Shiga, T; Boeuf, J P; Mikoshiba, S
2003-01-01
A zero-dimensional model of the positive column in Ar/Ne/Xe gas mixtures has been developed to help understand the measured dependence of the efficacy on operating conditions in a mercury-free flat fluorescent lamp in a dielectric barrier geometry. The experimental conditions are such that the radiation from the discharge is homogeneous over most of the discharge voltage. The model uses as input the discharge current waveform from the experiments, and it yields the time variations of the mean electron energy and the species densities. From these quantities we calculate the number of vacuum ultraviolet (VUV) photons emitted by the xenon resonance atoms and excimers during one current pulse and the efficiency for generation of VUV radiation in the positive column, which are compared with the measured luminance and efficacy for various voltages, pulse intervals, and lamp sizes. Over the range of conditions studied, we find that most electrical energy dissipated in xenon excitation is converted to VUV radiation; ...
Effect of mobilities and electric field on the stability of magnetized positive column
International Nuclear Information System (INIS)
Dogra, V.K.; Uberoi, M.S.
1983-01-01
The effect of ratio of the mobilities of electrons and ions and non-dimensional electric field, on the stability of magnetized positive column for all unstable modes is studied in a self-consistent formulation for the perturbations of plasma density and electric potential. The minimum non-dimensional electric field at which magnetized positive column becomes unstable for different ratios of the mobilities of electrons and ions is also investigated. (author)
Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A
2016-06-14
A false positive is the mistake of inferring an effect when none exists, and although α controls the false positive (Type I error) rate in classical hypothesis testing, a given α value is accurate only if the underlying model of randomness appropriately reflects experimentally observed variance. Hypotheses pertaining to one-dimensional (1D) (e.g. time-varying) biomechanical trajectories are most often tested using a traditional zero-dimensional (0D) Gaussian model of randomness, but variance in these datasets is clearly 1D. The purpose of this study was to determine the likelihood that analyzing smooth 1D data with a 0D model of variance will produce false positives. We first used random field theory (RFT) to predict the probability of false positives in 0D analyses. We then validated RFT predictions via numerical simulations of smooth Gaussian 1D trajectories. Results showed that, across a range of public kinematic, force/moment and EMG datasets, the median false positive rate was 0.382 and not the assumed α=0.05, even for a simple two-sample t test involving N=10 trajectories per group. The median false positive rate for experiments involving three-component vector trajectories was p=0.764. This rate increased to p=0.945 for two three-component vector trajectories, and to p=0.999 for six three-component vectors. This implies that experiments involving vector trajectories have a high probability of yielding 0D statistical significance when there is, in fact, no 1D effect. Either (a) explicit a priori identification of 0D variables or (b) adoption of 1D methods can more tightly control α. Copyright © 2016 Elsevier Ltd. All rights reserved.
Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer
Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.
1989-01-01
We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along
International Nuclear Information System (INIS)
Nebel, R.A.; Hagenson, R.L.; Moses, R.W.; Krakowski, R.A.
1980-01-01
Conceptual fusion reactor designs of the Reversed-Field Pinch Reactor (RFPR) have been based on profile-averaged zero-dimensional (point) plasma models. The plasma response/performance that has been predicted by the point plasma model is re-examined by a comprehensive one-dimensional (radial) burn code that has been developed and parametrically evaluated for the RFPR. Agreement is good between the zero-dimensional and one-dimensional models, giving more confidence in the RFPR design point reported previously from the zero-dimensional analysis
Numerical study on xenon positive column discharges of mercury-free lamp
International Nuclear Information System (INIS)
Ouyang, Jiting; He, Feng; Miao, Jinsong; Wang, Jianqi; Hu, Wenbo
2007-01-01
In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate in a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells
Hydrogen peroxide stabilization in one-dimensional flow columns
Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.
2011-09-01
Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.
An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array.
Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo
2016-12-06
With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements' bypass currents, which were injected into array's non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT's measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.
Sharif, Khan M; Kulsing, Chadin; Junior, Ademario I da Silva; Marriott, Philip J
2018-02-09
A pressure tunable (PT) coupled column ensemble has been implemented for the second dimension ( 2 D) separation in comprehensive two dimensional gas chromatography (GC×PTGC). This process requires two columns to be connected by a pressure junction, as a replacement for a single narrow bore, short column in 2 D. Various 2 D 1 and 2 D 2 columns may be selected to provide complementary selectivity (polarity) compared to the 1 D column. The tunable residence time arising from differential pressure drop in each 2 D column results in a tunable fractional contribution of each column in the 2 D separation. A sample mixture comprising different chemical classes, including alkanes and alcohols, is used to identify the feasibility and extent of selectivity tuning possible in GC×PTGC. The column length is also varied due to the imposed challenge of wraparound in the PT coupled column system as pressures are adjusted in the 2 D separation. Different experimental parameters, stationary phase materials and column lengths have been applied to investigate and understand the separation behaviour of the 2 D PT coupled column GC×GC system. Results are discussed considering analyte retention time, peak width, linear velocity and the contribution of each 2 D column. A specific and unexpected example of GC×GC separation was demonstrated where the peak positions of polar and apolar compounds could almost swap their 2 D retention position by application of PT. Kerosene was analysed as an example of complex sample analysis by GC×PTGC system. This process is shown to be a practical approach for altering different stationary phase selectivities in a single 2 D arrangement in GC×GC. Copyright © 2017 Elsevier B.V. All rights reserved.
Spin-zero sound in one- and quasi-one-dimensional 3He
International Nuclear Information System (INIS)
Hernandez, E.S.
2002-01-01
The zero sound spectrum of fluid 3 He confined to a cylindrical shell is examined for configurations characterizing strictly one-dimensional and quasi-one-dimensional regimes. It is shown that the restricted dimensionality makes room to the possibility of spin-zero sound for the attractive particle-hole interaction of liquid helium. This fact can be related to the suppression of phase instabilities and thermodynamic phase transitions in one dimension
One- and zero-dimensional electron systems over liquid helium (Review article)
Kovdrya, Y Z
2003-01-01
Experimental and theoretical investigations of one-dimensional and zero-dimensional electron systems near the liquid helium surface are surveyed. The properties of electron states over the plane surface of liquid helium including thin layers of helium are considered. The methods of realization of one- and zero-dimensional electron systems are discussed, and the results of experimental and theoretical investigations of their properties are given. The experiments with localization processes in a quasi-one-dimensional electron systems on liquid helium are described. The collective effects in one-dimensional and quasi-one-dimensional electron systems are considered, and the point of possible application of low-dimensional electron systems on liquid helium in electron devices and quantum computers is discussed.
An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array
Directory of Open Access Journals (Sweden)
Jian-Feng Wu
2016-12-01
Full Text Available With one operational amplifier (op-amp in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements’ bypass currents, which were injected into array’s non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT’s measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.
Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.
2018-03-01
The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.
A zero-dimensional EXTRAP computer code
International Nuclear Information System (INIS)
Karlsson, P.
1982-10-01
A zero-dimensional computer code has been designed for the EXTRAP experiment to predict the density and the temperature and their dependence upon paramenters such as the plasma current and the filling pressure of neutral gas. EXTRAP is a Z-pinch immersed in a vacuum octupole field and could be either linear or toroidal. In this code the density and temperature are assumed to be constant from the axis up to a breaking point from where they decrease linearly in the radial direction out to the plasma radius. All quantities, however, are averaged over the plasma volume thus giving the zero-dimensional character of the code. The particle, momentum and energy one-fluid equations are solved including the effects of the surrounding neutral gas and oxygen impurities. The code shows that the temperature and density are very sensitive to the shape of the plasma, flatter profiles giving higher temperatures and densities. The temperature, however, is not strongly affected for oxygen concentration less than 2% and is well above the radiation barrier even for higher concentrations. (Author)
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both
Naito, Satoshi; Sagaki, Daisuke
2006-01-01
We give interpretations of energy functions and (classically restricted) one-dimensional sums associated to tensor products of level-zero fundamental representations of quantum affine algebras in terms of Lakshmibai-Seshadri paths of level-zero weight shape.
FROM ZERO-DIMENSIONAL TO 2-DIMENSIONAL CARBON NANOMATERIALS - part I: TYPES OF CNs
Directory of Open Access Journals (Sweden)
Cătălin IANCU
2012-05-01
Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. In this review paper are presented some of the most important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. The synthesis techniques are used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional CNs (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls.
Data exchange between zero dimensional code and physics platform in the CFETR integrated system code
Energy Technology Data Exchange (ETDEWEB)
Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)
2016-11-01
Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.
Liu, Guangfeng; Liu, Jie; Nie, Lina; Ban, Rui; Armatas, Gerasimos S; Tao, Xutang; Zhang, Qichun
2017-05-15
A zero-dimensional N,N'-dibutyl-4,4'-dipyridinium bromoplumbate, [BV] 6 [Pb 9 Br 30 ], with unusual discrete [Pb 9 Br 30 ] 12- anionic clusters was prepared via a facile surfactant-mediated solvothermal process. This bromoplumbate exhibits a narrower optical band gap relative to the congeneric one-dimensional viologen bromoplumbates.
Energy Technology Data Exchange (ETDEWEB)
Mittal, Gaurav [Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 (United States); Raju, Mandhapati P. [General Motor R and D Tech Center, Warren, MI 48090 (United States); Sung, Chih-Jen [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)
2010-07-15
In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluid dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)
Prediction of axial limit capacity of stone columns using dimensional analysis
Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.
2017-08-01
Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.
Row—column visibility graph approach to two-dimensional landscapes
International Nuclear Information System (INIS)
Xiao Qin; Pan Xue; Li Xin-Li; Stephen Mutua; Yang Hui-Jie; Jiang Yan; Wang Jian-Yong; Zhang Qing-Jun
2014-01-01
A new concept, called the row—column visibility graph, is proposed to map two-dimensional landscapes to complex networks. A cluster coverage is introduced to describe the extensive property of node clusters on a Euclidean lattice. Graphs mapped from fractals generated with the probability redistribution model behave scale-free. They have pattern-induced hierarchical organizations and comparatively much more extensive structures. The scale-free exponent has a negative correlation with the Hurst exponent, however, there is no deterministic relation between them. Graphs for fractals generated with the midpoint displacement model are exponential networks. When the Hurst exponent is large enough (e.g., H > 0.5), the degree distribution decays much more slowly, the average coverage becomes significant large, and the initially hierarchical structure at H < 0.5 is destroyed completely. Hence, the row—column visibility graph can be used to detect the pattern-related new characteristics of two-dimensional landscapes. (interdisciplinary physics and related areas of science and technology)
A zero-dimensional approach to compute real radicals
Directory of Open Access Journals (Sweden)
Silke J. Spang
2008-04-01
Full Text Available The notion of real radicals is a fundamental tool in Real Algebraic Geometry. It takes the role of the radical ideal in Complex Algebraic Geometry. In this article I shall describe the zero-dimensional approach and efficiency improvement I have found during the work on my diploma thesis at the University of Kaiserslautern (cf. [6]. The main focus of this article is on maximal ideals and the properties they have to fulfil to be real. New theorems and properties about maximal ideals are introduced which yield an heuristic prepare_max which splits the maximal ideals into three classes, namely real, not real and the class where we can't be sure whether they are real or not. For the latter we have to apply a coordinate change into general position until we are sure about realness. Finally this constructs a randomized algorithm for real radicals. The underlying theorems and algorithms are described in detail.
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Activation of zero-error classical capacity in low-dimensional quantum systems
Park, Jeonghoon; Heo, Jun
2018-06-01
Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.
Partition function zeros of the one-dimensional Potts model: the recursive method
International Nuclear Information System (INIS)
Ghulghazaryan, R G; Ananikian, N S
2003-01-01
The Yang-Lee, Fisher and Potts zeros of the one-dimensional Q-state Potts model are studied using the theory of dynamical systems. An exact recurrence relation for the partition function is derived. It is shown that zeros of the partition function may be associated with neutral fixed points of the recurrence relation. Further, a general equation for zeros of the partition function is found and a classification of the Yang-Lee, Fisher and Potts zeros is given. It is shown that the Fisher zeros in a nonzero magnetic field are located on several lines in the complex temperature plane and that the number of these lines depends on the value of the magnetic field. Analytical expressions for the densities of the Yang-Lee, Fisher and Potts zeros are derived. It is shown that densities of all types of zeros of the partition function are singular at the edge singularity points with the same critical exponent
A zero-dimensional model for electrothermal-chemical launchers
International Nuclear Information System (INIS)
Song Shengyi; Chen Li; Sun Chengwei
2002-01-01
In this paper a zero-dimensional (0-D) model for the electrothermal-chemical (ETC) launchers has been established, where the propellant is an energetic work liquid. The model consists of three parts to correspond to three steps of the process in ETC launching. The results calculated with the model are well compared to the measured ones. Additionally, the dependence of chamber pressure, mass fraction of burnt propellant and muzzle velocity of projectile on capillary current has been investigated
Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.
Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei
2018-03-01
Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.
Molecular behavior of zero-dimensional perovskites
Yin, Jun
2017-12-16
Low-dimensional perovskites offer a rare opportunity to investigate lattice dynamics and charge carrier behavior in bulk quantum-confined solids, in addition to them being the leading materials in optoelectronic applications. In particular, zero-dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron. Using both experimental and theoretical approaches, we studied the electronic and optical properties of the prototypical 0D perovskite Cs4PbBr6. Our results underline that this 0D perovskite behaves akin to a molecule, demonstrating low electrical conductivity and mobility as well as large polaron binding energy. Density functional theory calculations and transient absorption measurements of Cs4PbBr6 perovskite films reveal the polaron band absorption and strong polaron localization features of the material. A short polaron lifetime of ~2 ps is observed in femtosecond transient absorption experiments, which can be attributed to the fast lattice relaxation of the octahedra and the weak interactions among them.
Ren, Jiangtao; Beckner, Matthew A; Lynch, Kyle B; Chen, Huang; Zhu, Zaifang; Yang, Yu; Chen, Apeng; Qiao, Zhenzhen; Liu, Shaorong; Lu, Joann J
2018-05-15
A comprehensive two-dimensional liquid chromatography (LCxLC) system consisting of twelve columns in the second dimension was developed for comprehensive analysis of intact proteins in complex biological samples. The system consisted of an ion-exchange column in the first dimension and the twelve reverse-phase columns in the second dimension; all thirteen columns were monolithic and prepared inside 250 µm i.d. capillaries. These columns were assembled together through the use of three valves and an innovative configuration. The effluent from the first dimension was continuously fractionated and sequentially transferred into the twelve second-dimension columns, while the second-dimension separations were carried out in a series of batches (six columns per batch). This LCxLC system was tested first using standard proteins followed by real-world samples from E. coli. Baseline separation was observed for eleven standard proteins and hundreds of peaks were observed for the real-world sample analysis. Two-dimensional liquid chromatography, often considered as an effective tool for mapping proteins, is seen as laborious and time-consuming when configured offline. Our online LCxLC system with increased second-dimension columns promises to provide a solution to overcome these hindrances. Copyright © 2018 Elsevier B.V. All rights reserved.
Castro, Jorge
2017-07-11
This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.
International Nuclear Information System (INIS)
Storace, Eleonora
2009-01-01
From the development of the first transistor in 1947, great interest has been directed towards the technological development of semiconducting devices and the investigation of their physical properties. A very vital field within this topic focuses on the electrical transport through low-dimensional structures, where the quantum confinement of charge carriers leads to the observation of a wide variety of phenomena that, in their turn, can give an interesting insight on the fundamental properties of the structures under examination. In the present thesis, we will start analyzing zero-dimensional systems, focusing on how electrons localized onto an island can take part in the transport through the whole system; by precisely tuning the tunnel coupling strength between this island and its surroundings, we will then show how it is possible to move from a zero- to a one-dimensional system. Afterwards, the inverse path will be studied: a one-dimensional system is electrically characterized, proving itself to split up due to disorder into several zero-dimensional structures. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Storace, Eleonora
2009-07-08
From the development of the first transistor in 1947, great interest has been directed towards the technological development of semiconducting devices and the investigation of their physical properties. A very vital field within this topic focuses on the electrical transport through low-dimensional structures, where the quantum confinement of charge carriers leads to the observation of a wide variety of phenomena that, in their turn, can give an interesting insight on the fundamental properties of the structures under examination. In the present thesis, we will start analyzing zero-dimensional systems, focusing on how electrons localized onto an island can take part in the transport through the whole system; by precisely tuning the tunnel coupling strength between this island and its surroundings, we will then show how it is possible to move from a zero- to a one-dimensional system. Afterwards, the inverse path will be studied: a one-dimensional system is electrically characterized, proving itself to split up due to disorder into several zero-dimensional structures. (orig.)
Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography.
Creese, Mari E; Creese, Mathew J; Foley, Joe P; Cortes, Hernan J; Hilder, Emily F; Shellie, Robert A; Breadmore, Michael C
2017-01-17
Longitudinal on-column thermal modulation for comprehensive two-dimensional liquid chromatography is introduced. Modulation optimization involved a systematic investigation of heat transfer, analyte retention, and migration velocity at a range of temperatures. Longitudinal on-column thermal modulation was realized using a set of alkylphenones and compared to a conventional valve-modulator employing sample loops. The thermal modulator showed a reduced modulation-induced pressure impact than valve modulation, resulting in reduced baseline perturbation by a factor of 6; yielding a 6-14-fold improvement in signal-to-noise. A red wine sample was analyzed to demonstrate the potential of the longitudinal on-column thermal modulator for separation of a complex sample. Discrete peaks in the second dimension using the thermal modulator were 30-55% narrower than with the valve modulator. The results shown herein demonstrate the benefits of an active focusing modulator, such as reduced detection limits and increased total peak capacity.
Energy of N two-dimensional bosons with zero-range interactions
Bazak, B.; Petrov, D. S.
2018-02-01
We derive an integral equation describing N two-dimensional bosons with zero-range interactions and solve it for the ground state energy B N by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond the scaling B N ∝ 8.567 N predicted by Hammer and Son (2004 Phys. Rev. Lett. 93 250408) in the large-N limit.
Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation
Cardoso, Wesley B.; Salasnich, Luca; Malomed, Boris A.
2017-05-01
We study effects of tight harmonic-oscillator confinement on the electromagnetic field in a laser cavity by solving the two-dimensional Lugiato-Lefever (2D LL) equation, taking into account self-focusing or defocusing nonlinearity, losses, pump, and the trapping potential. Tightly confined (quasi-zero-dimensional) optical modes (pixels), produced by this model, are analyzed by means of the variational approximation, which provides a qualitative picture of the ensuing phenomena. This is followed by systematic simulations of the time-dependent 2D LL equation, which reveal the shape, stability, and dynamical behavior of the resulting localized patterns. In this way, we produce stability diagrams for the expected pixels. Then, we consider the LL model with the vortical pump, showing that it can produce stable pixels with embedded vorticity (vortex solitons) in remarkably broad stability areas. Alongside confined vortices with the simple single-ring structure, in the latter case the LL model gives rise to stable multi-ring states, with a spiral phase field. In addition to the numerical results, a qualitatively correct description of the vortex solitons is provided by the Thomas-Fermi approximation. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Blind column selection protocol for two-dimensional high performance liquid chromatography.
Burns, Niki K; Andrighetto, Luke M; Conlan, Xavier A; Purcell, Stuart D; Barnett, Neil W; Denning, Jacquie; Francis, Paul S; Stevenson, Paul G
2016-07-01
The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Timofeeva, N V
2003-01-01
Equations are obtained that are satisfied by the vectors of the tangent space to the variety X 22 of complete pairs of zero-dimensional subschemes of length 2 of a smooth three-dimensional projective algebraic variety at the most special point of the variety X 22 . It is proved that the system of equations obtained is complete and the variety X 22 is singular
Partition function zeros for the one-dimensional ordered plasma in Dirichlet boundary conditions
International Nuclear Information System (INIS)
Roumeliotis, J.; Smith, E.R.
1992-01-01
The authors consider the grand canonical partition function for the ordered one-dimensional, two-component plasma at fugacity ζ in an applied electric field E with Dirichlet boundary conditions. The system has a phase transition from a low-coupling phase with equally spaced particles to a high-coupling phase with particles clustered into dipolar pairs. An exact expression for the partition function is developed. In zero applied field the zeros in the ζ plane occupy the imaginary axis from -i∞ to -iζ c and iζ c to i∞ for some ζ c . They also occupy the diamond shape of four straight lines from ±iζ c to ζ c and from ±iζ c to -ζ c . The fugacity ζ acts like a temperature or coupling variable. The symmetry-breaking field is the applied electric field E. A finite-size scaling representation for the partition in scaled coupling and scaled electric field is developed. It has standard mean field form. When the scaled coupling is real, the zeros in the scaled field lie on the imaginary axis and pinch the real scaled field axis as the scaled coupling increases. The scaled partition function considered as a function of two complex variables, scaled coupling and scaled field, has zeros on a two-dimensional surface in a domain of four real variables. A numerical discussion of some of the properties of this surface is presented
Positive column of the discharge in a cylindrical shell
International Nuclear Information System (INIS)
Uehara, M.; Maciel, H.S.
1991-01-01
A Schottky type theoretical model is presented for the positive column of a discharge on a cylindric shell contained gas, with the discharge current flowing in the longitudinal direction. Some analytical results and the conclusion are presented. (L.C.J.A.). 5 refs
Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J
2015-07-24
The reversible molecular interconversion behaviour of a synthesised oxime (2-phenylpropanaldehyde oxime; (C6H5)CH(CH3)CHN(OH)) was investigated by both, single dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Previous studies on small molecular weight oximes were extended to this larger aromatic oxime (molar mass 149.19gmol(-1)) with interest in the extent of interconversion, enantioselective resolution, and retention time. On a polyethylene glycol (PEG; wax-type) column, a characteristic interconversion zone between two antipodes of E and Z isomers was formed by molecules which have undergone isomerisation on the column (E⇌Z). The extent of interconversion was investigated by varying chromatographic conditions (oven temperature and carrier flow rate) to understand the nature of the behaviour observed. The extent of interconversion was negligible in both enantioselective and methyl-phenylpolysiloxane phase-columns, correlating with the low polarity of the stationary phase. In order to obtain isomerisation along with enantio-resolution, a wax-type and an enantioselective column were coupled in either enantioselective-wax or wax-enantioselective order. The most appropriate column arrangement was selected for study by using a GC×GC experiment with either a wax-phase or phenyl-methylpolysiloxane phase as (2)D column. In addition to evaluation of these fast elution columns, a long narrow-bore enantioselective column (10m) was introduced as (2)D, providing an enantioselective-PEG (coupled-column ensemble: (1)D1+(1)D2)×enantioselective ((2)D) column combination. In this instance, the (1)D1 enantioselective column provides enantiomeric separation of the corresponding enantiomers ((R) and (S)) of (E)- and (Z)-2-phenylpropanaldehyde oxime, followed by E/Z isomerisation in the coupled (1)D2 PEG (reactor) column. The resulting chromatographic interconversion region was modulated and separated into either E/Z isomers
Zero-dimensional mathematical model of the torch ignited engine
International Nuclear Information System (INIS)
Cruz, Igor William Santos Leal; Alvarez, Carlos Eduardo Castilla; Teixeira, Alysson Fernandes; Valle, Ramon Molina
2016-01-01
Highlights: • Publications about the torch ignition system are mostly CFD or experimental research. • A zero-dimensional mathematical model is presented. • The model is based on classical thermodynamic equations. • Approximations are based on empirical functions. • The model is applied to a prototype by means of a computer code. - Abstract: Often employed in the analysis of conventional SI and CI engines, mathematical models can also be applied to engines with torch ignition, which have been researched almost exclusively by CFD or experimentally. The objective of this work is to describe the development and application of a zero-dimensional model of the compression and power strokes of a torch ignited engine. It is an initial analysis that can be used as a basis for future models. The processes of compression, combustion and expansion were described mathematically and applied to an existing prototype by means of a computer code written in MATLAB language. Conservation of energy and mass and the ideal gas law were used in determining gas temperature, pressure, and mass flow rate within the cylinder. Gas motion through the orifice was modelled as an isentropic compressible flow. The thermodynamic properties of the mixture were found by a weighted arithmetic mean of the data for each component, computed by polynomial functions of temperature. Combustion was modelled by the Wiebe function. Heat transfer to the cylinder walls was estimated by Annand’s correlations. Results revealed the behaviour of pressure, temperature, jet velocity, energy transfer, thermodynamic properties, among other variables, and how some of these are influenced by others.
Vacuum energy is non-positive for (2 + 1)-dimensional holographic CFTs
International Nuclear Information System (INIS)
Hickling, Andrew; Wiseman, Toby
2016-01-01
We consider a (2 + 1)-dimensional holographic CFT on a static spacetime with globally timelike Killing vector. Taking the spatial geometry to be closed but otherwise general we expect a non-trivial vacuum energy at zero temperature due to the Casimir effect. We assume a thermal state has an AdS/CFT dual description as a static smooth solution to gravity with a negative cosmological constant, which ends only on the conformal boundary or horizons. A bulk geometric argument then provides an upper bound on the ratio of CFT free energy to temperature. Considering the zero temperature limit of this bound implies the vacuum energy of the CFT is non-positive. Furthermore the vacuum energy must be negative unless the boundary metric is locally conformal to a product of time with a constant curvature space. We emphasise the argument does not require the zero temperature bulk geometry to be smooth, but only that singularities are ‘good’ so are hidden by horizons at finite temperature. (paper)
HPLC separation of triacylglycerol positional isomers on a polymeric ODS column.
Kuroda, Ikuma; Nagai, Toshiharu; Mizobe, Hoyo; Yoshimura, Nobuhito; Gotoh, Naohiro; Wada, Shun
2008-07-01
A polymeric ODS column was applied to the resolution of triacylglycerol positional isomers (TAG-PI), i.e. 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), with a recycle HPLC system. To investigate the ODS column species and the column temperatures for the resolution of a TAG-PI pair, a mixture of OPO and OOP was subjected to an HPLC system equipped with a non-endcapped polymeric, endcapped monomeric, endcapped intermediate, or non-endcapped monomeric ODS column at three different column temperatures (40, 25, or 10 degrees C). Only the non-endcapped polymeric ODS column achieved the separation of OPO and OOP, and the lowest column temperature (10 degrees C) showed the best resolution for them. The other pair of TAG-PI, a mixture of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP) and 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (PPO) was also subjected to the system equipped with a non-endcapped polymeric or monomeric ODS column at five different column temperatures (40, 32, 25, 17, and 10 degrees C). Thus, POP and PPO were also separated on only the non-endcapped polymeric ODS column at 25 degrees C. However, no clear peak appeared at 10 degrees C. These results would indicate that the polymeric ODS stationary phase has an ability to recognize the structural differences between TAG-PI pairs. Also, the column temperature is a very important factor for separating the TAG-PI pair, and the optimal temperature would relate to the solubility of TAG-PI in the mobile phase. Furthermore, the recycle HPLC system provided measurements for the separation and analysis of TAG-PI pairs.
User's guide for FRMOD, a zero dimensional FRM burn code
International Nuclear Information System (INIS)
Driemeryer, D.; Miley, G.H.
1979-01-01
The zero-dimensional FRM plasma burn code, FRMOD is written in the FORTRAN language and is currently available on the Control Data Corporation (CDC) 7600 computer at the Magnetic Fusion Energy Computer Center (MFECC), sponsored by the US Department of Energy, in Livermore, CA. This guide assumes that the user is familiar with the system architecture and some of the utility programs available on the MFE-7600 machine, since online documentation is available for system routines through the use of the DOCUMENT utility. Users may therefore refer to it for answers to system related questions
Guan, Y H; van den Heuvel, Remco
2011-08-05
Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Majorana zero modes in the hopping-modulated one-dimensional p-wave superconducting model.
Gao, Yi; Zhou, Tao; Huang, Huaixiang; Huang, Ran
2015-11-20
We investigate the one-dimensional p-wave superconducting model with periodically modulated hopping and show that under time-reversal symmetry, the number of the Majorana zero modes (MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for the existence of the MZMs and show that the topological properties in this model are dramatically different from the one with periodically modulated potential.
Computation of zero. beta. three-dimensional equilibria with magnetic islands
Energy Technology Data Exchange (ETDEWEB)
Reiman, A.H.; Greenside, H.S.
1989-01-01
A Picard iteration scheme has been implemented for the computation of toroidal, fully three-dimensional, zero ..beta.. equilibria with islands and stochastic regions. Representation of the variables in appropriate coordinate systems has been found to be a key to making the scheme work well. In particular, different coordinate systems are used for solving magnetic differential equations and Ampere's law. The current profile is adjusted when islands and stochastic regions appear. An underrelaxation of the current profile modifications is generally needed for stable iteration of the algorithm. Some examples of equilibrium calculations are presented. 16 refs., 6 figs., 1 tab.
Thomson scattering in a low-pressure argon mercury positive column
Bakker, L.P.; Kroesen, G.M.W.
2000-01-01
The electron density and the electron temperature in a low-pressure argon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 5
Thomson scattering in a low-pressure neon mercury positive column
Bakker, L.P.; Kroesen, G.M.W.
2001-01-01
The electron density and the electron temperature in a low-pressure neon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 10
Benninger, Monika I; Seiler, Gabriela S; Robinson, Leanne E; Ferguson, Stephen J; Bonél, Harald M; Busato, André R; Lang, Johann
2004-05-01
To evaluate the 3-dimensional motion pattern including main and coupled motions of the caudal lumbar and lumbosacral portions of the vertebral column of dogs. Vertebral columns of 9 German Shepherd Dogs (GSDs) and 16 dogs of other breeds with similar body weights and body conditions. Main and coupled motions of the caudal lumbar and lumbosacral portions of the vertebral column (L4 to S1) were determined by use of a testing apparatus that permitted precise application of known pure moments to the vertebral column. Motion was compared between GSDs and dogs of other breeds. All specimens had a similar motion pattern consisting of main motion and a certain amount of coupled motion including translation. Vertebral columns of GSDs had significantly less main motion in all directions than that of dogs of other breeds. Translation was similar in GSDs and dogs of other breeds and was smallest at the lumbosacral motion segment. Results indicated that motion in the caudal lumbar and lumbosacral portions of the vertebral column of dogs is complex and provided a basis for further studies evaluating abnormal vertebral columns.
A Zero-Dimensional Model of a 2nd Generation Planar SOFC Using Calibrated Parameters
DEFF Research Database (Denmark)
Petersen, Thomas Frank
2006-01-01
This paper presents a zero-dimensional mathematical model of a planar 2nd generation co-flow SOFC developed for simulation of power systems. The model accounts for the electrochemical oxidation of hydrogen as well as the methane reforming reaction and the water-gas shift reaction. An important part...... SOFC-based power systems....
Primary decomposition of zero-dimensional ideals over finite fields
Gao, Shuhong; Wan, Daqing; Wang, Mingsheng
2009-03-01
A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.
Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong
2015-07-24
In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed
Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav
2018-04-01
We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.
Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi
2014-09-17
Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.
Directory of Open Access Journals (Sweden)
Junjie Zeng
2018-03-01
Full Text Available Fiber-reinforced polymer (FRP jacketing/wrapping has become an attractive strengthening technique for concrete columns. Wrapping an existing concrete column with continuous FRP jackets with the fiber in the jacket being oriented in the hoop direction is referred to as FRP full wrapping strengthening technique. In practice, however, strengthening concrete columns with vertically discontinuous FRP strips is also favored and this technique is referred to as FRP partial wrapping strengthening technique. Existing research has demonstrated that FRP partial wrapping strengthening technique is a promising and economical alternative to the FRP full wrapping strengthening technique. Although extensive experimental investigations have hitherto been conducted on partially FRP-confined concrete columns, the confinement mechanics of confined concrete in partially FRP-confined circular columns remains unclear. In this paper, an experimental program consisting of fifteen column specimens was conducted and the test results were presented. A reliable three-dimensional (3D finite element (FE approach for modeling of partially FRP-confined circular columns was established. In the proposed FE approach, an accurate plastic-damage model for concrete under multiaxial compression is employed. The accuracy of the proposed FE approach was verified by comparisons between the numerical results and the test results. Numerical results from the verified FE approach were then presented to gain an improved understanding of the behavior of confined concrete in partially FRP-confined concrete columns.
International Nuclear Information System (INIS)
Golubovskii, Yu B; Kozakov, R V; Wilke, C; Behnke, J; Nekutchaev, V O
2004-01-01
Time and space resolved measurements of the plasma potential in axial and radial directions in S- and P-striations in neon are performed. The measurements in different radial positions were carried out with high spatial resolution by means of simultaneous displacement of electrodes relative to the stationary probe. The plasma potential was found to be a superposition of the potentials of ionization wave and plasma oscillations relative to the electrodes. A method of decomposition of the measured spatio-temporal structure of the potential in components associated with the plasma oscillations and ionization wave propagation is proposed. A biorthogonal decomposition of the spatio-temporal structure of the potential is performed. A comparison of the decomposition results obtained by the two methods is made. The experiments revealed a two-dimensional structure of the potential field in an ionization wave. Qualitative discussions of the reasons for the occurrence of this two-dimensional structure are presented based on the analysis of the kinetic equation and the equation for the potential
Particle densities in a positive column He-I+ discharge
International Nuclear Information System (INIS)
Gato, T.
1980-01-01
In a positive column He-1 + laser discharge, the He + ion density has been determined directly from the absorption of the HeII 30.3 nm resonance line measured by a modified absorption method, and the electron density has been obtained using this measured He + ion density. The population densities of the upper and lower states of the 612.7 nm laser line have also been measured roughly. (orig.)
DEFF Research Database (Denmark)
Græsbøll, Rune; Nielsen, Nikoline Juul; Christensen, Jan H.
2014-01-01
A method for choosing orthogonal columns for a specific sample set in on-line comprehensive two-dimensional liquid chromatography (LC×LC) was developed on the basis of the hydrophobic subtraction model. The method takes into account the properties of the sample analytes by estimating new F...... neutral and 4 acidic oxygenated polycyclic aromatic compounds (PACs) and 3 nitrogen-containing PAC bases was measured isocratically on 12 columns. The isocratic runs were used to determine the hydrophobic subtraction model analyte parameters, and these were used to estimate new F-weights and predict...
International Nuclear Information System (INIS)
Clancy, B.E.; Cook, J.L.
1984-12-01
The zero-dimensional code SCORCH determines number density and temperature evolution in plasmas using concepts derived from the Hinton and Hazeltine transport theory. The code uses the previously reported ADL-1 data library
International Nuclear Information System (INIS)
Aghajamali, Alireza; Alamfard, Tannaz; Barati, Mahmood
2014-01-01
The effects of electric and magnetic loss factors on zero-= and zero-= gaps in a one-dimensional lossy photonic crystal composed of double-negative and double-positive materials are theoretically investigated by employing the characteristic matrix method. This study contradicts the previous reports as it indicates that by applying the inevitable factors of electric and magnetic losses to the double-negative material, the zero-= and zero-= gaps appear simultaneously in the transmission spectrum, being independent of the incidence angle and polarizations. Moreover, the results show that these gaps appear not only for an oblique incidence but also in the case of normal incidence, and their appearance at the normal incidence is directly related to the magnetic and electric loss factors. Besides, the results indicate that as the loss factors and angle of incidence increase, the width of both gaps also increases
Leonhardt, Juri; Teutenberg, Thorsten; Buschmann, Greta; Gassner, Oliver; Schmidt, Torsten C
2016-11-01
For the identification of the optimal column combinations, a comparative orthogonality study of single columns and columns coupled in series for the first dimension of a microscale two-dimensional liquid chromatographic approach was performed. In total, eight columns or column combinations were chosen. For the assessment of the optimal column combination, the orthogonality value as well as the peak distributions across the first and second dimension was used. In total, three different methods of orthogonality calculation, namely the Convex Hull, Bin Counting, and Asterisk methods, were compared. Unfortunately, the first two methods do not provide any information of peak distribution. The third method provides this important information, but is not optimal when only a limited number of components are used for method development. Therefore, a new concept for peak distribution assessment across the separation space of two-dimensional chromatographic systems and clustering detection was developed. It could be shown that the Bin Counting method in combination with additionally calculated histograms for the respective dimensions is well suited for the evaluation of orthogonality and peak clustering. The newly developed method could be used generally in the assessment of 2D separations. Graphical Abstract ᅟ.
Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature
Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.
2014-02-01
We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.
Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature
International Nuclear Information System (INIS)
Nguyen, H. S.; Lafosse, X.; Amo, A.; Bouchoule, S.; Bloch, J.; Han, Z.; Abdel-Baki, K.; Lauret, J.-S.; Deleporte, E.
2014-01-01
We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature
On truncated Taylor series and the position of their spurious zeros
DEFF Research Database (Denmark)
Christiansen, Søren; Madsen, Per A.
2006-01-01
A truncated Taylor series, or a Taylor polynomial, which may appear when treating the motion of gravity water waves, is obtained by truncating an infinite Taylor series for a complex, analytical function. For such a polynomial the position of the complex zeros is considered in case the Taylor...
Solving Schwinger-Dyson equations by truncation in zero-dimensional scalar quantum field theory
International Nuclear Information System (INIS)
Okopinska, A.
1991-01-01
Three sets of Schwinger-Dyson equations, for all Green's functions, for connected Green's functions, and for proper vertices, are considered in scalar quantum field theory. A truncation scheme applied to the three sets gives three different approximation series for Green's functions. For the theory in zero-dimensional space-time the results for respective two-point Green's functions are compared with the exact value calculated numerically. The best convergence of the truncation scheme is obtained for the case of proper vertices
The fate of the zero mode of the five-dimensional kink in the presence of gravity
International Nuclear Information System (INIS)
Shaposhnikov, Mikhail; Tinyakov, Petr; Zuleta, Katarzyna
2005-01-01
We investigate what becomes of the translational zero-mode of a five-dimensional domain wall in the presence of gravity, studying the scalar perturbations of a thick gravitating domain wall with AdS asymptotics and a well-defined zero-gravity limit. Our analysis reveals the presence of a wide resonance which can be seen as a remnant of the translational zero-mode present in the domain wall in the absence of gravity and which ensures a continuous change of the physical quantities (such as e.g. static potential between sources) when the Planck mass is sent to infinity. Provided that the thickness of the wall is much smaller than the AdS radius of the space-time, the parameters of this resonance do not depend on details of the domain wall's structure, but solely on the geometry of the space-time
Energy Technology Data Exchange (ETDEWEB)
Korhonen, Marko [Department of Mathematics and Statistics, University of Helsinki, FIN-00014 (Finland); Lee, Eunghyun [Centre de Recherches Mathématiques (CRM), Université de Montréal, Quebec H3C 3J7 (Canada)
2014-01-15
We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.
International Nuclear Information System (INIS)
Bakhshan, Y.; Karim, G. A.; Mansouri, S. H.
