WorldWideScience

Sample records for zero-boil-off liquid hydrogen

  1. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  2. Zero Boil Off System for Cryogen Storage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to develop a zero boil off (ZBO) dewar using a two-stage pulse-tube cooler together with two innovative, continuous-flow cooling loops and an...

  3. Pad B Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  4. Liquid Nitrogen Zero Boiloff Testing

    Science.gov (United States)

    Plachta, David; Feller, Jeffrey; Johnson, Wesley; Robinson, Craig

    2017-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASAs future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryo-shroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryo-cooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  5. Liquid hydrogen: back to basics

    Energy Technology Data Exchange (ETDEWEB)

    Sherif, S.A. [Dept. of Mechanical and Aerospace Engineering, Univ. of Florida, Florida (United States)

    2009-07-01

    'Full text': Liquid hydrogen is primarily used as a rocket fuel and is predestined for supersonic and hypersonic space vehicles to a large extent because it has the lowest boiling point density and the highest specific thrust of any known fuel. Its favorable characteristics include its high heating value per unit mass, its wide ignition range in hydrogen/oxygen or air mixtures, as well as its large flame speed and cooling capacity due to its high specific heat which permits very effective engine cooling and cooling the critical parts of the outer skin. Liquid hydrogen has some other important uses such as in high-energy nuclear physics and bubble chambers. The transport of hydrogen is vastly more economical when it is in liquid form even though cryogenic refrigeration and special Dewar vessels are required. Although liquid hydrogen can provide a lot of advantages, its uses are restricted in part because liquefying hydrogen by existing conventional methods consumes a large amount of energy (around 30% of its heating value). Liquefying 1 kg of hydrogen in a medium-size plant requires 10 to 13 kWh of electric energy. In addition, boil-off losses associated with the storage, transportation, and handling of liquid hydrogen can consume up to 40% of its available combustion energy. It is therefore important to search for ways that can improve the efficiency of the liquefiers and diminish the boil-off losses. This lecture gives an overview of the main issues associated with the production, storage, and handling of liquid hydrogen. Some discussion of promising ways of hydrogen liquefaction will also be presented. (author)

  6. Heat transfer in pool boiling liquid neon, deuterium and hydrogen, and critical heat flux in forced convection of liquid neon

    International Nuclear Information System (INIS)

    Astruc, J.M.

    1967-12-01

    In the first part, free-convection and nucleate pool boiling heat transfer (up to burn-out heat flux) between a platinum wire of 0.15 mm in diameter in neon, deuterium and hydrogen has been studied at atmospheric pressure. These measurements were continued in liquid neon up to 23 bars (Pc ≅ 26.8 b). Film boiling heat transfer coefficients have been measured in pool boiling liquid neon at atmospheric pressure with three heating wires (diameters 0.2, 0.5, 2 mm). All the results have been compared with existing correlations. The second part is devoted to measurements of the critical heat flux limiting heat transfer with small temperature differences between the wall and the liquid neon flowing inside a tube (diameters 3 x 3.5 mm) heated by joule effect on 30 cm of length. Influences of flow stability, nature of electrical current, pressure, mass flow rate and subcooling are shown. In conclusion, the similarity of the heat transfer characteristics in pool boiling as well as in forced convection of liquid neon and hydrogen is emphasized. (author) [fr

  7. Development Potentials for LH2 Storage System with Advanced Boil-off Management

    International Nuclear Information System (INIS)

    Takashi Maemura; Takanobu Kamiya; Shuichi Kawasaki; Ryo Nakamura; Kenji Nakamichi

    2006-01-01

    This paper describes our R and D until 2004 for liquid hydrogen components and system, and current development status summary from 2005 for the LH2 storing, transporting, and refuelling system with the advanced boil-off management using 'slush hydrogen', sponsored by NEDO (domestic projects). The objectives of our study from 2005 are to prove the reduction of the evaporation loss (BOG loss) by utilizing the slush hydrogen, which is the mixture of solids and triple point liquid hydrogen. Use of slush hydrogen rather than atmospheric pressure liquid hydrogen provides the advantage in density and cooling capacity. Assuming a vehicle storage tank size such as 100 to 200 litter ones, the BOG rate can be reduced to 30 percent less than the atmospheric pressure liquid hydrogen is. Present execution plan is to develop, built, and test experimental equipments composed of a slush hydrogen generator, a transfer line, and a storage tank during three years from 2005 to 2007. (authors)

  8. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vessel that is Cooled by Liquid Hydrogen in Film Boiling

    International Nuclear Information System (INIS)

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-01-01

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels

  9. Radon depletion in xenon boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T.M.; Simgen, H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2017-03-15

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of {sup 222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of >or similar 4 for the {sup 222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α-detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10{sup -15} mol/mol level. (orig.)

  10. Informing hazardous zones for on-board maritime hydrogen liquid and gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, Myra L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bran Anleu, Gabriela A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Proctor, Camron [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2018-01-01

    The significantly higher buoyancy of hydrogen compared to natural gas means that hazardous zones defined in the IGF code may be inaccurate if applied to hydrogen. This could place undue burden on ship design or could lead to situations that are unknowingly unsafe. We present dispersion analyses to examine three vessel case studies: (1) abnormal external vents of full blowdown of a liquid hydrogen tank due to a failed relief device in still air and with crosswind; (2) vents due to naturally-occurring boil-off of liquid within the tank; and (3) a leak from the pipes leading into the fuel cell room. The size of the hydrogen plumes resulting from a blowdown of the tank depend greatly on the wind conditions. It was also found that for normal operations releasing a small amount of "boil- off" gas to regulate the pressure in the tank does not create flammable concentrations.

  11. Liquid helium boil-off measurements of heat leakage from sinter-forged BSCCO current leads under DC and AC conditions

    International Nuclear Information System (INIS)

    Cha, Y.S.; Niemann, R.C.; Hull, J.R.; Youngdahl, C.A.; Lanagan, M.T.; Nakade, M.; Hara, T.

    1995-06-01

    Liquid helium boil-off experiments are conducted to determine the heat leakage rate of a pair of BSCCO 2223 high-temperature superconductor current leads made by sinter forging. The experiments are carried out in both DC and AC conditions and with and without an intermediate heat intercept. Current ranges are from 0-500 A for DC tests and 0-1,000 A rms for AC tests. The leads are self-cooled. Results show that magnetic hysteresis (AC) losses for both the BSCCO leads and the low-temperature superconductor current jumper are small for the current range. It is shown that significant reduction in heat leakage rate (liquid helium boil-off rate) is realized by using the BSCCO superconductor leads. At 100 A, the heat leakage rate of the BSCCO/copper binary lead is approximately 29% of that of the conventional copper lead. Further reduction in liquid helium boil-off rate can be achieved by using an intermediate heat intercept. For example, at 500 K, the heat leakage rate of the BSCCO/copper binary lead is only 7% of that of the conventional copper lead when an intermediate heat intercept is used

  12. Thermal Design of Vapor Cooling of Flight Vehicle Structures Using LH2 Boil-Off

    Science.gov (United States)

    Wang, Xiao-Yen; Zoeckler, Joseph

    2015-01-01

    Using hydrogen boil-off vapor to cool the structure of a flight vehicle cryogenic upper stage can reduce heat loads to the stage and increase the usable propellant in the stage or extend the life of the stage. The hydrogen vapor can be used to absorb incoming heat as it increases in temperature before being vented overboard. In theory, the amount of heat leaking into the hydrogen tank from the structure will be reduced if the structure is cooled using the propellant boil-off vapor. However, the amount of boil-off vapor available to be used for cooling and the reduction in heat leak to the propellant tank are dependent to each other. The amount of heat leak reduction to the LH2 tank also depends on the total heat load on the stage and the vapor cooling configurations.

  13. Research of the cold shield in cryogenic liquid storage

    Science.gov (United States)

    Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.

    2017-12-01

    To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.

  14. Development of Automotive Liquid Hydrogen Storage Systems

    Science.gov (United States)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  15. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    Science.gov (United States)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  16. First experiment on liquid hydrogen transportation by ship inside Osaka bay

    Science.gov (United States)

    Maekawa, K.; Takeda, M.; Hamaura, T.; Suzuki, K.; Miyake, Y.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.

    2017-12-01

    A project to import a large amount of liquid hydrogen (LH2) from Australia by a cargo carrier, which is equipped with two 1250 m3 tanks, is underway in Japan. It is important to understand sloshing and boil-off characteristics inside the LH2 tank during marine transportation. However, the LH2 sloshing and boil-off characteristics on the sea have not yet been clarified. First experiment on the LH2 transportation of 20 liter with magnesium diboride (MgB2) level sensors by the training ship “Fukae-maru”, which has 50 m long and 449 ton gross weight, was carried out successfully inside Osaka bay on February 2, 2017. In the experiment, synchronous measurements of liquid level, temperature, pressure, ship motions, and accelerations as well as the rapid depressurization test were done. The increase rate of the temperature and the pressure inside the LH2 tank were discussed under the rolling and the pitching conditions.

  17. Cavitational boiling of liquids

    International Nuclear Information System (INIS)

    Kostyuk, V.V.; Berlin, I.I.; Borisov, N.N.; Karpyshev, A.V.

    1986-01-01

    Transition boiling is a term usually denoting the segment of boiling curve 1-2, where the heat flux, q, decreases as the temperature head, ΔT/sub w/=T/sub w/-T/sub s/, increases. Transition boiling is the subject of numerous papers. Whereas most researchers have studied transition boiling of saturated liquids the authors studied for many years transition boiling of liquids subcooled to the saturation temperature. At high values of subcooling, ΔT/sub sub/=T/sub s/-T/sub 1/, an anomalous dependence of the heat flux density on the temperature head was detected. Unlike a conventional boiling curve, where a single heat flux maximum occurs, another maximum is seen in the transition boiling segment, the boiling being accompanied by strong noise. The authors refer to this kind of boiling as cavitational. This process is largely similar to noisy boiling of helium-II. This article reports experimental findings for cavitational boiling of water, ethanol, freon-113 and noisy boiling of helium-II

  18. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    Science.gov (United States)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  19. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  20. Development of thermohydraulic codes for modeling liquid metal boiling in LMR fuel subassemblies

    International Nuclear Information System (INIS)

    Sorokin, G.A.; Avdeev, E.F.; Zhukov, A.V.; Bogoslovskaya, G.P.; Sorokin, A.P.

    2000-01-01

    An investigation into the reactor core accident cooling, which are associated with the power grow up or switch off circulation pumps in the event of the protective equipment comes into action, results in the problem of liquid metal boiling heat transfer. Considerable study has been given over the last 30 years to alkaline metal boiling including researches of heat transfer, boiling patterns, hydraulic resistance, crisis of heat transfer, initial heating up, boiling onset and instability of boiling. The results of these investigations have shown that the process of liquid metal boiling has substantial features in comparison with water boiling. Mathematical modeling of two phase flows in fast reactor fuel subassemblies have been developed intensively. Significant success has been achieved in formulation of two phase flow through the pin bundle and in their numerical realization. Currently a set of codes for thermohydraulic analysis of two phase flows in fast reactor subassembly have been developed with 3D macrotransfer governing equations. These codes are used for analysis of boiling onset and liquid metals boiling in fuel subassemblies during loss-of-coolant accidents, of warming up of reactor core, of blockage of some part of flow cross section in fuel subassembly. (author)

  1. Cryogenic system for collecting noble gases from boiling water reactor off-gas

    International Nuclear Information System (INIS)

    Schmauch, G.E.

    1973-01-01

    In boiling water reactors, noncondensible gases are expelled from the main condenser. This off-gas stream is composed largely of radiolytic hydrogen and oxygen, air in-leakage, and traces of fission product krypton and xenon. In the Air Products' treatment system, the stoichiometric hydrogen and oxygen are reacted to form water in a catalytic recombiner. The design of the catalytic recombiner is an extension of industrial gas technology developed for purification of argon and helium. The off-gas after the recombiner is processed by cryogenic air-separation technology. The gas is compressed, passed into a reversing heat exchanger where water vapor and carbon dioxide are frozen out, further cooled, and expanded into a distillation column where refrigeration is provided by addition of liquid nitrogen. More than 99.99 percent of the krypton and essentially 100 percent of the xenon entering the column are accumulated in the column bottoms. Every three to six months, the noble-gas concentrate accumulated in the column bottom is removed as liquid, vaporized, diluted with steam, mixed with hydrogen in slight excess of oxygen content, and fed to a small recombiner where all the oxygen reacts to form water. The resulting gas stream, containing from 20 to 40 percent noble gases, is compressed into small storage cylinders for indefinite retention or for decay of all fission gases except krypton-85, followed by subsequent release under controlled conditions and favorable meteorology. This treatment system is based on proven technology that is practiced throughout the industrial gas industry. Only the presence of radioactive materials in the process stream and the application in a nuclear power plant environment are new. Adaptations to meet these new conditions can be made without sacrificing performance, reliability, or safety

  2. Recovering low-boiling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1934-10-03

    A process is described for the recovery of low-boiling hydrocarbons of the nature of benzine through treatment of liquid carbonaceous materials with hydrogen under pressure at raised temperature, suitably in the presence of catalysts. Middle oils (practically saturated with hydrogen) or higher boiling oils at a temperature above 500/sup 0/ (with or without the addition of hydrogen) containing cyclic hydrocarbons not saturated with hydrogen are changed into low boiling hydrocarbons of the nature of benzine. The cracking takes place under strongly hydrogenating conditions (with the use of a strongly active hydrogenating catalyst or high pressure) at temperatures below 500/sup 0/. If necessary, the constituents boiling below 200/sup 0/ can be reconverted into cyclic hydrocarbons partially saturated with hydrogen. (BLM)

  3. Flow boiling heat transfer at low liquid Reynolds number

    International Nuclear Information System (INIS)

    Weizhong Zhang; Takashi Hibiki; Kaichiro Mishima

    2005-01-01

    Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)

  4. Mechanism of flow choking at shock boiling-up of a liquid

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1982-01-01

    The theory of the outflow of a saturated or non-heated liquid with thermodynamic parameters reaching the critical point from diaphragms and short nozzles has been developed basing on the concept of the boiling-up jump. Three characteristic flow conditions have been revealed: hydraulic, conditions when boiling-up jump is formed, and conditions of radial expansion of the flow. If the initial flow's parameters are low, the hydraulic conditions are realized. The expansion of the flow-passage cross-section of flow small jets by the final value takes place when the spinoidal overheating is reached near the exit cut-off at a small distance equal to the thickness of the boiling-up zone; and that causes the intensive jet dispersion in the radial direction. In case of overheatings close to the thermodynamic critical point, a boiling-up jump is formed inside the channel. The mechanism of flow choking has been analyzed; recommendations on calculation of the critical flow rate of a boiling-up liquid are given. The studied mechanism of flow choking at shock boiling-up of the flow permits to draw a rather detailed physical picture of the phenomenon and to give an explanation of the majority of experimentally-observed effects

  5. Two-dimensional thermal analysis of liquid hydrogen tank insulation

    Energy Technology Data Exchange (ETDEWEB)

    Babac, Gulru; Sisman, Altug [Istanbul Technical University, Energy Institute, Ayazaga campus, 34469 Maslak, Istanbul (Turkey); Cimen, Tolga [Jaguar and Landrover, Banbury Road, Gaydon, Warwick CV35 0RR (United Kingdom)

    2009-08-15

    Liquid hydrogen (LH{sub 2}) storage has the advantage of high volumetric energy density, while boil-off losses constitute a major disadvantage. To minimize the losses, complicated insulation techniques are necessary. In general, Multi Layer Insulation (MLI) and a Vapor-Cooled Shield (VCS) are used together in LH{sub 2} tanks. In the design of an LH{sub 2} tank with VCS, the main goal is to find the optimum location for the VCS in order to minimize heat leakage. In this study, a 2D thermal model is developed by considering the temperature dependencies of the thermal conductivity and heat capacity of hydrogen gas. The developed model is used to analyze the effects of model considerations on heat leakage predictions. Furthermore, heat leakage in insulation of LH{sub 2} tanks with single and double VCS is analyzed for an automobile application, and the optimum locations of the VCS for minimization of heat leakage are determined for both cases. (author)

  6. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    International Nuclear Information System (INIS)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    1995-01-01

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater's upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels

  7. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    Energy Technology Data Exchange (ETDEWEB)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  8. Solubilities of hydrogen and methane in coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ho-mu; Sebastian, H M; Simnick, J J; Chao, Kwang Chu

    1981-04-01

    The solubilities of hydrogen and methane in Exxon Donor Solvent (EDS) and Solvent Refined Coal II (SRC-II) coal liquids are determined at 190 and 270 C and pressures to 250 atm. Two narrow boiling distillate cuts from EDS and three from SRC-II are studied.

  9. Stability analysis of high temperature superconducting coil in liquid hydrogen

    International Nuclear Information System (INIS)

    Nakayama, T.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2007-01-01

    Recently, it is expected that hydrogen plays an important role in energy source including electric power in near future. Liquid hydrogen has high potential for cooling down superconducting coil wound with high temperature superconductors (HTS), such as BSCCO, YBCO. In this paper, we study stabilities of the coils wound with BSCCO tapes, which are immersed in the liquid hydrogen, and compare stability results with those cooled by liquid helium. We treat a minimum propagation zone (MPZ) theory to evaluate the coil stability considering boiling heat flux of the liquid hydrogen, and specific heat, heat conduction and resistivity of HTS materials as a function of temperature. It is found that the coil cooled by the liquid hydrogen has higher stability margin than that cooled by the liquid helium. We compare the stability margins of both coils wound with Bi-2223/Ag tape and Bi-2212/Ag tape in liquid hydrogen. As a result, it is found that the stability of Bi-2212 coil is equivalent to that of Bi-2223 coil in low and high magnetic field, while the maximum current of Bi-2212 coil exceeds a little bit that of Bi-2223 coil in both magnetic fields

  10. Boiling of the Interface between Two Immiscible Liquids below the Bulk Boiling Temperatures of Both Components

    OpenAIRE

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2014-01-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becomin...

  11. Boiling point of volatile liquids at various pressures

    Directory of Open Access Journals (Sweden)

    Luisa Maria Valencia

    2017-07-01

    Full Text Available Water, under normal conditions, tends to boil at a “normal boiling temperature” at which the atmospheric pressure fixes the average amount of kinetic energy needed to reach its boiling point. Yet, the normal boiling temperature of different substances varies depending on their nature, for which substances like alcohols, known as volatile, boil faster than water under same conditions. In response to this phenomenon, an investigation on the coexistence of both gas and liquid phases of a volatile substance in a closed system was made, establishing vapor pressure as the determining tendency of a substance to vaporize, which increases exponentially with temperature until a critical point is reached. Since atmospheric pressure is fixed, the internal pressure of the system was varied to determine its relationship with vapor pressure and thus with the boiling point of the substance, concluding that the internal pressure and boiling point of a volatile liquid in a closed system are negatively proportional.

  12. Motor fuels by hydrogenation of liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1938-05-07

    A process is disclosed for the production of knock-stable low-boiling motor fuels by conversion of liquid hydrocarbons which are vaporizable under the reaction conditions, which comprises passing the initial material at a temperature above 380/sup 0/C in a true vapor phase under pressure of more than 40 atmospheres together with hydrogen and gaseous hydrocarbons containing more than 1 carbon atom in the molecule in an amount by volume larger than that of the hydrogen over catalysts stable to poisoning stationarily confined in the reaction vessel.

  13. Subcooled boiling effect on dissolved gases behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.; Sinkule, J.; Linek, V.

    1999-01-01

    A model describing dissolved gasses (hydrogen, nitrogen) and ammonia behaviour in subcooled boiling conditions of WWERs was developed. Main objective of the study was to analyse conditions and mechanisms leading to formation of a zone with different concentration of dissolved gases, eg. a zone depleted in dissolved hydrogen in relation to the bulk of coolant. Both, an equilibrium and dynamic approaches were used to describe a depletion of the liquid surrounding a steam bubble in the gas components. The obtained results show that locally different water chemistry conditions can be met in the subcooled boiling conditions, especially, in the developed subcooled boiling regime. For example, a 70% hydrogen depletion in relation to the bulk of coolant takes about 1 ms and concerns a liquid layer of 1 μn surrounding the steam bubble. The locally different concentration of dissolved gases can influence physic-chemical and radiolytic processes in the reactor system, eg. Zr cladding corrosion, radioactivity transport and determination of the critical hydrogen concentration. (author)

  14. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    Science.gov (United States)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  15. Boil off gas (BOG) management in Spanish liquid natural gas (LNG) terminals

    Energy Technology Data Exchange (ETDEWEB)

    Querol, E.; Gonzalez-Regueral, B.; Garcia-Torrent, J.; Garcia-Martinez, M.J. [Departamento de Ingenieria Quimica y Combustibles, Escuela Tecnica Superior de Ingenieros de Minas, Universidad Politecnica de Madrid, c. Alenza 4, 28003 Madrid (Spain)

    2010-11-15

    Spain is a country with six LNG terminals in operation and three more scheduled for 2011. At the same time an increasing number of LNG tanks are under construction to compensate the Spanish lack of underground storage. A method for evaluating the daily boil off generated is presented in this paper. This method is applied to evaluate the increase of BOG to be handle by LNG terminals in 2016, studying the best commercially available solution to be installed. Finally, as a solution to tackle with the BOG a cogeneration plant is suggested. This option will reduce terminal's operational costs increasing its availability. (author)

  16. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  17. Nanotube Adsorption for the Capture and Re-liquefaction of Hydrogen Biol-Off During Tanker Transfer Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal discloses an innovative, economically feasible technique to capture and re-liquefy the hydrogen boil-off by using carbon nanotube adsorption prior to...

  18. Pool Boiling of Hydrocarbon Mixtures on Water

    Energy Technology Data Exchange (ETDEWEB)

    Boee, R.

    1996-09-01

    In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.

  19. Boiling point measurements on liquid UO2

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.; Trapp, M.

    1986-01-01

    In analogy to the classic boiling point method, a quasi-stationary millisecond laser-heating technique was applied to measure the saturated-vapour pressure curve of liquid UO 2 in the temperature range of 3500 to 4500 K. The result is represented by log p(MPa) 5.049 -23042/T(K) according to an average heat of vaporization of 441 kJ/mol and a normal boiling point of 3808 K. Besides, spectral emissivities of liquid UO 2 were measured at the pyrometer wavelengths of 752 and 1064 nm. (author)

  20. H_2 production by the steam reforming of excess boil off gas on LNG vessels

    International Nuclear Information System (INIS)

    Fernández, Ignacio Arias; Gómez, Manuel Romero; Gómez, Javier Romero; López-González, Luis M.

    2017-01-01

    Highlights: • BOG excess in LNG vessels is burned in the GCU without energy use. • The gas management plants need to be improved to increase efficiency. • BOG excess in LNG vessels is used for H_2 production by steam reforming. • The availability of different fuels increases the versatility of the ship. - Abstract: The gas management system onboard LNG (Liquid Natural Gas) vessels is crucial, since the exploitation of the BOG (Boil Off Gas) produced is of utmost importance for the overall efficiency of the plant. At present, LNG ships with no reliquefaction plant consume the BOG generated in the engines, and the excess is burned in the GCU (Gas Combustion Unit) without any energy use. The need to improve the gas management system, therefore, is evident. This paper proposes hydrogen production through a steam reforming plant, using the excess BOG as raw material and thus avoiding it being burned in the GCU. To test the feasibility of integrating the plant, an actual study of the gas management process on an LNG vessel with 4SDF (4 Stroke Dual Fuel) propulsion and with no reliquefaction plant was conducted, along with a thermodynamic simulation of the reforming plant. With the proposed gas management system, the vessel disposes of different fuels, including H_2, a clean fuel with zero ozone-depleting emissions. The availability of H_2 on board in areas with strict anti-pollution regulations, such as ECAs (Emission Control Area), means that the vessel may be navigated without using fossil fuels which generate CO_2 and SO_X emissions. Moreover, while at port, Cold Ironing is avoided, which entails high costs. Thus it is demonstrated that the installation of a reforming plant is both energetically viable and provides greater versatility to the ship.

  1. Hydrodynamic instability induced liquid--solid contacts in film boiling

    International Nuclear Information System (INIS)

    Yao, S.; Henry, R.E.

    1976-01-01

    The film boiling liquid-solid contacts of saturated ethanol and water to horizontal flat gold plated copper are examined by using electric conductance probe. It is observed that the liquid-solid contacts occur over a wide temperature range, and generally, induced by hydrodynamic instabilities. The area of contact decreases exponentially with interface temperature and is liquid depth dependent. The averaged duration of contacts is strongly influenced by the dominant nucleation process, and thus, depends on the interface temperature and the wettability of the solid during the contact. The frequency of major contacts is about 1.5 times the bubble detaching frequency. It is found that the liquid-solid contacts may account for a large percentage of the film boiling heat transfer near the low temperature end of film boiling and decreases as the interface temperature increases

  2. Critical superheats upon boiling of dissociating liquids

    International Nuclear Information System (INIS)

    Kolykhan, L.I.; Solov'ev, V.N.

    1985-01-01

    The experimental data on critical superheats of dissociating liquids, i.e. nitrogen tetroxide and nitrine are presented (nitrine is the solution of nitrogen oxide in nitrogen tetroxide). The experiments with boiling N 2 O 4 have been carried out in the pressure range 0.1-3.0 MPa and with boiling nitrine within the pressure range 0.2-9.0 MPa. The experiments have revealed an anomalous dependence of critical superheats on pressure P, thus at P>=2.5 MPa the critical superheat values exceed the limiting ones, and at P=4.5 MPa this excess amounts to more than 16 K, essentially exceeding the errors of the experiments. The results for N 2 O 4 critical superheats agree with experimental data of other authors. Complex phenomena observed upon boiling of dissociating liquids require further theoretical and experimental studies

  3. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    Science.gov (United States)

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  4. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    International Nuclear Information System (INIS)

    Adam, Patrick; Leachman, Jacob

    2014-01-01

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate

  5. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  6. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    Science.gov (United States)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  7. Acceleration of liquid by boiling of other volatile liquid, (4)

    International Nuclear Information System (INIS)

    Hijikata, Kunio; Mori, Yasuo

    1978-01-01

    In the development of liquid metal MHD power generation using liquid metal as a working fluid, it is one of the important problems to accelerate liquid metal efficiently by means of thermal energy. Though various accelerating methods have been proposed so far, those do not provide high cycle thermal efficiency because of either small electric conductivity, low accelerating efficiency or low gas-liquid separating efficiency. The authors proposed the method to accelerate through volume expansion by boiling a volatile liquid being blown into liquid metal at high temperature, and have investigated it experimentally and theoretically. In the study, efficiency has been discussed in case of the acceleration of fluid subjected to magneto-hydrodynamical force by boiling of droplets of other liquid. Theoretically, the field of flow and two-phase cycle and gas phase cycle were analyzed. The report describes on these results and discussions. It is concluded that efficiency is independent of the injected amount and position of droplets, final efficiency is little affected by external load and thermal conductivity of volatile liquid droplets, the efficiency for the combination of cesium and lead is about 50%, and the method proposed by authors seems to be better than the conventional methods with gas phase cycle proposed so far using inert gas bubbles in lieu of volatile liquid. (Wakatsuki, Y.)

  8. Decay heat from products of 235U thermal fission by fast-response boil-off calorimetry

    International Nuclear Information System (INIS)

    Yarnell, J.L.; Bendt, P.J.

    1977-09-01

    A cryogenic boil-off calorimeter was used to measure the decay heat from the products of thermal-neutron-induced fission of 235 U. Data are presented for cooling times between 10 and 10 5 s following a 2 x 10 4 s irradiation at constant thermal-neutron flux. The experimental uncertainty (1 sigma) in these measurements was approximately 2 percent, except at the shortest cooling times where it rose to approximately 4 percent. The beta and gamma energy from an irradiated 235 U sample was absorbed in a thermally isolated 52-kg copper block that was held at 4 K by an internal liquid helium reservoir. The absorbed energy evaporated liquid helium from the reservoir and a hot-film anemometer flowmeter recorded the evolution rate of the boil-off gas. The decay heat was calculated from the gas-flow rate using the heat of vaporization of helium. The calorimeter had a thermal time constant of 0.85 s. The energy loss caused by gamma leakage from the absorber was less than or equal to 3 percent; a correction was made by Monte Carlo calculations based on experimentally determined gamma spectra. The data agree within the combined uncertainties with summation calculations using the ENDF/B-IV data base. The experimental data were combined with summation calculations to give the decay heat for infinite (10 13 s) irradiation

  9. Numerical simulation of pool boiling of a Lennard-Jones liquid

    KAUST Repository

    Inaoka, Hajime; Ito, Nobuyasu

    2013-01-01

    We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling. © 2013 Elsevier B.V. All rights reserved.

  10. Numerical simulation of pool boiling of a Lennard-Jones liquid

    KAUST Repository

    Inaoka, Hajime

    2013-09-01

    We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling. © 2013 Elsevier B.V. All rights reserved.

  11. Large-Scale Demonstration of Liquid Hydrogen Storage with Zero Boiloff for In-Space Applications

    Science.gov (United States)

    Hastings, L. J.; Bryant, C. B.; Flachbart, R. H.; Holt, K. A.; Johnson, E.; Hedayat, A.; Hipp, B.; Plachta, D. W.

    2010-01-01

    Cryocooler and passive insulation technology advances have substantially improved prospects for zero-boiloff cryogenic storage. Therefore, a cooperative effort by NASA s Ames Research Center, Glenn Research Center, and Marshall Space Flight Center (MSFC) was implemented to develop zero-boiloff concepts for in-space cryogenic storage. Described herein is one program element - a large-scale, zero-boiloff demonstration using the MSFC multipurpose hydrogen test bed (MHTB). A commercial cryocooler was interfaced with an existing MHTB spray bar mixer and insulation system in a manner that enabled a balance between incoming and extracted thermal energy.

  12. Boil-off experiments with the EIR-NEPTUN Facility: Analysis and code assessment overview report

    International Nuclear Information System (INIS)

    Aksan, S.N.; Stierli, F.; Analytis, G.T.

    1992-03-01

    The NEPTUN data discussed in this report are from core uncovery (boil-off) experiments designed to investigate the mixture level decrease and the heat up of the fuel rod simulators above the mixture level for conditions simulating core boil-off for a nuclear reactor under small break loss-of-coolant accident conditions. The first series of experiments performed in the NEPTUN test facility consisted of ten boil-off (uncovery) and one adiabatic heat-up tests. In these tests three parameters were varied: rod power, system pressure and initial coolant subcooling. The NEPTUN experiments showed that the external surface thermocouples do not cause a significant cooling influence in the rods to which they are attached under boil-off conditions. The reflooding tests performed later on indicated that the external surface thermocouples have some effect during reflooding for NEPTUN electrically heated rod bundle. Peak cladding temperatures are reduced by about 30--40C and quench times occur 20--70 seconds earlier than rods with embedded thermocouples. Additionally, the external surface-thermocouples give readings up to 20 K lower than those obtained with internal surface thermocouples (in the absence of external thermocouples) in the peak cladding temperature zone. Some of the boil-off data obtained from the NEPTUN test facility are used for the assessment of the thermal-hydraulic transient computer codes. These calculations were performed extensively using the frozen version of TRAC-BD1/MOD1 (version 22). A limited number of assessment calculations were done with RELAP5/MOD2 (version 36.02). In this report the main results and conclusions of these calculations are presented with the identification of problem areas in relation to models relevant to boil-off phenomena. On the basis of further analysis and calculations done, changing some of the models such as the bubbly/slug flow interfacial friction correlation which eliminate some of the problems are recommended

  13. Explosive Boiling of Superheated Cryogenic Liquids

    CERN Document Server

    Baidakov, V G

    2007-01-01

    The monograph is devoted to the description of the kinetics of spontaneous boiling of superheated liquefied gases and their solutions. Experimental results are given on the temperature of accessible superheating, the limits of tensile strength of liquids due to processes of cavitation and the rates of nucleation of classical and quantum liquids. The kinetics of evolution of the gas phase is studied in detail for solutions of cryogenic liquids and gas-saturated fluids. The properties of the critical clusters (bubbles of critical sizes) of the newly evolving gas phase are analyzed for initial st

  14. Specific features of hydrogen boiling heat transfer on the AMg-6 alloy massive heater

    International Nuclear Information System (INIS)

    Kirichenko, Yu.A.; Kozlov, S.M.; Rusanov, K.V.; Tyurina, E.G.

    1989-01-01

    Heat transfer and nucleate burns-out saturated with hydrogen at a plate heater (thickness-13 mm, diameter of heat-transferring surface - 30 mm) made of an aluminium alloy with the low value of a heat assimilation coefficient in the pressure range from 7.2x10 3 to 6x10 5 Pa is experimentally investigated. Value of start of boiling characteristics and heat transfer coefficients during nucleate burn-out, as well as the first critical densities of a heat flux and temperature heads are obtained. Existence of certain differrences of heat exchange during boiling is shown using a massive heater made of low-heat-conductive material in comparison with other cases of hydrogen boiling. Hypothesis concerning the existence of so-called mixed boiling on the heat transfer surface, which has been detected earlier only in helium boiling, as well as concerning possible reasons of stability of film boiling ficii in preburn-out region of heat duty is discussed

  15. 650 mm long liquid hydrogen target for use in a high intensity electron beam

    International Nuclear Information System (INIS)

    Mark, J.W.

    1983-07-01

    This paper describes a 650 mm long liquid hydrogen target constructed for use in the high intensity electron beam at the Stanford Linear Accelerator Center. The main design problem was to construct a target that would permit the heat deposited by the electron beam to be removed rapidly without boiling the hydrogen so as to maintain constant target density for optimum data taking. Design requirements, construction details and operating experience are discussed

  16. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    Science.gov (United States)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  17. Programmed temperature vaporizing injector to filter off disturbing high boiling and involatile material for on-line high performance liquid chromatography gas chromatography with on-column transfer.

    Science.gov (United States)

    Biedermann, Maurus; Grob, Koni

    2013-03-15

    Insertion of a programmed temperature vaporizing (PTV) injector under conditions of concurrent solvent recondensation (CSR) into the on-line HPLC-GC interface for on-column transfer (such as the retention gap technique with partially concurrent eluent evaporation) enables filtering off high boiling or involatile sample constituents by a desorption temperature adjusted to the required cut-off. Details of this technique were investigated and optimized. Memory effects, observed when transferred liquid was sucked backwards between the transfer line and the wall of the injector liner, can be kept low by a small purge flow rate through the transfer line at the end of the transfer and the release of the liquid through a narrow bore capillary kept away from the liner wall. The column entrance should be within the well heated zone of the injector to prevent losses of solute material retained on the liner wall during the splitless period. The desorption temperature must be maintained until an elevated oven temperature is reached to prevent peak broadening resulting of a cool inlet section in the bottom part of the injector. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    Science.gov (United States)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  19. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  20. Hydrogenating oils. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1938-08-31

    A safety fuel boiling within the limits 130/sup 0/ to 260/sup 0/C, is obtained by treating hydrocarbon mixtures boiling below 260/sup 0/C, and for the most part above 130/sup 0/C according to the process described in the parent Specification. A fraction boiling from 140/sup 0/ to 250/sup 0/ C, which has been distilled off from the liquefaction product obtained by the destructive hydrogenation of coal soaked with ferrous sulphate, is passed at 485/sup 0/C under a partial pressure of 1.5 atmos. and a hydrogen pressure of 50 atmos. over a catalyst consisting of nickel and tungsten sulphides. The gasification is only 2 to 5 percent and from the reaction product a fraction of the same boiling range as the initial material is distilled off with a yield of 85 percent and an octane number of 97.

  1. DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen

    Science.gov (United States)

    Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi

    2018-06-01

    Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.

  2. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  3. Hydrogen storage by organic chemical hydrides and hydrogen supply to fuel cells with superheated liquid-film-type catalysis

    International Nuclear Information System (INIS)

    Hodoshima, S.; Shono, A.; Sato, K.; Saito, Y.

    2004-01-01

    Organic chemical hydrides, consisting of decalin / naphthalene and tetralin / naphthalene pairs, have been proposed as the storage medium of hydrogen for operating fuel cells in mobile and static modes. The target values in the DOE Hydrogen Plan, U.S., on storage ( 6.5 wt%, 62.0 kg-H 2 / m 3 ) are met with decalin ( 7.3 wt%, 64.8 kg-H 2 / m 3 ). In addition, existing gas stations and tank lorries are available for storage and supply of hydrogen by utilizing the decalin / naphthalene pair, suggesting that decalin is suitable for operating fuel-cell vehicles. Tetralin dehydrogenation proceeds quite rapidly, assuring a predominant power density, though its storage densities ( 3.0 wt%, 28.2 kg-H 2 / m 3 ) are relatively low. Efficient hydrogen supply from decalin or tetralin by heating at 210-280 o C was attained only with the carbon-supported nano-size metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions, where coke formation over the catalyst surface was prevented. The catalyst layer superheated in the liquid-film states gave high reaction rates and conversions, minimizing the evaporation loss under boiling conditions and exergy loss in hydrogen energy systems. (author)

  4. Liquid hydrogen and deuterium targets; Cibles a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Bougon, M; Marquet, M; Prugne, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [French] Description de: 1) Cible a pression atmospherique; hydrogene liquide, 400 mm d'epaisseur; l'isolement thermique: styrofoam; on utilise les vapeurs d'hydrogene pour ameliorer le refroidissement de la cible; hublots en Mylar. 2) Cible sous vide; contenance 12 litres; hydrogene ou deuterium; epaisseur du liquide 400 mm; l'isolement thermique est assure par une cuve a vide et un ecran d'azote liquide. Recuperation et liquefaction des vapeurs de deuterium sont effectuees dans la cuve a vide contenant la cible. Le systeme de vidange pour la cible est concu pour fonctionner en quelques minutes. (auteur)

  5. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  6. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  7. Transient shielded liquid hydrogen containers

    International Nuclear Information System (INIS)

    Varghese, A.P.; Herring, R.H.

    1990-01-01

    The storage of hydrogen in the liquid phase has been limited in duration due to the thermal performance constraints of conventional Liquid Hydrogen containers available. Conventional Liquid Hydrogen containers lose hydrogen because of their relatively high heat leak and variations in usage pattern of hydrogen due to shutdowns. Local regulations also discourage venting of hydrogen. Long term storage of Liquid Hydrogen without product loss was usually accomplished using Liquid Nitrogen sacrificial shields. This paper reports on a new low heat leak container developed and patented that will extend the storage time of liquid hydrogen by five hundred percent. The principle of operation of the Transient Shields which makes the extraordinary performance of this container feasible is described in this paper. Also covered are the impact of this new container on present applications of hydrogen and the new opportunities afforded to Liquid hydrogen in the world hydrogen market

  8. Thermodynamic and Gasdynamic Aspects of a Boiling Liquid Expanding Vapour Explosion

    NARCIS (Netherlands)

    Xie, M.

    2013-01-01

    The risk of explosion due to rupture of a tank filled with pressurized liquefied gas (PLG) is one of the risks to be considered in the context of studies on tunnel safety. When a vessel containing liquid well above its boiling point at normal atmospheric pressure fails catastrophically a Boiling

  9. Microwave super-heated boiling of organic liquids: Origin, effect and application

    NARCIS (Netherlands)

    Chemat, F.; Esveld, E.

    2001-01-01

    This paper reports the state of the art of the microwave super-heated boiling phenomenon. When a liquid is heated by microwaves, the temperature increases rapidly to reach a steady temperature while refluxing. It happens that this steady state temperature can be up to 40 K higher than the boiling

  10. Hydrogen water chemistry for boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Cowan, R.L.; Kass, J.N.; Law, R.J.

    1985-01-01

    Hydrogen Water Chemistry (HWC) is now a practical countermeasure for intergranular stress corrosion cracking (IGSCC) susceptibility of reactor structural materials in Boiling Water Reactors (BWRs). The concept, which involves adding hydrogen to the feedwater to suppress the formation of oxidizing species in the reactor, has been extensively studied in both the laboratory and in several operating plants. The Dresden-2 Unit of Commonwealth Edison Company has completed operation for one full 18-month fuel cycle under HWC conditions. The specifications, procedures, equipment, instrumentation and surveillance programs needed for commercial application of the technology are available now. This paper provides a review of the benefits to be obtained, the side affects, and the special operational considerations needed for commercial implementation of HWC. Technological and management ''Lessons Learned'' from work conducted to date are also described

  11. Natural convection and boiling heat transfer of a liquid metal in a magnetic field

    International Nuclear Information System (INIS)

    Seki, Masahiro; Kawamura, Hiroshi

    1983-02-01

    A liquid metal is often assumed as a coolant and a breeding material of a Tokamak fusion reactor. However, many problems on the thermo-hydraulics of a liquid metal in a magnetic field are still remained to be studied. In the present report, natural convection and boiling of a liquid metal in a strong magnetic field are studied to examine a fundamental feasibility of a fusion reactor cooled by a liquid metal. In the experimental study of the natural convection, the circulation of a liquid metal was found to be surpressed even by a magnetic field parallel to the gravity. A numerical study has confirmed the conclusion drawn by the experiment. In the study of boiling heat transfer, stable boiling of a liquid metal has been found also in a strong magnetic field. The burnout heat flux hardly affected by the magnetic field. These indicate a fundamental feasibility of the liquid-metal cooling for a Tokamak fusion reactor. (author)

  12. Initiation of a boiling liquid expanding vapour explosion

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.; Chan, C.K.; Steward, F.R.; Tennankore, K.N.; Venart, J.E.S.

    1991-06-01

    Boiling liquid expanding vapour explosions (BLEVEs) occur when a pressure liquefied gas tank is burst and the fluid is ejected to the atmosphere. As the liquid is exposed to a lower pressure it boils violently, causing an explosion which destroys the container. One litre tanks were filled with propane or R12, heated, and caused to rupture at specific test conditions to determine the parameters required for a BLEVE. Results showed that the energy stored in the liquid under pressure relative to the liquid at atmospheric conditions was a quantity which can be used to predict a BLEVE for the particular apparatus and conditions used. The possible importance of the development of a shock wave within the container during a BLEVE was noted. A shock tube was used to study the shock waves generated during a BLEVE. Temperature, liquid volume, rupture location, rupture area, and the fluid involved were varied. The pressure was measured vs time for periods immediately after the rupture. Photographs of the formation of pressure waves were obtained using spark Schlieren photography and showed that the BLEVE phenomenon is definitely a shock-related event. Pressure information was also gathered during BLEVEs of one litre cylinders, and this information is compared to that from the shock tube. Shock tube data showed that transverse waves formed from the initial pressure wave could be amplified. 37 refs., 54 figs., 11 tabs.

