepare NZVI and its application in decomposition of p-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haibo; Chen, Tianhu, E-mail: chentianhu@hfut.edu.cn; Xie, Qiaoqin; Zou, Xuehua; Chen, Chen [Hefei University of Technology, Laboratory of Nanomineral and Environmental Material, School of Resources and Environmental Engineering (China); Frost, Ray L. [Queensland University of Technology, Science and Engineering Faculty, School of Chemistry, Physics and Mechanical Engineering (Australia)

    2015-09-15

    Nano zero valent iron (NZVI) was prepared by reducing natural limonite using hydrogen. X-ray fluorescence, thermogravimetry, X-ray diffraction, transmission electron microscope, temperature programmed reduction (TPR), field emission scanning electron microscope/energy disperse spectroscopy (FESEM/EDS) were utilized to characterize the natural limonite and reduced limonite. The ratios of Fe:O before and after reducing was determined using EDS. The reactivity of the NZVI was assessed by decomposition of p-nitrophenol (p-NP) and was compared with commercial iron powder. In this study, the results of TPR and FESEM/EDS indicated that NZVI can be prepared by reducing natural limonite using hydrogen. Most importantly, this NZVI was proved to have a good performance on decomposition of p-NP and the process of p-NP decomposition agreed well with the pseudo-first-order kinetic model. The reactivity of this NZVI for decomposition of p-NP was greatly superior to that of commercial iron powder.

  13. The ground states of iron(III) porphines: Role of entropy–enthalpy compensation, Fermi correlation, dispersion, and zero-point energies

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2011-01-01

    on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0–10kJ/mol, respectively. When...... favors low-spin by 3–53kJ/mol (TPSSh) or 4–15kJ/mol (B3LYP) due to the attractive r−6 term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional......-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results....

  14. Protective barrier development: Overview

    International Nuclear Information System (INIS)

    Wing, N.R.; Gee, G.W.

    1990-01-01

    Protective barrier and warning marker systems are being developed to isolate wastes disposed of near the earth's surface at the Hanford Site. The barrier is designed to function in an arid to semiarid climate, to limit infiltration and percolation of water through the waste zone to near-zero, to be maintenance free, and to last up to 10,000 yr. Natural materials (e.g., fine soil, sand, gravel, riprap, clay, asphalt) have been selected to optimize barrier performance and longevity and to create an integrated structure with redundant features. These materials isolate wastes by limiting water drainage; reducing the likelihood of plant, animal, and human intrusion; controlling emission of noxious gases; and minimizing erosion. Westinghouse Hanford Company and Pacific Northwest Laboratory efforts to assess the performance of various barrier and marker designs will be discussed

  15. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    Science.gov (United States)

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  16. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies.

    Science.gov (United States)

    Kepp, Kasper P

    2011-10-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners.

    Science.gov (United States)

    England, Jason; Farquhar, Erik R; Guo, Yisong; Cranswick, Matthew A; Ray, Kallol; Münck, Eckard; Que, Lawrence

    2011-04-04

    Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.

  18. Modulation of iron metabolism in aging and in Alzheimer’s disease: relevance of the choroid plexus.

    Directory of Open Access Journals (Sweden)

    Sandro Da Mesquita

    2012-05-01

    Full Text Available Iron is essential for mammalian cellular homeostasis. However, in excess, it promotes free radical formation and is associated with aging-related progressive deterioration and with neurodegenerative disorders such as Alzheimer’s disease (AD. There are no mechanisms to excrete iron, which makes iron homeostasis a very tightly regulated process at the level of the intestinal absorption. Iron is believed to reach the brain through receptor mediated endocytosis of iron-bound transferrin by the brain barriers, the blood-cerebrospinal (CSF fluid barrier, formed by the choroid plexus (CP epithelial cells and the blood-brain barrier formed by the endothelial cells of the brain capillaries. Importantly, the CP epithelial cells are responsible for producing most of the CSF, the fluid that fills the brain ventricles and the subarachnoid space. Recently, the finding that the CP epithelial cells display all the machinery to locally control iron delivery into the CSF may suggest that the general and progressive senescence of the CP may be at the basis of the impairment of regional iron metabolism, iron-mediated toxicity and the increase in inflammation and oxidative stress that occurs with aging and, particularly, in AD.