2003-01-01
In this investigation, the instantaneous unsteady heat transfer within a pneumatically driven rapid compression-expansion machine that offers simple, well-controlled and known boundary conditions was studied. Values of the instantaneous apparent overall heat flux from the cylinder gas to the wall surfaces were calculated using a thermodynamics analysis of the experimentally measured pressure and volume temporal development. Corresponding heat flux values were also calculated through the application of a zero-dimensional k- ε turbulence model the characteristic velocity is a contribution of turbulence kinetic energy, mean kinetic energy of charged air into cylinder and piston motion for the calculation of Reynolds, Nusselt and Prandtl numbers. Comparison of the zero-dimensional k- ε turbulence model prediction with experimental data shows good agreement for all compression ratios
Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids
Saidaminov, Makhsud I.
2016-09-26
So-called zero-dimensional perovskites, such as Cs4PbBr6, promise outstanding emissive properties. However, Cs4PbBr6 is mostly prepared by melting of precursors that usually leads to a coformation of undesired phases. Here, we report a simple low-temperature solution-processed synthesis of pure Cs4PbBr6 with remarkable emission properties. We found that pure Cs4PbBr6 in solid form exhibits a 45% photoluminescence quantum yield (PLQY), in contrast to its three-dimensional counterpart, CsPbBr3, which exhibits more than 2 orders of magnitude lower PLQY. Such a PLQY of Cs4PbBr6 is significantly higher than that of other solid forms of lower-dimensional metal halide perovskite derivatives and perovskite nanocrystals. We attribute this dramatic increase in PL to the high exciton binding energy, which we estimate to be ∼353 meV, likely induced by the unique Bergerhoff–Schmitz–Dumont-type crystal structure of Cs4PbBr6, in which metal-halide-comprised octahedra are spatially confined. Our findings bring this class of perovskite derivatives to the forefront of color-converting and light-emitting applications.
McCue, Justin T; Cecchini, Douglas; Chu, Cathy; Liu, Wei-Han; Spann, Andrew
2007-03-23
A two-dimensional model was formulated to describe the pressure-flow behavior of compressible stationary phases for protein chromatography at different temperatures and column scales. The model was based on the assumption of elastic deformation of the solid phase and steady-state Darcy flow. Using a single fitted value for the empirical modulus parameters, the model was applied to describe the pressure-flow behavior of several adsorbents packed using both fluid flow and mechanical compression. Simulations were in agreement with experimental data and accurately predicted the pressure-flow and compression behavior of three adsorbents over a range of column scales and operating temperatures. Use of the described theoretical model potentially improves the accuracy of the column scale-up process, allowing the use of limited laboratory scale data to predict column performance in large scale applications.
Zero-Dimensional Cs4PbBr6 Perovskite Nanocrystals
Zhang, Yuhai
2017-02-09
Perovskite nanocrystals (NCs) have become leading candidates for solution-processed optoelectronics applications. While substantial work has been published on 3-D perovskite phases, the NC form of the zero-dimensional (0-D) phase of this promising class of materials remains elusive. Here we report the synthesis of a new class of colloidal semiconductor NCs based on Cs4PbBr6, the 0-D perovskite, enabled through the design of a novel low-temperature reverse microemulsion method with 85% reaction yield. These 0-D perovskite NCs exhibit high photoluminescence quantum yield (PLQY) in the colloidal form (PLQY: 65%), and, more importantly, in the form of thin film (PLQY: 54%). Notably, the latter is among the highest values reported so far for perovskite NCs in the solid form. Our work brings the 0-D phase of perovskite into the realm of colloidal NCs with appealingly high PLQY in the film form, which paves the way for their practical application in real devices.
Properties of the positive column of a glow discharge in flowing hydrogen
International Nuclear Information System (INIS)
Brunet, H.; Rocca Serra, J.; Mabru, M.
1981-01-01
Results of a theoretical model for predicting the effects of gas flow on the properties of the positive column in a glow discharge are presented. A cylindrical discharge at low pressure ( 2 molecules and H atoms produced by the discharge are calculated. Comparison with available experimental data is made
Chiral zero energy modes in two-dimensional disordered Dirac semimetals
Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen
2018-04-01
The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-05-01
Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.
Thermal neutron flux distribution in ET-RR-2 reactor thermal column
Directory of Open Access Journals (Sweden)
Imam Mahmoud M.
2002-01-01
Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.
Garashchuk, Sophya; Rassolov, Vitaly A
2008-07-14
Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.
Li, Xueshi; Huang, Zifang; Deng, Yaolong; Fan, Hengwei; Sui, Wenyuan; Wang, Chongwen; Yang, Junlin
2017-12-01
Posterior three-column spinal osteotomies were shown to be effective to treat severe and stiff kyphoscoliosis. Translations at the site of osteotomy after deformity correction were commonly seen intraoperatively, which might cause potential neurologic deficits. However, this phenomenon was not thoroughly discussed in the current literature. This study aimed to evaluate the three-dimensional (3D) translations at the three-column osteotomy site and their effects on neurologic outcome in the surgical correction of severe and stiff kyphoscoliosis. A retrospective study was carried out. Sixty-nine patients treated by posterior three-column spinal osteotomy for severe kyphoscoliosis of idiopathic, congenital, neuromuscular, neurofibromatosis, and tuberculosis origin were included. General, coronal, and sagittal translations were graded three-dimensionally according to the theory of Meyerding. The charts of 69 clinical patients with severe and stiff kyphoscoliosis treated by posterior three-column osteotomy from January 2013 to June 2015 were reviewed. There were 35 male patients with an average age of 21.5 years and 34 female patients with an average age of 22.5 years. The etiologies of these spinal deformities were idiopathic, congenital, neuromuscular, neurofibromatosis, and tuberculosis. According to our classification system of spinal cord neurologic function, there were 41 type A, 13 type B, and 15 type C cases. The 3D spine models were reconstructed from thin-sliced computed tomography (CT) scan, and the 3D translations at the three-column osteotomy site were graded and analyzed. The incidences of general translation (GT), frontal translation (FT), and sagittal translation (ST) were 62.3%, 52.2%, and 26.1%. The incidence of evoked potential (EP) change in cases with GT/FT being or more than grade II (GT, 42.9%; FT, 50.0%) was significantly higher than that with GT/FT being less than grade II (GT, 16.7%; FT, 18.2%), whereas the incidence of EP change in cases with
On the Synthesis and Optical Characterization of Zero-Dimensional-Networked Perovskites
Almutlaq, Jawaher
2017-04-26
The three-dimensional perovskites are known for their wide range of interesting properties including spectral tunability, charge carrier mobility, solution-based synthesis and many others. Such properties make them good candidates for photovoltaics and photodetectors. Low-dimensional perovskites, on the other hand, are good as light emitters due to the quantum confinement originating from their nanoparticle size. Another class of low-dimensional perovskites, also called low-dimensional-networked perovskites (L-DN), is recently reemerging. Those interesting materials combine the advantages of the nanocrystals and the stability of the bulk. For example, zero-dimensional-networked perovskite (0-DN), a special class of perovskites and the focus of this work, consists of building blocks of isolated lead-halide octahedra that could be synthesized into mm-size single crystal without losing their confinement. This thesis focuses on the synthesis and investigation of the optical properties of the 0-DN perovskites through experimental, theoretical and computational tools. The recent discovery of the retrograde solubility of the perovskites family (ABX3), the basis of the inverse temperature crystallization (ITC), inspired the reinvestigation of the low-dimensional-networked perovskites. The results of the optical characterization showed that the absorption and the corresponding PL spectra were successfully tuned to cover the visible spectrum from 410 nm for Cs4PbCl6, to 520 nm and 700 m for Cs4PbBr6 and Cs4PbI6, respectively. Interestingly, the exciton binding energies (Eb) of the 0-DNs were found to be in the order of few hundred meV(s), at least five times larger than their three-dimensional counterpart. Such high Eb is coupled with a few nanoseconds lifetime and ultimately yielded a high photoluminesce quantum yield (PLQY). In fact, the PLQY of Cs4PbBr6 powder showed a record of 45%, setting a new benchmark for solid-state luminescent perovskites. Computational methods
Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J
2013-10-18
Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.
Benninger, Monika I; Seiler, Gabriela S; Robinson, Leanne E; Ferguson, Stephen J; Bonél, Harald M; Busato, André R; Lang, Johann
2006-01-01
To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.
Msetfi, Rachel M.; Murphy, Robin, A.; Simpson, Jane
2007-01-01
peer-reviewed In three experiments we tested how the spacing of trials during acquisition of zero, positive, and negative event–outcome contingencies differentially affected depressed and nondepressed students’ judgements. Experiment 1 found that nondepressed participants’ judgements of zero contingencies increased with longer intertrial intervals (ITIs) but not simply longer procedure durations. Depressed groups’ judgements were not sensitive to either manipulation, producing an effect kn...
Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko
2018-01-01
Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.
One-dimensional position readout from microchannel plates
International Nuclear Information System (INIS)
Connell, K.A.; Przybylski, M.M.
1982-01-01
The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)
Two-dimensional position sensitive Si(Li) detector
International Nuclear Information System (INIS)
Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated
Neutron fluence rate and energy spectrum in SPRR-300 reactor thermal column
International Nuclear Information System (INIS)
Dou Haifeng; Dai Junlong
2006-01-01
In order to modify the simple one-dimension model, the neutron fluence rate distribution calculated with ANISN code ws checked with that calculated with MCNP code. To modify the error caused by ignoring the neutron landscape orientation leaking, the reflector that can't be modeled in a simple one-dimension model was dealt by extending landscape orientation scale. On this condition the neutron fluence rate distribution and the energy spectrum in the thermal column of SPRR-300 reactor were calculated with one-dimensional code ANISN, and the results of Cd ratio are well accorded with the experimental results. The deviation between them is less than 5% and it isn't above 10% in one or two special positions. It indicates that neutron fluence rate distribution and energy spectrum in the thermal column can be well calculated with one-dimensional code ANISN. (authors)
A new multivariate zero-adjusted Poisson model with applications to biomedicine.
Liu, Yin; Tian, Guo-Liang; Tang, Man-Lai; Yuen, Kam Chuen
2018-05-25
Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log-normal model (Aitchison and Ho, ) cannot be used to fit multivariate count data with excess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero-truncated/deflated count data and it is difficult to apply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Replica analysis of partition-function zeros in spin-glass models
International Nuclear Information System (INIS)
Takahashi, Kazutaka
2011-01-01
We study the partition-function zeros in mean-field spin-glass models. We show that the replica method is useful to find the locations of zeros in a complex parameter plane. For the random energy model, we obtain the phase diagram in the plane and find that there are two types of distributions of zeros: two-dimensional distribution within a phase and one-dimensional one on a phase boundary. Phases with a two-dimensional distribution are characterized by a novel order parameter defined in the present replica analysis. We also discuss possible patterns of distributions by studying several systems.
One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials.
Rizza, Carlo; Di Falco, Andrea; Scalora, Michael; Ciattoni, Alessandro
2015-07-31
We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.e., its mirror image cannot be superposed onto it by using translations without resorting to rotations. As a signature of 1D chirality, we show that 1D chiral metamaterials support optical activity and we prove that this phenomenon undergoes a dramatic nonresonant enhancement in the epsilon-near-zero regime where the magnetoelectric coupling can become dominant in the constitutive relations.
International Nuclear Information System (INIS)
Yang, M.; Sturm, J.C.; Prevost, J.
1997-01-01
The strain field distributions and band lineups of zero-dimensional and one-dimensional strained pseudomorphic semiconductor particles inside a three-dimensional matrix of another semiconductor have been studied. The resulting strain in the particle and the matrix leads to band alignments considerably different from that in the conventional two-dimensional (2D) pseudomorphic growth case. The models are first applied to an ideal spherical and cylindrical Si 1-x Ge x particle in a large Si matrix. In contrast to the 2D case, the band alignments for both structures are predicted to be strongly type II, where the conduction-band edge and the valence-band edge of the Si matrix are both significantly lower than those in the Si 1-x Ge x inclusion, respectively. Band lineups and the lowest electron endash heavy-hole transition energies of a pseudomorphic V-groove Si 1-x Ge x quantum wire inside a large Si matrix have been calculated numerically for different size structures. The photoluminescence energies of a large Si 1-x Ge x V-groove structure on Si will be lower than those of conventional 2D strained Si 1-x Ge x for similar Ge contents. copyright 1997 The American Physical Society
Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li
2016-06-05
In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Hiroshi Ogawa; Akiko Kitajima; Hisashi Tanaka; Tohru Kawamoto
2015-01-01
Adsorption property of granulated Prussian blue adsorbent on radioactive cesium was evaluated for efficient decontamination in Fukushima area. The adsorbent was found to show an inflective adsorption isotherm, which was expressed by extended Langmuir formula with three adsorption sites. Adsorption speeds of each site were evaluated by time-dependent batch experiment. The simulation using derived parameters and one-dimensional adsorption model successfully reproduced the experimental data of cesium decontamination by small and large columns. (author)
Curtis, Jeffrey H.; Riemer, Nicole; West, Matthew
2017-11-01
The PartMC-MOSAIC particle-resolved aerosol model was previously developed to predict the aerosol mixing state as it evolves in the atmosphere. However, the modeling framework was limited to a zero-dimensional box model approach without resolving spatial gradients in aerosol concentrations. This paper presents the development of stochastic particle methods to simulate turbulent diffusion and dry deposition of aerosol particles in a vertical column within the planetary boundary layer. The new model, WRF-PartMC-MOSAIC-SCM, resolves the vertical distribution of aerosol mixing state. We verified the new algorithms with analytical solutions for idealized test cases and illustrate the capabilities with results from a 2-day urban scenario that shows the evolution of black carbon mixing state in a vertical column.
Sun, Yuan; Xu, Jianle; Qiao, Wen; Xu, Xiaobing; Zhang, Weili; Zhang, Kaiyu; Zhang, Xing; Chen, Xing; Zhong, Wei; Du, Youwei
2016-11-23
A novel "201" nanostructure composite consisting of two-dimensional MoS 2 nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS 2 nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS 2 -Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS 2 or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS 2 -Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.08 dB at the thickness of 2.4 mm. The maximum effective microwave absorption bandwidth (RL< -10 dB) of 6.04 GHz was obtained at the thickness of 2.1 mm. The excellent absorption ability originates from appropriate impedance matching ratio, strong dielectric loss and large surface area, which are attributed to the "201" nanostructure. In addition, this method could be extended to other low-dimensional materials, proving to be an efficient and promising strategy for high microwave absorption performance.
A two-dimensional low energy gamma-ray position sensitive detector
International Nuclear Information System (INIS)
Charalambous, P.M.; Dean, A.J.; Drane, M.; Gil, A.; Stephen, J.B.; Young, N.G.S.; Barbareschi, L.; Perotti, F.; Villa, G.; Badiali, M.; La Padula, C.; Polcaro, F.; Ubertini, P.
1984-01-01
An array of 1-dimensional position sensitive detectors designed to operate over the photon energy range 0.2-10.0 MeV, so as to form an efficient 2-dimensional position sensitive detection plane is described. A series of experimental tests has been carried out to evaluate and confirm the computed capabilities. (orig.)
Study of glow discharge positive column with cloud of disperse particles
International Nuclear Information System (INIS)
Polyakov, D.N.; Shumova, V.V.; Vasilyak, L.M.; Fortov, V.E.
2011-01-01
The study aims to describe plasma parameters changes induced by clouds of disperse micron size particles. Dust clouds were formed in the positive column of glow discharge in air at pressure 0.1-0.6 torr and current 0.1-3 mA. The simultaneous registration of discharge voltage and dust cloud parameters was carried out. Experimental results were simulated using diffusion model. The dust cloud is shown to smooth the radial electron concentration profile, increase electric field strength and electron temperature and stabilize the discharge. The cloud is demonstrated to be a trap for positive ions without increase of discharge current. -- Highlights: → 25% increase of longitudinal electric field strength in discharge with dust cloud. → The smoothing effect of dust cloud on radial electron and ion concentration profiles. → Dust cloud as a trap for positive ions without increase of discharge current. → Increase of electron temperature in discharge with dust cloud. → Increase of discharge stability in presence of dust cloud.
Three-Dimensional Printing in Zero Gravity
Werkheiser, Niki
2015-01-01
The 3D printing in zero-g (3D Print) technology demonstration project is a proof-of-concept test designed to assess the properties of melt deposition modeling additive manufacturing in the microgravity environment experienced on the International Space Station (ISS). This demonstration is the first step towards realizing a 'machine shop' in space, a critical enabling component of any deep space mission.
Column properties and flow profiles of a flat, wide column for high-pressure liquid chromatography.
Mriziq, Khaled S; Guiochon, Georges
2008-04-11
The design and the construction of a pressurized, flat, wide column for high-performance liquid chromatography (HPLC) are described. This apparatus, which is derived from instruments that implement over-pressured thin layer chromatography, can carry out only uni-dimensional chromatographic separations. However, it is intended to be the first step in the development of more powerful instruments that will be able to carry out two-dimensional chromatographic separations, in which case, the first separation would be a space-based separation, LC(x), taking place along one side of the bed and the second separation would be a time-based separation, LC(t), as in classical HPLC but proceeding along the flat column, not along a tube. The apparatus described consists of a pressurization chamber made of a Plexiglas block and a column chamber made of stainless steel. These two chambers are separated by a thin Mylar membrane. The column chamber is a cavity which is filled with a thick layer (ca. 1mm) of the stationary phase. Suitable solvent inlet and outlet ports are located on two opposite sides of the sorbent layer. The design allows the preparation of a homogenous sorbent layer suitable to be used as a chromatographic column, the achievement of effective seals of the stationary phase layer against the chamber edges, and the homogenous flow of the mobile phase along the chamber. The entire width of the sorbent layer area can be used to develop separations or elute samples. The reproducible performance of the apparatus is demonstrated by the chromatographic separations of different dyes. This instrument is essentially designed for testing detector arrays to be used in a two-dimensional LC(x) x LC(t) instrument. The further development of two-dimension separation chromatographs based on the apparatus described is sketched.
Improved zero dimensional model of a reversed field pinch fusion device
International Nuclear Information System (INIS)
Haynes, K.E.
1987-01-01
A zero-dimensional model has been developed which accurately predicts conditions observed during several runs of the ZT-40M reversed field pinch fusion device at Los Alamos National Laboratory. The model is based on a physical model developed by E.H. Klevans at Penn State University. Improvements made to this model included the use of coronal non-equilibrium equations for predicting impurity effects, the inclusion of an exponentially decaying ion heating term, and the relaxation of the assumption that ion and electron densities are equal in the device. The model has been used to simulate ZT-40M in both flat-top and slowly ramped current modes. Using experimentally measured density and current evolutions, the model accurately predicts observed tau/sub E/, β/sub Θ/, T/sub e/, T/sub i/, Z/sub eff/, and radiated power. The continuing goal of this work is to predict conditions in the ZT-H device, which is under construction. 28 refs., 18 figs
Lewis, Robert
2015-01-01
The history of the number zero is an interesting one. In early times, zero was not used as a number at all, but instead was used as a place holder to indicate the position of hundreds and tens. This article briefly discusses the history of zero and challenges the thinking where divisions using zero are used.
Bugetul funcțional (Line - Item Budget și metoda Buget Bază Zero ( Zero Base Budgeting - ZBB
Directory of Open Access Journals (Sweden)
Dan Tudor LAZĂR
2004-06-01
Full Text Available A line-item budget lists, in vertical columns, each of the revenue sources and each of the types – or classes – of items will purchase during the fiscal year. The line-item budget, which is the most widely used of all budgeting systems, offers many advantages. It is comparatively easy to prepare and doesn’t require sophisticated financial skills. Also, the line-item budget is straightforward, simple to administer and readily understood by everybody. Moreover, the simplicity of the system makes it easier to monitor revenues and expenditures, which is important in this era of shrinking resources. Zero-based budgeting is a system that requires all departments to defend their programs and justify their continuation each year. Instead of simply penciling in the amounts of the additional funds that are needed in each account, the department head must prepare a series of “decision packages” that describe – and justify – each of the department’s programs in detail. For each program, the department must show: the various levels of service that could be provided with different levels of funding – including zero funding; alternative courses of action; and the consequences of funding the service at different levels, or not funding it at all. The most positive feature of zero-based budgeting is that it requires a thorough evaluation of all programs on a continuing basis and encourages proper funding for priority programs at the expense of less useful programs. The major drawback to zero-based budgeting is that it is extremely time-consuming, costly and requires a level of staff expertise that is not often available in small cities.
Gribov ambiguity in asymptotically AdS three-dimensional gravity
International Nuclear Information System (INIS)
Anabalon, Andres; Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio
2011-01-01
In this paper the zero modes of the de Donder gauge Faddeev-Popov operator for three-dimensional gravity with negative cosmological constant are analyzed. It is found that the AdS 3 vacuum produces (infinitely many) normalizable smooth zero modes of the Faddeev-Popov operator. On the other hand, it is found that the Banados-Teitelboim-Zanelli black hole (including the zero mass black hole) does not generate zero modes. This differs from the usual Gribov problem in QCD where, close to the maximally symmetric vacuum, the Faddeev-Popov determinant is positive definite while 'far enough' from the vacuum it can vanish. This suggests that the zero mass Banados-Teitelboim-Zanelli black hole could be a suitable ground state of three-dimensional gravity with negative cosmological constant. Because of the kinematic origin of this result, it also applies for other covariant gravity theories in three dimensions with AdS 3 as maximally symmetric solution, such as new massive gravity and topologically massive gravity. The relevance of these results for supersymmetry breaking is pointed out.
Validating and improving a zero-dimensional stack voltage model of the Vanadium Redox Flow Battery
König, S.; Suriyah, M. R.; Leibfried, T.
2018-02-01
Simple, computationally efficient battery models can contribute significantly to the development of flow batteries. However, validation studies for these models on an industrial-scale stack level are rarely published. We first extensively present a simple stack voltage model for the Vanadium Redox Flow Battery. For modeling the concentration overpotential, we derive mass transfer coefficients from experimental results presented in the 1990s. The calculated mass transfer coefficient of the positive half-cell is 63% larger than of the negative half-cell, which is not considered in models published to date. Further, we advance the concentration overpotential model by introducing an apparent electrochemically active electrode surface which differs from the geometric electrode area. We use the apparent surface as fitting parameter for adapting the model to experimental results of a flow battery manufacturer. For adapting the model, we propose a method for determining the agreement between model and reality quantitatively. To protect the manufacturer's intellectual property, we introduce a normalization method for presenting the results. For the studied stack, the apparent electrochemically active surface of the electrode is 41% larger than its geometrical area. Hence, the current density in the diffusion layer is 29% smaller than previously reported for a zero-dimensional model.
International Nuclear Information System (INIS)
Kartavtsev, O.I.; Malykh, A.V.; Sofianos, S.A.
2008-01-01
The universal three-body dynamics in ultracold binary gases confined to one-dimensional motion is studied. The three-body binding energies and the (2+1)-scattering lengths are calculated for two identical particles of mass m and a different one of mass m 1 , between which interactions are described in the low-energy limit by zero-range potentials. The critical values of the mass ratio m/m 1 , at which the three-body states arise and the (2+1)-scattering length equals zero, are determined both for zero and infinite interaction strength λ 1 of the identical particles. A number of exact results are enlisted and asymptotic dependences both for m/m 1 → infinity and λ 1 → -infinity are derived. Combining the numerical and analytical results, a schematic diagram showing the number of the three-body bound states and the sign of the (2+1)-scattering length in the plane of the mass ratio and interaction-strength ratio is deduced. The results provide a description of the homogeneous and mixed phases of atoms and molecules in dilute binary quantum gases
Two-dimensional approach to relativistic positioning systems
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio
2006-01-01
A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out
International Nuclear Information System (INIS)
Asad, Usman; Tjong, Jimi; Zheng, Ming
2014-01-01
Highlights: • Zero-dimensional EGR model for transient diesel combustion control. • Detailed analysis of EGR effects on intake, cylinder charge and exhaust properties. • Intake oxygen validated as an operating condition-independent measure of EGR. • Quantified EGR effectiveness in terms of NOx emission reduction. • Twin lambda sensor technique for estimation of EGR/in-cylinder parameters. - Abstract: The application of exhaust gas recirculation (EGR) during transient engine operation is a challenging task since small fluctuations in EGR may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency. Moreover, the intake charge dilution at any EGR ratio is a function of engine load and intake pressure, and typically changes during transient events. Therefore, the management of EGR during transient engine operation or advanced combustion cycles (that are inherently less stable) requires a fundamental understanding of the transient EGR behaviour and its impact on the intake charge development. In this work, a zero-dimensional EGR model is described to estimate the transient (cycle-by-cycle) progression of EGR and the time (engine cycles) required for its stabilization. The model response is tuned to a multi-cylinder engine by using an overall engine system time-constant and shown to effectively track the transient EGR changes. The impact of EGR on the actual air–fuel ratio of the cylinder charge is quantified by defining an in-cylinder excess-air ratio that accounts for the oxygen in the recycled exhaust gas. Furthermore, a twin lambda sensor (TLS) technique is implemented for tracking the intake dilution and in-cylinder excess-air ratio in real-time. The modelling and analysis results are validated against a wide range of engine operations, including transient and steady-state low temperature combustion tests
A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR
Energy Technology Data Exchange (ETDEWEB)
Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.
Zero modes in discretized light-front quantization
International Nuclear Information System (INIS)
Martinovic, E.
1997-01-01
The current understanding of the role of bosonic zero modes in field-theoretical models quantized at the equal light-front time is reviewed. After a brief discussion of the main features of the light-front field theories - in particular the simplicity of the physical vacuum - the light-front canonical formalism for the quantum electrodynamics and the Yukawa model is sketched. The zero mode of Maskawa and Yamawaki is reviewed. Reasons for the appearance of the constrained and/or dynamical zero modes are explained along with the subtleties of the gauge fixing in presence of boundary conditions. Perturbative treatment of the corresponding constraint equations in the Yukawa model and quantum electrodynamics (3+1) is outlined. The next topic is the manifestation of the symmetry breaking in the light-front field theory. A pattern of multiple solutions to the zero-mode constraint equations replacing physical picture of multiple vacua of the conventionally quantized field theories is illustrated on an example of 2-dimensional theory. The importance of a (regularized) constrained zero mode of the pion field for the consistency of the Nambu-Goldstone phase of the discretized light-front linear a/model is demonstrated. Finally, a non-trivial physical vacuum based on the dynamical zero mode is constructed for the two-dimensional light-front quantum electrodynamics. (authors)
Rotary engine performance limits predicted by a zero-dimensional model
Bartrand, Timothy A.; Willis, Edward A.
1992-01-01
A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.
Characteristics of the self-excited ionization waves in a magnetized positive column
International Nuclear Information System (INIS)
Maruyama, Takeo; Yamamura, Yasuhiro; Takano, Saburo; Miura, Kosuke; Imazu, Shingo.
1979-01-01
In the past, metastable atoms were not considered in the investigations of ionization waves generated in a positive column weakly ionized. However, metastable atoms seem to be important for the generation of ionization waves, and there are many unknown factors. In this paper, the fundamental equations and dispersion relation are explained under the assumption of axi-symmetrical positive column plasma placed in a uniform magnetic field, and the direct ionization frequency and excitation frequency, cumulative ionization coefficient, electron density and metastable atom density, the energy loss factor for electrons, the dependence of plasma quantities on magnetic field and dispersion characteristics are calculated. Experiments have been conducted using Ne gas in a discharge tube of 80 cm long and 1 cm radius with heated oxide cathode. Magnetic field was obtained with a solenoid coil of 75 cm long, 9 cm I.D. and 27 cm O.D. The axially uniform magnetic field was in the range of 35 to 40 cm. As the results, the following points have become clear. (1) The number of waves, angular frequency and phase velocity of ionization waves decrease with the increase of magnetic field. (2) By the consideration of the presence of metastable atoms, the theoretical values were improved pretty well and agreed with the experimental values qualitatively and quantitatively. (3) Longitudinal magnetic field has the effect of suppressing the growth of ionization waves because of the reduction of time and spatial growth rates with the increase of magnetic field. (Wakatsuki, Y.)
Thermoelectric properties of Ba3Co2O6(CO3)0.7 containing one-dimensional CoO6 octahedral columns
Iwasaki, Kouta; Yamamoto, Teruhisa; Yamane, Hisanori; Takeda, Takashi; Arai, Shigeo; Miyazaki, Hidetoshi; Tatsumi, Kazuyoshi; Yoshino, Masahito; Ito, Tsuyoshi; Arita, Yuji; Muto, Shunsuke; Nagasaki, Takanori; Matsui, Tsuneo
2009-01-01
The thermoelectric properties of Ba3Co2O6(CO3)0.7 have been investigated using prismatic single crystals elongated along the c axis. Ba3Co2O6(CO3)0.7 has a pseudo-one-dimensional structure similar to that of 2H perovskite-type BaCoO3 and contains CoO6 octahedral columns running parallel to the c axis. The prismatic crystals are grown by a flux method using a K2CO3–BaCl2 flux. The electrical conductivity(σ) along the columns (c axis) exhibits a metallic behavior (670–320 S cm−1 in the temperat...
International Nuclear Information System (INIS)
Francis, R.J.; Halasyamani, P.S.; Bee, J.S.; O'Hare, D.
1999-01-01
Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-, and two-dimensional materials
Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.
Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John
2017-08-01
A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .
DEFF Research Database (Denmark)
Hartling, U B; Fischer Hansen, B; Skovgaard, L T
2001-01-01
Prenatal standards of bi-iliac width were not found in the literature based on autopsy investigations, nor was the caudo-cranial position of the ilia compared to the vertebral column. The first purpose of the present study was to establish normal standard values for the bi-iliac distance in fetal...... life, the second to evaluate the level of the iliac bones proportional to the ossified vertebral column. Whole body radiographs in antero-posterior projections from 98 human fetuses (36 female and 44 male fetuses, as well as 18 fetuses on which the sex had not been determined) were analyzed...... caliper. The caudo-cranial position of the iliac bones was evaluated. The present study shows that in normal fetal development there is a continuous linear enlargement of the pelvic region in the transverse and vertical planes. The upper iliac contour stays at the level of the first sacral vertebral body...
Topological properties of function spaces $C_k(X,2)$ over zero-dimensional metric spaces $X$
Gabriyelyan, S.
2015-01-01
Let $X$ be a zero-dimensional metric space and $X'$ its derived set. We prove the following assertions: (1) the space $C_k(X,2)$ is an Ascoli space iff $C_k(X,2)$ is $k_\\mathbb{R}$-space iff either $X$ is locally compact or $X$ is not locally compact but $X'$ is compact, (2) $C_k(X,2)$ is a $k$-space iff either $X$ is a topological sum of a Polish locally compact space and a discrete space or $X$ is not locally compact but $X'$ is compact, (3) $C_k(X,2)$ is a sequential space iff $X$ is a Pol...
A Study of a Striated Positive Column after Ethanol Impurity Injection in an Air DC Glow Discharge
Berzak, Laura; Post Zwicker, Andrew
2003-04-01
In a glow discharge when ethanol (CH3CH2OH) was injected, a series of atypical striations formed through the positive column. When the pressure decreased as the ethanol evaporated and was evacuated by the vacuum pump, this behavior decayed away until only an anode glow or normal discharge remained. Varying interelectrode spacings and quantities of ethanol yielded similar patterns. The typical evolution as the pressure decreased consisted of a visible traveling wave traveling from the anode to the cathode followed by numerous, thin ( 1.6 mm) striations evenly spaced down the entire length of the positive column. These, shifted back toward the anode and transformed into bent striations with the tip of the 'V' pointing toward the cathode, and finally, the 'V' striations grouped into fours and took on the appearance of beats. The unusual 'V' striations may be due in part to a contraction of the column, causing the equipotential surfaces to shift from smooth convex to the observed striation shape. The conditions for this contraction effect include a nonlinearly increasing dependence of electron production rate on electron density and a bulk recombination rate higher than that at the tube walls. Visible emission spectra indicated the presence of carbon monoxide (CO), signifying that the striations are due to not only vibrational excitation of the ethanol molecule but also to decomposition and subsequent excitation of the decomposition products as well. One possible mechanism of decomposition is the formation of a radical cation from the ethanol molecule and the ensuing loss of a proton to yield formaldehyde; this then would follow an analogous decomposition to produce carbon monoxide. Thus, there may exist additional charged species which can then contribute to the unique observations. Further analysis, if possible, will include higher temporal resolution spectroscopy and a detailed model of the positive column under these specific conditions.
International Nuclear Information System (INIS)
Keitel, Jan; Bartosch, Lorenz
2012-01-01
We consider the zero-dimensional O(N) vector model as a simple example to calculate n-point correlation functions using perturbation theory, the large-N expansion and the functional renormalization group (FRG). Comparing our findings with exact results, we show that perturbation theory breaks down for moderate interactions for all N, as one should expect. While the interaction-induced shift of the free energy and the self-energy are well described by the large-N expansion even for small N, this is not the case for higher order correlation functions. However, using the FRG in its one-particle irreducible formalism, we see that very few running couplings suffice to get accurate results for arbitrary N in the strong coupling regime, outperforming the large-N expansion for small N. We further remark on how the derivative expansion, a well-known approximation strategy for the FRG, reduces to an exact method for the zero-dimensional O(N) vector model. (paper)
Li, Xue-Shi; Huang, Zi-Fang; Deng, Yao-Long; Fan, Heng-Wei; Sui, Wen-Yuan; Wang, Chong-Wen; Yang, Jun-Lin
2017-07-15
Retrospective study. This study is to measure and analyze the changes of three-dimensional (3D) distances of spinal column and spinal canal at the three-column osteotomy sites and address their clinical and neurologic significance. Three-column osteotomies were developed to treat severe and stiff spine deformities with insufficient understanding on the safe limit of spine shortening and the relationship between the shortening distance of the spinal column and that of the spinal canal. Records of 52 continuous patients with severe and stiff scoliosis treated with three-column spine osteotomies at our institution from July 2013 to June 2015 were reviewed. The preoperative spinal cord function classification were type A in 31 cases, type B in 10 cases, and type C in 11 cases. The types of osteotomies carried out were extended pedicle subtraction osteotomy in nine patients and posterior vertebral column resection in 43 patients. Multimodality neuromonitoring strategies were adopted intraoperatively. 3D pre- and postoperative spine models were reconstructed from the computed tomography (CT) scans. The distances of convex and concave spinal column and the spinal canal shortening were measured and analyzed. The spinal column shortening distance (SCSD) measured on the 3D models (27.8 mm) were statistically shorter than those measured intraoperatively (32.8 mm) (P column strut graft than in those with bone-on-bone fusion (P column cannot represent that of the central spinal canal in patients with severe scoliosis. The spinal column shortening procedure in appropriately selected patient groups with bone-on-bone fusion is a viable option with the CCSD being significantly shorter than the convex SCSD. 4.
The trilinear Hamiltonian: a zero-dimensional model of Hawking radiation from a quantized source
International Nuclear Information System (INIS)
Nation, Paul D; Blencowe, Miles P
2010-01-01
We investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. We derive the conditions under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviations arise when the pump mode (black hole) has emitted nearly half of its initial energy into the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum gravitational degrees of freedom.
A Kohn-Sham system at zero temperature
DEFF Research Database (Denmark)
Cornean, Horia; Hoke, K.; Neidhardt, H.
2008-01-01
A one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor nanostructures, and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues...... by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero....
Zero-dimensional model of a reversed field pinch fusion reactor
International Nuclear Information System (INIS)
Veerasingam, R.
1987-12-01
A zero-dimensional model for the energy balance for electrons and ions of a Reversed Field Pinch (RFP) device has been developed. The model can be used as a tool for parametric studies and has been applied to simulate some ZT-40M experiments. In the model multiplicative coefficients C 1 , C 2 , C 3 and C 4 are introduced to treat anomalous resistivity, electron and ion energy confinement times and to account for the instability driven ion heating that is observed in RFP experiments. Parametric studies were performed to determine the sensitivity of the model to changes in multiplicative coefficients. A set of coefficients which can simulate a number of ZT-40M experiments have been obtained and the sensitivity of T/sub e/ and T/sub i/ to these coefficients was examined. Both flat top and ramp current waveforms were studied. The effects of different levels of impurities were also examined. The results showed that while all the three impurities used, viz., carbon, oxygen and nickel contributed to Z/sub eff/, nickel dominated the impurity radiation power. The results were then applied to study the behavior of the ZT-H device which is being built in the Confinement Physics Research Facility at the Los Alamos National Laboratory. 30 refs., 39 figs., 12 tabs
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Complex zeros of the partition function of the Q-state Potts model
International Nuclear Information System (INIS)
Ghulghazaryan, R.G.
2002-01-01
Using the dynamical systems theory, the Yang-Lee and Potts zeros of the one-dimensional Q-state Potts model are investigated for Q>0. It is shown that in the one-dimensional case the phase transition points on the complex plane may be found from the condition of existence of neutral fixed points. Densities of the Yang-Lee and Potts zeros and corresponding critical exponents are found. The Yang-Lee and Potts zeros are classified depending on the parameters of the model
Msetfi, Rachel M; Murphy, Robin A; Simpson, Jane
2007-03-01
In three experiments we tested how the spacing of trials during acquisition of zero, positive, and negative response-outcome contingencies differentially affected depressed and nondepressed students' judgements. Experiment 1 found that nondepressed participants' judgements of zero contingencies increased with longer intertrial intervals (ITIs) but not simply longer procedure durations. Depressed groups' judgements were not sensitive to either manipulation, producing an effect known as depressive realism only with long ITIs. Experiments 2 and 3 tested predictions of Cheng's (1997) Power PC theory and the Rescorla-Wagner (1972) model, that the increase in context exposure experienced during the ITI might influence judgements most with negative contingencies and least with positive contingencies. Results suggested that depressed people were less sensitive to differences in contingency and contextual exposure. We propose that a context-processing difference between depressed and nondepressed people removes any objective notion of "realism" that was originally employed to explain the depressive realism effect (Alloy & Abramson, 1979).
A New Three-Dimensional Indoor Positioning Mechanism Based on Wireless LAN
Directory of Open Access Journals (Sweden)
Jiujun Cheng
2014-01-01
Full Text Available The researches on two-dimensional indoor positioning based on wireless LAN and the location fingerprint methods have become mature, but in the actual indoor positioning situation, users are also concerned about the height where they stand. Due to the expansion of the range of three-dimensional indoor positioning, more features must be needed to describe the location fingerprint. Directly using a machine learning algorithm will result in the reduced ability of classification. To solve this problem, in this paper, a “divide and conquer” strategy is adopted; that is, first through k-medoids algorithm the three-dimensional location space is clustered into a number of service areas, and then a multicategory SVM with less features is created for each service area for further positioning. Our experiment shows that the error distance resolution of the approach with k-medoids algorithm and multicategory SVM is higher than that of the approach only with SVM, and the former can effectively decrease the “crazy prediction.”
Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite.
Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Lin, Haoran; Chen, Banghao; Clark, Ronald; Dilbeck, Tristan; Zhou, Yan; Hurley, Joseph; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Djurovich, Peter; Ma, Biwu
2017-12-27
Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C 4 N 2 H 14 Br) 4 SnBr x I 6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBr x I 6-x 4- , x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C 4 N 2 H 14 Br - . The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl 10 O 17 :Eu 2+ ) can exhibit high color rendering indexes of up to 85.