  13. Initiation of a boiling liquid expanding vapour explosion

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.

    1990-01-01

    Boiling liquid expanding vapour explosions (BLEVEs) occur when a pressure liquefied gas tank is burst and the fluid is ejected to the atmosphere. As the liquid is exposed to a lower pressure it boils violently, causing an explosion which destroys the container. One litre tanks were filled with propane or R12, heated, and caused to rupture at specific test conditions to determine the parameters required for a BLEVE. Results showed that the energy stored in the liquid under pressure relative to the liquid at atmospheric conditions was a quantity which can be used to predict a BLEVE for the particular apparatus and conditions used. The possible importance of the development of a shock wave within the container during a BLEVE was noted. A shock tube was used to study the shock waves generated during a BLEVE. Temperature, liquid volume, rupture location, rupture area, and the fluid involved were varied. The pressure was measured vs time for periods immediately after the rupture. Photographs of the formation of pressure waves were obtained using spark Schlieren photography. Similarities to waves measured during detonations in ducts were noted. Pressure information was also gathered during BLEVEs of one litre cylinders, and this data is compared to that from the shock tube. Shock tube data showed that transverse waves formed from the initial pressure wave could be amplified. 37 refs., 54 figs., 11 tabs.

  14. Boiling hysteresis of impinging circular submerged jets with highly wetting liquids

    International Nuclear Information System (INIS)

    Zhou, D.W.; Ma, C.F.; Yu, J.

    2004-01-01

    An experimental study was carried out to characterize the boiling hysteresis of impinging circular submerged jets with highly wetting liquids. The effects of noncondensable gases and surface aging on boiling curves were considered. The present study focused on the effects of jet parameters (jet exit velocity, radial distance from the stagnation point and nozzle diameter) and fluid subcooling on incipient boiling superheat and superheat excursion, as well as the physical mechanism of boiling hysteresis. Results show that the incipient boiling superheat decreases only with fluid subcooling regardless of jet parameters, and that the superheat excursion increases with nozzle diameter and radial distance from the stagnation point and decreasing jet exit velocity and fluid subcooling. Boiling hysteresis occurs due to deactivation of vapor embryos within larger cavities. Three anomalous phenomena at boiling inception are recorded and discussed in terms of irregular activation of vapor embryos

  15. Modeling molecular boiling points using computed interaction energies.

    Science.gov (United States)

    Peterangelo, Stephen C; Seybold, Paul G

    2017-12-20

    The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.

  16. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    Science.gov (United States)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  17. Heat Transfer Characteristics during Boiling of Immiscible Liquids Flowing in Narrow Rectangular Heated Channels

    Directory of Open Access Journals (Sweden)

    Yasuhisa Shinmoto

    2017-11-01

    Full Text Available The use of immiscible liquids for cooling of surfaces with high heat generation density is proposed based on the experimental verification of its superior cooling characteristics in fundamental systems of pool boiling and flow boiling in a tube. For the purpose of practical applications, however, heat transfer characteristics due to flow boiling in narrow rectangular channels with different small gap sizes need to be investigated. The immiscible liquids employed here are FC72 and water, and the gap size is varied as 2, 1, and 0.5 mm between parallel rectangular plates of 30 mm × 175 mm, where one plate is heated. To evaluate the effect of gap size, the heat transfer characteristics are compared at the same inlet velocity. The generation of large flattened bubbles in a narrow gap results in two opposite trends of the heat transfer enhancement due to thin liquid film evaporation and of the deterioration due to the extension of dry patch in the liquid film. The situation is the same as that observed for pure liquids. The latter negative effect is emphasized for extremely small gap sizes if the flow rate ratio of more-volatile liquid to the total is not reduced. The addition of small flow rate of less-volatile liquid can increase the critical heat flux (CHF of pure more-volatile liquid, while the surface temperature increases at the same time and assume the values between those for more-volatile and less-volatile liquids. By the selection of small flow rate ratio of more-volatile liquid, the surface temperature of pure less-volatile liquid can be decreased without reducing high CHF inherent in the less-volatile liquid employed. The trend of heat transfer characteristics for flow boiling of immiscible mixtures in narrow channels is more sensitive to the composition compared to the flow boiling in a round tube.

  18. Investigations on the propagation of free surface boiling in a vertical superheated liquid column

    International Nuclear Information System (INIS)

    Das, P.K.; Bhat, G.S.; Arakeri, V.H.

    1987-01-01

    Some experimental studies on boiling propagation in a suddenly depressurized superheated vertical liquid column are reported. The propagation velocity of this phase change has been measured using an optical method. This velocity is strongly dependent on liquid superheat, liquid purity and test section size. The measured velocities of less than 5 m s -1 are significantly lower than the sonic velocity. Present observations suggest that the dominant mechanism for boiling propagation is convection. (author)

  19. Investigations on the propagation of free surface boiling in a vertical superheated liquid column

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.K.; Bhat, G.S.; Arakeri, V.H.

    1987-04-01

    Some experimental studies on boiling propagation in a suddenly depressurized superheated vertical liquid column are reported. The propagation velocity of this phase change has been measured using an optical method. This velocity is strongly dependent on liquid superheat, liquid purity and test section size. The measured velocities of less than 5 m s/sup -1/ are significantly lower than the sonic velocity. Present observations suggest that the dominant mechanism for boiling propagation is convection.

  20. The effects of fermentation and boiling on the level of hydrogen ...

    African Journals Online (AJOL)

    The effects of fermentation and boiling on the level of hydrogen cyanide in Mucuna pruriens (velvet bean) were investigated. Qualitative phytochemical analysis of Mucuna pruriens revealed the presence that tannins, saponins, cardiac glycosides and cyanogenic glycosides. Quantitative analysis revealed that raw Mucuna ...

  1. Investigation of bubble flow regimes in nucleate boiling of highly-wetting liquids

    International Nuclear Information System (INIS)

    Tong, W.; Bar-Cohen, A.; Simon, T.W.

    1991-01-01

    This paper describes an investigation of the bubble flow regimes in nucleate boiling of FC-72, a highly-wetting liquid. Theoretically analysis of vapor bubble generation and departure from the heated surface reveals that the heat fluxes required for the merging of consecutive bubbles, for highly-wetting liquids, lie in the upper range of the nucleate boiling heat flux. A visual and photographic study of nucleate boiling from sputtered platinum surfaces has supported the theoretical results and shown that the isolated bubble behavior extends to at least 50-80% of the critical heat flux, considerably higher than observed by others with water. Lateral coalescence of adjacent bubbles has been found to be a more likely cause of the termination of the isolated bubble regime. These findings suggest that thermal transport models which are based on isolated bubble behavior may be applicable to nearly the entire range of nucleate boiling of electronic cooling fluids

  2. Burnout in a high heat flux boiling system with forced supply of liquid through a plane jet

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Ishii, Kazunori.

    1978-01-01

    As for pool boiling, the non-dimensional formula for the burnout heat flux of a simple, basic boiling system has been obtained. On the other hand, in forced convection boiling, the studies on the burnout in forced flow boiling in a channel have been continued, but the derivation of a non-dimensional formula applicable generally is far away from the realization because the phenomena are too complex. Accordingly, in this study, the result of the experiment on the burnout of a boiling system to which liquid is supplied by the plane jet flowing out of a thin rectangular nozzle installed near the front edge of a rectangular heating surface is reported. The experimental apparatus is described, and the experiment was carried out in the ranges of two jet thicknesses at the nozzle outlet, two incident angles of jet and from 1.5 to 15 m/s of jet velocity. Burnout occurs under the situation of sufficiently developed nuclear boiling. A part of the liquid supplied from a plane jet is blown apart by the vapor blowing out of the nuclear boiling liquid layer covering the heating surface in the nuclear boiling with sufficiently developed high heat flux. However, the nuclear boiling liquid layer itself continues to exist on the heating surface till burnout occurs. Only the entering velocity of the plane jet affects burnout heat flux. (Kako, I.)

  3. Development of a novel infrared-based visualization technique to detect liquid-gas phase dynamics on boiling surfaces

    International Nuclear Information System (INIS)

    Kim, Hyung Dae

    2011-01-01

    Complex two-phase heat transfer phenomena such as nucleate boiling, critical heat flux, quenching and condensation govern the thermal performance of Light Water Reactors (LWRs) under normal operation and during transients/accidents. These phenomena are typically characterized by the presence of a liquid vapor- solid contact line on the surface from/to which the heat is transferred. For example, in nucleate boiling, a significant fraction of the energy needed for bubble growth comes from evaporation of a liquid meniscus, or microlayer, underneath the bubble itself. As the liquid vapor- solid line at the edge of the meniscus retreats, a circular dry patch in the middle of the bubble is exposed; the speed of the triple line retreat is a measure of the ability of the surface to transfer heat to the bubble. At very high heat fluxes, near the upper limit of the nucleate boiling regime, also known as Critical Heat Flux (CHF), the situation is characterized by larger dry areas on the surface, dispersed within an interconnected network of liquid menisci. In quenching heat transfer, which refers to the rapid cooling of a very hot object by immersion in a cooler liquid, the process is initially dominated by film boiling. In film boiling a continuous vapor film completely separates the liquid phase from the solid surface: however, as the temperature gets closer to the Leidenfrost point, intermittent and short-lived liquid-solid contacts occur at discrete locations on the surface, thus creating liquid vapor- solid interfaces once again. Ultimately, if bubble nucleation ensues at such contact points, the vapor film is disrupted and the heat transfer regime transitions from film boiling to transition boiling. Finally, in dropwise condensation, the phase transition from vapor to liquid occurs via formation of discrete droplets on the surface, and the resulting liquid-vapor-solid triple line is where heat transfer is most intense. To gain insight into and enable mechanistic

  4. Boiling heat transfer to LN2 and LH2 - Influence of surface orientation and reduced body forces

    Science.gov (United States)

    Merte, H., Jr.; Oker, E.; Littles, J. W.

    1973-01-01

    The quantitative determination of the influence of heater surface orientation and gravity on nucleate pool boiling of liquid nitrogen and liquid hydrogen is described. A transient calorimeter technique, well suited for obtaining pool boiling data under reduced gravity and used earlier by Clark and Merte (1963), was employed after being adapted to flat a surface whose orientation could be varied. The obtained determination results are reviewed.

  5. Study on boiling heat transfer of high temperature liquid sodium

    International Nuclear Information System (INIS)

    Sakurai, Akira

    1978-01-01

    In the Intitute of Atomic Energy, Kyoto University, fundamental studies on steady state and non-steady state heat flow are underway in connection with reactor design and the safety in a critical accident in a sodium-cooled fast breeder reactor. First, the experimental apparatus for sodium heat transfer and the testing system are described in detail. The apparatus is composed of sodium-purifying section including the plugging meter for measuring purity and cold trap, the pool boiling test section for experimenting natural convection boiling heat transfer, the forced convection boiling test section for experimenting forced convection boiling heat transfer, and gas system. Next, the experimental results by the author and the data obtained so far are compared regarding heat transfer in sodium natural convection and stable nucleating boiling and critical heat flux. The effect of liquid head on a heater on boiling heat transfer coefficient and critical heat flux under the condition of low system pressure in most fundamental pool boiling was elucidated quantitatively, which has been overlooked in previous studies. It was clarified that this is the essentially important problem that can not be overlooked. From this point of view, expressions on heat transfer were also re-investigated. (Wakatsuki, Y.)

  6. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  7. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    Science.gov (United States)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled aircraft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft s propulsive fans. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are too heavy for aircraft propulsion. We need to develop high-power, lightweight electric motors (highpower- density motors). One approach is to increase the conductivity of the wires by cooling them with liquid hydrogen (LH2). This would allow superconducting rotors with an ironless core. In addition, the motor could use very pure aluminum or copper, substances that have low resistances at cryogenic temperatures. A preliminary design of a 450-hp LH2-cooled electric motor was completed and is being manufactured by a contractor. This motor will be tested at the NASA Glenn Research Center and will be used to test different superconducting materials such as magnesium diboride (MgB2). The motor will be able to operate at speeds of up to 6000 rpm.

  8. Research on boiling liquid expanding vapour explosions

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.; Steward, F.R.; Venart, J.E.S.

    A boiling liquid expanding vapor explosion (BLEVE) is due to rapid boiling and expansion, with no ignition or chemical reaction involved. Research is being conducted to examine such questions as under what conditions tanks and their contents undergo BLEVE, what are the characteristics of tanks affected by BLEVE, and what alterations in tank design can be made to minimize the likelihood of BLEVEs. Experiments have been done with both propane and freon, using commercially available one-liter propane cylinders. Outdoor tests were conducted and designed to have the tank fail at a particular set of internal conditions. High speed photography was used to record the explosion, and computerized monitoring equipment to record temperature and pressure data. Tests were run to attempt to determine the relationship between temperature and BLEVEs, and to test the possibility that the occurrence of a BLEVE depends on the amount of vapor that could be produced when the tank was ruptured. Discussion is made of the role of pressure waves and rarefaction waves in the explosion. It is concluded that the superheat temperature limit, theorized as the minimum temperature below which no BLEVE can occur, cannot be used to predict BLEVEs. It has been shown that BLEVEs can occur below this temperature. There appears to be a relationship between liquid temperature, liquid volume, and the energy required to drive the BLEVE. Fireballs may occur after a BLEVE of flammable material, but are not part of the tank destruction. Rupture location (vapor vs liquid space) appears to have no effect on whether a container will undergo a BLEVE. 7 refs., 7 figs., 1 tab.

  9. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    Science.gov (United States)

    Ravex, Alain; Flachbart, Robin; Holt, Barney

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6

  10. Dual-zone boiling process

    International Nuclear Information System (INIS)

    Bennett, D.L.; Schwarz, A.; Thorogood, R.M.

    1987-01-01

    This patent describes a process for boiling flowing liquids in a heat exchanger wherein the flowing liquids is heated in a single heat exchanger to vaporize the liquid. The improvement described here comprises: (a) passing the boiling flowing liquid through a first heat transfer zone of the heat exchanger comprising a surface with a high-convective-heat-transfer characteristic and a higher pressure drop characteristic; and then (b) passing the boiling flowing liquid through a second heat transfer zone of the heat exchanger comprising an essentially open channel with only minor obstructions by secondary surfaces, with an enhanced nucleate boiling heat transfer surface and a lower pressure drop characteristic

  11. Final test results for the ground operations demonstration unit for liquid hydrogen

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.

  12. Computational fluid dynamics and population balance modelling of nucleate boiling of cryogenic liquids: Theoretical developments

    Directory of Open Access Journals (Sweden)

    Guan Heng Yeoh

    2016-12-01

    Full Text Available The main focus in the analysis of pool or flow boiling in saturated or subcooled conditions is the basic understanding of the phase change process through the heat transfer and wall heat flux partitioning at the heated wall and the two-phase bubble behaviours in the bulk liquid as they migrate away from the heated wall. This paper reviews the work in this rapid developing area with special reference to modelling nucleate boiling of cryogenic liquids in the context of computational fluid dynamics and associated theoretical developments. The partitioning of the wall heat flux at the heated wall into three components – single-phase convection, transient conduction and evaporation – remains the most popular mechanistic approach in predicting the heat transfer process during boiling. Nevertheless, the respective wall heat flux components generally require the determination of the active nucleation site density, bubble departure diameter and nucleation frequency, which are crucial to the proper prediction of the heat transfer process. Numerous empirical correlations presented in this paper have been developed to ascertain these three important parameters with some degree of success. Albeit the simplicity of empirical correlations, they remain applicable to only a narrow range of flow conditions. In order to extend the wall heat flux partitioning approach to a wider range of flow conditions, the fractal model proposed for the active nucleation site density, force balance model for bubble departing from the cavity and bubble lifting off from the heated wall and evaluation of nucleation frequency based on fundamental theory depict the many enhancements that can improve the mechanistic model predictions. The macroscopic consideration of the two-phase boiling in the bulk liquid via the two-fluid model represents the most effective continuum approach in predicting the volume fraction and velocity distributions of each phase. Nevertheless, the

  13. Heat exchanges in nitrogen and hydrogen boiling under pressure; Echanges thermiques dans l'azote et l'hydrogene bouillant sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Roubeau, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    The heat transfer between a horizontal wall and boiling nitrogen or hydrogen has been studied from atmospheric pressure to 2/3 of the critical pressure. The q = f(T) curves are rather well defined for nitrogen but more uncertain for hydrogen. In general, the measured {delta}T are inferior to those given by various authors using the wire method. The q{sub max} = f(P) more reproducible curves show for both fluids a maximum at about 0.4 P{sub cr} say 45 watt cm{sup -2} for 12.5 atm in nitrogen and 16 watt cm{sup -2} for 5.5 atm in hydrogen. Beyond, calefaction appears with a reduced dissipated power, rough reduction (90 per cent in few degrees) for nitrogen, smoother for hydrogen. (author) [French] On a etudie l'echange de chaleur entre une paroi horizontale et l'azote ou l'hydrogene bouillant depuis la pression atmospherique jusqu'au 2/3 de la pression critique. Les courbes q = f(T) sont assez bien definies pour l'azote mais accusent une marge d'incertitude pour l'hydrogene. En generale, les {delta}T mesurees sont inferieures a celles obtenues par divers auteurs utilisant la methode du fil. Les courbes plus reproductibles de q{sub max} f(P) passent par un maximum pour les deux liquides a environ 0,4 P{sub cr}, c'est-a-dire 45 watt cm{sup -2} pour 12,5 atm dans l'azote et 16 watt cm{sup -2} pour 5,5 atm dans l'hydrogene. Au-dela, la calefaction se produit avec un pouvoir dissipatif reduit, une reduction brusque pour l'azote (90 p. 100 en quelques degres) et plus reguliere pour l'hydrogene. (auteur)

  14. Dry patch formed boiling and burnout in potassium pool boiling

    International Nuclear Information System (INIS)

    Michiyoshi, I.; Takenaka, N.; Takahashi, O.

    1986-01-01

    Experimental results are presented on dry patch formed boiling and burnout in saturated potassium pool boiling on a horizontal plane heater for system pressures from 30 to 760 torr and liquid levels from 5 to 50 mm. The dry patch formation occurs in the intermittent boiling which is often encountered when liquid alkali metals are used under relatively low pressure conditions. Burnout is caused from both continuous nucleate and dry patch formed boiling. The burnout heat flux together with nucleate boiling heat transfer coefficients are empirically correlated with system pressures. A model is also proposed to predict the minimum heat flux to form the dry patch. (author)

  15. Waves on the surface of a boiling liquid at various medium stratifications

    International Nuclear Information System (INIS)

    Sinkevich, O. A.

    2015-01-01

    The stability of relatively small perturbations of the stationary state consisting of a plane liquid layer and a vapor film is studied when no liquid evaporation or vapor condensation occurs in the stationary state. In this case, heat from a hot to cold wall is removed through a vapor–liquid layer via heat conduction. The boundary conditions that take into account liquid evaporation (appearance of a mass flux) at the vapor–liquid phase surface and the temperature dependence of the saturation pressure are derived. Dispersion equations are obtained. The wave processes for the stable (light vapor under a liquid layer) and unstable stratifications of the phases at rest and during their relative motion are studied. The deformation of the phase boundary results in liquid evaporation, changes in the boiling temperature and the saturation pressure, and generation of weakly damped low-amplitude waves of a new type. These waves ensure the stability of a vapor film under a liquid layer at rest or a liquid layer moving at a constant velocity in the gravity field. The velocities of these waves are much higher than the gravity wave velocities. The critical heat flows and wavelengths at which wave boiling regimes at normal pressure can exist are determined, and the calculated and experimental data are compared

  16. Surface boiling of superheated liquid

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs.

  17. Surface boiling of superheated liquid

    International Nuclear Information System (INIS)

    Reinke, P.

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs

  18. Boiling, condensation, and gas-liquid flow

    International Nuclear Information System (INIS)

    Whalley, P.B.

    1987-01-01

    Heat transfer phenomena involving boiling and condensation are an important aspect of engineering in the power and process industries. This book, aimed at advanced first-degree and graduate students in mechanical and chemical engineering, deals with these phenomena in detail. The first part of the book describes gas-liquid two-phase flow, as a necessary preliminary to the later discussion of heat transfer and change of phase. A detailed section on calculation methods shows how theory can be put to practical use, and there are also descriptions of some of the equipment and plant used in the process and power industries

  19. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    Science.gov (United States)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  20. U.S. experience with hydrogen water chemistry in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Head, R.A.; Indig, M.E.; Ruiz, C.P.; Simpson, J.L.

    1988-01-01

    Hydrogen water chemistry in boiling water reactors is currently being adopted by many utilities in the U.S., with eleven units having completed preimplementation test programs, four units operating permanently with hydrogen water chemistry, and six other units in the process of installing permanent equipment. Intergranular stress corrosion cracking protection is required for the recirculation piping system and other regions of the BWR systems. The present paper explores progress in predicting and monitoring hydrogen water chemistry response in these areas. Testing has shown that impurities can play an important role in hydrogen water chemistry. Evaluation of their effects are also performed. Both computer modeling and in plant measurements show that each plant will respond uniquely to feedwater hydrogen addition. Thus, each plant has its own unique hydrogen requirement for recirculation system protecion. Furthermore, the modeling, and plant measurements show that different regions of the BWR respond differently to hydrogen injection. Thus, to insure protection of components other than the recirculation systems may require more (or less) hydrogen demand than indicated by the recirculation system measurements. In addition, impurities such as copper can play a significant role in establishing hydrogen demand. (Nogami, K.)

  1. Vapor pressure determination of liquid UO/sub 2/ using a boiling point technique

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1987-01-01

    By analogy with the classic boiling point method, a quasi-stationary millisecond laser-heating technique was applied to measure the saturated vapor pressure curve of liquid UO/sub 2/ in the temperature range of 3500 to 4500 K. The results are represented by log rho (MPa)=5.049 - 23 042/T (K), which gives an average heat of vaporization of 441 kJ/mol and a normal boiling point of 3808 K. In addition, spectral emissivities of liquid UO/sub 2/ were determined as a function of the temperature at the pyrometer wavelengths of 752 and 1064 nm

  2. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  3. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  4. Resistance probe for liquid hydrogen; Sonde a resistance pour l'hydrogene liquide

    Energy Technology Data Exchange (ETDEWEB)

    Beauval, J J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A simple device for determining the level of a liquid in equilibrium with its vapour is described. It makes use of the variation in heat exchange between a filament heated by a current and the atmosphere, on passing from the liquid to the gas. This apparatus is used to measure liquid hydrogen levels in liquefying dewar vessels. (author) [French] On decrit un dispositif simple permettant de determiner le niveau d'un liquide en equilibre avec sa vapeur. Il utilise la variation de l'echange thermique entre un filament chauffe par un courant et le milieu ambiant, quand on passe du liquide au gaz. Cet appareil est utilise pour mesurer des niveaux d'hydrogene liquide dans les dewars du liquefacteur. (auteur)

  5. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    Science.gov (United States)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  6. Predicting the onset of nucleate boiling in wavy free-falling turbulent liquid films

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, W J; Mudawar, I [Purdue Univ., Lafayette, IN (USA). School of Mechanical Engineering

    1989-02-01

    Experiments are performed to develop a fundamental understanding of boiling incipience in wavy free-falling turbulent liquid films. Incipience conditions are measured and correlated for water and a fluorocarbon (FC-72) liquid. Incipience in water films is influenced by turbulent eddies and, to a larger extent, by interfacial waves. A new approach to predicting incipience in water and other non-wetting fluids is presented. This approach utilizes physical parameters of commonly accepted incipience models and provides a means of correcting these models for the effects of turbulent eddies and roll waves. This study also demonstrates some unique incipience characteristics of fluorocarbon films. The weak surface tension forces of FC-72 allow droplets and liquid streams to break of the crests of incoming roll waves prior to, and during nucleate boiling. The low contact angle of FC-72 allows the liquid to penetrate deep inside wall cavities. Thus incipience from these flooded cavities requires much higher wall superheat than predicted from incipience models. (author).

  7. Predicting the onset of nucleate boiling in wavy free-falling turbulent liquid films

    International Nuclear Information System (INIS)

    Marsh, W.J.; Mudawar, I.

    1989-01-01

    Experiments are performed to develop a fundamental understanding of boiling incipience in wavy free-falling turbulent liquid films. Incipience conditions are measured and correlated for water and a fluorocarbon (FC-72) liquid. Incipience in water films is influenced by turbulent eddies and, to a larger extent, by interfacial waves. A new approach to predicting incipience in water and other non-wetting fluids is presented. This approach utilizes physical parameters of commonly accepted incipience models and provides a means of correcting these models for the effects of turbulent eddies and roll waves. This study also demonstrates some unique incipience characteristics of fluorocarbon films. The weak surface tension forces of FC-72 allow droplets and liquid streams to break of the crests of incoming roll waves prior to, and during nucleate boiling. The low contact angle of FC-72 allows the liquid to penetrate deep inside wall cavities. Thus incipience from these flooded cavities requires much higher wall superheat than predicted from incipience models. (author)

  8. Liquid hydrogen and deuterium targets

    International Nuclear Information System (INIS)

    Bougon, M.; Marquet, M.; Prugne, P.

    1961-01-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [fr

  9. Anomalous boiling of liquid helium under it lighting

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Lazarev, S.D.; Lutskij, O.N.

    1975-01-01

    Optical transparency of liquid helium in light channels is investigated. The channel in the form of a horizontally oriented cylindrical tube is dipped in a helium cryostat provided with windows for passing the light. The intensity of light is measured by a gauged photodiode. The dependence of transparency on the intensity of the incident light has been studied. The curves of the dependence of Jsub(pas)/J 0 =f(J 0 ) obtained on increasing and decreasing intensity J 0 within the limits from 0 to 0.8W/cm 2 do not coincide and form a loop of 'optical' hysteresis which may be characterized by the ratio: (Jsub(pas)sup((1)) - Jsub(pas)sup((2)))/Jsub(pas)sup((1))=m(J 0 ) in which the coefficient m is called optical memory. The investigations show that the optical memory is connected with absorption of light 6y the inner surface of tube. If the diameter of the light spot is less than that of the tube and the light beam does not 'touch' the walls, the phenomenon of hysteresis is not observed. Experiments are carried out on studying transparency at the boiling point of helium at different pressures of saturating vapours. The optical memory value is shown to reach maximum at the pressure of 910 mm of mercury and to decrease gradually down to zero at an increase of pressure up to 1600 mm of mercury

  10. A forced convective heat transfer model for two-phase hydrogen systems

    International Nuclear Information System (INIS)

    Pasch, J.; Anghaie, S.

    2007-01-01

    A consistent event in the use of hydrogen in nuclear thermal propulsion is film boiling, in which the wall heat is so large that liquid can not exist at the wall. Instead, vapor interfaces with the wall and liquid flows in the core of the duct. To better understand heat transfer under these conditions, a select set of hydrogen test data from these conditions are analyzed. This paper presents the results of an extensive literature search for film boiling heat transfer models. A representative cross-section of these models is then applied to the data. The heat transfer coefficient data were found difficult to predict and highly dependent upon the flow regime. Pre-critical heat flux correlations completely fail to predict the heat transfer of inverted film boiling conditions. Pool boiling models for inverted film boiling also are inappropriate. Current force convection models for inverted film boiling, while far better than the previous two classes of models, still generate large predictive errors. It is recommended that for the inverted annular film boiling flow regime the modified equilibrium bulk Dittus-Boelter model be used. For agitated inverted annular film boiling and dispersed film boiling regimes associated with positive equilibrium qualities, the Hendricks model should be used. (A.C.)

  11. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    International Nuclear Information System (INIS)

    Geraldo, Issa Cherif; Bose, Tanmoy; Pekpe, Komi Midzodzi; Cassar, Jean-Philippe; Mohanty, A.R.; Paumel, Kévin

    2014-01-01

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected

  12. Acoustic emissions of a boiling liquid - an experimental survey in water and extrapolation to SFRs

    International Nuclear Information System (INIS)

    Vanderhaegen, M.; Paumel, K.; Tourin, A.

    2013-06-01

    The acoustic detection of sodium boiling is seen as a promising and innovative surveillance technique for sodium-cooled fast reactors (SFRs). It could be especially useful to detect in-core boiling that are the consequence of initiating accidents or whilst the mean subassembly temperature is very close to the nominal value. This latter is a consequence of the fuel assembly design of SFRs. Furthermore, it is a technique that has been proven to be successful in the past to follow the boiling behavior during SFR experiments that were aimed at simulating accidental conditions. However its effectiveness as in-core instrumentation still has to be demonstrated. In that aim, the acoustic emissions of sodium boiling in subassemblies are studied. Experimental studies are however limited to the boiling of common coolants due to the complications that arise when boiling liquid metals. As such, simple water experiments are performed. And although the results of these experiments are not completely representative for sodium boiling due to the incomplete thermo-hydraulic similarities between sodium and water, they can provide an interesting knowledge of the many influences that control the acoustic pressure field. In this article we'll specifically show how the condensation of vapor in subcooled liquid, the principal contribution to the acoustic emissions during boiling and hence the acoustic spectrum, is influenced by a pin-bundle geometry. We study this influence by comparing pool boiling experimental acoustic recordings with those of a simple pin-bundle geometry boiling experiment. The qualitative link, between this relatively simple pin-bundle experiment and the condensation phenomena that take place during sodium boiling inside SFR subassemblies, is used as a basis for this analysis. This simple experimental evidence, together with other theoretical arguments based on a thorough analysis of the sodium material properties, enables us to deduce that simple sodium

  13. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  14. Magnetic thaw-down and boil-off due to magneto acceptors in 2DEG

    International Nuclear Information System (INIS)

    Chaubet, C.; Raymond, A.; Bisotto, I.; Harmand, J. C.; Kubisa, M.; Zawadzki, W.

    2013-01-01

    The Quantum Hall Effect (QHE) and Shubnikov-de Haas effect are investigated experimentally using n type modulation-doped GaAs/GaAlAs quantum wells (QWs) additionally doped in the well with beryllium acceptor atoms. It is presently shown that the localized magneto-acceptor (MA) states which possess discrete energies above the corresponding Landau levels (LLs) lead to two observable effects in magneto-transport: magnetic thaw-down and magnetic boil-off of 2D electrons. Both effects are related to the fact that electrons occupying the localized MA states cannot conduct. Thus in the thaw-down effect the electrons fall down from the MA states to the free Landau states. This leads to a shift of the Hall plateau towards higher magnetic fields as a consequence of an increase of the 2D electron density N S . In the boil-off effect the electrons are pushed from the free Landau states to the empty MA states under high enough Hall electric field. This process has an avalanche character leading to a dramatic increase of magneto-resistance, consequence of a decrease of N S

  15. Thermal and hydrodynamic study of a whirling liquid hydrogen layer under high heat flux

    International Nuclear Information System (INIS)

    Ewald, R.

    1969-01-01

    In order to achieve a cold neutrons source (λ ≥ 4.10 -10 m) in a high flux reactor (∼ 10 15 neutrons/cm 2 .s), a whirling liquid hydrogen layer (145 mm OD, effective thickness 15 mm, height about 180 mm) was formed, out-of-pile, in a cylindrical transparent glass vessel. The whirling motion was obtained by tangential injection of the liquid, near the wall. Thermal and hydrodynamical conditions of formation and laws of similarity of such a layer were studied. The characteristics of this whirling flow were observed as a function of mass flow rate (5 to 27 g/s; 4.3 to 23 l/mn), and of spillway width (18 and 25 mm). Six different nozzles were used : 1.0; 1.5; 1.9; 2.25; 2.65 and 3.0 mm ID. The total heat influx was found between 8.6 and 10.4 kW. The heat flux density was about 9.4 W/cm 2 and the mean layer density around 80 per cent of that of the liquid hydrogen at 20.4 Kelvin. High speed movies were used to analyze the boiling regime. (author) [fr

  16. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    International Nuclear Information System (INIS)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu; Tanguy, Sébastien

    2016-01-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.

  17. Temperature setting and thermal regulation system for liquid hydrogen bubble chamber; Systeme de mise en temperature et de regulation thermique de chambres a bulles a hydrogene liquide

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J; Prugne, P; Roubeau, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    Hydrogen bubble chamber cooling and constant temperature maintenance in the 25/28 deg. K, range by means of liquid hydrogen boiling under atmospheric pressure (20.4 deg. K) need a device, if possible automatic allowing the introduction of a variable amount of cold to counterbalance the heat transfer either static or due to the chamber operation. A variable impedance heat exchanger has been designed, built and experimented for this purpose. This device, which takes little space (less than 1000 cm{sup 3}) allows transfer of a variable cold power between 0 and 500 watts (0 to 50 liter of evaporated hydrogen). (author) [French] Pour le refroidissement des chambres a bulles a hydrogene et pour le maintien d'une temperature constante dans la gamme 25/28 deg. K au moyen d'hydrogene a l'ebullition sous pression atmospherique (20,4 deg. K), on a besoin d'un dispositif, si possible automatique, permettant l'introduction d'une quantite variable de froid pour compenser le transfert de chaleur, soit statique, soit du a l'operation de la chambre. Un echangeur de chaleur a impedance variable a ete concu, construit et essaye pour cet usage. Ce dispositif qui est peu encombrant (en dessous de 1000 cm{sup 3} ) permet le transfert d'une puissance frigorifique, variable entre 0 et 500 watts (0 a 50 litres d'hydrogene evapore). (auteur)

  18. Commodity hydrogen from off-peak electricity

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, K.; Biederman, N.; Konopka, A.

    1977-01-01

    This paper considers the use of off-peak electrical power as an energy source for the electrolytic production of hydrogen. The present industrial uses for hydrogen are examined to determine if hydrogen produced in this fashion would be competitive with the industry's onsite production or existing hydrogen prices. The paper presents a technical and economic feasibility analysis of the various components required and of the operation of the system as a whole including production, transmission, storage, and markets.

  19. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com; Haque, Mominul, E-mail: mominulmarup@gmail.com [Department of Mechanical Engineering, Bangladesh University of Engineering & Technology (BUET) Dhaka-1000 (Bangladesh)

    2016-07-12

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in

  20. Liquid hydrogen properties

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Y. J.; Lee, K. H.; Kim, H. I.; Han, K. Y.; Park, J.H.

    2004-03-01

    The purpose of this report is to provide the input data, whose characteristic is thermodynamic and transport, in the form of equation for the thermo-hydraulic calculations using hydrogen as a working substance. The considered data in this report are particularly focused on the properties of para-hydrogen and of equilibrium-hydrogen around the working temperature range of the HANARO-CNS. The discussed properties of hydrogen are, in turn, the pressure of saturated vapors, the density, the heat of vaporization, thermal conductivity, viscosity, and heat capacity. Several equations to fit the above-mentioned experimental data allow calculating the various properties of liquid hydrogen with high accuracy at all considered temperatures

  1. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  2. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  3. Magnetic thaw-down and boil-off due to magneto acceptors in 2DEG

    Energy Technology Data Exchange (ETDEWEB)

    Chaubet, C.; Raymond, A. [L2C UMR 5221, CNRS-Université Montpellier 2, Place E. Bataillon, 34090 Montpellier cedex 05 (France); Bisotto, I. [LNCMI, UPR 3228, CNRS-INSA-UJF-UPS, BP166, 38042 Grenoble, Cedex 9 (France); Harmand, J. C. [LPN, CNRS, route de Nozay, 91460 Marcoussis (France); Kubisa, M. [Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Zawadzki, W. [Institute of Physics, Polish Academy of Sciences, 02668 Warsaw (Poland)

    2013-12-04

    The Quantum Hall Effect (QHE) and Shubnikov-de Haas effect are investigated experimentally using n type modulation-doped GaAs/GaAlAs quantum wells (QWs) additionally doped in the well with beryllium acceptor atoms. It is presently shown that the localized magneto-acceptor (MA) states which possess discrete energies above the corresponding Landau levels (LLs) lead to two observable effects in magneto-transport: magnetic thaw-down and magnetic boil-off of 2D electrons. Both effects are related to the fact that electrons occupying the localized MA states cannot conduct. Thus in the thaw-down effect the electrons fall down from the MA states to the free Landau states. This leads to a shift of the Hall plateau towards higher magnetic fields as a consequence of an increase of the 2D electron density N{sub S}. In the boil-off effect the electrons are pushed from the free Landau states to the empty MA states under high enough Hall electric field. This process has an avalanche character leading to a dramatic increase of magneto-resistance, consequence of a decrease of N{sub S}.

  4. Theory of boiling-up jump

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1981-01-01

    Concept of boiling-up jump representing a zone of intense volume boiling-up separating overtaking flow of overheated metastable liquid from an area of equilibrium flow located below along the flow is introduced. It is shown that boiling-up jump is a shock wave of rarefaction. It is concluded that entropy increment occurs on the jump. Characteristics of adiabatic shock wave curve of boiling- up in ''pressure-specific volume'' coordinates have been found and its form has been investigated. Stability of boiling-up jump has been analyzed as well. On the basis of approach developed analysis is carried out on the shock adiobatic curve of condensation. Concept of boiling-up jump may be applied to the analysis of boiling-up processes when flowing liquid through packings during emergency pressure drop etc [ru

  5. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    Science.gov (United States)

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  6. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  7. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  8. Comparative study of the hydrogen generation during short term station blackout (STSBO) in a BWR

    International Nuclear Information System (INIS)

    Polo-Labarrios, M.A.; Espinosa-Paredes, G.

    2015-01-01

    Highlights: • Comparative study of generation in a simulated STSBO severe accident. • MELCOR and SCDAP/RELAP5 codes were used to understanding the main phenomena. • Both codes present similar thermal-hydraulic behavior for pressure and boil off. • SCDAP/RELAP5 predicts 15.8% lower hydrogen production than MELCOR. - Abstract: The aim of this work is the comparative study of hydrogen generation and the associated parameters in a simulated severe accident of a short-term station blackout (STSBO) in a typical BWR-5 with Mark-II containment. MELCOR (v.1.8.6) and SCDAP/RELAP5 (Mod.3.4) codes were used to understand the main phenomena in the STSBO event through the results comparison obtained from simulations with these codes. Due that the simulation scope of SCDAP/RELAP5 is limited to failure of the vessel pressure boundary, the comparison was focused on in-vessel severe accident phenomena; with a special interest in the vessel pressure, boil of cooling, core temperature, and hydrogen generation. The results show that at the beginning of the scenario, both codes present similar thermal-hydraulic behavior for pressure and boil off of cooling, but during the relocation, the pressure and boil off, present differences in timing and order of magnitude. Both codes predict in similar time the beginning of melting material drop to the lower head. As far as the hydrogen production rate, SCDAP/RELAP5 predicts 15.8% lower production than MELCOR

  9. Study of liquid hydrogen and liquid deuterium cold neutron sources; Etude de sources de neutrons froids a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Harig, H D [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10{sup 15} n/cm{sup 2}s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10{sup 12} n/cm{sup 2}s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [French] En vue de l'installation d'une source a neutrons froids dans un reacteur a haut flux (flux thermique maximal environ 10{sup 15} n/cm{sup 2}s), nous avons fait une etude neutronique experimentale de differentes sources froides a hydrogene et a deuterium liquides aupres d'un reacteur a faible puissance (100 kW environ 10{sup 12} n/cm{sup 2}s). Nous avons etudie: des couches annulaires de differentes epaisseurs d'hydrogene liquide normal et d'hydrogene a grand pourcentage para, des cellules cylindriques de 18 et 38 cm de diametre, remplies de deuterium liquide et placees a differentes positions dans le reflecteur D{sub 2}O. Ce travail traite l'implantation de l'installation cryogenique et donne une description generale de l'experience. L'interpretation des resultats fait etat entre autres d'une comparaison entre l'experience et une etude theorique portant sur les memes moderateurs. (auteurs)

  10. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  11. Hydrogen extraction from liquid lithium-lead alloy by gas-liquid contact method

    International Nuclear Information System (INIS)

    Xie Bo; Weng Kuiping; Hou Jianping; Yang Guangling; Zeng Jun

    2013-01-01

    Hydrogen extraction experiment from liquid lithium-lead alloy by gas-liquid contact method has been carried out in own liquid lithium-lead bubbler (LLLB). Experimental results show that, He is more suitable than Ar as carrier gas in the filler tower. The higher temperature the tower is, the greater hydrogen content the tower exports. Influence of carrier gas flow rate on the hydrogen content in the export is jagged, no obvious rule. Although the difference between experimental results and literature data, but it is feasible that hydrogen isotopes extraction experiment from liquid lithium-lead by gas-liquid contact method, and the higher extraction efficiency increases with the growth of the residence time of the alloy in tower. (authors)

  12. The mechanism of heat transfer in transition boiling

    International Nuclear Information System (INIS)

    Chin Pan; Hwang, J.Y.; Lin, T.L.

    1989-01-01

    Liquid-solid contact in transition boiling is modelled by involving transient conduction, boiling incipience, macrolayer evaporation and vapour film boiling. The prediction of liquid contact duration and time fraction agrees reasonably well with experimental data, and the model is able to predict both of the boiling curve transitions - the critical and minimum heat fluxes. The study concludes that the liquid turbulence due to buoyancy forces and bubble agitation is an important parameter for transition boiling. It is found that surface coating (oxidation or deposition) tends to improve the transition boiling heat transfer and elevate the wall superheats at both the critical heat flux and the minimum film boiling points, which agrees with the experimental observations. (author)

  13. Boiling-up of a liquid in a large volume at fast pressure drop

    International Nuclear Information System (INIS)

    Isaev, O.A.; Pavlov, P.A.