  19. Smectite alteration by anaerobic iron corrosion

    International Nuclear Information System (INIS)

    Sanders, D.; Kaufhold, S.; Hassel, A.W.; Dohrmann, R.

    2010-01-01

    Document available in extended abstract form only. The interaction of smectites with corroding steel/iron represents a crucial topic in the estimation of the long term confinement properties of clay barriers for the encasement of steel/iron containers. Especially in case of engineered clay barriers a possible deterioration of favourable smectite properties as response to corrosion could reduce the barrier capacity. The extent of this reduction is unknown, yet. The essential properties of bentonite clays in this context are on the one hand the relatively high swelling pressure together with low hydraulic conductivity, which results from the well known expandability of smectite interlayers in aqueous environments. On the other hand smectites are cation exchangers being able to long term encase radioactive cations in a way that negative charges of silicate layers are compensated by easily exchangeable hydrated cations. Both properties are directly related to the crystal and chemical composition of smectites. The nature of the corrosion of steel canisters in clay barriers will - after a first short aerobic phase - predominantly be anaerobic resulting in the formation of Fe(II) and two equivalents of hydroxide ions. In a set of exposition experiments anaerobic corroding iron in bentonite gels was studied in order to determine alteration of the smectite fraction. During the exposition a green coloration of the bentonite neighbouring to corroding iron was observed. Upon contact to oxygen in a humid state the bentonite turned reddish indicating the oxidation of Fe(II) to Fe(III). This observation is in accordance with reported results indicating the formation of an iron rich smectite. Chemical analysis of the 'green bentonite' reveals an increase of iron fraction e.g. from 3.4% mass to 9.3% mass . The adsorbed iron is predominantly Fe(II) which was proven by chromato-metric titration. The estimated ratio between silicon to increased iron content is Si: Fe ≅ 2

  20. A role for sex and a common HFE gene variant in brain iron uptake.

    Science.gov (United States)

    Duck, Kari A; Neely, Elizabeth B; Simpson, Ian A; Connor, James R

    2018-03-01

    HFE (high iron) is an essential protein for regulating iron transport into cells. Mutations of the HFE gene result in loss of this regulation causing accumulation of iron within the cell. The mutated protein has been found increasingly in numerous neurodegenerative disorders in which increased levels of iron in the brain are reported. Additionally, evidence that these mutations are associated with elevated brain iron challenges the paradigm that the brain is protected by the blood-brain barrier. While much has been studied regarding the role of HFE in cellular iron uptake, it has remained unclear what role the protein plays in the transport of iron into the brain. We investigated regulation of iron transport into the brain using a mouse model with a mutation in the HFE gene. We demonstrated that the rate of radiolabeled iron ( 59 Fe) uptake was similar between the two genotypes despite higher brain iron concentrations in the mutant. However, there were significant differences in iron uptake between males and females regardless of genotype. These data indicate that brain iron status is consistently maintained and tightly regulated at the level of the blood-brain barrier.

  1. Improved Filtration Technology for Pathogen Reduction in Rural Water Supplies

    Directory of Open Access Journals (Sweden)

    Valentine Tellen

    2010-06-01

    Full Text Available Intermittent bio-sand filtration (BSF is a low-cost process for improving water quality in rural households. This study addresses its two drawbacks: flow limitations requiring excessive waiting, and inadequate purification when high flows are imposed. Two modifications were examined: increasing the sand’s effective size, and adding zero-valent iron (ZVI into the media as a disinfectant. After 65 days, percent reductions in total coliform, fecal coliform, and fecal streptococci averaged 98.9% for traditional BSF and 99% for the improved BSF. Both modifications showed statistically significant improvements. Increased sand size and ZVI addition can counter the drawbacks of traditional BSF.