Comparison Study of Axial Behavior of RPC-CFRP Short Columns
Directory of Open Access Journals (Sweden)
Taghreed Khaleefa Mohammed Ali
2015-05-01
Full Text Available In this paper, the axial behaviors of reactive powder concrete (RPC short columns confined with carbon fiber reinforced polymer (CFRP were investigated. All the specimens have square cross section of 100 mm × 100 mm and length of 400 mm with aspect ratio 4. The experimental work consists of three groups. The first group consists of six specimens of RPC with 2% micro steel fiber, without ordinary reinforcing steel and confining by zero, one and two layer of CFRP respectively. The second group consists of six specimens of RPC with 2% micro steel fiber and minimum ordinary reinforcing steel and confining by zero, one and two layers of CFRP respectively. The third group consists of four specimens of RPC without micro steel fiber and ordinary reinforcing steel and confining by one and two layers of CFRP respectively. Experimental data for strength, longitudinal and lateral displacement and failure mode were obtained for each test. The toughness (area under the curve for each test was obtained by using numerical integration. The RPC columns confined with CFRP showed stiffer behavior compared with RPC columns without CFRP. The ultimate load of the RPC columns with 2% micro steel fiber + two layers of CFRP + minimum ordinary reinforcement were more than that of the RPC columns with 2% micro steel fiber + minimum ordinary reinforcement and without CFRP by about 1.333.
Properties of Zero-Free Transfer Function Matrices
D. O. Anderson, Brian; Deistler, Manfred
Transfer functions of linear, time-invariant finite-dimensional systems with more outputs than inputs, as arise in factor analysis (for example in econometrics), have, for state-variable descriptions with generic entries in the relevant matrices, no finite zeros. This paper gives a number of characterizations of such systems (and indeed square discrete-time systems with no zeros), using state-variable, impulse response, and matrix-fraction descriptions. Key properties include the ability to recover the input values at any time from a bounded interval of output values, without any knowledge of an initial state, and an ability to verify the no-zero property in terms of a property of the impulse response coefficient matrices. Results are particularized to cases where the transfer function matrix in question may or may not have a zero at infinity or a zero at zero.
Dosimetric impact of gastrointestinal air column in radiation treatment of pancreatic cancer.
Estabrook, Neil C; Corn, Jonathan B; Ewing, Marvene M; Cardenes, Higinia R; Das, Indra J
2018-02-01
Dosimetric evaluation of air column in gastrointestinal (GI) structures in intensity modulated radiation therapy (IMRT) of pancreatic cancer. Nine sequential patients were retrospectively chosen for dosimetric analysis of air column in the GI apparatus in pancreatic cancer using cone beam CT (CBCT). The four-dimensional CT (4DCT) was used for target and organs at risk (OARs) and non-coplanar IMRT was used for treatment. Once a week, these patients underwent CBCT for air filling, isocentre verification and dose calculations retrospectively. Abdominal air column variation was as great as ±80% between weekly CBCT and 4DCT. Even with such a large air column in the treatment path for pancreatic cancer, changes in anteroposterior dimension were minimal (2.8%). Using IMRT, variations in air column did not correlate dosimetrically with large changes in target volume. An average dosimetric deviation of mere -3.3% and a maximum of -5.5% was observed. CBCT revealed large air column in GI structures; however, its impact is minimal for target coverage. Because of the inherent advantage of segmentation in IMRT, where only a small fraction of a given beam passes through the air column, this technique might have an advantage over 3DCRT in treating upper GI malignancies where the daily air column can have significant impact. Advances in knowledge: Radiation treatment of pancreatic cancer has significant challenges due to positioning, imaging of soft tissues and variability of air column in bowels. The dosimetric impact of variable air column is retrospectively studied using CBCT. Even though, the volume of air column changes by ± 80%, its dosimetric impact in IMRT is minimum.
Surjective cellular automata with zero entropy are almost one-to-one
International Nuclear Information System (INIS)
Moothathu, T.K.S.
2011-01-01
Highlights: → We use information about maps with zero entropy from Ergodic Theory. → Surjective cellular automata with zero entropy are almost one-to-one. → Surjective, additive cellular automata with zero entropy are injective. - Abstract: We show that any one-dimensional surjective cellular automata whose entropy is zero with respect to the uniform Bernoulli measure must be almost one-to-one.
Su, Yanfeng; Cai, Zhijian; Liu, Quan; Lu, Yifan; Guo, Peiliang; Shi, Lingyan; Wu, Jianhong
2018-04-01
In this paper, an autostereoscopic three-dimensional (3D) display system based on synthetic hologram reconstruction is proposed and implemented. The system uses a single phase-only spatial light modulator to load the synthetic hologram of the left and right stereo images, and the parallax angle between two reconstructed stereo images is enlarged by a grating to meet the split angle requirement of normal stereoscopic vision. To realize the crosstalk-free autostereoscopic 3D display with high light utilization efficiency, the groove parameters of the grating are specifically designed by the rigorous coupled-wave theory for suppressing the zero-order diffraction, and then the zero-order nulled grating is fabricated by the holographic lithography and the ion beam etching. Furthermore, the diffraction efficiency of the fabricated grating is measured under the illumination of a laser beam with a wavelength of 532 nm. Finally, the experimental verification system for the proposed autostereoscopic 3D display is presented. The experimental results prove that the proposed system is able to generate stereoscopic 3D images with good performances.
Rye, Henrik; Reed, Mark; Frost, Tone Karin; Smit, Mathijs G D; Durgut, Ismail; Johansen, Øistein; Ditlevsen, May Kristin
2008-04-01
Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was developed. The model includes water column stratification, ocean currents and turbulence, natural burial, bioturbation, and biodegradation of organic matter in the sediment. Accounting for these processes, the fate of the discharge is modeled for the water column, including near-field mixing and plume motion, far-field mixing, and transport. The fate of the discharge is also modeled for the sediment, including sea floor deposition, and mixing due to bioturbation. Formulas are provided for the calculation of suspended matter and chemical concentrations in the water column, and burial, change in grain size, oxygen depletion, and chemical concentrations in the sediment. The model is fully 3-dimensional and time dependent. It uses a Lagrangian approach for the water column based on moving particles that represent the properties of the release and an Eulerian approach for the sediment based on calculation of the properties of matter in a grid. The model will be used to calculate the environmental risk, both in the water column and in sediments, from drilling discharges. It can serve as a tool to define risk mitigating measures, and as such it provides guidance towards the "zero harm" goal.
Spectral radiance of strong lines in positive column mercury discharges with argon carrier gas
International Nuclear Information System (INIS)
Sansonetti, Craig J; Reader, Joseph
2006-01-01
The spectral radiance of the 185 and 254 nm lines in two positive column mercury discharge lamps was measured over a wide range of operating conditions. The lamps had internal diameters of 5 and 23 mm. Argon was used as a carrier gas. The lamps were operated with cold spot temperatures of 20, 40 and 60 0 C. At each of these temperatures, results were obtained for five currents ranging from 20 to 100 mA for the 5 mm lamp and from 200 to 1000 mA for the 23 mm lamp. For each current studied, results were determined for argon pressures ranging from 66.6 to 666 Pa (0.5 to 5.0 Torr) in the 5 mm lamp and 26.6 to 666 Pa (0.2 to 5.0 Torr) in the 23 mm lamp. An argon miniarc was used as the radiometric standard. By calibrating the spectral response of the optical system with a well-characterized mercury pencil lamp, results were obtained for 12 additional Hg lines from 289 to 579 nm. For the 23 mm lamp the electric field in the positive column was measured. For this lamp the radiated power as a percentage of input power was also determined. The results provide an experimental basis for validating computer models of Hg fluorescent lamp discharges
Column-by-column compositional mapping by Z-contrast imaging
Energy Technology Data Exchange (ETDEWEB)
Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)], E-mail: sergio.molina@uca.es; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Fuster, D.; Gonzalez, Y.; Alen, B.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Varela, M.; Pennycook, S.J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)
2009-01-15
A phenomenological method is developed to determine the composition of materials, with atomic column resolution, by analysis of integrated intensities of aberration-corrected Z-contrast scanning transmission electron microscopy images. The method is exemplified for InAs{sub x}P{sub 1-x} alloys using epitaxial thin films with calibrated compositions as standards. Using this approach we have determined the composition of the two-dimensional wetting layer formed between self-assembled InAs quantum wires on InP(0 0 1) substrates.
Levin, A D; Momtaz, Z S; Gusev, G M; Raichev, O E; Bakarov, A K
2015-11-13
We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.
Zhu, Zaifang; Chen, Huang; Ren, Jiangtao; Lu, Juan J; Gu, Congying; Lynch, Kyle B; Wu, Si; Wang, Zhe; Cao, Chengxi; Liu, Shaorong
2018-03-01
We develop a new two-dimensional (2D) high performance liquid chromatography (HPLC) approach for intact protein analysis. Development of 2D HPLC has a bottleneck problem - limited second-dimension (second-D) separation speed. We solve this problem by incorporating multiple second-D columns to allow several second-D separations to be proceeded in parallel. To demonstrate the feasibility of using this approach for comprehensive protein analysis, we select ion-exchange chromatography as the first-dimension and reverse-phase chromatography as the second-D. We incorporate three second-D columns in an innovative way so that three reverse-phase separations can be performed simultaneously. We test this system for separating both standard proteins and E. coli lysates and achieve baseline resolutions for eleven standard proteins and obtain more than 500 peaks for E. coli lysates. This is an indication that the sample complexities are greatly reduced. We see less than 10 bands when each fraction of the second-D effluents are analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), compared to hundreds of SDS-PAGE bands as the original sample is analyzed. This approach could potentially be an excellent and general tool for protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Haihua; Liao, Qing; Wu, Yishi; Chen, Jianwei; Gao, Qinggang; Fu, Hongbing
2017-11-08
Zero-dimensional (0D) perovskite Cs 4 PbBr 6 has been speculated to be an efficient solid-state emitter, exhibiting strong luminescense on achieving quantum confinement. Although several groups have reported strong green luminescence from Cs 4 PbBr 6 powders and nanocrystals, doubts that the origin of luminescence comes from Cs 4 PbBr 6 itself or CsPbBr 3 impurities have been a point of controversy in recent investigations. Herein, we developed a facile one-step solution self-assembly method to synthesize pure zero-dimensional rhombohedral Cs 4 PbBr 6 micro-disks (MDs) with a high PLQY of 52% ± 5% and photoluminescence full-width at half maximum (FWHM) of 16.8 nm. The obtained rhombohedral MDs were high quality single-crystalline as demonstrated by XRD and SAED patterns. We demonstrated that Cs 4 PbBr 6 MDs and CsPbBr 3 MDs were phase-separated from each other and the strong green emission comes from Cs 4 PbBr 6 . Power and temperature dependence spectra evidenced that the observed strong green luminescence of pure Cs 4 PbBr 6 MDs originated from direct exciton recombination in the isolated octahedra with a large binding energy of 303.9 meV. Significantly, isolated PbBr 6 4- octahedra separated by a Cs + ion insert in the crystal lattice is beneficial to maintaining the structural stability, depicting superior thermal and anion exchange stability. Our study provides an efficient approach to obtain high quality single-crystalline Cs 4 PbBr 6 MDs with highly efficient luminescence and stability for further optoelectronic applications.
Solving discrete zero point problems
van der Laan, G.; Talman, A.J.J.; Yang, Z.F.
2004-01-01
In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and
Numerical modelling techniques of soft soil improvement via stone columns: A brief review
Zukri, Azhani; Nazir, Ramli
2018-04-01
There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.
Graphite oxidation and structural strength of graphite support column in VHTR
International Nuclear Information System (INIS)
Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.
2009-01-01
The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)
Zero-field spin relaxation of the positive muon in copper
International Nuclear Information System (INIS)
Clawson, C.W.
1982-07-01
The spin relaxation of the μ + in high purity single crystal and polycrystalline copper has been measured at temperatures between 0.5 0 K and 5.2 0 K by the zero-field μ + SR technique. In both types of sample the experiments show a temperature independent dipolar width Δ/sub z/ = 0.389 +- 0.003 μs -1 and a hopping rate decreasing from approx. 0.5 μs -1 at 0.5 0 K to approx. 0.05 μs -1 above 5 0 K. This is the first direct proof of a dynamic effect in the low temperature μ + spin relaxation in copper. The relationship between the zero-field and transverse-field dipolar widths is discussed, and the measured zero-field width is found to be approx. 10% larger than expected based on the known transverse-field widths. A new μ + SR spectrometer has been constructed and used in this work. The spectrometer and the associated beam lines and data acquisition facilities are discussed
De Marco, N
2013-01-01
Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.
Holmquist, Jeffrey G.; Waddle, Terry J.
2013-01-01
We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.
A large area two-dimensional position sensitive multiwire proportional detector
Moura, M M D; Souza, F A; Alonso, E E; Fujii, R J; Meyknecht, A B; Added, N; Aissaoui, N; Cardenas, W H Z; Ferraretto, M D; Schnitter, U; Szanto, E M; Szanto de Toledo, A; Yamamura, M S; Carlin, N
1999-01-01
Large area two-dimensional position sensitive multiwire proportional detectors were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory. Each detector has a 20x20 cm sup 2 active area and consists of three grids (X-position, anode and Y-position) made of 25 mu m diameter gold plated tungsten wires. The position is determined through resistive divider chains. Results for position resolution, linearity and efficiency as a function of energy and position for different elements are reported.
Distortion of plasma due to installation of an orifice in helium discharge positive column
International Nuclear Information System (INIS)
Moslehi- Fard, M.; Bidadi, H.; Khorram, S.; Sobhanian, S.; Muradov, A.H.; Jallali, H.; Shirin Pour, M.
2003-01-01
Complicated potential structure formed at a constriction of positive column of a DC discharge with heated cathode in He at low discharge currents is investigated. According to the potential structure, electrons and ions are accelerated by the electric field and their energy distribution functions acquire multi humped shapes. Additional maximums on distribution function quickly disappear due to collisions and radial losses. The nature of current passing through the potential structure is cleared up on the base of measured distributions. Attempt was made to calculate potential drop in DL tacking into account electron energy distribution variations
Two-dimensional position sensitive silicon photodiode as a charged particle detector
International Nuclear Information System (INIS)
Kovacevic, K.; Zadro, M.
1999-01-01
A two-dimensional position sensitive silicon photodiode has been tested for measurement of position and energy of charged particles. Position nonlinearity and resolution, as well as energy resolution and ballistic deficit were measured for 5.486 MeV α-particles. The results obtained for different pulse shaping time constants are presented
MODRIB - a zero dimensional code for criticality and burn-up of LWR's
International Nuclear Information System (INIS)
Gaafar, M.A.; El-Cherif, A.I.
1980-01-01
The computer program MODRIB is a zero-dimensional code for calculating criticality and burn-up of light water reactors (LWR's). It is a version of an Italian code RIBOT-2 with an updated cross-section data library. The nuclear constants of MODRIB-code are calculated with a two group scheme (fast and thermal), where the fast group is an average of three fast groups. The code requires as input data essential extensive reactor parameters such as fuel rod radius, clad thickness, fuel enrichment, lattice pitch, water density and temperature etc. A summary of the physical model description and the input-output procedures are given in this report. Selected results of two sample problems are also given for the purpose of checking the validity and reliability of the code. The first is BWR and the second is PWR. The calculation time for a criticality problem with burn-up is about 8 seconds for the first time step and about 3 seconds for each subsequent time step on the ICL-1906 computer facility. The requirements on the memory size is less than 32 K-word. (author)
Elongated dust clouds in a uniform DC positive column of low pressure gas discharge
International Nuclear Information System (INIS)
Usachev, A D; Zobnin, A V; Petrov, O F; Fortov, V E; Thoma, M H; Pustylnik, M Y; Fink, M A; Morfill, G E
2016-01-01
Experimental investigations of the formation of elongated dust clouds and their influence on the plasma glow intensity of the uniform direct current (DC) positive column (PC) have been performed under microgravity conditions. For the axial stabilization of the dust cloud position a polarity switching DC gas discharge with a switching frequency of 250 Hz was used. During the experiment, a spontaneous division of one elongated dust cloud into two smaller steady state dust clouds has been observed. Quantitative data on the dust cloud shape, size and dust number density distribution were obtained. Axial and radial distributions of plasma emission within the 585.2 nm and 703.2 nm neon spectral lines were measured over the whole discharge volume. It has been found that both spectral line intensities at the dust cloud region grew 1.7 times with respect to the undisturbed positive column region; in this the 585.2 nm line intensity increased by 10% compared to the 703.2 nm line intensity. For a semi-quantitative explanation of the observed phenomena the Schottky approach based on the equation of diffusion was used. The model reasonably explains the observed glow enhancement as an increasing of the ionization rate in the discharge with dust cloud, which compensates ion-electron recombination on the dust grain surfaces. In this, the ionization rate increases due to the growing of the DC axial electric field, and the glow grows directly proportional to the electric field. It is shown that the fundamental condition of the radial stability of the dusty plasma cloud is equal to the ionization and recombination rates within the cloud volume that is possible only when the electron density is constant and the radial electric field is absent within the dust cloud. (paper)
Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Molecular Gas Flow
Shneider, Mikhail
2014-10-01
Contraction of the gas discharge, when current contracts from a significant volume of weakly ionized plasma into a thin arc channel, was attracted attention of scientists for more than a century. Studies of the contraction (also called constriction) mechanisms, besides carrying interesting science, are of practical importance, especially when contraction should be prevented. A set of time-dependent two-dimensional equations for the non-equilibrium weakly-ionized nitrogen/ air plasma is formulated. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; by taking into account the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the pressure (gas density) drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge where the current flows along the density gradient of the background gas was discussed. In this talk the problems related to the dynamic contraction of the current channel inside a quasineutral positive column of a self-sustained glow discharge in molecular gas in a rectangular duct with convection cooling will be discussed. Study presented in this talk was stimulated by the fact that there are large number of experiments on the dynamic contraction of a glow discharge in nitrogen and air flows and a many of possible applications. Similar processes play a role in the powerful gas-discharge lasers. In addition, the problem of dynamic contraction in the large volume of non-equilibrium weakly ionized plasma is closely related to the problem of streamer to leader transitions in lightning and blue jets.
International Nuclear Information System (INIS)
Lee, Hau-Wei; Chen, Chieh-Li
2009-01-01
This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system
Molecular behavior of zero-dimensional perovskites
Yin, Jun; Maity, Partha; de Bastiani, Michele; Dursun, Ibrahim; Bakr, Osman; Bredas, Jean-Luc; Mohammed, Omar F.
2017-01-01
-dimensional (0D) inorganic perovskites of the Cs4PbX6 (X = Cl, Br, or I) kind have crystal structures with isolated lead halide octahedra [PbX6]4− surrounded by Cs+ cations, allowing the 0D crystals to exhibit the intrinsic properties of an individual octahedron
An accurate analytical solution of a zero-dimensional greenhouse model for global warming
International Nuclear Information System (INIS)
Foong, S K
2006-01-01
In introducing the complex subject of global warming, books and papers usually use the zero-dimensional greenhouse model. When the ratio of the infrared radiation energy of the Earth's surface that is lost to outer space to the non-reflected average solar radiation energy is small, the model admits an accurate approximate analytical solution-the resulting energy balance equation of the model is a quartic equation that can be solved analytically-and thus provides an alternative solution and instructional strategy. A search through the literature fails to find an analytical solution, suggesting that the solution may be new. In this paper, we review the model, derive the approximation and obtain its solution. The dependence of the temperature of the surface of the Earth and the temperature of the atmosphere on seven parameters is made explicit. A simple and convenient formula for global warming (or cooling) in terms of the percentage change of the parameters is derived. The dependence of the surface temperature on the parameters is illustrated by several representative graphs
Signed zeros of Gaussian vector fields - density, correlation functions and curvature
Foltin, G
2003-01-01
We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.
Wei, Jie; Shen, Aijin; Yan, Jingyu; Jin, Gaowa; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao
2016-03-01
The separation of basic macrolide antibiotics suffers from peak tailing and poor efficiency on traditional silica-based reversed-phase liquid chromatography columns. In this work, a C18HCE column with positively charged surface was applied to the separation of macrolides. Compared with an Acquity BEH C18 column, the C18HCE column exhibited superior performance in the aspect of peak shape and separation efficiency. The screening of mobile phase additives including formic acid, acetic acid and ammonium formate indicated that formic acid was preferable for providing symmetrical peak shapes. Moreover, the influence of formic acid content was investigated. Analysis speed and mass spectrometry compatibility were also taken into account when optimizing the separation conditions for liquid chromatography coupled with tandem mass spectrometry. The developed method was successfully utilized for the determination of macrolide residues in a honey sample. Azithromycin was chosen as the internal standard for the quantitation of spiramycin and tilmicosin, while roxithromycin was used for erythromycin, tylosin, clarithromycin, josamycin and acetylisovaleryltylosin. Good correlation coefficients (r(2) > 0.9938) for all macrolides were obtained. The intra-day and inter-day recoveries were 73.7-134.7% and 80.7-119.7% with relative standard deviations of 2.5-8.0% and 3.9-16.1%, respectively. Outstanding sensitivity with limits of quantitation (S/N ≥ 10) of 0.02-1 μg/kg and limits of detection (S/N ≥ 3) of 0.01-0.5 μg/kg were achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron
Energy Technology Data Exchange (ETDEWEB)
Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A., E-mail: jimfield@email.arizona.edu
2016-05-05
Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.
Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron
International Nuclear Information System (INIS)
Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A.
2016-01-01
Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.
FROM ZERO-DIMENSIONAL TO 2-DIMENSIONAL CARBON NANOMATERIALS - part II: GRAPHENE
Directory of Open Access Journals (Sweden)
Cătălin IANCU
2012-05-01
Full Text Available As was presented in the first part of this review paper, lately, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. In this review paper are presented some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. In this part of the paper are presented the synthesis techniques used to produce the two-dimensional carbon nanomaterials (including graphene, and also the most important properties and potential applications of graphene.
Predictive zero-dimensional combustion model for DI diesel engine feed-forward control
International Nuclear Information System (INIS)
Catania, Andrea Emilio; Finesso, Roberto; Spessa, Ezio
2011-01-01
Highlights: → Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. → Feed-forward control of MFB50, p max and IMEP in both conventional and PCCI combustion modes. → Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. → Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q ch to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent evaluation of the in
International Nuclear Information System (INIS)
Golubovskii, Yu; Kalanov, D; Gorchakov, S; Uhrlandt, D
2015-01-01
Modern non-local electron kinetics theory predicts several interesting effects connected with spectral line emission from the positive column in the range of low and medium pressures and currents. Some theoretical works describe non-monotonic behavior of the radial profiles of line emission at intermediate pressures and currents between the validity ranges of the non-local and local approximation of the electron kinetics. Despite a great number of publications, there have been no systematic measurements attempting to confirm these theoretical predictions through experiments. In this work the radial profiles of the line emission from the positive column of an argon glow discharge have been measured with high spatial resolution and new effects caused by the narrowing and broadening of the spatial emission profiles with dependence on discharge conditions have been discovered. The effect of intensity maximum shift predicted by theory using a self-consistent model was not found in the experiment. The properties of the spectral line radiation are influenced by the peculiarities of the formation of the high-energy tail of the electron energy distribution function. An interpretation of the observed effects based on the non-local character of the electron kinetics in radially inhomogeneous fields is given. The obtained experimental data are compared with the results of calculations. (paper)
The delta expansion in zero dimensions
International Nuclear Information System (INIS)
Cho, H.T.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.
1989-01-01
The recently introduced δ-expansion (or logarithmic-expansion) technique for obtaining nonperturbative information about quantum field theories is reviewed in the zero-dimensional context. There, it is easy to study questions of analytic continuation that arise in the construction of the Feynman rules that generate the δ series. It is found that for six- and higher-point Green's functions, a cancellation occurs among the most divergent terms, and that divergences that arise from summing over an infinite number of internal lines are illusory. The numerical accuracy is studied in some detail: The δ series converges inside a circle of radius one for positive bare mass squared, and diverges if the bare mass squared is negative, but in all cases, low-order Pade approximants are extremely accurate. These general features are expected to hold in higher dimensions, such as four
Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron
DEFF Research Database (Denmark)
Scheutz, Charlotte; Winther, K.; Kjeldsen, Peter
2000-01-01
Transformation of gaseous CCl3F and CCl4 by zero-valent iron was studied in systems unsaturated with water under anaerobic conditionssin an N2 gas and in a landfill gas atmosphere. The transformation was studied in batch as well as flow-through column tests. In both systems, the transformation....... During continuous aerobic conditions, the transformation of CCl3F decreased toward zero. Model calculations show that use of zero-valent iron in landfill top covers is a potential treatment technology for emission reduction of halogenated trace compounds from landfills....
Zero-point field in curved spaces
International Nuclear Information System (INIS)
Hacyan, S.; Sarmiento, A.; Cocho, G.; Soto, F.
1985-01-01
Boyer's conjecture that the thermal effects of acceleration are manifestations of the zero-point field is further investigated within the context of quantum field theory in curved spaces. The energy-momentum current for a spinless field is defined rigorously and used as the basis for investigating the energy density observed in a noninertial frame. The following examples are considered: (i) uniformly accelerated observers, (ii) two-dimensional Schwarzschild black holes, (iii) the Einstein universe. The energy spectra which have been previously calculated appear in the present formalism as an additional contribution to the energy of the zero-point field, but particle creation does not occur. It is suggested that the radiation produced by gravitational fields or by acceleration is a manifestation of the zero-point field and of the same nature (whether real or virtual)
Gotoh, Naohiro; Matsumoto, Yumiko; Yuji, Hiromi; Nagai, Toshiharu; Mizobe, Hoyo; Ichioka, Kenji; Kuroda, Ikuma; Noguchi, Noriko; Wada, Shun
2010-01-01
The characteristics of a non-endcapped polymeric ODS column for the resolution of triacylglycerol positional isomers (TAG-PI) were examined using a recycle HPLC-atmospheric pressure chemical ionization/mass spectrometry system. A pair of TAG-PI containing saturated fatty acids at least 12 carbons was separated. Except for TAG-PI containing elaidic acid, pairs of TAG-PI containing three unsaturated fatty acids were not separated, even by recycle runs. These results indicate that the resolution of TAG-PI on a non-endcapped polymeric ODS stationary phase is realized by the recognition of the linear structure of the fatty acid and the binding position of the saturated fatty acid in TAG-PI. Chain length was also an important factor for resolution. This method may be a useful and simple for measuring the abundance ratio of TAG-PI containing saturated fatty acids in natural oils.
Weißenborn, E.; Bossmeyer, T.; Bertram, T.
2011-08-01
Tighter emission regulations are driving the development of advanced engine control strategies relying on feedback information from the combustion chamber. In this context, it is especially seeked for alternatives to expensive in-cylinder pressure sensors. The present study addresses these issues by pursuing a simulation-based approach. It focuses on the extension of an empirical, zero-dimensional cylinder pressure model using the engine speed signal in order to detect cylinder-wise variations in combustion. As a special feature, only information available from the standard sensor configuration are utilized. Within the study, different methods for the model-based reconstruction of the combustion pressure including nonlinear Kalman filtering are compared. As a result, the accuracy of the cylinder pressure model can be enhanced. At the same time, the inevitable limitations of the proposed methods are outlined.
An Experimental Study on Solute Transport in One-Dimensional Clay Soil Columns
Directory of Open Access Journals (Sweden)
Muhammad Zaheer
2017-01-01
Full Text Available Solute transport in low-permeability media such as clay has not been studied carefully up to present, and we are often unclear what the proper governing law is for describing the transport process in such media. In this study, we composed and analyzed the breakthrough curve (BTC data and the development of leaching in one-dimensional solute transport experiments in low-permeability homogeneous and saturated media at small scale, to identify key parameters controlling the transport process. Sodium chloride (NaCl was chosen to be the tracer. A number of tracer tests were conducted to inspect the transport process under different conditions. The observed velocity-time behavior for different columns indicated the decline of soil permeability when switching from tracer introducing to tracer flushing. The modeling approaches considered were the Advection-Dispersion Equation (ADE, Two-Region Model (TRM, Continuous Time Random Walk (CTRW, and Fractional Advection-Dispersion Equation (FADE. It was found that all the models can fit the transport process very well; however, ADE and TRM were somewhat unable to characterize the transport behavior in leaching. The CTRW and FADE models were better in capturing the full evaluation of tracer-breakthrough curve and late-time tailing in leaching.
Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature
International Nuclear Information System (INIS)
Kestner, J. P.; Das Sarma, S.
2010-01-01
The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/T F , exhibiting a maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system, the zero-sound mode may propagate at experimentally attainable temperatures.
Cheng, Cheanyeh; Wu, Shing-Chen
2011-05-20
An innovative two-dimensional high-performance liquid chromatography system was developed for the simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero. A C8 reversed-phase chromatographic column with ultraviolet detection was used as the first dimension for the determination of aspartame, and a ligand-exchange chromatographic column with on-line postcolumn derivation fluorescence detection was employed as the second dimension for the analysis of amino acid enantiomers. The fluorimetric derivative reagent of amino acid enantiomers was o-phthaldialdehyde. The hydrolysis of aspartame in Coca-Cola Zero was induced by electric-heating or microwave heating. Aspartame was quantified by the matrix matched external standard calibration curve with a linear concentration range of 0-50 μg mL(-1) (r(2)=0.9984). The limit of detection (LOD) and the limit of quantification (LOQ) were 1.3 μg mL(-1) and 4.3 μg mL(-1), respectively. The amino acid enantiomers was analyzed by the matrix matched internal standard calibration method (D-leucine as the internal standard) with a linear concentration range of 0-10 μg mL(-1) (r(2)=0.9988-0.9997). The LODs and LOQs for L- and D-aspartic acid and L- and D-phenylalanine were 0.16-0.17 μg mL(-1) and 0.52-0.55 μg mL(-1), respectively, that was 12-13 times more sensitive than ultraviolet detection. The overall analysis accuracy for aspartame and amino acid enantiomers was 90.2-99.2% and 90.4-96.2%, respectively. The overall analysis precision for aspartame and amino acid enantiomers was 0.1-1.7% and 0.5-6.7%, respectively. Generally, the extent of aspartame hydrolysis increases with the increase of electro-thermal temperature, microwave power, and the duration of hydrolysis time. D-aspartic acid and D-phenylalanine can be observed with the electro-thermal racemization at the hydrolysis temperature 120°C for 1 day and only D-aspartic acid can be observed at the hydrolysis temperature 90°C for 2 and 3 days. For
Huber, Katrin; Koebernick, Nicolai; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vetterlein, Doris; Vereecken, Harry
2014-05-01
A faba bean was grown in a column filled with a sandy soil, which was initially close to saturation and then subjected to a single drying cycle of 30 days. The column was divided in four hydraulically separated compartments using horizontal paraffin layers. Paraffin is impermeable to water but penetrable by roots. Thus by growing deeper, the roots can reach compartments that still contain water. The root architecture was measured every second day by X-ray CT. Transpiration rate, soil matric potential in four different depths, and leaf area were measured continously during the experiment. To investigate the influence of the partitioning of available soil water in the soil column on water uptake, we used R-SWMS, a fully coupled root and soil water model [1]. We compared a scenario with and without the split layers and investigated the influence on root xylem pressure. The detailed three-dimensional root architecture was obtained by reconstructing binarized root images manually with a virtual reality system, located at the Juelich Supercomputing Centre [2]. To verify the properties of the root system, we compared total root lengths, root length density distributions and root surface with estimations derived from Minkowski functionals [3]. In a next step, knowing the change of root architecture in time, we could allocate an age to each root segment and use this information to define age dependent root hydraulic properties that are required to simulate water uptake for the growing root system. The scenario with the split layers showed locally much lower pressures than the scenario without splits. Redistribution of water within the unrestricted soil column led to a more uniform distribution of water uptake and lowers the water stress in the plant. However, comparison of simulated and measured pressure heads with tensiometers suggested that the paraffin layers were not perfectly hydraulically isolating the different soil layers. We could show compensation efficiency of
Zero-point length from string fluctuations
International Nuclear Information System (INIS)
Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.
2006-01-01
One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory
Digital position sensitive discrimination for 2-dimensional scintillation detectors
International Nuclear Information System (INIS)
Engels, R.; Reinartz, R.; Reinhart, P.
1996-01-01
The energy sensitivity of a two-dimensional scintillation gamma detector based on position sensitive photomultipliers has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by 50%, a discrimination unit has been developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. Depending on the spatial resolution there can be up to 65.536 position-sensitive discriminator levels defining energy windows. By this method, narrow discriminator windows can be used for reducing the low and high energy quanta without effecting the sensitivity of the detector. The new discrimination method, its performance and test measurements with gamma rays will be described. Furthermore experimental results are presented
Nearly zero transmission through periodically modulated ultrathin metal films
DEFF Research Database (Denmark)
Xiao, Sanshui; Zhang, Jingjing; Peng, Liang
2010-01-01
Transmission of light through an optically ultrathin metal film with a thickness comparable to its skin depth is significant. We demonstrate experimentally nearly-zero transmission of light through a film periodically modulated by a one-dimensional array of subwavelength slits. The suppressed...... optical transmission is due to the excitation of surface plasmon polaritons and the zero-transmission phenomenon is strongly dependent on the polarization of the incident wave....
Energy Technology Data Exchange (ETDEWEB)
Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.
2006-03-20
At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. Laboratory experiments have been conducted to investigate whether barrier reductive capacity can be enhanced by adding micron-scale zero-valent iron to the high-permeability zones within the aquifer using shear-thinning fluids containing polymers. Porous media were packed in a wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone between two low-permeability zones or a high-permeability channel sur-rounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments. The flow cell experiments indicated that iron concentration enhancements of at least 0.6% (w/w) could be obtained using moderate flow rates and injection of 30 pore volumes. The 0.6% amended Fe0 concentration would provide approximately 20 times the average reductive capacity that is provided by the dithionite-reduced iron in the ISRM barrier. Calculations show that a 1-m-long Fe0 amended zone with an average concentration of 0.6% w/w iron subject to a groundwater velocity of 1 m/day will have an estimated longevity of 7.2 years.
Zero Tolerance: Advantages and Disadvantages. Research Brief
Walker, Karen
2009-01-01
What are the positives and negatives of zero tolerance? What should be considered when examining a school's program? Although there are no definitive definitions of zero tolerance, two commonly used ones are as follows: "Zero tolerance means that a school will automatically and severely punish a student for a variety of infractions" (American Bar…
Predictive zero-dimensional combustion model for DI diesel engine feed-forward control
Energy Technology Data Exchange (ETDEWEB)
Catania, Andrea Emilio; Finesso, Roberto [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy); Spessa, Ezio, E-mail: ezio.spessa@polito.it [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy)
2011-09-15
Highlights: {yields} Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. {yields} Feed-forward control of MFB50, p{sub max} and IMEP in both conventional and PCCI combustion modes. {yields} Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. {yields} Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q{sub ch} to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent
Cao, C.; Lee, X.; Xu, J.
2017-12-01
Unmanned Aerial Vehicles (UAVs) or drones have been widely used in environmental, ecological and engineering applications in recent years. These applications require assessment of positional and dimensional accuracy. In this study, positional accuracy refers to the accuracy of the latitudinal and longitudinal coordinates of locations on the mosaicked image in reference to the coordinates of the same locations measured by a Global Positioning System (GPS) in a ground survey, and dimensional accuracy refers to length and height of a ground target. Here, we investigate the effects of the number of Ground Control Points (GCPs) and the accuracy of the GPS used to measure the GCPs on positional and dimensional accuracy of a drone 3D model. Results show that using on-board GPS and a hand-held GPS produce a positional accuracy on the order of 2-9 meters. In comparison, using a differential GPS with high accuracy (30 cm) improves the positional accuracy of the drone model by about 40 %. Increasing the number of GCPs can compensate for the uncertainty brought by the GPS equipment with low accuracy. In terms of the dimensional accuracy of the drone model, even with the use of a low resolution GPS onboard the vehicle, the mean absolute errors are only 0.04 m for height and 0.10 m for length, which are well suited for some applications in precision agriculture and in land survey studies.
International Nuclear Information System (INIS)
Dalmazi, D; Sa, F L
2010-01-01
Here we study the partition function zeros of the one-dimensional Blume-Emery-Griffiths model close to their edge singularities. The model contains four couplings (H, J, Δ, K) including the magnetic field H and the Ising coupling J. We assume that only one of the three couplings (J, Δ, K) is complex and the magnetic field is real. The generalized zeros z i tend to form continuous curves on the complex z-plane in the thermodynamic limit. The linear density at the edges z E diverges usually with ρ(z) ∼ |z - z E | σ and σ = -1/2. However, as in the case of complex magnetic fields (Yang-Lee edge singularity), if we have a triple degeneracy of the transfer matrix eigenvalues a new critical behavior with σ = -2/3 can appear as we prove here explicitly for the cases where either Δ or K is complex. Our proof applies for a general three-state spin model with short-range interactions. The Fisher zeros (complex J) are more involved; in practice, we have not been able to find an explicit example with σ = -2/3 as far as the other couplings (H, Δ, K) are kept as real numbers. Our results are supported by numerical computations of zeros. We show that it is absolutely necessary to have a non-vanishing magnetic field for a new critical behavior. The appearance of σ = -2/3 at the edge closest to the positive real axis indicates its possible relevance for tricritical phenomena in higher-dimensional spin models.
Energy Technology Data Exchange (ETDEWEB)
Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Cervello, C. [Conselleria de Cultura, Educacion y Deporte, Generalitat Valenciana (Spain)
2008-12-15
The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation. (author)
International Nuclear Information System (INIS)
Serrano, J.R.; Arnau, F.J.; Dolz, V.; Tiseira, A.; Cervello, C.
2008-01-01
The paper presents a model of fixed and variable geometry turbines. The aim of this model is to provide an efficient boundary condition to model turbocharged internal combustion engines with zero- and one-dimensional gas dynamic codes. The model is based from its very conception on the measured characteristics of the turbine. Nevertheless, it is capable of extrapolating operating conditions that differ from those included in the turbine maps, since the engines usually work within these zones. The presented model has been implemented in a one-dimensional gas dynamic code and has been used to calculate unsteady operating conditions for several turbines. The results obtained have been compared with success against pressure-time histories measured upstream and downstream of the turbine during on-engine operation
A Kohn-Sham system at zero temperature
International Nuclear Information System (INIS)
Cornean, H; Hoke, K; Neidhardt, H; Racec, P N; Rehberg, J
2008-01-01
A one-dimensional Kohn-Sham system for spin particles is considered which effectively describes semiconductor nanostructures, and which is investigated at zero temperature. We prove the existence of solutions and derive a priori estimates. For this purpose we find estimates for eigenvalues of the Schroedinger operator with effective Kohn-Sham potential and obtain W 1,2 -bounds of the associated particle density operator. Afterwards, compactness and continuity results allow us to apply Schauder's fixed point theorem. In the case of vanishing exchange-correlation potential uniqueness is shown by monotonicity arguments. Finally, we investigate the behavior of the system if the temperature approaches zero
Mériaux, Catherine
2006-09-01
This paper describes a series of experiments designed to investigate the fall of granular columns in a quasi-static regime. Columns made of alternatively green and red sand layers were initially laid out in a box and then released when a retaining wall was set in slow motion with constant speed. The dependence of the dynamics of the fall on the initial aspect ratio of the columns, the velocity of the wall, and the material properties was investigated within the quasi-static regime. A change in the behavior of the columns was identified to be a function of the aspect ratio (height/length) of the initial sand column. Columns of high aspect ratio first subsided before sliding along failure planes, while columns of small aspect ratio were only observed to slide along failure planes. The transition between these two characteristic falls occurred regardless of the material and the velocity of the wall in the context of the quasi-static regime. When the final height and length of the piles were analyzed, we found power-law relations of the ratio of initial to final height and final run-out to initial length with the aspect ratio of the column. The dissipation of energy is also shown to increase with the run-out length of the pile until it reaches a plateau. Finally, we find that the structure of the slip planes that develop in our experiments are not well described by the failure of Coulomb's wedges for twin retaining rough walls.