    1980-01-01

    Experiment results on sharp pressure drop in overheated water and carbon dioxide are presented. Pressure fields are investigated upon seal failure of the tube for various initial temperatures varying in the 0.57-0.97 interval on critical temperature. The depth of the liOuid inlet into the metastable region can be compared with maximum permissible superheating of a pure liquid. The applicability of fluctuation embrion formation for pressure calculation in the initial phase of explosive boiling-up at seal failure of the system is considered. The nature of boiling centers origin is discussed

  14. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  15. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  16. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  17. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  18. Study on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2002-01-01

    The onset of nucleate boiling (ONB) and the point of net vapor generation on subcooled flow boiling, focusing on liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film (35μm) and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa. The liquid subcoolings were 20, 30 and 40K, respectively. Temperatures at the onset of nucleate boiling obtained in the experiments increased with the liquid subcoolings and the liquid velocities. The increases in the temperature of ONB were represented with the classical stability theory of preexisting nuclei. The measured results of the net vapor generation agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. (J.P.N.)

  19. Analysis of the Quasi-Elastic Scattering of Neutrons in Hydrogenous Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Porohit, S N [Nuclear Science and Engineering Dept., Rensselaer Polytechnique Inst., Troy, NY (United States)

    1966-11-15

    A critical discussion of the quasi-elastic scattering of neutrons by incoherent (hydrogenous) liquids is presented. Using the line shape expression a comparative discussion of several phenomenological models has been carried out. Extension of the Singwi-Sjoelander zero phonon expression, for the jump-diffusion model, so as to include the one phonon expression has also been given. For a delayed diffusion model a complete treatment of S(K, {omega}) is presented. Along the lines of the macroscopic diffusion cooling, a microscopic diffusion cooling effect in fluids is speculated.

  20. Analysis of the Quasi-Elastic Scattering of Neutrons in Hydrogenous Liquids

    International Nuclear Information System (INIS)

    Porohit, S.N.

    1966-11-01

    A critical discussion of the quasi-elastic scattering of neutrons by incoherent (hydrogenous) liquids is presented. Using the line shape expression a comparative discussion of several phenomenological models has been carried out. Extension of the Singwi-Sjoelander zero phonon expression, for the jump-diffusion model, so as to include the one phonon expression has also been given. For a delayed diffusion model a complete treatment of S(K, ω) is presented. Along the lines of the macroscopic diffusion cooling, a microscopic diffusion cooling effect in fluids is speculated

  1. Molecular interpretation of Trouton's and Hildebrand's rules for the entropy of vaporization of a liquid

    International Nuclear Information System (INIS)

    Green, James A.; Irudayam, Sheeba Jem; Henchman, Richard H.

    2011-01-01

    Research highlights: → A method to calculate a liquid's entropy of vaporization is proposed. → The entropy of vaporisation depends on force magnitudes from computer simulation. → Calculated values agree with experiment, Trouton's rule and Hildebrand's rule. → Free volumes decrease for larger molecules or those with stronger interactions. - Abstract: The entropy of vaporization at a liquid's boiling point is well approximated by Trouton's rule and even more accurately by Hildebrand's rule. A cell method is used here to calculate the entropy of vaporization for a range of liquids by subtracting the entropy of the gas from that of the liquid. The liquid's entropy is calculated from the force magnitudes measured in a molecular dynamics simulation based on the harmonic approximation. The change in rotational entropy is not accounted for except in the case of liquid water. The predicted entropies of vaporization agree well with experiment and Trouton's and Hildebrand's rules for most liquids and for water except other liquids with hydrogen bonds. This supports the idea that molecular rotation is close to ideal at a liquid's boiling point if hydrogen bonds are absent; if they are present, then the rotational entropy gain must be included. The method provides a molecular interpretation of those rules by providing an equation in terms of a molecule's free volume in a liquid which depends on the force magnitudes. Free volumes at each liquid's boiling point are calculated to be ∼1 A 3 for liquids lacking hydrogen bonds, lower at ∼0.3 A 3 for those with hydrogen bonds, and they decrease weakly with increasing molecular size.

  2. Microwave plasma for hydrogen production from liquids

    Directory of Open Access Journals (Sweden)

    Czylkowski Dariusz

    2016-06-01

    Full Text Available The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the flow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid flow rate and working gas fl ow rate was analysed. All these parameters have a clear influence on the hydrogen production efficiency, which was described with such parameters as the hydrogen production rate [NL(H2/h] and the energy yield of hydrogen production [NL(H2/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2/h and the energy yield was 223 NL(H2 per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.

  3. Thermoeconomic optimization of a cryogenic refrigeration cycle for re-liquefaction of the LNG boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Sayyaadi, Hoseyn; Babaelahi, M. [Faculty of Mechanical Engineering-Energy Division, K.N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis Str., Mollasadra Ave., Vanak Sq., Tehran 1999 143344 (Iran)

    2010-09-15

    The development of the liquefaction process for the Liquefied Natural Gas (LNG) boil-off re-liquefaction plants will be addressed to provide an environmentally friendly and cost effective solution for the gas transportation. In this manner, onboard boil-off gas (BOG) re-liquefaction system as a cryogenic refrigeration cycle is utilized in order to re-liquefy the BOG and returns it to the cargo tanks instead of burning it. In this paper, a thermoeconomic optimization of the LNG-BOG liquefaction system is performed. A thermoeconomic model based on energy and exergy analyses and an economic model according to the total revenue requirement (TRR) are developed. Minimizing of the unit cost of the refrigeration effect as a product of BOG re-liquefaction plant is performed using the genetic algorithm. Results of thermoeconomic optimization are compared with corresponding features of the base case system. Finally, sensitivity of the total cost of the system product with respect to the variation of some operating parameters is studied. (author)

  4. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    Science.gov (United States)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-01-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid

  5. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  6. Experimental Study on Boiling Crisis in Pool Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    They postulated that failure in re-wetting of a dry patch by a cooling liquid is governed by microhydrodynamics near the wall. Chu et al. commonly observed that active coalescence of newly generated bubbles with preexisting bubbles results in a residual dry patch and prevents the complete rewetting of the dry patch, leading to CHF. In this work, to reveal the key physical mechanism of CHF during the rewetting process of a dry patch, dynamics of dry patches and thermal pattern of a boiling surface are simultaneously observed using TR and IR thermometry techniques. Local dynamics of dry patch and thermal pattern on a boiling surface in synchronized manner for both space and time using TR and IR thermometry were measured during pool boiling of water. Observation and quantitative examination of CHF was performed. - The hydrodynamic and thermal behaviors of irreversible dry patch were observed. The dry patches coalesce into a large dry patch and it locally dried out. Due to the failure of liquid rewetting, the dry patch is not completely rewetted, resulting in the burn out at which temperature is -140°C. - When temperature of a dry patch rises beyond the instantaneous nucleation temperature, several bubbles nucleate at the head of the advancing liquid meniscus and prevents the liquid front, and eventually the overheated dry patch remains alive after the departure of the massive bubble.

  7. Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.

    Science.gov (United States)

    Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald

    2017-06-01

    Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Prediction of boiling points of some organic compounds to be used in volume reduction of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Helal, N.L.; Ezz el-Din, M.R.

    2004-01-01

    Boiling points determination may help in the evaporation process used to solidify high-level liquid wastes and to reduce the volume of wastes that require disposal. The problem that always encountered is how to choose an appropriate method to determine the boiling points of the liquid wastes which will be able to solve. We introduce this work with the aim to use mathematical descriptors and their applications in predicting boiling points essential for the evaporation process. This work was applied for diverse database of two sets of chemicals that may exist in radioactive wastes. The first set was 59 alcohols and amines (group a) and the second was 11 aniline compounds (group b). The results show that the used mathematical descriptors give a reasonable predictive model for the diverse sets of molecules

  9. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  10. Pool boiling from rotating and stationary spheres in liquid nitrogen

    Science.gov (United States)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  11. Development of Bubble Lift-off Diameter Model for Subcooled Boiling Flows

    International Nuclear Information System (INIS)

    Hoang, Nhan Hien; Chu, Incheol; Song Chulhwa; Euh, Dongjin

    2014-01-01

    A lot of models and correlations for predicting the bubble departure/lift-off diameter are available in the literature. Most of them were developed based on a hydrodynamic principle, which balances forces acting on a bubble at the departure/lift-off point. One difficulty of these models is lack of essential information, such as bubble front velocity, liquid velocity, or relative velocity, to estimate the active force elements. Hence, the lift-off bubble diameter predicted by these hydrodynamic-controlled models may be suffered a large uncertainty. In contract to the hydrodynamic approach, there are few models developed based on the heat transfer aspect. By balancing the heat conducted through a microlayer underneath a bubble with the heat taken away by condensation at the upper part of the bubble, Unal derived a heat-controlled model of the bubble lift-off diameter. This model did not consider the role of superheat liquid layer surrounding the bubble as well as the effect of liquid properties on the heat transfer process. Beside these two approaches, several empirical correlations have been proposed based on dimensionless analyses for measured experimental databases. The application of these correlations to different experiments conditions is, of course, questionable because of the lack of physical bases. Regarding the heat transfer accompanied by a vapor bubble, four involved heat transfer regions surrounding this bubble can be defined as in Fig. 1. These are dry region, microlayer, superheated liquid layer (SpLL) and subcooled liquid layer (SbLL). The existing of the microlayer is confirmed by experiments, and it is considered to be very effective in the heat transfer. Sernas and Hoper defined five types of the microlayer and indicated that the microlayer acting as a very thick liquid layer gives a best prediction for the bubble growth. However, beside the microlayer, the SpLL might play an important role in the heat transfer if its effective heat transfer area

  12. Transient solid-liquid He heat transfer and onset of film boiling

    International Nuclear Information System (INIS)

    Metzger, W.; Huebener, R.P.; Selig, K.P.

    1982-01-01

    The transient heat transfer between single-crystalline Ge chips and liquid helium is investigated during the application of light pulses with different optical power to the Ge sample. The strong temperature dependence of the electrical conductivity of Ge conveniently serves for monitoring the temporal behaviour of the sample temperature during the input of optical energy. After a certain time interval following the beginning of the light pulse an abrupt rise of the sample temperature is observed. This time interval is much longer than the thermal time constant expected for the sample. This abrupt rise of the sample temperature can be understood in terms of the onset of film boiling. The observed onset time of film boiling and its dependence upon the heat transfer power density agrees reasonably with earlier results by Steward (Int. J. Heat Mass Transfer 21; 863. (1978)). (author)

  13. Development and testing of a zero stitch MLI blanket using plastic pins for space use

    Science.gov (United States)

    Hatakenaka, Ryuta; Miyakita, Takeshi; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki

    2014-11-01

    New types of MLI blanket have been developed to achieve high thermal performance while maintaining production and assembly workability equivalent to the conventional type. Tag-pins, which are widely used in commercial applications to hook price tags to products, are used to fix the films in place and the pin material is changed to polyetheretherketone (PEEK) for use in space. Thermal performance is measured by using a boil-off calorimeter, in which a rectangular liquid nitrogen tank is used to evaluate the degradation at the bending corner and joint of the blanket. Zero-stitch- and multi-blanket-type MLIs show significantly improved thermal performance (ɛeff is smaller than 0.0050 at room temperature) despite having the same fastener interface as traditional blankets, while the venting design and number of tag-pins are confirmed as appropriate in a depressurization test.

  14. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    Science.gov (United States)

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  15. Small scale demand type neon liquefaction plant

    International Nuclear Information System (INIS)

    Dube, W.P.; Slifka, A.J.; Bitsy, R.M.; Sparks, L.L.; Johnson, K.B.

    1990-01-01

    Low-temperature measurement of the thermal conductivity of insulating materials is generally made using a boil-off calorimetry technique involving liquid hydrogen (LH2). Liquid neon (LNe) has nearly the same normal boiling point as LH2, but has a much larger heat of vaporization, allowing extended run times. The main drawback of using LNe has been its excessive cost; $170.00 versus $1.50/l for LH2 (1989 prices). A neon liquefaction plant has been designed and constructed to capture, purify, and refrigerate the neon boil-off from calorimetry experiments. Recycling the neon reduces operating costs to approximately $20/l. The system consists of a purification section, a heat exchanger, LNe and LH2 storage dewars, and a fully automated control system. After purification, neon is liquified in the heat exchanger by LH2 flowing countercurrently through stainless steel cooling coils. Hydrogen flow is automatically adjusted to keep the neon at its normal saturation temperature, 27 K. The liquid neon is then stored in a dewar placed directly below the heat exchanger

  16. Boiling of superheated liquids near the spinodal: II Application

    Science.gov (United States)

    aus der Wiesche, S.; Rembe, C.; Hofer, E. P.

    The general theory of boiling near the spinodal as critical phenomenon will be used on the nucleation process of explosive evaporating liquids. In experiments with thermal micro heater the occurrence of the critical opalescence can be demonstrated which is characteristic for phase transitions of second order. In case of water the experiments permit the determination of the gradient energy coefficient κ for nonuniform systems. The homogeneous nucleation rate for extremely superheated water at normal pressure is discussed. It is found that the explosive evaporation starts very closed to the spinodal and leads to spatial extended nuclei in contrast to the conventional nucleation mode.

  17. Mechanism of subcooled water flow boiling critical heat flux in a circular tube at high liquid Reynolds number

    International Nuclear Information System (INIS)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2014-01-01

    The subcooled boiling heat transfer and the steady state critical heat flux (CHF) in a vertical circular tube for the flow velocities (u=3.95 to 30.80 m/s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tube of inner diameter (d=6 mm) and heated length (L=59.5 mm) is used in this work. The outer surface temperatures of the SUS304 test tube with heating are observed by an infrared thermal imaging camera and a video camera. The subcooled boiling heat transfers for SUS304 test tube are compared with the values calculated by other workers' correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details based on the experimental data. Nucleate boiling surface superheats at the CHF are close to the lower limit of the heterogeneous spontaneous nucleation temperature and the homogeneous spontaneous nucleation temperature. The dominant mechanism of the subcooled flow boiling CHF on the SUS304 circular tube is discussed at high liquid Reynolds number. On the other hand, theoretical equations for k-ε turbulence model in a circular tube of a 3 mm in diameter and a 526 mm long are numerically solved for heating of water on heated section of a 3 mm in diameter and a 67 mm long with various thicknesses of conductive sub-layer by using PHOENICS code under the same conditions as the experimental ones previously obtained considering the temperature dependence of thermo-physical properties concerned. The Platinum (Pt) test tube of inner diameter (d=3 mm) and heated length (L=66.5 mm) was used in this experiment. The thicknesses of conductive sub-layer from non-boiling regime to CHF are clarified. The thicknesses of conductive sub-layer at the CHF point are evaluated for various flow velocities. The experimental values of the CHF are also compared with the corresponding

  18. Resistance probe for liquid hydrogen

    International Nuclear Information System (INIS)

    Beauval, J.J.

    1959-01-01

    A simple device for determining the level of a liquid in equilibrium with its vapour is described. It makes use of the variation in heat exchange between a filament heated by a current and the atmosphere, on passing from the liquid to the gas. This apparatus is used to measure liquid hydrogen levels in liquefying dewar vessels. (author) [fr

  19. Acceleration of two-phase flow by boiling, 1

    International Nuclear Information System (INIS)

    Hara, Toshitsugu; Uchida, Motokazu; Mitani, Akio; Mori, Yasuo; Hijikata, Kunio.

    1975-01-01

    This paper reports on the experimental results concerning the acceleration mechanism of the liquid used for liquid metal magnetohydrodynamic power generation. The experiment simulated two-component flow by injecting low boiling point liquid (R113) which is not soluble in main high temperature flow (hot water). From the boiling of this two component flow, the relations among the acceleration performance of the liquid, the number and frequency of bubbles generated from liquid drops, and the growth velocity of the bubbles have been investigated. All the injected liquid drops did not necessarily boil even if they were heated above the saturation temperature. The probability of boiling of the liquid drops becomes larger as the temperature difference between two liquids becomes larger. The bubble generation frequency distributed around the mean elapsed time of the liquid drops. The larger temperature difference between two liquids presents sharper distribution. The radius of bubbles increased proportionally to the two-thirds power of the elapsed time and also to two-thirds power of the temperature difference. The liquid acceleration performance by bubbles increased as the bubble generation frequency distribution becomes sharpe. (Tai, I.)

  20. One- and zero-dimensional electron systems over liquid helium (Review article)

    CERN Document Server

    Kovdrya, Y Z

    2003-01-01

    Experimental and theoretical investigations of one-dimensional and zero-dimensional electron systems near the liquid helium surface are surveyed. The properties of electron states over the plane surface of liquid helium including thin layers of helium are considered. The methods of realization of one- and zero-dimensional electron systems are discussed, and the results of experimental and theoretical investigations of their properties are given. The experiments with localization processes in a quasi-one-dimensional electron systems on liquid helium are described. The collective effects in one-dimensional and quasi-one-dimensional electron systems are considered, and the point of possible application of low-dimensional electron systems on liquid helium in electron devices and quantum computers is discussed.

  1. Decontamination flange film characterization for a boiling water reactor under hydrogen water chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Garbauskas, M.F.; Bozeman, J.

    1996-01-01

    Stainless steel artifacts removed from a boiling water reactor class 4 plant that operated under hydrogen water chemistry and experienced a difficult decontamination were submitted for oxide film characterization. The results reported for the corrosion film composition and structure are consistent with existing theoretical concepts for stainless steel corrosion, spinel structure site preferences (octahedral or tetrahedral) for transition metal ions, and potential-pH diagrams. The observed zinc effects on film stability and lower cobalt incorporation are also consistent with these theoretical concepts

  2. Research progresses and future directions on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2015-12-01

    Full Text Available This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated surface. It occurs during boiling of liquids for excess temperature ranging from 5 to 30 °C in various processes related to high vaporization of liquid for specific purposes like sugarcane juice heating for jaggery making, milk heating for khoa making, steam generation, cooling of electronic equipments, refrigeration and etcetera. In this review paper, pool boiling method during heating of liquids for specific purpose is depicted. It is inferred that enhancement in pool boiling heat transfer is a challenging and complex task. Also, recent research and use of various correlations for natural convection pool boiling is reviewed.

  3. Liquid infiltration through the boiling-point isotherm in a desiccating fractured rock matrix

    International Nuclear Information System (INIS)

    Phillips, O.M.

    1994-01-01

    Over a long time interval, the integrity of the radioactive waste repository proposed at Yucca Mountain may be compromised by corrosion accelerated by intermittent wetting which could occur by episodic infiltration of meteoric water from above through the fracture network. A simple two-dimensional model is constructed for the infiltration of liquid water down a fracture in a permeable rock matrix, beyond the boiling-point isotherm. The water may derive from episodic infiltration or from the condensation of steam above a desiccating region. Boiling of the water in the fracture is maintained by heat transfer from a surrounding superheated matrix blocks. There are two intrinsic length scales in this situation, (1): l s = ρ l q o L/(k m β) which is such that the total heat flow over this lateral distance balances that needed for evaporation of the liquid water infiltration, and (2): The thermal diffusion distance l θ = (k m t) 1/2 which increases with time after the onset of infiltration. The primary results are: (a) for two-dimensional infiltration down an isolated fracture or fault, the depth of penetration below the (undisturbed) boiling point isotherm is given by 1/2 π 1/2 (l s l θ ) 1/2 , and so increases as t 1/4 . Immediately following the onset of infiltration, penetration is rapid, but quickly slows. This behavior continues until l θ (and D) become comparable with l s . (b) With continuing infiltration down an isolated fracture or cluster of fractures, when l θ >> l s the temperature distribution becomes steady and the penetration distance stabilizes at a value proportional to l s . (c) Effects such as three-dimensionality of the liquid flow paths and flow rates, matrix infiltration, etc., appear to reduce the penetration distance

  4. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  5. A study on boiling heat transfer with mixture boiling from vertical rod fin

    International Nuclear Information System (INIS)

    Kim, M.C.

    1981-01-01

    The purpose of the present study is concerned with the boiling characteristic of variations of the length-diameter ratio on the heat transfer rate where the nucleate boiling and natural convection occurred simultaneously. Circular fins were made with copper rod 32 mm in diameter, and those surfaces were mirror finished. The length-diameter ratio was varied 1 to 6. As a boiling liquid, the distilled water was used in this experiment. The results of this experiment were obtained as below. 1) From the observations, it was confirmed that nucleate boiling and natural convection occurred simultaneously. 2) As the length-diameter ratio increased, the boiling heat transfer rate also augmented. (author)

  6. Hydrogen is ready for take-off

    International Nuclear Information System (INIS)

    Mary, Olivier

    2015-01-01

    As hydrogen is expected to be the energy vector for the future, this article proposes an overview of developments in this sector. It outlines that the transport sector seems to be taking off, notably with the influence of car manufacturers like Hyundai and Toyota which are already proposing hydrogen-fuelled vehicles whereas German manufacturers are only announcing such products, and France prefers electric vehicles. It also discusses the fact that the existence of a distribution network is an important challenge. Besides this application in transport, hydrogen has also a high potential for renewable energy storage. As it is a rather new one, this sector is in continuous change. In parallel, two perspectives are briefly discussed: the possible use of water electrolysis as a concurrent to steam reforming, and the possible use of natural hydrogen as energy source

  7. Trace hydrogen extraction from liquid lithium tin alloy

    International Nuclear Information System (INIS)

    Xie Bo; Hu Rui; Xie Shuxian; Weng Kuiping

    2010-01-01

    In order to finish the design of tritium extraction system (TES) of fusion fission hybrid reactor (FFHR) tritium blanket, involving the dynamic mathematical model of liquid metal in contact with a gaseous atmosphere, approximate mathematical equation of tritium in lithium tin alloy was deduced. Moreover, carrying process used for trace hydrogen extraction from liquid lithium tin alloy was investigated with hydrogen being used to simulate tritium in the study. The study results indicate that carrying process is effective way for hydrogen extraction from liquid lithium tin alloy, and the best flow velocity of carrier gas is about 4 L/min under 1 kg alloy temperatures and carrying numbers are the main influencing factors of hydrogen number. Hydrogen extraction efficiency can reach 85% while the alloy sample is treated 6 times at 823 K. (authors)

  8. Exergoeconomic estimates for a novel zero-emission process generating hydrogen and electric power

    International Nuclear Information System (INIS)

    Tsatsaronis, George; Kapanke, Kerstin; Maria Blanco Marigorta, Ana

    2008-01-01

    This paper presents the exergoeconomic analysis of a novel process generating electric energy and hydrogen. Coal and high-temperature heat are used as input energy to the process. The process is a true 'zero-emission process' because (a) no NO X is formed during coal combustion with sulfuric acid, and (b) the combustion products CO 2 and SO 2 are removed separately as compressed liquids from the overall process. The process cycle is based on two chemical reactions. The first reaction takes place in an electrolytic cell and delivers the hydrogen product. In the second step, coal reacts with sulfuric acid in a high-pressure combustion reactor. The combustion gas is expanded in a gas turbine to produce electric power. The combustion products are compressed and separated so that almost pure CO 2 can be removed from the cycle. The overall process is characterized by very high energetic and exergetic efficiencies. However, the overall process is very capital intensive. The electrolytic cell dominates the costs associated with the overall process. Detailed results of the thermodynamic simulation, the economic and the exergoeconomic analyses of the process including estimates of the product costs are presented

  9. Boiling of superheated liquids near the spinodal: II. Application

    Energy Technology Data Exchange (ETDEWEB)

    Aus der Wiesche, S.; Rembe, C.; Hofer, E.P. [Ulm Univ. (Germany). Dept. of Measurement, Control and Microtechnology

    1999-07-01

    The general theory of boiling near the spinodal as critical phenomenon will be used on the nucleation process of explosive evaporating liquids. In experiments with thermal micro heater the occurrence of the critical opalescence can be demonstrated which is characteristic for phase transitions of second order. In case of water the experiments permit the determination of the gradient energy coefficient {kappa} for nonuniform systems. The homogeneous nucleation rate for extremely superheated water at normal pressure is discussed. It is found that the explosive evaporation starts very closed to the spinodal and leads to spatial extended nuclei in contrast to the conventional nucleation mode. (orig.) With 5 figs., 16 refs.

  10. Skin whitening and anti-corrugation activities of glycoprotein fractions from liquid extracts of boiled sea cucumber.

    Science.gov (United States)

    Kim, So Jung; Park, So Yun; Hong, Sun-Mee; Kwon, Eun-Hye; Lee, Taek-Kyun

    2016-10-01

    To determine skin whitening and wrinkle improvement efficacy, glycoprotein fractions were extracted from liquid extracts of boiled sea cucumber and their effects on tyrosine and elastase inhibitory activities were assayed. Fractions above and below 50 kDa (>50 kDa and 50 kDa enhanced tyrosinase and elastase inhibitory activities by 50.84% and 28.78%, respectively. Correlations of the >50 kDa concentration with tyrosinase inhibitory (R2 = 0.968) and elastase inhibitory (R2 = 0.983) efficacy were significant. >50 kDa glycoprotein fraction isolated from liquid extracts of boiled sea cucumber, which can serve as a functional cosmetic ingredient for whitening and wrinkle improvement of skin. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  11. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Ibe, Eishi; Nakata, Kiyatomo; Fuse, Motomasa; Ohsumi, Katsumi; Takashima, Yoshie

    1995-01-01

    Many efforts to preserve the structural integrity of major piping, components, and structures in a boiling water reactor (BWR) primary cooling system have been directed toward avoiding intergranular stress corrosion cracking (IGSCC). Application of hydrogen water chemistry (HWC) to moderate corrosive circumstances is a promising approach to preserve the structural integrity during extended lifetimes of BWRs. The benefits of HWC application are (a) avoiding the occurrence of IGSCC on structural materials around the bottom of the crack growth rate, even if microcracks are present on the structural materials. Several disadvantage caused by HWC are evaluated to develop suitable countermeasures prior to HWC application. The advantages and disadvantages of HWC are quantitatively evaluated base on both BWR plant data and laboratory data shown in unclassified publications. Their trade-offs are discussed, and suitable applications of HWC are described. It is concluded that an optimal amount of Hydrogen injected into the feedwater can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. The conclusions have been drawn by combining experimental and theoretical results. Experiments in BWR plants -- e.g., direct measurements of electrochemical corrosion potential and crack growth rate at the RPV bottom -- are planned that would collect data to support the theoretical considerations

  12. The liquid hydrogen cell in the EL3 Saclay reactor; Cellule a hydrogene liquide dans la pile EL3 de Saclay

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B; Lacaze, A; Weil, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; [Grenoble-1 Univ., 38 (France)

    1960-07-01

    Description and results in connection with the liquid hydrogen cell, for obtaining slow neutrons, in the EL3. (author) [French] Description et resultats concernant la cellule a hydrogene liquide de EL3 utilisee pour obtenir des neutrons lents. (auteur)

  13. Destructive hydrogenation. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1929-07-15

    Liquid or readily liquefiable products are obtained from solid distillable carbonaceous materials such as coals, oil shales or other bituminous substances by subjecting the said initial materials to destructive hydrogenation under mild conditions so that the formation of benzine is substantially avoided, and then subjecting the treated material to extraction by solvents. By hydrogenating under mild conditions the heavy oils which prevent the asphaltic substances from being precipitated are preserved, and the separation of the liquid products from the solid residue is facilitated. Solid paraffins and high boiling point constituents suitable for the production of lubricating oils may be removed before or after the extraction process. The extraction is preferably carried out under pressure with solvents which do not precipitate asphaltic substances. Brown coal containing 11 per cent ash is passed at 450/sup 0/C, and 200 atmospheres pressure in counter current to hydrogen; 40 per cent of the coal is converted into liquid products which are condensed out of the hydrogen stream; the pasty residue, on extraction with benzene, yields 45 per cent of high molecular weight products suitable for the production of lubricating oil.

  14. Axial propagation of free surface boiling into superheated liquids in vertical tubes

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Fauske, H.K.

    1974-01-01

    A unique free surface boiling phenomenon has been observed as a result of rapid depressurization of an initially saturated or slightly subcooled stagnant liquid column in the absence of wall and bulk nucleation sites. Closeup high-speed photographs of water, refrigerant-11, and methyl alcohol in tubes from 0.2 to 15 in. dia reveal that the initiation of violent free surface flashing (vapor plus entrained liquid) follows from the development of Marangoni-type surface waves. The rate of propagation of the flashing surface shows evidence of choked flow limitations and proceeds at a rate which is several orders of magnitude greater than surface evaporation (vapor only) alone. The onset of free surface flashing was found to be dependent upon both the degree of initial liquid superheat and the tube diameter. (U.S.)

  15. Thermal properties of hydrogenated liquid natural rubber

    Science.gov (United States)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  16. Thermal properties of hydrogenated liquid natural rubber

    International Nuclear Information System (INIS)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-01-01

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion

  17. Thermal properties of hydrogenated liquid natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  18. Boiling crisis during liquid motion at high mass rate and underheating in channels

    International Nuclear Information System (INIS)

    Solov'ev, D.S.; Solov'ev, S.L.

    2007-01-01

    One describes a physical model of liquid boiling crisis in smooth wall channels for high values of underheating and of mass rate of flow. One worded a condition ensuring crisis initiation. Paper presents the calculated ratio for the critical density of thermal flow in channels enabling to analyze the effect of channel diameter, of underheating and of mass rate on it [ru

  19. Scanning electrochemical microscopy determination of hydrogen flux at liquid|liquid interface with potentiometric probe

    OpenAIRE

    Jedraszko, Justyna; Nogala, Wojciech; Adamiak, Wojciech; Girault, Hubert H.; Opallo, Marcin

    2014-01-01

    Scanning electrochemical microscopy potentiometric determination of local hydrogen concentration and its flux next to the liquid|liquid interface was demonstrated. This method is based on the shift of open circuit potential of Pt-based reversible hydrogen electrode. The detection system was verified with a system generating hydrogen under galvanostatic conditions. Then, it was applied to aqueous|1,2-dichloroethane interface where hydrogen is produced with decamethylferrocene as electron donor.

  20. Neutronic studies of a liquid hydrogen-water composite moderator

    International Nuclear Information System (INIS)

    Tahara, T.; Ooi, M.; Iwasa, H.; Kiyanagi, Y.; Iverson, E.B.; Crabtree, J.A.; Lucas, A.T.

    2001-01-01

    A liquid hydrogen-liquid water composite moderator may provide performance like liquid methane at high-power spallation sources where liquid methane is impractical. We have measured the neutronic properties of such a composite moderator, where a hydrogen layer 1.25 cm thick was closely backed by water layers of 1.75 cm and 3.75 cm thickness. We also studied a moderator in which a 1.75 cm water layer was closely backed by a 1.25 cm hydrogen layer. We further performed simulations for each of these systems for comparison to the experimental results. We observed enhancement of the spectral intensity in the 'thermal' energy range as compared to the spectrum from a conventional liquid hydrogen moderator. This enhancement grew more significant as the water thickness increased, although the pulse shapes became wider as well. (author)

  1. Structure and weak hydrogen bonds in liquid acetaldehyde

    Directory of Open Access Journals (Sweden)

    Cordeiro Maria A. M.

    2004-01-01

    Full Text Available Monte Carlo simulations have been performed to investigate the structure and hydrogen bonds formation in liquid acetaldehyde. An all atom model for the acetaldehyde have been optimized in the present work. Theoretical values obtained for heat of vaporisation and density of the liquid are in good agreement with experimental data. Graphics of radial distribution function indicate a well structured liquid compared to other similar dipolar organic liquids. Molecular mechanics minimization in gas phase leads to a trimer of very stable structure. The geometry of this complex is in very good agreement with the rdf. The shortest site-site correlation is between oxygen and the carbonyl hydrogen, suggesting that this correlation play a important role in the liquid structure and properties. The OxxxH average distance and the C-HxxxO angle obtained are characteristic of weak hydrogen bonds.

  2. Mechanisms of convective and boiling heat transfer enhancement via ultrasonic vibration

    International Nuclear Information System (INIS)

    Kim, Yi Gu; Kim, Ho Young; Kang, Seoung Min; Kang, Byung Ha; Lee, Jin Ho

    2003-01-01

    This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when the local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism

  3. Experiments on the thermalization of slow neutrons by liquid hydrogen (1962); Experience de thermalisation de neutrons lents par de l'hydrogene liquide (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Cribier, D; Jacrot, B; Lacaze, A; Roubeau, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Institut Fourier, 38 - Grenoble (France)

    1962-07-01

    In order to increase the flux of neutrons of long wave-length ({lambda} > 4 A) emerging from a channel in the EL-3, a liquid hydrogen device was introduced into a channel of the reactor (Channel H{sub 1}). The principle of the device is simple. A volume of liquid hydrogen is introduced as close as possible to the reactor core into a region of intense isotropic flux. This hydrogen slows down the slow neutrons; because of the very small mean free diffusion path of slow in hydrogen, this slowing down is considerable even in a small volume of liquid hydrogen, and the spectrum temperature of neutrons emerging from the volume of liquid hydrogen can therefore be shifted. The intensity gain for neutrons with a wave length {lambda}, is a G ({lambda}) function which, for perfect thermalization and ignoring capture, is expressed by: G ({lambda}) = 225 exp (- 45.3/{lambda}{sup 2}), assuming a temperature of 300 deg. K for the neutrons before cooling and is 20 deg. K after cooling. For a wave-length of 5 A, the theoretical maximum gain of thus about 37. (authors) [French] Dans le but d'accroitre le flux des neutrons de grande longueur d'onde ({lambda} > 4 A) sortant d'un canal de la pile EL-3, un dispositif a hydrogene liquide a ete introduit dans un canal de la pile (canal H{sub 1}). Le principe du dispositif est simple. Un volume d'hydrogene liquide est introduit le plus pres possible du coeur de ia pile dans une region de flux intense et isotrope. Les neutrons lents sont ralentis par cet hydrogene; a cause du tres faible libre parcours moyen de diffusion des neutrons lents dans l'hydrogene, ce ralentissement est important meme dans un faible volume d'hydrogene liquide et l'on peut ainsi deplacer la temperature du spectre des neutrons sortant du volume d'hydrogene liquide. Le gain en intensite des neutrons de longueur d'onde {lambda} est une fonction G ({lambda}) qui pour une thermalisation parfaite et en negligeant la capture, s'exprime par: G ({lambda}) = 225 exp (- 45

  4. Calculation of releases of radioactive materials in gaseous and liquid effluents from boiling water reactors (BWR-GALE Code)

    International Nuclear Information System (INIS)

    Bangart, R.L.; Bell, L.G.; Boegli, J.S.; Burke, W.C.; Lee, J.Y.; Minns, J.L.; Stoddart, P.G.; Weller, R.A.; Collins, J.T.

    1978-12-01

    The calculational procedures described in the report reflect current NRC staff practice. The methods described will be used in the evaluation of applications for construction permits and operating licenses docketed after January 1, 1979, until this NUREG is revised as a result of additional staff review. The BWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from boiling water reactors (BWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment

  5. On the connection between the hydrogen atom and the harmonic oscillator: the zero-energy case

    International Nuclear Information System (INIS)

    Kibler, M.; Negali, T.

    1983-09-01

    The connection between the three-dimensional hydrogen atom and a four-dimensional harmonic oscillator obtained in previous works, from an hybridization of the infinitesimal Pauli approach to the hydrogen system with the Schwinger approach to spherical and hyperbolical angular momenta, is worked out in the case of the zero-energy point of the hydrogen atom. This leads to the equivalence of the three-dimensional hydrogen problem with a four-dimensional free-particle problem involving a constraint condition. For completeness, the latter results is also derived by using the Kustaanheimo-Stiefel transformation introduced in celestial mechanics. Finally, it is shown how the Lie algebra of SO(4,2) quite naturally arises for the whole spectrum (discrete + continuum + zero-energy point) of the three-dimensional hydrogen atom from the introduction of the constraint condition into the Lie algebra of Sp(8,R) associated to the four-dimensional harmonic oscillator

  6. Non-equilibrium phenomena near vapor-liquid interfaces

    CERN Document Server

    Kryukov, Alexei; Puzina, Yulia

    2013-01-01

    This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in l...

  7. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  8. ASME Section VIII Recertification of a 33,000 Gallon Vacuum-jacketed LH2 Storage Vessel for Densified Hydrogen Testing at NASA Kennedy Space Center

    Science.gov (United States)

    Swanger, Adam M.; Notardonato, William U.; Jumper, Kevin M.

    2015-01-01

    The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) has been developed at NASA Kennedy Space Center in Florida. GODU-LH2 has three main objectives: zero-loss storage and transfer, liquefaction, and densification of liquid hydrogen. A cryogenic refrigerator has been integrated into an existing, previously certified, 33,000 gallon vacuum-jacketed storage vessel built by Minnesota Valley Engineering in 1991 for the Titan program. The dewar has an inner diameter of 9.5 and a length of 71.5; original design temperature and pressure ranges are -423 F to 100 F and 0 to 95 psig respectively. During densification operations the liquid temperature will be decreased below the normal boiling point by the refrigerator, and consequently the pressure inside the inner vessel will be sub-atmospheric. These new operational conditions rendered the original certification invalid, so an effort was undertaken to recertify the tank to the new pressure and temperature requirements (-12.7 to 95 psig and -433 F to 100 F respectively) per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. This paper will discuss the unique design, analysis and implementation issues encountered during the vessel recertification process.

  9. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    Energy Technology Data Exchange (ETDEWEB)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  10. H2T liquid hydrogen delivery system

    International Nuclear Information System (INIS)

    Roy, S.

    2002-01-01

    This Power Point presentation provides a preliminary evaluation of the cost of delivering liquid hydrogen produced in Quebec to hydrogen fuelled cars in Germany. The presentation describes the chain of events regarding liquid hydrogen delivery, beginning with the production of hydrogen from an initial source of hydro power. Water passes through an electrolyzer where hydrogen is liquefied and then placed into a container which is transported to market via truck, rail or tanker. Once transported, the hydrogen fuel is made available for consumers at refueling stations. The paper lists the costs related to transportation with reference to safety rules, pure transportation costs, leasing fees for the containers, and permission of customs duties for the import of hydrogen and export of empty containers between Quebec and Germany. A graph depicting a typical refueling station in Germany and the refueling events per hour was presented. For safety reasons, refueling is performed by a refueling robot. A blueprint of safety and protection distances at a refueling station was also presented. tabs., figs

  11. Surface roughness effects on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2003-01-01

    The ability to predict void formation and void fraction in subcooled flow boiling is of importance to the nuclear reactor technology because the presence of voids affects the steady state and transient response of a reactor. The onset of nucleate boiling and the point of net vapor generation on subcooled flow boiling, focusing on surface roughness, liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa; the liquid subcoolings were 20, 30 and 40K, respectively. The surface roughness on the test heater was observed by SEM. Experimental results showed that temperatures at the onset nucleate boiling increased with increasing the liquid subcoolings or the liquid velocities. The trend of increase in the temperature at the ONB was in good agreement with the present analytical result based on the stability theory of preexisting nuclei. The measured results for the net vapor generation point agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. The temperature at the ONB decreased with an increasing size of surface roughness, while the NVG-point was independent on the surface roughness. The dependence on the ONB temperature of the roughness size was also represented well by the present analytical model

  12. The accommodation coefficient of the liquid at temperatures below the boiling

    Directory of Open Access Journals (Sweden)

    Bulba Elena E.

    2015-01-01

    Full Text Available Are carried out experimental investigation of the laws of vaporization at temperatures below the boiling point. Is determined the mass rate of evaporation of distilled water in large intervals of time at different temperatures in order to sound conclusions about the stationarity of the process of evaporation of the liquid in the conditions of the experiments performed, and also studied the effect of temperature on the rate of evaporation. Accommodation coefficient is defined in the mathematical expression of the law of Hertz-Knudsen for standart substance used in the experiments.

  13. A liquid organic carrier of hydrogen as a fuel for automobiles

    International Nuclear Information System (INIS)

    Taube, M.; Taube, P.

    1979-09-01

    A system of storing energy in a hydrogen containing fuel for the motor car is discussed. The recyclable liquid chemical carrier is: (Methylcyclohexane (liquid)) dehydrogenation (Toluene (liquid)) + (hydrogen (gas)). The reverse reaction, the hydrogenation of toluene, occurs in a regional plant connected to a source of hydrogen (electrolysis of water) with a significant by-product being heat at 200 0 C for district heating. The system is able to store hydrogen in liquid form under ambient temperature and pressure even in a small motor car. The concentration of hydrogen is 6.1 % by weight. The release of gaseous hydrogen from the liquid methylcyclohexane needs a chemical catalytic reactor having a temperature of 300 0 C and a pressure of some bars. This reaction has been well studied. The thermal energy for the dehydrogenation is taken from the exhaust gases at 780 0 C. A layout of the most important processes of the system is given. (Auth.)

  14. Reflooding and boil-off experiments in a VVER-440 like rod bundle and analyses with the CATHARE code

    International Nuclear Information System (INIS)

    Korteniemi, V.; Haapalehto, T.; Puustinen, M.

    1995-01-01

    Several experiments were performed with the VEERA facility to simulate reflooding and boil-off phenomena in a VVER-440 like rod bundle. The objective of these experiments was to get experience of a full-scale bundle behavior and to create a database for verification of VVER type core models used with modern thermal-hydraulic codes. The VEERA facility used in the experiments is a scaled-down model of the Russian VVER-440 type pressurized water reactors used in Loviisa, Finland. The test section of the facility consists of one full-scale copy of a VVER-440 reactor rod bundle with 126 full-length electrically heated rod simulators. Bottom and top-down reflooding, different modes of emergency core cooling (ECC) injection and the effect of heating power on the heat-up of the rods was studied. In this paper the results of calculations simulating two reflood and one boil-off experiment with the French CATHARE2 thermal-hydraulic code are also presented. Especially the performance of the recently implemented top-down reflood model of the code was studied

  15. Reflooding and boil-off experiments in a VVER-440 like rod bundle and analyses with the CATHARE code

    Energy Technology Data Exchange (ETDEWEB)

    Korteniemi, V.; Haapalehto, T. [Lappeenranta Univ. of Technology (Finland); Puustinen, M. [VTT Energy, Lappeenranta (Finland)

    1995-09-01

    Several experiments were performed with the VEERA facility to simulate reflooding and boil-off phenomena in a VVER-440 like rod bundle. The objective of these experiments was to get experience of a full-scale bundle behavior and to create a database for verification of VVER type core models used with modern thermal-hydraulic codes. The VEERA facility used in the experiments is a scaled-down model of the Russian VVER-440 type pressurized water reactors used in Loviisa, Finland. The test section of the facility consists of one full-scale copy of a VVER-440 reactor rod bundle with 126 full-length electrically heated rod simulators. Bottom and top-down reflooding, different modes of emergency core cooling (ECC) injection and the effect of heating power on the heat-up of the rods was studied. In this paper the results of calculations simulating two reflood and one boil-off experiment with the French CATHARE2 thermal-hydraulic code are also presented. Especially the performance of the recently implemented top-down reflood model of the code was studied.