  2. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Cao Limei; Guo Rui; Jia Jinping [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m{sup 2} g{sup -1}, the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  3. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    International Nuclear Information System (INIS)

    Yang Ji; Cao Limei; Guo Rui; Jia Jinping

    2010-01-01

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m 2 g -1 , the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  4. Design and reactivity of mono- and polymetallic complexes of low valent f-elements

    International Nuclear Information System (INIS)

    Camp, Clement

    2013-01-01

    Beyond its importance in nuclear industry the redox chemistry uranium is attracting increasing interest because complexes of low-valent uranium can promote unusual reductive chemistry through unusual reaction pathways, including attractive examples of CO, CO 2 , N 2 , arenes and azides activation in mild condition. Due to the unique coordination and bonding properties of uranium, its compounds could provide an attractive alternative to transition metals for the catalytic transformation of small molecules. However, metal-based multi-electron processes remain uncommon in uranium chemistry especially in comparison with the d-block metals, the chemistry of low-valent uranium being dominated by single-electron transfers. In this context, the first aim of this project was to investigate the association of low-valent uranium to a non-innocent ligand acting as an independent electron reservoir at a same molecule. Accordingly, we interrogated the use of highly p-delocalized Schiff bases ligands for supporting low-valent uranium chemistry. This led to the isolation of electron-rich complexes which are stabilized by storing electrons on the ligands through the formation of C-C bonds. Interestingly, these C-C bonds can be cleaved by oxidizing agents and the electrons released to participate in multi-electron redox reactions. This process was observed within different Schiff-base ligand scaffolds, allowing a tuning of the properties of the compounds. The second part of this work was dedicated to the synthesis of novel trivalent uranium complexes supported by siloxy ligands and the study of their redox reactivity and coordination properties. Novel dinuclear highly-reactive low-valent uranium assemblies were developed. The study of their limited stability revealed that these compounds are spontaneously decomposing through the cleavage of tBu groups from the supporting ligands resulting in the formation of U(IV) species. In parallel, a mononuclear trivalent uranium complex was

  5. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Akbarzade, Samaneh; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein; Ghorbani, Mahdi

    2018-01-01

    A selective and sensitive magnetic dispersive solid-phase microextraction (MDSPME) coupled with gas chromatography-mass spectrometry was developed for extraction and determination of organophosphorus pesticides (Sevin, Fenitrothion, Malathion, Parathion, and Diazinon) in fruit juice and real water samples. Zero valent Fe-reduced graphene oxide quantum dots (rGOQDs@ Fe) as a new and effective sorbent were prepared and applied for extraction of organophosphorus pesticides using MDSPME method. In order to study the performance of this new sorbent, the ability of rGOQDs@ Fe was compared with graphene oxide and magnetic graphene oxide nanocomposite by recovery experiments of the organophosphorus pesticides. Several affecting parameters in the microextraction procedure, including pH of donor phase, donor phase volume, stirring rate, extraction time, and desorption conditions such as the type and volume of solvents and desorption time were thoroughly investigated and optimized. Under the optimal conditions, the method showed a wide linear dynamic range with R-square between 0.9959 and 0.9991. The limit of detections, the intraday and interday relative standard deviations (n = 5) were less than 0.07 ngmL -1 , 4.7, and 8.6%, respectively. The method was successfully applied for extraction and determination of organophosphorus pesticides in real water samples (well, river and tap water) and fruit juice samples (apple and grape juice). The obtained relative recoveries were in the range of 82.9%-113.2% with RSD percentages of less than 5.8% for all the real samples.