Column-to-column packing variation of disposable pre-packed columns for protein chromatography.
Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois
2017-12-08
In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Spoelstra, F.O.B.; Sornsen de Koste, van J.R.; Vincent, A.D.; Cuijpers, J.P.; Slotman, B.J.; Senan, S.
2009-01-01
Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed
Gusev, A. A.; Chuluunbaatar, O.; Popov, Yu. V.; Vinitsky, S. I.; Derbov, V. L.; Lovetskiy, K. P.
2018-04-01
The exactly soluble model of a train of zero-duration electromagnetic pulses interacting with a 1D atom with short-range interaction potential modelled by a δ-function is considered. The model is related to the up-to-date laser techniques providing the duration of pulses as short as a few attoseconds and the intensities higher than 1014 W/cm2.
Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong
2013-03-07
We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.
Varied overstrain injuries of the vertebral column conditioned by evolution
Energy Technology Data Exchange (ETDEWEB)
Kohlbach, W
1983-08-01
During physiological growth of the juvenile vertebral column, various stages of stability occur which are characterized by the condition of the marginal rim of the vertebral bodies. If the vertebral juvenile column is overstrained, these variations in stability results in a variety of damage to vertebral bodies and vertebral disks. One of these lesions corresponds to Scheuermann's disease (osteochondrosis of vertebral epiphyses in juveniles). Damage of the vertebral column due to overstrain can occur only if the overstrain is applied in upright position. Since Man alone can damage his vertebral column in upright position (as a result of his evolutionary development), Scheuermann's thesis is confirmed that Scheuermann's disease is confined to Man. Spondylolysis/spondylolisthesis is also a damage caused by overstrain. Here, too, the damage can occur only if the load is exercised in upright position, with the exception of a slanted positioning of the intervertebral components.
Varied overstrain injuries of the vertebral column conditioned by evolution
International Nuclear Information System (INIS)
Kohlbach, W.
1983-01-01
During physiological growth of the juvenile vertebral column, various stages of stability occur which are characterized by the condition of the marginal rim of the vertebral bodies. If the vertebral juvenile column is overstrained, these variations in stability results in a variety of damage to vertebral bodies and vertebral disks. One of these lesions corresponds to Scheuermann's disease (osteochondrosis of vertebral epiphyses in juveniles). Damage of the vertebral column due to overstrain can occur only if the overstrain is applied in upright position. Since Man alone can damage his vertebral column in upright position (as a result of his evolutionary development), Scheuermann's thesis is confirmed that Scheuermann's disease is confined to Man. Spondylolysis/spondylolisthesis is also a damage caused by overstrain. Here, too, the damage can occur only if the load is exercised in upright position, with the exception of a slanted positioning of the intervertebral components. (orig.) [de
Zero curvature conditions and conformal covariance
International Nuclear Information System (INIS)
Akemann, G.; Grimm, R.
1992-05-01
Two-dimensional zero curvature conditions were investigated in detail, with special emphasis on conformal properties, and the appearance of covariant higher order differential operators constructed in terms of a projective connection was elucidated. The analysis is based on the Kostant decomposition of simple Lie algebras in terms of representations with respect to their 'principal' SL(2) subalgebra. (author) 27 refs
Zero-point length, extra-dimensions and string T-duality
Spallucci, Euro; Fontanini, Michele
2005-01-01
In this paper, we are going to put in a single consistent framework apparently unrelated pieces of information, i.e. zero-point length, extra-dimensions, string T-duality. More in details we are going to introduce a modified Kaluza-Klein theory interpolating between (high-energy) string theory and (low-energy) quantum field theory. In our model zero-point length is a four dimensional ``virtual memory'' of compact extra-dimensions length scale. Such a scale turns out to be determined by T-dual...
Zero expression of arguments in Old Danish
DEFF Research Database (Denmark)
Heltoft, Lars
2014-01-01
arguments in Scanic are semantically different from pronouns, and therefore pronouns and zero arguments are not variants. At one level, zero arguments and pronouns are similar with respect to function, namely to supply means for establishing co-reference in text; however, they are not semantically...... equivalent. By reducing these two categories to one single underlying category, such as pro, one would miss this point. On the contrary, zero arguments are arguably full-bodied signs with their own content, thus corresponding to Melčuk’s Zero Sign Introduction Principle.......Old Scandinavian (represented here by Old Danish) allowed zero arguments (null-arguments) in any nominal (argument) position, that is: for NPs as subjects, objects and in PPs. In generative grammar, zero arguments are held to be variants of pronouns, but in this article, I shall claim that zero...
On the connection between the hydrogen atom and the harmonic oscillator: the zero-energy case
International Nuclear Information System (INIS)
Kibler, M.; Negali, T.
1983-09-01
The connection between the three-dimensional hydrogen atom and a four-dimensional harmonic oscillator obtained in previous works, from an hybridization of the infinitesimal Pauli approach to the hydrogen system with the Schwinger approach to spherical and hyperbolical angular momenta, is worked out in the case of the zero-energy point of the hydrogen atom. This leads to the equivalence of the three-dimensional hydrogen problem with a four-dimensional free-particle problem involving a constraint condition. For completeness, the latter results is also derived by using the Kustaanheimo-Stiefel transformation introduced in celestial mechanics. Finally, it is shown how the Lie algebra of SO(4,2) quite naturally arises for the whole spectrum (discrete + continuum + zero-energy point) of the three-dimensional hydrogen atom from the introduction of the constraint condition into the Lie algebra of Sp(8,R) associated to the four-dimensional harmonic oscillator
DEFF Research Database (Denmark)
Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik
2012-01-01
The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...
Positive magnetoresistance in Fe3Se4 nanowires
Li, D.; Jiang, J. J.; Liu, W.; Zhang, Z. D.
2011-04-01
We report the magnetotransport properties of Fe3Se4 nanowire arrays in anodic aluminum oxide (AAO) porous membrane. The temperature dependence of resistance of Fe3Se4 nanowires at a zero field shows thermal activated behavior below 295 K. The exponential relationship in resistance is consistent with the model of strong localization with variable-range hopping (VRH) for a finite one-dimensional wire. Resistance versus magnetic field curves below 100 K show small positive magnetoresistance (MR). The field dependencies of log[R(H)/R(0)] explain the positive MR as the effect of magnetic field on the VRH conduction.
Varied overstrain injuries of the vertebral column conditioned by evolution
Energy Technology Data Exchange (ETDEWEB)
Kohlbach, W.
1983-08-01
During physiological growth of the juvenile vertebral column, various stages of stability occur which are characterized by the condition of the marginal rim of the vertebral bodies. If the vertebral juvenile column is overstrained, these variations in stability results in a variety of damage to vertebral bodies and vertebral disks. One of these lesions corresponds to Scheuermann's disease (osteochondrosis of vertebral epiphyses in juveniles). Damage of the vertebral column due to overstrain can occur only if the overstrain is applied in upright position. Since Man alone can damage his vertebral column in upright position (as a result of his evolutionary development), Scheuermann's thesis is confirmed that Scheuermann's disease is confined to Man. Spondylolysis/spondylolisthesis is also a damage caused by overstrain. Here, too, the damage can occur only if the load is exercised in upright position, with the exception of a slanted positioning of the intervertebral components.
Zero Divisors in Associative Algebras over Infinite Fields
Schweitzer, Michael; Finch, Steven
1999-01-01
Let F be an infinite field. We prove that the right zero divisors of a three-dimensional associative F-algebra A must form the union of at most finitely many linear subspaces of A. The proof is elementary and written with students as the intended audience.
Wood, Richard J.; Schwartz, Eric L.
1999-03-01
Shear has been known to exist for many years in the topographic structure of the primary visual cortex, but has received little attention in the modeling literature. Although the topographic map of V1 is largely conformal (i.e. zero shear), several groups have observed topographic shear in the region of the V1/V2 border. Furthermore, shear has also been revealed by anisotropy of cortical magnification factor within a single ocular dominance column. In the present paper, we make a functional hypothesis: the major axis of the topographic shear tensor provides cortical neurons with a preferred direction of orientation tuning. We demonstrate that isotropic neuronal summation of a sheared topographic map, in the presence of additional random shear, can provide the major features of cortical functional architecture with the ocular dominance column system acting as the principal source of the shear tensor. The major principal axis of the shear tensor determines the direction and its eigenvalues the relative strength of cortical orientation preference. This hypothesis is then shown to be qualitatively consistent with a variety of experimental results on cat and monkey orientation column properties obtained from optical recording and from other anatomical and physiological techniques. In addition, we show that a recent result of Das and Gilbert (Das, A., & Gilbert, C. D., 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 387, 594-598) is consistent with an infinite set of parameterized solutions for the cortical map. We exploit this freedom to choose a particular instance of the Das-Gilbert solution set which is consistent with the full range of local spatial structure in V1. These results suggest that further relationships between ocular dominance columns, orientation columns, and local topography may be revealed by experimental testing.
International Nuclear Information System (INIS)
Brambleby, J.; Goddard, P. A.; Singleton, John; Jaime, Marcelo; Lancaster, T.
2017-01-01
We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states and highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.
A stochastic view on column efficiency.
Gritti, Fabrice
2018-03-09
A stochastic model of transcolumn eddy dispersion along packed beds was derived. It was based on the calculation of the mean travel time of a single analyte molecule from one radial position to another. The exchange mechanism between two radial positions was governed by the transverse dispersion of the analyte across the column. The radial velocity distribution was obtained by flow simulations in a focused-ion-beam scanning electron microscopy (FIB-SEM) based 3D reconstruction from a 2.1 mm × 50 mm column packed with 2 μm BEH-C 18 particles. Accordingly, the packed bed was divided into three coaxial and uniform zones: (1) a 1.4 particle diameter wide, ordered, and loose packing at the column wall (velocity u w ), (2) an intermediate 130 μm wide, random, and dense packing (velocity u i ), and (3) the bulk packing in the center of the column (velocity u c ). First, the validity of this proposed stochastic model was tested by adjusting the predicted to the observed reduced van Deemter plots of a 2.1 mm × 50 mm column packed with 2 μm BEH-C 18 fully porous particles (FPPs). An excellent agreement was found for u i = 0.93u c , a result fully consistent with the FIB-SEM observation (u i = 0.95u c ). Next, the model was used to measure u i = 0.94u c for 2.1 mm × 100 mm column packed with 1.6 μm Cortecs-C 18 superficially porous particles (SPPs). The relative velocity bias across columns packed with SPPs is then barely smaller than that observed in columns packed with FPPs (+6% versus + 7%). u w =1.8u i is measured for a 75 μm × 1 m capillary column packed with 2 μm BEH-C 18 particles. Despite this large wall-to-center velocity bias (+80%), the presence of the thin and ordered wall packing layer has no negative impact on the kinetic performance of capillary columns. Finally, the stochastic model of long-range eddy dispersion explains why analytical (2.1-4.6 mm i.d.) and capillary (columns can all be
Neutron transport assembly calculation with non-zero net current boundary condition
International Nuclear Information System (INIS)
Jo, Chang Keun
1993-02-01
Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation
International Nuclear Information System (INIS)
Garbrecht, M.; Spiecker, E.; Tillmann, K.; Jaeger, W.
2011-01-01
Aberration-corrected HRTEM is applied to explore the potential of NCSI contrast imaging to quantitatively analyse the complex atomic structure of misfit layered compounds and their incommensurate interfaces. Using the (PbS) 1.14 NbS 2 misfit layered compound as a model system it is shown that atom column position analyses at the incommensurate interfaces can be performed with precisions reaching a statistical accuracy of ±6 pm. The procedure adopted for these studies compares experimental images taken from compound regions free of defects and interface modulations with a structure model derived from XRD experiments and with multi-slice image simulations for the corresponding NCSI contrast conditions used. The high precision achievable in such experiments is confirmed by a detailed quantitative analysis of the atom column positions at the incommensurate interfaces, proving a tetragonal distortion of the monochalcogenide sublattice. -- Research Highlights: → Quantitative aberration-corrected HRTEM analysis of atomic column positions in (PbS) 1.14 NbS 2 misfit layered compound reveals tetragonal distortion of the PbS subsystem. → Detailed comparison of multi-slice simulations with the experimental NCSI contrast condition imaging results lead to a high precision (better than 10 pm) for determining the positions of atoms. → Precision in gaining information of local structure at atomic scale is demonstrated, which may not be accessible by means of X-ray and neutron diffraction analysis.
Proton and deuterium NMR experiments in zero field
International Nuclear Information System (INIS)
Millar, J.M.
1986-02-01
High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution 2 H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs
Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C
2016-10-01
The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seismic Tremors and Three-Dimensional Magma Wagging
Liao, Y.; Bercovici, D.
2015-12-01
Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3
Visualisation of air–water bubbly column flow using array Ultrasonic Velocity Profiler
Directory of Open Access Journals (Sweden)
Munkhbat Batsaikhan
2017-11-01
Full Text Available In the present work, an experimental study of bubbly two-phase flow in a rectangular bubble column was performed using two ultrasonic array sensors, which can measure the instantaneous velocity of gas bubbles on multiple measurement lines. After the sound pressure distribution of sensors had been evaluated with a needle hydrophone technique, the array sensors were applied to two-phase bubble column. To assess the accuracy of the measurement system with array sensors for one and two-dimensional velocity, a simultaneous measurement was performed with an optical measurement technique called particle image velocimetry (PIV. Experimental results showed that accuracy of the measurement system with array sensors is under 10% for one-dimensional velocity profile measurement compared with PIV technique. The accuracy of the system was estimated to be under 20% along the mean flow direction in the case of two-dimensional vector mapping.
Spin-zero DKP equation with two time-dependent interactions
Energy Technology Data Exchange (ETDEWEB)
Saeedi, K.; Hassanabadi, H. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of); Zarrinkamar, S. [Islamic Azad University, Department of Basic Sciences, Garmsar Branch, Garmsar (Iran, Islamic Republic of)
2016-11-15
The Duffin-Kemmer-Petiau equation for spin-zero bosons is considered in (1 + 1) - and (2 + 1) -dimensional space-time. Some time-dependent interactions are considered within the framework and quasi-exact solutions are provided. The results are discussed via various figures. (orig.)
Results of the eruptive column model inter-comparison study
Costa, Antonio; Suzuki, Yujiro; Cerminara, M.; Devenish, Ben J.; Esposti Ongaro, T.; Herzog, Michael; Van Eaton, Alexa; Denby, L.C.; Bursik, Marcus; de' Michieli Vitturi, Mattia; Engwell, S.; Neri, Augusto; Barsotti, Sara; Folch, Arnau; Macedonio, Giovanni; Girault, F.; Carazzo, G.; Tait, S.; Kaminski, E.; Mastin, Larry G.; Woodhouse, Mark J.; Phillips, Jeremy C.; Hogg, Andrew J.; Degruyter, Wim; Bonadonna, Costanza
2016-01-01
This study compares and evaluates one-dimensional (1D) and three-dimensional (3D) numerical models of volcanic eruption columns in a set of different inter-comparison exercises. The exercises were designed as a blind test in which a set of common input parameters was given for two reference eruptions, representing a strong and a weak eruption column under different meteorological conditions. Comparing the results of the different models allows us to evaluate their capabilities and target areas for future improvement. Despite their different formulations, the 1D and 3D models provide reasonably consistent predictions of some of the key global descriptors of the volcanic plumes. Variability in plume height, estimated from the standard deviation of model predictions, is within ~ 20% for the weak plume and ~ 10% for the strong plume. Predictions of neutral buoyancy level are also in reasonably good agreement among the different models, with a standard deviation ranging from 9 to 19% (the latter for the weak plume in a windy atmosphere). Overall, these discrepancies are in the range of observational uncertainty of column height. However, there are important differences amongst models in terms of local properties along the plume axis, particularly for the strong plume. Our analysis suggests that the simplified treatment of entrainment in 1D models is adequate to resolve the general behaviour of the weak plume. However, it is inadequate to capture complex features of the strong plume, such as large vortices, partial column collapse, or gravitational fountaining that strongly enhance entrainment in the lower atmosphere. We conclude that there is a need to more accurately quantify entrainment rates, improve the representation of plume radius, and incorporate the effects of column instability in future versions of 1D volcanic plume models.
Heat Transfer Analysis for a Fixed CST Column
International Nuclear Information System (INIS)
Lee, S.Y.
2004-01-01
In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant
Lama, Prem; Das, Raj Kumar; Smith, Vincent J; Barbour, Leonard J
2014-06-21
A novel semi-flexible Cd(II)-MOF has been synthesized and characterized by variable temperature powder and single-crystal X-ray diffraction. The material displays an unusual combination of thermal expansion (TE) i.e. negative, zero and positive, which is an extremely rare finding, especially for metal-organic frameworks as a result of a combined stretching-tilting mechanism.
Intrinsic Lead Ion Emissions in Zero-Dimensional Cs4PbBr6 Nanocrystals
Yin, Jun
2017-11-07
We investigate the intrinsic lead ion (Pb2+) emissions in zero-dimensional (0D) perovskite nanocrystals (NCs) using a combination of experimental and theoretical approaches. The temperature-dependent photoluminescence experiments for both “nonemissive” (highly suppressed green emission) and emissive (bright green emission) Cs4PbBr6 NCs show a splitting of emission spectra into high- and low-energy transitions in the ultraviolet (UV) spectral range. In the nonemissive case, we attribute the high-energy UV emission at approximately 350 nm to the allowed optical transition of 3P1 to 1S0 in Pb2+ ions and the low-energy UV emission at approximately 400 nm to the charge-transfer state involved in the 0D NC host lattice (D-state). In the emissive Cs4PbBr6 NCs, in addition to the broad UV emission, we demonstrate that energy transfer occurs from Pb2+ ions to green luminescent centers. The optical phonon modes in Cs4PbBr6 NCs can be assigned to both Pb–Br stretching and rocking motions from density functional theory calculations. Our results address the origin of the dual broadband Pb2+ ion emissions observed in Cs4PbBr6 NCs and provide insights into the mechanism of ionic exciton–optical phonon interactions in these 0D perovskites.
Optimal design of zero-water discharge rinsing systems.
Thöming, Jorg
2002-03-01
This paper is about zero liquid discharge in processes that use water for rinsing. Emphasis was given to those systems that contaminate process water with valuable process liquor and compounds. The approach involved the synthesis of optimal rinsing and recycling networks (RRN) that had a priori excluded water discharge. The total annualized costs of the RRN were minimized by the use of a mixed-integer nonlinear program (MINLP). This MINLP was based on a hyperstructure of the RRN and contained eight counterflow rinsing stages and three regenerator units: electrodialysis, reverse osmosis, and ion exchange columns. A "large-scale nickel plating process" case study showed that by means of zero-water discharge and optimized rinsing the total waste could be reduced by 90.4% at a revenue of $448,000/yr. Furthermore, with the optimized RRN, the rinsing performance can be improved significantly at a low-cost increase. In all the cases, the amount of valuable compounds reclaimed was above 99%.
Directory of Open Access Journals (Sweden)
Torsten Karzig
2013-11-01
Full Text Available One-dimensional topological superconductors are known to host Majorana zero modes at domain walls terminating the topological phase. Their non-Abelian nature allows for processing quantum information by braiding operations that are insensitive to local perturbations, making Majorana zero modes a promising platform for topological quantum computation. Motivated by the ultimate goal of executing quantum-information processing on a finite time scale, we study domain walls moving at a constant velocity. We exploit an effective Lorentz invariance of the Hamiltonian to obtain an exact solution of the associated quasiparticle spectrum and wave functions for arbitrary velocities. Essential features of the solution have a natural interpretation in terms of the familiar relativistic effects of Lorentz contraction and time dilation. We find that the Majorana zero modes remain stable as long as the domain wall moves at subluminal velocities with respect to the effective speed of light of the system. However, the Majorana bound state dissolves into a continuous quasiparticle spectrum after the domain wall propagates at luminal or even superluminal velocities. This relativistic catastrophe implies that there is an upper limit for possible braiding frequencies even in a perfectly clean system with an arbitrarily large topological gap. We also exploit our exact solution to consider domain walls moving past static impurities present in the system.
Algorithms for Zero-Dimensional Ideals Using Linear Recurrent Sequences
DEFF Research Database (Denmark)
Neiger, Vincent; Rahkooy, Hamid; Schost, Éric
2017-01-01
Inspired by Faugére and Mou´s sparse FGLM algorithm, we show how using linear recurrent multi-dimensional sequences can allow one to perform operations such as the primary decomposition of an ideal, by computing of the annihilator of one or several such sequences.......Inspired by Faugére and Mou´s sparse FGLM algorithm, we show how using linear recurrent multi-dimensional sequences can allow one to perform operations such as the primary decomposition of an ideal, by computing of the annihilator of one or several such sequences....
Energy Efficient Position-Based Three Dimensional Routing for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Jeongdae Kim
2008-04-01
Full Text Available In this paper, we focus on an energy efficient position-based three dimensional (3D routing algorithm using distance information, which affects transmission power consumption between nodes as a metric. In wireless sensor networks, energy efficiency is one of the primary objectives of research. In addition, recent interest in sensor networks is extended to the need to understand how to design networks in a 3D space. Generally, most wireless sensor networks are based on two dimensional (2D designs. However, in reality, such networks operate in a 3D space. Since 2D designs are simpler and easier to implement than 3D designs for routing algorithms in wireless sensor networks, the 2D assumption is somewhat justified and usually does not lead to major inaccuracies. However, in some applications such as an airborne to terrestrial sensor networks or sensor networks, which are deployed in mountains, taking 3D designs into consideration is reasonable. In this paper, we propose the Minimum Sum of Square distance (MSoS algorithm as an energy efficient position-based three dimensional routing algorithm. In addition, we evaluate and compare the performance of the proposed routing algorithm with other algorithms through simulation. Finally, the results of the simulation show that the proposed routing algorithm is more energy efficient than other algorithms in a 3D space.
Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.
Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram
2017-02-01
In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.
CFD simulation of alleviation of fluid back mixing by baffles in bubble column
Energy Technology Data Exchange (ETDEWEB)
Xia, Y.K.; Peng, F.F.; Wolfe, E. [Sedgman LLC, Pittsburgh, PA (United States)
2006-07-15
The global back mixing of liquid in an open flotation column is harmful to mineral separations. The inclusion of baffles and packing in open columns can dampen the effects of global back mixing. A mathematical model based on the principle of fluid dynamics is helpful in designing baffled or packed columns. This paper presents a two-dimensional Euler-Lagrangian model to simulate the multiphase flow for some cases of baffled and packed columns. Fluid motion is calculated by directly solving the Navier-Stokes equations by a SIMPLE approach. Bubbles are moved in a Lagrangian frame through the interaction forces imposed by the gas-fluid coupling. The simulated results successfully reveal that the liquid back-mixing effect in the open bubble columns can be alleviated by baffles or packings.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Chenkun [College of Engineering, Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering; Lin, Haoran [College of Engineering, Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering; Shi, Hongliang [Beihang Univ., Beijing (China). Dept. of Physics; Tian, Yu [Materials Science and Engineering Program, Florida State University, Tallahassee FL 32306 USA; Pak, Chongin [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Shatruk, Michael [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Zhou, Yan [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Djurovich, Peter [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemistry; Du, Mao-Hua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division, Center for Radiation Detection Materials and Systems; Ma, Biwu [College of Engineering, Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering; Beihang Univ., Beijing (China). Dept. of Physics; Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry
2017-12-21
The synthesis and characterization is reported of (C_{9}NH_{20})_{2}SnBr_{4}, a novel organic metal halide hybrid with a zero-dimensional (0D) structure, in which individual seesaw-shaped tin (II) bromide anions (SnBr_{4}^{2-}) are co-crystallized with 1-butyl-1-methylpyrrolidinium cations (C_{9}NH_{20}^{+}). Upon photoexcitation, the bulk crystals exhibit a highly efficient broadband deep-red emission peaked at 695 nm, with a large Stokes shift of 332 nm and a high quantum efficiency of around 46 %. Furthermore, the unique photophysical properties of this hybrid material are attributed to two major factors: 1) the 0D structure allowing the bulk crystals to exhibit the intrinsic properties of individual SnBr_{4}^{2-} species, and 2) the seesaw structure then enables a pronounced excited state structural deformation as confirmed by density functional theory (DFT) calculations.
Radio-frequency wave excitation and damping on a high β plasma column
International Nuclear Information System (INIS)
Meuth, H.
1984-01-01
Azimuthally symmetric (m = 0) radio-frequency (RF) waves for zero and for finite axial wave number k/sub z/ are investigated on the High BETA Q Machine, a two-meter, 20 cm-diameter, low-compression linear theta pinch (T greater than or equal to 200 eV, n approx. = 10 15 cm -3 ) fast rising (0.4 μs) compression field. The (k/sub z/ = 0) modes occur spontaneously following the implosion phase of the discharge. A novel 100-MW 1 to 1.3 MHz, short wavelength current drive excites the plasma column in the vicinity of the lowest fast magnetoacoustic mode at various filling pressures. This current drive is designed as an integral part of the compression coil, which is segmented with a 20-cm axial wavelength (k/sub z/ = 0.314 cm -1 ). The electron density oscillations along major and minor chords at various positions are measured by interferometry perpendicular to the pinch axis. The oscillatory radial magnetic field component between pinch wall and hot plasma edge is measured by probes. Phases, amplitudes and radial mode structure are studied for the free (k = 0) modes and the externally driven (k does not equal 0) modes for various filling pressures of deuterium. The energy deposition from the externally driven RF wave leads to a radial expansion of the plasma column, as observed by axial interferometry and by excluded flux measurements
Kerimov, M. K.
2018-01-01
This paper is the fourth in a series of survey articles concerning zeros of Bessel functions and methods for their computation. Various inequalities, estimates, expansions, etc. for positive zeros are analyzed, and some results are described in detail with proofs.
Zero-modes of non-Abelian solitons in three-dimensional gauge theories
International Nuclear Information System (INIS)
Eto, Minoru; Gudnason, Sven Bjarke
2011-01-01
We study non-Abelian solitons of the Bogomol'nyi type in N=2 (d = 2 + 1) supersymmetric Chern-Simons (CS) and Yang-Mills (YM) theory with a generic gauge group. In CS theory, we find topological, non-topological and semi-local (non-)topological vortices of non-Abelian kinds in unbroken, broken and partially broken vacua. We calculate the number of zero-modes using an index theorem and then we apply the moduli matrix formalism to realize the moduli parameters. For the topological solitons we exhaust all the moduli while we study several examples of the non-topological and semi-local solitons. We find that the zero-modes of the topological solitons are governed by the moduli matrix H 0 only and those of the non-topological solitons are governed by both H 0 and the gauge invariant field Ω. We prove local uniqueness of the master equation in the YM case and finally compare all results between the CS and YM theories.
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Finite-dimensional effects and critical indices of one-dimensional quantum models
International Nuclear Information System (INIS)
Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.
1986-01-01
Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values
Finite length thermal equilibria of a pure electron plasma column
International Nuclear Information System (INIS)
Prasad, S.A.; O'Neil, T.M.
1979-01-01
The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length
Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions.
Ziener, Christian H; Kurz, Felix T; Buschle, Lukas R; Kampf, Thomas
2015-01-01
The cylindrical Bessel differential equation and the spherical Bessel differential equation in the interval [Formula: see text] with Neumann boundary conditions are considered. The eigenfunctions are linear combinations of the Bessel function [Formula: see text] or linear combinations of the spherical Bessel functions [Formula: see text]. The orthogonality relations with analytical expressions for the normalization constant are given. Explicit expressions for the Lommel integrals in terms of Lommel functions are derived. The cross product zeros [Formula: see text] and [Formula: see text] are considered in the complex plane for real as well as complex values of the index [Formula: see text] and approximations for the exceptional zero [Formula: see text] are obtained. A numerical scheme based on the discretization of the two-dimensional and three-dimensional Laplace operator with Neumann boundary conditions is presented. Explicit representations of the radial part of the Laplace operator in form of a tridiagonal matrix allow the simple computation of the cross product zeros.
Coplanar-grid CdZnTe detector with three-dimensional position sensitivity
International Nuclear Information System (INIS)
Luke, P.N.; Amman, M.; Lee, J.S.; Yaver, H.
1998-06-01
A 3-dimensional position-sensitive coplanar-grid detector design for use with compound semiconductors is described. This detector design maintains the advantage of a coplanar-grid detector in which good energy resolution can be obtained from materials with poor charge transport. Position readout in two dimensions is accomplished using proximity-sensing electrodes adjacent to the electron-collecting grid electrode of the detector. Additionally, depth information is obtained by taking the ratio of the amplitudes of the collecting grid signal and the cathode signal. Experimental results from a prototype CdZnTe detector are presented
Assembly procedure for column cutting platform
International Nuclear Information System (INIS)
Routh, R.D.
1995-01-01
This supporting document describes the assembly procedure for the Column Cutting Platform and Elevation Support. The Column Cutting Platform is a component of the 241-SY-101 Equipment Removal System. It is set up on the deck of the Strongback Trailer to provide work access to cut off the upper portion of the Mitigation Pump Assembly (MPA). The Elevation Support provides support for the front of the Storage Container with the Strongback at an inclined position. The upper portion of the MPA must be cut off to install the Containment Caps on the Storage Container. The storage Container must be maintained in an inclined position until the Containment Caps are installed to prevent any residual liquids from migrating forward in the Storage Container
Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter
2009-06-21
Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.
Numerical and experimental analysis of time-dependent load transfer in reinforced concrete columns
Directory of Open Access Journals (Sweden)
L. T. Kataoka
Full Text Available A study was conducted to assess the influence of the steel reinforcement ratio in concrete columns on their properties of creep and shrinkage. Experimental tests and three-dimensional finite element-based simulations of the experimental curves from plain concrete cylinders and plain concrete columns derived by curve fitting were performed using the ACI 209 model available in DIANA 9.3. Columns with longitudinal reinforcement ratios of 0%, 1.4% and 2.8%, loaded to 30% and 40% of their 7-day compressive strength, were investigated. The results indicated that numerical simulation does not predict experimental data for a long period. However, simulations fitted with experimental curves derived from plain concrete columns presented values close to those of experimental data for 91 days.
Diffusion Processes in the Positive Column in a longitudinal magnetic field
Energy Technology Data Exchange (ETDEWEB)
Lehnert, B [Royal Institute of Technology, Stockholm (Sweden)
1958-07-01
The purpose of the present investigation is to study diffusion across a magnetic field in a configuration which is free from short-circuiting effects such as those described by Simon. It provides the possibility of deciding whether collision or 'drain' diffusion is operative. For the purpose a long cylindrical plasma column with a homogeneous magnetic field along the axis has been chosen. The theoretical treatment is given. On the basis of the collision diffusion theory Tonks, Rokhlin, Cummings and Tonks and Fataliev have pointed out that a longitudinal magnetic field will reduce the losses of particles to the walls. Consequently, when the magnetic field is present, a lower electron temperature and a smaller potential drop along the plasma column should be required to sustain a certain ion density. The present experiment forms an extension of that of Bickerton and von Engel into a range where the Schottky theory is applicable in the absence of a magnetic field and where the applied magnetic field is still made strong enough to influence the electron temperature.
A Genetic algorithm for evaluating the zeros (roots) of polynomial ...
African Journals Online (AJOL)
This paper presents a Genetic Algorithm software (which is a computational, search technique) for finding the zeros (roots) of any given polynomial function, and optimizing and solving N-dimensional systems of equations. The software is particularly useful since most of the classic schemes are not all embracing.
International Nuclear Information System (INIS)
Ouyang, J T; Callegari, Th; Caillier, B; Boeuf, J-P
2003-01-01
In this paper we use a two-dimensional fluid model and a 'macroscopic' PDP cell to investigate the possibility of using large gap configurations with auxiliary electrodes to improve the efficiency of PDP discharge cells. The large gap allows operation in a transient positive column regime where energy is more efficiently deposited into xenon excitation, while the auxiliary electrodes are used to keep reasonable values of the operating voltage. Two types of auxiliary electrode configurations (floating and powered) are considered. The discharge characteristics and the discharge efficiency in exciting xenon are studied with simulations and by measuring the intensity of infrared emission from xenon and visible emission from neon in a macroscopic PDP cell. The results show that an efficient positive column regime can be achieved at reasonably low operating voltages when the auxiliary electrode configuration is carefully designed
Fisher's Zeros as the Boundary of Renormalization Group Flows in Complex Coupling Spaces
International Nuclear Information System (INIS)
Denbleyker, A.; Du Daping; Liu Yuzhi; Meurice, Y.; Zou Haiyuan
2010-01-01
We propose new methods to extend the renormalization group transformation to complex coupling spaces. We argue that Fisher's zeros are located at the boundary of the complex basin of attraction of infrared fixed points. We support this picture with numerical calculations at finite volume for two-dimensional O(N) models in the large-N limit and the hierarchical Ising model. We present numerical evidence that, as the volume increases, the Fisher's zeros of four-dimensional pure gauge SU(2) lattice gauge theory with a Wilson action stabilize at a distance larger than 0.15 from the real axis in the complex β=4/g 2 plane. We discuss the implications for proofs of confinement and searches for nontrivial infrared fixed points in models beyond the standard model.
Simultaneous Monte Carlo zero-variance estimates of several correlated means
International Nuclear Information System (INIS)
Booth, T.E.
1998-01-01
Zero-variance biasing procedures are normally associated with estimating a single mean or tally. In particular, a zero-variance solution occurs when every sampling is made proportional to the product of the true probability multiplied by the expected score (importance) subsequent to the sampling; i.e., the zero-variance sampling is importance weighted. Because every tally has a different importance function, a zero-variance biasing for one tally cannot be a zero-variance biasing for another tally (unless the tallies are perfectly correlated). The way to optimize the situation when the required tallies have positive correlation is shown
Energy Technology Data Exchange (ETDEWEB)
Choi, Jae Hyouk [Chosun University, Gwangju (Korea, Republic of); Choi, Yeol [Kyungpook National University, Daegu (Korea, Republic of)
2013-03-15
Considerable damage occurred to steel structures during the Kobe earthquake in Japan. Numerous exposed-type column bases failed in several consistent patterns caused by brittle base plate fracture, excessive anchor bolt elongation, unexpected early anchor bolt failure, and inferior construction work. An exposed-type column base receives axial force and biaxial bending when receiving an arbitrary multidirectional earthquake motion. Up to now, numerous researchers have examined methods to identify their stiffness and strength, but those studies have heretofore been restricted to in-plane behaviors. Therefore, it is necessary to clarify the inelastic behavior of exposed type steel column bases under biaxial lateral loading and axially compressive-tensile loading, which is a closer simulation of the real seismic excitation. In this study, exposed type steel column bases with different failure types, anchor bolt yielding and base plate yielding, are tested under different loading programs, then moment resisting mechanisms and failure modes are investigated.
International Nuclear Information System (INIS)
Choi, Jae Hyouk; Choi, Yeol
2013-01-01
Considerable damage occurred to steel structures during the Kobe earthquake in Japan. Numerous exposed-type column bases failed in several consistent patterns caused by brittle base plate fracture, excessive anchor bolt elongation, unexpected early anchor bolt failure, and inferior construction work. An exposed-type column base receives axial force and biaxial bending when receiving an arbitrary multidirectional earthquake motion. Up to now, numerous researchers have examined methods to identify their stiffness and strength, but those studies have heretofore been restricted to in-plane behaviors. Therefore, it is necessary to clarify the inelastic behavior of exposed type steel column bases under biaxial lateral loading and axially compressive-tensile loading, which is a closer simulation of the real seismic excitation. In this study, exposed type steel column bases with different failure types, anchor bolt yielding and base plate yielding, are tested under different loading programs, then moment resisting mechanisms and failure modes are investigated
International Nuclear Information System (INIS)
Shiinoki, Takehiro; Itoh, Akio; Shibuya, Keiko; Nakamura, Mitsuhiro; Nakamura, Akira; Matsuo, Yukinori; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro
2010-01-01
The purpose of this study was to assess inter-fractional variations in pancreatic position using four-dimensional computed tomography (4D-CT) and to find the suitable phase of respiration for breath-holding. The variations in respiratory motion range during treatment course and inter-fractional variations in pancreatic positions were not negligible; however, our study suggested that breath-holding at end-exhalation with some coaching techniques might be considerable one of the non-invasive approaches to get higher positional reproducibility of pancreatic tumors. (author)
3-D Vector Flow Using a Row-Column Addressed CMUT Array
DEFF Research Database (Denmark)
Holbek, Simon; Christiansen, Thomas Lehrmann; Engholm, Mathias
2016-01-01
This paper presents an in-house developed 2-D capacitive micromachined ultrasonic transducer (CMUT) appliedfor 3-D blood flow estimation. The probe breaks with conventional transducers in two ways; first, the ultrasonicpressure field is generated from thousands of small vibrating micromachined...... cells, and second, elements areaccessed by row and/or column indices. The 62+62 2-D row-column addressed prototype CMUT probe was usedfor vector flow estimation by transmitting focused ultrasound into a flow-rig with a fully developed parabolicflow. The beam-to-flow angle was 90◦. The received data...... was beamformed and processed offline. A transverseoscillation (TO) velocity estimator was used to estimate the 3-D vector flow along a line originating from thecenter of the transducer. The estimated velocities in the lateral and axial direction were close to zero as expected.In the transverse direction...
Three-dimensional conformal breast irradiation in the prone position
Directory of Open Access Journals (Sweden)
C. Kurtman
2003-10-01
Full Text Available The prone position can be used for the planning of adjuvant radiotherapy after conservative breast surgery in order to deliver less irradiation to lung and cardiac tissue. In the present study, we compared the results of three-dimensional conformal radiotherapy planning for five patients irradiated in the supine and prone position. Tumor stage was T1N0M0 in four patients and T1N1M0 in one. All patients had been previously submitted to conservative breast surgery. Breast size was large in three patients and moderate in the other two. Irradiation in the prone position was performed using an immobilization foam pad with a hole cut into it to accommodate the breast so that it would hang down away from the chest wall. Dose-volume histograms showed that mean irradiation doses reaching the ipsilateral lung were 8.3 ± 3.6 Gy with the patient in the supine position and 1.4 ± 1.0 Gy with the patient in the prone position (P = 0.043. The values for the contralateral lung were 1.3 ± 0.7 and 0.3 ± 0.1 Gy (P = 0.043 and the values for cardiac tissue were 4.6 ± 1.6 and 3.0 ± 1.7 Gy (P = 0.079, respectively. Thus, the dose-volume histograms demonstrated that lung tissue irradiation was significantly lower with the patient in the prone position than in the supine position. Large-breasted women appeared to benefit most from irradiation in the prone position. Prone position breast irradiation appears to be a simple and effective alternative to the conventional supine position for patients with large breasts, since they are subjected to lower pulmonary doses which may cause less pulmonary side effects in the future.
ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)
Energy Technology Data Exchange (ETDEWEB)
M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic
2002-07-25
This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.
Positive column of a glow discharge in neon with charged dust grains (a review)
Energy Technology Data Exchange (ETDEWEB)
Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2017-03-15
The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.
Positive column of a glow discharge in neon with charged dust grains (a review)
International Nuclear Information System (INIS)
Polyakov, D. N.; Shumova, V. V.; Vasilyak, L. M.
2017-01-01
The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.
Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan
2017-10-27
The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
A review of finite size effects in quasi-zero dimensional superconductors.
Bose, Sangita; Ayyub, Pushan
2014-11-01
Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size
A review of finite size effects in quasi-zero dimensional superconductors
International Nuclear Information System (INIS)
Bose, Sangita; Ayyub, Pushan
2014-01-01
Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors—such as the coherence length or the penetration depth—it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters—the transition temperature, critical fields and critical current—as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of ‘parity effect’ and ‘shell effect’ that lead to a strong, non
Energy Technology Data Exchange (ETDEWEB)
Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)
2008-06-15
An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.
International Nuclear Information System (INIS)
Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin
2008-01-01
An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC
Zero Gravity Research Facility (Zero-G)
Federal Laboratory Consortium — The Zero Gravity Research Facility (Zero-G) provides a near weightless or microgravity environment for a duration of 5.18 seconds. This is accomplished by allowing...
Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa
2006-04-01
A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.
Manzano, Carlos; Hoh, Eunha; Simonich, Staci L. Massey
2012-01-01
Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are difficult to resolve because of the high degree of overlap in compound vapor pressures, boiling points and mass spectral fragmentation patterns. The objective of this research was to improve the separation of complex PAH mixtures (including 97 different parent, alkyl-, nitro-, oxy-, thio-, chloro-, bromo-, and high molecular weight PAHs) using GC×GC/ToF-MS by maximizing the orthogonality of different GC column combinations and improving the separation of PAHs from the sample matrix interferences, including unresolved complex mixtures (UCM). Four different combinations of non-polar, polar, liquid crystal and nano-stationary phase columns were tested. Each column combination was optimized and evaluated for orthogonality using a method based on conditional entropy that considers the quantitative peak distribution in the entire two-dimensional space. Finally, an atmospheric particulate matter with diameter column in the first dimension and a 1.2 m × 0.10 mm × 0.10 µm NSP-35 nano-stationary phase column in the second dimension. In addition, the use of this column combination in GC×GC/ToF-MS resulted in significantly shorter analysis times (176 min) for complex PAH mixtures compared to one-dimensional GC/MS (257 min), as well as potentially reduced sample preparation time. PMID:22769970
Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.
Doggen, E V H; Kinnunen, J J
2013-07-12
We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.
HEAT TRANSFER ANALYSIS FOR FIXED CST AND RF COLUMNS
International Nuclear Information System (INIS)
Lee, S
2007-01-01
In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, transient and steady state two-dimensional heat transfer models have been constructed for columns loaded with cesium-saturated crystalline silicotitanate (CST) or spherical Resorcinol-Formaldehyde (RF) beads and 6 molar sodium tank waste supernate. Radiolytic decay of sorbed cesium results in heat generation within the columns. The models consider conductive heat transfer only with no convective cooling and no process flow within the columns (assumed column geometry: 27.375 in ID with a 6.625 in OD center-line cooling pipe). Heat transfer at the column walls was assumed to occur by natural convection cooling with 35 C air. A number of modeling calculations were performed using this computational heat transfer approach. Minimal additional calculations were also conducted to predict temperature increases expected for salt solution processed through columns of various heights at the slowest expected operational flow rate of 5 gpm. Results for the bounding model with no process flow and no active cooling indicate that the time required to reach the boiling point of ∼130 C for a CST-salt solution mixture containing 257 Ci/liter of Cs-137 heat source (maximum expected loading for SCIX applications) at 35 C initial temperature is about 6 days. Modeling results for a column actively cooled with external wall jackets and the internal coolant pipe (inlet coolant water temperature: 25 C) indicate that the CST column can be maintained non-boiling under these conditions indefinitely. The results also show that the maximum temperature of an RF-salt solution column containing 133 Ci/liter of Cs-137 (maximum expected loading) will never reach boiling under any conditions (maximum predicted temperature without cooling: 88 C). The results indicate that a 6-in cooling pipe at the center of the column provides the most effective cooling mechanism for reducing the maximum
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Jones, Andrew; Pravadali-Cekic, Sercan; Dennis, Gary R; Shalliker, R Andrew
2015-08-19
Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL. A second part of this review illustrated briefly the effect of dead volume on column performance. The experiment evaluated the change in resolution and separation efficiency of some weak to moderately retained solutes on a 250 × 4.6 mm i.d. column packed with 5 μm particles. The data showed that reaction loops beyond 100 μL resulted in a very serious loss of performance. Our study concluded that practitioners of PCD methods largely avoid the use of UHPLC-type column formats, so yes, very much, PCD is incompatible with the modern HPLC column. Copyright © 2015. Published by Elsevier B.V.
Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik
2016-02-01
A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Kassahun, Wondwosen; Neyens, Thomas; Molenberghs, Geert; Faes, Christel; Verbeke, Geert
2014-11-10
Count data are collected repeatedly over time in many applications, such as biology, epidemiology, and public health. Such data are often characterized by the following three features. First, correlation due to the repeated measures is usually accounted for using subject-specific random effects, which are assumed to be normally distributed. Second, the sample variance may exceed the mean, and hence, the theoretical mean-variance relationship is violated, leading to overdispersion. This is usually allowed for based on a hierarchical approach, combining a Poisson model with gamma distributed random effects. Third, an excess of zeros beyond what standard count distributions can predict is often handled by either the hurdle or the zero-inflated model. A zero-inflated model assumes two processes as sources of zeros and combines a count distribution with a discrete point mass as a mixture, while the hurdle model separately handles zero observations and positive counts, where then a truncated-at-zero count distribution is used for the non-zero state. In practice, however, all these three features can appear simultaneously. Hence, a modeling framework that incorporates all three is necessary, and this presents challenges for the data analysis. Such models, when conditionally specified, will naturally have a subject-specific interpretation. However, adopting their purposefully modified marginalized versions leads to a direct marginal or population-averaged interpretation for parameter estimates of covariate effects, which is the primary interest in many applications. In this paper, we present a marginalized hurdle model and a marginalized zero-inflated model for correlated and overdispersed count data with excess zero observations and then illustrate these further with two case studies. The first dataset focuses on the Anopheles mosquito density around a hydroelectric dam, while adolescents' involvement in work, to earn money and support their families or themselves, is
International Nuclear Information System (INIS)
Syed, W A A
2002-01-01
We report the designing and application of a positive column pulsed capillary discharge with the Fourier transform spectrometer (FTS). The pulsed light source has been used for the first time with the ultraviolet FTS. The experiment has been carried out with the high energy pulsed discharge with energy of 2-3 J lasting about 300 ns. A system has been developed to trigger the discharge at about 600 Hz with the pulses directly taken from the FTS sampling system. The spectrum of Ar III has been recorded in the 19 000-50 000 cm -1 region with good signal to noise ratio. The results have opened a wide range of applications in spectroscopy of multiply ionized species
Chen, Hao; Guan, Weipeng; Li, Simin; Wu, Yuxiang
2018-04-01
To improve the precision of indoor positioning and actualize three-dimensional positioning, a reversed indoor positioning system based on visible light communication (VLC) using genetic algorithm (GA) is proposed. In order to solve the problem of interference between signal sources, CDMA modulation is used. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) code using CDMA modulation. Receiver receives mixed signal from every LED reference point, by the orthogonality of spreading code in CDMA modulation, ID information and intensity attenuation information from every LED can be obtained. According to positioning principle of received signal strength (RSS), the coordinate of the receiver can be determined. Due to system noise and imperfection of device utilized in the system, distance between receiver and transmitters will deviate from the real value resulting in positioning error. By introducing error correction factors to global parallel search of genetic algorithm, coordinates of the receiver in three-dimensional space can be determined precisely. Both simulation results and experimental results show that in practical application scenarios, the proposed positioning system can realize high precision positioning service.
Kuhn, Alexander; Schoop, Leslie M; Eger, Roland; Moudrakovski, Igor; Schwarzmüller, Stefan; Duppel, Viola; Kremer, Reinhard K; Oeckler, Oliver; Lotsch, Bettina V
2016-08-15
Five new compounds in the Cu/P/Se phase diagram have been synthesized, and their crystal structures have been determined. The crystal structures of these compounds comprise four previously unreported zero-, one-, and two-dimensional selenidophosphate anions containing low-valent phosphorus. In addition to two new modifications of Cu4P2Se6 featuring the well-known hexaselenidohypodiphosphate(IV) ion, there are three copper selenidophosphates with low-valent P: Cu4P3Se4 contains two different new anions, (i) a monomeric (zero-dimensional) selenidophosphate anion [P2Se4](4-) and (ii) a one-dimensional selenidophosphate anion [Formula: see text], which is related to the well-known gray-Se-like [Formula: see text] Zintl anion. Cu4P4Se3 contains one-dimensional [Formula: see text] polyanions, whereas CuP2Se contains the 2D selenidophosphate [Formula: see text] polyanion. It consists of charge-neutral CuP2Se layers separated by a van der Waals gap which is very rare for a Zintl-type phase. Hence, besides black P, CuP2Se constitutes a new possible source of 2D oxidized phosphorus containing layers for intercalation or exfoliation experiments. Additionally, the electronic structures and some fundamental physical properties of the new compounds are reported. All compounds are semiconducting with indirect band gaps of the orders of around 1 eV. The phases reported here add to the structural diversity of chalcogenido phosphates. The structural variety of this family of compounds may translate into a variety of tunable physical properties.
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2018-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2017-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
On spaces of functions of smoothness zero
International Nuclear Information System (INIS)
Besov, Oleg V
2012-01-01
The paper is concerned with the new spaces B-bar p,q 0 of functions of smoothness zero defined on the n-dimensional Euclidean space R n or on a subdomain G of R n . These spaces are compared with the spaces B p,q 0 (R n ) and bmo(R n ). The embedding theorems for Sobolev spaces are refined in terms of the space B-bar p,q 0 with the limiting exponent. Bibliography: 8 titles.
A Lifshitz black hole in four dimensional R2 gravity
International Nuclear Information System (INIS)
Cai Ronggen; Liu Yan; Sun Yawen
2009-01-01
We consider a higher derivative gravity theory in four dimensions with a negative cosmological constant and show that vacuum solutions of both Lifshitz type and Schroedinger type with arbitrary dynamical exponent z exist in this system. Then we find an analytic black hole solution which asymptotes to the vacuum Lifshitz solution with z = 3/2 at a specific value of the coupling constant. We analyze the thermodynamic behavior of this black hole and find that the black hole has zero entropy while non-zero temperature, which is very similar to the case of BTZ black holes in new massive gravity at a specific coupling. In addition, we find that the three dimensional Lifshitz black hole recently found by E. Ayon-Beato et al. has a negative entropy and mass when the Newton constant is taken to be positive.
On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels
Kumar, Chenthil; Kumar, Amit
2012-06-01
In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).
2 + 1-dimensional traversable wormholes supported by positive energy
Energy Technology Data Exchange (ETDEWEB)
Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)
2015-02-01
We revisit the shapes of the throats of wormholes, including thin-shell wormholes (TSWs) in 2 + 1 dimensions. In particular, in the case of TSWs this is done in a flat 2 + 1-dimensional bulk spacetime by using the standard method of cut-and-paste. Upon departing from a pure time-dependent circular shape i.e., r = a(t) for the throat, we employ a θ-dependent closed loop of the form r = R(t, θ), and in terms of R(t, θ) we find the surface energy density σ on the throat. For the specific convex shapes we find that the total energy which supports the wormhole is positive and finite. In addition, we analyze the general wormhole's throat. By considering the specific equation of r = R(θ) instead of r = r{sub 0} = const., and upon certain choices of functions for R(θ), we find the total energy of the wormhole to be positive. (orig.)
Majorana zero modes in Dirac semimetal Josephson junctions
Li, Chuan; de Boer, Jorrit; de Ronde, Bob; Huang, Yingkai; Golden, Mark; Brinkman, Alexander
We have realized proximity-induced superconductivity in a Dirac semimetal and revealed the topological nature of the superconductivity by the observation of Majorana zero modes. As a Dirac semimetal, Bi0.97Sb0.03 is used, where a three-dimensional Dirac cone exists in the bulk due to an accidental touching between conduction and valence bands. Electronic transport measurements on Hall-bars fabricated out of Bi0.97Sb0.03 flakes consistently show negative magnetoresistance for magnetic fields parallel to the current, which is associated with the chiral anomaly. In perpendicular magnetic fields, we see Shubnikov-de Haas oscillations that indicate very low carrier densities. The low Fermi energy and protection against backscattering in our Dirac semimetal Josephson junctions provide favorable conditions for a large contribution of Majorana zero modes to the supercurrent. In radiofrequency irradiation experiments, we indeed observe these Majorana zero modes in Nb-Bi0.97Sb0.03-Nb Josephson junctions as a 4 π periodic contribution to the current-phase relation.
Zero insertion for isi free ofdm reception
DEFF Research Database (Denmark)
2014-01-01
An apparatus (UEA) may generate a zero-tail signal to be transmitted in an LTE/LTE-A cell, by introducing time domain samples with zero power or very low power in specific positions of a time symbol tail. The apparatus (UEA) may transmit the generated zero-tail signal to a base station (e...... is enabled without inter-symbol interference. The generated zero-tail signal may also be transmitted from the first user terminal (UEA) or from the base station (eNB) in an outdoor system that is detectable by a neighboring indoor system.......NB), such that a first user terminal (UEA) is located in the cell farther away (e.g. on a cell edge) from the base station (eNB) than a second user terminal (UEB). Thus coexistence of signals sent by user terminals (UEA, UEB) located at different distances from the base station (eNB) within a same receiver window...
The Role of Zero-Modes in the Canonical Quantization of Heavy-Fermion QED in Light-Cone Coordinates
Brown, Robert W.; Jun, Jin Woo; Shvartsman, Shmaryu M.; Taylor, Cyrus C.
1993-01-01
Four-dimensional heavy-fermion QED is studied in light-cone coordinates with (anti-)periodic field boundary conditions. We carry out a consistent light-cone canonical quantization of this model using the Dirac algorithm for a system with first- and second-class constraints. To examine the role of the zero modes, we consider the quantization procedure in {the }zero-mode {and the non-zero-mode} sectors separately. In both sectors we obtain the physical variables and their canonical commutation ...
Directory of Open Access Journals (Sweden)
Siti Asmaul Mustaniroh
2016-11-01
Full Text Available Potato chips are one of the main products of Batu city. Based on data from Batu government’s in 2002, there are only 2 selling units. In 2008, amount of potato chips and another selling unit, so the research on positioning of potato chips in Batu city is important to do. The purpose of this research are to understand which attributes which influence custumer consideration to buy and to consume potato chips, and to analyze positioning which is formed between four potato chips brand (Cita Mandiri, Gizi Food, Leo, Rimbaku based on costumer perception in Batu city by using Multi Dimensional Scaling method. Attributes that influence costumer to buy and to consume potato chips are product (taste and crunchy level, price (product price compare with quality, and considerable price products, distribution (the local stock of the products or how strategic is the selling location, promotion (the using of advertising or promotion media (such as internet, radio, or brochure. Based on the Multi Dimensional Scaling Method, positioning follow this structure are Gizi Food as market leader, Leo as market challenger, and Rimbaku and Cita Mandiri as market follower.
Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong
2014-03-01
In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Lin, Hsien-Yuan; Lee, Jeng-Nan; Sung, Wen-Hao
2012-01-01
This paper employs the numerical assembly method (NAM) to determine the exact frequency-response amplitudes of an offshore structure such as piles or towers having the form of a hollow column filled with multiple fluids, immersed in water, carrying an eccentric tip mass supported by a translational spring and/or a rotational spring, and subjected to a harmonic force. The hollow column is modeled as a Bernoulli-Euler cantilever beam fixed at the bottom. For the case of zero harmonic force, the...
Directory of Open Access Journals (Sweden)
Weilian Qu
2017-01-01
Full Text Available This paper presents a refined analysis for evaluating low-cycle fatigue crack initiation life of welded beam-to-column connections of steel frame structures under strong earthquake excitation. To consider different length scales between typical beam and column components as well as a few crucial beam-to-column welded connections, a multiscale finite element (FE model having three different length scales is formulated. The model can accurately analyze the inelastic seismic response of a steel frame and then obtain in detail elastoplastic stress and strain field near the welded zone of the connections. It is found that the welded zone is subjected to multiaxial nonproportional loading during strong ground motion and the elastoplastic stress-strain field of the welded zone is three-dimensional. Then, using the correlation of the Fatemi-Socie (FS parameter versus fatigue life obtained by the experimental crack initiation fatigue data of the structural steel weldment subjected to multiaxial loading, the refined evaluation approach of fatigue crack initiation life is developed based on the equivalent plastic strain at fatigue critical position of beam end seams of crucial welded connections when the steel frame is subjected to the strong earthquake excitation.
Dynamical instability induced by the zero mode under symmetry breaking external perturbation
International Nuclear Information System (INIS)
Takahashi, J.; Nakamura, Y.; Yamanaka, Y.
2014-01-01
A complex eigenvalue in the Bogoliubov–de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose–Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes. - Highlights: • Zero modes are important but ignored in many theories for the cold atomic system. • We discuss the zero mode under symmetry breaking potential in this system. • We consider the zero mode of translational invariance for a single dark soliton. • We show that it turns into an anomalous or pure imaginary mode
Energy Technology Data Exchange (ETDEWEB)
Schuerg, F.; Arndt, S. [Robert Bosch GmbH, Stuttgart (Germany); Weigand, B. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik der Luft- und Raumfahrt
2007-07-01
Spray-guided combustion processes for gasoline direct injection offer a great fuel saving potential. The quality of mixture formation has direct impact on combustion and emissions and ultimately on the technical feasibility of the consumption advantage. Therefore, it is very important to select the optimal mixture formation strategy. A systematic optimization of the mixture formation process based on experiments or three-dimensional computational fluid dynamics requires tremendous effort. An efficient alternative is the application-oriented, zero-dimensional numerical simulation of mixture formation. With a systemic model formulation in terms of global thermodynamic and fluid mechanical balance equations, the presented simulation model considers all relevant aspects of the mixture formation process. A comparison with measurements in a pressure/temperature chamber using laser-induced exciplex fluorescence tomography revealed a very satisfactory agreement between simulation and experiment. The newly developed, analytic-phenomenological spray propagation model precisely captures the injector-specific mixture formation characteristics of an annular-orifice injector in terms of penetration and volume. Vaporization rate and mean air/fuel ratio as the key quantities of mixture formation are correctly reproduced. Thus, the simulation model is suited to numerically assess the quality and to optimize the strategy of mixture formation. (orig.)
Assembly for connecting the column ends of two capillary columns
International Nuclear Information System (INIS)
Kolb, B.; Auer, M.; Pospisil, P.
1984-01-01
In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small
Energy Technology Data Exchange (ETDEWEB)
Orlita, M., E-mail: milan.orlita@lncmi.cnrs.fr [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Basko, D. M. [LPMMC UMR 5493, Université Grenoble 1/CNRS, B.P. 166, 38042 Grenoble (France); Zholudev, M. S. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Gavrilenko, V. I. [Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Neugebauer, P. [Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, C. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Institut Néel/CNRS-UJF BP 166, F-38042 Grenoble Cedex 9 (France); Heer, W. A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2015-03-21
Here, we report on a magneto-optical study of two distinct systems hosting massless fermions—two-dimensional graphene and three-dimensional HgCdTe tuned to the zero band gap condition at the point of the semiconductor-to-semimetal topological transition. Both materials exhibit, in the quantum regime, a fairly rich magneto-optical response, which is composed from a series of intra- and interband inter-Landau level resonances with for massless fermions typical √(B) dependence. The impact of the system's dimensionality and of the strength of the spin-orbit interaction on the optical response is also discussed.
Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatography
Mommers, J.; Pluimakers, G.; Knooren, J.; Dutriez, T.; van der Wal, S.
2013-01-01
In this paper two tunable two-dimensional gas chromatography setups are compared and described in which the secondary dimension consists of two different capillary columns coupled in series. In the first setup the selectivity of the second dimension can be tuned by adjusting the effective column
Zero-One Law for Regular Languages and Semigroups with Zero
Sin'ya, Ryoma
2015-01-01
A regular language has the zero-one law if its asymptotic density converges to either zero or one. We prove that the class of all zero-one languages is closed under Boolean operations and quotients. Moreover, we prove that a regular language has the zero-one law if and only if its syntactic monoid has a zero element. Our proof gives both algebraic and automata characterisation of the zero-one law for regular languages, and it leads the following two corollaries: (i) There is an O(n log n) alg...
Mechanism of nucleation and growth of catalyst-free self-organized GaN columns by MOVPE
Wang, Xue; Li, Shunfeng; Fündling, Sönke; Wehmann, Hergo-H.; Strassburg, Martin; Lugauer, Hans-Jürgen; Steegmüller, Ulrich; Waag, Andreas
2013-05-01
The growth mechanism of catalyst-free self-organized GaN nuclei and three-dimensional columns on sapphire by metal organic vapour phase epitaxy (MOVPE) is investigated. Temperature- and time-dependent growth is performed. The growth behaviour can be characterized by two different kinetic regimes: mass-transport-limited growth and thermodynamically limited growth. The sum of activation energies for thermodynamic barrier of nucleation and for surface diffusion/mass-transport limitation, i.e. Whet +Ed, is 0.57 eV in the ‘low’-temperature region and 2.43 eV in the ‘high’-temperature region. GaN columns grown under the same conditions have very comparable height, which is not dependent on their diameter or the distance to other columns. Therefore, the growth rate is presumably limited by the incorporation rate on the top surface of columns. The height and diameter at the top of the GaN columns increase linearly with time and no height limit is observed. The GaN columns can reach more than 40 µm in height. Moreover, the investigated GaN columns are Ga-polar.
On the zeros of the Husimi functions of the spin boson model
International Nuclear Information System (INIS)
Cibils, M.B.; Cuche, Y.; Leboeuf, P.; Wreszinski, W.F.
1992-03-01
The distribution of zeros of the Husimi functions for the spin-boson model is studied, following an approach introduced by Leboeuf and Voros. The interest lies in the model's double feature of possessing both a classical integrable to chaotic transition and an unbounded four-dimensional phase space. The latter gives rise to several new questions regarding the Husimi zeros which are discussed and partially answered. Some significant results occur in spite of the fact that the case of spin one-half is treated. (authors) 20 refs., 4 figs
Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Martinez-Ricci, Maria L. [Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires (Argentina); Monsoriu, Juan A. [Departamento de Fisica Aplicada, Universidad Politecnica de Valencia, 46022 Valencia (Spain)]. E-mail: jmonsori@fis.upv.es; Silvestre, Enrique [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain); Andres, Pedro [Departamento de Optica, Universidad de Valencia, 46100 Burjassot (Spain)
2007-04-30
We consider layered heterostructures combining ordinary positive index materials and dispersive metamaterials. We show that these structures can exhibit a new type of photonic gap around frequencies where either the magnetic permeability {mu} or the electric permittivity {epsilon} of the metamaterial is zero. Although the interface of a semi-infinite medium with zero refractive index (a condition attained either when {mu}=0 or when {epsilon}=0) is known to give full reflectivity for all incident polarizations, here we show that a gap corresponding to {mu}=0 occurs only for TE polarized waves, whereas a gap corresponding to {epsilon}=0 occurs only for TM polarized waves. These band gaps are scale-length invariant and very robust against disorder, although they may disappear for the particular case of propagation along the stratification direction.
Zero permeability and zero permittivity band gaps in 1D metamaterial photonic crystals
International Nuclear Information System (INIS)
Depine, Ricardo A.; Martinez-Ricci, Maria L.; Monsoriu, Juan A.; Silvestre, Enrique; Andres, Pedro
2007-01-01
We consider layered heterostructures combining ordinary positive index materials and dispersive metamaterials. We show that these structures can exhibit a new type of photonic gap around frequencies where either the magnetic permeability μ or the electric permittivity ε of the metamaterial is zero. Although the interface of a semi-infinite medium with zero refractive index (a condition attained either when μ=0 or when ε=0) is known to give full reflectivity for all incident polarizations, here we show that a gap corresponding to μ=0 occurs only for TE polarized waves, whereas a gap corresponding to ε=0 occurs only for TM polarized waves. These band gaps are scale-length invariant and very robust against disorder, although they may disappear for the particular case of propagation along the stratification direction
Amorim, J.; Loureiro, J.; Schram, D.C.
2001-01-01
Recombinative wall desorption of hydrogen atoms in a low-pressure hydrogen positive column leading to formation of H/sub 2/ (X/sup 1/ Sigma /sub g//sup +/, v) molecules in optimum levels for H/sup -/ production by dissociative attachment is investigated. We employed a kinetic model that solves the
Isotopes accumulation in the thermal column of TRIGA reactor
International Nuclear Information System (INIS)
Iorgulis, C.; Diaconu, D.; Gugiu, D.; Csaba, R.
2013-01-01
The correlation of impurity observed in the virgin graphite and radionuclide content and activities measured in the irradiated graphite needs to know the irradiated history. This is a challenging process if impurity content and irradiation conditions are not accurately known. This is the case of the irradiated graphite in the thermal column of Institute for Nuclear Research Pitesti (INR)14 MW TRIGA reactor. To overcome incomplete impurity content and the unknown position in the column of the measured irradiated graphite available for characterisation and comparison, a set of preliminary simulations were performed. Following Eu 152 /Eu 154 ration they allowed the estimation of an impurity content and irradiation conditions leading to measured activities. Based on these data the radio-isotope accumulation in different positions in the thermal column was predicted. Modelling performed by INR used advanced prediction packages (e.g. WIMS, MCNP ORIGEN-S from Scale 5) to assess the isotopic content of MTR graphite types with irradiation history specific for a TRIGA research reactor. Some certain calculations points from the column were selected in order to model the burnup and isotopes productions using ORIGEN from SCALE code system. (authors)
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...
International Nuclear Information System (INIS)
Inoue, Koji; Nagai, Yasuyoshi; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Muramatsu, Shinichi; Nagai, Shota
1999-01-01
We have constructed and tested a prototype of a new position sensitive γ-ray detector which consists of an array of 2.6x2.6x18 mm 3 BGO scintillator blocks, a light guide, and four metal-package position-sensitive photomultiplier tubes (R5900-00-C8) recently developed by Hamamatsu Photonics Co. Ltd. Scalability of the detector of this type makes it possible to construct a larger detector using many PS-PMTs, which will be useful for the two-dimensional angular correlation of annihilation radiation apparatus
Water column conditions in a coastal lagoon near Jeddah, Red Sea
Directory of Open Access Journals (Sweden)
Alaa M. A. Albarakati
2012-11-01
Full Text Available Water column conditions in a lagoon near Jeddah are investigated on the basisof changes in potential energy. Three major factors including balance ofsurface heat at the air-sea interface, wind and tidal mixing are considered.A negative potential energy change dv/dt will developstratification, whereas positive dv/dt will tend to mix the watercolumn. The tidal effect is greater in summer with wind mixing showing nogreat variations. The buoyancy effect of the heat balance at the surface isnegative from April to October. This negative buoyancy effect will tend to developstratification but the positive contributions of wind and tide counteract this andthe water column remains mixed except in September and October, when a weakstratification may develop. Generally, the water column remains practically mixedthroughout the year. The change in heat content of the water column from mid-Aprilto mid-September is about 3.3 × 108 J. During this period the netheat input at the air interface is about 2.0 × 108 J, which isabout 40% less than the heat content of the water column, showing that the heat is advected towards the central area from the shallower periphery of the lagoon.
Zeros of smallest modulus of functions resembling exp(z
Directory of Open Access Journals (Sweden)
Kenneth B. Stolarsky
1982-01-01
Full Text Available To determine (in various senses the zeros of the Laplace transform of a signed mass distribution is of great importance for many problems in classical analysis and number theory. For example, if the mass consists of finitely many atoms, the transform is an exponential polynomial. This survey studies what is known when the distribution is a probability density function of small variance, and examines in what sense the zeros must have large moduli. In particular, classical results on Bessel function zeros, of Szegö on zeros of partial sums of the exponential, of I. J. Schoenberg on k-times positive functions, and a result stemming from Graeffe's method, are all presented from a unified probabilistic point of view.
Positioning with stationary emitters in a two-dimensional space-time
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio
2006-01-01
The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D 73, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make relativistic gravimetry. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called emission coordinates, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, the absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows us not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out
Tunable zero-line modes via magnetic field in bilayer graphene
Wang, Ke; Qiao, Zhenhua
Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.
Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio
2010-08-01
It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.
A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly
International Nuclear Information System (INIS)
Xie Hui; Haliyo, Dogan Sinan; Regnier, Stephane
2009-01-01
A conventional atomic force microscope (AFM) has been successfully applied to manipulating nanoparticles (zero-dimensional), nanowires (one-dimensional) or nanotubes (one- or two-dimensional) by widely used pushing or pulling operations on a single surface. However, pick-and-place nanomanipulation in air is still a challenge. In this research, a modified AFM, called a three-dimensional (3D) manipulation force microscope (3DMFM), was developed to realize 3D nanomanipulation in air. This system consists of two individually actuated cantilevers with protruding tips that are facing each other, constructing a nanotweezer for the pick-and-place nanomanipulation. Before manipulation, one of the cantilevers is employed to position nano-objects and locate the tip of the other cantilever by image scanning. During the manipulation, these two cantilevers work collaboratively as a nanotweezer to grasp, transport and place the nano-objects with real-time force sensing. The manipulation capabilities of the nanotweezer were demonstrated by grabbing and manipulating silicon nanowires to build 3D nanowire crosses. 3D nanomanipulation and nanoassembly performed in air could become feasible through this newly developed 3DMFM.
International Nuclear Information System (INIS)
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Lyubarsky, Yuri; Hardee, Philip E.
2009-01-01
We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic magnetohydrodynamic simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the nonlinear regime, the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depend moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and reaches the nonlinear regime at a later time than the case with constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the nonlinear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.
Directory of Open Access Journals (Sweden)
Haiwen Li
2018-01-01
Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.
Zero-contingent entropy of quantum states of a Hydrogen atom
International Nuclear Information System (INIS)
Charvot, R.; Majernik, V.
1996-01-01
We calculated the zero-contingent entropy for the position of electron in H-atom as a function of its quantum numbers and compared it with the corresponding value of the Shannon entropy. The values of zero-contingent entropy of quantum states of H-atom correlate well with the corresponding values of Shannon's entropy. This points out that, besides the Shannon entropy, the zero-contingent entropy represents an appropriate, and mathematically rather simple, measure of the spreading out of the wave functions in H-atom. (authors)
Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.
Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J
2015-05-22
Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. Copyright © 2015 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.
2005-12-22
At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. One possible cause for premature chromate breakthrough is associated with the presence of high-permeability zones in the aquifer. In these zones, groundwater moves relatively fast and is able to oxidize iron more rapidly. There is also a possibility that the high-permeability flow paths are deficient in reducing equivalents (e.g. reactive iron), required for barrier performance. One way enhancement of the current barrier reductive capacity can be achieved is by the addition of micron-scale zero-valent iron to the high-permeability zones within the aquifer. The potential emplacement of zero-valent iron (Fe0) into high-permeability Hanford sediments (Ringold Unit E gravels) using shear-thinning fluids containing polymers was investigated in three-dimensional wedge-shaped aquifer models. Polymers were used to create a suspension viscous enough to keep the Fe0 in solution for extended time periods to improve colloid movement into the porous media without causing a permanent detrimental decrease in hydraulic conductivity. Porous media were packed in the wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone in between two low-permeability zones or a high-permeability channel surrounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments.
Holmes, Jon L.
1999-05-01
The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad
THE 'TRUE' COLUMN DENSITY DISTRIBUTION IN STAR-FORMING MOLECULAR CLOUDS
International Nuclear Information System (INIS)
Goodman, Alyssa A.; Pineda, Jaime E.; Schnee, Scott L.
2009-01-01
We use the COMPLETE Survey's observations of the Perseus star-forming region to assess and intercompare the three methods used for measuring column density in molecular clouds: near-infrared (NIR) extinction mapping; thermal emission mapping in the far-IR; and mapping the intensity of CO isotopologues. Overall, the structures shown by all three tracers are morphologically similar, but important differences exist among the tracers. We find that the dust-based measures (NIR extinction and thermal emission) give similar, log-normal, distributions for the full (∼20 pc scale) Perseus region, once careful calibration corrections are made. We also compare dust- and gas-based column density distributions for physically meaningful subregions of Perseus, and we find significant variations in the distributions for those (smaller, ∼few pc scale) regions. Even though we have used 12 CO data to estimate excitation temperatures, and we have corrected for opacity, the 13 CO maps seem unable to give column distributions that consistently resemble those from dust measures. We have edited out the effects of the shell around the B-star HD 278942 from the column density distribution comparisons. In that shell's interior and in the parts where it overlaps the molecular cloud, there appears to be a dearth of 13 CO, which is likely due either to 13 CO not yet having had time to form in this young structure and/or destruction of 13 CO in the molecular cloud by the HD 278942's wind and/or radiation. We conclude that the use of either dust or gas measures of column density without extreme attention to calibration (e.g., of thermal emission zero-levels) and artifacts (e.g., the shell) is more perilous than even experts might normally admit. And, the use of 13 CO data to trace total column density in detail, even after proper calibration, is unavoidably limited in utility due to threshold, depletion, and opacity effects. If one's main aim is to map column density (rather than temperature
Operation of the annular pulsed column, (2)
International Nuclear Information System (INIS)
Takahashi, Keiki; Tsukada, Takeshi
1988-01-01
The heat of reaction generated form the uranium extraction is considered to from the temperature profile inside the pulsed column. A simulation code was developed to estimate the temperature profile, considering heat generation and counter-current heat transfer. The temperature profiles calculated using this code was found to depend on both the position of the extraction zone and the operating condition. The reported experimental result was fairly represented by this simulation code. We consider that this presented simulation code is capable of providing with the temperature profile in the pulsed column and useful for the monitoring of the uranium extraction zone. (author)
Minarik, Marek; Franc, Martin; Minarik, Milan
2018-06-15
A new instrumental approach to recycling HPLC is described. The concept is based on fast reintroduction of incremental peak sections back onto the separation column. The re-circulation is performed within a closed loop containing only the column and two synchronized switching valves. By having HPLC pump out of the cycle, the method minimizes peak broadening due to dead volume. As a result the efficiency is dramatically increased allowing for the most demanding analytical applications. In addition, a parking loop is employed for temporary storage of analytes from the middle section of the separated mixture prior to their recycling. Copyright © 2018 Elsevier B.V. All rights reserved.
Luo, Quanzhou; Yue, Guihua; Valaskovic, Gary A; Gu, Ye; Wu, Shiaw-Lin; Karger, Barry L.
2008-01-01
Following on our recent work, on-line one dimensional (1D) and two dimensional (2D) PLOT/LC-ESI-MS platforms using 3.2 m × 10 μm i.d. poly(styrenedivinylbenzene) (PS-DVB) porous layer open tubular (PLOT) columns have been developed to provide robust, high performance and ultrasensitive proteomic analysis. Using a PicoClear tee, the dead volume connection between a 50 μm i.d. PS-DVB monolithic microSPE column and the PLOT column was minimized. The microSPE/PLOT column assembly provided a separation performance similar to that obtained with direct injection onto the PLOT column at a mobile phase flow rate of 20 nL/min. The trace analysis potential of the platform was evaluated using an in-gel tryptic digest sample of a gel fraction (15 to 40 kDa) of a cervical cancer (SiHa) cell line. As an example of the sensitivity of the system, ∼2.5 ng of protein in 2 μL solution, an amount corresponding to 20 SiHa cells, was subjected to on-line microSPE-PLOT/LC-ESIMS/MS analysis using a linear ion trap MS. 237 peptides associated with 163 unique proteins were identified from a single analysis when using stringent criteria associated with a false positive rate less than 1% . The number of identified peptides and proteins increased to 638 and 343, respectively, as the injection amount was raised to ∼45 ng of protein, an amount corresponding to 350 SiHa cells. In comparison, only 338 peptides and 231 unique proteins were identified (false positive rate again less than 1%) from 750 ng of protein from the identical gel fraction, an amount corresponding to 6000 SiHa cells, using a typical 15 cm × 75 μm i.d. packed capillary column. The greater sensitivity, higher recovery, and higher resolving power of the PLOT column resulted in the increased number of identifications from only ∼5% of the injected sample amount. The resolving power of the microSPE/PLOT assembly was further extended by 2D chromatography via combination of the high-efficiency reversed phase PLOT column
Two-dimensional kinetic analysis on the ionization waves in a low current discharge
International Nuclear Information System (INIS)
Yamazaki, Tsutomu; Fujii, Masaharu; Noda, Shozou; Miura, Kousuke; Imazu, Shingo.
1982-01-01
In the research on the ionization waves produced in the positive column in a low pressure discharge, theoretical analyses have been made since long ago using mainly the fluid theory. However, the experimental properties that cannot be explained with the fluid theory have been found lately. For example, it has been shown experimentally that the product of longitudinal electric field E and the wavelength lambda of ionization waves becomes some specific values depending on the kinds of gas as one of the characteristics of the ionization waves produced in the positive column plasma in rare gas glow discharge, but these specific values of E-lambda cannot be explained with the fluid theory. In this paper, the perturbation component of electron energy distribution function accompanying ionization waves was derived from a two-dimensional Boltzmann equation which takes the radial non-uniformity into account, to consider the E-lambda values of ionization waves from the relative equation between electron density and the perturbation component of an electric field. The following results were obtained. The relative equation between electron density and the perturbation component of an electric field, which cannot be derived from the fluid theory, was able to be obtained; the values of E-lambda product agreed with the experimental results better than one-dimensional analysis; The steeper the shape of radial potential distribution, the more likely the resonance occurrence and the larger the E-lambda product; and so forth. (Wakatsuki, Y.)