  16. Pool Boiling Characteristics on the Microstructure surfaces with Both Rectangular Cavities and Channels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Eok; Myung, Byung-Soo [Kyungpook Nat’l Univ., Daegu (Korea, Republic of); Park, Su Cheong; Yu, Dong In [POSTECH, Pohang (Korea, Republic of); Kim, Moo Hwan [Korea Institute of Nuclear Safety (KINS), Daejeon (Korea, Republic of); Ahn, Ho Seon [Incheon Nat’l Univ., Incheon (Korea, Republic of)

    2016-06-15

    Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.

  17. Influence of subcooled boiling on out-of-phase oscillations in boiling water reactors

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Chiva, S.; Escriva, A.

    2005-01-01

    In this paper, we develop a reduced order model with modal kinetics for the study of the dynamic behavior of boiling water reactors. This model includes the subcooled boiling in the lower part of the reactor channels. New additional equations have been obtained for the following dynamics magnitudes: the effective inception length for subcooled boiling, the average void fraction in the subcooled boiling region, the average void fraction in the bulk-boiling region, the mass fluxes at the boiling boundary and the channel exit, respectively, and so on. Each channel has three nodes, one of liquid, one with subcooled boiling, and one with bulk boiling. The reduced order model includes also a modal kinetics with the fundamental mode and the first subcritical one, and two channels representing both halves of the reactor core. Also, in this paper, we perform a detailed study of the way to calculate the feedback reactivity parameters. The model displays out-of-phase oscillations when enough feedback gain is provided. The feedback gain that is necessary to self-sustain these oscillations is approximately one-half the gain that is needed when the subcooled boiling node is not included

  18. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  19. Experimental study of vapor explosion of molten salt and low boiling point liquid

    International Nuclear Information System (INIS)

    Iida, Yoshihiro; Takashima, Takeo

    1987-01-01

    Fundamental study of vapor explosion using small drops of high temperature liquid and low boiling point liquid and a series of small-scale vapor explosion tests are carried out. A single or plural drops of molten LiNO 3 are dropped into ethyl alcohol and the temperature range of two liquids wherein the fragmentation occurs is examined. The propagation phenomenon of vapor explosion between two drops is photographed and the pressure trace is proved to be well consistent with the behavior of the vapor bubble regions. A small amount of molten Flinak and tin which are enclosed in a test tube is dropped into tapped water. The temperature effect of two liquids onto the occurrence of vapor explosion is investigated. Some considerations are made with respect to the upper and lower temperature limits of vapor explosion to occur. A qualitative modeling of vapor explosion mechanism is proposed and discussed. (author)

  20. Superheating in nucleate boiling calculated by the heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Gerum, E.; Straub, J.; Grigull, U.

    1979-01-01

    With the heterogeneous nucleation theory the superheating of the liquid boundary layer in nucleate boiling is described not only for the onset of nuclear boiling but also for the boiling crisis. The rate of superheat depends on the thermodynamic stability of the metastable liquid, which is influenced by the statistical fluctuations in the liquid and the nucleation at the solid surface. Because of the fact that the cavities acting as nuclei are too small for microscopic observation, the size and distribution function of the nuclei on the surface necessary for the determination of the probability of bubble formation cannot be detected by measuring techniques. The work of bubble formation reduced by the nuclei can be represented by a simple empirical function whose coefficients are determined from boiling experiments. Using this the heterogeneous nucleation theory describes the superheating of the liquid. Several fluids including refrigerants, liquid gases, organic liquids and water were used to check the theory. (author)

  1. Effect of liquid density differences on boiling two-phase flow stability

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Manera, Annalisa; Bragt, David D.B.; Hagen, Tim H.J.J. van der; Kruijf, Willy J.M.de

    2002-01-01

    In order to investigate the effect of considering liquid density dependence on local fluid temperature in the thermal-hydraulic stability, a linear stability analysis is performed for a boiling natural circulation loop with an adiabatic riser. Type-I and Type-II instabilities were to investigate according to Fukuda-Kobori's classification. Type-I instability is dominant when the flow quality is low, while Type-II instability is relevant at high flow quality. Type-II instability is well known as the typical density wave oscillation. Neglecting liquid density differences yields estimates of Type-II instability margins that are too small, due to both a change in system-dynamics features and in the operational point. On the other hand, neglecting liquid density differences yields estimates of Type-I stability margins that are too large, especially due to a change in the operational point. Neglecting density differences is thus non-conservative in this case. Therefore, it is highly recommended to include liquid density dependence on the fluid subcooling in the stability analysis if a flow loop with an adiabatic rise is operated under the condition of low flow quality. (author)

  2. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  3. Off-gas characteristics of defense waste vitrification using liquid-fed Joule-heated ceramic melters

    International Nuclear Information System (INIS)

    Goles, R.W.; Sevigny, G.J.

    1983-09-01

    Off-gas and effluent characterization studies have been established as part of a PNL Liquid-Fed Ceramic Melter development program supporting the Savannah River Laboratory Defense Waste Processing Facility (SRL-DWPF). The objectives of these studies were to characterize the gaseous and airborne emission properties of liquid-fed joule-heated melters as a function of melter operational parameters and feed composition. All areas of off-gas interest and concern including effluent characterization, emission control, flow rate behavior and corrosion effects have been studied using alkaline and formic-acid based feed compositions. In addition, the behavioral patterns of gaseous emissions, the characteristics of melter-generated aerosols and the nature and magnitude of melter effluent losses have been established under a variety of feeding conditions with and without the use of auxiliary plenum heaters. The results of these studies have shown that particulate emissions are responsible for most radiologically important melter effluent losses. Melter-generated gases have been found to be potentially flammable as well as corrosive. Hydrogen and carbon monoxide present the greatest flammability hazard of the combustibles produced. Melter emissions of acidic volatile compounds of sulfur and the halogens have been responsible for extensive corrosion observed in melter plenums and in associated off-gas lines and processing equipment. The use of auxiliary plenum heating has had little effect upon melter off-gas characteristics other than reducing the concentrations of combustibles

  4. Boiling in porous media

    International Nuclear Information System (INIS)

    1998-01-01

    This conference day of the French society of thermal engineers was devoted to the analysis of heat transfers and fluid flows during boiling phenomena in porous media. This book of proceedings comprises 8 communications entitled: 'boiling in porous medium: effect of natural convection in the liquid zone'; 'numerical modeling of boiling in porous media using a 'dual-fluid' approach: asymmetrical characteristic of the phenomenon'; 'boiling during fluid flow in an induction heated porous column'; 'cooling of corium fragment beds during a severe accident. State of the art and the SILFIDE experimental project'; 'state of knowledge about the cooling of a particulates bed during a reactor accident'; 'mass transfer analysis inside a concrete slab during fire resistance tests'; 'heat transfers and boiling in porous media. Experimental analysis and modeling'; 'concrete in accidental situation - influence of boundary conditions (thermal, hydric) - case studies'. (J.S.)

  5. Laser-induced separation of hydrogen isotopes in the liquid phase

    International Nuclear Information System (INIS)

    Beattie, W.; Freund, S.; Holland, R.; Maier, W.

    1980-01-01

    A process for separating hydrogen isotopes which comprises (A) forming a liquid phase of hydrogen-bearing feedstock compound at a temperature at which the spectral features of the feedstock compound are narrow enough or the absorption edges sharp enough to permit spectral features corresponding to the different hydrogen isotopes to be separated to be distinguished, (B) irradiating the liquid phase at said temperature with monochromatic radiation of a first wavelength which selectively or at least preferentially excites those molecules of said feedstock compound containing a first hydrogen isotope, and (C) subjecting the excited molecules to physical or chemical processes or a combination thereof whereby said first hydrogen isotope contained in said excited molecules is separated from other hydrogen isotopes contained in the unexcited molecules in said liquid phase

  6. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 5. Development of hydrogen transport/storage technology (development of tanker for liquid hydrogen); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (ekitai suiso yuso tanker no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the tanker for liquid hydrogen transport was studied. In fiscal 1996, some experiments and numerical analyses were proposed which are necessary to solve technological issues extracted in fiscal 1995 for heat insulation structure. The issue was roughly classified into vacuum and non-vacuum insulation, and their basic functions and required performance were arranged. Boil-off rate of 0.2-0.4%/d was targeted. The insulation system which applies polyurethane form (PUF) to tank surfaces and injects atmospheric N2 gas into the surrounding hold space, could achieve the targeted insulation performance by PUF of 1m in thickness. The system of vacuum panel insulation and atmospheric N2 gas injection into a hold space required the panel of 500mm in thickness because of the large effect of metallic outer panel material. The system of vacuum hold and PUF panels was faced with the essential issue for realizing and maintaining vacuum hold. The super insulation system featured by layered insulation materials and vacuum layer spaces was also strongly affected by degree of vacuum. 23 figs., 8 tabs.

  7. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  8. Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus

    Directory of Open Access Journals (Sweden)

    Birol Kılkış

    2018-05-01

    Full Text Available The energy base of urban settlements requires greater integration of renewable energy sources. This study presents a “hydrogen city” model with two cycles at the district and building levels. The main cycle comprises of hydrogen gas production, hydrogen storage, and a hydrogen distribution network. The electrolysis of water is based on surplus power from wind turbines and third-generation solar photovoltaic thermal panels. Hydrogen is then used in central fuel cells to meet the power demand of urban infrastructure. Hydrogen-enriched biogas that is generated from city wastes supplements this approach. The second cycle is the hydrogen flow in each low-exergy building that is connected to the hydrogen distribution network to supply domestic fuel cells. Make-up water for fuel cells includes treated wastewater to complete an energy-water nexus. The analyses are supported by exergy-based evaluation metrics. The Rational Exergy Management Efficiency of the hydrogen city model can reach 0.80, which is above the value of conventional district energy systems, and represents related advantages for CO2 emission reductions. The option of incorporating low-enthalpy geothermal energy resources at about 80 °C to support the model is evaluated. The hydrogen city model is applied to a new settlement area with an expected 200,000 inhabitants to find that the proposed model can enable a nearly net-zero exergy district status. The results have implications for settlements using hydrogen energy towards meeting net-zero targets.

  9. Peak pool boiling heat flux from horizontal cylinders in subcooled liquids

    International Nuclear Information System (INIS)

    Elkassabgi, Y.

    1986-01-01

    The peak pool boiling heat flux is observed on horizontal cylindrical heaters in acetone, Freon-113, methanol, and isopropanol over ranges of subcooling from zero to 120 0 C. Photographs, and the data themselves, reveal that there are three distinct burnout mechanisms at different levels of subcooling. Three interpretive models provide the basis for accurate correlations of the present data, and data from the literature, in each of the three regimes. Burnout is dictated by condensation on the walls of the vapor jets and columns at low subcooling. In the intermediate regime, burnout is limited by natural convection which becomes very effective as vapor near the heater reduces boundary layer resistance. Burnout in the high-subcooling regime is independent of the level of subcoooling and is limited by the process of molecular effusion

  10. Blow-off of hydrogen using an optimized design of discharge jet-mixer arrangement

    International Nuclear Information System (INIS)

    Ristow, Torsten

    2011-01-01

    Hydrogen is ignitable in air at volume concentrations between 4 % and 75 %. Therefore, in the case of an emergency evacuation of a hydrogen-cooled generator in nuclear power plants, the gas has to be safely blown-off above the turbine building. Especially, a leakage at the hydrogen containing piping system at the generator has gained more and more importance in the context of safety assessments. The design of a blow-off system respects two safety aspects: Firstly, a short blow-off time is necessary to reduce the hydrogen release inside the turbine building in case of a leakage. Secondly, for the postulated ignition of the released hydrogen on the roof of the building the resulting pressure load must remain below the maximum admissible one of the turbine building roof. In order to fulfill the first condition an appropriate fast evacuation piping system from the generator to the blow-off outlet is designed. Regarding the latter the blow-off system uses special discharge nozzles placed horizontally in a radial-symmetric configuration. In this respect, the influence of strong wind conditions during the evacuation process is also considered. The resulting ignitable volume of the overlapping H2-air clouds does not exceed the maximum allowed ignitable volume. In the following the underlying process of blow-off by a fast hydrogen evacuation system is discussed. First the transient general blow-off behavior in the dedicated piping system is analyzed with the fluid piping tool ROLAST. The results of these calculations are boundary conditions for the subsequent qualification of the blow-off jet-mixer. Here a proof of the general functionality is given (2D CFD). Subsequently the blow-off behavior of the H2-air mixture is discussed in independent 3D CFD calculations with and without wind. From these analyses the possible ignitable gas volumes are determined. Final step is a simplified semi-analytical assessment of the resulting possible deflagration loads on the civil structure

  11. Specific interface area and self-stirring in a two-liquid system experiencing intense interfacial boiling below the bulk boiling temperatures of both components

    Science.gov (United States)

    Goldobin, Denis S.; Pimenova, Anastasiya V.

    2017-04-01

    We present an approach to theoretical assessment of the mean specific interface area (δ S/δ V) for a well-stirred system of two immiscible liquids experiencing interfacial boiling. The assessment is based on the balance of transformations of mechanical energy and the laws of the momentum and heat transfer in the turbulent boundary layer. The theory yields relations between the specific interface area and the characteristics of the system state. In particular, this allows us to derive the equations of self-cooling dynamics of the system in the absence of external heat supply. The results provide possibility for constructing a self-contained mathematical description of the process of interfacial boiling. In this study, we assume the volume fractions of two components to be similar as well as the values of their kinematic viscosity and molecular heat diffusivity.

  12. Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy.

    Science.gov (United States)

    Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2016-03-03

    We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.

  13. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-01-01

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  14. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, Mikhail A., E-mail: vma.ksu@gmail.com; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-06-10

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  15. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  16. Mechanisms of dispersion during liquid hydrogen leakage

    International Nuclear Information System (INIS)

    Proust, C.; Gaston, D.

    2000-01-01

    INERIS conducts research programs with a mission of assessing and preventing accidental and chronic risks to people and the environment due to industrial plants, chemical substances and underground operation. This paper is a study of the dispersion mechanism of cryogenic hydrogen and the mechanisms of flame propagation in clouds of hydrogen. The objective is to contribute to the industrial control implementation of significant storage of hydrogen liquid that has pressure close to the atmospheric pressure. Within the framework of this program, the only interest is with the risk presented by escape of significant flow. This corresponds to accidental ruptures in tanks. The following four phases are looked at: the escape incident and the determination of the leak flow; the formation of the liquid layer and the vaporization of the hydrogen; the formation of the Hydrogen cloud in air; and the explosive ignition in the atmosphere, propagation of the explosive flame and evaluation of the pressure wave. This situation has been limited to dispersion in free air and does not consider the impact of containment

  17. The kinetics of hydrogen removal from liquid sodium

    International Nuclear Information System (INIS)

    Gwyther, J.R.; Whittingham, A.C.

    1981-01-01

    The rates of hydrogen removal from liquid sodium-sodium hydride mixtures have been measured as a function of sodium stirring rate at temperatures up to 420 0 C. Two techniques have been employed - removal under continuous evacuation in which hydrogen flow rates were measured using a capillary flow technique and by argon purging in which hydrogen concentrations in the argon carrier gas were measured by gas chromatography. The results have been used to assess the feasibility of thermal decomposition of sodium hydride for the regeneration of hydride-laden LMFBR cold traps. Studies on the kinetics of desorption of hydrogen from solution in liquid sodium at temperatures up to 400 0 C are also presented and possible kinetic mechanisms discussed. (orig.)

  18. Development of conversion efficient processes for +525[degree]C pitch to low boiling distillates

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, R.N.

    1992-10-22

    Catalytic hydroprocessing of Esso pitch (+525[degree]C fraction) was investigated using a continuous reactor system at various operating conditions. The catalysts studied included ZnCl[sub 2], SnCl[sub 4], SiO[sub 2], Ni/W, Co/Mo, Zn/Cr, and H[sub 3]PO[sub 4]/SiO[sub 2]. The catalysts were characterized by surface area and acidity measurements. The gas and liquid products were collected and analyzed, and results are presented. The work demonstrates the effectiveness of a continuous flash hydropyrolysis process for the conversion of petroleum residuals to low boiling distillates. It has been found that in the presence of ZnCl[sub 2] catalyst, conversions up to 92% can be obtained under relatively moderate conditions of temperature and hydrogen pressure. The formation of gaseous products is less than 5 wt %. The favorable conditions of operation, a reduction in sulfur content, increase in H/C ratio, and a significant yield of low boiling distillates is obtained. The process variables, such as temperature, hydrogen pressure, and liquid residence times influence product yield and quality. Coke formation was almost negligible even under conditions of high pitch conversion. A review of various techniques of pyrolysis and hydropyrolysis of materials such as coal, bitumen, and heavy oil is included. 198 refs., 46 figs., 40 tabs.

  19. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    Science.gov (United States)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  20. The liquid hydrogen moderator at the NIST research reactor

    International Nuclear Information System (INIS)

    Williams, Robert E.; Rowe, J. Michael; Kopetka, Paul

    1997-09-01

    In 1995, the NIST research reactor was shut down for a number of modifications, including the replacement of the D 2 O cold neutron source with a liquid hydrogen moderator. When the liquid hydrogen source began operating, the flux of cold neutrons increased by a factor of six over the D 2 O source. The design and operation of the hydrogen source are described, and measurements of its performance are compared with the Monte Carlo simulations used in the design. (auth)

  1. Characterizing Dissolved Gases in Cryogenic Liquid Fuels

    Science.gov (United States)

    Richardson, Ian A.

    Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine

  2. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe

  3. The reactions of oxygen and hydrogen with liquid sodium

    International Nuclear Information System (INIS)

    Ullmann, H.

    1981-01-01

    Results so far available as to the reactions and chemical equilibrium of oxygen and hydrogen with liquid sodium have been analyzed critically. The enthalpy values of the reactions have been discussed and supplemented on the basis of corresponding BORN-HABER cycles. The concentration and temperature functions of the hydrogen equilibrium pressure were deduced from experimental results. In relation to the solubility data the solid phases coexisting with liquid sodium in the ternary system Na-O-H have been discussed. The reaction of oxygen with hydrogen in diluted solution in liquid sodium has been investigated in more detail. Interaction coefficients, and the temperature functions of the free energy of formation and the equilibrium constant have been determined. (orig.)

  4. BWR fuel performance under advanced water chemistry conditions – a delicate journey towards zero fuel failures – a review

    International Nuclear Information System (INIS)

    Hettiarachchi, S.

    2015-01-01

    Boiling Water Reactors (BWRs) have undergone a variety of chemistry evolutions over the past few decades as a result of the need to control stress corrosion cracking of reactor internals, radiation fields and personnel exposure. Some of the advanced chemistry changes include hydrogen addition, zinc addition, iron reduction using better filtration technologies, and more recently noble metal chemical addition to many of the modern day operating BWRs. These water chemistry evolutions have resulted in changes in the crud distribution on fuel cladding material, Co-60 levels and the Rod oxide thickness (ROXI) measurements using the conventional eddy current techniques. A limited number of Post-Irradiation Examinations (PIE) of fuel rods that exhibited elevated oxide thickness using eddy current techniques showed that the actual oxide thickness by metallography is much lower. The difference in these observations is attributed to the changing magnetic properties of the crud affecting the rod oxide thickness measurement by the eddy current technique. This paper will review and summarize the BWR fuel cladding performance under these advanced and improved water chemistry conditions and how these changes have affected the goal to reach zero fuel failures. The paper will also provide a brief summary of some of the results of hot cell PIE, results of crud composition evaluation, crud spallation, oxide thickness measurements, hydrogen content in the cladding and some fuel failure observations. (author) Key Words: Boiling Water Reactor, Fuel Performance, Hydrogen Addition, Zinc Addition, Noble Metal Chemical Addition, Zero Leakers

  5. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  6. Research progresses and future directions on pool boiling heat transfer

    OpenAIRE

    M. Kumar; V. Bhutani; P. Khatak

    2015-01-01

    This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated s...

  7. Calculation of Steam Volume Fraction in Subcooled Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z

    1967-06-15

    An analysis of subcooled boiling is presented. It is assumed that heat is removed by vapor generation, heating of the liquid that replaces the detached bubbles, and to some extent by single phase heat transfer. Two regions of subcooled boiling are considered and a criterion is provided for obtaining the limiting value of subcooling between the two regions. Condensation of vapor in the subcooled liquid is analysed and the relative velocity of vapor with respect to the liquid is neglected in these regions. The theoretical arguments result in some equations for the calculation of steam volume fraction and true liquid subcooling.

  8. Systematic study of the use of electrical fields for improving heat exchange in boiling liquids; Etude systematique de l'utilisation de champs electriques pour l'amelioration des echanges thermiques dans des liquides bouillants

    Energy Technology Data Exchange (ETDEWEB)

    Bochirol, L; Bonjour, E; Lagnier, R; Verdier, J; Weil, L [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires

    1961-07-01

    We have studied, at the boiling point, for liquids with various electrical properties (hexane, benzene, trichloroethylene, demineralized water, acetone, methyl-ethyl-ketone, etc...) the effect of the application of electric fields on the exchange coefficients and on the maximum dissipative powers before calefaction. We have given the mechanism of the significant improvements obtained (multiplication by a factor of 2 to 10): - in the natural convection zone by showing the role played by the dielectric properties of the liquids under study; - in the zone of nuclear boiling by analysis of the forces acting on the boiling nuclei. Finally we give some experimental results concerning measurements made under pressure until local boiling occurred: they show the possibility of some interesting applications of the method. (author) [French] On a etudie, a l'ebullition, sur des liquides de caracteristiques electriques diverses (hexane, benzene, trichlorethylene, eau demineralisee, acetone, methylethylcetone, etc...) les effets de l'application de champs electriques sur les coefficients d'echanges et les puissances maximales dissipables avant calefaction. On a precise le mecanisme des ameliorations importantes obtenues (multiplication par un facteur 2 a 10): - dans la zone de convection naturelle en mettant en evidence le role des caracteristiques dielectriques des liquides etudies; - dans la zone d'ebullition nucleaire par analyse des forces mises en jeu sur les noyaux d'ebullition. On donne enfin des resultats experimentaux sur des mesures effectuees sous pression jusqu'a l'ebullition locale: ils illustrent des possibilites d'applications interessantes du procede. (auteur)

  9. Liquid hydrogen transfer pipes and level regulation systems

    International Nuclear Information System (INIS)

    Marquet, M.; Prugne, P.; Roubeau, P.

    1961-01-01

    Describes: 1) Transfer pipes - Plunging rods in liquid hydrogen Dewars; transfer pipes: knee-joint system for quick and accurate positioning of plunging Dewar rods; system's rods: combined valve and rod; valves are activated either by a bulb pressure or by a solenoid automatically or hand controlled. The latter allows intermittent filling. 2) Level regulating systems: Level bulbs: accurate to 1 or 4 m; maximum and minimum level bulbs: automatic control of the liquid hydrogen valve. (author) [fr

  10. Converting higher to lower boiling hydrocarbons. [Australian patent

    Energy Technology Data Exchange (ETDEWEB)

    1937-06-16

    To transform or convert higher boiling hydrocarbons into lower boiling hydrocarbons for the production of motor fuel, the hydrocarbons are maintained in vapor phase until the desired conversion has been effected and the separation of the high from low boiling hydrocarbons is carried out by utilization of porous contact material with a preferential absorption for the former. The vapor is passed by supply line to a separator containing the porous material and heated to 750 to 950/sup 0/F for a few seconds, the higher boiling parts being retained by the porous material and the lower passing to a vent line. The latter is closed and the vapor supply cut off and an ejecting medium is passed through a line to carry the higher boiling parts to an outlet line from which it may be recycled through the apparatus. The porous mass may be regenerated by introducing medium from a line that carries off impurities to another line. A modified arrangement shows catalytic cracking apparatus through which the vaporized material is passed on the way to the separators.

  11. Modeling leaks from liquid hydrogen storage systems.

    Energy Technology Data Exchange (ETDEWEB)

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  12. Liquid Hydrogen Sensor Considerations for Space Exploration

    Science.gov (United States)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  13. Hybrid hydrogen-battery systems for renewable off-grid telecom power

    OpenAIRE

    Scamman, D.; Newborough, M.; Bustamante, H.

    2015-01-01

    Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the continuous power demands of telecom remote base stations. A model was developed to investigate the preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1 kW telecom load in three locations of distinct wind and solar resource availability. When com...

  14. Migration of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling

    Directory of Open Access Journals (Sweden)

    Peng Hao

    2011-01-01

    Full Text Available Abstract The migration characteristics of carbon nanotubes from liquid phase to vapor phase in the refrigerant-based nanofluid pool boiling were investigated experimentally. Four types of carbon nanotubes with the outside diameters from 15 to 80 nm and the lengths from 1.5 to 10 μm were used in the experiments. The refrigerants include R113, R141b and n-pentane. The oil concentration is from 0 to 10 wt.%, the heat flux is from 10 to 100 kW·m-2, and the initial liquid-level height is from 1.3 to 3.4 cm. The experimental results indicate that the migration ratio of carbon nanotube increases with the increase of the outside diameter or the length of carbon nanotube. For the fixed type of carbon nanotube, the migration ratio decreases with the increase of the oil concentration or the heat flux, and increases with the increase of the initial liquid-level height. The migration ratio of carbon nanotube increases with the decrease of dynamic viscosity of refrigerant or the increase of liquid phase density of refrigerant. A model for predicting the migration ratio of carbon nanotubes in the refrigerant-based nanofluid pool boiling is proposed, and the predictions agree with 92% of the experimental data within a deviation of ±20%.

  15. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    Energy Technology Data Exchange (ETDEWEB)

    VAJO, JOHN

    2014-06-12

    DOE continues to seek solid-state hydrogen storage materials with hydrogen densities of ≥6 wt% and ≥50 g/L that can deliver hydrogen and be recharged at room temperature and moderate pressures enabling widespread use in transportation applications. Meanwhile, development including vehicle engineering and delivery infrastructure continues for compressed-gas hydrogen storage systems. Although compressed gas storage avoids the materials-based issues associated with solid-state storage, achieving acceptable volumetric densities has been a persistent challenge. This project examined the possibility of developing storage materials that would be compatible with compressed gas storage technology based on enhanced hydrogen solubility in nano-confined liquid solvents. These materials would store hydrogen in molecular form eliminating many limitations of current solid-state materials while increasing the volumetric capacity of compressed hydrogen storage vessels. Experimental methods were developed to study hydrogen solubility in nano-confined liquids. These methods included 1) fabrication of composites comprised of volatile liquid solvents for hydrogen confined within the nano-sized pore volume of nanoporous scaffolds and 2) measuring the hydrogen uptake capacity of these composites without altering the composite composition. The hydrogen storage capacities of these nano-confined solvent/scaffold composites were compared with bulk solvents and with empty scaffolds. The solvents and scaffolds were varied to optimize the enhancement in hydrogen solubility that accompanies confinement of the solvent. In addition, computational simulations were performed to study the molecular-scale structure of liquid solvent when confined within an atomically realistic nano-sized pore of a model scaffold. Confined solvent was compared with similar simulations of bulk solvent. The results from the simulations were used to formulate a mechanism for the enhanced solubility and to guide the

  16. Method for storage of liquid radioactive waste

    International Nuclear Information System (INIS)

    Hesky, H.; Wunderer, A.

    1978-01-01

    When nuclear fuel is reprocessed, apart from liquid radioactive wastes in certain cases also oxyhydrogen, i.e. a mixture of oxygen and hydrogen, is formed by radiolysis. It is proposed to remove the decay heat that will be formed by means of boiling cooling, to condense the steam and to recycle the condensate to the liquid waste store. The oxyhydrogen is to be rarefied by means of the steam and then catalytically recombined. The most advantageous process steps are discussed. (RW) [de

  17. Acceleration of a two-phase flow by boiling, (3)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Hijikata, Kunio; Iwata, Shoichiro

    1976-01-01

    Acceleration of two-component, two-phase flow has been studied, and a method using the volume expansion by boiling for accelerating fluid has been investigated. In this study, the phenomena of atomizing and boiling were separated, and the liquid with low boiling point was injected into water at lower than the saturation temperature, and was atomized. Then, this was mixed with high temperature liquid and was boiled. The uniform buffle flow was produced, and the phenomena were observed with a high speed camera. The process of acceleration and the acceleration performance were compared with the results of theoretical analysis described in the second report. The experiment was carried out with liquid R113, and at first, the mechanism of atomizing was studied. The atomizing was caused when the relative velocity between R113 and water was more than 4 m/s irrespective of water velocity. The distribution of the diameter of fine liquid drops was almost normal distribution. When the fine drops of R113 were mixed with the high temperature water, bubbles were produced, and the production rate showed definite dependence on the degree of overheating. The flow of bubbles was uniform. However, some of R113 did not become bubbles. The efficiency of acceleration was 1.0 which was independent of the degree of overheating. A further problem is to reduce the quantity of the liquid which does not boil. (Kato, T.)

  18. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-01-01

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  19. Solubility of hydrogen isotopes in liquid LiPb

    International Nuclear Information System (INIS)

    Konishi, S.; Yamamoto, Y.; Noborio, K.; Calderoni, P.; Merrill, B.

    2014-01-01

    This research was performed mainly in the first half of the task 1-2 of TITAN project to investigate the interaction between hydrogen isotopes and liquid LiPb. Solubility of hydrogen in liquid LiPb was measured under a static condition. Kyoto University provided the first experimental apparatus shipped to Idaho, and Kyushu University succeeded the experiment and further improved. Obtained solubility generally agreed with some previous reports, but varied orders of magnitudes suggesting influence of impurity or other chemical processes. (author)

  20. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  1. Heat transfer enhancement on nucleate boiling

    International Nuclear Information System (INIS)

    Zhuang, M.; Guibai, L.

    1990-01-01

    This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives

  2. An experimental investigation of untriggered film boiling collapse

    International Nuclear Information System (INIS)

    Naylor, P.

    1985-03-01

    Film boiling has been investigated in a stagnant pool, using polished brass or anodised aluminium alloy rods in water. Experimental boiling curves were obtained, and pronounced ripples on the vapour/liquid interface were photographed. A criterion for untriggered film boiling collapse is proposed, consistent with experimental results. Application of the results to molten fuel coolant interaction studies is discussed. (U.K.)

  3. Boiling Patterns of Iso-asymmetric Nuclear Matter

    International Nuclear Information System (INIS)

    Tõke, Jan

    2013-01-01

    Limits of thermodynamic metastability of self-bound neutron-rich nuclear matter are explored within the framework of microcanonical thermodynamics of interacting Fermi Gas model in Thomas-Fermi approximation. It is found that as the excitation energy per nucleon of the system is increased beyond a certain limiting value, the system loses metastability and becomes unstable with respect to joint fluctuations in excitation energy per nucleon and in isospin per nucleon. As a result, part of the system is forced to boil off in a form of iso-rich non-equilibrated vapors. Left behind in such a process, identifiable with distillation, is a more iso-symmetric metastable residue at a temperature characteristic of its residual isospin content. With a progressing increase in the initial excitation energy per nucleon, more neutron-rich matter is boiled off and a more iso-symmetric residue is left behind with progressively increasing characteristic temperature. Eventually, when all excess neutrons are shed, the system boils uniformly with a further supply of excitation energy, leaving behind a smaller and smaller residue at a characteristic boiling-point temperature of iso-symmetric matter.

  4. Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids

    International Nuclear Information System (INIS)

    Valero-Pedraza, María José; Martín-Cortés, Alexandra; Navarrete, Alexander; Bermejo, María Dolores; Martín, Ángel

    2015-01-01

    Ammonia borane is a promising hydrogen storage material that liberates hydrogen by thermolysis at moderate temperatures, but it also presents major limitations for practical applications including a long induction time before the initiation of hydrogen release and a difficult regeneration. Previous works have demonstrated that by dissolution of ammonia borane into several ionic liquids, and particularly in 1-butyl-3-methylimidazolium chloride bmimCl, the induction period at the beginning of the thermolysis is eliminated, but some problems persist, including foaming and the formation of a residue after thermolysis that is insoluble in the ionic liquid. In this work, the release of hydrogen from ammonia borane dissolved in different ionic liquids has been analyzed, measuring the kinetics of hydrogen release, visually following the evolution of the sample during the process using pressure glass tube reactors, and analyzing the residue by spectroscopic techniques. While dissolutions of ammonia borane in most ionic liquids analyzed show similar properties as dissolutions in bmimCl, using ionic liquids with bis(trifluoromethylsulfanyl)imide Tf_2N anion the foaming problem is reduced, and in some cases the residue remains dissolved in the ionic liquid, while with ionic liquids with choline anion higher hydrogen yields are achieved that indicate that the decomposition of ammonia borane proceeds through a different path. - Highlights: • Hydrogen release from ammonia borane dissolved in 13 ionic liquids has been studied. • Induction time is shortened and hydrogen release rate is accelerated in all cases. • The best results are obtained using ionic liquids with Tf_2N anion. • Ch cation ionic liquids enable higher H_2 yield, but cyclotriborazane is produced.

  5. Thermal design study of a liquid hydrogen-cooled cold-neutron source

    International Nuclear Information System (INIS)

    Quach, D.; Aldredge, R.C.; Liu, H.B.; Richards, W.J.

    2007-01-01

    The use of both liquid hydrogen as a moderator and polycrystalline beryllium as a filter to enhance cold neutron flux at the UC Davis McClellan Nuclear Radiation Center has been studied. Although, more work is needed before an actual cold neutron source can be designed and built, the purpose of this preliminary study is to investigate the effects of liquid hydrogen and the thickness of a beryllium filter on the cold neutron flux generated. Liquid hydrogen is kept at 20 K, while the temperature of beryllium is assumed to be 77 K in this study. Results from Monte Carlo simulations show that adding a liquid hydrogen vessel around the beam tube can increase cold neutron flux by more than an order of magnitude. As the thickness of the liquid hydrogen layer increases up to about half an inch, the flux of cold neutrons also increases. Increasing the layer thickness to more than half an inch gives no significant enhancement of cold neutron flux. Although, the simulations show that the cold neutron flux is almost independent of the thickness of beryllium at 77 K, the fraction of cold neutrons does drop along the beam tube. This may be due to the fact that the beam tube is not shielded for neutrons coming directly from the reactor core. Further design studies are necessary for to achieve complete filtering of undesired neutrons. A simple comparison analysis based on heat transfer due to neutron scattering and gamma-ray heating shows that the beryllium filter has a larger rate of change of temperature and its temperature is higher. As a result heat will be transferred from beryllium to liquid hydrogen, so that keeping liquid hydrogen at the desired temperature will be the most important step in the cooling process

  6. Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks

    NARCIS (Netherlands)

    Chang, C.; Bastiaansen, C.W.M.; Broer, D.J.; Kuo, H.-L.

    2012-01-01

    Hydrogen-bridged, cholesteric liquid-crystal (CLC) polymer networks are adopted as an optical sensor material to distinguish between ethanol and methanol. Fast uptake of the alcohols is facilitated by an incorporated porosity created by breaking the hydrogen bridges and by a previously removed

  7. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 5. Development of hydrogen transport/storage technology (development of storage facility for liquid hydrogen); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (ekitai suiso chozo setsubi no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the storage facility for a large amount of liquid hydrogen (LH) was studied. Gasification loss caused by heat input of LH delivery pumps was studied for liquefaction and power generation bases assuming an pump efficiency of 70%, and the total heat and mass balance such as interface conditions for calculating the amount of boil-off gas was reviewed. The target storage capacity of 50,000m{sup 3} was reasonable, however, the performance of loading arms should be examined. The capacity around 5,000m{sup 3} of coastal localized bases was reasonable for control delivery loss caused by coastal tanker or LH container system to 2.6%. The capacity of 500m{sup 3} was suitable for inland bases, resulting in the loss of 1.2%. The concept design of the storage tank of 50,000m{sup 3} extracted confirmation of low-temperature characteristics of adiabatic materials and structures, and development of leakage inspection technology and vacuum holding technology as issues. The concept design of the underground storage tank showed that the material specifications for LNG ones are applicable to it by using proper adiabatic structures. 4 refs., 72 figs., 27 tabs.

  8. Novel catalysts for isotopic exchange between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  9. Analysis of release and transport of aerial radioactive materials in accident of evaporation to dryness caused by boiling of reprocessed high-level liquid waste

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Ishikawa, Jun; Abe, Hitoshi

    2015-01-01

    An accident of evaporation to dryness caused by boiling of high-level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, some amount of fission products (FPs) will be transferred to the vapor phase in the tank, and could be released to the environment. Therefore, the quantitative estimation of the transport and release behavior of FPs is one of the key issues in the assessment of the accident consequence. To resolve this issue, a systematic analysis method with computer codes has been developed on the basis of the phenomenological behavior in the accident of evaporation to dryness caused by boiling of HLLW. A simulation study demonstrated that the behavior of liquid waste temperature and the entrainment of mists were in good agreement with the experimental results during the early boiling stage, and that some issues to be resolved were pointed out for the estimation of the amount of transferred Ru to the vapor phase at the late boiling stage. (author)

  10. Design of a boil-off natural gas reliquefaction control system for LNG carriers

    International Nuclear Information System (INIS)

    Shin, Younggy; Lee, Yoon Pyo

    2009-01-01

    Onboard boil-off gas (BOG) reliquefaction is a new technology that liquefies BOG and returns it to the cargo tanks instead of burning it off during a voyage. For the commercial development of this technology, an object-oriented dynamic simulation is presented which facilitates the design of the plant and control system for the thermal process. A reliquefaction process based on the reverse Brayton cycle has been designed, and its static thermodynamic states at the design BOG load are presented. To make the cycle work for any BOG load, an idea was sought that would achieve a heat balance with the work extracted by the expander. Dynamic simulations were conducted for all operating modes, including start-up and idle. It was found that the expander exit temperature is the key process variable for control and that the process control works successfully when three actuators are activated in three different BOG load regimes. The study also shows that control of the separator pressure to keep the vapor fraction at the throttle valve exit as low as possible is an efficient method for purging nitrogen from BOG

  11. Literature research on the production, loading, flow, and heat transfer of slush hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Moo [Dept. of Mechanical Engineering, Ajou University, Wonchon-dong san 5, Paldal-Gu, Suwon 442-749 (Korea, Republic of)

    2010-12-15

    This study summarizes the available information on slush hydrogen and answer pending engineering questions that arise in the design of slush hydrogen propellant systems. The four methods for the production of slush are discussed. For storage, slush hydrogen must be pressurized, free from impurities, and continuously upgraded. Slush flowing at low flow rates has a higher viscosity than the liquid, however at higher velocities it approaches the viscosity of neat liquid. For the entire range of natural convection and nucleate boiling, the heat transfer at the triple-point temperature and pressure is nearly the same for the liquid and slush. The natural convection from smooth surfaces for slush can be predicted using available correlations. However, for engineering analysis and design of a system involving a slush cryogenic propellant, reliable information is required on production, flow, heat transfer, and instrumentation of these fluids. Some relevant and important aspects of slush hydrogen which have not yet been fully answered are presented. (author)

  12. Experiments on the thermalization of slow neutrons by liquid hydrogen (1962)

    International Nuclear Information System (INIS)

    Cribier, D.; Jacrot, B.; Lacaze, A.; Roubeau, P.

    1962-01-01

    In order to increase the flux of neutrons of long wave-length (λ > 4 A) emerging from a channel in the EL-3, a liquid hydrogen device was introduced into a channel of the reactor (Channel H 1 ). The principle of the device is simple. A volume of liquid hydrogen is introduced as close as possible to the reactor core into a region of intense isotropic flux. This hydrogen slows down the slow neutrons; because of the very small mean free diffusion path of slow in hydrogen, this slowing down is considerable even in a small volume of liquid hydrogen, and the spectrum temperature of neutrons emerging from the volume of liquid hydrogen can therefore be shifted. The intensity gain for neutrons with a wave length λ, is a G (λ) function which, for perfect thermalization and ignoring capture, is expressed by: G (λ) = 225 exp (- 45.3/λ 2 ), assuming a temperature of 300 deg. K for the neutrons before cooling and is 20 deg. K after cooling. For a wave-length of 5 A, the theoretical maximum gain of thus about 37. (authors) [fr

  13. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    Science.gov (United States)

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  14. Design of a horizonal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel

    Science.gov (United States)

    Wu, Y. Y.

    1982-01-01

    The design of a horizontal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel is presented. The basic principles of magnetic suspension theory are described and theoretical calculations of the superconducting magnet are provided. The experimental results of the boil-off of liquid nitrogen and liquid helium in the cryostat are reported.

  15. Modeling of subcooled boiling in the vertical flow

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    1999-01-01

    A two-dimensional model of subcooled boiling in a vertical channel was developed. Its basic idea is that the vapor phase generation has a similar effect on the flow field as a hypothetical liquid phase generation. The bubble volume, generated due to evaporation process, was filled with liquid and included as a source term in the continuity equation for the liquid phase. Thus, the single-phase from of transport equations was preserved and bubbles were retained in the boundary layer near the heated surface. Time development of subcooled boiling was simulated and effects of governing physical mechanisms (evaporation, condensation, vapor-phase convection, vapor-phase diffusion) on the flow field and pressure drop were analyzed. The Results of the proposed two-dimensional model were compared with experimental data and RELAP5/MOD3.2 calculations. The presented model represents a contribution to the two-dimensional simulation of the subcooled boiling phenomenon.(author)

  16. Study and Development of Face-Contact, Bellows Mechanical Seal for Liquid Hydrogen Turbopump

    OpenAIRE

    NOSAKA, Masataka; SUZUKI, Mineo; MIYAKAWA, Yukio; KAMIJO, Kenjiro; KIKUCHI, Masataka; MORI, Masahiro; 野坂, 正隆; 鈴木, 峰男; 宮川, 行雄; 上絛, 謙二郎; 菊池, 正孝; 森, 雅裕

    1981-01-01

    The development of a 10-ton thrust liquid oxygen and liquid hydrogen (LOX and LH2) rocket engine is under way at the National Space Development Agency. In advance of the development of a liquid hydrogen turbopump, the National Aerospace Laboratory carried out study and development of a face-contact, bellows mechanical seal for a liquid hydrogen turbopump in co-operation with the National Space Development Agency. The present report describes the fundamental experiments of the mechanical seal ...