  6. Impairment of Interrelated Iron- and Copper Homeostatic Mechanisms in Brain Contributes to the Pathogenesis of Neurodegenerative Disorders

    Science.gov (United States)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972

  7. A magnetic route to measure the average oxidation state of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS).

    Science.gov (United States)

    Shen, Xiong-Fei; Ding, Yun-Shuang; Liu, Jia; Han, Zhao-Hui; Budnick, Joseph I; Hines, William A; Suib, Steven L

    2005-05-04

    A magnetic route has been applied for measurement of the average oxidation state (AOS) of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS). The method gives AOS measurement results in good agreement with titration methods. A maximum analysis deviation error of +/-7% is obtained from 10 sample measurements. The magnetic method is able to (1) confirm the presence of mixed-valent manganese and (2) evaluate AOS and the spin states of d electrons of both single oxidation state and mixed-valent state Mn in manganese oxides. In addition, the magnetic method may be extended to (1) determine AOS of Mn in manganese oxide OMS with dopant "diamagnetic" ions, such as reducible V5+ (3d0) ions, which is inappropriate for the titration method due to interference of redox reactions between these dopant ions and titration reagents, such as KMnO4, (2) evaluate the dopant "paramagnetic" ions that are present as clusters or in the OMS framework, and (3) determine AOS of other mixed-valent/single oxidation state ion systems, such as Mo3+(3d3)-Mo4+(3d2) systems and Fe3+ in FeCl3.

  8. Radio-frequency shot-noise measurement in a magnetic tunnel junction with a MgO barrier

    International Nuclear Information System (INIS)

    Rehman, Mushtaq; Park, Junghwan; Song, Woon; Chong, Yonuk; Lee, Yeonsub; Min, Byoungchul; Shin, Kyungho; Ryu, Sangwan; Khim, Zheong

    2010-01-01

    We measured the noise power of a magnetic tunnel junction in the frequency range of 710 ∼ 1200 MHz. A low-noise cryogenic HEMT amplifier was used to measure the small noise signal at a high frequency with wide bandwidth. The MgO-barrier tunnel junction showed large tunnel magnetoresistance ratio of 215% at low temperature, which indicates electronic transport through the tunnel barrier without any significant spin-flip scattering. In the bias-dependent noise measurement, however, the zero-bias shot noise was enhanced compared to the value expected from a perfect tunnel barrier or the value observed from a good Al-AlO x -Al tunnel junction. We assume that this enhanced noise comes from inelastic tunneling processes through the barrier, which may be related to the observed zero-bias anomaly in the differential resistance of the tunnel junctions. We present a simple phenomenological model for how the inelastic scattering process can enhance the zero-bias noise in a tunnel junction.

  9. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(VI) in an electroplating contaminated soil.

    Science.gov (United States)

    Zhao, Ling; Ding, Zhenliang; Sima, Jingke; Xu, Xiaoyun; Cao, Xinde

    2017-09-01

    This study aims to develop an amendment for simultaneous immobilization of Zn and Cr(VI) in an abandoned electroplating contaminated soil. Nature phosphate rock was first activated with oxalic acid (O-PR) and then combined with FeSO 4 or zero-valent iron (ZVI) for immobilization of Zn and Cr(VI) from aqueous solutions. Finally, the optimized approach showing the highest immobilization ability in solution was applied in an electroplating contaminated soil. The O-PR combined with FeSO 4 was more effective in simultaneously removing Zn and Cr(VI) than the O-PR integrated with ZVI within the tested solution pH range of 5.5-8.5. Both O-PR with FeSO 4 and with ZVI removed over 95% of Zn from the solution; however, only 42-46% of Cr(VI) was immobilized by O-PR with ZVI, while O-PR with FeSO 4 almost precipitated all Cr(VI). Moreover, there were 75-95% Zn and 95-100% Cr(VI) remaining in the exhausted O-PR with FeSO 4 solid after toxicity characteristic leaching test (TCLP) while the exhausted O-PR with ZVI solid only retained 44-83% Zn and 32-72% Cr(VI). Zinc was immobilized mainly via formation of insoluble Fe-Zn phosphate co-precipitates, while iron-induced reduction of Cr(VI) into stable Cr(OH) 3 or Cr x Fe (1-x) (OH) 3 was responsible for Cr(VI) immobilization. Application of the O-PR integrated with FeSO 4 in the electroplating contaminated soil rapidly reduced the TCLP extractable Zn and Cr(VI) to below the standard limits, with decrease by 50% and 94%, respectively. This study revealed that combination of oxalic acid activated phosphate rock with FeSO 4 could be an effective amendment for remediation of Zn and Cr(VI) contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    Science.gov (United States)

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Dissolved iron in the Southern Ocean (Atlantic sector)

    NARCIS (Netherlands)

    Klunder, M. B.; Laan, P.; Middag, R.; De Baar, H. J. W.; van Ooijen, J. C.

    2011-01-01

    We report a comprehensive dataset of dissolved iron (Fe) comprising 482 values at 22 complete vertical profiles along a 1 degrees latitudinal section at the Zero meridian. In addition a shorter high resolution (similar to 00 degrees 09') surface section of the southernmost part of the transect (66

  12. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor

    DEFF Research Database (Denmark)

    Mines, Paul D.; Kaarsholm, Kamilla Marie Speht; Droumpali, Ariadni

    2017-01-01

    , trichloroethylene, 1,1,1-trichloroethane, atrazine, and 4-chlorophenol, were selected and tested as model groundwater contaminants. Addition of carbonate to passivate the nZVI surface was not effective for trichloroethylene. Nitrate and then bromate were applied to competitively consume nZVI by their faster...... reduction kinetics. Bromate proved to be more effective than nitrate, subsequently terminating nZVI reactivity for all four of the tested halogenated compounds. Furthermore, the suggested termination method using bromate was successfully applied to obtain trichloroethylene reduction kinetics. Herein, we...

  13. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI): risk mitigation or trade-off?

    DEFF Research Database (Denmark)

    Grieger, Khara Deanne; Fjordbøge, Annika Sidelmann; Hartmann, Nanna Isabella Bloch

    2009-01-01

    nanoparticles, in part due to extensive and fundamental uncertainties. These data may provide a starting point to more thoroughly investigate the potential risks of nZVI and ultimately help scientists, engineers, and decision makers make better informed decisions regarding the use of nZVI for environmental...... dimensions. While the use and further development of nZVI is understandably heralded as an environmentally-beneficial technology, the potentials risks of introducing these nanoparticles into the environment also needs to be considered. To date most research has focused on the potential benefits of n...... of substantial concentrations. In this study, we provide a brief synopsis of the expected environmental benefits and potential risks of nZVI, particularly focusing on its environmental fate and behavior and potential role as contaminant carrier. These are some areas of primary concern for risk assessors...

  14. Mise à jour sur le nouveau vaccin 9-valent pour la prévention du virus du papillome humain

    Science.gov (United States)

    Yang, David Yi; Bracken, Keyna

    2016-01-01

    Résumé Objectif Informer les médecins de famille quant à l’efficacité, à l’innocuité, aux effets sur la santé publique et à la rentabilité du vaccin 9-valent contre le virus du papillome humain (VPH). Qualité des données Des articles pertinents publiés dans PubMed jusqu’en mai 2015 ont été examinés et analysés. La plupart des données citées sont de niveau I (essais randomisés et contrôlés et méta-analyses) ou de niveau II (études transversales, cas-témoins et épidémiologiques). Des rapports et recommandations du gouvernement sont aussi cités en référence. Message principal Le vaccin 9-valent contre le VPH, qui offre une protection contre les types 6, 11, 16, 18, 31, 33, 45, 52 et 58 du VPH, est sûr et efficace et réduira encore plus l’incidence des infections à VPH, de même que les cas de cancer lié au VPH. Il peut également protéger indirectement les personnes non immunisées par l’entremise du phénomène d’immunité collective. Un programme d’immunisation efficace peut prévenir la plupart des cancers du col de l’utérus. Les analyses montrent que la rentabilité du vaccin 9-valent chez les femmes est comparable à celle du vaccin quadrivalent original contre le VPH (qui protège contre les types 6, 11, 16 et 18 du VPH) en usage à l’heure actuelle. Toutefois, il faut investiguer plus en profondeur l’utilité d’immuniser les garçons avec le vaccin 9-valent contre le VPH. Conclusion en plus d’être sûr, le vaccin 9-valent protège mieux contre le VPH que le vaccin quadrivalent. Une analyse coûtefficacité en favorise l’emploi, du moins chez les adolescentes. Ainsi, les médecins devraient recommander le vaccin 9-valent à leurs patients plutôt que le vaccin quadrivalent contre le VPH.

  15. Niobium nitride Josephson junctions with silicon and germanium barriers

    International Nuclear Information System (INIS)

    Cukauskas, E.J.; Carter, W.L.

    1988-01-01

    Niobium nitride based junctions with silicon, germanium, and composite silicon/germanium barriers were fabricated and characterized for several barrier compositions. The current-voltage characteristics were analyzed at several temperatures using the Simmons model and numerical integration of the WKB approximation for the average barrier height and effective thickness. The zero voltage conductance was measured from 1.5 K to 300 K and compared to the Mott hopping conductivity model and the Stratton tunneling temperature dependence. Conductivity followed Mott conductivity at temperatures above 60 K for junctions with less than 100 angstrom thick barriers

  16. CHEMICAL INTERACTIONS OF ARSENATE, ARSENITE, PHOSPHATE, AND SILICATE WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST

    Science.gov (United States)

    Granular zerovalent iron has been proposed to be used as a medium in permeable reactive barriers (PRBs) to remove arsenic from contaminated groundwater. Iron(II, III) hydroxycarbonate green rust (carbonate green rust, or CGR) is a major corrosion product of zerovalent iron under ...

  17. Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

    2011-10-01

    The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

  18. The Effect of the Concentration of Oxidant, Cr(VI), on the Iron Oxidation in Saline Water

    Science.gov (United States)

    Ahn, H.; Jo, H. Y.; Ryu, J. H.; Koh, Y. K.

    2014-12-01

    Deep geological disposal is currently considered as the most appropriate method to isolate high level radioactive wastes (HLRWs) from the ecosystem. If groundwater seeps into underground disposal facilities, water molecules can be dissociated to radicals or peroxides, which can oxidize metal canisters and HLRWs. The oxidized radionuclides with a high solubility can be dissolved in the groundwater. Some dissolved radionuclides can act as oxidants. The continuous radiolysis of water molecules, which results from continuous seepage of groundwater, can enable the continuous production of the radioactive oxidants, resulting in an increase in concentration of oxidants. In this study, the effect of oxidant concentration on iron oxidation in the presence of salt was evaluated. Zero valent iron (ZVI) particles were reacted with Cr(VI) solutions with initial Cr(VI) concentrations ranged from 50 to 300 mg/L in reactors. The initial pH and NaCl concentration were fixed at 3 and 0.5 M, respectively. An increase in the initial Cr(VI) concentration caused an increase in the rate and extend of H2 gas production. The decrement of Cr(VI) was increased as the initial Cr(VI) concentration was increased. The penetration of H+ ions in the presence Cl- ions through the passive film on the ZVI particles caused the reaction between H+ ions and ZVI particles, producing H2 gas and Fe2+ ions. The passive film was damaged during the reaction due to the eruption of H2 gas or peptization by Cl- ions. The Fe2+ ions were reacted with Cr(VI) ions in the solution, producing Fe(III)-Cr(III) (oxy)hydroxides on the passive film of ZVI particles or in the solution as colloidal particles. The Fe(III)-Cr(III) (oxy)hydroxides tends to be precipitated as colloidal particles at a high Cr(VI) concentration and precipitated on the passive film at a low Cr(VI) concentration. The passive film was repaired or thickened by additional formation of Fe(III)-Cr(III) (oxy)hydroxides at a lower Cr(VI) concentration.

  19. Backfill barriers: the use of engineered barriers based on geologic materials to assure isolation of radioactive wastes in a repository

    International Nuclear Information System (INIS)

    Apps, J.A.; Cook, N.G.W.

    1981-06-01

    A preliminary assessment is made to show that canisters fabricated of nickel-iron alloys, and surrounded by a suitable backfill, may produce an engineered barrier where the canister material is thermodynamically stable with respect to its environment. As similar conditions exist in nature, the performance of such systems as barriers to isolate radionuclides can be predicted over very long periods, of the order of 10 6 years

  20. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.