International Nuclear Information System (INIS)
Finesso, Roberto; Spessa, Ezio
2014-01-01
Highlights: • Real-time zero-dimensional three-zone diagnostic combustion model. • Capable of evaluating in-cylinder temperatures, HRR and NOx in DI diesel engines. • Able to be integrated in the engine ECU for control applications. • Able to be integrated in the test bed acquisition software for calibration tasks. • Tested under both steady state and fast transient conditions. - Abstract: A real-time zero-dimensional diagnostic combustion model has been developed and assessed to evaluate in-cylinder temperatures, HRR (heat release rate) and NOx (nitrogen oxides) in DI (Direct Injection) diesel engines under steady state and transient conditions. The approach requires very little computational time, that is, of the order of a few milliseconds, and is therefore suitable for real-time applications. It could, for example, be implemented in an ECU (Engine Control Unit) for the on-board diagnostics of combustion and emission formation processes, or it could be integrated in acquisition software installed on an engine test bench for indicated analysis. The model could also be used for post-processing analysis of previously acquired experimental data. The methodology is based on a three-zone thermodynamic model: the combustion chamber is divided into a fuel zone, an unburned gas zone and a stoichiometric burned gas zone, to which the energy and mass conservation equations are applied. The main novelty of the proposed method is that the equations can be solved in closed form, thus making the approach suitable for real-time applications. The evaluation of the temperature of burned gases allows the in-cylinder NOx concentration to be calculated, on the basis of prompt and Zeldovich thermal mechanisms. The procedure also takes into account the NOx level in the intake charge, and is therefore suitable for engines equipped with traditional short-route EGR (Exhaust Gas Recirculation) systems, and engines equipped with SCR (Selective Catalytic Reduction) and long
Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A
2015-01-01
The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.
A Synthesizable VHDL Model of the Exact Solution for Three-dimensional Hyperbolic Positioning System
Directory of Open Access Journals (Sweden)
Ralph Bucher
2002-01-01
Full Text Available This paper presents a synthesizable VHDL model of a three-dimensional hyperbolic positioning system algorithm. The algorithm obtains an exact solution for the three-dimensional location of a mobile given the locations of four fixed stations (like a global positioning system [GPS] satellite or a base station in a cell and the signal time of arrival (TOA from the mobile to each station. The detailed derivation of the steps required in the algorithm is presented. A VHDL model of the algorithm was implemented and simulated using the IEEE numeric_std package. Signals were described by a 32-bit vector. Simulation results predict location of the mobile is off by 1 m for best case and off by 36 m for worst case. A C + + program using real numbers was used as a benchmark for the accuracy and precision of the VHDL model. The model can be easily synthesized for low power hardware implementation.
Transfer matrix in 1D Schroedinger problems with constant and position-dependent mass
International Nuclear Information System (INIS)
Perez-Alvarez, R.; Rodriguez-Coppola, H.
1987-10-01
We consider the transfer matrix method for obtaining properties of standard wells and barriers in one-dimensional Schroedinger problems with constant and position-dependent mass. We report the formulae for the energy levels of a well and the transmission coefficient of a barrier. We demonstrate the continuity between virtual bound states and bound states in a well of position-dependent mass and the relation between the zero energy gap states of a periodic potential problem with the corresponding energies of the non-periodic ones with transmission coefficient equal to one. The calculations were carried out for a wide class of potential profiles. (author). 30 refs, 2 figs
Directory of Open Access Journals (Sweden)
Vincent Casseau
2016-10-01
Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.
Olson, Mitchell R; Sale, Tom C
2015-01-01
Soil remediation is often inhibited by subsurface heterogeneity, which constrains contaminant/reagent contact. Use of soil mixing techniques for reagent delivery provides a means to overcome contaminant/reagent contact limitations. Furthermore, soil mixing reduces the permeability of treated soils, thus extending the time for reactions to proceed. This paper describes research conducted to evaluate implications of soil mixing on remediation of non-aqueous phase liquid (NAPL) source zones. The research consisted of column studies and subsequent modeling of field-scale systems. For column studies, clean influent water was flushed through columns containing homogenized soils, granular zero valent iron (ZVI), and trichloroethene (TCE) NAPL. Within the columns, NAPL depletion occurred due to dissolution, followed by either column-effluent discharge or ZVI-mediated degradation. Complete removal of TCE NAPL from the columns occurred in 6-8 pore volumes of flow. However, most of the TCE (>96%) was discharged in the column effluent; less than 4% of TCE was degraded. The low fraction of TCE degraded is attributed to the short hydraulic residence time (10 m) and reducing permeability by one-or-more orders of magnitude, the residence time could be greatly extended, potentially for periods of years to decades. Model output indicates that the fraction of TCE degraded can be increased to >99.9%, given typical post-mixing soil permeability values. These results suggest that remediation performance can be greatly enhanced by combining contaminant degradation with an extended residence time. Copyright © 2015 Elsevier B.V. All rights reserved.
Non-zero total correlation means non-zero quantum correlation
International Nuclear Information System (INIS)
Li, Bo; Chen, Lin; Fan, Heng
2014-01-01
We investigated the super quantum discord based on weak measurements. The super quantum discord is an extension of the standard quantum discord defined by projective measurements and also describes the quantumness of correlations. We provide some equivalent conditions for zero super quantum discord by using quantum discord, classical correlation and mutual information. In particular, we find that the super quantum discord is zero only for product states, which have zero mutual information. This result suggests that non-zero correlations can always be detected using the quantum correlation with weak measurements. As an example, we present the assisted state-discrimination method.
HINT computation of LHD equilibrium with zero rotational transform surface
International Nuclear Information System (INIS)
Kanno, Ryutaro; Toi, Kazuo; Watanabe, Kiyomasa; Hayashi, Takaya; Miura, Hideaki; Nakajima, Noriyoshi; Okamoto Masao
2004-01-01
A Large Helical Device equilibrium having a zero rotational transform surface is studied by using the three dimensional MHD equilibrium code, HINT. We find existence of the equilibrium but with formation of the two or three n=0 islands composing a homoclinic-type structure near the center, where n is a toroidal mode number. The LHD equilibrium maintains the structure, when the equilibrium beta increases. (author)
Majors, Ronald E.; And Others
1984-01-01
Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…
Two-Degree-of-Freedom Self-Tuning Control for Motor Drives Using Pole-Zero Cancellation Method
Takano, Akio
In this paper, we present an excellent method named pole-zero cancellation (PZC) for designing motor control systems. PZC is performed in the z plane. A control system consists of three controllers, i.e., a speed controller, a position controller, and an adaptive identifier. The speed controller has two degrees of freedom: disturbance suppression and tracking speed, both of which can be regulated. The pulse transfer function used for regulating the tracking speed has two poles and one zero. When one pole and one zero coincide and cancel each other, the pulse transfer function is of the first-order lag type, and overshoots do not appear. The adaptive controller determines the coefficients of the pulse transfer function and adjusts the speed controller automatically so that the poles and zeros coincide. The transfer function of the position controller also has one pole and one zero, which cancel another pole and zero; pole 1 in the closed loop is not cancelled, and hence, position overshoots do not appear. A 2.2-kW induction motor is tested. The motor torque is controlled using a rapid torque control method. In this paper, first, the tracking-speed characteristics and the tracking-position characteristics are presented. Next, the identified transient coefficients are given, and finally, the disturbance-suppression characteristics are discussed. The experimental results prove the usefulness of the proposed method.
Self-consistent Analysis of Three-dimensional Uniformly Charged Ellipsoid with Zero Emittance
International Nuclear Information System (INIS)
Batygin, Yuri K.
2001-01-01
A self-consistent treatment of a three-dimensional ellipsoid with negligible emittance in time-dependent external field is performed. Envelope equations describing the evolution of an ellipsoid boundary are discussed. For a complete model it is required that the initial particle momenta be a linear function of the coordinates. Numerical example and verification of the problem by a 3-dimensional particle-in-cell simulations are given
Institute of Scientific and Technical Information of China (English)
XU Dian-Yan
2003-01-01
The free energy and entropy of Reissner-Nordstrom black holes in higher-dimensional space-time are calculated by the quantum statistic method with a brick wall model. The space-time of the black holes is divided into three regions: region 1, (r > r0); region 2, (r0 > r > n); and region 3, (T-J > r > 0), where r0 is the radius of the outer event horizon, and r, is the radius of the inner event horizon. Detailed calculation shows that the entropy contributed by region 2 is zero, the entropy contributed by region 1 is positive and proportional to the outer event horizon area, the entropy contributed by region 3 is negative and proportional to the inner event horizon area. The total entropy contributed by all the three regions is positive and proportional to the area difference between the outer and inner event horizons. As rt approaches r0 in the nearly extreme case, the total quantum statistical entropy approaches zero.
International Nuclear Information System (INIS)
Lister, G G; Sheverev, V A; Uhrlandt, D
2002-01-01
The applicability of 'fluid' models based on analytic approximations of the electron energy distribution function (EEDF) and of kinetic models for low-pressure discharge light sources is discussed. Traditionally, 'fluid' models of fluorescent lamps assume that the EEDF is Maxwellian up to the energy of the first excited state. It is shown that such an approach is sufficiently accurate in most cases of conventional as well as of 'highly loaded' fluorescent lamps. However, this assumption is strongly violated for many rare gas glow discharges for mercury free light sources. As an example, a neon dc discharge is studied. The densities of the four lowest excited states and the electric field have been measured. The experimental results can be fairly well reproduced by a kinetic positive column model. This article was scheduled to appear in issue 14 of J. Phys. D: Appl. Phys. To access this special issue please follow this link: http://stacks.iop.org/0022-3727/35/i=14/
Correlation Functions of the One-Dimensional Attractive Bose Gas
International Nuclear Information System (INIS)
Calabrese, Pasquale; Caux, Jean-Sebastien
2007-01-01
The zero-temperature correlation functions of the one-dimensional attractive Bose gas with a delta-function interaction are calculated analytically for any value of the interaction parameter and number of particles, directly from the integrability of the model. We point out a number of interesting features, including zero recoil energy for a large number of particles, analogous to the Moessbauer effect
Electrochemical depassivation of zero-valent iron for trichloroethene reduction
Energy Technology Data Exchange (ETDEWEB)
Chen, Liang [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States); Advanced Environmental Technologies, LLC, Fort Collins, CO 80524 (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Swoboda-Colberg, Norbert G. [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States); Liu, Fei [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Colberg, Patricia J.S., E-mail: pczoo@uwyo.edu [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)
2012-11-15
Highlights: Black-Right-Pointing-Pointer Electrical current may depassivate ZVI and restore its capacity to reduce TCE. Black-Right-Pointing-Pointer Electrical current may defer or even prevent surface oxidation of ZVI. Black-Right-Pointing-Pointer Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0-12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete 'depassivation' of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.
Electrochemical depassivation of zero-valent iron for trichloroethene reduction
International Nuclear Information System (INIS)
Chen, Liang; Jin, Song; Fallgren, Paul H.; Swoboda-Colberg, Norbert G.; Liu, Fei; Colberg, Patricia J.S.
2012-01-01
Highlights: ► Electrical current may depassivate ZVI and restore its capacity to reduce TCE. ► Electrical current may defer or even prevent surface oxidation of ZVI. ► Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0–12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete “depassivation” of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.
Zero energy buildings and mismatch compensation factors
DEFF Research Database (Denmark)
Lund, Henrik; Marszal, Anna Joanna; Heiselberg, Per
2011-01-01
This paper takes an overall energy system approach to analysing the mismatch problem of zero energy and zero emission buildings (ZEBs). The mismatch arises from hourly differences in energy production and consumption at the building level and results in the need for exchange of electricity via...... the public grid even though the building has an annual net-exchange of zero. This paper argues that, when looked upon from the viewpoint of the overall electricity supply system, a mismatch can be both negative and positive. Moreover, there are often both an element of levelling out mismatches between...... of the energy production unit. Based on historical data for the electricity supply area in western Denmark, this paper makes a first attempt to quantify mismatch compensation factors. The results indicate that such compensation factors are a little below one for buildings with photovoltaics (PV) and a little...
Directory of Open Access Journals (Sweden)
Kadhim Shaymaa Tareq
2018-01-01
Full Text Available Use of stone column technique to improve soft foundation soils under roadway embankments has proven to increase the bearing capacity and reduce the potential settlement. The potential contribution of stone columns to the stability of roadway embankments against general (i.e. deep-seated failure needs to be thoroughly investigated. Therefore, a two-dimensional finite difference model implemented by FLAC/SLOPE 7.0 software, was employed in this study to assess the stability of a roadway embankment fill built on a soft soil deposit improved by stone column technique. The stability factor of safety was obtained numerically under both short-term and long-term conditions with the presence of water table. Two methods were adopted to convert the three-dimensional model into plane strain condition: column wall and equivalent improved ground methods. The effect of various parameters was studied to evaluate their influence on the factor of safety against embankment instability. For instance, the column diameter, columns’ spacing, soft soil properties for short-term and long-term conditions, and the height and friction angle of the embankment fill. The results of this study are developed in several design charts.
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Bao, Yihai; Main, Joseph A; Noh, Sam-Young
2017-08-01
A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.
One-dimensional model of inertial pumping
Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.
2013-02-01
A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.
Nurfaidhi Rizalman, Ahmad; Tahir, Ng Seong Yap Mahmood Md; Mohammad, Shahrin
2018-03-01
Concrete filled hollow steel section column have been widely accepted by structural engineers and designers for high rise construction due to the benefits of combining steel and concrete. The advantages of concrete filled hollow steel section column include higher strength, ductility, energy absorption capacity, and good structural fire resistance. In this paper, comparison on the fire performance between circular and square concrete filled hollow steel section column is established. A three-dimensional finite element package, ABAQUS, was used to develop the numerical model to study the temperature development, critical temperature, and fire resistance time of the selected composite columns. Based on the analysis and comparison of typical parameters, the effect of equal cross-sectional size for both steel and concrete, concrete types, and thickness of external protection on temperature distribution and structural fire behaviour of the columns are discussed. The result showed that concrete filled hollow steel section column with circular cross-section generally has higher fire resistance than the square section.
The one-dimensional extended Bose–Hubbard model
Indian Academy of Sciences (India)
Unknown
method to obtain the zero-temperature phase diagram of the one-dimensional, extended ... Progress in this field has been driven by an interplay between ... superconductor-insulator transition in thin films of superconducting materials like bis-.
Craig's XY distribution and the statistics of Lagrangian power in two-dimensional turbulence
Bandi, Mahesh M.; Connaughton, Colm
2008-03-01
We examine the probability distribution function (PDF) of the energy injection rate (power) in numerical simulations of stationary two-dimensional (2D) turbulence in the Lagrangian frame. The simulation is designed to mimic an electromagnetically driven fluid layer, a well-documented system for generating 2D turbulence in the laboratory. In our simulations, the forcing and velocity fields are close to Gaussian. On the other hand, the measured PDF of injected power is very sharply peaked at zero, suggestive of a singularity there, with tails which are exponential but asymmetric. Large positive fluctuations are more probable than large negative fluctuations. It is this asymmetry of the tails which leads to a net positive mean value for the energy input despite the most probable value being zero. The main features of the power distribution are well described by Craig’s XY distribution for the PDF of the product of two correlated normal variables. We show that the power distribution should exhibit a logarithmic singularity at zero and decay exponentially for large absolute values of the power. We calculate the asymptotic behavior and express the asymmetry of the tails in terms of the correlation coefficient of the force and velocity. We compare the measured PDFs with the theoretical calculations and briefly discuss how the power PDF might change with other forcing mechanisms.
Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter
Directory of Open Access Journals (Sweden)
Dezhi Ning
2017-09-01
Full Text Available The performance of a dual-chamber Oscillating Water Column (OWC Wave Energy Converter (WEC is considered in the present study. The device has two sub-chambers with a shared orifice. A two-dimensional (2D fully nonlinear numerical wave flume based on the potential-flow theory and the time-domain higher-order boundary element method (HOBEM is applied for the simulation. The incident waves are generated by using the immerged sources and the air-fluid coupling influence is considered with a simplified pneumatic model. In the present study, the variation of the surface elevation and the water column volume in the two sub-chambers are investigated. The effects of the chamber geometry (i.e., the draft and breadth of two chambers on the surface elevation and the air pressure in the chamber are investigated, respectively. It is demonstrated that the surface elevations in the two sub-chambers are strongly dependent on the wave conditions. The larger the wavelength, the more synchronous motion of the two water columns in the two sub-chambers, thus, the lager the variation of the water column volume.
International Nuclear Information System (INIS)
Spoelstra, Femke; Soernsen de Koste, John R. van; Vincent, Andrew; Cuijpers, Johan P.; Slotman, Ben J.; Senan, Suresh
2009-01-01
Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed tomography (CT) scans, acquired during uncoached breathing, were identified in 23 patients with Stage I lung cancer. Repeat scans were co-registered to the initial 4D CT scan, and tumor, carina, and ipsilateral diaphragm were manually contoured in all phases of each 4D CT data set. Correlation between positions of carina and diaphragm with 3D tumor position was studied by use of log-likelihood ratio statistics. Models to predict 3D tumor position from internal surrogates at end inspiration (EI) and end expiration (EE) were developed, and model accuracy was tested by calculating SDs of differences between predicted and actual tumor positions. Results: Motion of both the carina and diaphragm significantly correlated with tumor motion, but log-likelihood ratios indicated that the carina was more predictive for tumor position. When craniocaudal tumor position was predicted by use of craniocaudal carina positions, the SDs of the differences between the predicted and observed positions were 2.2 mm and 2.4 mm at EI and EE, respectively. The corresponding SDs derived with the diaphragm positions were 3.7 mm and 3.9 mm at EI and EE, respectively. Prediction errors in the other directions were comparable. Prediction accuracy was similar at EI and EE. Conclusions: The carina is a better surrogate of 3D tumor position than diaphragm position. Because residual prediction errors were observed in this analysis, additional studies will be performed using audio-coached scans.
Zero Thermal Noise in Resistors at Zero Temperature
Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran
2016-06-01
The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.
International Nuclear Information System (INIS)
Kanno, Ikuo
1994-01-01
The dynamic change of the electric field strength in a silicon surface barrier detector (SSBD) is studied. With the presence of a dielectric plasma column in the depletion layer of the SSBD, the electric field strength inside/outside the plasma column is suppressed/enhanced. As the length and the dielectric constant of the plasma column become shorter and smaller, the suppression and enhancement of the electric field strength become less. The electric field strength recovers the initial state, when the plasma column disappears. When the electrons and holes are inside/outside the dielectric plasma column, they have less/more electric potential than the one they have when there is no plasma column. During the movement of the electron/hole outside the plasma column to the positive/negative electrode, the enhanced electric field strength becomes smaller. Electron and hole pairs, which are the parts of the dielectric plasma column, arrive at positive and negative electrodes, having insufficient electric potential to induce the unit charge. This paper shows that the presence of a dielectric plasma column explains the main part of the residual defect in a SSBD. ((orig.))
Thermal Modeling Analysis Of CST Media In The Small Column Ion Exchange Project
International Nuclear Information System (INIS)
Lee, S.
2010-01-01
Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. One salt processing scenario includes the transport of the loaded (and possibly ground) CST media to the treatment tank floor. Therefore, additional thermal modeling calculations were conducted using a three-dimensional approach to evaluate temperature distributions for the entire in-tank domain including distribution of the spent CST media either as a mound or a flat layer on the tank floor. These calculations included mixtures of CST with HLW sludge or loaded Monosodium Titanate (MST) media used for strontium/actinide sorption. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds
Construction of zero-energy states in graphene through the supersymmetry formalism
International Nuclear Information System (INIS)
Schulze-Halberg, Axel; Roy, Pinaki
2017-01-01
We devise a supersymmetry-based method for the construction of zero-energy states in graphene. Our method is applied to a two-dimensional massless Dirac equation with a hyperbolic scalar potential. We determine supersymmetric partners of our initial system and derive a reality condition for the transformed potential. The Dirac potentials generated by our method can be used to approximate interactions that are experimentally realizable. (paper)
Defects and spatiotemporal disorder in a pattern of falling liquid columns
Brunet, Philippe; Limat, Laurent
2004-10-01
Disordered regimes of a one-dimensional pattern of liquid columns hanging below an overflowing circular dish are investigated experimentally. The interaction of two basic dynamical modes (oscillations and drift) combined with the occurrence of defects (birth of new columns, disappearances by coalescences of two columns) leads to spatiotemporal chaos. When the flow rate is progressively increased, a continuous transition between transient and permanent chaos is pointed into evidence. We introduce the rate of defects as the sole relevant quantity to quantify this “turbulence” without ambiguity. Statistics on both transient and endlessly chaotic regimes enable to define a critical flow rate around which exponents are extracted. Comparisons are drawn with other interfacial pattern-forming systems, where transition towards chaos follows similar steps. Qualitatively, careful examinations of the global dynamics show that the contamination processes are nonlocal and involve the propagation of blocks of elementary laminar states (such as propagative domains or local oscillations), emitted near the defects, which turn out to be essential ingredients of this self-sustained disorder.
International Nuclear Information System (INIS)
Harauchi, Hajime; Gotou, Hiroshi; Tanooka, Masao
1994-01-01
Analyzing three-dimensional internal structure of object in an X-ray study is usually performed by using two or more of the incidents of an X-ray direction. In this report, we analyzed the three-dimensional position of tubes with a phantom by using both contrast media and imaging of one direction in the X-ray study. The concentration of the iodine in contrast media can be known by using the log-subtraction image of only the one-directional incident X-ray. Also the diameter of tube filled with contrast media is calculated by the concentration of iodine. So we can show the three-dimensional position of tubes geometrically, by the diameter of tube and the measured value of the film. We verified this method by an experiment according to the theory. (author)
Finite dipolar hexagonal columns on piled layers of triangular lattice
International Nuclear Information System (INIS)
Matsushita, Katsuyoshi; Sugano, Ryoko; Kuroda, Akiyoshi; Tomita, Yusuke; Takayama, Hajime
2007-01-01
We have investigated, by the Monte Carlo simulation, spin systems which represent moments of arrayed magnetic nanoparticles interacting with each other only by the dipole-dipole interaction. In the present paper we aim the understanding of finite size effects on the magnetic nanoparticles arrayed in hexagonal columns cut out from the close-packing structures or from those with uniaxial compression. In columns with the genuine close-packing structures, we observe a single vortex state which is also observed previously in finite two-dimensional systems. On the other hand in the system with the inter-layer distance set 1/2 times of the close-packing one, we found ground states which depend on the number of layers. The dependence is induced by a finite size effect and is related to a orientation transition in the corresponding bulk system
Directory of Open Access Journals (Sweden)
Ehsan Nikbakht
Full Text Available Precast bridge columns have shown increasing demand over the past few years due to the advantages of such columns when compared against conventional bridge columns, particularly due to the fact that precast bridge columns can be constructed off site and erected in a short period of time. The present study analytically investigates the behaviour of self-centring precast segmental bridge columns under nonlinear-static and pseudo-dynamic loading at different prestressing strand levels. Self-centring segmental columns are composed of prefabricated reinforced concrete segments which are connected by central post-tensioning (PT strands. The present study develops a three dimensional (3D nonlinear finite element model for hybrid post-tensioned precast segmental bridge columns. The model is subjected to constant axial loading and lateral reverse cyclic loading. The lateral force displacement results of the analysed columns show good agreement with the experimental response of the columns. Bonded post-tensioned segmental columns at 25%, 40% and 70% prestressing strand stress levels are analysed and compared with an emulative monolithic conventional column. The columns with a higher initial prestressing strand levels show greater initial stiffness and strength but show higher stiffness reduction at large drifts. In the time-history analysis, the column samples are subjected to different earthquake records to investigate the effect post-tensioning force levels on their lateral seismic response in low and higher seismicity zones. The results indicate that, for low seismicity zones, post-tensioned segmental columns with a higher initial stress level deflect lower lateral peak displacement. However, in higher seismicity zones, applying a high initial stress level should be avoided for precast segmental self-centring columns with low energy dissipation capacity.
On the zero mode of the Poisson gauge theory
International Nuclear Information System (INIS)
Saidi, E.H.
1990-09-01
The fundamentals of the Diff(S 2 ) and the SDiff(S 2 ) gauge theories are developed. It is shown that the adjoint representation of SU(∞) is described by a divergentless two dimensional vector field defined on the sphere. The SU(∞) Yang-Mills gauge action obtained earlier by Floratos et al. is reviewed. The problem of the zero modes is solved without need of any constraint. The fundamental representations of SU(∞) and the gauge matter couplings are discussed. (author). 6 refs
Towards Reconstructing a Doric Column in a Virtual Construction Site
Bartzis, D.
2017-02-01
This paper deals with the 3D reconstruction of ancient Greek architectural members, especially with the element of the Doric column. The case study for this project is the Choragic monument of Nicias on the South Slope of the Athenian Acropolis, from which a column drum, two capitals and smaller fragments are preserved. The first goal of this paper is to present some benefits of using 3D reconstruction methods not only in documentation but also in understanding of ancient Greek architectural members. The second goal is to take advantage of the produced point clouds. By using the Cloud Compare software, comparisons are made between the actual architectural members and an "ideal" point cloud of the whole column in its original form. Seeking for probable overlaps between the two point clouds could assist in estimating the original position of each member/fragment on the column. This method is expanded with more comparisons between the reference column model and other members/fragments around the Acropolis, which may have not yet been ascribed to the monument of Nicias.
Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung
2018-04-01
Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.
Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.
Wei, Qinglai; Liu, Derong; Lin, Qiao; Song, Ruizhuo
2018-04-01
In this paper, a novel adaptive dynamic programming (ADP) algorithm, called "iterative zero-sum ADP algorithm," is developed to solve infinite-horizon discrete-time two-player zero-sum games of nonlinear systems. The present iterative zero-sum ADP algorithm permits arbitrary positive semidefinite functions to initialize the upper and lower iterations. A novel convergence analysis is developed to guarantee the upper and lower iterative value functions to converge to the upper and lower optimums, respectively. When the saddle-point equilibrium exists, it is emphasized that both the upper and lower iterative value functions are proved to converge to the optimal solution of the zero-sum game, where the existence criteria of the saddle-point equilibrium are not required. If the saddle-point equilibrium does not exist, the upper and lower optimal performance index functions are obtained, respectively, where the upper and lower performance index functions are proved to be not equivalent. Finally, simulation results and comparisons are shown to illustrate the performance of the present method.
Hayes, J D; Malik, A
2001-03-01
Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.
Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system
International Nuclear Information System (INIS)
Castelnovo, Claudio; Chamon, Claudio; Mudry, Christopher; Pujol, Pierre
2007-01-01
We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram
Feature Selection Methods for Zero-Shot Learning of Neural Activity
Directory of Open Access Journals (Sweden)
Carlos A. Caceres
2017-06-01
Full Text Available Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.
Column-Oriented Database Systems (Tutorial)
D. Abadi; P.A. Boncz (Peter); S. Harizopoulos
2009-01-01
textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as
arXiv Supersymmetric gauged matrix models from dimensional reduction on a sphere
Closset, Cyril; Seong, Rak-Kyeong
2018-05-04
It was recently proposed that $ \\mathcal{N} $ = 1 supersymmetric gauged matrix models have a duality of order four — that is, a quadrality — reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be inferred from the two-dimensional Gadde-Gukov-Putrov triality. We consider two-dimensional $ \\mathcal{N} $ = (0, 2) SQCD compactified on a sphere with the half-topological twist. For a convenient choice of R-charge, the zero-mode sector on the sphere gives rise to a simple $ \\mathcal{N} $ = 1 gauged matrix model. Triality on the sphere then implies a triality relation for the supersymmetric matrix model, which can be completed to the full quadrality.
Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach
Ramachandran, Nirmal; Ganguli, Ranjan
2018-06-01
A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.
Kinetic theory of the positive column of a low-pressure discharge in a transverse magnetic field
International Nuclear Information System (INIS)
Londer, Ya. I.; Ul’yanov, K. N.
2011-01-01
The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampère force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.
Dry Separation of Palm Kernel and Palm Shell Using a Novel Five-Stage Winnowing Column System
Directory of Open Access Journals (Sweden)
Rohaya Mohamed Halim
2016-04-01
Full Text Available The conventional separation system for the recovery of palm kernel from its palm shell–kernel mixture using water as process media generates a considerable amount of waste effluent that harms the environment. The aim of this study is to develop a dry separation process for the recovery of palm kernel by using winnowing columns. A commercial system consisting of a series of five winnowing columns was developed and installed at a local palm oil mill. The system parameters, including column height, blower capacity, airflow rate and mesh screen size for shell removal, were studied and optimized to ensure good separation of kernel and shell in the column to enable collection of different sizes of kernel and shell at each column outlet. The performance of the separation process was evaluated in terms of its kernel losses, dirt content and kernel recovery rate. The average kernel losses based on oil palm fresh fruit bunches processed were found to vary from 0.11 to 0.30 wt %, with most of the values obtained being below the targeted limit of 0.30 wt %. The dirt content was in the range 4.56–6.03 wt %, which was mostly below the targeted limit of 5.5 wt %. The kernel recovery rate was in the range 5.69–6.89 wt %, with most of the values achieving the minimum targeted limit of 6.00 wt %. The system operates under completely dry conditions and, therefore, produces zero waste effluent.
Distillation Column Flooding Predictor
Energy Technology Data Exchange (ETDEWEB)
George E. Dzyacky
2010-11-23
The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid
Annular pulse column development studies
International Nuclear Information System (INIS)
Benedict, G.E.
1980-01-01
The capacity of critically safe cylindrical pulse columns limits the size of nuclear fuel solvent extraction plants because of the limited cross-sectional area of plutonium, U-235, or U-233 processing columns. Thus, there is a need to increase the cross-sectional area of these columns. This can be accomplished through the use of a column having an annular cross section. The preliminary testing of a pilot-plant-scale annular column has been completed and is reported herein. The column is made from 152.4-mm (6-in.) glass pipe sections with an 89-mm (3.5-in.) o.d. internal tube, giving an annular width of 32-mm (1.25-in.). Louver plates are used to swirl the column contents to prevent channeling of the phases. The data from this testing indicate that this approach can successfully provide larger-cross-section critically safe pulse columns. While the capacity is only 70% of that of a cylindrical column of similar cross section, the efficiency is almost identical to that of a cylindrical column. No evidence was seen of any non-uniform pulsing action from one side of the column to the other
A topologically twisted index for three-dimensional supersymmetric theories
International Nuclear Information System (INIS)
Benini, Francesco; Zaffaroni, Alberto
2015-01-01
We provide a general formula for the partition function of three-dimensional N=2 gauge theories placed on S 2 ×S 1 with a topological twist along S 2 , which can be interpreted as an index for chiral states of the theories immersed in background magnetic fields. The result is expressed as a sum over magnetic fluxes of the residues of a meromorphic form which is a function of the scalar zero-modes. The partition function depends on a collection of background magnetic fluxes and fugacities for the global symmetries. We illustrate our formula in many examples of 3d Yang-Mills-Chern-Simons theories with matter, including Aharony and Giveon-Kutasov dualities. Finally, our formula generalizes to Ω-backgrounds, as well as two-dimensional theories on S 2 and four-dimensional theories on S 2 ×T 2 . In particular this provides an alternative way to compute genus-zero A-model topological amplitudes and Gromov-Witten invariants.
Universal contributions to scalar masses from five dimensional supergravity
Dudas, Emilian
2012-01-01
We compute the effective Kahler potential for matter fields in warped compactifications, starting from five dimensional gauged supergravity, as a function of the matter fields localization. We show that truncation to zero modes is inconsistent and the tree-level exchange of the massive gravitational multiplet is needed for consistency of the four-dimensional theory. In addition to the standard Kahler coming from dimensional reduction, we find the quartic correction coming from integrating out the gravity multiplet. We apply our result to the computation of scalar masses, by assuming that the SUSY breaking field is a bulk hypermultiplet. In the limit of extreme opposite localization of the matter and the spurion fields, we find zero scalar masses, consistent with sequestering arguments. Surprisingly enough, for all the other cases the scalar masses are tachyonic. This suggests the holographic interpretation that a CFT sector always generates operators contributing in a tachyonic way to scalar masses. Viability...
Column-Oriented Database Systems (Tutorial)
Abadi, D.; Boncz, Peter; Harizopoulos, S.
2009-01-01
textabstractColumn-oriented database systems (column-stores) have attracted a lot of attention in the past few years. Column-stores, in a nutshell, store each database table column separately, with attribute values belonging to the same column stored contiguously, compressed, and densely packed, as opposed to traditional database systems that store entire records (rows) one after the other. Reading a subset of a table’s columns becomes faster, at the potential expense of excessive disk-head s...
Two-dimensional Dirac fermions in thin films of C d3A s2
Galletti, Luca; Schumann, Timo; Shoron, Omor F.; Goyal, Manik; Kealhofer, David A.; Kim, Honggyu; Stemmer, Susanne
2018-03-01
Two-dimensional states in confined thin films of the three-dimensional Dirac semimetal C d3A s2 are probed by transport and capacitance measurements under applied magnetic and electric fields. The results establish the two-dimensional Dirac electronic spectrum of these states. We observe signatures of p -type conduction in the two-dimensional states as the Fermi level is tuned across their charge neutrality point and the presence of a zero-energy Landau level, all of which indicate topologically nontrivial states. The resistance at the charge neutrality point is approximately h /e2 and increases rapidly under the application of a magnetic field. The results open many possibilities for gate-tunable topological devices and for the exploration of novel physics in the zero-energy Landau level.
Nuclear reactor control column
International Nuclear Information System (INIS)
Bachovchin, D.M.
1982-01-01
The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor
Zhang, Yanhai; Qibule, Hasi; Jin, Yan; Wang, Jia; Ma, Wenli
2015-03-01
A rapid method for the simultaneous determination of vitamins A, D3 and E in infant formula and adult nutritions has been developed using online two-dimensional liquid chromatography (2D-LC). First of all, C8 and polar embedded C18 columns were chosen as the first and second dimensional column respectively according to hydrophobic-subtraction model, which constituted excellent orthogonal separation system. The detection wavelengths were set at 263 nm for vitamin D3, 296 nm for vitamin E and 325 nm for vitamin A. The purification of vitamin D3 and quantifications of vitamins A and E were completed simultaneously in the first dimensional separation using the left pump of Dual Gradient LC (DGLC) with methanol, acetonitrile and water as mobile phases. The heart-cutting time window of vitamin D3 was confirmed according to the retention time of vitamin D3 in the first dimensional separation. The elute from the first dimensional column (1-D column) which contained vitamin D3 was collected by a 500 µL sample loop and then taken into the second dimensional column (2-D column) by the right pump of DGLC with methanol, acetonitrile and water as mobile phases. The quantification of vitamin D3 was performed in the second dimensional separation with vitamin D2 as internal standard. At last, this method was applied for the analysis of the three vitamins in milk powder, cheese and yogurt. The injected sample solution with no further purification was pre-treated by hot-saponification using 1. 25 kg/L KOH solution and extracted by petroleum ether solvent. The recoveries of vitamin D3 spiked in all samples were 75.50%-85.00%. There was no statistically significant difference for the results between this method and standard method through t-test. The results indicate that vitamins A, D3 and E in infant formula and adult fortified dairy can be determined rapidly and accurately with this method.
Degli Esposti, M.; Giardinà, C.; Graffi, S.; Isola, S.
2001-01-01
We consider the zero-temperature dynamics for the infinite-range, non translation invariant one-dimensional spin model introduced by Marinari, Parisi and Ritort to generate glassy behaviour out of a deterministic interaction. It is argued that there can be a large number of metastable (i.e.,
Capacity limits in columns pulsed with stain steel perforated plates
International Nuclear Information System (INIS)
Maset, E.R.; Acosta, E.; Di Piano, M.; Maymo, J.A.
1987-01-01
This paper includes part of the second stage of the pulsed columns development program, using a water-nitric acid system as continuous phase and tri-n-butyl phosphate dissolved in kerosene at 30% v/v as disperse phase. Two kits of different geometry perforated plates (different diameter of perforation and free area percentage) were used. Due to the affinity importance of the plates' material with the continuous phase, in all the cases the continuous aqueous phase was used. The relation of flows varied, thus obtaining in each case a curve of characteristic 'flood'. The influence of the geometrical variables, the relation of flows, the medium acidity and the pulse's amplitude was applied in the capacity of the column. Besides, the dimensional correlation of Swift W.H. on the results obtained from 'flood' with both kits of plates to relate flows 1:1 and a minimum deviation was observed. (Author)
Zero-Outage Cellular Downlink with Fixed-Rate D2D Underlay
DEFF Research Database (Denmark)
Kiilerich Pratas, Nuno; Popovski, Petar
2015-01-01
. D2D connections can be instrumental in localized aggregation of uplink M2M traffic to a more capable cellular device, before being finally delivered to the Base Station (BS). In this paper we show that a fixed M2M rate is an enabler of efficient Machine-Type D2D underlay operation taking place......, but not the interfering channels from the MTDs to U, we prove that there is a positive downlink rate that can always be decoded by U, leading to zero-outage of the downlink signal. This is a rather surprising consequence of the features of the multiple access channel and the fixed rate RM. We also consider the case...... of a simpler, single-user decoder at U with successive interference cancellation. However, with single-user decoder, a positive zero-outage rate exists only when NM = 1 and is zero when NM > 1. This implies that joint decoding is instrumental in enabling fixed-rate underlay operation....
Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz
2016-01-21
This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.
Improvements in solvent extraction columns
International Nuclear Information System (INIS)
Aughwane, K.R.
1987-01-01
Solvent extraction columns are used in the reprocessing of irradiated nuclear fuel. For an effective reprocessing operation a solvent extraction column is required which is capable of distributing the feed over most of the column. The patent describes improvements in solvent extractions columns which allows the feed to be distributed over an increased length of column than was previously possible. (U.K.)
Role of zero modes in the canonical quantization of heavy-fermion QED in light-cone coordinates
International Nuclear Information System (INIS)
Brown, R.W.; Jun, J.W.; Shvartsman, S.M.; Taylor, C.C.
1993-01-01
Four-dimensional heavy-fermion QED is studied in light-cone coordinates with (anti)periodic field boundary conditions. We carry out a consistent light-cone canonical quantization of this model using the Dirac algorithm for a system with first- and second-class constraints. To examine the role of the zero modes, we consider the quantization procedure in the zero-mode and the nonzero-mode sectors separately. In both sectors we obtain the physical variables and their canonical commutation relations. The physical Hamiltonian is constructed via a step-by-step exclusion of the unphysical degrees of freedom. An example using this Hamiltonian in which the zero modes play a role is the verification of the correct Coulomb potential between two heavy fermions
Energy Technology Data Exchange (ETDEWEB)
Taha, Z.; Ahmad, N.; Ghazilla, R.A.R.; Yap, H.J.; Ya, T.Y.T.; Passarella, R.; Hasanuddin, I.; Yunus, M. [Malaya Univ. (Malaysia). Centre for Product Design and Manufacturing; Sugiyono [Malaya Univ., (Malaysia). Centre for Product Design and Manufacturing; Gadjah Mada Univ. (Indonesia). Dept. of Mechanical and Industrial Engineering
2009-07-01
The use of renewable energy sources as an alternative to conventional fuels was discussed with particular reference to ocean wave energy and its potential to contribute to the energy requirements of coastal nations. Ocean wave energy has been harnessed and converted into electricity using processes and technologies that are environmentally sound. The oscillating water column (OWC) system is considered to be among the most promising technology for harnessing wave energy. This paper presented the results of a study that investigated the pressure drop in an OWC system and the effect of spherical hub-nose position in an annular duct. Computational fluid dynamics (CFD) analysis was used under steady flow conditions for several hub-nose positions to determine the characteristic of pressure drop. The study showed that the hub-nose position influenced the pressure drop in the OWC system. The highest value of the pressure drop in this study occurred when the hub-nose was at the position of 0.0 m relative to the end of the converging cone. The pressure drop decreased when the hub-nose position moved away from the end of converging cone. The lowest value occurred at the position of -0.5 m. It was concluded that despite the numerically small change in pressure drop, this phenomenon should be considered in the design process of the OWC system because of the operational condition of the system at low-pressure pneumatic power. The pressure drop actually reduces the amount of energy that will be converted by the air turbine. 9 refs., 2 tabs., 6 figs.