  17. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    Science.gov (United States)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid

  18. Hydrogen meter for service in liquid sodium

    International Nuclear Information System (INIS)

    McCown, J.J.

    1983-11-01

    This standard establishes the requirements for the design, materials, fabrication, quality assurance, examination, and acceptance testing of a hydrogen meter and auxiliary equipment for use in radioactive or nonradioactive liquid sodium service. The meter shall provide a continuous and accurate indication of the hydrogen impurity concentration over the range 0.03 to 10 ppM hydrogen in sodium at temperatures between 800 and 1000 0 F (427 and 538 0 C). The meter may also be used to rapidly monitor changes in hydrogen concentration, over the same concentration range, and, therefore can be used as a sensor for sodium-water reactions in LMFBR steam generators

  19. Liquid-vapour surface sensors for liquid nitrogen and hydrogen

    Science.gov (United States)

    Siegwarth, J. D.; Voth, R. O.; Snyder, S. M.

    1992-01-01

    The present paper identifies devices to serve as liquid-vapor detectors in zero gravity. The testing in LH2 was done in a sealed glass Dewar system to eliminate any chance of mixing H2 and air. Most of the tests were performed with the leads to the sensor horizontal. Some results of rapid cycle testing of LVDG in LH2 are presented. Findings of rapid-cycle testing of LVDG in LH2 are discussed. The sensor crossed the liquid surface when the position sensor registered 1.9 V, which occurred at about 0.4075 s. The delay time was about 1.5 ms. From the estimated slope of the position sensor curve at 1.9 V, the velocity of the sensor through the liquid surface is over 3 m/s. Results of tests of optical sensors are presented as well.

  20. Experimental and theoretical study on forced convection film boiling heat transfer

    International Nuclear Information System (INIS)

    Liu, Qiusheng

    2001-01-01

    Theoretical solutions of forced convection film boiling heat transfer from horizontal cylinders in saturated liquids were obtained based on a two-phase laminar boundary layer film boiling model. It was clarified that author's experimental data for the cylinders with the nondimensional diameters, D, of around 1.3 in water and in Freon-113 agreed with the values of theoretical numerical solutions based on the two-phase laminar boundary layer model with the smooth vapor-liquid interface except those for low flow velocities. A forced convection film boiling heat transfer correlation including the radiation contribution from the cylinders with various diameters in saturated and subcooled liquids was developed based on the two-phase laminar boundary layer film boiling model and the experimental data for water and Freon-113 at wide ranges of flow velocities, surface superheats, system pressures and cylinder diameters. (author)

  1. Deuterium exchange between liquid water and gaseous hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The overall separation factors for the deuterium exchange between liquid water and gaseous hydrogen have been calculated over a wide range of temperature, pressure and deuterium concentrations. These data would be useful in the design and other considerations for heavy water production, based on hydrogen-water exchange. (author)

  2. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    Science.gov (United States)

    Malerød-Fjeld, Harald; Clark, Daniel; Yuste-Tirados, Irene; Zanón, Raquel; Catalán-Martinez, David; Beeaff, Dustin; Morejudo, Selene H.; Vestre, Per K.; Norby, Truls; Haugsrud, Reidar; Serra, José M.; Kjølseth, Christian

    2017-11-01

    Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

  3. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  4. Enhancement of energy performance in a boil-off gas re-liquefaction system of LNG carriers using ejectors

    International Nuclear Information System (INIS)

    Tan, Hongbo; Zhao, Qingxuan; Sun, Nannan; Li, Yanzhong

    2016-01-01

    Highlights: • An ejector-enhanced LNG boil-off gas (BOG) re-liquefaction system is proposed. • The new system has an improvement of 28% in COP over the existing system. • The specific energy consumption of the new system is reduced to 0.59 kW h/kg(BOG). • The power consumption of 754.1 kW is saved in the case study. - Abstract: An ejector-enhanced Liquefied Natural Gas (LNG) boil-off gas (BOG) re-liquefaction system is proposed to improve the energy efficiency of the existing system. In the new system, two ejectors are respectively used to reduce the energy loss in the expansion of the pressurized BOG and inject a part of fuel BOG into the compression system, and a recuperator is employed to recover the cold energy of the BOG exited from LNG tank. The performance improvement of the proposed system is analysed on the basis of the simulation in Aspen HYSYS. In the case of the re-liquefaction capacity of 4557.6 kg/h, the coefficient of performance (COP) and exergy efficiency can be increased by 28%, and the specific energy consumption (SEC) reduced from 0.756 to 0.59 kW h/kg(BOG) compared to the conventional BOG re-liquefaction system. Correspondingly, the power consumption of 754.1 kW is saved. This means that applying ejectors can effectively improve the energy efficiency of the existing BOG re-liquefaction system for LNG carriers.

  5. Making Sense of Boiling Points and Melting Points

    Indian Academy of Sciences (India)

    GENERAL | ARTICLE. The boiling and melting points of a pure substance are char- ... bonds, which involves high energy and hence high temperatures. Among the .... with zero intermolecular force at all temperatures and pressures, which ...

  6. Radiolysis effects in sub-cooled nucleate boiling

    International Nuclear Information System (INIS)

    Dickinson, S.; Henshaw, J.; Tuson, A.; Sims, H.E.

    2002-01-01

    A hydrogen depleted region may form in the water during bubble formation when boiling occurs in a PWR. This would arise from stripping of gases into the steam phase. The depleted water may then become oxidising due to radiolysis forming H 2 O 2 . The presence of radiolytic oxidising conditions is one of the mechanisms proposed to explain deposits formed in Axial Offset Anomalies. This work describes a model that has been developed to examine this behaviour. The model deals with bubble growth and material transport as well as the radiolysis chemistry. The model simulates diffusion of species through the gas/liquid boundary layer. The appropriate mass conservation equations for this problem are described and the results of their numerical solution discussed. This model indicates the importance of the assumed boundary conditions on the results of the calculations. These boundary conditions are discussed in detail and the most appropriate ones for the actual reactor situation are outlined. The conclusion of this modelling study is that at normal PWR operating conditions of 40 cc H 2 (STP) kg -1 it is unlikely that radiolysis in a subcooled boiling region would be important. The situation is more ambiguous at the 1 to 5 cc H 2 (STP) kg -1 range. (author)

  7. Radiolysis effects in sub-cooled nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, S.; Henshaw, J.; Tuson, A.; Sims, H.E. [AEA Technology (United Kingdom)

    2002-07-01

    A hydrogen depleted region may form in the water during bubble formation when boiling occurs in a PWR. This would arise from stripping of gases into the steam phase. The depleted water may then become oxidising due to radiolysis forming H{sub 2}O{sub 2}. The presence of radiolytic oxidising conditions is one of the mechanisms proposed to explain deposits formed in Axial Offset Anomalies. This work describes a model that has been developed to examine this behaviour. The model deals with bubble growth and material transport as well as the radiolysis chemistry. The model simulates diffusion of species through the gas/liquid boundary layer. The appropriate mass conservation equations for this problem are described and the results of their numerical solution discussed. This model indicates the importance of the assumed boundary conditions on the results of the calculations. These boundary conditions are discussed in detail and the most appropriate ones for the actual reactor situation are outlined. The conclusion of this modelling study is that at normal PWR operating conditions of 40 cc H{sub 2} (STP) kg{sup -1} it is unlikely that radiolysis in a subcooled boiling region would be important. The situation is more ambiguous at the 1 to 5 cc H{sub 2} (STP) kg{sup -1} range. (author)

  8. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  9. Modeling liquid hydrogen cavitating flow with the full cavitation model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.B.; Qiu, L.M.; Qi, H.; Zhang, X.J.; Gan, Z.H. [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, Hangzhou 310027 (China)

    2008-12-15

    Cavitation is the formation of vapor bubbles within a liquid where flow dynamics cause the local static pressure to drop below the vapor pressure. This paper strives towards developing an effective computational strategy to simulate liquid hydrogen cavitation relevant to liquid rocket propulsion applications. The aims are realized by performing a steady state computational fluid dynamic (CFD) study of liquid hydrogen flow over a 2D hydrofoil and an axisymmetric ogive in Hord's reports with a so-called full cavitation model. The thermodynamic effect was demonstrated with the assumption of thermal equilibrium between the gas phase and liquid phase. Temperature-dependent fluid thermodynamic properties were specified along the saturation line from the ''Gaspak 3.2'' databank. Justifiable agreement between the computed surface pressure, temperature and experimental data of Hord was obtained. Specifically, a global sensitivity analysis is performed to examine the sensitivity of the turbulent computations to the wall grid resolution, wall treatments and changes in model parameters. A proper near-wall model and grid resolution were suggested. The full cavitation model with default model parameters provided solutions with comparable accuracy to sheet cavitation in liquid hydrogen for the two geometries. (author)

  10. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  11. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    Science.gov (United States)

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  12. Saturated Pool Boiling in Vertical Annulus with Reduced Outflow Area

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    The mechanisms of pool boiling heat transfer have been studied extensively to design efficient heat transfer devices or to assure the integrity of safety related systems. However, knowledge on pool boiling heat transfer in a confined space is still quite limited. The confined nucleate boiling is an effective technique to enhance heat transfer. Improved heat transfer might be attributed to an increase in the heat transfer coefficient due to vaporization from the thin liquid film on the heating surface or increased bubble activity. According to Cornwell and Houston, the bubbles sliding on the heated surface agitate environmental liquid. In a confined space a kind of pulsating flow due to the bubbles is created and, as a result very active liquid agitation is generated. The increase in the intensity of liquid agitation results in heat transfer enhancement. Sometimes a deterioration of heat transfer appears at high heat fluxes for confined boiling. The cause of the deterioration is suggested as active bubble coalescence. Recently, Kang published inflow effects on pool boiling heat transfer in a vertical annulus with closed bottoms. Kang regulated the gap size at the upper regions of the annulus and identified that effects of the reduced gaps on heat transfer become evident as the heat flux increases. This kind of geometry is found in an in-pile test section. Since more detailed analysis is necessary, effects of the outflow area on nucleate pool boiling heat transfer are investigated in this study. Up to the author's knowledge, no previous results concerning to this effect have been published yet

  13. Long-term storage and long-distance transportation of hydrogen by use of catalyst-addisted decalin dehydrogenation/naphthalene hydrogenation pair; Dekarin dassuiso/nafutarensuisoka shokubai hannotai wo mochiiru suiso no chokikan chozo/chokyori yuso

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Sakaguchi, M.; Saito, Y. [Scince Univ.of Tokyo, Tokyo (Japan)

    1997-06-01

    To enable taking in and out hydrogen with little energy consumption, it is sufficient if decalin is dehydrogenated to naphthalene under moderate heating condition. It is found that carbon supporting metal catalyst in liquid film state shows extremely high dehydrogeno-aromatization activity of decalin. The result of comparison with liquid hydrogen or metal hydride as media for hydrogen storage and transportation media is reported. The platinum-tungsten composite metal catalyst is prepared from an aqueous solution of K2PtC16 and Li2WO4 in the ratio of 1 to 1 so as to achieve 5wt-metal% carbon supporting. When hydrogen and naphthalene are discharged from the liquid phase reaction medium to the vapor phase and solid phase, respectively, under boiling and refluxing conditions, hydrogen is produced steadily by heating at 200 to 210degC. If economical efficiency is ignored, development of an inter-season energy storage system is desired to be developed which can be used in the season between summertime when sufficient hydrogen is obtained by photovoltaic power generation and electrolysis of water and wintertime when heat source is obtained by catalytic combustion of hydrogen. 11 refs., 4 figs., 4 tabs.

  14. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  16. Analyses of one-step liquid hydrogen production from methane and landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2007-11-15

    Conventional liquid hydrogen (LH{sub 2}) production consists of two basic steps: (1) gaseous hydrogen (GH{sub 2}) production via steam methane reformation followed by purification by means of pressure swing adsorption (PSA), and (2) GH{sub 2} liquefaction. LH{sub 2} produced by the conventional processes is not carbon neutral because of the carbon dioxide (CO{sub 2}) emission from PSA operation. A novel concept is herein presented and flowsheeted for LH{sub 2} production with zero carbon emission using methane (CH{sub 4}) or landfill gas as feedstock. A cryogenic process is used for both H{sub 2} separation/purification and liquefaction. This one-step process can substantially increase the efficiency and reduce costs because no PSA step is required. Furthermore, the integrated process results in no CO{sub 2} emissions and minimal H{sub 2} losses. Of the five flowsheets presented, one that combines low and high temperature CO/CH{sub 4} reforming reactions in a single reactor shows the highest overall efficiency with the first and second law efficiencies of 85% and 56%, respectively. The latter figure assumes 10% overall energy loss and 30% efficiency for the cryogenic process. (author)

  17. Track formation in a liquid hydrogen ultrasonic bubble chamber

    CERN Document Server

    Brown, R C A; Jarman, P D

    1973-01-01

    Track sensitivity to minimum ionising particles has been demonstrated in liquid hydrogen using only an intense ultrasonic field. Carefully designed transducer systems are shown to be capable of producing pressure amplitudes >2.8 atm in a standing wave system in liquid hydrogen. The growth of bubbles to visible size (0.1 mm) in less than 0.2 ms, and their collapse in less than 15 ms, indicates that rapid cycling rates of 50-100 pulses per second may be feasible with this technique. (11 refs).

  18. Heat Analysis of Liquid piston Compressor for Hydrogen Applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2014-01-01

    A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is develo......A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model...

  19. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  20. Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet Flames

    Science.gov (United States)

    2016-05-15

    Conference Paper 3. DATES COVERED (From - To) 18 Mar 2016 – 15 May 2016 4. TITLE AND SUBTITLE Acoustically Forced Coaxial Hydrogen / Liquid Oxygen Jet...perform, display, or disclose the work. 13. SUPPLEMENTARY NOTES For presentation at 28th Annual Conference on Liquid Atomization and Spray Systems...serious problems in the development of liquid rocket engines. In order to understand and predict them, it is necessary to understand how representative

  1. Vermont Yankee advanced off-gas system (AOG)

    International Nuclear Information System (INIS)

    Littlefield, P.S.; Miller, S.R.; DerHagopian, H.

    1975-01-01

    Early in 1971 the Vermont Yankee Nuclear Power Corporation decided to modify the existing off-gas delay system to reduce the release of noble gas isotopes from its boiling water reactor. This modification included a subsystem for recombining the radiolytic hydrogen and oxygen from the reactor and a series of adsorber tanks filled with activated carbon to delay the noble gas isotopes from the condenser air ejectors. The off-gas system and its operating history from initial operation in November 1973 to the present time are described. Data are also presented on the measured dynamic adsorption coefficient of the ambient carbon subsystem. Laboratory adsorption tests were conducted on the carbon prior to AOG startup and the results are compared with the effective coefficients obtained under operating conditions. (U.S.)

  2. Impurity concentration behaviors in a boiling tubesheet crevice Part II. Packed crevice

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Oh, Si Hyoung; Park, Byung Gi; Hwang, Il Soon; Rhee, In Hyoung; Kim, Uh Chul; Na, Jung Won

    2003-01-01

    The impurity concentration behavior of a boiling crevice packed with magnetite particles was investigated with thermocouples and electrodes for the measurement of temperature and electrochemical corrosion potential (ECP), respectively, in order to understand chemical change in a pressurized water reactor (PWR) steam generator (SG) crevice. A secondary solution composed of 50 ppm Na and 200 ppb hydrogen was supplied at a flow rate of about 4 l/h. Sodium hydroxide (NaOH) concentration process in the crevice and the resultant boiling point elevation behavior were characterized with temperature and ECP data. The temperature in the packed crevice was about 2-3 deg. C higher than that for the open crevice. In the same conditions, the magnetite-packed crevice showed a greater amount of boiling point elevation with a longer time to reach a steady state compared with the case of an open crevice. It was found that the bottom region of the crevice was initially filled with steam, and then the concentrated liquid region initially located at the middle of crevice expanded to both the crevice bottom and the upper region. To analytically estimate the wetted length, a closed form model was introduced. The model results estimated the initial wetted length shorter as compared with the measurement results. Measured ECP results of packed crevice showed similar behaviors as compared with calculated results by using Nernst equation. ECP results reasonably coincided with the boiling point elevation estimated from the temperature data except one unusual case

  3. Suppression of saturated nucleate boiling by forced convective flow

    International Nuclear Information System (INIS)

    Bennett, D.L.; Davis, M.W.; Hertzler, B.L.

    1980-01-01

    Tube-side forced convective boiling nitrogen and oxygen and thin film shell-side forced convective boiling R-11 data demonstrate a reduction in the heat transfer coefficient associated with nucleate boiling as the two-phase friction pressure drop increases. Techniques proposed in the literature to account for nucleate boiling during forced convective boiling are discussed. The observed suppression of nucleate boiling for the tube-side data is compared against the Chen correlation. Although general agreement is exhibited, supporting the interactive heat transfer mechanism theory, better agreement is obtained by defining a bubble growth region within the thermal boundary layer. The data suggests that the size of the bubble growth region is independent of the friction drop, but is only a function of the physical properties of the boiling liquid. 15 refs

  4. A new correlation for nucleate pool boiling of aqueous mixtures

    International Nuclear Information System (INIS)

    Thome, J.R.; Shakir, S.

    1987-01-01

    A new mixture boiling correlation was developed for nucleate pool boiling of aqueous mixtures on plain, smooth tubes. The semi-empirical correlation models the rise in the local bubble point temperature in a mixture caused by the preferential evaporation of the more volatile component during bubble growth. This rise varies from zero at low heat fluxes (where only single-phase natural convection is present) up to nearly the entire boiling range at the peak heat flux (where latent heat transport is dominant). The boiling range, which is the temperature difference between the dew point and bubble point of a mixture, is used to characterize phase equilibrium effects. An exponential term models the rise in the local bubble point temperature as a function of heat flux. The correlation was compared against binary mixture boiling data for ethanol-water, methanol-water, n-propanol-water, and acetone-water. The majority of the data was predicted to within 20%. Further experimental research is currently underway to obtain multicomponent boiling data for aqueous mixtures with up to five components and for wider boiling ranges

  5. Warm Pressurant Gas Effects on the Liquid Hydrogen Bubble Point

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents experimental results for the liquid hydrogen bubble point tests using warm pressurant gases conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to determine the effect of elevating the temperature of the pressurant gas on the performance of a liquid acquisition device. Three fine mesh screen samples (325 x 2300, 450 x 2750, 510 x 3600) were tested in liquid hydrogen using cold and warm noncondensible (gaseous helium) and condensable (gaseous hydrogen) pressurization schemes. Gases were conditioned from 0 to 90 K above the liquid temperature. Results clearly indicate a degradation in bubble point pressure using warm gas, with a greater reduction in performance using condensable over noncondensible pressurization. Degradation in the bubble point pressure is inversely proportional to screen porosity, as the coarsest mesh demonstrated the highest degradation. Results here have implication on both pressurization and LAD system design for all future cryogenic propulsion systems. A detailed review of historical heated gas tests is also presented for comparison to current results.

  6. Microscopic dynamics and relaxation processes in liquid hydrogen fluoride

    International Nuclear Information System (INIS)

    Angelini, R.; Giura, P.; Monaco, G.; Sette, F.; Fioretto, D.; Ruocco, G.

    2004-01-01

    Inelastic x-ray scattering and Brillouin light scattering measurements of the dynamic structure factor of liquid hydrogen fluoride have been performed in the temperature range T=214-283 K. The data, analyzed using a viscoelastic model with a two time-scale memory function, show a positive dispersion of the sound velocity c(Q) between the low frequency value c 0 (Q) and the high frequency value c ∞α (Q). This finding confirms the existence of a structural (α) relaxation directly related to the dynamical organization of the hydrogen bonds network of the system. The activation energy E a of the process has been extracted by the analysis of the temperature behavior of the relaxation time τ α (T) that follows an Arrhenius law. The obtained value for E a , when compared with that observed in another hydrogen bond liquid as water, suggests that the main parameter governing the α-relaxation process is the number of hydrogen bonds per molecule

  7. Numerical investigation of nucleate pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    Stojanović Andrijana D.

    2016-01-01

    Full Text Available Multidimensional numerical simulation of the atmospheric saturated pool boiling is performed. The applied modelling and numerical methods enable a full representation of the liquid and vapour two-phase mixture behaviour on the heated surface, with included prediction of the swell level and heated wall temperature field. In this way the integral behaviour of nucleate pool boiling is simulated. The micro conditions of bubble generation at the heated wall surface are modelled by the bubble nucleation site density, the liquid wetting contact angle and the bubble grow time. The bubble nucleation sites are randomly located within zones of equal size, where the number of zones equals the nucleation site density. The conjugate heat transfer from the heated wall to the liquid is taken into account in wetted heated wall areas around bubble nucleation sites. The boiling curve relation between the heat flux and the heated wall surface temperature in excess of the saturation temperature is predicted for the pool boiling conditions reported in the literature and a good agreement is achieved with experimentally measured data. The influence of the nucleation site density on the boiling curve characteristic is confirmed. In addition, the influence of the heat flux intensity on the spatial effects of vapour generation and two-phase flow are shown, such as the increase of the swell level position and the reduced wetting of the heated wall surface by the heat flux increase. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018 i br. OI-174014

  8. Variation of the effectiveness of hydrogen water chemistry in a boiling water reactor during power coastdown operations

    International Nuclear Information System (INIS)

    Yeh Tsungkuang; Wang Meiya; Chu, Charles F.; Chang Ching

    2009-01-01

    A theoretical model was adapted to evaluate the impact of power coastdown on the water chemistry of a commercial boiling water reactor (BWR) in this work. In principle, the power density of a nuclear reactor upon a power level decrease would immediately be lowered, followed by water chemistry variations due to reduced radiolysis of water and extended coolant residence times in the core and near-core regions. It is currently a common practice for a commercial BWR to adopt hydrogen water chemistry (HWC) for corrosion mitigation. The optimal feedwater hydrogen concentration may be different after a power coastdown is implemented in a BWR. A computer code DEMACE was used in the current study to investigate the impact of various power coastdown levels on major radiolytic species concentrations and electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of a domestic reactor operating under either normal water chemistry or HWC. Our analyses indicated that under a rated core flow rate the chemical species concentrations and the ECP did not vary monotonously with decreases in reactor power level at a fixed feedwater hydrogen concentration. In particular, ECP variations basically followed the patterns of hydrogen peroxide in the select regions and exhibited high values at power level of 90% for Reactor X. (author)

  9. A three-cell liquid hydrogen target for an extended focal plane polarimeter

    International Nuclear Information System (INIS)

    Golovanov, L.B.; Borzounov, Yu.T.; Piskunov, N.M.; Tsvinev, A.P.

    1996-01-01

    This article describes the design and working principle of a 3-cell liquid hydrogen target produced for the high-energy deuteron polarimeter HYPOM. This target uses liquid Helium as a cooling agent. After a general description of the apparatus, tests and operating modes are thoroughly explained. In particular the air controlled self regulation of Helium flow in the cryostat to stabilize the liquid hydrogen level is presented. (author)

  10. The use of infrared absorption to determine density of liquid hydrogen.

    Science.gov (United States)

    Unland, H. D.; Timmerhaus, K. D.; Kropschot, R. H.

    1972-01-01

    Experimental evaluation of the use of infrared absorption for determining the density of liquid hydrogen, and discussion of the feasibility of an airborne densitometer based on this concept. The results indicate that infrared absorption of liquid hydrogen is highly sensitive to the density of hydrogen, and, under the operating limitations of the equipment and experimental techniques used, the determined values proved to be repeatable to an accuracy of 2.7%. The desiderata and limitations of an in-flight density-determining device are outlined, and some of the feasibility problems are defined.

  11. Study of sodium film-boiling heat transfer from a high-temperature sphere

    International Nuclear Information System (INIS)

    Le-Belguet, A.

    2013-01-01

    During a severe accident in a sodium-cooled fast reactor, molten fuel may come into contact with the surrounding liquid sodium, resulting in a so-called Fuel-Coolant Interaction. This work aims at providing a better understanding and knowledge of the associated heat transfer, likely to be in the film-boiling regime and required to study the risks related to a vapor explosion. Scarce literature has been found on sodium film boiling, both from an experimental and a theoretical point of view. Only one experiment has been conducted to investigate sodium pool film-boiling heat transfer. In our analysis of the experiment, two film-boiling regimes have been identified: a stable film boiling regime, without liquid-solid contact, and an unstable film-boiling regime, with contacts. Besides, the only theoretical model dedicated to sodium film boiling has shown some weaknesses. First, a scaling analysis of the problem has been proposed for free and forced convection, considering the two extreme cases of saturated and highly subcooled liquid. This simplified approach, which shows a good agreement with the experimental data, provides the dimensionless numbers which should be used to build correlations. A theoretical model has been developed to describe sodium film-boiling heat transfer from a hot sphere in free and forced convection, whatever the liquid subcooling. It is based on a two-phase laminar boundary layer integral method and includes the inertial and convective terms in the vapor momentum and energy equations, usually neglected. The radiation has been taken into account in the interfacial energy balance and contributes directly to produce vapor. This model enables to predict the heat lost from a hot body within an acceptable error compared to the tests results especially when the experimental uncertainties are considered. The heat partition between liquid heating and vaporization, essential to study the vapor explosion phenomenon, is also estimated. The influence of

  12. Hydrogenation of Estonian oil shale and shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N; Kopwillem, J

    1932-01-01

    Kukersite was heated in an atmosphere of hydrogen, nitrogen, or water in three series of experiments. Shale samples were heated at 370/sup 0/ to 410/sup 0/C for 2 to 3/sup 1///sub 2/ hours in the presence of 106 to 287 kg/sq cm pressure of water, nitrogen, or hydrogen. In some experiments 5 percent of iron oxide was added to the shale. The amount of kerogen liquefied by hydrogenation was not greater than the amount of liquid products obtained by ordinary distillation. On hydrogenation, kukersite absorbed 1.8 weight-percent of hydrogen. Almost no hydrogenation took place below the decomposition point of kerogen, and the lighter decomposition products were mainly hydrogenated. Hydrogenation of the shale prevented coke formation. Heating kukersite or its crude oil at temperatures of 400/sup 0/ to 410/sup 0/C under 250 kg/sq cm hydrogen pressure produced paraffinic and naphthenic oils of lower boiling points. At higher temperatures and after long-continued heating, the formation of aromatic hydrocarbons was observed.

  13. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    Science.gov (United States)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  14. Experimental and theoretical studies on subcooled flow boiling of pure liquids and multicomponent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Jamialahmadi, M.; Abdollahi, H.; Shariati, A. [The University of Petroleum Industry, Ahwaz (Iran); Mueller-Steinhagen, H. [Institute of Technical Thermodynamics, German Aerospace Center (Germany); Institute of Thermodynamics and Thermal Engineering, University of Stuttgart (Germany)

    2008-05-15

    To improve the design of modern industrial reboilers, accurate knowledge of boiling heat transfer coefficients is essential. In this study flow boiling heat transfer coefficients for binary and ternary mixtures of acetone, isopropanol and water were measured over a wide range of heat flux, subcooling, flow velocity and composition. The measurements cover the regimes of convective heat transfer, transitional boiling and fully developed subcooled flow boiling. Two models are presented for the prediction of flow boiling heat transfer coefficients. The first model is the combination of the Chen model with the Gorenflo correlation and the Schluender model for single and multicomponent boiling, respectively. This model predicts flow boiling heat transfer coefficients with acceptable accuracy, but fails to predict the nucleate boiling fraction NBF reasonably well. The second model is based on the asymptotic addition of forced convective and nucleate boiling heat transfer coefficients. The benefit of this model is a further improvement in the accuracy of flow boiling heat transfer coefficient over the Chen type model, simplicity and the more realistic prediction of the nucleate boiling fraction NBF. (author)

  15. Liquid Oxygen Propellant Densification Unit Ground Tested With a Large-Scale Flight-Weight Tank for the X-33 Reusable Launch Vehicle

    Science.gov (United States)

    Tomsik, Thomas M.

    2002-01-01

    Propellant densification has been identified as a critical technology in the development of single-stage-to-orbit reusable launch vehicles. Technology to create supercooled high-density liquid oxygen (LO2) and liquid hydrogen (LH2) is a key means to lowering launch vehicle costs. The densification of cryogenic propellants through subcooling allows 8 to 10 percent more propellant mass to be stored in a given unit volume, thereby improving the launch vehicle's overall performance. This allows for higher propellant mass fractions than would be possible with conventional normal boiling point cryogenic propellants, considering the normal boiling point of LO2 and LH2.

  16. Thermal information regarding the cooldown and operation of liquid argon calorimeters

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Cooper, W.E.; Dixon, K.D.; Krempetz, K.J.; Mulholland, G.T.; Primdahl, K.; Urbin, J.B.

    1993-07-01

    Three liquid argon calorimeters were cooled down and operated as part of the D-Zero detector at Fermi National Accelerator laboratory. The largest vessel contains 248 metric tons of uranium and copper plates and 19 kL (5000 gal.) of liquid argon. The other two vessels are mirror images, each containing 185 metric tons of uranium and stainless steel plates and 12.1 kL (3200 gal.) of liquid argon. The cool down was accomplished by convection heat transfer between boiling liquid nitrogen filled finned heat exchangers and argon gas inside the vessels. Information regarding the general internal geometry of the calorimeters, cool down, operation, and steady state heat loads will be presented

  17. Design, fabrication and test of a liquid hydrogen titanium honeycomb cryogenic test tank for use as a reusable launch vehicle main propellant tank

    Science.gov (United States)

    Stickler, Patrick B.; Keller, Peter C.

    1998-01-01

    Reusable Launch Vehicles (RLV's) utilizing LOX\\LH2 as the propellant require lightweight durable structural systems to meet mass fraction goals and to reduce overall systems operating costs. Titanium honeycomb sandwich with flexible blanket TPS on the windward surface is potentially the lightest-weight and most operable option. Light weight is achieved in part because the honeycomb sandwich tank provides insulation to its liquid hydrogen contents, with no need for separate cryogenic insulation, and in part because the high use temperature of titanium honeycomb reduces the required surface area of re-entry thermal protection systems. System operability is increased because TPS needs to be applied only to surfaces where temperatures exceed approximately 650 K. In order to demonstrate the viability of a titanium sandwich constructed propellant tank, a technology demonstration program was conducted including the design, fabrication and testing of a propellant tank-TPS system. The tank was tested in controlled as well as ambient environments representing ground hold conditions for a RLV main propellant tank. Data collected during each test run was used to validate predictions for air liquefaction, outside wall temperature, boil-off rates, frost buildup and its insulation effects, and the effects of placing a thermal protection system blanket on the external surface. Test results indicated that titanium honeycomb, when used as a RLV propellant tank material, has great promise as a light-weight structural system.

  18. Notch Effect on Tensile Deformation Behavior of 304L and 316L Steels in Liquid Helium and Hydrogen

    International Nuclear Information System (INIS)

    Shibata, K.; Fujii, H.

    2004-01-01

    Tensile tests of type 304L and 316L steels were carried out using round bar specimens with a notch in liquid helium, hydrogen, liquid nitrogen and at ambient temperature. The obtained tensile strengths were compared with the tensile strengths of smooth specimens. For smooth specimens, tensile strength increased with a decrease in temperature and the strengths in liquid helium and hydrogen show similar values in both steels. For notched specimen of 304L steel, tensile strength (including fracture strength) increased noticeably from ambient to liquid nitrogen temperature but showed a large decrease in liquid helium and hydrogen. In liquid hydrogen and helium, the tensile strength is a little lower in liquid hydrogen than in liquid helium and both strengths are lower than tensile strengths of smooth specimens. For notched specimen of 316L steel, an increase in tensile strength from ambient to liquid nitrogen temperature was not so large and a decrease from liquid nitrogen to liquid hydrogen was small. The tensile strengths in liquid helium and hydrogen were nearly same and higher than those of smooth specimens. Different behavior of serration was observed between liquid helium and hydrogen, and between 304L and 316L steels. The reasons for these differences were discussed using computer simulation

  19. A Novel Boil-Off Gas Re-Liquefaction Using a Spray Recondenser for Liquefied Natural-Gas Bunkering Operations

    Directory of Open Access Journals (Sweden)

    Jiheon Ryu

    2016-11-01

    Full Text Available This study presents the design of a novel boil-off gas (BOG re-liquefaction technology using a BOG recondenser system. The BOG recondenser system targets the liquefied natural gas (LNG bunkering operation, in which the BOG phase transition occurs in a pressure vessel instead of a heat exchanger. The BOG that is generated during LNG bunkering operation is characterized as an intermittent flow with various peak loads. The system was designed to temporarily store the transient BOG inflow, condense it with subcooled LNG and store the condensed liquid. The superiority of the system was verified by comparing it with the most extensively employed conventional re-liquefaction system in terms of consumption energy and via an exergy analysis. Static simulations were conducted for three compositions; the results indicated that the proposed system provided 0 to 6.9% higher efficiencies. The exergy analysis indicates that the useful work of the conventional system is 24.9%, and the useful work of the proposed system is 26.0%. Process dynamic simulations of six cases were also performed to verify the behaviour of the BOG recondenser system. The results show that the pressure of the holdup in the recondenser vessel increased during the BOG inflow mode and decreased during the initialization mode. The maximum pressure of one of the bunkering cases was 3.45 bar. The system encountered a challenge during repetitive operations due to overpressurizing of the BOG recondenser vessel.

  20. Study on boiling heat transfer of subcooled flow under oscillatory flow condition

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Yamazaki, Satoshi; Koizumi, Yasuo

    2004-01-01

    The Onset of Nucleate Boiling, the point of Net Vapor Generation and Critical Heat Flux on subcooled flow boiling under oscillatory flow, focusing on liquid velocity, amplitude and frequency of oscillatory flow were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2 and 4 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. Temperatures at Onset of Nuclear Boiling and Critical Heat Flux obtained in the experiments decreased with the oscillatory flow. The decrease of liquid velocity by oscillatory flow caused the ONB and the CHF to decrease. On the other hand, heat flux at Net Vapor Generation decreased with oscillatory flow; the increase of liquid velocity by oscillatory flow caused the NVG to decrease. (author)

  1. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H. [Solar Reactor Technologies Inc., Miami, FL (United States)

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  2. Preliminary optimization experiments of coupled liquid hydrogen moderator for KENS-II

    International Nuclear Information System (INIS)

    Watanabe, N.; Kiyanagi, Y.; Inoue, K.; Furusaka, M.; Ikeda, S.; Arai, M.; Iwasa, H.

    1989-01-01

    As a preliminary optimization experiment on the cold-neutron source for KENS-II, energy and time distributions of cold neutrons emanating from coupled liquid-hydrogen moderators with and without a premoderator in a graphite reflector were measured and compared with those from a decoupled liquid-hydrogen moderator. The results showed that the energy spectra from the coupled liquid-hydrogen moderators are almost the same as those from a decoupled one. Relative gain of the former to the latter is fairly high, more than 5, and further increases with increasing wavelength. The broadening of the neutron pulse width in coupled moderators at the cold-neutron region is not so significant and only 1.5 times compared to the solid methane moderator presently operated at KENS-II. 2 refs., 12 figs., 1 tab

  3. Application of Sub-cooled Boiling Model to Thermal-hydraulic Analysis Inside a CANDU-6 Fuel Channel

    International Nuclear Information System (INIS)

    Kim, Man Woong; Lee, Sang Kyu; Kim, Hyun Koon; Yoo, Kun Joong; Kang, Hyoung Chul; Yoo, Seong Yeon

    2007-01-01

    Forced convection nucleate boiling is encountered in heat exchangers during normal and non-nominal modes of operation in pressurized water or boiling water reactors (PWRs or BWRs). If the wall temperature of the piping is higher than the saturation temperature of the nearby liquid, nucleate boiling occurs. In this regime, bubbles are formed at the wall. Their growth is promoted by the wall superheat (the difference between the wall and saturation temperatures), and they depart from the wall as a result of gravitational and liquid inertia forces. If the bulk liquid is subcooled, condensation at the bubble-liquid interface takes place and the bubble may collapse. This convection nucleate boiling is called as a sub-cooled nucleate boiling. As for the fuel channel of a CANDU 6 reactor, forced convection nucleate boiling models for flows along fuel elements enclosed inside typical CANDU-6 fuel channel has encountered difficulties due to the modeling of local effects along the horizontal channel. Therefore, the subcooled nucleate boiling has been modeled through temperature driven boiling heat and mass transfer, using a model developed at Rensselaer Polytechnic Institute. The objectives of this study are: (i) to investigate a proposed sub-cooled boiling model developed at Rensselaer Polytechnic Institute and (ii) to apply against a experiment and (iii) to predict local distributions of flow fields for the actual fuel channel geometries of CANDU-6 reactors. The numerical implementation is conducted using by the FLUENT 6.2 CFD computer code

  4. The cost of electrolytic hydrogen from off-peak power

    International Nuclear Information System (INIS)

    Stucki, S.

    1991-01-01

    The cost of electrolytic hydrogen depends on the capacity factor of the plant and the cost of electricity. Both these parameters are correlated if off-peak power is to be used for hydrogen production. Based on assumptions regarding the correlation between the electricity price and the availability of electric power, optimizations were run using a simple cost model for the electrolysis plant. The current density at which the electrolysis plant would be run is taken as a variable for optimization as well as the annual time of availability of electric power. The results of the optimizations show for a number of hypothetical electrolyser types that the optimum operation time or electricity price do not depend much on the technology used. Production cost of electrolytic hydrogen can, however, be cut by 30% by using advanced electrolysis technology. (author)

  5. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  6. The decay of a lambda particle in the 32 cm hydrogen bubble chamber

    CERN Multimedia

    1960-01-01

    This image from 1960 is of real particle tracks formed in CERN's first liquid hydrogen bubble chamber to be used in experiments. It was a tiny detector by today's standards at only 32 cm in diameter. Negatively charged pions with an energy of 16 GeV enter from the left. One of them interacts with a proton in the liquid hydrogen and creates sprays of new particles, including a neutral particle (a lambda) that decays to produce the "V" of two charged particle tracks at the centre. Lower-energy charged particles produced in the interactions spiral in the magnetic field of the chamber. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real particle tracks to be seen and photographed, after releasing the pressure that had kept a liquid above its normal boiling point.

  7. Minimum heat flux (MHF) point in pool and external-flow boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1983-01-01

    As for the boiling phenomena near a minimum heat flux (MHF) point to which attention has been paid recently concerning the safety analysis of LWR cores, the results of research have not been put in order sufficiently. Therefore in this explanation, the object is limited to pool boiling and external flow boiling, and it is attempted to rearrange the present knowledge on the phenomena near a MHF point from the viewpoint of the relation to the state of solid-liquid contact, the effect of various factors on a MHF point and the modeling of a MHF point. The heat transfer characteristics in boiling phenomena are represented by a curve with one maximum and one minimum points. The MHF point is called also minimum film boiling point. In a heat flux-controlled heating surface, temperature jump arises when heat flux is decreased at a MHF point. The phenomena near a MHF point and the technological background when a MHF point becomes a problem are explained. Near a MHF point, only partial, intermittent solid-liquid contact is maintained. The effects of solid-liquid contact mode, the geometry of a heating surface, pressure and others on a MHF point are discussed. (Kako, I.)

  8. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    International Nuclear Information System (INIS)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-01-01

    Liquid natural rubber (LNR) with molecular weight of lower than 10 5 and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA)

  9. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    Science.gov (United States)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Liquid natural rubber (LNR) with molecular weight of lower than 105 and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA).

  10. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Liquid natural rubber (LNR) with molecular weight of lower than 10{sup 5} and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA)

  11. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  12. Intensive evaporation and boiling of a heterogeneous liquid droplet with an explosive disintegration in high-temperature gas area

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The using of the high-speed (not less than 105 frames per second video recording tools (“Phantom” and the software package ("TEMA Automotive" allowed carrying out an experimental research of laws of intensive vaporization with an explosive disintegration of heterogeneous (with a single solid nontransparent inclusion liquid droplet (by the example of water in high-temperature (500-800 K gases (combustion products. Times of the processes under consideration and stages (liquid heat-up, evaporation from an external surface, bubble boiling at internal interfaces, growth of bubble sizes, explosive droplet breakup were established. Necessary conditions of an explosive vaporization of a heterogeneous droplet were found out. Mechanisms of this process and an influence of properties of liquid and inclusion material on them were determined.

  13. Direct numerical simulations of nucleate boiling flows of binary mixtures

    International Nuclear Information System (INIS)

    Didier Jamet; Celia Fouillet

    2005-01-01

    Full text of publication follows: Better understand the origin and characteristics of boiling crisis is still a scientific challenge despite many years of valuable studies. One of the reasons why boiling crisis is so difficult to understand is that local and coupled physical phenomena are believed to play a key role in the trigger of instabilities which lead to the dry out of large portions of the heated solid phase. Nucleate boiling of a single bubble is fairly well understood compared to boiling crisis. Therefore, the numerical simulation of a single bubble growth during nucleate boiling is a good candidate to evaluate the capabilities of a numerical method to deal with complex liquid-vapor phenomena with phase-change and eventually to tackle the boiling crisis problem. In this paper, we present results of direct numerical simulations of nucleate boiling. The numerical method used is the second gradient method, which is a diffuse interface method dedicated to liquid vapor flows with phase-change. This study is not intended to provide quantitative results, partly because all the simulations are two-dimensional. However, particular attention is paid to the influence of some parameters on the main features of nucleate boiling, i.e. the radius of departure and the frequency of detachment of bubbles. In particular, we show that, as the contact angle increases, the radius of departure increases whereas the frequency of detachment decreases. Moreover, the influence of the existence of quasi non-condensable gas is studied. Numerical results show an important decrease of the heat exchange coefficient when a small amount of a quasi non-condensable gas is added to the pure liquid-vapor water system. This result is in agreement with experimental observations. Beyond these qualitative results, this numerical study allows to get insight into some important physical phenomena and to confirm that during nucleate boiling, large scale quantities are influenced by small scale

  14. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  15. The boiling crisis in a subcooled liquid flowing in a vertical annular channel

    International Nuclear Information System (INIS)

    Passos, J.C.

    1989-01-01

    Experimental results concerning the critical heat flux density for a variety of forced flow conditions of Freon 113 in a circular annular channel of 3 mm width and 107 mm length when the inside wall is heated are presented. The flow configurations were also visualized prior and during the boiling crisis. For inlet liquid velocities equal or larger than 0.041 m/s, the correlated dimensionless data extends the range of validity of those of Katto for relatively much longer tubes. A simple balance of forces over a bubble attached to the wall shows that, for smaller velocities, the gravity effect has to be taken into account in the establishment of a more general correlation. (author)

  16. Thermal and hydrodynamic study of a whirling liquid hydrogen layer under high heat flux; Etude thermique et hydrodynamique d'une couche tourbillonnaire d'hydrogenen liquide sous flux de chaleur eleve

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-03-01

    In order to achieve a cold neutrons source ({lambda} {>=} 4.10{sup -10} m) in a high flux reactor ({approx} 10{sup 15} neutrons/cm{sup 2}.s), a whirling liquid hydrogen layer (145 mm OD, effective thickness 15 mm, height about 180 mm) was formed, out-of-pile, in a cylindrical transparent glass vessel. The whirling motion was obtained by tangential injection of the liquid, near the wall. Thermal and hydrodynamical conditions of formation and laws of similarity of such a layer were studied. The characteristics of this whirling flow were observed as a function of mass flow rate (5 to 27 g/s; 4.3 to 23 l/mn), and of spillway width (18 and 25 mm). Six different nozzles were used : 1.0; 1.5; 1.9; 2.25; 2.65 and 3.0 mm ID. The total heat influx was found between 8.6 and 10.4 kW. The heat flux density was about 9.4 W/cm{sup 2} and the mean layer density around 80 per cent of that of the liquid hydrogen at 20.4 Kelvin. High speed movies were used to analyze the boiling regime. (author) [French] En vue de realiser une source de neutrons froids ({lambda} {>=} 4.10{sup -10} m) dans un reacteur a haut flux ({approx} 10{sup 15} neutrons thermiques/cm{sup 2}.s), on a forme dans un vase cylindrique transparent en verre, hors-pile, une couche tourbillonnaire ('vortex') d'hydrogene liquide (diametre exterieur 145 mm, epaisseur effective 15 mm, hauteur 180 mm environ). Le mouvement giratoire est obtenu par injection tangentielle du liquide pres de la paroi. L'etude porte sur la determination des conditions thermiques et hydrodynamiques de la formation d'une telle couche et sur les regles de similitude de ce phenomene. On a observe les caracteristiques de l'ecoulement giratoire en fonction du debit (de 5 a 27 g/s, soit de 4.3 a 23 1/mn), de la vitesse d'injection (entre 10 et 110 m/s) et de la largeur du deversoir (18 et 25 mm), ceci pour six diametres differents d'injecteur (1.0 ; 1.5; 1.9; 2.25; 2.65 et 3.0 mm). Le flux de chaleur total mesure est compris entre 8.6 et 10.4 kW et la

  17. Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen

    Science.gov (United States)

    Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2013-01-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  18. Hydrogen permeation resistant layers for liquid metal reactors

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented

  19. Liquid Hydrogen Recirculation System for Forced Flow Cooling Test of Superconducting Conductors

    Science.gov (United States)

    Shirai, Y.; Kainuma, T.; Shigeta, H.; Shiotsu, M.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.; Yoshinaga, S.

    2017-12-01

    The knowledge of forced flow heat transfer characteristics of liquid hydrogen (LH2) is important and necessary for design and cooling analysis of high critical temperature superconducting devices. However, there are few test facilities available for LH2 forced flow cooling for superconductors. A test system to provide a LH2 forced flow (∼10 m/s) of a short period (less than 100 s) has been developed. The test system was composed of two LH2 tanks connected by a transfer line with a controllable valve, in which the forced flow rate and its period were limited by the storage capacity of tanks. In this paper, a liquid hydrogen recirculation system, which was designed and fabricated in order to study characteristics of superconducting cables in a stable forced flow of liquid hydrogen for longer period, was described. This LH2 loop system consists of a centrifugal pump with dynamic gas bearings, a heat exchanger which is immersed in a liquid hydrogen tank, and a buffer tank where a test section (superconducting wires or cables) is set. The buffer tank has LHe cooled superconducting magnet which can produce an external magnetic field (up to 7T) at the test section. A performance test was conducted. The maximum flow rate was 43.7 g/s. The lowest temperature was 22.5 K. It was confirmed that the liquid hydrogen can stably circulate for 7 hours.

  20. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydrogen utilization international clean energy system technology (WE-NET). Subtask 5. Development of technology of hydrogen transportation/storage (3rd edition, development of liquid hydrogen storage equipment, report on results of Air Liquide); Suiso riyo kokusai clean energy system gijutsu (WE-NET). Subtask 5. Suiso yuso chozo gijutsu no kaihatsu (daisanpen ekitai suiso chozo setsubi no kaihatsu Air Liquide sha seika hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    In the fiscal 1995 study, items were searched which are keys to the design of a liquid hydrogen tanker of a capacity of 200,000m{sup 3}. Among those, the basic concepts were summarized which are necessary for the design of a liquid hydrogen tanker in terms of safety, and the extraporation of the existing low temperature technology into the large liquid hydrogen tank was studied. When adopting safety conditions of IGC Code applied to LNG to the liquid hydrogen tanker, it is necessary to limit the discharge amount of hydrogen to 3 kg/s. When considering safety at fire, for keeping safety of the same level as that of the LNG tanker, it is not appropriate to adopt the conventional vacuum insulation liquid hydrogen tank. In the fiscal 1995 study, 7 kinds of concept of the insulation structure were assumed, and it was concluded that BOR of 0.04-0.23/d was obtained. Also in fiscal 1996, the large liquid hydrogen tank was studied. For insulation of the large liquid hydrogen tank, the structure is most promising where AEROSIL bag or homogeneous AEROSIL is substituted for a forming heat insulating material of 4 design, but further study is needed for selection of the optimum heat insulating structure. 9 figs., 6 tabs.

  2. Liquid hydrogen production and economics for NASA Kennedy Space Center

    Science.gov (United States)

    Block, D. L.

    1985-12-01

    Detailed economic analyses for the production of liquid hydrogen used to power the Space Shuttle are presented. The hydrogen production and energy needs of the NASA Kennedy Space Center are reviewed, and steam reformation, polygeneration, and electrolysis for liquid hydrogen production are examined on an equal economic basis. The use of photovoltaics as an electrolysis power source is considered. The 1985 present worth is calculated based on life cycle costs over a 21-year period beginning with full operation in 1990. Two different sets of escalation, inflation, and discount rates are used, with revenue credit being given for energy or other products of the hydrogen production process. The results show that the economic analyses are very dependent on the escalation rates used. The least net present value is found for steam reformation of natural gas, while the best net present value is found for the electrolysis process which includes the phasing of photovoltaics.

  3. Procedures and instrumentation for sodium boiling experiments in EBR-II

    International Nuclear Information System (INIS)

    Crowe, R.D.

    1976-01-01

    The development of instrumentation capable of detecting localized coolant boiling in a liquid metal cooled breeder reactor (LMFBR) has a high priority in fast reactor safety. The detection must be rapid enough to allow corrective action to be taken before significant damage occurs to the core. To develop and test a method of boiling detection, it is desirable to produce boiling in a reactor and thereby introduce a condition in the reactor the original design concepts were chosen to preclude. The proposed boiling experiments are designed to safely produce boiling in the subassembly of a fast reactor and provide the information to develop boiling detection instrumentation without core damage or safety compromise. The experiment consists of the operation of two separate subassemblies, first, a gamma heated boiling subassembly which produces non-typical but highly conservative boiling and then a fission heated subassembly which simulates a prototypical boiling event. The two boiling subassemblies are designed to operate in the instrumentation subassembly test facility (INSAT) of Experiment Breeder Reactor II

  4. EFFECT OF HYDROGENATED, LIQUID AND GHEE OILS ON SERUM LI-PIDS PROFILE

    Directory of Open Access Journals (Sweden)

    Noushin Mohammadifard

    2010-11-01

    Full Text Available BACKGROUND: Trans fatty acids are known as the most harmful type of dietary fats, so this study was done to compare the effects of hydrogenated, liquid and ghee oils on serum lipids profile of healthy adults.    METHODS: This study was a randomized clinical trial conducted on 129 healthy participants aged from 20 to 60 years old who were beneficiaries of Imam-e-Zaman charitable organization. Subjects were randomly divided into 3 groups and each group was treated with a diet containing cooking and frying liquid, ghee, or hydrogenated for 40 days. Fasting serum lipids, including total cholesterol (TC, triglyceride (TG, LDL-cholesterol (LDL-C, HDL-cholesterol (HDL-C, apoprotein A (Apo A, and apoprotein B (Apo B were measured before and after the study.    RESULTS: TC, TG and Apo B had a significant reduction in the liquid oil group compared to the hydrogenated oil group. In the ghee group TG declined and Apo A increased significantly (p < 0.01. Liquid oil group had a significant reduction in HDL-C, compared to the ghee oil group (P < 0.05.     CONCLUSION: It was concluded that consuming liquid oil along with frying oil caused to reduce all serum lipid levels. However, ghee oil only reduced TG and increased HDL-C levels.      Keywords: Serum lipids, Apoproteins, Liquid oil, Hydrogenated oil, Ghee, Clinical trial

  5. Removal of Reactive Red 198 by Nanoparticle Zero Valent Iron in the Presence of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Siroos Shojaei

    2017-04-01

    Full Text Available Although dyes are widely used in textile industries, they are carcinogenic, teratogenic and mutagenic. Industries discharge their wastewater containing a variety of colors into water resources and make harmful effect on the environment. The present study aims to Evaluate removal of reactive red 198 by nanoparticle zero valent iron (NZVI in the presence of hydrogen peroxide from aqueous solution. The effective parameters on the removal of dye such as the hydrogen peroxide concentration of NZVI, contact time, pH and dye concentration were investigated and optimized. According to the results, the combination of NZVI with hydrogen peroxide is more effective than single hydrogen peroxide. At pH = 4, contact time= 40 min, 200 M of hydrogen peroxide, dye concentration= 75 mg/L and concentration of NZVI 2g/L, color removal was achieved 91% approximately. Based on the results of experiments, using hydrogen peroxide- NZVI has high efficiency in removal of azo dye type.

  6. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  7. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    International Nuclear Information System (INIS)

    Kuehnel, Matthias

    2014-02-01

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  8. Time-resolved crystallization of deeply cooled liquid hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Matthias

    2014-02-15

    This thesis serves two main purposes: 1. The introduction of a novel experimental method to investigate phase change dynamics of supercooled liquids 2. First-time measurements for the crystallization behaviour for hydrogen isotopes under various conditions (1) The new method is established by the synergy of a liquid microjet of ∼ 5 μm diameter and a scattering technique with high spatial resolution, here linear Raman spectroscopy. Due to the high directional stability and the known velocity of the liquid filament, its traveling axis corresponds to a time axis static in space. Utilizing evaporative cooling in a vacuum environment, the propagating liquid cools down rapidly and eventually experiences a phase transition to the crystalline state. This temporal evolution is probed along the filament axis, ultimately resulting in a time resolution of 10 ns. The feasibility of this approach is proven successfully within the following experiments. (2) A main object of study are para-hydrogen liquid filaments. Raman spectra reveal a temperature gradient of the liquid across the filament. This behaviour can quantitatively be reconstructed by numerical simulations using a layered model and is rooted in the effectiveness of evaporative cooling on the surface and a finite thermal conductivity. The deepest supercoolings achieved are ∼ 30% below the melting point, at which the filament starts to solidify from the surface towards the core. With a crystal growth velocity extracted from the data the appropriate growth mechanism is identified. The crystal structure that initially forms is metastable and probably the result of Ostwald's rule of stages. Indications for a transition within the solid towards the stable equilibrium phase support this interpretation. The analog isotope ortho-deuterium is evidenced to behave qualitatively similar with quantitative differences being mass related. In further measurements, isotopic mixtures of para-hydrogen and ortho-deuterium are

  9. Hydrogen and helium recycling from stirred liquid lithium under steady state plasma bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Yoshi, E-mail: hirooka.yoshihiko@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Zhou, Haishan [The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Ono, Masa [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2014-12-15

    For improved core performance via edge plasma-wall boundary control, solid and liquid lithium has been used as a plasma-facing material in a number of confinement experiments over the past several decades. Unfortunately, it is unavoidable that lithium is saturated in the surface region with implanted hydrogenic species as well as oxygen-containing impurities. For steady state operation, a flowing liquid lithium divertor with forced convection would probably be required. In the present work, the effects of liquid stirring to simulate forced convection have been investigated on the behavior of hydrogen and helium recycling from molten lithium at temperatures up to ∼350 °C. Data indicate that liquid stirring reactivates hydrogen pumping via surface de-saturation and/or uncovering impurity films, but can also induce helium release via surface temperature change.

  10. An assessment of the government liquid hydrogen requirements for the 1995-2005 time frame including addendum, liquid hydrogen production and commercial demand in the United States

    Science.gov (United States)

    Bain, Addison

    1990-01-01

    Liquid hydrogen will continue to be an integral element in virtually every major space program, and it has also become a significant merchant product for certain commercial markets. Liquid hydrogen is not a universally available commodity, and the number of supply sources historically have been limited to regions having concentrated consumption patterns. With the increased space program activity it becomes necessary to assess all future programs on a collective and unified basis. An initial attempt to identify projected requirements on a long range basis is presented.

  11. Comparison of alternate fuels for aircraft. [liquid hydrogen, liquid methane, and synthetic aviation kerosene

    Science.gov (United States)

    Witcofski, R. D.

    1979-01-01

    Liquid hydrogen, liquid methane, and synthetic aviation kerosene were assessed as alternate fuels for aircraft in terms of cost, capital requirements, and energy resource utilization. Fuel transmission and airport storage and distribution facilities are considered. Environmental emissions and safety aspects of fuel selection are discussed and detailed descriptions of various fuel production and liquefaction processes are given. Technological deficiencies are identified.

  12. In Situ Measurement of Local Hydrogen Production Rate by Bubble-Evolved Recording

    Directory of Open Access Journals (Sweden)

    Xiaowei Hu

    2013-01-01

    Full Text Available Hydrogen visibly bubbles during photocatalytic water splitting under illumination with above-bandgap radiation, which provides a direct measurement of local gas-evolving reaction rate. In this paper, optical microscopy of superfield depth was used for recording the hydrogen bubble growth on Cd0.5Zn0.5S photocatalyst in reaction liquid and illuminated with purple light. By analyzing change of hydrogen bubble size as a function of time, we understood that hydrogen bubble growth experienced two periods, which were inertia effect dominated period and diffusion effect dominated period, respectively. The tendency of hydrogen bubble growth was similar to that of the gas bubble in boiling, while the difference in bubble diameter and growth time magnitude was great. Meanwhile, we obtained the local hydrogen production rate on photocatalyst active site by measuring hydrogen bubble growth variation characteristics. This method makes it possible to confirm local actual hydrogen evolution rate quantitatively during photocatalytic water splitting.

  13. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Science.gov (United States)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  14. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.C.; Barker, J.G.; Rowe, J.M.; Williams, R.E. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States); Gagnon, C. [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Lindstrom, R.M. [Scientist Emeritus, Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8395, Gaithersburg, MD 20899-8395 (United States); Ibberson, R.M.; Neumann, D.A. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States)

    2015-08-21

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  15. Development and testing of a zero stitch MLI blanket using plastic pins for space use

    OpenAIRE

    畠中, 龍太; 宮北, 健; 杉田, 寛之; Saitoh, Masanori; Hirai, Tomoyuki; Hatakenaka, Ryuta; Miyakita, Takeshi; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki

    2014-01-01

    New types of MLI blanket have been developed to achieve high thermal performance while maintaining production and assembly workability equivalent to the conventional type. Tag-pins, which are widely used in commercial applications to hook price tags to products, are used to fix the films in place and the pin material is changed to polyetheretherketone (PEEK) for use in space. Thermal performance is measured by using a boil-off calorimeter, in which a rectangular liquid nitrogen tank is used t...

  16. Flow film boiling heat transfer in water and Freon-113

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Shiotsu, Masahiro; Sakurai, Akira

    2002-01-01

    Experimental apparatus and method for film boiling heat transfer measurement on a horizontal cylinder in forced flow of water and Freon-113 under pressurized and subcooled conditions were developed. The experiments of film boiling heat transfer from single horizontal cylinders with diameters ranging from 0.7 to 5 mm in saturated and subcooled water and Freon-113 flowing upward perpendicular to the cylinders were carried out for the flow velocities ranging from 0 to 1 m/s under system pressures ranging from 100 to 500 kPa. Liquid subcoolings ranged from 0 to 50 K, and the cylinder surface superheats were raised up to 800 K for water and 400 K for Freon-113. The film boiling heat transfer coefficients obtained were depended on surface superheats, flow velocities, liquid subcoolings, system pressures and cylinder diameters. The effects of these parameters were systematically investigated under wider ranges of experimental conditions. It was found that the heat transfer coefficients are higher for higher flow velocities, subcoolings, system pressures, and for smaller cylinder diameters. The observation results of film boiling phenomena were obtained by a high-speed video camera. A new correlation for subcooled flow film boiling heat transfer was derived by modifying authors' correlation for saturated flow film boiling heat transfer with authors' experimental data under wide subcooled conditions. (author)

  17. Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium

    CERN Document Server

    Matsuo, Y; Nagaya, Y

    2003-01-01

    Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.

  18. Liquid metal thermal-hydraulics

    International Nuclear Information System (INIS)

    Kottowski-Duemenil, H.M.

    1994-01-01

    This textbook is a report of the 26 years activity of the Liquid Metal Boiling Working Group (LMBWG). It summarizes the state of the art of liquid metal thermo-hydraulics achieved through the collaboration of scientists concerned with the development of the Fast Breeder Reactor. The first chapter entitled ''Liquid Metal Boiling Behaviour'', presents the background and boiling mechanisms. This section gives the reader a brief but thorough survey on the superheat phenomena in liquid metals. The second chapter of the text, ''A Review of Single and Two-Phase Flow Pressure Drop Studies and Application to Flow Stability Analysis of Boiling Liquid Metal Systems'' summarizes the difficulty of pressure drop simulation of boiling sodium in core bundles. The third chapter ''Liquid Metal Dry-Out Data for Flow in Tubes and Bundles'' describes the conditions of critical heat flux which limits the coolability of the reactor core. The fourth chapter dealing with the LMFBR specific topic of ''Natural Convection Cooling of Liquid Metal Systems''. This chapter gives a review of both plant experiments and out-of-pile experiments and shows the advances in the development of computing power over the past decade of mathematical modelling ''Subassembly Blockages Suties'' are discussed in chapter five. Chapter six is entitled ''A Review of the Methods and Codes Available for the Calculation on Thermal-Hydraulics in Rod-Cluster and other Geometries, Steady state and Transient Boiling Flow Regimes, and the Validation achieves''. Codes available for the calculation of thermal-hydraulics in rod-clusters and other geometries are reviewed. Chapter seven, ''Comparative Studies of Thermohydraulic Computer Code Simulations of Sodium Boiling under Loss of Flow Conditions'', represents one of the key activities of the LMBWG. Several benchmark exercises were performed with the aim of transient sodium boiling simulation in single channels and bundle blockages under steady state conditions and loss of

  19. Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots

    Science.gov (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.

    2013-01-01

    This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.

  20. Detection of hydrogen buildup in initially pure nonhydrogenous liquids

    International Nuclear Information System (INIS)

    McNeany, S.R.; Jenkins, J.D.

    1978-12-01

    A technique for monitoring hydrogen buildup in initially pure nonhydrogenous liquids is described in this report. The detection method is based upon the neutron-moderating properties of hydrogen. The analysis leading to the selection and design of a hydrogen-monitoring device is described. An experimental mockup of the device was then constructed and tested for hydrogen sensitivity. A hot cell was used for these tests. A device proved capable of measuring hydrogen concentrations in the range of 0 to 13.0 x 10 27 atoms/m 3 , with an accuracy of about 1.0 x 10 27 atoms/m 3 . A typical measurement can be made in 3 to 5 min. The experimental results confirmed the sensitivities predicted by the analysis and demonstrated that such a device would be practical for hydrogen concentration measurements for criticality control in an HTGR fuel refabrication plant

  1. Single-bubble boiling under Earth's and low gravity

    Science.gov (United States)

    Khusid, Boris; Elele, Ezinwa; Lei, Qian; Tang, John; Shen, Yueyang

    2017-11-01

    Miniaturization of electronic systems in terrestrial and space applications is challenged by a dramatic increase in the power dissipation per unit volume with the occurrence of localized hot spots where the heat flux is much higher than the average. Cooling by forced gas or liquid flow appears insufficient to remove high local heat fluxes. Boiling that involves evaporation of liquid in a hot spot and condensation of vapor in a cold region can remove a significantly larger amount of heat through the latent heat of vaporization than force-flow cooling can carry out. Traditional methods for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles from the heating surface. In contrast, we unexpectedly observed a new boiling regime of water under Earth's gravity and low gravity in which a bubble was pinned on a small heater up to 270°C and delivered a heat flux up to 1.2 MW/m2 that was as high as the critical heat flux in the classical boiling regime on Earth .Low gravity measurements conducted in parabolic flights in NASA Boeing 727. The heat flux in flight and Earth's experiments was found to rise linearly with increasing the heater temperature. We will discuss physical mechanisms underlying heat transfer in single-bubble boiling. The work supported by NASA Grants NNX12AM26G and NNX09AK06G.

  2. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  3. Characteristics of liquid and boiling sodium flows in heating pin bundles

    International Nuclear Information System (INIS)

    Menant, Bernard

    1976-01-01

    This study is related to cooling accidents which could occur in sodium cooled fast reactors. Thermo-hydraulic aspects of boiling experiments in pin bundles with helical wire-wrap spacer systems, in the case of undamaged geometries, are analyzed. Differences and analogies in the behavior of multi-rod bundle flows and one-dimensional channel flows are studied. A boiling model is developed for bundle geometries, and predictions obtained with the FLICA code using this models are presented. These predictions are compared with experimental results obtained in a water 19-rod bundle. Then, results of sodium boiling experiments through a 19-rod bundle are interpreted. Both cases of high power and reduced power are envisaged. (author) [fr

  4. Heat transfer under transition and film boiling of liquids at dimpled spheres and cylinders

    Science.gov (United States)

    Zhukov, V. M.; Kuzma-Kichta, Yu. A.; Lavrikov, A. V.; Belov, K. I.; Len’kov, V. A.

    2018-03-01

    The article presents the results of studies of heat transfer and film and transition boiling mechanism of nitrogen, Refrigerant R-113, and water at spheres and vertical cylinders, which surfaces are covered with spherical dimples.. The data were obtained under the conditions of pool boiling and natural circulation in vertical 1.0 and 2.5 mm wide annular channels. Hemispherical dimples of 3 mm diameter (h/d = 0.17) were made on sample surfaces. The dimples occupied 45% of the sphere surface and 37% of the cylinder surface. In some tests, the dimpled surface was additionally covered with low-conductive coating (10 µm film). Minimal cooling time for the sphere with dimples and low-conductive coating took place under natural circulation in 2.5 mm annular gap and it was almost 2.5 times lower than that for a smooth sphere under pool boiling. It is shown that at pool boiling the presence of dimples and low-conductive coating leads to heat transfer enhancement at transition and film boiling regimes, while at natural circulation such an enhancement occurs at film boiling with high temperature differences. The tests at natural circulation in vertical annular channels of different width showed that in this case an intensity of boiling heat transfer is higher than that at pool boiling. High-speed filming of film boiling process on the surfaces with dimples was conducted.

  5. Power generation in fuel cells using liquid methanol and hydrogen peroxide

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)

    2002-01-01

    The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.

  6. Natural Circulation with Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, R P

    1967-09-15

    A number of parameters with dominant influence on the power level at hydrodynamic instability in natural circulation, two-phase flow, have been studied experimentally. The geometrical dependent quantities were: the system driving head, the boiling channel and riser dimensions, the single-phase as well as the two phase flow restrictions. The parameters influencing the liquid properties were the system pressure and the test section inlet subcooling. The threshold of instability was determined by plotting the noise characteristics in the mass flow records against power. The flow responses to artificially obtained power disturbances at instability conditions were also measured in order to study the nature of hydrodynamic instability. The results presented give a review over relatively wide ranges of the main parameters, mainly concerning the coolant performance in both single and parallel boiling channel flow. With regard to the power limits the experimental results verified that the single boiling channel performance was intimately related to that of the parallel channels. In the latter case the additional inter-channel factors with attenuating effects were studied. Some optimum values of the parameters were observed.

  7. Numerical simulation of falling film flow boiling along a vertical wall

    International Nuclear Information System (INIS)

    Chiaki Kino; Tomoaki Kunugi; Akimi Serizawa

    2005-01-01

    Full text of publication follows: When a dryout occurs in film flows with heating from the wall, the wall surface being cooled is no longer in intimate contact with the liquid film. Consequently, the heat transfer will dramatically reduce and the corresponding wall temperature will rise rapidly up to the melting temperature of the heat transfer plate or pipe. It is very important to investigate the heat transfer characteristics of liquid films flowing along a heating wall and the dryout phenomena of the liquid films associated with increasing heat flux in the high heat flux component devices for chemical and mechanical devices and nuclear reactor systems. Many studies have been conducted on the dryout phenomena and it has been shown that the dryout conditions are influenced by several different flow conditions, for instance, subcooled and saturated liquid films and so on. The dryout process of boiling liquid films is different between them: in the case of subcooled liquid films, the process is caused by the local surface-tension variation along the film. On the contrary, in the case of saturated liquid films the surface temperature of boiling films is maintained at a saturation temperature and there can be no variation of surface tension along the film. The process in the case of saturated liquid films is caused by the reduction of film flow rate due to the flow imbalance. This reduction of film flow rate is promoted by the evaporation and the liquid droplets arising from the film surface due to the burst of vapor bubbles. Therefore, it is very important to predict the sputtering rate of liquid droplets and to understand the behavior of vapor bubbles in film flow boiling. In the present study, numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver) developed by one of the authors have been performed in order to understand the dryout of film flow boiling. The film flows along a vertical wall are focused in the present study

  8. Predictions of void fraction in convective subcooled boiling channels using a one-dimensional two-fluid model

    International Nuclear Information System (INIS)

    Hu, Lin-Wen; Pan, Chin

    1995-01-01

    Subcooled nucleate boiling under forced convective conditions is of considerable interest for many disciplines, such as nuclear reactor technology and other energy conversion systems, due to its high heat transfer capability. For such applications, the liquid entering the heating channel is usually in a subcooled state and nucleate boiling is initiated at some distance from the entrance. Further downstream from the boiling incipient point, the bubbles may depart from the heating wall. The point of first bubble departure is called the net vapor generation (NVG) point, because after this point, significant void is present in the subcooled liquid and the void fraction rises very rapidly even though the bulk liquid may still be in a highly subcooled state. The presence of vapor bubbles, which are at a temperature near the saturation temperature, in a subcooled liquid shows the existence of thermal nonequilibrium, which complicates the analysis of this boiling regime. 13 refs., 4 figs

  9. High boiling point hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-04-29

    A process is given for the production of hydrocarbons of high boiling point, such as lubricating oils, from bituminous substances, such as varieties of coal, shale, or other solid distillable carbonaceous materials. The process consists of treating the initial materials with organic solvents and then subjecting the products extracted from the initial materials, preferably directly, to a reducing treatment in respect to temperature, pressure, and time. The reduction treatment is performed by means of hydrogen under pressure.

  10. Liquid Hydrogen Consumption During Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

  11. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  12. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    International Nuclear Information System (INIS)

    Makida, Y; Shintomi, T; Hamajima, T; Tsuda, M; Miyagi, D; Ota, N; Katsura, M; Ando, K; Takao, T; Tsujigami, H; Fujikawa, S; Hirose, J; Iwaki, K; Komagome, T

    2015-01-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured. (paper)

  13. Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content

    Science.gov (United States)

    Sasada, M.; Roedder, E.; Belkin, H.E.

    1986-01-01

    Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.

  14. Experiments of Pool Boiling Performance (Boiling Heat Transfer and Critical Heat Flux) on Designed Micro-Structures

    International Nuclear Information System (INIS)

    Kim, Seol Ha; Kang, Jun Young; Lee, Gi Chol; Kiyofumia, Moriyama; Kim, Moo Hwan; Park, Hyun Sun

    2015-01-01

    In general, the evaluation of the boiling performance mainly focuses on two physical parameters: boiling heat transfer (BHT) and critical heat flux (CHF). In the nuclear power plants, both BHT and CHF contribute the nuclear system efficiency and safety, respectively. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on Pin-fin effect analysis. In terms of CHF, critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on the roughness ratio. The extended heat transfer area contributes the boiling heat transfer increase on the structured surface, and its quantitative analysis has been performed. In terms of CHF, the critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. We suggested a capillary limit to CHF delay for modeling capillary induced liquid inflow through microstructured surfaces. The critical size of the capillary limit on the prepared structured surface, determined by a model, could be reasonable explanation points for the experimental results (optimal size for CHF delay). The present experimental results also showed clearly the critical size (10 - 20 μm) for CHF delay, predicted by capillary limit analysis. This study provides fundamental insight into BHT and CHF enhancement of structured surfaces, and an optimal design guide for the required CHF and boiling heat-transfer performance. Finally, this study can contribute the basic understanding of the boiling on designed microstructure surface, and it also suggest the optimal micro scaled structured surface of boiling

  15. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  16. Realization of a liquid hydrogen target

    International Nuclear Information System (INIS)

    Libin, J.F.; Gangnant, F.

    1997-01-01

    Experiments by the SPEG facility at GANIL need liquid hydrogen targets of some cm 3 . To achieve such targets, temperatures lower than 20 K must be obtained while their thin windows must withstand to pressures higher than 1000 m bars at these temperatures. Havar windows of 4.4 μm thickness met these requirements. A RW5 type Leybold cryo-generator was used as well as a system of ohmic heaters allowing regaining the initial state in a time equivalent with time elapsed for cooling. The working regime was chosen to be constant volume - variable pressure. The various components of this equipment (cryogenic head, buffer volume, hydrogen reservoir and vacuum pump) were coupled through 'aeroquip' allowing by dismantling and changes to keep the hydrogen isolated from the ambient atmosphere. The tests confirmed the accuracy of estimations done for the buffer volume and pressure. The only uncertainty is related to the window deformations. The time of cooling and reheating of target is around one hour. This allows during an experiment to aerate the chamber as the target was accessible to any necessary intervention

  17. High-speed infrared thermography for the measurement of microscopic boiling parameters on micro- and nano-structured surfaces

    International Nuclear Information System (INIS)

    Park, Youngjae; Kim, Hyungdae; Kim, Hyungmo; Kim, Joonwon

    2014-01-01

    Micro- and nano-scale structures on boiling surfaces can enhance nucleate boiling heat transfer coefficient (HTC) and critical heat flux (CHF). A few studies were conducted to explain the enhancements of HTC and CHF using the microscopic boiling parameters. Quantitative measurements of microscopic boiling parameters are needed to understand the physical mechanism of the boiling heat transfer augmentation on structured surfaces. However, there is no existing experimental techniques to conveniently measure the boiling parameters on the structured surfaces because of the small (liquid-vapor phase distribution during nucleate pool boiling on micro- and nano-structured surfaces. The visualization results are analyzed to obtain the microscopic boiling parameters. Finally, quantitative microscopic boiling parameters are used to interpret the enhancement of HTC and CHF. In this study, liquid-vapor phase distributions of each surface were clearly visualized by IR thermography during the nucleate boiling phenomena. From the visualization results, following microscopic boiling parameters were quantitatively measured by image processing. - Number density of dry patch, NDP IR thermography technique was demonstrated by nucleate pool boiling experiments with M- and N surfaces. The enhancement of HTC and CHF could be explained by microscopic boiling parameters

  18. Subcooled boiling heat transfer to R 12 in an annular vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Braeuer, H.; Mayinger, F.

    1988-10-01

    Detailed knowledge of the physical phenomena involved in subcooled boiling is of great importance for the design of liquid-cooled heat generating systems with high heat fluxes. Experimental heat transfer data were obtained for forced convective boiling of dichloro-difluoroethane (R 12). The flow is circulated upwards through a concentric annular vertical channel. The inner and outer diameters of the annulus are 0.016 m and 0.03 m respectively. The reduced pressures studied were 0.24 less than or equal to p/p/sub crit/ less than or equal to 0.8, inlet subcooling varied from 10 to 75 K and mass fluxes from 500 to 3000 kg/m/sup 2/s, which corresponds to Re numbers from 30 000 to 300 000. The experiments, described in this study, demonstrate that liquid fluorocarbons show certain unusual boiling characteristics in the subcooled flow, such as hysteresis of the boiling curve. These characteristics are attributed to the properties of the fluid, mainly the Pr number and the very low surface tension. The pronounced boiling curve hysteresis can be explained by the fact that large nucleation sites may have been flooded prior to incipient boiling. A dimensionless regression formula is presented which predicts the onset of subcooled boiling as a function of reduced pressure (p/p/sub crit/), Boiling-(Bo), Reynolds-(Re), and a modified Jacob Number (Ja), over the whole range of parameters studied, with a good accuracy, including water data from literature.

  19. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    Science.gov (United States)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  20. Aging assessment of the boiling-water reactor (BWR) standby liquid control system

    International Nuclear Information System (INIS)

    Orton, R.D.; Johnson, A.B.; Buckley, G.D.; Larson, L.L.

    1992-10-01

    Pacific Northwest Laboratory conducted a Phase I aging assessment of the standby liquid control (SLC) system used in boiling-water reactors. The study was based on detailed reviews of SLC system component and operating experience information obtained from the Nuclear Plant Reliability Database System, the Nuclear Document System, Licensee Event Reports, and other databases. Sources dealing with sodium pentaborate, borates, boric acid, and the effects of environment and corrosion in the SLC system were reviewed to characterize chemical properties and corrosion characteristics of borated solutions. The leading aging degradation concern to date appears to be setpoint drift in relief valves, which has been discovered during routine surveillance and is thought to be caused by mechanical wear. Degradation was also observed in pump seals and internal valves. In general, however, the results of the Phase I study suggest that age-related degradation of SLC systems has not been serious

  1. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    Science.gov (United States)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  2. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, Bruce R; Shih, Kai-Yuan [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States)

    2011-06-15

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 x 10{sup -2} to 80 g kWh{sup -1}. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  3. Deuterium isotope separation factor between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Rolston, J.H.; den Hartog, J.; Butler, J.P.

    1976-01-01

    The overall deuterium isotope separation factor between hydrogen and liquid water, α, has been measured directly for the first time between 280 and 370 0 K. The data are in good agreement with values of α calculated from literature data on the equilibrium constant for isotopic exchange between hydrogen and water vapor, K 1 , and the liquid-vapor separation factor, α/sub V/. The temperature dependence of α over the range 273-473 0 K based upon these new experimental results and existing literature data is given by the equation ln α = -0.2143 + (368.9/T) + (27,870/T 2 ). Measurements on α/sub V/ given in the literature have been surveyed and the results are summarized over the same temperature range by the equation ln α/sub V/ = 0.0592 - (80.3/T) +

  4. A three-cell liquid hydrogen target for an extended focal plane polarimeter

    International Nuclear Information System (INIS)

    Golovanov, L.B.; Chesny, P.; Gheller, J.M.; Guillier, G.; Ladygin, V.P.; Theure, Ph.; Tomasi-Gustafsson, E.

    1996-01-01

    This article describes the design and working principle of a three-cell liquid hydrogen target produced for the high-energy deuteron polarimeter HYPOM. This target uses liquid helium as a cooling agent. After a general description of the apparatus, tests and operating modes are thoroughly explained. In particular the air controlled self-regulation of helium flow in the cryostat to stabilize the liquid hydrogen level is presented. The main feature of this target is the simplicity of the design as well as its safeness towards any incident. Results of cooling down, filling up of the target and stabilization regime were processed during one experiment of physics at synchrotron Saturne II. (orig.)

  5. Neutronographic measurements of the motion of hydrogen and hydrogeneous substances in liquids and solids

    International Nuclear Information System (INIS)

    Zeilinger, A.; Pochman, W.A.; Rauch, H.; Suleiman, M.

    1976-01-01

    Earlier measurements of hydrogen motion in liquids by neutron radiography have been extended to obtain additional parameters of governing the mixing behavior of light and heavy water. Furthermore motion of water in concrete was measured leading to a determination of (1) the vapor diffusion coefficient of water in concrete, (2) the porosity of the concrete, and (3) the mass transfer coefficient of vapor from the concrete to the environment. Recently the ability of neutron radiography to measure the hydrogen motion in metals was demonstrated and the diffusion coefficients of hydrogen in V, Ta, Nb and beta-Ti was determined. In addition, some work on resolution measurements of neutron radiography will be reported. (author)

  6. Build-up of a liquid hydrogen target with extremely thin windows

    International Nuclear Information System (INIS)

    Jaeckle, V.G.

    1992-06-01

    Small hydrogen targets with only a few cubic millimeters of liquid have many advantages in experiments on accelerators with phase-space cooled particle beams. In order to achieve good suppression of systematic errors by secondary reactions in the target and in the target windows, the thickness of the foil window for a 1 mm target may only be 0.3 μm. A pressure difference of 200 mbar permits the use of such thin foils (with a diameter of 6 mm). A purely mechanical pressure control unit was built, which consists of soft bellows and a loading weight. The pressure difference from a vacuum, which is in the bellows, is set by the weight on the bellows. The working parameters were chosen so that deuterium, nitrogen and oxygen can be used. The pressure variations in the cell are only ± 2.5 mbar. A mixing of gaseous and liquid hydrogen in the target cell and the formation of bubbles due to free convection can be prevented. A quiet volume of liquid hydrogen free of bubbles was obtained. (orig./HP) [de

  7. Development of the ReaxFFCBN reactive force field for the improved design of liquid CBN hydrogen storage materials.

    Science.gov (United States)

    Pai, Sung Jin; Yeo, Byung Chul; Han, Sang Soo

    2016-01-21

    Liquid CBN (carbon-boron-nitrogen) hydrogen-storage materials such as 3-methyl-1,2-BN-cyclopentane have the advantage of being easily accessible for use in current liquid-fuel infrastructure. To develop practical liquid CBN hydrogen-storage materials, it is of great importance to understand the reaction pathways of hydrogenation/dehydrogenation in the liquid phase, which are difficult to discover by experimental methods. Herein, we developed a reactive force field (ReaxFFCBN) from quantum mechanical (QM) calculations based on density functional theory for the storage of hydrogen in BN-substituted cyclic hydrocarbon materials. The developed ReaxFFCBN provides similar dehydrogenation pathways and energetics to those predicted by QM calculations. Moreover, molecular dynamics (MD) simulations with the developed ReaxFFCBN can predict the stability and dehydrogenation behavior of various liquid CBN hydrogen-storage materials. Our simulations reveal that a unimolecular dehydrogenation mechanism is preferred in liquid CBN hydrogen-storage materials. However, as the temperature in the simulation increases, the contribution of a bimolecular dehydrogenation mechanism also increases. Moreover, our ReaxFF MD simulations show that in terms of thermal stability and dehydrogenation kinetics, liquid CBN materials with a hexagonal structure are more suitable materials than those with a pentagonal structure. We expect that the developed ReaxFFCBN could be a useful protocol in developing novel liquid CBN hydrogen-storage materials.

  8. A liquid hydrogen target for the calibration of the MEG and MEG II liquid xenon calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C.; Cei, F.; Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Galli, L.; Gallucci, G.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Papa, A. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Sergiampietri, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We designed, built and operated a liquid hydrogen target for the calibration of the liquid xenon calorimeter of the MEG experiment. The target was used throughout the entire data taking period, from 2008 to 2013 and it is being refurbished and partly re-designed to be integrated and used in the MEG-II experiment.

  9. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  10. Hydrogenation Reactions in Ionic Liquids. The Efficient Reduction of ...

    African Journals Online (AJOL)

    NJD

    2008-12-09

    Dec 9, 2008 ... Volatile organic solvents such as ethanol, methanol and THF are often used for the ... remained consistently high and only declined markedly on the fifth cycle. ... transferral of the viscous liquid from the hydrogenation reactor.

  11. Electric fields effect on the rise of single bubbles during boiling

    International Nuclear Information System (INIS)

    Siedel, Samuel; Cioulachtjian, Serge; Bonjour, Jocelyn

    2009-01-01

    An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. (author)

  12. Zero emission distributed hydrogen production

    International Nuclear Information System (INIS)

    Maddaloni, J.; Rowe, A.; Bailey, R.; McDonald, J.D.

    2004-01-01

    The need for distributed production facilities has become a critical issue in developing a hydrogen infrastructure. Hydrogen generation using processes that make effective use of what would normally be considered waste streams or process inefficiencies can have more favorable economics than stand-alone technologies. Currently, natural gas is distributed to industrial and residential customers through a network of pipelines. High pressure main lines move gas to the vicinity of consumers where the pressure is reduced for local, low pressure distribution. Often, the practice is to use an isenthalpic expansion which results in a cooling of the gas stream. Some of the natural gas is burned to preheat the fuel so that the temperature after the expansion is near ambient. This results in the destruction of exergy in the high pressure gas stream and produces CO 2 in the process. If, instead, a turbo-expander is used to reduce the stream pressure, work can be recovered using a generator and hydrogen can be produced via electrolysis. This method of hydrogen production is free of green-house gas emissions, makes use of existing gas distribution facilities, and uses exergy that would otherwise be destroyed. Pressure reduction using the work producing process (turbo-expander) is accompanied by a large drop in temperature, on the average of 70 K. The local gas distributor requires the gas temperature to be raised again to near 8 o C to prevent damage to valve assemblies. The required heating power after expansion can be on the order of megawatts (site dependent.) Supplying the heat can be seen as a cost if energy is taken from the system to reheat the fuel; however, the low temperature stream may also be considered an asset if the cooling power can be used for a local process. This analysis is the second stage of a study to examine the technical and economic feasibility of using pressure let-down sites as hydrogen production facilities. This paper describes a proposed

  13. On-line system for monitoring of boiling in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Tuerkcan, E.; Kozma, R.; Nabeshima, K.; Verhoef, J.P.