Paul, Ganesh C.; Saha, Arijit; Das, Sourin
2018-05-01
We theoretically investigate the transport properties of a quasi-one-dimensional ferromagnet-superconductor junction where the superconductor consists of mixed singlet and triplet pairings. We show that the relative orientation of the Stoner field (h ˜) in the ferromagnetic lead and the d vector of the superconductor acts like a on-off switch for the zero bias conductance of the device. In the regime, where triplet pairing amplitude dominates over the singlet counterpart (topological phase), a pair of Majorana zero modes appear at each end of the superconducting part of the nanowire. When h ˜ is parallel or antiparallel to the d vector, transport gets completely blocked due to blockage in pairing while, when h ˜ and d are perpendicular to each other, the zero energy two terminal differential conductance spectra exhibits sharp transition from 4 e2/h to 2 e2/h as the magnetization strength in the lead becomes larger than the chemical potential indicating the spin-selective coupling of a pair of Majorana zero modes to the lead.
DEFF Research Database (Denmark)
Shirokov, M. E.; Shulman, Tatiana
2014-01-01
We give a detailed description of a low-dimensional quantum channel (input dimension 4, Choi rank 3) demonstrating the symmetric form of superactivation of one-shot quantum zero-error capacity. This property means appearance of a noiseless (perfectly reversible) subchannel in the tensor square...... of a channel having no noiseless subchannels. Then we describe a quantum channel with an arbitrary given level of symmetric superactivation (including the infinite value). We also show that superactivation of one-shot quantum zero-error capacity of a channel can be reformulated in terms of quantum measurement...
( Anogeissus leiocarpus ) timber columns
African Journals Online (AJOL)
A procedure for designing axially loaded Ayin (Anogeissus leiocarpus) wood column or strut has been investigated. Instead of the usual categorization of columns into short, intermediate and slender according to the value of slenderness ratio, a continuous column formula representing the three categories was derived.
International Nuclear Information System (INIS)
Al-Hawat, Sh; Naddaf, M
2005-01-01
The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density j d = 4.45 mA cm -2 and normalized electric field strength E/p = 1.88 V cm -1 Torr -1
Al-Hawat, Sh; Naddaf, M.
2005-04-01
The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density jd = 4.45 mA cm-2 and normalized electric field strength E/p = 1.88 V cm-1 Torr-1.
Sounds in one-dimensional superfluid helium
International Nuclear Information System (INIS)
Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.
1989-01-01
The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero
Three Dimensional Double Layers in Magnetized Plasmas
DEFF Research Database (Denmark)
Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul
1982-01-01
Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...
LIQUID-LIQUID EXTRACTION COLUMNS
Thornton, J.D.
1957-12-31
This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.
Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping
2017-11-01
A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.
Positioning in a flat two-dimensional space-time: The delay master equation
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales-Lladosa, Juan Antonio
2010-01-01
The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [B. Coll, J. J. Ferrando, and J. A. Morales, Phys. Rev. D 73, 084017 (2006); ibid.74, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here, generic relativistic positioning systems in the Minkowski plane are studied. The information that can be obtained from the data received by a user of the positioning system is analyzed in detail. In particular, it is shown that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so-called master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the interval between the emission time of a signal by an emitter and its reception time after being reflected by the other emitter. These results are illustrated with the obtention of the dynamics of the emitters and of the user from specific sets of data received by the user.
Comprehensive two-dimensional gas chromatography applied to illicit drug analysis.
Mitrevski, Blagoj; Wynne, Paul; Marriott, Philip J
2011-11-01
Multidimensional gas chromatography (MDGC), and especially its latest incarnation--comprehensive two-dimensional gas chromatography (GC × GC)--have proved advantageous over and above classic one-dimensional gas chromatography (1D GC) in many areas of analysis by offering improved peak capacity, often enhanced sensitivity and, especially in the case of GC × GC, the unique feature of 'structured' chromatograms. This article reviews recent advances in MDGC and GC × GC in drug analysis with special focus on ecstasy, heroin and cocaine profiling. Although 1D GC is still the method of choice for drug profiling in most laboratories because of its simplicity and instrument availability, GC × GC is a tempting proposition for this purpose because of its ability to generate a higher net information content. Effluent refocusing due to the modulation (compression) process, combined with the separation on two 'orthogonal' columns, results in more components being well resolved and therefore being analytically and statistically useful to the profile. The spread of the components in the two-dimensional plots is strongly dependent on the extent of retention 'orthogonality' (i.e. the extent to which the two phases possess different or independent retention mechanisms towards sample constituents) between the two columns. The benefits of 'information-driven' drug profiling, where more points of reference are usually required for sample differentiation, are discussed. In addition, several limitations in application of MDGC in drug profiling, including data acquisition rate, column temperature limit, column phase orthogonality and chiral separation, are considered and discussed. Although the review focuses on the articles published in the last decade, a brief chronological preview of the profiling methods used throughout the last three decades is given.
International Nuclear Information System (INIS)
Yasuk, F.; Tekin, S.; Boztosun, I.
2010-01-01
In this study, the exact solutions of the d-dimensional Schroedinger equation with a position-dependent mass m(r)=1/(1+ζ 2 r 2 ) is presented for a free particle, V(r)=0, by using the method of point canonical transformations. The energy eigenvalues and corresponding wavefunctions for the effective potential which is to be a generalized Poeschl-Teller potential are obtained within the framework of the asymptotic iteration method.
Feynman diagrams coupled to three-dimensional quantum gravity
International Nuclear Information System (INIS)
Barrett, John W
2006-01-01
A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero
Mathematical Modeling of Column-Base Connections under Monotonic Loading
Directory of Open Access Journals (Sweden)
Gholamreza Abdollahzadeh
2014-12-01
Full Text Available Some considerable damage to steel structures during the Hyogo-ken Nanbu Earthquake occurred. Among them, many exposed-type column bases failed in several consistent patterns, such as brittle base plate fracture, excessive bolt elongation, unexpected early bolt failure, and inferior construction work, etc. The lessons from these phenomena led to the need for improved understanding of column base behavior. Joint behavior must be modeled when analyzing semi-rigid frames, which is associated with a mathematical model of the moment–rotation curve. The most accurate model uses continuous nonlinear functions. This article presents three areas of steel joint research: (1 analysis methods of semi-rigid joints; (2 prediction methods for the mechanical behavior of joints; (3 mathematical representations of the moment–rotation curve. In the current study, a new exponential model to depict the moment–rotation relationship of column base connection is proposed. The proposed nonlinear model represents an approach to the prediction of M–θ curves, taking into account the possible failure modes and the deformation characteristics of the connection elements. The new model has three physical parameters, along with two curve-fitted factors. These physical parameters are generated from dimensional details of the connection, as well as the material properties. The M–θ curves obtained by the model are compared with published connection tests and 3D FEM research. The proposed mathematical model adequately comes close to characterizing M–θ behavior through the full range of loading/rotations. As a result, modeling of column base connections using the proposed mathematical model can give crucial beforehand information, and overcome the disadvantages of time consuming workmanship and cost of experimental studies.
International Nuclear Information System (INIS)
Formica, Marco; Frigo, Stefano; Gabbrielli, Roberto
2016-01-01
Highlights: • A simulation model with Aspen Plus is created for a full scale biomass gasification plant. • Test results, equipment data and control logics are considered in the simulation model. • The simulation results are in agreement with the experimental data. • The gasifying air temperature affects largely the energy performance of the gasification plant. • Increasing the equivalent ratio implies a strong reduction of the gasification efficiency. - Abstract: A new steady state zero-dimensional simulation model for a full-scale woody biomass gasification plant with fixed-bed downdraft gasifier has been developed using Aspen Plus®. The model includes the technical characteristics of all the components (gasifier, cyclone, exchangers, piping, etc.) of the plant and works in accordance with its actual main control logics. Simulation results accord with those obtained during an extensive experimental activity. After the model validation, the influence of operating parameters such as the equivalent ratio, the biomass moisture content and the gasifying air temperature on syngas composition have been analyzed in order to assess the operative behavior and the energy performance of the experimental plant. By recovering the sensible heat of the syngas at the outlet of the gasifier, it is possible to obtain higher values of the gasifying air temperature and an improvement of the overall gasification performances.
Energy Technology Data Exchange (ETDEWEB)
Grate, J.W.; O' Hara, M.J.; Farawila, A.F.; Ozanich, R.M.; Owsley, S.L. [Pacific Northwest National Laboratory, Richland, WA (United States)
2011-07-01
Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on using disposable components so that no sample contacts any surface that any other sample has contacted, and setting up samples and columns in parallel for subsequent automated processing. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions one of four rows of six vials below the columns. The samples are delivered to each column via a manual 3-port disposable valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is a simpler more efficient approach for performing anion exchange procedures for the recovery and purification of plutonium from samples. The automation architectures described can also be adapted to column-based extraction chromatography separations. (orig.)
Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines
Qian, Wei; Werner, Wendelin
2018-06-01
We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.
Schweiger, Susanne; Jungbauer, Alois
2018-02-16
Small pre-packed columns are commonly used to estimate the optimum run parameters for pilot and production scale. The question arises if the experiments obtained with these columns are scalable, because there are substantial changes in extra column volume when going from a very small scale to a benchtop column. In this study we demonstrate the scalability of pre-packed disposable and non-disposable columns of volumes in the range of 0.2-20 ml packed with various media using superficial velocities in the range of 30-500 cm/h. We found that the relative contribution of extra column band broadening to total band broadening was not only high for columns with small diameters, but also for columns with a larger volume due to their wider diameter. The extra column band broadening can be more than 50% for columns with volumes larger than 10 ml. An increase in column diameter leads to high additional extra column band broadening in the filter, frits, and adapters of the columns. We found a linear relationship between intra column band broadening and column length, which increased stepwise with increases in column diameter. This effect was also corroborated by CFD simulation. The intra column band broadening was the same for columns packed with different media. An empirical engineering equation and the data gained from the extra column effects allowed us to predict the intra, extra, and total column band broadening just from column length, diameter, and flow rate. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Calculation code of mass and heat transfer in a pulsed column for Purex process
International Nuclear Information System (INIS)
Tsukada, Takeshi; Takahashi, Keiki
1993-01-01
A calculation code for extraction behavior analysis in a pulsed column employed at an extraction process of a reprocessing plant was developed. This code was also combined with our previously developed calculation code for axial temperature profiles in a pulsed column. The one-dimensional dispersion model was employed for both of the extraction behavior analysis and the axial temperature profile analysis. The reported values of the fluid characteristics coefficient, the transfer coefficient and the diffusivities in the pulsed column were used. The calculated concentration profiles of HNO 3 , U and Pu for the steady state have a good agreement with the reported experimental results. The concentration and temperature profiles were calculated under the operation conditions which induce the abnormal U extraction behavior, i.e. U extraction zone is moved to the bottom of the column. Thought there is slight difference between calculated and experimental value, it is appeared that our developed code can be applied to the simulation under the normal operation condition and the relatively slowly transient condition. Pu accumulation phenomena was analyzed with this code and the accumulation tendency is similar to the reported analysis results. (author)
Infinite Dimensional Differential Games with Hybrid Controls
Indian Academy of Sciences (India)
... zero-sum infinite dimensional differential game of infinite duration with discounted payoff involving hybrid controls is studied. The minimizing player is allowed to take continuous, switching and impulse controls whereas the maximizing player is allowed to take continuous and switching controls. By taking strategies in the ...
International Nuclear Information System (INIS)
Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.
2010-01-01
In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)
Transient two-dimensional flow in porous media
International Nuclear Information System (INIS)
Sharpe, L. Jr.
1979-01-01
The transient flow of an isothermal ideal gas from the cavity formed by an underground nuclear explosion is investigated. A two-dimensional finite element method is used in analyzing the gas flow. Numerical results of the pressure distribution are obtained for both the stemming column and the surrounding porous media
Eeltink, S.; Dolman, S.; Ursem, M.; Swart, R.; McLeod, F.; Schoenmakers, P.J.
2009-01-01
This article describes an optimization strategy to obtain the best possible performance in the shortest analysis time—called the peak production rate—for comprehensive off-line two-dimensional liquid chromatography. The demands on column technology (particle size and column length) and LC conditions
International Nuclear Information System (INIS)
Lu, Ming-Hui; Feng, Liang; Liu, Xiao-Ping; Liu, Xiao-Kang; Chen, Yan-Feng; Zhu, Yong-Yuan; Mao, Yi-Wei; Zi, Jian
2007-01-01
Both negative and positive phase velocities for acoustic waves have been experimentally established in a two-dimensional triangular sonic crystal (SC) consisting of steel cylinders embedded in air at first. With the increase of the SCs thickness layer by layer in the experiments, phase shifts decrease in the second band but increase in the first band, showing the negative and the positive phase velocities, respectively. Moreover, the dispersion relation of the SC is constructed by the phase information, which is consistent well with the theoretical results. These abundant characteristics of acoustic wave propagation in the SC might be useful for the device applications
Equation of state of the one- and three-dimensional Bose-Bose gases
Chiquillo, Emerson
2018-06-01
We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.
Does exclusion of protest zeros and warm-glow bidders cause selection bias in Contingent Valuation?
DEFF Research Database (Denmark)
Grammatikopoulou, Ioanna; Olsen, Søren Bøye; Pouta, Eija
A great issue of concern in valuation studies is whether respondents provide trustworthy and reliable answers conditional on the perceived information. Respondent may report either a higher than the true Willingness-To-Pay (WTP) due to warm glow or embedding effects or zero WTP which is lower than...... the true WTP due to protest behavior. We conduct a contingent valuation study to estimate the WTP for conserving a Natura 2000 wetland area in Greece. We find that 54% of the positive bidders exert warm glow motivations while 29% of all responses can be classified as protest zero bids. We employ three....... Our findings show that removal of warm glow positive bidders does not distort the WTP estimate in any significant way. However, using the same approach for protest zero bidders, we find strong evidence of selection bias associated with removal of protest zero responses. Specifically, WTP estimates...
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
International Nuclear Information System (INIS)
Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.
2008-01-01
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them
DEFF Research Database (Denmark)
Valiente, Manuel
2012-01-01
We prove the equivalence between the hard-sphere Bose gas and a system with momentum-dependent zero-range interactions in one spatial dimension, which we call extended hard-sphere Bose gas. The two-body interaction in the latter model has the advantage of being a regular pseudopotential. The most...
Energy Technology Data Exchange (ETDEWEB)
Al-Hawat, Sh; Naddaf, M [Physics Department, Atomic Energy Commission, PO Box 6091, Damascus (Syrian Arab Republic)
2005-04-21
The electron energy distribution function (EEDF) was determined from the second derivative of the I-V Langmuir probe characteristics and, thereafter, theoretically calculated by solving the plasma kinetic equation, using the black wall (BW) approximation, in the positive column of a neon glow discharge. The pressure has been varied from 0.5 to 4 Torr and the current from 10 to 30 mA. The measured electron temperature, density and electric field strength were used as input data for solving the kinetic equation. Comparisons were made between the EEDFs obtained from experiment, the BW approach, the Maxwellian distribution and the Rutcher solution of the kinetic equation in the elastic energy range. The best conditions for the BW approach are found to be under the discharge conditions: current density j{sub d} = 4.45 mA cm{sup -2} and normalized electric field strength E/p = 1.88 V cm{sup -1} Torr{sup -1}.
Exoatmospheric intercepts using zero effort miss steering for midcourse guidance
Newman, Brett
The suitability of proportional navigation, or an equivalent zero effort miss formulation, for exatmospheric intercepts during midcourse guidance, followed by a ballistic coast to the endgame, is addressed. The problem is formulated in terms of relative motion in a general, three dimensional framework. The proposed guidance law for the commanded thrust vector orientation consists of the sum of two terms: (1) along the line of sight unit direction and (2) along the zero effort miss component perpendicular to the line of sight and proportional to the miss itself and a guidance gain. If the guidance law is to be suitable for longer range targeting applications with significant ballistic coasting after burnout, determination of the zero effort miss must account for the different gravitational accelerations experienced by each vehicle. The proposed miss determination techniques employ approximations for the true differential gravity effect and thus, are less accurate than a direct numerical propagation of the governing equations, but more accurate than a baseline determination, which assumes equal accelerations for both vehicles. Approximations considered are constant, linear, quadratic, and linearized inverse square models. Theoretical results are applied to a numerical engagement scenario and the resulting performance is evaluated in terms of the miss distances determined from nonlinear simulation.
Nondestructive measurement for radionuclide concentration distribution in soil column
International Nuclear Information System (INIS)
Ogawa, Hiromichi; Ohnuki, Toshihiko; Yamamoto, Tadatoshi; Wadachi, Yoshiki
1985-01-01
A nondestructive method has been studied for determining the concentration of radionuclide (Cs-137) distributed in a soil column. The concentration distribution was calculated from the counting rate distribution using the efficiency matrix of a detector. The concentration distribution obtained by this method, with measuring efficiencies of theoretical calculation, coincides well with that obtained by the destructive sampling method. This method is, therefore, found to be effective for the measurement of one dimensional concentration distribution. The measuring limit of this method is affected not only by the radionuclide concentration but also by the shape of concentration distribution in a soil column and also by the way it is divided into concentration blocks. It is found that, the radioactive concentration up to 2.6 x 10 -4 μCi/g (9.62 Bq/g), and also the distribution up to where the concentration reduces to half at every 1 cm of depth, can be measured by this system. The concentration blocks can be divided into 1 cm of thickness as a minimum value. (author)
Order of current variance and diffusivity in the rate one totally asymmetric zero range process
Balázs, M.; Komjáthy, J.
2008-01-01
We prove that the variance of the current across a characteristic is of order t 2/3 in a stationary constant rate totally asymmetric zero range process, and that the diffusivity has order t 1/3. This is a step towards proving universality of this scaling behavior in the class of one-dimensional
Fisher zeros in the Kallen-Lehmann approach to 3D Ising model
International Nuclear Information System (INIS)
Astorino, Marco; Canfora, Fabrizio; Giribet, Gaston
2009-01-01
The distribution of the Fisher zeros in the Kallen-Lehmann approach to three-dimensional Ising model is studied. It is argued that the presence of a non-trivial angle (a cusp) in the distribution of zeros in the complex temperatures plane near the physical singularity is realized through a strong breaking of the 2D Ising self-duality. Remarkably, the realization of the cusp in the Fisher distribution ultimately leads to an improvement of the results of the Kallen-Lehmann ansatz. In fact, excellent agreement with Monte Carlo predictions both at high and at low temperatures is observed. Besides, agreement between both approaches is found for the predictions of the critical exponent α and of the universal amplitude ratio Δ=A + /A - , within the 3.5% and 7% of the Monte Carlo predictions, respectively
Intrinsic two-dimensional states on the pristine surface of tellurium
Li, Pengke; Appelbaum, Ian
2018-05-01
Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.
Blind separation of positive sources by globally convergent gradient search.
Oja, Erkki; Plumbley, Mark
2004-09-01
The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.
Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru
2014-04-15
Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.
Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas
2014-04-01
Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.
Equilibrium spherically curved two-dimensional Lennard-Jones systems
Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.
2005-01-01
To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced
Directory of Open Access Journals (Sweden)
Moses Omolayo PETINRIN
2010-12-01
Full Text Available In this work, the capability of MATLAB software package to develop graphical user interface (GUI package was demonstrated. A GUI was successfully developed using MATLAB programming language to study the behaviour of a suspended column under uniaxial static loading by solving the numerical model created based on the finite element method (FEM. The comparison between the exact solution from previous researches and the numerical analysis showed good agreement. The column average strain, average stress and average load are equivalent but more accurate to the ones obtained when the whole column is taken as one element (two nodes for one dimensional linear finite element problem. It was established in this work that MATLAB is not only a software package for numerical computation but also for application development.
Delnoij, E.; Kuipers, J.A.M.; van Swaaij, W.P.M.
1997-01-01
In this paper an Eulerian/Lagrangian model, describing the hydrodynamics of a gas-liquid bubble column, is presented. The model resolves the time dependent, two-dimensional motion of small, spherical gas bubbles in a liquid using the equation of motion. The model incorporates all relevant forces
Delnoij, E.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria
1997-01-01
In this paper an Eulerian/Lagrangian model, describing the hydrodynamics of a gas-liquid bubble column, is presented. The model resolves the time dependent, two-dimensional motion of small, spherical gas bubbles in a liquid using the equation of motion. The model incorporates all relevant forces
A two-dimensional position sensitive gas chamber with scanned charge transfer readout
Energy Technology Data Exchange (ETDEWEB)
Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A
2003-10-21
We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.
A two-dimensional position sensitive gas chamber with scanned charge transfer readout
International Nuclear Information System (INIS)
Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.
2003-01-01
We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring
Three-dimensional CT of the pediatric spine
International Nuclear Information System (INIS)
Starshak, R.J.; Crawford, C.R.; Waisman, R.C.; Sty, J.R.
1987-01-01
CT of the spine has been shown to be useful in evaluating congenital, neoplastic, inflammatory, and traumatic lesions. Any portion of the neural arch may be involved by these disease processes. However, the complex nature of the spinal column can make evaluation of these abnormalities difficult on axial CT. This is especially true if the spine is distorted by scoliosis, kyphosis, or lordosis. The principal advantage of three-dimensional CT is its ability to display the surface relationships of complicated objects. The complexity of the spinal axis makes it ideal for study with three-dimensional CT. This presentation illustrates the advantages and drawbacks of three-dimensional CT in spinal abnormalities in children
Computer simulation of plasma behavior in open-ended linear theta machines. Scientific report 81-5
International Nuclear Information System (INIS)
Stover, E.K.
1981-04-01
Zero-dimensional and one-dimensional fluid plasma computer models have been developed to study the behavior of linear theta pinch plasmas. Computer simulation results generated from these codes are compared with data obtained from two theta pinch experiments so that significant machine plasma behavior can be identified. The experiments examined are a collisional experiment, T/sub i/ approx. 50 eV, n/sub e/ approx. 10 17 cm -3 , where the plasma mean-free-path was significantly less than the plasma column length, and a hot ion species experiment, T/sub i/ approx. 3 keV, n/sub e/ approx. 10 16 cm -3 , where the ion mean-free-path was on the order of the plasma column length
Eidson, Lindsey; Cevidanes, Lucia H S; de Paula, Leonardo Koerich; Hershey, H Garland; Welch, Gregory; Rossouw, P Emile
2012-09-01
Our objectives were to develop a reproducible method of superimposing 3-dimensional images for measuring soft-tissue changes over time and to use this method to document changes in lip position after the removal of orthodontic appliances. Three-dimensional photographs of 50 subjects were made in repose and maximum intercuspation before and after orthodontic appliance removal with a stereo camera. For reliability assessment, 2 photographs were repeated for 15 patients. The images were registered on stable areas, and surface-to-surface measurements were made for defined landmarks. Mean changes were below the level of clinical significance (set at 1.5 mm). However, 51% and 18% of the subjects experienced changes greater than 1.5 mm at the commissures and lower lips, respectively. The use of serial 3-dimensional photographs is a reliable method of documenting soft-tissue changes. Soft-tissue changes after appliance removal are not clinically significant; however, there is great individual variability. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan
2015-03-01
A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.
Stability of elastic columns with periodic retarded follower forces
Ma, Haitao; Butcher, Eric A.
2005-09-01
The objective of this work is to present a stability analysis for elastic columns under the influence of periodically varying follower forces whose orientation is retarded, i.e., depends on the position of the system at a previous time. One- and two-degree-of-freedom (dof) discretized systems under the simultaneous influence of both parametric excitation and time-delay, whose effects on such systems have previously been only considered separately, are studied. By employing an orthogonal polynomial approximation, the infinite-dimensional Floquet transition matrix associated with the time-periodic differential-delay system is approximated. The stability criteria that all the eigenvalues (Floquet multipliers) of this matrix must lie within the unit circle is then applied. The stability charts for different combinations of the remaining system parameters are shown, and the previously reported results for the special cases where either the parametric excitation or the time-delay vanishes are verified. Two cases, when the parametric forcing period is equal to or twice the delay period are taken into consideration in this work. For special cases of the single dof system, the numerical stability plots are verified by considering the analytical expressions for the corresponding stability boundaries for an analogous delayed Mathieu equation.
Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian
2011-02-15
The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.
Sensorless Characteristics of Hybrid PM Machines at Zero and Low Speed
DEFF Research Database (Denmark)
Matzen, Torben N.; Rasmussen, Peter Omand
2009-01-01
Sensorless methods for zero and low speed operation in drives with hybrid PM machines make use of the machine saliency to determine the rotor position in an indirect fashion. When integrating the position measurement in the electrical power supply to the machine, i.e. make the machine self......-sensing, the sensorless obtained position can be affected by the actual operation conditions of the machine e.g. the stator currents. This may deteriorate the machine self-sensing suitability using injection methods. In this paper an analysis method based on accurate knowledge of the machine flux linkages is proposed...... for analysing the suitability for sensorless control at zero and low speed. The method can be used to evaluate a particular machine design so the self-sensing characteristics for sensorless control of machine can be found. The characteristics can be obtained from finite element simulation data or experimental...
Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column
Huz, Kateryna
2014-01-01
RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better
Azizian, Mohammad F.; Behrens, Sebastian; Sabalowsky, Andrew; Dolan, Mark E.; Spormann, Alfred M.; Semprini, Lewis
2008-08-01
A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from ˜ 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.
International Nuclear Information System (INIS)
Huff, Thomas
2010-01-01
Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.
Energy Technology Data Exchange (ETDEWEB)
Busigin, A. [NITEK USA Inc., Ocala, FL (United States)
2015-03-15
Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.
Optimization of the parameters of plasma liners with zero-dimensional models
Energy Technology Data Exchange (ETDEWEB)
Oreshkin, V. I. [Siberian Division, Institute of High Current Electronics, RAS Tomsk Polytechnic University, Tomsk 634055 (Russian Federation)
2013-11-15
The efficiency of conversion of the energy stored in the capacitor bank of a high-current pulse generator into the kinetic energy of an imploding plasma liner is analyzed. The analysis is performed by using a model consisting of LC circuit equations and equations of motion of a cylindrical shell. It is shown that efficient energy conversion can be attained only with a low-inductance generator. The mode of an 'ideal' load is considered where the load current at the final stage of implosion is close to zero. The advantages of this mode are, first, high efficiency of energy conversion (80%) and, second, improved stability of the shell implosion. In addition, for inertial confinement fusion realized by the scheme of a Z pinch dynamic hohlraum, not one but several fusion targets can be placed in the cavity on the pinch axis due to the large length of the liner.
Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br
2008-04-14
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.
International Nuclear Information System (INIS)
Rohlena, K.; Ruzicka, T.
1979-01-01
A numerical solution of the Boltzmann equation for the electron gas in the positive column of a DC discharge in nitrogen is presented. The Boltzmann equation was solved with the inclusion of the second-kind (superelastic) collisions proceeding from the first six excited vibrational levels of molecular nitrogen. The vibrational level population is supposed to follow the Boltzmann distribution for the given vibrational temperature Tsub(v), with a possible deviation of the ground level, which can be overpopulated in the given ratio γ. Apart from the electron distribution functions, which were gained for various values of E/p 0 , Tsub(v) and γ, the values of some production frequencies and kinetic coefficients are presented in form of tables and plots. It is found that the electron distribution (and also the corresponding production rates) only above a certain energy limit depends on Tsub(v) and γ through the normalization constant. (author)
Impact of Holes on the Buckling of RHS Steel Column
Directory of Open Access Journals (Sweden)
Najla'a H. AL-Shareef
2018-03-01
Full Text Available This study presented an experimental and theoretical study on the effect of hole on the behavior of rectangular hollow steel columns subjected to axial compression load. Specimens were tested to investigated the ultimate capacity and the load- axial displacement behavior of steel columns. In this paper finite element analysis is done by using general purpose ANSYS 12.0 to investigate the behavior of rectangular hollow steel column with hole. In the experimental work, rectangular hollow steel columns with rounded corners were used in the constriction of the specimens which have dimensions of cross section (50*80mm and height of (250 and 500mm with thickness of (1.25,4 and 6mm with hole ((α*80*80mm when α is equal to (0.2,0.4,0.6 and 0.8. Twenty four columns under compression load were tested in order to investigate the effect of hole on the ultimate load of rectangular hollow steel column. The experimental results indicated that the typical failure mode for all the tested hollow specimen was the local buckling. The tested results indicated that the increasing of hole dimension leads to reduction in ultimate loads of tested column to 75%. The results show the reducing of load by 94.7% due to decreasing the thickness of column while the hole size is constant (0.2*80*80. The buckling load decreases by 84.62% when hole position changes from Lo=0.25L to 0.75L. Holes can be made in the middle of column with dimension up to 0.4 of column's length. The AISC (2005 presents the values closest to the experimental results for the nominal yielding compressive strength. The effect for increasing of slendeness ratio and thickness to area ratio(t/A leading to decreacing the critical stresses and the failure of column with large size of hole and (t/A ratio less than 0.74% was due to lacal buckling while the global buckling failure was abserve for column with small size of hole and (t/A ratio above than 0.74%. The compersion between the experimental
A Zero-One Dichotomy Theorem for r-Semi-Stable Laws on Infinite Dimensional Linear Spaces.
1978-10-01
SEMISTABLE LAWS - LIKE STABLE ONES - ARE CONTINUOUS: i.e. THEY ASSIGN’ ZERO MASS TO SIIMGLETONS.. DD 172 1 1473 sov’ow as, IMail , 62 i 1 SOee..S $.M 0 102 LfP.Of 4 6601 1ECIuatY CLASSI’PICA1 130N 00 1 100 0449 (W%4 Dma rwer
International Nuclear Information System (INIS)
Akbari, S.; Khosrovshahi, G.B.; Mofidi, A.
2010-07-01
Let D be a t-(v, k, λ) design and let N i (D), for 1 ≤ i ≤ t, be the higher incidence matrix of D, a (0, 1)-matrix of size (v/i) x b, where b is the number of blocks of D. A zero-sum flow of D is a nowhere-zero real vector in the null space of N 1 (D). A zero-sum k-flow of D is a zero-sum flow with values in {±,...,±(k-1)}. In this paper we show that every non-symmetric design admits an integral zero-sum flow, and consequently we conjecture that every non-symmetric design admits a zero-sum 5-flow. Similarly, the definition of zero-sum flow can be extended to N i (D), 1 ≤ i ≤ t. Let D = t-(v,k, (v-t/k-t)) be the complete design. We conjecture that N t (D) admits a zero-sum 3-flow and prove this conjecture for t = 2. (author)
Alexander, Anthony J; Ma, Lianjia
2009-02-27
This paper focuses on the application of RPLC x RPLC to pharmaceutical analysis and addresses the specific problem of separating co-eluting impurities/degradation products that maybe "hidden" within the peak envelope of the active pharmaceutical ingredient (API) and thus may escape detection by conventional methods. A comprehensive two-dimensional liquid chromatograph (LC x LC) was constructed from commercially available HPLC equipment. This system utilizes two independently configurable 2nd dimension binary pumping systems to deliver independent flow rates, gradient profiles and mobile phase compositions to dual Fused-Core secondary columns. Very fast gradient separations (30s total cycle time) were achieved at ambient temperature without excessive backpressure and without compromising optimal 1st dimension sampling rates. The operation of the interface is demonstrated for the analysis of a 1mg/ml standard mixture containing 0.05% of a minor component. The practicality of using RPLC x RPLC for the analysis of actual co-eluting pharmaceutical degradation products, by exploiting pH-induced changes in selectivity, is also demonstrated using a three component mixture. This mixture (an API, an oxidation product of the API at 1.0%, w/w, and a photo degradant of the API at 0.5%, w/w) was used to assess the stability indicating nature of an established LC method for analysis of the API.
Directory of Open Access Journals (Sweden)
Chi Zhang
2015-05-01
Full Text Available To model correlated bivariate count data with extra zero observations, this paper proposes two new bivariate zero-inflated generalized Poisson (ZIGP distributions by incorporating a multiplicative factor (or dependency parameter λ, named as Type I and Type II bivariate ZIGP distributions, respectively. The proposed distributions possess a flexible correlation structure and can be used to fit either positively or negatively correlated and either over- or under-dispersed count data, comparing to the existing models that can only fit positively correlated count data with over-dispersion. The two marginal distributions of Type I bivariate ZIGP share a common parameter of zero inflation while the two marginal distributions of Type II bivariate ZIGP have their own parameters of zero inflation, resulting in a much wider range of applications. The important distributional properties are explored and some useful statistical inference methods including maximum likelihood estimations of parameters, standard errors estimation, bootstrap confidence intervals and related testing hypotheses are developed for the two distributions. A real data are thoroughly analyzed by using the proposed distributions and statistical methods. Several simulation studies are conducted to evaluate the performance of the proposed methods.
Landi, Gregorio
2003-01-01
The center of gravity as an algorithm for position measurements is analyzed for a two-dimensional geometry. Several mathematical consequences of discretization for various types of detector arrays are extracted. Arrays with rectangular, hexagonal, and triangular detectors are analytically studied, and tools are given to simulate their discretization properties. Special signal distributions free of discretized error are isolated. It is proved that some crosstalk spreads are able to eliminate the center of gravity discretization error for any signal distribution. Simulations, adapted to the CMS em-calorimeter and to a triangular detector array, are provided for energy and position reconstruction algorithms with a finite number of detectors.
The Position and Mobility of the Shoulder, Spinal Column and Pelvis in Seated Subjects.
1985-02-01
Considerable muscle atrophy was observed in the right shoulder. In the spinal column, tissues overlying the right sacroiliac joint felt firmer than over...subject #23 had fewer clinical findings for joint dysfunction than in the other two subjects, but the physician noted more soft tissue observations than...There was also a mild scoliotic curvature with left convexity observed at T4-6. n the pelvis, the left lumbosacral and sacroiliac joints seened to
Directory of Open Access Journals (Sweden)
Hsien-Yuan Lin
2012-01-01
Full Text Available This paper employs the numerical assembly method (NAM to determine the exact frequency-response amplitudes of an offshore structure such as piles or towers having the form of a hollow column filled with multiple fluids, immersed in water, carrying an eccentric tip mass supported by a translational spring and/or a rotational spring, and subjected to a harmonic force. The hollow column is modeled as a Bernoulli-Euler cantilever beam fixed at the bottom. For the case of zero harmonic force, the simultaneous equations of the vibration system reduce to an eigenvalue problem so that the natural frequencies and mode shapes of the beam can also be obtained. The effect of height of filled fluids on the characteristics of free vibration is also presented.
The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.
Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K
2018-02-09
A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.
Stökl, A.
2008-11-01
Context: In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims: The present work attempts to develop a time-dependent description of convection, which reflects the essential physics of convection and that is only moderately dependent on numerical parameters and far less time consuming than existing multi-dimensional hydrodynamics computations. Methods: Assuming that the most extensive convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel, radial columns to represent up- and downstream flows. Horizontal exchange, in the form of fluid flow and radiation, over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have straightforward geometrical meanings, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of the cross-section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme that has the advantage of being unaffected by the Courant-Friedrichs-Lewy time-step limit. This implementation is part of the TAPIR-Code (short for The adaptive, implicit RHD-Code). Results: To demonstrate the approach, results for convection zones in Cepheids are presented. The convective energy transport and convective velocities agree with expectations for Cepheids and the scheme reproduces both the kinetic energy flux and convective overshoot. A study of the parameter influence shows that the type of solution derived for these stars is in fact fairly robust with respect to the constitutive numerical
CSIR Research Space (South Africa)
Lindeque, M
2013-01-01
Full Text Available the national grid. The unfortunate situation with water is that there is no replacement technology for water. Water can be supplied from many different sources. A net zero energy development will move closer to a net zero water development by reducing...
Two generalizations of column-convex polygons
International Nuclear Information System (INIS)
Feretic, Svjetlan; Guttmann, Anthony J
2009-01-01
Column-convex polygons were first counted by area several decades ago, and the result was found to be a simple, rational, generating function. In this work we generalize that result. Let a p-column polyomino be a polyomino whose columns can have 1, 2, ..., p connected components. Then column-convex polygons are equivalent to 1-convex polyominoes. The area generating function of even the simplest generalization, namely 2-column polyominoes, is unlikely to be solvable. We therefore define two classes of polyominoes which interpolate between column-convex polygons and 2-column polyominoes. We derive the area generating functions of those two classes, using extensions of existing algorithms. The growth constants of both classes are greater than the growth constant of column-convex polyominoes. Rather tight lower bounds on the growth constants complement a comprehensive asymptotic analysis.
Zero Energy Building Pays for Itself: Odyssey Elementary
Energy Technology Data Exchange (ETDEWEB)
Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-09
Odyssey Elementary is a large public school in an area of Utah with a growing population. Created as a prototype for the Davis School District, Odyssey is a zero energy building whose design has already been copied for two other new schools, both of which are targeting zero energy. It has a unique design with four 'houses' (or classroom wings) featuring generously daylit classrooms. This design contributes to the school's energy efficiency. In an effort to integrate positive messages about fitness into the learning environment, each house has a different take on the theme of 'bodies in motion' in the natural world. In a postoccupancy survey of parents, students, and teachers, more than 87% were satisfied with the building overall.
Directory of Open Access Journals (Sweden)
Nicholas S. Savva
2016-01-01
Full Text Available In the present study, a semiempirical, zero-dimensional multizone model, developed by the authors, is implemented on two automotive diesel engines, a heavy-duty truck engine and a light-duty passenger car engine with pilot fuel injection, for various operating conditions including variation of power/speed, EGR rate, fuel injection timing, fuel injection pressure, and boost pressure, to verify its capability for Nitric Oxide (NO emission prediction. The model utilizes cylinder’s basic geometry and engine operating data and measured cylinder pressure to estimate the apparent combustion rate which is then discretized into burning zones according to the calculation step used. The requisite unburnt charge for the combustion in the zones is calculated using the zone equivalence ratio provided from a new empirical formula involving parameters derived from the processing of the measured cylinder pressure and typical engine operating parameters. For the calculation of NO formation, the extended Zeldovich mechanism is used. From this approach, the model is able to provide the evolution of NO formation inside each burned zone and, cumulatively, the cylinder’s NO formation history. As proven from the investigation conducted herein, the proposed model adequately predicts NO emissions and NO trends when the engine settings vary, with low computational cost. These encourage its use for engine control optimization regarding NOx abatement and real-time/model-based NOx control applications.