    1993-01-01

    The performance of the boiling detection system has been tested on boiling signals coming from the research reactor HOR during experiments with the NIOBE boiling setup. Several detection methods utilizing frequency domain analysis have been tested both on- and off-line. Results of these methods indicate that boiling detection is possible in real-time even in the incipient stage of the boiling. Both DC and AC components of the in-core and ex-core neutron detector signals can be used for boiling detection; these two components provide complementary information. Advanced signal analysis application to the DC signals may give information about the dynamic changes of the reactor, provided that the changes of the signal exceed the inherent noise of the measured channel. At the same time, AC signal analysis will characterize the changes even in the inherent signal fluctuation level. Boiling experiments of HOR and the methods implemented for signal analysis validates the techniques used for these experiments. (orig./HP)

  14. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    Energy Technology Data Exchange (ETDEWEB)

    Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id [Graduate Program at Mechanical Engineering, Engineering Faculty, Gadjah Mada University, Jl. Grafika No. 2 Yogyakarta 55281 (Indonesia); Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung (Indonesia); Deendarlianto,; Kamal, Samsul; Indarto [Mechanical and Industrial Department, Engineering Faculty, Gadjah Mada University, Jl. Grafika No. 2 Yogyakarta 55281 (Indonesia); Centre for Energy Studies, Gadjah Mada University, Sekip K-1A Kampus UGM, Yogyakarta 55281 (Indonesia); Nuriyadi, M. [Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung (Indonesia)

    2016-06-03

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  15. Long range order and hydrogen bonding in liquid methanol: A Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shilov, I.Y.; Rode, B.M. [Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria); Durov, V.A. [Department of Physical Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation)

    1999-02-01

    A Monte Carlo simulation of liquid methanol was performed in NVT ensemble at 298 K using a cubic simulation box containing 500 molecules. Long-range correlations in the liquid are discussed on the basis of site-site radial distribution functions. Hydrogen bonding and topological structure of the methanol aggregates were evaluated in detail, namely the number of linked molecules, formation of branches and cyclic structures. The necessity of larger simulation boxes for a full structural description and thermodynamic characterization of hydrogen-bonded liquids is clearly established by the results. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Experimental verification of the horizontal steam generator boil-off transfer degradation at natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Hyvaerinen, J. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Kouhia, J. [VTT Energy, Lappeenranta (Finland)

    1997-12-31

    The presentation summarises the highlights of experimental results obtained for VVER type horizontal steam generator heat transfer, primary side flow pattern, and mixing in the hot collector during secondary side boil-off with primary at single-phase natural circulation. The experiments were performed using the PACTEL facility with Large Diameter (LD) steam generator models, with collector instrumentation designed specifically for these tests. The key findings are as follows: (1) the primary to secondary heat transfer degrades as the secondary water inventory is depleted, following closely the wetted tube area; (2) a circulatory flow pattern exists in the tube bundle, resulting in reversed flow (from cold to the hot collector) in the lower part of the tube bundle, and continuous flow through the upper part, including the tubes that have already dried out; and (3) mixing of the hot leg flow entering the hot collector and reversed, cold, tube flow remains confined within the collector itself, extending only a row or two above the elevation at which tube flow reversal has taken place. 6 refs.

  17. Experimental verification of the horizontal steam generator boil-off transfer degradation at natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Hyvaerinen, J [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Kouhia, J [VTT Energy, Lappeenranta (Finland)

    1998-12-31

    The presentation summarises the highlights of experimental results obtained for VVER type horizontal steam generator heat transfer, primary side flow pattern, and mixing in the hot collector during secondary side boil-off with primary at single-phase natural circulation. The experiments were performed using the PACTEL facility with Large Diameter (LD) steam generator models, with collector instrumentation designed specifically for these tests. The key findings are as follows: (1) the primary to secondary heat transfer degrades as the secondary water inventory is depleted, following closely the wetted tube area; (2) a circulatory flow pattern exists in the tube bundle, resulting in reversed flow (from cold to the hot collector) in the lower part of the tube bundle, and continuous flow through the upper part, including the tubes that have already dried out; and (3) mixing of the hot leg flow entering the hot collector and reversed, cold, tube flow remains confined within the collector itself, extending only a row or two above the elevation at which tube flow reversal has taken place. 6 refs.

  18. Experimental verification of the horizontal steam generator boil-off transfer degradation at natural circulation

    International Nuclear Information System (INIS)

    Hyvaerinen, J.; Kouhia, J.

    1997-01-01

    The presentation summarises the highlights of experimental results obtained for VVER type horizontal steam generator heat transfer, primary side flow pattern, and mixing in the hot collector during secondary side boil-off with primary at single-phase natural circulation. The experiments were performed using the PACTEL facility with Large Diameter (LD) steam generator models, with collector instrumentation designed specifically for these tests. The key findings are as follows: (1) the primary to secondary heat transfer degrades as the secondary water inventory is depleted, following closely the wetted tube area; (2) a circulatory flow pattern exists in the tube bundle, resulting in reversed flow (from cold to the hot collector) in the lower part of the tube bundle, and continuous flow through the upper part, including the tubes that have already dried out; and (3) mixing of the hot leg flow entering the hot collector and reversed, cold, tube flow remains confined within the collector itself, extending only a row or two above the elevation at which tube flow reversal has taken place

  19. Commercial application of titania-supported hydrodesulfurization catalysts in the production of hydrogen using full-range FCC off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaohu [SINOPEC Wuhan Branch, Qingshan, Wuhan 430082 (China); Shen, Binglong; Qu, Lianglong [Beijing Haishunde Titanium Catalyst Co. Ltd., A-1 North East-Ring Road, Beijing Economic-Technological Development Area, Beijing 100176 (China)

    2004-11-24

    This paper provides an alternative for low-cost feed used for on-purpose hydrogen production. Full-range FCC off-gas was applied to steam-reforming process as feed after treating with hydrogenation and hydrodesulfurization catalysts. Commercial run results were reported with novel TiO{sub 2}-supported Mo-based catalysts, T205A-1 and T205. The processes of catalysts loading, sulfidation, start-up and long-term run were described in details. Long-term run showed that TiO{sub 2}-supported Mo catalysts have good low-temperature hydrogenation activity, excellent HDS activity, and outstanding stability. Use of FCC off-gas as feed for hydrogen production is quite promising and will increase margins for refiners today.

  20. Hydrogen for automotive applications and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, U. [Adam Opel GmbH, Ruesselsheim (Germany)

    2010-12-30

    The energy storage system is of decisive importance for all types of electric vehicles, in contrast to the case of vehicles powered by a conventional fossil fuel or bio-fuel based internal combustion engine. Two major alternatives exist and need to be discussed: on the one hand, there is the possibility of electrical energy storage using batteries, whilst on the other hand there is the storage of energy in chemical form as hydrogen and the application of a fuel cell as energy converter. Considering the latter concept, hydrogen is a promising energy carrier in future energy systems. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton-exchange membranes (PEMs). Different methods for hydrogen storage are discussed, including high-pressure and cryogenic-liquid storage, adsorptive storage on high-surface-area adsorbents, chemical storage in metal hydrides and complex hydrides, and storage in boranes. For the latter chemical solutions, reversible options and hydrolytic release of hydrogen with off-board regeneration are both possible. Reforming of liquid hydrogen-containing compounds is also a possible means of hydrogen generation. The advantages and disadvantages of the different systems are compared. (orig.)

  1. Local pool boiling heat transfer on a 3 Degree inclined tube surface

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    Mechanisms of pool boiling heat transfer have been studied for a long time. Recently, it has been widely investigated in nuclear power plants for the purpose of acquiring inherent safety functions in case of no power supply. To design more efficient heat exchangers, effects of several parameters on heat transfer must be studied in detail. One of the major issues is variation in local heat transfer coefficients on a tube. Lance and Myers reported that the type of boiling liquid can change the trend of local heat transfer coefficients along the tube periphery. Lance and Myers said that as the liquid is methanol the maximum local heat transfer coefficient was observed at the tube bottom while the maximum was at the tube sides as the boiling liquid was n hexane. Corn well and Einarsson reported that the maximum local heat transfer coefficient was observed at the tube bottom, as the boiling liquid was R113. Corn well and Houston explained the reason of the difference in local heat transfer coefficients along the tube circumference with introducing effects of sliding bubbles on heat transfer. According to Gu pta et al., the maximum and the minimum local heat transfer coefficients were observed at the bottom and top regions of the tube circumference, respectively, using a tube bundle and water. Kang also reported the similar results using a single horizontal tube and water. However, the maximum heat transfer coefficient was observed at the angle of 45 deg. Sateesh et al. investigated variations in local heat transfer coefficients along a tube periphery as the inclination angle was changed. Summarizing the published results, some parts are still remaining to be investigated in detail. Although pool boiling analysis on a nearly horizontal tube is necessary for the design of the advanced power reactor plus, no previous results are published yet. Therefore, the present study is aimed to study variations in local pool boiling heat transfer coefficients for a 3 degree inclined

  2. Droplet snap-off in fluids with nematic liquid crystalline ordering

    International Nuclear Information System (INIS)

    Verhoeff, A A; Lekkerkerker, H N W

    2012-01-01

    We studied the snap-off of nematic liquid crystalline droplets originating from the Rayleigh-Taylor instability at the isotropic-nematic interface in suspensions of charged gibbsite in water and sterically stabilized gibbsite in bromotoluene. We found that droplet snap-off strongly depends on the director field structure inside the thinning neck, which is determined by the ratio of the splay elastic constant and the anchoring strength of the nematic phase to the droplet interface relative to the thickness of the thinning neck. If anchoring is weak, which is the case for aqueous gibbsite, this ratio is comparable to the thickness of the breaking thread. As a result, the thinning neck and pending drop have a uniform director field and droplet snap-off is determined by the viscous properties of the liquid crystal as well as by thermal fluctuations of the interface. On the other hand, in sterically stabilized gibbsite where anchoring is strong, this ratio is significantly smaller than the neck thickness. In this case, the neck has an escaped radial director field and the neck thinning is retarded close to snap-off due to a topological energy barrier involved in the separation of the droplet from the thread. (paper)

  3. Thermal and hydrodynamic study of a whirling liquid hydrogen layer under high heat flux; Etude thermique et hydrodynamique d'une couche tourbillonnaire d'hydrogenen liquide sous flux de chaleur eleve

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, R. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-03-01

    In order to achieve a cold neutrons source ({lambda} {>=} 4.10{sup -10} m) in a high flux reactor ({approx} 10{sup 15} neutrons/cm{sup 2}.s), a whirling liquid hydrogen layer (145 mm OD, effective thickness 15 mm, height about 180 mm) was formed, out-of-pile, in a cylindrical transparent glass vessel. The whirling motion was obtained by tangential injection of the liquid, near the wall. Thermal and hydrodynamical conditions of formation and laws of similarity of such a layer were studied. The characteristics of this whirling flow were observed as a function of mass flow rate (5 to 27 g/s; 4.3 to 23 l/mn), and of spillway width (18 and 25 mm). Six different nozzles were used : 1.0; 1.5; 1.9; 2.25; 2.65 and 3.0 mm ID. The total heat influx was found between 8.6 and 10.4 kW. The heat flux density was about 9.4 W/cm{sup 2} and the mean layer density around 80 per cent of that of the liquid hydrogen at 20.4 Kelvin. High speed movies were used to analyze the boiling regime. (author) [French] En vue de realiser une source de neutrons froids ({lambda} {>=} 4.10{sup -10} m) dans un reacteur a haut flux ({approx} 10{sup 15} neutrons thermiques/cm{sup 2}.s), on a forme dans un vase cylindrique transparent en verre, hors-pile, une couche tourbillonnaire ('vortex') d'hydrogene liquide (diametre exterieur 145 mm, epaisseur effective 15 mm, hauteur 180 mm environ). Le mouvement giratoire est obtenu par injection tangentielle du liquide pres de la paroi. L'etude porte sur la determination des conditions thermiques et hydrodynamiques de la formation d'une telle couche et sur les regles de similitude de ce phenomene. On a observe les caracteristiques de l'ecoulement giratoire en fonction du debit (de 5 a 27 g/s, soit de 4.3 a 23 1/mn), de la vitesse d'injection (entre 10 et 110 m/s) et de la largeur du deversoir (18 et 25 mm), ceci pour six diametres differents d'injecteur (1.0 ; 1.5; 1.9; 2.25; 2.65 et 3.0 mm). Le flux de chaleur total mesure

  4. Preparing interesting hydrocarbons by hydrogenation, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-02-15

    Now, it has been found that gasoline and a combustible oil are produced by destructive hydrogenation of pastes prepared from solid carbonaceous materials and mixtures of middle oils and the mud in question, by regulating the composition of the products removed as vapors in a way that they contain at least the total new heavy oil formed in the course of the destructive hydrogenation and in using as mixing agent for the new raw material the mud proceeding from the operation and middle oil, having withdrawn from this mud all or part of the solid constituents. This destructive hydrogenation is carried out in a converter where a constant level of liquid is maintained, the vapors escaping at the top of the converter and the mud being drawn off at one or more places from the column of liquid undergoing reaction.

  5. Modeling the Rapid Boil-Off of a Cryogenic Liquid When Injected into a Low Pressure Cavity

    Science.gov (United States)

    Lira, Eric

    2016-01-01

    Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.

  6. Annihilation of antiprotons stopped in liquid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Dalkarov, O.D.; Kerbikov, B.O.; Markushin, V.E.

    1976-01-01

    Detailed analysis is given of stopping antiproton annihilation in liquid hydrogen and deuterium. Connection between capture schedule and properties of bound states in nucleon-antinucleon system is established. The theoretical predictions are compared with experimental data which appeared in 1971-75

  7. Possible improvements in the bubble model description of positronium pick-off annihilation in liquids

    International Nuclear Information System (INIS)

    Beling, C.D.; Smith, F.A.

    1980-01-01

    The universal applicability of the bubble model is examined and attention is drawn to a number of situations in which it is inadequate. Some possible areas of improvements are considered. The effects of van der Waals forces on the bubble radius are estimated to be insignificant, but the problem of the potential well depth and shape is more intractable. We find that when a linear combination of finite potential components is used, the Ps pressure can become independent of well depth when the infinite component becomes large, as may be the case in certain liquids. We have developed the idea of Tao on the description of the wavefunction overlap occurring in a thin skin in the inside of the bubble surface. By considering the contribution from the protrusion of hydrogen atoms from a hard core bubble surface, we calculate that the pick-off rate can be significantly altered. (orig.)

  8. Economic competitiveness of off-peak hydrogen production today - A European comparison

    International Nuclear Information System (INIS)

    Mansilla, C.; Dautremont, S.; Louyrette, J.; Albou, S.; Bourasseau, C.

    2013-01-01

    Hydrogen has a wide range of applications. In view of the environmental benefits, hydrogen can be produced by de-carbonized means. When alkaline electrolysis is the selected process, extra value is offered by flexible operation that could bring both; an opportunity to reduce the cost of hydrogen produced (by consuming electricity during off-peak hours, and stopping the process during peak hours) and also a complementary tool to help balancing of the electric system. This paper assesses the profitability of market-driven operation for three different markets: France, Germany and Spain, with an analysis on the spot market. The market that exhibits the biggest potential in terms of profitability thanks to flexible operation is the French one, for each studied year. France is also the country that has the smallest installed renewable capacity amongst three considered countries. The gain on the hydrogen production cost allowed by the optimization is less than 3%. Hence, market-driven operation does not seem highly favourable to valorize fluctuating hydrogen production, when only the market price opportunities are considered. The balancing tool provided by the electrolysis system needs to be specifically valorized, in order to make flexible operation profitable. (authors)

  9. Hydrogen-based industry from remote excess hydroelectricity

    International Nuclear Information System (INIS)

    Ouellette, N.; Rogner, H.-H.; Scott, D.S.

    1997-01-01

    This paper examines synergies, opportunities and barriers associated with hydrogen and excess hydro-electricity in remote areas. The work is based on a case study that examined the techno-economic feasibility of a new hydrogen-based industry using surplus/off-peak generating capacity of the Taltson Dam and Generating Station in the Northwest Territories, Canada. After evaluating the amount and cost of hydrogen that could be produced from the excess capacity, the study investigates three hydrogen utilization scenarios: (1) merchant liquid or compressed hydrogen, (2) hydrogen as a chemical feedstock for the production of hydrogen peroxide, (3) methanol production from biomass, oxygen and hydrogen. Hydrogen peroxide production is the most promising and attractive strategy in the Fort Smith context. The study also illustrates patterns that recur in isolated sites throughout the world. (Author)

  10. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young [Department of Fire Protection Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513 (Korea, Republic of); Kim, Sunwoo, E-mail: swkim@alaska.edu [Mechanical Engineering Department, University of Alaska Fairbanks, P. O. Box 755905, Fairbanks, AK 99775-5905 (United States)

    2017-03-15

    Highlights: • Effects of liquid subcooling, surface coating, material property, and surface oxidation are examined. • Liquid subcooling affects remarkably the quenching phenomena. • Cr-coated surfaces for ATF might extend the quenching duration. • Solids with low heat capacity shorten the quenching duration. • Surface oxidation can affect strongly the film boiling heat transfer and MFB point. - Abstract: In this work, the effects of liquid subcooling, surface coating, material property, and surface oxidation on transient pool boiling heat transfer were investigated experimentally using the vertical metal rod and quenching method. The change in rod temperature was measured with time during quenching, and the visualization of boiling around the test specimen was performed using the high-speed video camera. As the test materials, the zircaloy (Zry), stainless steel (SS), niobium (Nb), and copper (Cu) were tested. In addition, the chromium-coated niobium (Cr-Nb) and chromium-coated stainless steel (Cr-SS) were prepared for accident tolerant fuel (ATF) application. Low liquid subcooling and Cr-coating shifted the quenching curve to the right, which indicates a prolongation of quenching duration. On the other hand, the material with small heat capacity and surface oxidation caused the quenching curve to move to the left. To examine the influence of the material property and surface oxidation on the film boiling heat transfer performance and minimum film boiling (MFB) point in more detail, the wall temperature and heat flux were calculated from the present transient temperature profile using the inverse heat transfer analysis, and then the curves of wall temperature and heat flux in the film boiling regime were obtained. In the present experimental conditions, the effect of material property on the film boiling heat transfer performance and MFB point seemed to be minor. On the other hand, based on the experimental results of the Cu test specimen, the surface

  11. Study of vapour phase dynamics with nitrogen boiling in the field of centrifugal forces

    International Nuclear Information System (INIS)

    Levchenko, N.M.; Kolod'ko, I.M.

    1987-01-01

    The vapour phase dynamics during film boiling of liquid nitrogen on horizontal wire in the field of centrifugal forces has been studied experimentally in a wide range of overloads(1 ≤ η ≤ 375) and heat fluxes (q kp2 ≤ q ≤ 4q kpi ). The available data confirmed and the theoretical relationships suggested make it possible to calculate the hydrodynamic film boiling parameters (wave length, bubble departure diameter and frequency) for other liquids

  12. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Heat transfer on the liquid-liquid interface between molten core pool and coolant. JAERI's nuclear research promotion program, H10-027-6. Contract research

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Saito, Yasushi

    2002-03-01

    Heat transfer experiments under steady and transient conditions were performed using molten Wood's metal and distilled water to study heat transfer on the liquid-liquid interface between molten fuel pool and coolant under severe accident conditions. In the steady state experiment, boiling curve was measured over the range from natural convection region to film boiling region. The boiling behavior was observed using a high-speed video camera. In the transient experiment, distilled water was poured onto the hot molten metal surface, and the boiling curve was obtained in the cooling process. Comparing the measured boiling curve with existing correlations and experimental data for solid-liquid and liquid-liquid systems, the following conclusions were drawn: (a) When the interface surge is negligible and oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface could be approximately reproduced by the heat transfer correlations for nucleate boiling and film boiling regions and the critical heat flux correlation for a liquid-solid system. (b) When no oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface moved towards higher wall superheat than that at the liquid-solid surface, as Novakovic et al. observed in their experiment using mercury. (c) Transient heat transfer coefficient for film boiling at the liquid-liquid surface was about 100% higher than that predicted by the heat transfer correlation for a solid-liquid system. (author)

  13. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  14. Reynolds analogy for subcooled surface boiling under forced convection

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1982-01-01

    For the case of subcooled surface boiling under forced convection the analytic expression of analogy between the heat transfer and carry pulse (Reynolds analogy) is derived. It is concluded that the obtained dependence creates the basis for solution of a series of problems of surface boiling physics. On the basis of the performed analysis the method of coordinate calculation of the origin of intensive vapour generation is developed and the formula for calculation of the broken-off-bubble radius under forced convection is derived [ru

  15. A comprehensive review on pool boiling of nanofluids

    International Nuclear Information System (INIS)

    Ciloglu, Dogan; Bolukbasi, Abdurrahim

    2015-01-01

    Nanofluids are nanoparticle suspensions of small particle size and low concentration dispersed in base fluids such as water, oil and ethylene glycol. These fluids have been considered by researchers as a unique heat transfer carrier because of their thermophysical properties and a great number of potential benefits in traditional thermal engineering applications, including power generation, transportation, air conditioning, electronics devices and cooling systems. Many attempts have been made in the literature on nanofluid boiling; however, data on the boiling heat transfer coefficient (HTC) and the critical heat flux (CHF) have been inconsistent. This paper presents a review of recent researches on the pool boiling heat transfer behaviour of nanofluid. First, the development of nanofluids and their potential applications are briefly given. Then, the effects of various parameters on nanofluids pool boiling are discussed in detail. - Highlights: • A review on the pool boiling heat transfer of nanofluid is presented and discussed. • Nanoparticle deposition considerably affects the boiling heat transfer. • The HTC decreases due to the low contact angle and the high adhesion energy. • The HTC increases due to the formation of the new cavities and liquid suction. • The CHF increases due to the increase in roughness, wettability and capillarity

  16. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    Science.gov (United States)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  17. Investigation on the minimum film boiling temperature on metallic and ceramic heaters

    International Nuclear Information System (INIS)

    Ladisch, R.

    1980-06-01

    The minimum film boiling temperature on ceramic and metallic heaters has been experimentally studied. The knowledge of this temperature boundary is important in safety considerations on all liquid cooled nuclear reactors. The experiments have been carried out by quenching a hot metal cylinder with and without ceramic coating of aluminium in water. Results show that the minimum film boiling temperature Tsub(min) increases with water subcooling and is dependend upon the thermophysical properties of the heating surface. The roughness of the heater does not affect Tsub(min). At low subcoolings the vapour film is more stable and seems to break down when the specific heatflux upon liquid solid contact is lower than a threshold value above which film boiling can be reestablished. At higher subcoolings instead the vapour film is thinner and more stable. In this case the surface temperature decreases beyond the value by which the specific heatflux upon liquid solid contact would be lower than the threshold value. As soon as the vapour film becomes unstable, it collapses. (orig.) [de

  18. On Boiling of Crude Oil under Elevated Pressure

    Science.gov (United States)

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2016-02-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  19. Influence of surface topography in the boiling mechanisms

    International Nuclear Information System (INIS)

    Moita, A.S.; Teodori, E.; Moreira, A.L.N.

    2015-01-01

    Highlights: • Pool boiling heat transfer. • Use of micro-textured surfaces to enhance heat transfer. • Importance of the bubble dynamics and of the interaction mechanisms in the overall heat transfer efficiency. • Effect of the micro-textures on bubble dynamics as a way to enhance pool boiling heat transfer. - Abstract: The present paper addresses the qualitative and quantitative analysis of the pool boiling heat transfer over micro-structured surfaces. The surfaces are made from silicon chips, in the context of pool boiling heat transfer enhancement of immersion liquid cooling schemes for electronic components. The first part of the analysis deals with the effect of the liquid properties. Then the effect of surface micro-structuring is discussed, covering different configurations, from cavities to pillars being the latter used to infer on the potential profit of a fin-like configuration. The use of rough surfaces to enhance pool boiling mainly stands on the arguments that the surface roughness will increase the liquid–solid contact area, thus enhancing the convection heat transfer coefficient and will promote the generation of nucleation sites. However, one should not disregard bubble dynamics. Indeed, the results show a strong effect of bubble dynamics and particularly of the interaction mechanisms in the overall cooling performance of the pair liquid–surface. The inaccurate control of these mechanisms leads to the formation of large bubbles and strong vertical and horizontal coalescence effects promote the very fast formation of a vapor blanket, which causes a steep decrease of the heat transfer coefficient. This effect can be strong enough to prevail over the benefit of increasing the contact area by roughening the surface. For the micro-patterns used in the present work, the results evidence that one can reasonably determine guiding pattern characteristics to evaluate the intensity of the interaction mechanisms and take out the most of the

  20. Microcomputer-aided monitor for liquid hydrogen target system

    International Nuclear Information System (INIS)

    Kitami, T.; Watanabe, K.

    1983-03-01

    A microcomputer-aided monitor for a liquid hydrogen target system has been designed and tested. Various kinds of input data such as temperature, pressure, vacuum, etc. are scanned in a given time interval. Variation with time in any four items can be displayed on CRT and, if neccessary, printed out on a sheet of recording paper. (author)

  1. Gas--liquid equilibria in mixtures of hydrogen and thianaphthene

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, H M; Simnick, J J; Lin, H M; Chao, K C

    1978-12-01

    Gas--liquid equilibrium conditions in binary mixtures of hydrogen and thianaphthene were experimentally determined at temperature of 190 to 430/sup 0/C and pressures to 250 atm in a flow apparatus. The same apparatus was also employed to measure the vapor pressure of thianaphthene. Comparisons of the new mixture data with Chao--Seader and Grayson--Streed correlations show that both correlations predict the thianaphthene equilibrium ratios well but are in error by up to about 45 and 35% respectively for K-values of hydrogen. 4 figures, 2 tables.

  2. The self limiting effect of hydrogen cluster in gas jet under liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Han Jifeng; Yang Chaowen; Miao Jingwei; Fu Pengtao; Luo Xiaobing; Shi Miangong

    2010-01-01

    The generation of hydrogen clusters in gas jet is tested using the Rayleigh scattering method under liquid nitrogen temperature of 79 K. The self limiting effect of hydrogen cluster is studied and it is found that the cluster formation is greatly affected by the number of expanded molecules. The well designed liquid nitrogen cold trap ensured that the hydrogen cluster would keep maximum size for maximum 15 ms during one gas jet. The scattered light intensity exhibits a power scaling on the backing pressure ranging from 5 to 48 bar with the power value of 4.1.

  3. Transportation cost of nuclear off-peak power for hydrogen production based on water electrolysis

    International Nuclear Information System (INIS)

    Shimizu, Saburo; Ueno, Shuichi

    2004-01-01

    The paper describes transportation cost of the nuclear off-peak power for a hydrogen production based on water electrolysis in Japan. The power could be obtainable by substituting hydropower and/or fossil fueled power supplying peak and middle demands with nuclear power. The transportation cost of the off-peak power was evaluated to be 1.42 yen/kWh when an electrolyser receives the off-peak power from a 6kV distribution wire. Marked reduction of the cost was caused by the increase of the capacity factor. (author)

  4. Materials behavior in alternate (hydrogen) water chemistry in the Ringhals-1 boiling water reactor

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Cubicciotti, D.; Trolle, M.

    1986-01-01

    In-plant studies on the intergranular stress corrosion cracking (IGSCC) of sensitized austenitic stainless steel (SS) have been performed at the Swedish Ringhals-1 boiling water reactor (BWR). The studies have covered the present [full-temperature (normal)] water chemistry (PWC) and the alternate (primary) water chemistry (AWC) with hydrogen addition. The test techniques applied were constant extension rate testing (CERT) and electrochemical potential (ECP) measurements. The program was covered by extensive environment monitoring. The results verify earlier laboratory studies which show that sensitized austenitic SS is susceptible to IGSCC in PWC, but not in AWC. Other pressure-bearing BWR construction materials are not adversely affected by AWC. The boundary conditions in Ringhals-1 have been established for an AWC, which is defined as an environment that does not produce IGSCC in sensitized SS. The results are compared with a similar program at Dresden-2, and the points of agreement and discordance in the results are discussed. The relevance of ECP measurements for the control of AWC is discussed

  5. Dependence of bubble behavior in subcooled boiling on surface wettability

    International Nuclear Information System (INIS)

    Harada, Takahiro; Nagakura, Hiroshi; Okawa, Tomio

    2010-01-01

    This paper presents the results of visualization experiments that were carried out to investigate the dynamics of vapor bubbles generated in water pool boiling. In the experiments, vapor bubbles were generated on a vertical circular surface of a copper block containing nine cartridge heaters, and the contact angle of the heated surface was used as a main experimental parameter. The experiments were performed under subcooled as well as nearly saturated conditions. To enable clear observation of individual bubbles with a high speed camera, the heat flux was kept low enough to eliminate significant overlapping of bubbles. When the contact angle was small, the bubbles were lifted-off the vertical heated surface within a short period of time after the nucleation. On the other hand, when the contact angle was large, they slid up the vertical surface for a long distance. When bubbles were lifted-off the heated surface in subcooled liquid, bubble life-time was significantly shortened since bubbles collapsed rapidly due to condensation. It was shown that this distinct difference in bubble dynamics could be attributed to the effects of surface tension force.

  6. Description of saturation curves and boiling process of dry air

    Directory of Open Access Journals (Sweden)

    Vestfálová Magda

    2018-01-01

    Full Text Available Air is a mixture of gases forming the gas wrap of Earth. It is formed by dry air, moisture and other pollutants. Dry air is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid air is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation process, resp. boiling process, is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry air is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry air saturation curves as a mixture, i.e. with a description of the process of phase change of dry air (boiling process. The dry air saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling process of dry air.

  7. Selective Reversible Absorption of the Industrial Off-Gas Components CO2 and NOx by Ionic Liquids

    DEFF Research Database (Denmark)

    Kaas-Larsen, Peter Kjartan; Thomassen, P.; Schill, Leonhard

    2016-01-01

    Ionic liquids are promising new materials for climate and pollution control by selective absorption of CO2 and NOx in industrial off-gases. In addition practical cleaning of industrial off gases seems to be attractive by use of ionic liquids distributed on the surface of porous, high surface area...... carriers in the form of so-called Supported Ionic Liquid Phase (SILP) materials. The potential of selected ionic liquids for absorption of CO2 and NOx are demonstrated and the possible interference of other gases influencing the stability and absorption capacity of the ionic liquids are investigated...

  8. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    International Nuclear Information System (INIS)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-01

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction

  9. Acoustic analysis of sodium boiling stability tests using THORS bundle 6A

    International Nuclear Information System (INIS)

    Sheen, S.H.; Bobis, J.P.; Carey, W.M.

    1977-01-01

    Acoustic data from boiling stability tests on the THORS (Thermal-Hydraulic Out-of-Reactor Safety) facility are presented and discussed. The THORS sodium loop is a high temperature test facility that contains the bundle 6A, a full length stimulated fuel subassembly with nineteen electrically heated pins. Boiling stability tests on the THORS facility were designed to determine if a stable boiling region exists during the thermal hydraulic test at normal and off-normal conditions. Boiling was observed and the stable boiling region was determined. The acoustic data observed by three ANL sodium-immersible microphones have provided the following information: (1) the boiling signal is clearly observed and shows a correlation with the inlet flow fluctuations; (2) the signal level and the repetition rate of the boiling signal are directly related to the applied heat flux; (3) a typical boiling pulse consists of a high frequency signal due mainly to the bubble collapse and a low frequency (approximately 75 Hz) void oscillation; (4) a boiling pulse yields a frequency spectrum with significant amplitudes up to 80 KHz as compared with 4 KHz for background pulses; and (5) the frequency content of a boiling pulse can be mostly explained in terms of various resonance frequencies of the loop. The characterization of these data is pertinent to the design of sodium boiling detection systems

  10. Electrolytic production and dispensing of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01

    The fuel cell electric vehicle (FCEV) is undoubtedly the only option that can meet both the California zero emission vehicle (ZEV) standard and the President`s goal of tripling automobile efficiency without sacrificing performance in a standard 5-passenger vehicle. The three major automobile companies are designing and developing FCEVs powered directly by hydrogen under cost-shared contracts with the Department of Energy. Once developed, these vehicles will need a reliable and inexpensive source of hydrogen. Steam reforming of natural gas would produce the least expensive hydrogen, but funding may not be sufficient initially to build both large steam reforming plants and the transportation infrastructure necessary to deliver that hydrogen to geographically scattered FCEV fleets or individual drivers. This analysis evaluates the economic feasibility of using small scale water electrolysis to provide widely dispersed but cost-effective hydrogen for early FCEV demonstrations. We estimate the cost of manufacturing a complete electrolysis system in large quantities, including compression and storage, and show that electrolytic hydrogen could be cost competitive with fully taxed gasoline, using existing residential off-peak electricity rates.

  11. Selective Reversible Absorption of the Industrial Off-Gas Components CO2 and NOx by Ionic Liquids

    DEFF Research Database (Denmark)

    Kaas-Larsen, Peter Kjartan; Thomassen, Peter; Schill, Leonard

    2016-01-01

    Ionic liquids are promising new materials for climate and pollution control by selective absorption of CO2 and NOx in industrial off-gases. In addition pratical cleaning of industrial off gases seems to be attractive by use of ionic liquids distributed on the surface of porous, high surface area...

  12. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    Science.gov (United States)

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  13. Thermo-hydraulic test of the moderator cell of liquid hydrogen cold neutron source for the Budapest research reactor

    International Nuclear Information System (INIS)

    Grosz, Tamas; Rosta, Laszlo; Hargitai, Tibor; Mityukhlyaev, V.A.; Serebrov, A.P.; Zaharov, A.A.

    1999-01-01

    Thermo-hydraulic experiment was carried out in order to test performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center. Two electric hearers up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling he gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 w expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  14. Reactions of oxygen and hydrogen with liquid sodium - a critical survey

    International Nuclear Information System (INIS)

    Ullmann, H.

    1982-01-01

    The fundamentals of solvation chemistry are presented with appropriate components formulated. Methods of investigation and kinetics of the reactions are described. The hydrogen equilibrium pressure and saturation solubilities are described. The chemical equilibrium between O and H in solution is presented with detailed tabulation of the saturation solutions of oxygen, hydrogen and hydroxide in liquid sodium. Agreements and differences with the literature are presented

  15. Solubility of Hydrogen and Nitrogen in liquid cast iron during melting and mold filling

    OpenAIRE

    Diószegi, Attila; Elfsberg, Jessica; Diószegi, Zoltán

    2016-01-01

    Defect formation like gas- and shrinkage porosity at cast iron component production is related to the content of gaseous elements in the liquid metal. The present work investigate the solubility of hydrogen and nitrogen in liquid iron aimed for production of lamellar and compacted graphite cast iron. The used methods and instruments are a combination of commercial measuring devices and novel experimental assemblies for measuring solubility of hydrogen and nitrogen during melting and mold fill...

  16. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    Science.gov (United States)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  17. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis

    Science.gov (United States)

    Kochunni, Sarun Kumar; Chowdhury, Kanchan

    2017-02-01

    LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.

  18. A novel concept for high conversion of coal to liquids. Final report, 1 September 1988--31 August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.; Shabtai, J.

    1994-04-01

    A batch microreactor was designed and fabricated as a means of investigating maximum yields of liquids obtainable in very short reaction times of the order of a few seconds, and the maximum ratios of liquids/hydrocarbon (HC) gases obtainable under those conditions. A Wyodak sub-bituminous coal, crushed and sieved to {minus}200 mesh particle size, was used in the experiments, with a temperature of 500{degrees}C and a pressure of 1500 psi. The fine coal particles were fed dry to the reactor and heated to reaction temperature in times of one to two seconds. At a time of 3 seconds at reaction temperature, in a single pass a liquid yield of 60% by weight of the coal was obtained, accompanied by a ratio of liquids/(HC) gases of 30/1. When the unreacted solids were recycled to the reactor, and the results combined with those of the first pass, a liquid yield of 82% by weight of the coal was achieved, accompanied by a ratio of liquids/HC gases of 30/1. This ratio represents only about 3 wt percent HC gases, much lower that is produced in current advanced technologies, and represents a large saving in hydrogen consumption. A simulated distillation technique was applied to the liquids. The liquid product contained 86% by weight (of the liquids) total distillables (boiling point below 538{degrees}C), including 70% by weight of low-boiling fractions in the gasoline, kerosene and gas oil range (boiling point up to 325{degrees}C). The liquid product exhibited a H/C ratio of 1.5, which is considerably higher than observed in current advanced technologies for the primary liquids. Several catalysts were investigated. Iron catalysts, specifically ferric chloride hexahydrate and ferric sulfate pentahydrate, each produced these high conversions and high ratios of liquids/HC gases.

  19. Consumers' perception and acceptance of boiled and fermented sausages from strongly boar tainted meat.

    Science.gov (United States)

    Meier-Dinkel, Lisa; Gertheiss, Jan; Schnäckel, Wolfram; Mörlein, Daniel

    2016-08-01

    Characteristic off-flavours may occur in uncastrated male pigs depending on the accumulation of androstenone and skatole. Feasible processing of strongly tainted carcasses is challenging but gains in importance due to the European ban on piglet castration in 2018. This paper investigates consumers' acceptability of two sausage types: (a) emulsion-type (BOILED) and (b) smoked raw-fermented (FERM). Liking (9 point scales) and flavour perception (check-all-that-apply with both, typical and negatively connoted sensory terms) were evaluated by 120 consumers (within-subject design). Proportion of tainted boar meat (0, 50, 100%) affected overall liking of BOILED, F (2, 238)=23.22, P<.001, but not of FERM sausages, F (2, 238)=0.89, P=.414. Consumers described the flavour of BOILED-100 as strong and sweaty. In conclusion, FERM products seem promising for processing of tainted carcasses whereas formulations must be optimized for BOILED in order to eliminate perceptible off-flavours. Boar taint rejection thresholds may be higher for processed than those suggested for unprocessed meat cuts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Subcooled boiling heat transfer in a short vertical SUS304-tube at liquid Reynolds number range 5.19 x 104 to 7.43 x 105

    International Nuclear Information System (INIS)

    Hata, Koichi; Masuzaki, Suguru

    2009-01-01

    The subcooled boiling heat transfer and the steady-state critical heat fluxes (CHFs) in a short vertical SUS304-tube for the flow velocities (u = 17.28-40.20 m/s), the inlet liquid temperatures (T in = 293.30-362.49 K), the inlet pressures (P in = 842.90-1467.93 kPa) and the exponentially increasing heat input (Q = Q 0 exp(t/τ), τ = 8.5 s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tubes of inner diameters (d = 3 and 6 mm), heated lengths (L = 33 and 59.5 mm), effective lengths (L eff = 23.3 and 49.1 mm), L/d (=11 and 9.92), L eff /d (=7.77 and 8.18), and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.18 μm) are used in this work. The inner surface temperature and the heat flux from non-boiling to CHF are clarified. The subcooled boiling heat transfer for SUS304 test tube is compared with our Platinum test tube data and the values calculated by other workers' correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details and the widely and precisely predictable correlation of the subcooled boiling heat transfer for turbulent flow of water in a short vertical SUS304-tube is given based on the experimental data. The correlation can describe the subcooled boiling heat transfer obtained in this work within 15% difference. Nucleate boiling surface superheats for the SUS304 test tube become very high. Those at the high flow velocity are close to the lower limit of Heterogeneous Spontaneous Nucleation Temperature. The dominant mechanisms of the flow boiling CHF in a short vertical SUS304-tube are discussed.

  1. Treating carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-08-26

    To separate the constituents or conversion products, which are liquid or which liquefy when heated, from solid distillable carbonaceous materials such as coals, oil shales, or other bituminous substances, the initial materials are subjected to a destructive hydrogenation under mild conditions so that the formation of benzines is substantially avoided, after which the material is subjected to an extraction treatment with solvents. The constituents of high boiling point range, suitable for the production of lubricating oils and solid paraffins, obtained by the said destructive hydrogenation are separated off before or/and after the said extraction treatment.

  2. Corrosion behavior of construction materials for ionic liquid hydrogen compressor

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2016-01-01

    The corrosion behavior of various commercially available stainless steels and nickel-based alloys as possible construction materials for components which are in direct contact with one of five different ionic liquids was evaluated. The ionic liquids, namely: 1-ethyl-3-methylimidazolium triflate, 1...... liquid hydrogen compressor. An electrochemical cell was specially designed, and steady-state cyclic voltammetry was used to measure the corrosion resistance of the alloys in the ionic liquids at 23 °C, under atmospheric pressure. The results showed a very high corrosion resistance and high stability...... for all the alloys tested. The two stainless steels, AISI 316L and AISI 347 showed higher corrosion resistance compared to AISI 321 in all the ionic liquids tested. It was observed that small addition of molybdenum, tantalum, and niobium to the alloys increased the corrosion stability in the ionic liquids...

  3. Catalysts for conversion of syngas to liquid motor fuels

    Science.gov (United States)

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  4. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    International Nuclear Information System (INIS)

    Kutnjak, Josip

    2013-01-01

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super

  5. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kutnjak, Josip

    2013-06-27

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super

  6. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G.

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  7. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  8. Liquid nitrogen dewar for protein crystal growth

    Science.gov (United States)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  9. An investigation of transition boiling mechanisms of subcooled water under forced convective conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Won, Lee; Sang-Yong, Lee

    1995-09-01

    A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by the frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.

  10. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji

    2003-01-01

    For nuclear reactor systems, the critical heat flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and critical heat flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2 mm in thickness, 3 mm in height, and 60 mm in length. Oxidation of the surface was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800 kGy 60 Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases will surface wettability in the same manner as shown by Liaw and Dhir's results. (author)

  11. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Y.; Okamoto, K.; Madarame, H.; Takamasa, T.

    2003-01-01

    For nuclear reactor systems, the Critical Heat Flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and Critical Heat Flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2mm in thickness, 3mm in height, and 60mm in length. Oxidation of the surfaces was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800kGy 60Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases with surface wettability in the same manner as shown by Liaw and Dhir's results

  12. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas [Technische Univ. Muenchen, Lehrstuhl fuer Thermodynamik, Garching (Germany)

    2004-04-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life - and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability. (Author)

  13. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas

    2004-01-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life- and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability

  14. Prediction of incipient flow boiling from a uniformly heated surface

    International Nuclear Information System (INIS)

    Yin, S.T.; Abdelmessih, A.H.

    1977-01-01

    This study was undertaken to investigate the phenomenon of liquid superheat during incipient boiling in a uniformly heated forced convection channel. Experimental data were obtained using Freon 11 as the test medium. Based on existing theories, an analytical method was developed for predicting the point of termination of nucleate boiling, observed during a decreasing heat flux process with a nucleation activated surface. The method may also be used to predict the point of boiling incipience, observed during an increasing heat flux process with a non-activated surface; this point does not appear to have been treated analytically in previous work. It can be shown that some of the existing models are special cases of the present formulation

  15. How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?

    Science.gov (United States)

    Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.

    2001-08-01

    Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.

  16. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    Science.gov (United States)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  17. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    Science.gov (United States)

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  18. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2014-01-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  19. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2014-06-04

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  20. Preliminary Study of a Piston Pump for Cryogenic Fluids

    Science.gov (United States)

    Biermann, Arnold E.; Kohl, Robert C.

    1959-01-01

    Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.

  1. Enhanced Solar-to-Hydrogen Generation with Broadband Epsilon-Near-Zero Nanostructured Photocatalysts

    KAUST Repository

    Tian, Yi

    2017-05-08

    The direct conversion of solar energy into fuels or feedstock is an attractive approach to address increasing demand of renewable energy sources. Photocatalytic systems relying on the direct photoexcitation of metals have been explored to this end, a strategy that exploits the decay of plasmonic resonances into hot carriers. An efficient hot carrier generation and collection requires, ideally, their generation to be enclosed within few tens of nanometers at the metal interface, but it is challenging to achieve this across the broadband solar spectrum. Here the authors demonstrate a new photocatalyst for hydrogen evolution based on metal epsilon-near-zero metamaterials. The authors have designed these to achieve broadband strong light confinement at the metal interface across the entire solar spectrum. Using electron energy loss spectroscopy, the authors prove that hot carriers are generated in a broadband fashion within 10 nm in this system. The resulting photocatalyst achieves a hydrogen production rate of 9.5 µmol h-1  cm-2 that exceeds, by a factor of 3.2, that of the best previously reported plasmonic-based photocatalysts for the dissociation of H2 with 50 h stable operation.

  2. Molecular dynamics simulation of bubble nucleation in explosive boiling

    International Nuclear Information System (INIS)

    Zou Yu; Chinese Academy of Sciences, Beijing; Huai Xiulan; Liang Shiqiang

    2009-01-01

    Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range. (authors)

  3. Investigation and analysis of hydrogen ignition and explosion events in foreign nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan)

    2002-09-01

    Reports about hydrogen ignition and explosion events in foreign nuclear power plants from 1980 to 2001 were investigated, and 31 events were identified. Analysis showed that they were categorized in (1) outer leakage ignition events and (2) inner accumulation ignition events. The dominant event for PWR (pressurized water reactor) was outer leakage ignition in the main generator, and in BWR (boiling water reactor) it was inner accumulation ignition in the off-gas system. The outer leakage ignition was a result of work process failure with the ignition source, operator error, or main generator hydrogen leakage. The inner accumulation ignition events were caused by equipment failure or insufficient monitoring. With careful preventive measures, the factors leading to these events could be eliminated. (author)

  4. Study of vapour phase dynamics with nitrogen boiling in the field of centrifugal forces

    Energy Technology Data Exchange (ETDEWEB)

    Levchenko, N M; Kolod' ko, I M

    1987-07-01

    The vapour phase dynamics during film boiling of liquid nitrogen on horizontal wire in the field of centrifugal forces has been studied experimentally in a wide range of overloads(1 less than or equal to eta less than or equal to 375) and heat fluxes (q/sub kp2/ less than or equal to q less than or equal to 4q/sub kpi/). The available data confirmed and the theoretical relationships suggested make it possible to calculate the hydrodynamic film boiling parameters (wave length, bubble departure diameter and frequency) for other liquids.

  5. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1985-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate constitutive relations are solved numerically and successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. The model predicts generally correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate, through, for some cases, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required

  6. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  7. Experimental investigations of heat transfer during sodium boiling in fuel assembly model in justification of advanced fast reactor safety

    International Nuclear Information System (INIS)

    Khafizov, R.R.; Poplavskij, V.M.; Rachkov, V.I.; Sorokin, A.P.; Ashurko, Yu.M.; Volkov, A.V.; Ivanov, E.F.; Privezentsev, V.V.

    2015-01-01

    The experimental facility is built up and investigation of heat exchange during sodium boiling in simulated fast reactor core assembly in conditions of natural and forced circulation with sodium plenum and upper end shield model are conducted. It is shown that in the presence of sodium plenum there is possibility to provide long-term cooling of fuel assembly when heat flux density on the surface of fuel element simulator up to 140 and 170 kW/m 2 in conditions of natural and forced circulation, respectively. The obtained data is used for improving calculational model of sodium boiling process in fuel assembly and calculational code COREMELT verification. It is pointed out that heat transfer coefficients in the case of liquid metal boiling in fuel assemblies are slightly over the ones in the case of liquid metals boiling in pipes and pool boiling [ru

  8. Theory of a quantum spin liquid in the hydrogen-intercalated honeycomb iridate H3LiIr2O6

    Science.gov (United States)

    Slagle, Kevin; Choi, Wonjune; Chern, Li Ern; Kim, Yong Baek

    2018-03-01

    We propose a theoretical model for a gapless spin liquid phase that may have been observed in a recent experiment on H3LiIr2O6 . Despite the insulating and nonmagnetic nature of the material, the specific heat coefficient C /T ˜1 /√{T } in zero magnetic field and C /T ˜T /B3 /2 with finite magnetic field B have been observed. In addition, the NMR relaxation rate shows 1 /(T1T ) ˜(C/T ) 2 . Motivated by the fact that the interlayer/in-plane lattice parameters are reduced/elongated by the hydrogen intercalation of the parent compound Li2IrO3 , we consider four layers of the Kitaev honeycomb lattice model with additional interlayer exchange interactions. It is shown that the resulting spin liquid excitations reside mostly in the top and bottom layers of such a layered structure and possess a quartic dispersion. In an applied magnetic field, each quartic mode is split into four Majorana cones with the velocity v ˜B3 /4 . We suggest that the spin liquid phase in these "defect" layers, placed between different stacking patterns of the honeycomb layers, can explain the major phenomenology of the experiment, which can be taken as evidence that the Kitaev interaction plays the primary role in the formation of a quantum spin liquid in this material.

  9. A dry-spot model of critical heat flux and transition boiling in pool and subcooled forced convection boiling

    International Nuclear Information System (INIS)

    Ha, Sang Jun

    1998-02-01

    A new dry-spot model for critical heat flux (CHF) is proposed. The new concept for dry area formation based on Poisson distribution of active nucleation sites and the critical active site number is introduced. The model is based on the boiling phenomena observed in nucleate boiling such as Poisson distribution of active nucleation sites and formation of dry spots on the heating surface. It is hypothesized that when the number of bubbles surrounding one bubble exceeds a critical number, the surrounding bubbles restrict the feed of liquid to the microlayer under the bubble. Then a dry spot of vapor will form on the heated surface. As the surface temperature is raised, more and more bubbles will have a population of surrounding active sites over the critical number. Consequently, the number of the spots will increase and the size of dry areas will increase due to merger of several dry spots. If this trend continues, the number of effective sites for heat transport through the wall will diminish, and CHF and transition boiling occur. The model is applicable to pool and subcooled forced convection boiling conditions, based on the common mechanism that CHF and transition boiling are caused by the accumulation and coalescences of dry spots. It is shown that CHF and heat flux in transition boiling can be determined without any empirical parameter based on information on the boiling parameters such as active site density and bubble diameter, etc., in nucleate boiling. It is also shown that the present model well represents actual phenomena on CHF and transition boiling and explains the mechanism on how parameters such as flow modes (pool or flow) and surface wettability influence CHF and transition boiling. Validation of the present model for CHF and transition boiling is achieved without any tuning parameter always present in earlier models. It is achieved by comparing the predictions of CHF and heat flux in transition boiling using measured boiling parameters in nucleate

  10. Potential-splitting approach applied to the Temkin-Poet model for electron scattering off the hydrogen atom and the helium ion

    Science.gov (United States)

    Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.

    2015-06-01

    The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.

  11. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, R M; Athavale, A; Kalaikadal, D S; Deodhar, A; Verma, U

    2011-09-02

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  12. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    International Nuclear Information System (INIS)

    Manglik, R.M.; Athavale, A.; Kalaikadal, D.S.; Deodhar, A.; Verma, U.

    2011-01-01

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  13. Time-resolved determination of the potential of zero charge at polycrystalline Au/ionic liquid interfaces

    Science.gov (United States)

    Vargas-Barbosa, Nella M.; Roling, Bernhard

    2018-05-01

    The potential of zero charge (PZC) is a fundamental property that describes the electrode/electrolyte interface. The determination of the PZC at electrode/ionic liquid interfaces has been challenging due to the lack of models that fully describe these complex interfaces as well as the non-standardized approaches used to characterize them. In this work, we present a method that combines electrode immersion transient and impedance measurements for the determination of the PZC. This combined approach allows the distinction of the potential of zero free charge (pzfc), related to fast double layer charging on a millisecond timescale, from a potential of zero charge on a timescale of tens of seconds related to slower ion transport processes at the interface. Our method highlights the complementarity of these electrochemical techniques and the importance of selecting the correct timescale to execute experiments and interpret the results.

  14. Design study of the cooling scheme for SMES system in ASPCS by using liquid hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Makida, Yasuhiro, E-mail: yasuhiro.makida@kek.jp [High Energy Accelerator Research Organization, Oho 1-1, Tsukuba 305-0801 (Japan); Shintomi, Takakazu [Nihon University, Chiyoda-ku, Tokyo 102-8251 (Japan); Asami, Takuya; Suzuki, Goro; Takao, Tomoaki [Sophia University, Chiyoda-ku, Tokyo 102-8554 (Japan); Hamajima, Takataro [Hachinohe Institutue of Technology, Hachinohe, Aomori 031-8501 (Japan); Tsuda, Makoto; Miyagi, Daisuke [Tohoku University, Aoba-ku, Sendai 980-8579 (Japan); Munakata, Kouhei; Kajiwara, Masataka [Iwatani Corp., Minato-ku, Tokyo 104-8058 (Japan)

    2013-11-15

    Highlights: •Advanced Superconducting Power Conditioning System is composed of SMES, FC–EL, H{sub 2} storage. •The ASPCS is proposed to be built beside a LH{sub 2} storage of a vehicle station to effectively use the cooling capability of liquid hydrogen. •The SMES coil, which is made from an MgB{sub 2} conductor, is indirectly cooled by LH{sub 2} through its own conduction. -- Abstract: From the point of view of environment and energy problems, the renewable energies have been attracting attention. However, fluctuating power generation by the renewable energies affects the stability of the power network. Thus, we propose a new electric power storage and stabilization system, Advanced Superconducting Power Conditioning System (ASPCS), in which a Superconducting Magnetic Energy Storage (SMES) and a hydrogen-energy-storage converge on a liquid hydrogen station for fuel cell vehicles. The ASPCS proposes that the SMES coils wound with MgB{sub 2} conductor are indirectly cooled by thermo-siphon circulation of liquid hydrogen to use its cooling capability. The conceptual design of cooling scheme of the ASPCS is presented.

  15. Design study of the cooling scheme for SMES system in ASPCS by using liquid hydrogen

    International Nuclear Information System (INIS)

    Makida, Yasuhiro; Shintomi, Takakazu; Asami, Takuya; Suzuki, Goro; Takao, Tomoaki; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Munakata, Kouhei; Kajiwara, Masataka

    2013-01-01

    Highlights: •Advanced Superconducting Power Conditioning System is composed of SMES, FC–EL, H 2 storage. •The ASPCS is proposed to be built beside a LH 2 storage of a vehicle station to effectively use the cooling capability of liquid hydrogen. •The SMES coil, which is made from an MgB 2 conductor, is indirectly cooled by LH 2 through its own conduction. -- Abstract: From the point of view of environment and energy problems, the renewable energies have been attracting attention. However, fluctuating power generation by the renewable energies affects the stability of the power network. Thus, we propose a new electric power storage and stabilization system, Advanced Superconducting Power Conditioning System (ASPCS), in which a Superconducting Magnetic Energy Storage (SMES) and a hydrogen-energy-storage converge on a liquid hydrogen station for fuel cell vehicles. The ASPCS proposes that the SMES coils wound with MgB 2 conductor are indirectly cooled by thermo-siphon circulation of liquid hydrogen to use its cooling capability. The conceptual design of cooling scheme of the ASPCS is presented

  16. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents

    DEFF Research Database (Denmark)

    Chang, J.F.; Sun, B.Q.; Breiby, Dag Werner

    2004-01-01

    chloroform are typically on the order of 0.01 cm(2)/(V s). Here we investigate a range of solvents with higher boiling points. We find that 1,2,4-trichlorobenzene with good solubility and a high boiling point significantly improves the field-effect mobilities up to 0.12 cm(2)/(V s) with on:off ratios of 10...

  17. A study on bubble detachment and the impact of heated surface structure in subcooled nucleate boiling flows

    International Nuclear Information System (INIS)

    Wu Wen; Chen Peipei; Jones, Barclay G.; Newell, Ty A.

    2008-01-01

    This study examines the bubble detachment phenomena under subcooled nucleate boiling conditions, in order to obtain a better understanding of the bubble dynamics on horizontal flat heat exchangers. Refrigerant R134a is chosen as a simulant fluid due to its merits of having smaller surface tension, reduced latent heat, and lower boiling temperature than water. Experiments are run with varying experimental parameters, e.g. pressure, inlet subcooled level, flow rate, etc. Digital images are obtained at frame rates up to 4000 frames/s, showing the characteristics of bubble movements. Bubble departure and bubble lift-off, which are described as bubbles detaching from the original nucleation sites and bubbles detaching from the horizontal heated surface respectively, are both considered and measured. Results are compared against the model proposed by Klausner et al. for the prediction of bubble detachment sizes. While good overall agreement is shown, it is suggested that finite rather than zero bubble contact area should be assumed, which improves the model prediction at the pressure range of 300-500 kPa while playing no significant role at a lower pressure of 150 kPa where the model was originally benchmarked. The impact of heated surface structure is studied whose results provide support to the above assumption

  18. Perencanaan Penerapan Konsep Zero run-off dan Agroforestri Berdasarkan Kajian Debit Sungai di Sub DAS Belik, Sleman, Daerah Istimewa Yogyakarta

    Directory of Open Access Journals (Sweden)

    Arnellya Fitri

    2015-09-01

    Full Text Available Daerah Aliran Sungai (DAS Belik merupakan salah satu Daerah Tampungan Air (DTA yang berada di daerah perkotaan Kabupaten Sleman. Akibat alih fungsi lahan pertanian menjadi lahan pemukiman yang padat menyebabkan semakin berkurangnya area resapan air hujan. Kurangnya area resapan air hujan menyebabkan kapasitas saluran drainase Sub Daerah Aliran Sungai (DAS Belik pada saat hujan  tidak mampu menampung air sehingga banjir di sekitar saluran drainase terjadi. Tujuan penelitian ini untuk memberikan solusi dengan menggunakan konsep zero run-off  dalam upaya  mencegah genangan banjir di perkotaan yang kurang memiliki ruang terbuka hijau dan area resapan air hujan. Kajian debit banjir yang dilakukan pada sungai Belik menggunakan metode rasional dan metode SCS CN yaitu metode yang digunakan dalam penentuan debit puncak pada satu kejadian hujan. Perhitungan debit diperlukan untuk mengetahui besar limpasan maksimum pada drainase saluran DAS Belik. Metode hidrograf  SCS CN  menggunakan parameter tekstur tanah, tebal hujan, CN wilayah, retensi potensial maksimum air oleh tanah, dan kedalaman hujan efektif. Sedangkan metode rasional menggunakan parameter koefesien aliran, intensitas hujan, dan luas daerah pengaliran dalam menghitung debit limpasan. Keseluruhan hasil perhitungan kedua metode melebihi besar debit pengukuran langsung menggunakan Metode Slope Area, artinya keseluruhan hasil menunjukkan banjir atau limpasan permukaan yang melebihi kapasitas drainase.Kata kunci. Limpasan permukaan, metode SCS CN, metode rasional, zero run-off Belik Watershed is one of the Water Catchment Areas  located in urban areas of Sleman District. Land conversion from agricultural to residential area cause the descending of rain water catchment area. Lack of rain water catchment area can cause drainage channel capacity of Belik sub zone cannot hold rain water, so that flooding occurred around the drainage channel. The aim of this research is to give a way out to

  19. Reflector optimization for coupled liquid hydrogen moderator

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Furusaka, M.

    1991-01-01

    As a part of optimization studies on a coupled liquid hydrogen moderator system, the optimal thickness of the reflector, the effects of neutron absorbing liners and other beam hole/moderator on the cold-neutron-beam intensity were studied experimentally. It turns out that the optimal thickness is rather thick in this system and the existence of Cd liners around the beam extraction hole considerably reduces the cold neutron beam intensity, while the existence of other beam hole and moderator does not give an important intensity reduction. (author)

  20. Liquid hydrogen production and commercial demand in the United States

    Science.gov (United States)

    Heydorn, Barbara

    1990-01-01

    Kennedy Space Center, the single largest purchaser of liquid hydrogen (LH2) in the United States, evaluated current and anticipated hydrogen production and consumption in the government and commercial sectors. Specific objectives of the study are as follows: (1) identify LH2 producers in the United States and Canada during 1980-1989 period; (2) compile information in expected changes in LH2 production capabilities over the 1990-2000 period; (3) describe how hydrogen is used in each consuming industry and estimate U.S. LH2 consumption for the chemicals, metals, electronics, fats and oil, and glass industries, and report data on a regional basis; (4) estimate historical and future consumption; and (5) assess the influence of international demands on U.S. plants.

  1. First- and zero-sound velocity and Fermi liquid parameter F2s in liquid 3He determined by a path length modulation technique

    International Nuclear Information System (INIS)

    Hamot, P.J.; Lee, Y.; Sprague, D.T.

    1995-01-01

    We have measured the velocity of first- and zero-sound in liquid 3 He at 12.6 MHz over the pressure range of 0.6 to 14.5 bar using a path length modulation technique that we have recently developed. From these measurements, the pressure dependent value of the Fermi liquid parameter F 2 s was calculated and found to be larger at low pressure than previously reported. These new values of F 2 s indicate that transverse zero-sound is a propagating mode at all pressures. The new values are important for the interpretation of the frequencies of order parameter collective modes in the superfluid phases. The new acoustic technique permits measurements in regimes of very high attenuation with a sensitivity in phase velocity of about 10 ppm achieved by a feedback arrangement. The sound velocity is thus measured continuously throughout the highly attenuating crossover (ωt ∼ 1) regime, even at the lowest pressures

  2. Study the feasibility of hydrogen assisted renewable power for off-grid communities

    International Nuclear Information System (INIS)

    Wu, S.H.; Fleetwood, M.; Roberston, R.; Nielsen, N.

    2004-01-01

    Most Renewable energy sources lack the controllability and availability of conventional fossil fuel-based energy sources and therefore cannot meet load requirements of a community without a backup or storage system. The advances of hydrogen technologies enable these renewable energy options to supply power to remote communities relying on independent sources of electrical and other energy. The hydrogen assisted renewable power (HARP) concept promises to make renewable energy more practical and mainstream through the use of hydrogen based electrical generation systems. The study herein is the first of a multiphase project to investigate the benefits of HARP as an environmentally friendly replacement for diesel in the supply of electricity to off-grid communities and analyse its feasibility and suitability as a back-up power supply. A small-scale pilot project was selected and this study assesses the major elements of a plant required to integrate electrical generation system, hydrogen storage and hydrogen generation into a renewable energy generation system. Based on the available renewable energy profiles, a simulation model was developed to assist in selecting, integrating, and evaluating various configurations and operational scenarios. This paper describes the components of the proposed HARP system as well as its cost, benefits and opportunities for other applications. (author)

  3. Microlayer Topology And Bubble Growth In Nucleate Boiling

    Science.gov (United States)

    Jawurek, H. H.; Macgregor, H. G.; Bodenheimer, J. S.

    1987-09-01

    During nucleate boiling thin liquid films (nicrolayers) form beneath the base of bubbles and evaporate into the bubble interiors. A technique is presented which permits the simultaneous determination of microlayer topology and the contribution of microlayer evaporation to bubble growth. Isolated-bubble boiling takes place on an electrically heated, transparent tin-oxide coating deposited on a glass plate, the latter forming the floor of a vessel. With coherent Claser) illumination from beneath, the microlayers reflect fringe patterns similar to Newton's rings. Owing to the rapid evaporation of the layers (the process is completed within milliseconds) the fringes are in rapid motion and are recorded by eine photography at some 4 000 frames per second and exposure times of 50 μs. The resulting interferograms provide details of microlayer shape and thickness versus time, and thus evaporation rate. Simultaneously, and on the same film, bubble profiles (and thus volumes) are obtained under white light illumination. The two bubble images are manipulated by mirrors and lenses so as to appear side by side on the same frame of film, the fringes magnified and the profiles reduced. Sample results for methanol boiling at a pressure of 58.5 kPa and with the liquid bulk at saturation temperature, are presented. Under such conditions microlayer evaporation accounts for 37 per cent of the total bubble volume at detachment.

  4. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  5. Boiling in microchannels: a review of experiment and theory

    International Nuclear Information System (INIS)

    Thome, John R.

    2004-01-01

    A summary of recent research on boiling in microchannels is presented. The review addresses the topics of macroscale versus microscale heat transfer, two-phase flow regimes, flow boiling heat transfer results for microchannels, heat transfer mechanisms in microchannels and flow boiling models for microchannels. In microchannels, the most dominant flow regime appears to be the elongated bubble mode that can persist up to vapor qualities as high as 60-70% in microchannels, followed by annular flow. Flow boiling heat transfer coefficients have been shown experimentally to be dependent on heat flux and saturation pressure while only slightly dependent on mass velocity and vapor quality. Hence, these studies have concluded that nucleate boiling controls evaporation in microchannels. Instead, a recent analytical study has shown that transient evaporation of the thin liquid films surrounding elongated bubbles is the dominant heat transfer mechanism as opposed to nucleate boiling and is able to predict these trends in the experimental data. Newer experimental studies have further shown that there is in fact a significant effect of mass velocity and vapor quality on heat transfer when covering a broader range of conditions, including a sharp peak at low vapor qualities at high heat fluxes. Furthermore, it is concluded that macroscale models are not realistic for predicting flowing boiling coefficients in microchannels as the controlling mechanism is not nucleate boiling nor turbulent convection but is transient thin film evaporation (also, microchannel flows are typically laminar and not turbulent as assumed by macroscopic models). A more advanced three-zone flow boiling model for evaporation of elongated bubbles in microchannels is currently under development that so far qualitatively describes all these trends. Numerous fundamental aspects of two-phase flow and evaporation remain to be better understood and some of these aspects are also discussed

  6. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  7. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  8. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  9. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    Science.gov (United States)

    Zhang, Nengli; Chai, An-Ti

    1999-01-01

    In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the

  10. Flow Boiling on a Downward-Facing Inclined Plane Wall of Core Catcher

    International Nuclear Information System (INIS)

    Kim, Hyoung Tak; Bang, Kwang Hyun; Suh, Jung Soo

    2013-01-01

    In order to investigate boiling behavior on downward-facing inclined heated wall prior to the CHF condition, an experiment was carried out with 1.2 m long rectangular channel, inclined by 10 .deg. from the horizontal plane. High speed video images showed that the bubbles were sliding along the heated wall, continuing to grow and combining with the bubbles growing at their nucleation sites in the downstream. These large bubbles continued to slide along the heated wall and formed elongated slug bubbles. Under this slug bubble thin liquid film layer on the heated wall was observed and this liquid film prevents the wall from dryout. The length, velocity and frequency of slug bubbles sliding on the heated wall were measured as a function of wall heat flux and these parameters were used to develop wall boiling model for inclined, downward-facing heated wall. One approach to achieve coolable state of molten core in a PWR-like reactor cavity during a severe accident is to retain the core melt on a so-called core catcher residing on the reactor cavity floor after its relocation from the reactor pressure vessel. The core melt retained in the core catcher is cooled by water coolant flowing in an inclined cooling channel underneath as well as the water pool overlaid on the melt layer. Two-phase flow boiling with downward-facing heated wall such as this core catcher cooling channel has drawn a special attention because this orientation of heated wall may reach boiling crisis at lower heat flux than that of a vertical or upward-facing heated wall. Nishikawa and Fujita, Howard and Mudawar, Qiu and Dhir have conducted experiments to study the effect of heater orientation on boiling heat transfer and CHF. SULTAN experiment was conducted to study inclined large-scale structure coolability by water in boiling natural convection. In this paper, high-speed visualization of boiling behavior on downward-facing heated wall inclined by 10 .deg. is presented and wall boiling model for the

  11. Nanofluid application: liquid sublayer structure and heat transfer mechanism

    International Nuclear Information System (INIS)

    Bang, In Cheol; Chang, Soon Heung

    2005-01-01

    Boiling has important modern applications for macroscopic heat transfer exchangers, such as those in nuclear and fossil power plants, and for microscopic heat transfer devices, such as heat pipes and microchannels for cooling electronic chips. The use of boiling is limited by critical heat flux which is characterized by both its highest efficient heat transport capability and the initiation of surface damage caused by suddenly deteriorating heat transfer. For instance, damage can be directly related to the physical burnout of the materials of a heat exchanger. However, the physical mechanism of this limitation has not been understood clearly. In relation to the mechanisms, there is a general consensus that fully developed nucleate boiling on a heated solid surface is characterized by the existence of a liquid film on the heated solid surface. The occurrence of the boiling limitation, the so-called critical heat flux (CHF) has been linked closely to the behavior of the liquid film. This liquid film is generally referred to as the 'thin liquid layer' or the 'macrolayer' to distinguish it from the microlayer that exists under the base of discrete nucleating bubbles. The question to be answered is whether a stable thin liquid layer under a vapor boiling environment could actually exist. If so, what precisely is the role of such a liquid film in relation to the boiling limitation? Reliable answers will depend on direct experimental observations. Currently, there has been no direct observation of the liquid layer. Numerous subsequent studies have failed to provide a direct confirmation of a stable thin liquid layer under a vapor boiling environment. In 1977, Yu and Mesler offered a hypothesis of the existence of the layer, as illustrated in Figure 1. Katto and Yokoya demonstrated the importance of Yu and Mesler's hypothesis; they used it to show that it is possible to approach the very complicated boiling limitation phenomenon with a relatively simple liquid layer

  12. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  13. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    International Nuclear Information System (INIS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  14. Zero-valent iron nanoparticles preparation

    International Nuclear Information System (INIS)

    Oropeza, S.; Corea, M.; Gómez-Yáñez, C.; Cruz-Rivera, J.J.; Navarro-Clemente, M.E.

    2012-01-01

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  15. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  16. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  17. A system of hydrogen powered vehicles with liquid organic hydrides

    International Nuclear Information System (INIS)

    Taube, M.

    1981-07-01

    A motor car system based on the hydrogen produced by nuclear power stations during the night in the summer, and coupled with organic liquid hydride seems to be a feasible system in the near future. Such a system is discussed and the cost is compared with gasoline. (Auth.)

  18. Bubble behaviour and mean diameter in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Zeitoun, O.; Shoukri, M. [McMaster Univ., Hamilton, Ontario (Canada)

    1995-09-01

    Bubble behaviour and mean bubble diameter in subcooled upward flow boiling in a vertical annular channel were investigated under low pressure and mass flux conditions. A high speed video system was used to visualize the subcooled flow boiling phenomenon. The high speed photographic results indicated that, contrary to the common understanding, bubbles tend to detach from the heating surface upstream of the net vapour generation point. Digital image processing technique was used to measure the mean bubble diameter along the subcooled flow boiling region. Data on the axial area-averaged void fraction distributions were also obtained using a single beam gamma densitometer. Effects of the liquid subcooling, applied heat flux and mass flux on the mean bubble size were investigated. A correlation for the mean bubble diameter as a function of the local subcooling, heat flux and mass flux was obtained.

  19. Hydrogen gettering the overpressure gas from highly radioactive liquids

    International Nuclear Information System (INIS)

    Riley, D.L.; Schicker, J.R.

    1996-04-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined

  20. MTD-MFC: unified framework for investigation of diversity of boiling heat transfer curves

    Energy Technology Data Exchange (ETDEWEB)

    Shekriladze, I.G. [Georgian Technical University, Tbilisi (Georgia)], e-mail: shekri@geo.net.ge

    2009-07-01

    A keynote paper presents just the next attempt to promote a discussion of modern state of art in the field of boiling heat transfer research. It is shown how longstanding disregard of internal contradictions of applicable approaches has resulted theoretical deadlock. Alternatively, it also is shown how resolution of these contradictions opens the ways to breakthrough in boiling heat transfer theory. Basic experimental facts, physical models and correlations are reconsidered. Principal contradictions between experimental knowledge and traditional model of 'the theatre of actors' (MTA) are discussed. Crucial role of pumping effect of growing bubble (PEGB) in boiling heat transfer and hydrodynamics is shown. Basic role of control of HTC by thermodynamic conditions on nucleation sites is demonstrated and consequent model of 'the theatre of director' (MTD) is discussed. Universal MTD-based correlation of boiling HTC of all types of liquids is considered. Unified consistent research framework for developed boiling heat transfer and diverse specific boiling heat transfer regimes is outlined through supplementing MTD by so-called multifactoring concept (MFC). The latter links transition from developed boiling mode to diverse boiling curves to a phenomenon of multiplication of factors influencing HTC. The ways of further research of the boiling problem are discussed. (author)

  1. MTD-MFC: unified framework for investigation of diversity of boiling heat transfer curves

    International Nuclear Information System (INIS)

    Shekriladze, I.G.

    2009-01-01

    A keynote paper presents just the next attempt to promote a discussion of modern state of art in the field of boiling heat transfer research. It is shown how longstanding disregard of internal contradictions of applicable approaches has resulted theoretical deadlock. Alternatively, it also is shown how resolution of these contradictions opens the ways to breakthrough in boiling heat transfer theory. Basic experimental facts, physical models and correlations are reconsidered. Principal contradictions between experimental knowledge and traditional model of 'the theatre of actors' (MTA) are discussed. Crucial role of pumping effect of growing bubble (PEGB) in boiling heat transfer and hydrodynamics is shown. Basic role of control of HTC by thermodynamic conditions on nucleation sites is demonstrated and consequent model of 'the theatre of director' (MTD) is discussed. Universal MTD-based correlation of boiling HTC of all types of liquids is considered. Unified consistent research framework for developed boiling heat transfer and diverse specific boiling heat transfer regimes is outlined through supplementing MTD by so-called multifactoring concept (MFC). The latter links transition from developed boiling mode to diverse boiling curves to a phenomenon of multiplication of factors influencing HTC. The ways of further research of the boiling problem are discussed. (author)

  2. Time-zero efficiency of European power derivatives markets

    International Nuclear Information System (INIS)

    Peña, Juan Ignacio; Rodriguez, Rosa

    2016-01-01

    We study time-zero efficiency of electricity derivatives markets. By time-zero efficiency is meant a sequence of prices of derivatives contracts having the same underlying asset but different times to maturity which implies that prices comply with a set of efficiency conditions that prevent profitable time-zero arbitrage opportunities. We investigate whether statistical tests, based on the law of one price, and trading rules, based on price differentials and no-arbitrage violations, are useful for assessing time-zero efficiency. We apply tests and trading rules to daily data of three European power markets: Germany, France and Spain. In the case of the German market, after considering liquidity availability and transaction costs, results are not inconsistent with time-zero efficiency. However, in the case of the French and Spanish markets, limitations in liquidity and representativeness are challenges that prevent definite conclusions. Liquidity in French and Spanish markets should improve by using pricing and marketing incentives. These incentives should attract more participants into the electricity derivatives exchanges and should encourage them to settle OTC trades in clearinghouses. Publication of statistics on prices, volumes and open interest per type of participant should be promoted. - Highlights: •We test time-zero efficiency of derivatives power markets in Germany, France and Spain. •Prices in Germany, considering liquidity and transaction costs, are time-zero efficient. •In France and Spain, limitations in liquidity and representativeness prevent conclusions. •Liquidity in France and Spain should improve by using pricing and marketing incentives. •Incentives attract participants to exchanges and encourage them to settle OTC trades in clearinghouses.

  3. Contribution to the development of a Local Predictive Approach of the boiling crisis

    International Nuclear Information System (INIS)

    Montout, M.

    2009-01-01

    EDF aims at developing a 'Local Predictive Approach' of the boiling crisis for PWR core configurations, i.e. an approach resulting in (empirical) critical heat flux predictors based on local parameters provided by NEPTUNE-CFD code (for boiling bubbly flows, only in a first stage). Within this general framework, this PhD work consisted in assess one modelling of NEPTUNE-CFD code selected to simulate boiling bubble flows, then improve it. The latter objective led us to focus on the mechanistic modelling of subcooled nucleate boiling in forced convection. After a literature review, we identified physical improvements to be accounted for, especially with respect to bubble sliding phenomenon along the heated wall. Subsequently, we developed a force balance model in order to provide needed closure laws related to bubble detachment diameter from the nucleation site and lift-off bubble diameter from the wall. A new boiling model including such developments was eventually proposed, and preliminary assessed. (author)

  4. Simultaneous neutron radiography and infrared thermography measurement of boiling processes

    International Nuclear Information System (INIS)

    Murphy, J.H.; Glickstein, S.S.

    1997-01-01

    Boiling of water at 1 to 15 bar flowing upward within a narrow duct and a round test section was observed using both neutron radiography and infrared (IR) thermography. The IR readings of the test section outer wall temperatures show the effects of both fluid temperature and wall heat transfer coefficient variations, producing a difference between liquid and two phase regions. The IR images, in fact, appear very similar to the neutron images; both show clear indications of spatial and temporal variations in the internal fluid conditions during the boiling process

  5. CAPRICORN subchannel code for sodium boiling in LMFBR fuel bundles

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Smith, D.E.; O'Dell, L.D.

    1983-01-01

    The CAPRICORN computer code analyzes steady-state and transient, single-phase and boiling problems in LMFBR fuel bundles. CAPRICORN uses the same type of subchannel geometry as the COBRA family of codes and solves a similar system of conservation equations for mass, momentum, and energy. However, CAPRICORN uses a different numerical solution method which allows it to handle the full liquid-to-vapor density change for sodium boiling. Results of the initial comparison with data (the W-1 SLSF pipe rupture experiment) are very promising and provide an optimistic basis for proceeding with further development

  6. Changes of enthalpy slope in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J.; Monne, Carlos [Universidad de Zaragoza-CPS, Departamento de Ingenieria Mecanica-Motores Termicos, Zaragoza (Spain); Pascau, Antonio [Universidad de Zaragoza-CPS, Departamento de Ciencia de los Materiales y Fluidos-Mecanica de Fluidos, Zaragoza (Spain)

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, 58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance - the control volume length - in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor-liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored. (orig.)

  7. Ab initio calculation of the zero-point energy in dense hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Takezawa, Tomoki [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Nagara, Hitose [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Nagao, Kazutaka [Laboratory of Atomic and Solid State Physics, Cornel University, Ithaca, NY (United States)

    2002-11-11

    We have studied the vibrational modes and their frequencies in both atomic and molecular phases of dense hydrogen to find the stable structures and evaluated the zero-point energies (ZPEs) and the effect on molecular dissociation. The most probable structure in the atomic phase is Cs IV whose vibrational modes have real frequencies over the whole Brillouin zone. And the structure in the molecular phase is very close to Cmca, whose vibrational modes with imaginary frequencies work as guides to the stable structure. Our estimates of the ZPE are very close to those of Kagan et al (Kagan Yu, Pushkarev V V and Kholas A 1977 Sov. Phys.-JETP 46 511). Adding the ZPE to the static energy, we estimated its effect on the pressure of the molecular dissociation. The reduction of the dissociation pressure due to the inclusion of the ZPE becomes over 100 GPa.

  8. Ab initio calculation of the zero-point energy in dense hydrogen

    International Nuclear Information System (INIS)

    Takezawa, Tomoki; Nagara, Hitose; Nagao, Kazutaka

    2002-01-01

    We have studied the vibrational modes and their frequencies in both atomic and molecular phases of dense hydrogen to find the stable structures and evaluated the zero-point energies (ZPEs) and the effect on molecular dissociation. The most probable structure in the atomic phase is Cs IV whose vibrational modes have real frequencies over the whole Brillouin zone. And the structure in the molecular phase is very close to Cmca, whose vibrational modes with imaginary frequencies work as guides to the stable structure. Our estimates of the ZPE are very close to those of Kagan et al (Kagan Yu, Pushkarev V V and Kholas A 1977 Sov. Phys.-JETP 46 511). Adding the ZPE to the static energy, we estimated its effect on the pressure of the molecular dissociation. The reduction of the dissociation pressure due to the inclusion of the ZPE becomes over 100 GPa

  9. Visualization and measurement of liquid velocity field of gas-liquid metal two-phase flow using neutron radiography

    International Nuclear Information System (INIS)

    Saito, Yasushi; Suzuki, Tohru; Matsubayashi, Masahito

    2000-01-01

    In a core melt accident of a fast breeder reactor, a possibility of re-criticality is anticipated in the molten fuel-steel mixture pool. One of the mechanisms to suppress the re-criticality is the boiling of steel in the molten fuel-steel mixture pool because of the negative void reactivity effect. To evaluate the reactivity change due to boiling, it is necessary to know the characteristics of gas-liquid two-phase flow in the molten fuel-steel mixture pool. For this purpose, boiling bubbles in a molten fuel-steel mixture pool were simulated by adiabatic gas bubbles in a liquid metal pool to study the basic characteristics of gas-liquid metal two-phase mixture. Visualization of the two-phase mixture and measurements of liquid phase velocity and void fraction were conducted by using neutron radiography and image processing techniques. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  10. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  11. Silicon surface barrier detectors used for liquid hydrogen density measurement

    Science.gov (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  12. High temperature equation of state of metallic hydrogen

    International Nuclear Information System (INIS)

    Shvets, V. T.

    2007-01-01

    The equation of state of liquid metallic hydrogen is solved numerically. Investigations are carried out at temperatures from 3000 to 20 000 K and densities from 0.2 to 3 mol/cm 3 , which correspond both to the experimental conditions under which metallic hydrogen is produced on earth and the conditions in the cores of giant planets of the solar system such as Jupiter and Saturn. It is assumed that hydrogen is in an atomic state and all its electrons are collectivized. Perturbation theory in the electron-proton interaction is applied to determine the thermodynamic potentials of metallic hydrogen. The electron subsystem is considered in the randomphase approximation with regard to the exchange interaction and the correlation of electrons in the local-field approximation. The proton-proton interaction is taken into account in the hard-spheres approximation. The thermodynamic characteristics of metallic hydrogen are calculated with regard to the zero-, second-, and third-order perturbation theory terms. The third-order term proves to be rather essential at moderately high temperatures and densities, although it is much smaller than the second-order term. The thermodynamic potentials of metallic hydrogen are monotonically increasing functions of density and temperature. The values of pressure for the temperatures and pressures that are characteristic of the conditions under which metallic hydrogen is produced on earth coincide with the corresponding values reported by the discoverers of metallic hydrogen to a high degree of accuracy. The temperature and density ranges are found in which there exists a liquid phase of metallic hydrogen

  13. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  14. Liquid entrainment and off-take through the break at the top of a vessel

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; No, Hee Cheon

    2005-01-01

    In order to determine the bleed capacity of the safety depressurization system (SDS) of Advanced Power Reactor 1400 (APR1400) in the case of total loss of feed water (TLOFW), we performed an experimental study of liquid entrainment and liquid off-take from the swelled two-phase mixture surface in a vessel. A total of 220 experimental data on the entrainment and off-take are obtained using a test vessel with a height of 2.0m and an inner diameter of 0.3m and a top break with a diameter of 0.05m. Two-phase mixture levels are measured by an ultrasonic sensor within +/-1.77% with respect to the visual level data. Droplet entrainment data are obtained with and without the top break and are compared with the existing pool entrainment data. The present droplet entrainment data have higher values than the existing pool entrainment data due to (a) the pulling toward the break of the liquid deentrained on the top wall of the vessel and (b) gas acceleration in the vicinity of the break. In the present experiment, droplet entrainment, E fg , strongly depends upon j g * /h * and is proportional to the seventh power of j g * /h * in the same way as the off-take data. The empirical correlation for the onset of off-take is developed in terms of the Froude number (Fr g ) at the break and the non-dimensional inception height (h b /d). This correlation shows agreement with the present experimental data within +/-15%. The present off-take quality data show agreement with Schrock's off-take quality correlation with the rms error of 15.8%

  15. Liquid entrainment and off-take from the two-phase mixture surface in a vessel

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; No, Hee Cheon

    2003-01-01

    In order to determine the bleed capacity of the Safety Depressurization System (SDS) of Advanced Power Reactor 1400 (APR1400) in the case of Total Loss of Feed Water (TLOFW), we performed an experimental study of liquid entrainment and liquid off-take from the swelled two-phase mixture surface in a vessel. A total of 220 experimental data on the entrainment and off-take are obtained using a test vessel with a height of 2.0m and an inner diameter of 0.3m, and a top break with a diameter of 0.05m. Two-phase mixture levels are measured by an ultrasonic sensor within ±1.77% with respect to the visual level data. Droplet entrainment data are obtained with and without the top break and are compared with the existing pool entrainment data. The present droplet entrainment data have higher values than those of the existing pool entrainment due to (a) the pulling toward the break of the liquid deentrained on the top wall of the vessel and (b) gas acceleration in the vicinity of the break. In the present experiment, droplet entrainment, Efg, strongly depends upon jg/h and is proportional to the 7th power