Khan, Farman U; Qamar, Shamsul
2017-05-01
A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Peng, Qi; Guan, Weipeng; Wu, Yuxiang; Cai, Ye; Xie, Canyu; Wang, Pengfei
2018-01-01
This paper proposes a three-dimensional (3-D) high-precision indoor positioning strategy using Tabu search based on visible light communication. Tabu search is a powerful global optimization algorithm, and the 3-D indoor positioning can be transformed into an optimal solution problem. Therefore, in the 3-D indoor positioning, the optimal receiver coordinate can be obtained by the Tabu search algorithm. For all we know, this is the first time the Tabu search algorithm is applied to visible light positioning. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) and transmits the ID information. When the receiver detects optical signals with ID information from different LEDs, using the global optimization of the Tabu search algorithm, the 3-D high-precision indoor positioning can be realized when the fitness value meets certain conditions. Simulation results show that the average positioning error is 0.79 cm, and the maximum error is 5.88 cm. The extended experiment of trajectory tracking also shows that 95.05% positioning errors are below 1.428 cm. It can be concluded from the data that the 3-D indoor positioning based on the Tabu search algorithm achieves the requirements of centimeter level indoor positioning. The algorithm used in indoor positioning is very effective and practical and is superior to other existing methods for visible light indoor positioning.
International Nuclear Information System (INIS)
Li Zhu; Dong Huanhe
2008-01-01
Under the frame of the (2 + 1)-dimensional zero curvature equation and Tu model, (2 + 1)-dimensional Dirac hierarchy is obtained. Again by use of the expanding loop algebra the integrable coupling system of the above hierarchy is given
Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids
Saidaminov, Makhsud I.; Almutlaq, Jawaher; Sarmah, Smritakshi P.; Dursun, Ibrahim; Zhumekenov, Ayan A.; Begum, Raihana; Pan, Jun; Cho, Nam Chul; Mohammed, Omar F.; Bakr, Osman
2016-01-01
more than 2 orders of magnitude lower PLQY. Such a PLQY of Cs4PbBr6 is significantly higher than that of other solid forms of lower-dimensional metal halide perovskite derivatives and perovskite nanocrystals. We attribute this dramatic increase in PL
Wichowski, Chester
1979-01-01
The zero-based budgeting approach is designed to achieve the greatest benefit with the fewest undesirable consequences. Seven basic steps make up the zero-based decision-making process: (1) identifying program goals, (2) classifying goals, (3) identifying resources, (4) reviewing consequences, (5) developing decision packages, (6) implementing a…
Physics of low-dimensional systems
International Nuclear Information System (INIS)
Anon.
1989-01-01
The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas
Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.
Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa
2007-09-01
A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.
Directory of Open Access Journals (Sweden)
P. P. Nascimento
Full Text Available There are many problems involving cases of destruction of buildings and other structures. The columns can deteriorate for several reasons such as the evolution and changing habits of the loads. The experimental phase of this work was based on a test involving nine reinforced concrete columns under combined bending and axial compression, at an initial eccentricity of 60 mm. Two columns were used as reference, one having the original dimensions of the column and the other, monolithic, had been cast along the thickness of the strengthened piece. The remaining columns received a 35 mm thick layer of self-compacting concrete on their compressed face. For the preparation of the interface between the two materials, this surface was scarified and furrowed and connectors were inserted onto the columns' shear reinforcement in various positions and amounts.As connectors, 5 mm diameter steel bars were used (the same as for stirrups, bent in the shape of a "C" with 25 mm coatings. >As a conclusion, not only the quantity, but mainly, the location of the connectors used in the link between substrate and reinforcement is crucial to increase strength and to change failure mode.
Pulsed zero field NMR of solids and liquid crystals
International Nuclear Information System (INIS)
Thayer, A.M.
1987-02-01
This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs
Quasi-one-dimensional scattering in a discrete model
DEFF Research Database (Denmark)
Valiente, Manuel; Mølmer, Klaus
2011-01-01
We study quasi-one-dimensional scattering of one and two particles with short-range interactions on a discrete lattice model in two dimensions. One of the directions is tightly confined by an arbitrary trapping potential. We obtain the collisional properties of these systems both at finite and zero...
Zero-truncated negative binomial - Erlang distribution
Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana
2017-11-01
The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.
Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.
Wu, Tingting; Englehardt, James D
2016-12-01
An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Mason, Rod S.; Miller, Pat D.; Mortimer, Ifor; Mitchell, David J.; Dash, Neil A.
2003-01-01
Ions created from the fast-flowing positive column plasma of a glow discharge were monitored using a high voltage magnetic sector mass spectrometer. Since the field gradient and sheath potentials created by the plasma inside the source opposed cation transfer, it is inferred that the ions detected were the field-ionized Rydberg species. This is supported by the mass spectral changes which occurred when a negative bias was applied to the sampling aperture and by the contrasting behavior when attached to a quadrupole analyzer. Reaction with H 2 (titrated into the flowing plasma) quenched not only the ionization of discharge gas Rydberg atoms but also the passage of electric current through the plasma, without significant changes to the field and sheath potentials. Few 'free' ions were present and the lifetimes of the Rydberg atoms detected were much longer than seen in lower pressure experiments, indicating additional stabilization in the plasma environment. The observations support the model of the flowing plasma, given previously [R. S. Mason, P. D. Miller, and I. P. Mortimer, Phys. Rev. E 55, 7462 (1997)] as mainly a neutral Rydberg atom gas, rather than a conventional ion-electron plasma
A low dimensional dynamical system for the wall layer
Aubry, N.; Keefe, L. R.
1987-01-01
Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.
Statistics of zero crossings in rough interfaces with fractional elasticity
Zamorategui, Arturo L.; Lecomte, Vivien; Kolton, Alejandro B.
2018-04-01
We study numerically the distribution of zero crossings in one-dimensional elastic interfaces described by an overdamped Langevin dynamics with periodic boundary conditions. We model the elastic forces with a Riesz-Feller fractional Laplacian of order z =1 +2 ζ , such that the interfaces spontaneously relax, with a dynamical exponent z , to a self-affine geometry with roughness exponent ζ . By continuously increasing from ζ =-1 /2 (macroscopically flat interface described by independent Ornstein-Uhlenbeck processes [Phys. Rev. 36, 823 (1930), 10.1103/PhysRev.36.823]) to ζ =3 /2 (super-rough Mullins-Herring interface), three different regimes are identified: (I) -1 /2 value in the system size, or decays as a power-law towards (II) a subextensive or (III) an intensive value. In the steady state, the distribution of intervals between zeros changes from an exponential decay in (I) to a power-law decay P (ℓ ) ˜ℓ-γ in (II) and (III). While in (II) γ =1 -θ with θ =1 -ζ the steady-state persistence exponent, in (III) we obtain γ =3 -2 ζ , different from the exponent γ =1 expected from the prediction θ =0 for infinite super-rough interfaces with ζ >1 . The effect on P (ℓ ) of short-scale smoothening is also analyzed numerically and analytically. A tight relation between the mean interval, the mean width of the interface, and the density of zeros is also reported. The results drawn from our analysis of rough interfaces subject to particular boundary conditions or constraints, along with discretization effects, are relevant for the practical analysis of zeros in interface imaging experiments or in numerical analysis.
Flow patterns in a slurry-bubble-column reactor under reaction conditions
Energy Technology Data Exchange (ETDEWEB)
Toselane, B.A.; Brown, D.M.; Zou, B.S.; Dudukovic, M.P. [Washington Univ., St. Louis, MO (United States)
1995-12-31
The gas and liquid radioactive tracer response curves obtained in an industrial bubble column reactor of height to diameter ratio of 10 are analyzed and the suitability of the axial dispersion model for interpretation of the results is discussed. The relationship between the tracer concentration distribution and measured detector response of the soluble gas tracer (Ar-41) is possibly dominated by the dissolved gas. The one dimensional axial dispersion model cannot match all the experimental observations well and the flow pattern of the undissolved gas cannot be determined with certainty.
The geometry of percolation fronts in two-dimensional lattices with spatially varying densities
International Nuclear Information System (INIS)
Gastner, Michael T; Oborny, Beáta
2012-01-01
Percolation theory is usually applied to lattices with a uniform probability p that a site is occupied or that a bond is closed. The more general case, where p is a function of the position x, has received less attention. Previous studies with long-range spatial variations in p(x) have only investigated cases where p has a finite, non-zero gradient at the critical point p c . Here we extend the theory to two-dimensional cases in which the gradient can change from zero to infinity. We present scaling laws for the width and length of the hull (i.e. the boundary of the spanning cluster). We show that the scaling exponents for the width and the length depend on the shape of p(x), but they always have a constant ratio 4/3 so that the hull's fractal dimension D = 7/4 is invariant. On this basis, we derive and verify numerically an asymptotic expression for the probability h(x) that a site at a given distance x from p c is on the hull. (paper)
Limitations of the gravity technique when investigating a possible ground zero
CSIR Research Space (South Africa)
Fourie, CJS
2009-06-01
Full Text Available Technique should be used at a possible ground zero because it is one of the most appropriate Geophysical • Methods to detect cavities, and should produce positive results. It should only be used by an experienced team to guarantee credible results....kashangroup.com ] The Limitations of the Gravity Technique when Investigating a Possible Ground Zero 1CJS FOURIE, 2R MURDIE, 3LR GAYA-PIQUE 1Laboratory for Mining Innovation (LMI), CSIR, PO Box 395, Pretoria, South Africa, sfourie@csir.co.za 2Gold Fields, Australia, St Ives...
International Nuclear Information System (INIS)
Miura, Hidenori; Uozumi, Koichi
2009-01-01
At electrorefining process, fission products(FPs) accumulate in molten salt. To avoid influence on heating control by decay heat and enlargement of FP amount in the recovered fuel, FP elements must be removed from the spent salt of the electrorefining process. For the removal of the FPs from the spent salt, we are investigating the availability of zeolite column system. For obtaining the basic data of the column system, such as flow property and ion-exchange performance while high temperature molten salt is passing through the column, and experimental apparatus equipped with fraction collector was developed. By using this apparatus, following results were obtained. 1) We cleared up the flow parameter of column system with zeolite powder, such as flow rate control by argon pressure. 2) Zeolite 4A in the column can absorb cesium that is one of the FP elements in molten salt. From these results, we got perspective on availability of the zeolite column system. (author)
Tallentire, Sarah E; Child, Felicity; Fall, Ian; Vella-Zarb, Liana; Evans, Ivana Radosavljević; Tucker, Matthew G; Keen, David A; Wilson, Claire; Evans, John S O
2013-08-28
We describe the synthesis and characterization of a family of materials, Zr1-xSnxMo2O8 (0 thermal expansion coefficient can be systematically varied from negative to zero to positive values. These materials allow tunable expansion in a single phase as opposed to using a composite system. Linear thermal expansion coefficients, αl, ranging from -7.9(2) × 10(-6) to +5.9(2) × 10(-6) K(-1) (12-500 K) can be achieved across the series; contraction and expansion limits are of the same order of magnitude as the expansion of typical ceramics. We also report the various structures and thermal expansion of "cubic" SnMo2O8, and we use time- and temperature-dependent diffraction studies to describe a series of phase transitions between different ordered and disordered states of this material.
Fermions in five-dimensional brane world models
Energy Technology Data Exchange (ETDEWEB)
Smolyakov, Mikhail N. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,119991, Moscow (Russian Federation)
2016-06-28
In the present paper the fermion fields, living in the background of five-dimensional warped brane world models with compact extra dimension, are thoroughly examined. The Kaluza-Klein decomposition and isolation of the physical degrees of freedom is performed for those five-dimensional fermion field Lagrangians, which admit such a decomposition to be performed in a mathematically consistent way and provide a physically reasonable four-dimensional effective theory. It is also shown that for the majority of five-dimensional fermion field Lagrangians there are no (at least rather obvious) ways to perform the Kaluza-Klein decomposition consistently. Moreover, in these cases one may expect the appearance of various pathologies in the four-dimensional effective theory. Among the cases, for which the Kaluza-Klein decomposition can be performed in a mathematically consistent way, the case, which reproduces the Standard Model by the zero Kaluza-Klein modes most closely regardless of the size of the extra dimension, is examined in detail in the background of the Randall-Sundrum model.
Dividing wall column: Improving thermal efficiency, energy savings and economic performance
International Nuclear Information System (INIS)
Aurangzeb, Md; Jana, Amiya K.
2016-01-01
Highlights: • A rigorous model is developed for a dividing wall column. • Heat transfer model for metal wall is proposed. • Performance improvement is quantified for a ternary system. • Thermal efficiency, energy savings and cost are three used indices. - Abstract: This work aims at investigating the performance improvement of a dividing wall column (DWC) for the separation of a ternary system. It is true that for fractionating a ternary mixture, at least a sequence of two conventional distillation columns is required. To improve energetic and economic potential, and reduce space requirement, two columns are proposed to merge into one shell with a dividing wall. For developing the mathematical model of a distillation column, we consider the effect of heat transfer through the metal wall placed at an intermediated position inside the cylindrical column. The simulated DWC model is verified using the Aspen Plus flowsheet simulator with a wide variety of phase equilibrium models. The superiority of this proposed heat integrated configuration is shown for a ternary hydrocarbon system over a conventional distillation sequence (CDS) in terms of mainly three performance indexes, namely thermal efficiency, energy savings and total annual cost (TAC). It is investigated that the dividing wall distillation scheme can secure a 37.5% energy efficiency, and a 22.6% savings in energy consumption and 23.23% in TAC. The promising performance can also be quantified in terms of a reasonably low payback period of 2.11 years.
Counting Zero: Rethinking Feminist Epistemologies
Directory of Open Access Journals (Sweden)
Xin Liu
2017-10-01
Full Text Available This article concerns feminist engagements with epistemologies. Feminist epistemologies have revealed and challenged the exclusions and denigrations at work in knowledge production processes. And yet, the emphasis on the partiality of knowledge and the non-innocence of any subject position also cast doubt on the possibility of feminist political communities. In view of this, it has been argued that the very parameter of epistemology poses limitations for feminism, for it leads to either political paralysis or prescriptive politics that in fact undoes the political of politics. From a different perspective, decolonial feminists argue for radical epistemic disobedience and delinking the move beyond the confines of Western systems of knowledge and its extractive knowledge economy. Nevertheless, the oppositional logic informs both feminist epistemologies and its critiques, which I argue is symptomatic of the epistemic habits of academic feminism. This article ends with a preliminary reconsideration of the question of origin through the figure of zero. It asks whether it might be possible to conceive of feminist epistemologies as performing the task of counting zero – accounting for origin, wholeness, and universality – that takes into account specificities without forfeiting coalition and claims to knowledge.
Final design and construction issues of the TAPIRO epithermal column
International Nuclear Information System (INIS)
Burn, K.W.; Casalini, L.; Nava, E.; Tinti, R.; Martini, S.; Mondini, D.; Rosi, G.
2006-01-01
The construction of the epithermal column for clinical trials at the 5 kW fast reactor TAPIRO (ENEA, Casaccia, Italy) has been completed, the experimental bunker in the reactor hall has been designed and the beam characterisation will shortly be underway. As has been reviewed at the last two ICNCT conferences, the low power of the neuron source and the relatively distant patient position outside the reactor shield led to a column design with certain characteristics. One consequence is the employment of a collimator containing lead of high purity with the resultant problems of mechanical construction. Another is the substantial neutron leakage from the column outside the aperture into the experimental bunker. Furthermore the absence of a gamma shield has led to an electron dose to the skin. This is resolved with an electron shield of aluminium. Here the construction and final design issues are discussed and the state of the project is presented. (author)
On the quantisation of one-dimensional bags
International Nuclear Information System (INIS)
Fairley, G.T.; Squires, E.J.
1976-01-01
The quantisation of one-dimensional MIT bags by expanding the fields as a sum of classical modes and truncating the series after the first term is discussed. The lowest states of a bag in a world containing two scalar quark fields are obtained. Problems associated with the zero-point oscillations of the field are discussed. (Auth.)
Computer simulation of plasma behavior in open-ended linear theta machines. Scientific report 81-5
Energy Technology Data Exchange (ETDEWEB)
Stover, E. K.
1981-04-01
Zero-dimensional and one-dimensional fluid plasma computer models have been developed to study the behavior of linear theta pinch plasmas. Computer simulation results generated from these codes are compared with data obtained from two theta pinch experiments so that significant machine plasma behavior can be identified. The experiments examined are a collisional experiment, T/sub i/ approx. 50 eV, n/sub e/ approx. 10/sup 17/ cm/sup -3/, where the plasma mean-free-path was significantly less than the plasma column length, and a hot ion species experiment, T/sub i/ approx. 3 keV, n/sub e/ approx. 10/sup 16/ cm/sup -3/, where the ion mean-free-path was on the order of the plasma column length.
The column architecture -- A novel architecture for event driven 2D pixel imagers
International Nuclear Information System (INIS)
Millaud, J.; Nygren, D.
1996-01-01
The authors describe an electronic architecture for two-dimensional pixel arrays that permits very large increases in rate capability for event- or data-driven applications relative to conventional x-y architectures. The column architecture also permits more efficient use of silicon area in applications requiring local buffering, frameless data acquisition, and it avoids entirely the problem of ambiguities that may arise in conventional approaches. Two examples of active implementation are described: high energy physics and protein crystallography
Inference Based on SVARs Identied with Sign and Zero Restrictions: Theory and Applications
Juan F. Rubio-Ramírez; Jonas E. Arias; Daniel F. Waggoner
2013-01-01
Are optimism shocks an important source of business cycle fluctuations? Are deficit-financed tax cuts better than deficit-financed spending to increase output? These questions have been previously studied using SVARs identified with sign and zero restrictions and the answers have been positive and definite in both cases. While the identification of SVARs with sign and zero restrictions is theoretically attractive because it allows the researcher to remain agnostic with respect to the response...
Energy Technology Data Exchange (ETDEWEB)
Keller, Kai Johannes
2010-04-15
The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)
International Nuclear Information System (INIS)
Keller, Kai Johannes
2010-04-01
The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)
International Nuclear Information System (INIS)
Vasquez Salvador, Pablo Antonio
2004-01-01
Gamma Ray Scanning is an online technique to 'view' the hydraulic performance of an operating column, with no disruption to operating processes conditions (pressure and temperature), as a cost-effective solution. The principle of this methodology consists of a small suitably sealed gamma radiation source and a radiation detector experimentally positioned to the column, moving concurrently in small increments on opposite sides and the quantity of gamma transmitted. The source-detector system consists of: a sealed ''6 0 Co radioactive source in a panoramic lead radiator, a scintillator detector coupled to a ratemeter / analyzer and a mobile system. In this work, a gamma scanning sealed source-detector system for distillation columns, was developed, comparing two scintillator detectors: NaI(Tl) (commercial) and CsI(Tl) (IPEN). In order to project the system, a simulated model of a tray-type distillation column was used. The equipment developed was tested in an industrial column for water treatment (6.5 m diameter and 40 m height). The required activities of 6 ''0Co, laboratory (11.1 MBq) and industrial works (1.48 TBq) were calculated by simulation software. Both, the NaI(Tl) and the CsI(Tl) detectors showed good proprieties for gamma scanning applications, determining the position and presence or absence of trays. (author)
Nutrition and HIV-Positive Pregnancy
Montgomery, Kristen S.
2003-01-01
When an HIV-positive woman becomes pregnant, additional nutritional considerations are warranted. Compared to routine prenatal nutritional assessment and intervention, pregnant HIV-positive women have increased needs to promote a healthy outcome. This column contains information on HIV and pregnancy, nutrition and infection, and nutrition for HIV-positive pregnancy. This content can be integrated into childbirth education settings to improve care to women who are HIV-positive.
International Nuclear Information System (INIS)
Kalloniatis, A.C.
1996-01-01
SU(2) Yang-Mills theory coupled to massive adjoint scalar matter is studied in 1+1 dimensions using discretized light-cone quantization. This theory can be obtained from pure Yang-Mills theory in 2+1 dimensions via dimensional reduction. On the light cone, the vacuum structure of this theory is encoded in the dynamical zero mode of a gluon and a constrained mode of the scalar field. The latter satisfies a linear constraint, suggesting no nontrivial vacua in the present paradigm for symmetry breaking on the light cone. I develop a diagrammatic method to solve the constraint equation. In the adiabatic approximation I compute the quantum-mechanical potential governing the dynamical gauge mode. Because of a condensation of the lowest momentum modes of the dynamical gluons, a centrifugal barrier is generated in the adiabatic potential. In the present theory, however, the barrier height appears too small to make any impact in this model. Although the theory is superrenormalizable on naive power-counting grounds, the removal of ultraviolet divergences is nontrivial when the constrained mode is taken into account. The solution of this problem is discussed. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao
2016-01-01
Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.
Performance evaluation of a rectifier column using gamma column scanning
Directory of Open Access Journals (Sweden)
Aquino Denis D.
2017-12-01
Full Text Available Rectifier columns are considered to be a critical component in petroleum refineries and petrochemical processing installations as they are able to affect the overall performance of these facilities. It is deemed necessary to monitor the operational conditions of such vessels to optimize processes and prevent anomalies which could pose undesired consequences on product quality that might lead to huge financial losses. A rectifier column was subjected to gamma scanning using a 10-mCi Co-60 source and a 2-inch-long detector in tandem. Several scans were performed to gather information on the operating conditions of the column under different sets of operating parameters. The scan profiles revealed unexpected decreases in the radiation intensity at vapour levels between trays 2 and 3, and between trays 4 and 5. Flooding also occurred during several scans which could be attributed to parametric settings.
A Novel Medical Image Watermarking in Three-dimensional Fourier Compressed Domain
Directory of Open Access Journals (Sweden)
Baoru Han
2015-09-01
Full Text Available Digital watermarking is a research hotspot in the field of image security, which is protected digital image copyright. In order to ensure medical image information security, a novel medical image digital watermarking algorithm in three-dimensional Fourier compressed domain is proposed. The novel medical image digital watermarking algorithm takes advantage of three-dimensional Fourier compressed domain characteristics, Legendre chaotic neural network encryption features and robust characteristics of differences hashing, which is a robust zero-watermarking algorithm. On one hand, the original watermarking image is encrypted in order to enhance security. It makes use of Legendre chaotic neural network implementation. On the other hand, the construction of zero-watermarking adopts differences hashing in three-dimensional Fourier compressed domain. The novel watermarking algorithm does not need to select a region of interest, can solve the problem of medical image content affected. The specific implementation of the algorithm and the experimental results are given in the paper. The simulation results testify that the novel algorithm possesses a desirable robustness to common attack and geometric attack.
Local, zero-power void coefficient measurements in the ACPR
Energy Technology Data Exchange (ETDEWEB)
Rivard, J B; Thome, F V [Sandia Laboratories (United States)
1974-07-01
Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from {approx}6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)
Local, zero-power void coefficient measurements in the ACPR
International Nuclear Information System (INIS)
Rivard, J.B.; Thome, F.V.
1974-01-01
Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from ∼6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)
A New Generation of Luminescent Materials Based on Low-Dimensional Perovskites
Pan, Jun
2017-06-02
Low-dimensional perovskites with high luminescence properties are promising materials for optoelectronic applications. In this article, properties of two emerging types of low-dimensional perovskites are discussed, including perovskite quantum dots CsPbX3 (X = Cl, Br or I) and zero-dimensional perovskite Cs4PbBr6. Moreover, their application for light down conversion in LCD backlighting systems and in visible light communication are also presented. With their superior optical properties, we believe that further development of these materials will potentially open more prospective applications, especially for optoelectronics devices.
Single column and two-column H-D-T distillation experiments at TSTA
International Nuclear Information System (INIS)
Yamanishi, T.; Yoshida, H.; Hirata, S.; Naito, T.; Naruse, Y.; Sherman, R.H.; Bartlit, J.R.; Anderson, J.L.
1988-01-01
Cryogenic distillation experiments were peformed at TSTA with H-D-T system by using a single column and a two-column cascade. In the single column experiment, fundamental engineering data such as the liquid holdup and the HETP were measured under a variety of operational condtions. The liquid holdup in the packed section was about 10 /approximately/ 15% of its superficial volume. The HETP values were from 4 to 6 cm, and increased slightly with the vapor velocity. The reflux ratio had no effect on the HETP. For the wo-colunn experiemnt, dynamic behavior of the cascade was observed. 8 refs., 7 figs., 2 tabs
Kramp, Kelvin H; van Det, Marc J; Totte, Eric R; Hoff, Christiaan; Pierie, Jean-Pierre E N
2014-05-01
Cholecystectomy was one of the first surgical procedures to be performed with laparoscopy in the 1980s. Currently, two operation setups generally are used to perform a laparoscopic cholecystectomy: the French and the American position. In the French position, the patient lies in the lithotomy position, whereas in the American position, the patient lies supine with the left arm in abduction. To find an ergonomic difference between the two operation setups the movements of the surgeon's vertebral column were analyzed in a crossover study. The posture of the surgeon's vertebral column was recorded intraoperatively using an electromagnetic motion-tracking system with three sensors attached to the head and to the trunk at the levels of Th1 and S1. A three-dimensional posture analysis of the cervical and thoracolumbar spine was performed to evaluate four surgeons removing a gallbladder in the French and American position. The body angles assessed were flexion/extension of the cervical and thoracolumbar spine, axial rotation of the cervical and thoracolumbar spine, lateroflexion of the cervical and thoracolumbar spine, and the orientation of the head in the sagittal plane. For each body angle, the mean, the percentage of operation time within an ergonomic acceptable range, and the relative frequencies were calculated and compared. No statistical difference was observed in the mean body angles or in the percentages of operation time within an acceptable range between the French and the American position. The relative frequencies of the body angles might indicate a trend toward slight thoracolumbar flexion in the French position. In a modern dedicated minimally invasive surgery suite, the body posture of the neck and trunk and the orientation of the head did not differ significantly between the French and American position.
Institute of Scientific and Technical Information of China (English)
MA Qiang; RONG Mingzhe; WU Yi; XU Tiejun; SUN Zhiqiang
2008-01-01
The dynamicprocess of arc pressure and corresponding arc column expansion, which is the main feature after arc ignition and has a significant effect on the breaking behaviour of low -voltage circuit breakers, is studied. By constructing a three dimensional mathematical model of air arc plasma and adopting the Control Volume Method, the parameters of arc plasma including temperature and pressure axe obtained. The variations of pressure field and temperature field with time are simulated. The result indicates that there are six stages for the process of arc column expansion according to the variation of pressure in arc chamber. In the first stage, the maximal pressure locates in the region close to cathode, and in the second stage the maximal pressure shifts to the region close to the anode. In the third stage, the pressure difference between the middle of arc column and the ambient gas is very large, so the arc column begins to expand apparently. In the fourth stage, the pressure wave propagates towards both ends and the maximal pressure appears at the two ends when the pressure wave reaches both sidewalls. In the fifth stage, the pressure wave is reflected and collides in the middle of the arc chamber. In the last stage, the propagation and reflection of pressure wave will repeat several times until a steady burning state is reached. In addition, the experimental results of arc column expansion, corresponding to the arc pressure variation, are presented to verify the simulation results.
ON THE ORIGIN OF THE HIGH COLUMN DENSITY TURNOVER IN THE H I COLUMN DENSITY DISTRIBUTION
International Nuclear Information System (INIS)
Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.
2012-01-01
We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N H I ≈ 10 21 cm –2 , which is present at both z = 0 and z ≈ 3, and a lack of systems above N H I ≈ 10 22 cm –2 at z = 0. Using observations of the column density distribution, we argue that the H I-H 2 transition does not cause the turnover at N H I ≈ 10 21 cm –2 but can plausibly explain the turnover at N H I ∼> 10 22 cm –2 . We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ∼ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.
Bo, Z.; Chen, J. H.
2010-02-01
The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.
International Nuclear Information System (INIS)
Bo, Z; Chen, J H
2010-01-01
The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.
Zero-rating food in South Africa: A computable general equilibrium analysis
Directory of Open Access Journals (Sweden)
M Kearney
2004-04-01
Full Text Available Zero-rating food is considered to alleviate poverty of poor households who spend the largest proportion of their income on food. However, this will result in a loss of revenue for government. A Computable General Equilibrium (CGE model is used to analyze the combined effects on zero-rating food and using alternative revenue sources to compensate for the loss in revenue. To prohibit excessively high increases in the statutory VAT rates of business and financial services, increasing direct taxes or increasing VAT to 16 per cent, is investigated. Increasing direct taxes is the most successful option when creating a more progressive tax structure, and still generating a positive impact on GDP. The results indicate that zero-rating food combined with a proportional percentage increase in direct taxes can improve the welfare of poor households.
Helmueller, Shawn C; Poe, Donald P; Kaczmarski, Krzysztof
2018-02-02
An approach to conducting SFC separations under pseudo-adiabatic condition utilizing a dual-zone column heater is described. The heater allows for efficient separations at low pressures above the critical temperature by imposing a temperature profile along the column wall that closely matches that for isenthalpic expansion of the fluid inside the column. As a result, the efficiency loss associated with the formation of radial temperature gradients in this difficult region can be largely avoided in packed analytical scale columns. For elution of n-octadecylbenzene at 60 °C with 5% methanol modifier and a flow rate of 3 mL/min, a 250 × 4.6-mm column packed with 5-micron Kinetex C18 particles began to lose efficiency (8% decrease in the number of theoretical plates) at outlet pressures below 142 bar in a traditional forced air oven. The corresponding outlet pressure for onset of excess efficiency loss was decreased to 121 bar when the column was operated in a commercial HPLC column heater, and to 104 bar in the new dual-zone heater operated in adiabatic mode, with corresponding increases in the retention factor for n-octadecylbenzene from 2.9 to 6.8 and 14, respectively. This approach allows for increased retention and efficient separations of otherwise weakly retained analytes. Applications are described for rapid SFC separation of an alkylbenzene mixture using a pressure ramp, and isobaric separation of a cannabinoid mixture. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of Zero Reynolds Shear Stress Appearing in Dilute Surfactant Drag-Reducing Flow
Directory of Open Access Journals (Sweden)
Weiguo Gu
2011-01-01
Full Text Available Dilute surfactant solution of 25 ppm in the two-dimensional channel is investigated experimentally compared with water flow. Particle image velocimetry (PIV system is used to take 2D velocity frames in the streamwise and wall-normal plane. Based on the frames of instantaneous vectors and statistical results, the phenomenon of zero Reynolds shear stress appearing in the drag-reducing flow is discussed. It is found that 25 ppm CTAC solution exhibits the highest drag reduction at Re = 25000 and loses drag reduction completely at Re = 40000. When drag reduction lies in the highest, Reynolds shear stress disappears and reaches zero although the RMS of the velocity fluctuations is not zero. By the categorization in four quadrants, the fluctuations of 25 ppm CTAC solution are distributed in all four quadrants equally at Re = 25000, which indicates that turnaround transportation happens in drag-reducing flow besides Reynolds shear stress transportation. Moreover, the contour distribution of streamwise velocity and the fluctuations suggests that turbulence transportation is depressed in drag-reducing flow. The viscoelasticity is possible to decrease the turbulence transportation and cause the turnaround transportation.
Directory of Open Access Journals (Sweden)
Ahmed Gouda
2015-10-01
Full Text Available A finite element model (FEM was constructed using specialized three-dimensional (3D software to investigate the punching shear behavior of interior slab-column connections subjected to a moment-to-shear ratio of 0.15 m. The FEM was then verified against the experimental results of full-scale interior slab-column connections reinforced with glass fiber reinforcement polymer (GFRP bars previously tested by the authors. The FEM results showed that the constructed model was able to predict the behavior of the slabs with reasonable accuracy. Afterward, the verified model was used to conduct a parametric study to investigate the effects of reinforcement ratio, perimeter-to-depth ratio, and column aspect ratio on the punching shear behavior of such connections. The test results showed that increasing the tested parameters enhanced the overall behavior of the connections in terms of decreasing deflections and reinforcement strain and increasing the ultimate capacity. In addition, the obtained punching shear stresses of the connections were compared to the predictions of the Canadian standard and the American guideline for FRP-reinforced concrete structures.
Ogden, Daniel M., Jr.
1978-01-01
Suggests that the most practical budgeting system for most managers is a formalized combination of incremental and zero-based analysis because little can be learned about most programs from an annual zero-based budget. (Author/IRT)
Zero modes and entanglement entropy
Energy Technology Data Exchange (ETDEWEB)
Yazdi, Yasaman K. [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)
2017-04-26
Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.
Influence of pressure on the properties of chromatographic columns. II. The column hold-up volume.
Gritti, Fabrice; Martin, Michel; Guiochon, Georges
2005-04-08
The effect of the local pressure and of the average column pressure on the hold-up column volume was investigated between 1 and 400 bar, from a theoretical and an experimental point of view. Calculations based upon the elasticity of the solids involved (column wall and packing material) and the compressibility of the liquid phase show that the increase of the column hold-up volume with increasing pressure that is observed is correlated with (in order of decreasing importance): (1) the compressibility of the mobile phase (+1 to 5%); (2) in RPLC, the compressibility of the C18-bonded layer on the surface of the silica (+0.5 to 1%); and (3) the expansion of the column tube (columns packed with the pure Resolve silica (0% carbon), the derivatized Resolve-C18 (10% carbon) and the Symmetry-C18 (20% carbon) adsorbents, using water, methanol, or n-pentane as the mobile phase. These solvents have different compressibilities. However, 1% of the relative increase of the column hold-up volume that was observed when the pressure was raised is not accounted for by the compressibilities of either the solvent or the C18-bonded phase. It is due to the influence of the pressure on the retention behavior of thiourea, the compound used as tracer to measure the hold-up volume.
Compact electron beam focusing column
Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani
2001-12-01
A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.
Shesterikov, I.; Milojevic, D.; von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.
2017-08-01
The manipulator systems installed at the VINETA.II magnetic reconnection experiment are essential elements for experimental investigation of local plasma parameters. A novel three-dimensional (3D) probe manipulator has been designed, implemented and successfully operated at VINETA.II. This work presents its design and performance for three-dimensional measurements of VINETA.II plasmas. Its design consists of three vertically stacked independent and mutually perpendicular linear motion stages which allow flexible positioning of diagnostic tools such as electrical and magnetic probes or optical diagnostics within the vacuum vessel. Its design features include a wide spatial coverage, sub-millimeter positioning accuracy and the capability to operate in a harsh environment under the influence of microwaves, radio-frequency waves and direct contact with plasma. Manipulator performance is assessed by measuring a volumetric distribution of plasma parameters by a B-dot probe. A typical discharge of the magnetic reconnection setup in VINETA.II with a pulse time of τ=600 μs is chosen for this purpose. The azimuthal magnetic field distribution measured with the 3D manipulator agrees favorably with measurements obtained by the two-dimensional (2D) manipulator, used at VINETA.II as a standard reference diagnostic tool, thereby demonstrating its reliability and performance. A programmable stepper motor controller (TMCM-1110) that is operated remotely by a PC drives all possible features of the manipulator system.
Nutrition and HIV-Positive Pregnancy
Montgomery, Kristen S.
2003-01-01
When an HIV-positive woman becomes pregnant, additional nutritional considerations are warranted. Compared to routine prenatal nutritional assessment and intervention, pregnant HIV-positive women have increased needs to promote a healthy outcome. This column contains information on HIV and pregnancy, nutrition and infection, and nutrition for HIV-positive pregnancy. This content can be integrated into childbirth education settings to improve care to women who are HIV-positive. PMID:17273329
Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.
1985-01-01
The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.
Admittance Scanning for Whole Column Detection.
Stamos, Brian N; Dasgupta, Purnendu K; Ohira, Shin-Ichi
2017-07-05
Whole column detection (WCD) is as old as chromatography itself. WCD requires an ability to interrogate column contents from the outside. Other than the obvious case of optical detection through a transparent column, admittance (often termed contactless conductance) measurements can also sense changes in the column contents (especially ionic content) from the outside without galvanic contact with the solution. We propose here electromechanically scanned admittance imaging and apply this to open tubular (OT) chromatography. The detector scans across the column; the length resolution depends on the scanning velocity and the data acquisition frequency, ultimately limited by the physical step resolution (40 μm in the present setup). Precision equal to this step resolution was observed for locating an interface between two immiscible liquids inside a 21 μm capillary. Mechanically, the maximum scanning speed was 100 mm/s, but at 1 kHz sampling rate and a time constant of 25 ms, the highest practical scan speed (no peak distortion) was 28 mm/s. At scanning speeds of 0, 4, and 28 mm/s, the S/N for 180 pL (zone length of 1.9 mm in a 11 μm i.d. column) of 500 μM KCl injected into water was 6450, 3850, and 1500, respectively. To facilitate constant and reproducible contact with the column regardless of minor variations in outer diameter, a double quadrupole electrode system was developed. Columns of significant length (>1 m) can be readily scanned. We demonstrate its applicability with both OT and commercial packed columns and explore uniformity of retention along a column, increasing S/N by stopped-flow repeat scans, etc. as unique applications.
Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale
Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan
2018-04-01
This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.
NASA Net Zero Energy Buildings Roadmap
Energy Technology Data Exchange (ETDEWEB)
Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.
2014-10-01
In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.
Pellegrino, Gerardo; Taraschi, Valerio; Vercellotti, Tomaso; Ben-Nissan, Besim; Marchetti, Claudio
This case report describes new implant site preparation techniques joining the benefits of using an intraoral navigation system to optimize three-dimensional implant site positioning in combination with an ultrasonic osteotomy. A report of five patients is presented, and the implant positions as planned in the navigation software with the postoperative scan image were compared. The preliminary results are useful, although further clinical studies with larger populations are needed to confirm these findings.
Energy Technology Data Exchange (ETDEWEB)
2016-09-01
The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.
Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho
2017-12-01
The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.
International Nuclear Information System (INIS)
Xiu-Ming, Zhang; Yi-Shi, Duan
2010-01-01
In the light of the decomposition of the SU(2) gauge potential for I = 1/2, we obtain the SU(2) Chern-Simons current over S 4 , i.e. the vortex current in the effective field for the four-dimensional quantum Hall effect. Similar to the vortex excitations in the two-dimensional quantum Hall effect (2D FQH) which are generated from the zero points of the complex scalar field, in the 4D FQH, we show that the SU(2) Chern–Simons vortices are generated from the zero points of the two-component wave functions Ψ, and their topological charges are quantized in terms of the Hopf indices and Brouwer degrees of φ-mapping under the condition that the zero points of field Ψ are regular points. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)
Thermal process of an air column
International Nuclear Information System (INIS)
Lee, F.T.
1994-01-01
Thermal process of a hot air column is discussed based on laws of thermodynamics. The kinetic motion of the air mass in the column can be used as a power generator. Alternatively, the column can also function as a exhaust/cooler
Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD
International Nuclear Information System (INIS)
Armesto, Nestor; Bondarenko, Sergey; Quiroga-Arias, Paloma; Milhano, Jose Guilherme
2008-01-01
We examine numerically different zero-dimensional reaction-diffusion processes as candidate toy models for high-energy QCD evolution. Of the models examined-Reggeon Field Theory, Directed Percolation and Reversible Processes-only the latter shows the behaviour commonly expected, namely an increase of the scattering amplitude with increasing rapidity. Further, we find that increasing recombination terms, quantum loops and the heuristic inclusion of a running of the couplings, generically slow down the evolution.
Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J
2017-06-08
Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).
Thermodynamics of higher dimensional black holes
International Nuclear Information System (INIS)
Accetta, F.S.; Gleiser, M.
1986-05-01
We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs