An FPGA Architecture for Extracting Real-Time Zernike Coefficients from Measured Phase Gradients
Moser, Steven; Lee, Peter; Podoleanu, Adrian
2015-04-01
Zernike modes are commonly used in adaptive optics systems to represent optical wavefronts. However, real-time calculation of Zernike modes is time consuming due to two factors: the large factorial components in the radial polynomials used to define them and the large inverse matrix calculation needed for the linear fit. This paper presents an efficient parallel method for calculating Zernike coefficients from phase gradients produced by a Shack-Hartman sensor and its real-time implementation using an FPGA by pre-calculation and storage of subsections of the large inverse matrix. The architecture exploits symmetries within the Zernike modes to achieve a significant reduction in memory requirements and a speed-up of 2.9 when compared to published results utilising a 2D-FFT method for a grid size of 8×8. Analysis of processor element internal word length requirements show that 24-bit precision in precalculated values of the Zernike mode partial derivatives ensures less than 0.5% error per Zernike coefficient and an overall error of RAM usage is <16% for Shack-Hartmann grid sizes up to 32×32.
Zernike polynomial based Rayleigh-Ritz model of a piezoelectric unimorph deformable mirror
CSIR Research Space (South Africa)
Long, CS
2012-04-01
Full Text Available , are routinely and conveniently described using Zernike polynomials. A Rayleigh-Ritz structural model, which uses Zernike polynomials directly to describe the displacements, is proposed in this paper. The proposed formulation produces a numerically inexpensive...
Zernike Basis to Cartesian Transformations
Mathar, R. J.
2009-12-01
The radial polynomials of the 2D (circular) and 3D (spherical) Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle) defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.
Zernike Basis to Cartesian Transformations
Directory of Open Access Journals (Sweden)
Mathar, R. J.
2009-12-01
Full Text Available The radial polynomials of the 2D (circular and 3D (spherical Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.
Zernike basis to cartesian transformations
Directory of Open Access Journals (Sweden)
Mathar R.J.
2009-01-01
Full Text Available The radial polynomials of the 2D (circular and 3D (spherical Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.
Hyper-resistivity produced by tearing mode turbulence
International Nuclear Information System (INIS)
Strauss, H.R.
1986-01-01
Tearing mode turbulence produces a hyper-resistivity or effective anomalous electron viscosity. The hyper-resistivity is calculated for the mean magnetic field quasilinearly, and for long-wavelength modes using the direct interaction approximation. The hyper-resistivity accounts for current relaxation in reversed-field pinch experiments, and gives a magnetic fluctuation sealing of S -1 /sup // 3 . It causes enhanced tearing mode growth rates in the turbulent phase of tokamak disruptions. In astrophysics, it limits magnetic energy growth due to the dynamo effect, and may explain rapid reconnection phenomena such as solar flares
Influence of surface error on electromagnetic performance of reflectors based on Zernike polynomials
Li, Tuanjie; Shi, Jiachen; Tang, Yaqiong
2018-04-01
This paper investigates the influence of surface error distribution on the electromagnetic performance of antennas. The normalized Zernike polynomials are used to describe a smooth and continuous deformation surface. Based on the geometrical optics and piecewise linear fitting method, the electrical performance of reflector described by the Zernike polynomials is derived to reveal the relationship between surface error distribution and electromagnetic performance. Then the relation database between surface figure and electric performance is built for ideal and deformed surfaces to realize rapidly calculation of far-field electric performances. The simulation analysis of the influence of Zernike polynomials on the electrical properties for the axis-symmetrical reflector with the axial mode helical antenna as feed is further conducted to verify the correctness of the proposed method. Finally, the influence rules of surface error distribution on electromagnetic performance are summarized. The simulation results show that some terms of Zernike polynomials may decrease the amplitude of main lobe of antenna pattern, and some may reduce the pointing accuracy. This work extracts a new concept for reflector's shape adjustment in manufacturing process.
Modes of Action of Microbially-Produced Phytotoxins
Duke, Stephen O.; Dayan, Franck E.
2011-01-01
Some of the most potent phytotoxins are synthesized by microbes. A few of these share molecular target sites with some synthetic herbicides, but many microbial toxins have unique target sites with potential for exploitation by the herbicide industry. Compounds from both non-pathogenic and pathogenic microbes are discussed. Microbial phytotoxins with modes of action the same as those of commercial herbicides and those with novel modes of action of action are covered. Examples of the compounds discussed are tentoxin, AAL-toxin, auscaulitoxin aglycone, hydantocidin, thaxtomin, and tabtoxin. PMID:22069756
Eye aberration analysis with Zernike polynomials
Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.
1998-06-01
New horizons for accurate photorefractive sight correction, afforded by novel flying spot technologies, require adequate measurements of photorefractive properties of an eye. Proposed techniques of eye refraction mapping present results of measurements for finite number of points of eye aperture, requiring to approximate these data by 3D surface. A technique of wave front approximation with Zernike polynomials is described, using optimization of the number of polynomial coefficients. Criterion of optimization is the nearest proximity of the resulted continuous surface to the values calculated for given discrete points. Methodology includes statistical evaluation of minimal root mean square deviation (RMSD) of transverse aberrations, in particular, varying consecutively the values of maximal coefficient indices of Zernike polynomials, recalculating the coefficients, and computing the value of RMSD. Optimization is finished at minimal value of RMSD. Formulas are given for computing ametropia, size of the spot of light on retina, caused by spherical aberration, coma, and astigmatism. Results are illustrated by experimental data, that could be of interest for other applications, where detailed evaluation of eye parameters is needed.
Energy Technology Data Exchange (ETDEWEB)
Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)
2009-09-01
A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.
International Nuclear Information System (INIS)
Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao; Liu Yijin; Yue Zhengbo; Yu Hanqing; Wang Chunru
2009-01-01
A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 μm thickness and 4 μm width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.
Iris's Functional Description using Zernike polynomials
International Nuclear Information System (INIS)
Munnoz, D. P.; Silva Mata, F. J.; Talavera, I.; Hernandez, N.; Augier, A.
2012-01-01
The main goal of this work is the texture representation of the iris original image by means of functional data. The essence of the method consists in obtaining an adjusted vector of coefficients by means of a least square approximation starting from the representation of the original image by the expansion on the two-dimensional Zernike basis. This type of representation provides remarkable advantages regarding other representations e.g. the appreciable reduction of the dimension of the data, the simplification of the general process of the image and those characteristics of the functional data analysis. The carried out experiments demonstrate the feasibility of this approach and they allowed determining the optimal dimension of the coefficients vectors by means of the minimization of the residual errors. To corroborate the effectiveness of this representation, some experiments on identification were carried out on international databases whose initial results are annexed in the work. (Author)
Dai, Wei; Fu, Caroline; Khant, Htet A; Ludtke, Steven J; Schmid, Michael F; Chiu, Wah
2014-11-01
Advances in electron cryotomography have provided new opportunities to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase-contrast optics produces images with markedly increased contrast compared with images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods for obtaining 3D structures of cyanophage assembly intermediates in the host by subtomogram alignment, classification and averaging. Acquiring three or four tomographic tilt series takes ∼12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. The time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume.
Dai, Wei; Fu, Caroline; Khant, Htet A.; Ludtke, Steven J.; Schmid, Michael F.; Chiu, Wah
2015-01-01
Advances in electron cryo-tomography have provided a new opportunity to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase contrast optics produces images with dramatically increased contrast compared to images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods to obtain 3D structures of cyanophage assembly intermediates in the host, by subtomogram alignment, classification and averaging. Acquiring three to four tomographic tilt series takes approximately 12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. Time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume. PMID:25321408
Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.
Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu
2013-01-01
Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (3D images of cryo-preserved cells. The relatively low X-ray energy (3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.
Zernike vs. Bessel circular functions in visual optics.
Trevino, Juan P; Gómez-Correa, Jesus E; Iskander, D Robert; Chávez-Cerda, Sabino
2013-07-01
We propose the Bessel Circular Functions as alternatives of the Zernike Circle Polynomials to represent relevant circular ophthalmic surfaces. We assess the fitting capabilities of the orthogonal Bessel Circular Functions by comparing them to Zernike Circle Polynomials for approximating a variety of computationally generated surfaces which can represent ophthalmic surfaces. The Bessel Circular Functions showed better modelling capabilities for surfaces with abrupt variations such as the anterior eye surface at the limbus region, and influence functions. From our studies we find that the Bessel Circular Functions can be more suitable for studying particular features of post surgical corneal surfaces. We show that given their boundary conditions and free oscillating properties, the Bessel Circular Functions are an alternative for representing specific wavefronts and can be better than the Zernike Circle Polynomials for some important cases of corneal surfaces, influence functions and the complete anterior corneal surface. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Nonlinear Radon Transform Using Zernike Moment for Shape Analysis
Directory of Open Access Journals (Sweden)
Ziping Ma
2013-01-01
Full Text Available We extend the linear Radon transform to a nonlinear space and propose a method by applying the nonlinear Radon transform to Zernike moments to extract shape descriptors. These descriptors are obtained by computing Zernike moment on the radial and angular coordinates of the pattern image's nonlinear Radon matrix. Theoretical and experimental results validate the effectiveness and the robustness of the method. The experimental results show the performance of the proposed method in the case of nonlinear space equals or outperforms that in the case of linear Radon.
A parallel implementation of 3D Zernike moment analysis
Berjón, Daniel; Arnaldo, Sergio; Morán, Francisco
2011-01-01
Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They have been less used than their properties might suggest due to their high computational cost. We present a parallel implementation of 3D Zernike moments analysis, written in C with CUDA extensions, which makes it practical to employ Zernike descriptors in interactive applications, yielding a performance of several frames per second in voxel datasets about 2003 in size. In our contribution, we describe the challenges of implementing 3D Zernike analysis in a general-purpose GPU. These include how to deal with numerical inaccuracies, due to the high precision demands of the algorithm, or how to deal with the high volume of input data so that it does not become a bottleneck for the system.
Zernike-like systems in polygons and polygonal facets.
Ferreira, Chelo; López, José L; Navarro, Rafael; Sinusía, Ester Pérez
2015-07-20
Zernike polynomials are commonly used to represent the wavefront phase on circular optical apertures, since they form a complete and orthonormal basis on the unit disk. In [Opt. Lett.32, 74 (2007)10.1364/OL.32.000074OPLEDP0146-9592] we introduced a new Zernike basis for elliptic and annular optical apertures based on an appropriate diffeomorphism between the unit disk and the ellipse and the annulus. Here, we present a generalization of this Zernike basis for a variety of important optical apertures, paying special attention to polygons and the polygonal facets present in segmented mirror telescopes. On the contrary to ad hoc solutions, most of them based on the Gram-Smith orthonormalization method, here we consider a piecewise diffeomorphism that transforms the unit disk into the polygon under consideration. We use this mapping to define a Zernike-like orthonormal system over the polygon. We also consider ensembles of polygonal facets that are essential in the design of segmented mirror telescopes. This generalization, based on in-plane warping of the basis functions, provides a unique solution, and what is more important, it guarantees a reasonable level of invariance of the mathematical properties and the physical meaning of the initial basis functions. Both the general form and the explicit expressions for a typical example of telescope optical aperture are provided.
Roberts, William R.; Gould, Christopher J.; Smith, Adlai H.; Rebitz, Ken
2000-08-01
Several ideas have recently been presented which attempt to measure and predict lens aberrations for new low k1 imaging systems. Abbreviated sets of Zernike coefficients have been produced and used to predict Across Chip Linewidth Variation. Empirical use of the wavefront aberrations can now be used in commercially available lithography simulators to predict pattern distortion and placement errors. Measurement and Determination of Zernike coefficients has been a significant effort of many. However the use of this data has generally been limited to matching lenses or picking best fit lense pairs. We will use wavefront aberration data collected using the Litel InspecStep in-situ Interferometer as input data for Prolith/3D to model and predict pattern placement errors and intrafield overlay variation. Experiment data will be collected and compared to the simulated predictions.
Active-passively mode-locked dye laser for diagnosis of laser-produced plasmas
International Nuclear Information System (INIS)
Teng, Y.L.; Fedosejevs, R.; Sigel, R.
1981-03-01
In this report an active-passively mode-locked, flashlamp-pumped dye laser for diagnosis of laser-produced plasmas is described. This dye laser system used as a pulsed light source for high-speed photography of laser-target experiments was synchronized to the ASTERIX III iodine laser pulse with better than 100 ps accuracy. The single pulse energy was 10 μJ, pulse duration less than 10 ps. In 111 shots clear shadowgrams were obtained during a total of 151 target shots, i.e. the system worked well in 74% of the shots. (orig.)
ZEUS: a cophasing sensor based on the Zernike phase contrast method
Dohlen, Kjetil; Langlois, Maud; Lanzoni, Patrick; Mazzanti, Silvio; Vigan, Arthur; Montoya, Luzma; Hernandez, Elvio; Reyes, Marcos; Surdej, Isabel; Yaitskova, Natalya
2006-06-01
We describe the ZEUS phasing camera for future extremely large telescopes (ELTs) based on the Zernike phase contrast method. A prototype instrument is under construction for implementation in the Active Phasing Experiment (APE), a VLT test bed scheduled for operation in 2007. The paper describes theoretical aspects of the method and its experimental validation, as well as the instrumental implementation for APE. Aspects of its implementation in an ELT are also discussed. While the classical Zernike method uses a phase mask with diameter approximately equal to the Airy disk, we employ a mask the size of the seeing disk. This allows us to overcome the problems related to atmospheric turbulence, whose low spatial frequency phase errors are much larger than the co-phasing errors to be measured. The thickness (OPD) of the mask can be set to lambda/4 - as in the classical case - for maximum signal strength, but for initial phasing where phase errors are much larger than the sensor's linear range (+/-lambda/4), a thinner mask produces a cleaner signal more easily exploitable, leaving the signal analysis more robust. A multi wavelength approach is implemented in order to extend the capture range of the sensor, and the ultimate precision is reached using an iterative approach. End-to-end simulations indicating an achievable precision within the required precision will be shown.
Ligand Electron Density Shape Recognition Using 3D Zernike Descriptors
Gunasekaran, Prasad; Grandison, Scott; Cowtan, Kevin; Mak, Lora; Lawson, David M.; Morris, Richard J.
We present a novel approach to crystallographic ligand density interpretation based on Zernike shape descriptors. Electron density for a bound ligand is expanded in an orthogonal polynomial series (3D Zernike polynomials) and the coefficients from this expansion are employed to construct rotation-invariant descriptors. These descriptors can be compared highly efficiently against large databases of descriptors computed from other molecules. In this manuscript we describe this process and show initial results from an electron density interpretation study on a dataset containing over a hundred OMIT maps. We could identify the correct ligand as the first hit in about 30 % of the cases, within the top five in a further 30 % of the cases, and giving rise to an 80 % probability of getting the correct ligand within the top ten matches. In all but a few examples, the top hit was highly similar to the correct ligand in both shape and chemistry. Further extensions and intrinsic limitations of the method are discussed.
Near infrared face recognition using Zernike moments and Hermite kernels
Czech Academy of Sciences Publication Activity Database
Farokhi, Sajad; Sheikh, U.U.; Flusser, Jan; Yang, Bo
2015-01-01
Roč. 316, č. 1 (2015), s. 234-245 ISSN 0020-0255 R&D Projects: GA ČR(CZ) GA13-29225S Keywords : face recognition * Zernike moments * Hermite kernel * Decision fusion * Near infrared Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.364, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0444205.pdf
Zernike phase spatial filter for measuring the aberrations
Svetlana N. Khonina; Victor V. Kotlyar; Dmitriy V. Kirsh
2015-01-01
To measure directly the wavefront aberration coefficients, we propose to use the multi8order diffractive element fitted with the set of Zernike polynomials. Polynomials of lowest degree describe defocusing (ametropy) and astigmatism. Coefficients of highest degree correspond to the spherical aberration of oblique rays that occurs as a consequence of misalignment of the crystalline lens and foveola, as well as deflection at the periphery of the crystalline lens. Mul^order elements allow severa...
A parallel implementation of 3D Zernike moment analysis
Berjón Díez, Daniel; Arnaldo Duart, Sergio; Morán Burgos, Francisco
2011-01-01
Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They have been less used than their properties might suggest due to their high computational cost. We present a parallel implementation of 3...
Parallax adjustment algorithm based on Susan-Zernike moments
Deng, Yan; Zhang, Kun; Shen, Xiaoqin; Zhang, Huiyun
2018-02-01
Precise parallax detection through definition evaluation and the adjustment of the assembly position of the objective lens or the reticle are important means of eliminating the parallax of the telescope system, so that the imaging screen and the reticle are clearly focused at the same time. An adaptive definition evaluation function based on Susan-Zernike moments is proposed. First, the image is preprocessed by the Susan operator to find the potential boundary edge. Then, the Zernike moments operator is used to determine the exact region of the reticle line with sub-pixel accuracy. The image definition is evaluated only in this related area. The evaluation function consists of the gradient difference calculated by the Zernike moments operator. By adjusting the assembly position of the objective lens, the imaging screen and the reticle will be simultaneously in the state of maximum definition, so the parallax can be eliminated. The experimental results show that the definition evaluation function proposed in this paper has the advantages of good focusing performance, strong anti-interference ability compared with the other commonly used definition evaluation functions.
Precipitate shape fitting and reconstruction by means of 3D Zernike functions
Callahan, P. G.; De Graef, M.
2012-01-01
3D Zernike functions are defined and used for the reconstruction of precipitate shapes. These functions are orthogonal over the unit ball and allow for an arbitrary shape, scaled to fit inside an embedding sphere, to be decomposed into 3D harmonics. Explicit expressions are given for the general Zernike moments, correcting typographical errors in the literature. Explicit expressions of the Zernike moments for the ellipsoid and the cube are given. The 3D Zernike functions and moments are applied to the reconstruction of γ' precipitate shapes in two Ni-based superalloys, one with nearly cuboidal precipitate shapes, and one with more complex dendritic shapes.
Precipitate shape fitting and reconstruction by means of 3D Zernike functions
International Nuclear Information System (INIS)
Callahan, P G; De Graef, M
2012-01-01
3D Zernike functions are defined and used for the reconstruction of precipitate shapes. These functions are orthogonal over the unit ball and allow for an arbitrary shape, scaled to fit inside an embedding sphere, to be decomposed into 3D harmonics. Explicit expressions are given for the general Zernike moments, correcting typographical errors in the literature. Explicit expressions of the Zernike moments for the ellipsoid and the cube are given. The 3D Zernike functions and moments are applied to the reconstruction of γ' precipitate shapes in two Ni-based superalloys, one with nearly cuboidal precipitate shapes, and one with more complex dendritic shapes
Model-based multi-fringe interferometry using Zernike polynomials
Gu, Wei; Song, Weihong; Wu, Gaofeng; Quan, Haiyang; Wu, Yongqian; Zhao, Wenchuan
2018-06-01
In this paper, a general phase retrieval method is proposed, which is based on one single interferogram with a small amount of fringes (either tilt or power). Zernike polynomials are used to characterize the phase to be measured; the phase distribution is reconstructed by a non-linear least squares method. Experiments show that the proposed method can obtain satisfactory results compared to the standard phase-shifting interferometry technique. Additionally, the retrace errors of proposed method can be neglected because of the few fringes; it does not need any auxiliary phase shifting facilities (low cost) and it is easy to implement without the process of phase unwrapping.
Smoothing optimization of supporting quadratic surfaces with Zernike polynomials
Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu
2018-03-01
A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.
2D-Zernike Polynomials and Coherent State Quantization of the Unit Disc
Energy Technology Data Exchange (ETDEWEB)
Thirulogasanthar, K., E-mail: santhar@gmail.com [Concordia University, Department of Comuter Science and Software Engineering (Canada); Saad, Nasser, E-mail: nsaad@upei.ca [University of Prince Edward Island, Department of mathematics and Statistics (Canada); Honnouvo, G., E-mail: g-honnouvo@yahoo.fr [McGill University, Department of Mathematics and Statistics (Canada)
2015-12-15
Using the orthonormality of the 2D-Zernike polynomials, reproducing kernels, reproducing kernel Hilbert spaces, and ensuring coherent states attained. With the aid of the so-obtained coherent states, the complex unit disc is quantized. Associated upper symbols, lower symbols and related generalized Berezin transforms also obtained. A number of necessary summation formulas for the 2D-Zernike polynomials proved.
Generalized 3D Zernike functions for analytic construction of band-limited line-detecting wavelets
Janssen, A.J.E.M.
2015-01-01
We consider 3D versions of the Zernike polynomials that are commonly used in 2D in optics and lithography. We generalize the 3D Zernike polynomials to functions that vanish to a prescribed degree $\\alpha\\geq0$ at the rim of their supporting ball $\\rho\\leq1$. The analytic theory of the 3D generalized
Aberration retrieval for high-NA optical systems using the Extended Nijboer-Zernike theory
Dirksen, P.; Braat, J.J.M.; Janssen, A.J.E.M.; Leeuwestein, A.
2005-01-01
Previously, we have given a detailed description of the so-called Extended Nijboer-Zernike approach and its application to aberration measurements of the optical projection system in a wafer scanner in the case of a low or medium high-NA system. The Extended Nijboer-Zernike theory provides an
Experimental investigation of linear mode conversion in laser-produced plasmas
International Nuclear Information System (INIS)
Maaswinkel, A.G.M.
1980-12-01
In this work absorption mechanisms are investigated in hot dense plasmas produced by intense laser irradiation of planar targets. Central in this investigation stands the absorption by linear mode conversion; this process occurs in inhomogeneous plasmas if the electric field vector of the incident EM-wave has a component parallel to the density gradient; this causes electrostatic oscillations at the critical density (where ωsub(p)sub(e) = ω). In addition, absorption of the laser light by inverse bremsstrahlung is investigated. The absorption is determined by the reflection of the laser light from the plasma. To this aim optical diagnostics are used. The reflection into 4π sr is measured with an Ulbricht sphere, also the reflection in specular (geometric) direction is recorded. The absorption mechanisms have been isolated by variation of the polarization of the beam and the angle of incidence to the target. An essential part of the work has been the frequency up-conversion of the laser beam by nonlinear crystals; in this way the wavelength-dependence of the absorption in the plasma has been investigated at wavelengths 1.06 μm, 0.53 μm and 0.26 μm; the pulse duration in the experiments was 30 ps, the maximum irradiation on target was 10 14 W/cm 2 . (orig./HT)
Generalized 3D Zernike functions for analytic construction of band-limited line-detecting wavelets
Janssen, Augustus J. E. M.
2015-01-01
We consider 3D versions of the Zernike polynomials that are commonly used in 2D in optics and lithography. We generalize the 3D Zernike polynomials to functions that vanish to a prescribed degree $\\alpha\\geq0$ at the rim of their supporting ball $\\rho\\leq1$. The analytic theory of the 3D generalized Zernike functions is developed, with attention for computational results for their Fourier transform, Funk and Radon transform, and scaling operations. The Fourier transform of generalized 3D Zern...
An Algorithm for Fast Computation of 3D Zernike Moments for Volumetric Images
Hosny, Khalid M.; Hafez, Mohamed A.
2012-01-01
An algorithm was proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method was proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm was also employed to add m...
Single particle analysis based on Zernike phase contrast transmission electron microscopy.
Danev, Radostin; Nagayama, Kuniaki
2008-02-01
We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.
Organizational Modes of Severe Wind-producing Convective Systems over North China
Yang, Xinlin; Sun, Jianhua
2018-05-01
Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind (SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events (and their proportions) were cluster cells (35.4%), squall lines (18.4%), nonlinear-shaped systems (17.8%), broken lines (11.6%), individual cells (1.2%), and bow echoes (0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.
Energy Technology Data Exchange (ETDEWEB)
Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)
2008-09-15
Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)
International Nuclear Information System (INIS)
Viswanathan, V.K.
1981-01-01
This paper describes the need for non-raytracing schemes in the optical design and analysis of large carbon-dioxide lasers like the Gigawatt, Gemini, and Helios lasers currently operational at Los Alamos, and the Antares laser fusion system under construction. The scheme currently used at Los Alamos involves characterizing the various optical components with a Zernike polynomial set obtained by the digitization of experimentally produced interferograms of the components. A Fast Fourier Transform code then propagates the complex amplitude and phase of the beam through the whole system and computes the optical parameters of interest. The analysis scheme is illustrated through examples of the Gigawatt, Gemini, and Helios systems. A possible way of using the Zernike polynomials in optical design problems of this type is discussed. Comparisons between the computed values and experimentally obtained results are made and it is concluded that this appears to be a valid approach. As this is a review article, some previously published results are also used where relevant
Precise starshade stationkeeping and pointing with a Zernike wavefront sensor
Bottom, Michael; Martin, Stefan; Seubert, Carl; Cady, Eric; Zareh, Shannon Kian; Shaklan, Stuart
2017-09-01
Starshades, large occulters positioned tens of thousands of kilometers in front of space telescopes, offer one of the few paths to imaging and characterizing Earth-like extrasolar planets. However, for a starshade to generate a sufficiently dark shadow on the telescope, the two must be coaligned to just 1 meter laterally, even at these large separations. The principal challenge to achieving this level of control is in determining the position of the starshade with respect to the space telescope. In this paper, we present numerical simulations and laboratory results demonstrating that a Zernike wavefront sensor coupled to a WFIRST-type telescope is able to deliver the stationkeeping precision required, by measuring light outside of the science wavelengths. The sensor can determine the starshade lateral position to centimeter level in seconds of open shutter time for stars brighter than eighth magnitude, with a capture range of 10 meters. We discuss the potential for fast (ms) tip/tilt pointing control at the milli-arcsecond level by illuminating the sensor with a laser mounted on the starshade. Finally, we present early laboratory results.
Imaging characteristics of Zernike and annular polynomial aberrations.
Mahajan, Virendra N; Díaz, José Antonio
2013-04-01
The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.
Fast human pose estimation using 3D Zernike descriptors
Berjón, Daniel; Morán, Francisco
2012-03-01
Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.
First test experiment to produce the slowed-down RI beam with the momentum-compression mode at RIBF
Energy Technology Data Exchange (ETDEWEB)
Sumikama, T., E-mail: sumikama@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ahn, D.S.; Fukuda, N.; Inabe, N.; Kubo, T.; Shimizu, Y.; Suzuki, H.; Takeda, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoi, N. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Beaumel, D. [Institut de Physique Nucléaire d’Orsay (IPNO), CNRS/IN2P3, 91405 Orsay (France); Hasegawa, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ideguchi, E. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Imai, N. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Kobayashi, T. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Matsushita, M.; Michimasa, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Otsu, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimoura, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)
2016-06-01
The {sup 82}Ge beam has been produced by the in-flight fission reaction of the {sup 238}U primary beam with 345 MeV/u at the RIKEN RI beam factory, and slowed down to about 15 MeV/u using the energy degraders. The momentum-compression mode was applied to the second stage of the BigRIPS separator to reduce the momentum spread. The energy was successfully reduced down to 13 ± 2.5 MeV/u as expected. The focus was not optimized at the end of the second stage, therefore the beam size was larger than the expectation. The transmission of the second stage was half of the simulated value mainly due to out of focus. The two-stage separation worked very well for the slowed-down beam with the momentum-compression mode.
Determination of the paraxial focal length using Zernike polynomials over different apertures
Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich
2017-02-01
The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.
Zhou, Wei; Liu, Guo-rong; Li, Ping-lan; Dai, Yun-qing; Zhou, Kang
2007-04-01
Plantaricin L-1, an anti-Listeria bacteriocin, was produced by Lactobacillus plantarum and successfully purified by SP-Sepharose FF cation exchange chromatography. The mechanism on energized cells of Listeria monocytogenes was studied with purified plantaricin L-1. After adding plantaricin L-1 to Listeria monocytogenes at 64 AU/mL, leakage of intercellular K+ ions, inorganic phosphate, lactic dehydrogenase, UV-absorbing materials and the intracellular ATP was observed, and the action resulted in the dissipation of the membrane potential (delta psi) and pH gradient (delta psi), two components of the proton motive force (PMF). All the data suggested that the primary site of action of plantaricin L-1 was the cytoplasmic membrane of sensitive cells. By forming the nonselective pores which leak ions and small organic compounds plantaricin L-1 induced the cells death, this action was similar to membrane corruption caused by peptide effect. Penetrability increased due to the enlarged pore and dysfuction of membrane transporters, which ensured efficient killing of target bacteria.
Improving Zernike moments comparison for optimal similarity and rotation angle retrieval.
Revaud, Jérôme; Lavoué, Guillaume; Baskurt, Atilla
2009-04-01
Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability. However the classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments and loses the phase information. The novelty of our approach is to take advantage of the phase information in the comparison process while still preserving the invariance to rotation. This new Zernike comparator provides a more accurate similarity measure together with the optimal rotation angle between the patterns, while keeping the same complexity as the classical approach. This angle information is particularly of interest for many applications, including 3D scene understanding through images. Experiments demonstrate that our comparator outperforms the classical one in terms of similarity measure. In particular the robustness of the retrieval against noise and geometric deformation is greatly improved. Moreover, the rotation angle estimation is also more accurate than state-of-the-art algorithms.
An Algorithm for Fast Computation of 3D Zernike Moments for Volumetric Images
Directory of Open Access Journals (Sweden)
Khalid M. Hosny
2012-01-01
Full Text Available An algorithm was proposed for very fast and low-complexity computation of three-dimensional Zernike moments. The 3D Zernike moments were expressed in terms of exact 3D geometric moments where the later are computed exactly through the mathematical integration of the monomial terms over the digital image/object voxels. A new symmetry-based method was proposed to compute 3D Zernike moments with 87% reduction in the computational complexity. A fast 1D cascade algorithm was also employed to add more complexity reduction. The comparison with existing methods was performed, where the numerical experiments and the complexity analysis ensured the efficiency of the proposed method especially with image and objects of large sizes.
International Nuclear Information System (INIS)
Owango, M.O.; Sanda, I.A.; Lukuyu, B.A.; Omolo, J.O.; Masibili, M.
1999-01-01
A diagnostic survey and participatory rural appraisal were conducted to determine the potential feed value, mode of and constraints to the use of locally produced wet spent brewers' grains fed to dairy cattle. Structured questionnaire instruments, covering, household characteristics, dairy production, feeds and feeding and extension services were used. The survey was conducted by trained enumerators. The tools used in participatory rural appraisal were; semi-structured interview, ranking seasonal calendars labour profile and gender responsibilities.The main feed resources were Napier grass, green and dry maize stover, public land grasses and supplements consisting of Dairy meal, milling and agroindustrial by-products.Wet spent brewers' grain is one of the by-products.The main sources were Kenya Breweries Limited, Kuguru Food Processors and 'Busaa' dregs from the traditional brews. It was fed to dairy cows by (96.8%) of the households interviewed, either at milking in the mornings or evenings. Spent brewers grains was stored after collection from the sources by (87.2%) and (12.8%) of the households for one or more weeks respectively. Households interviewed perceived spent brewers grains to be comparable to available dairy meal and other energy feeds, and all the households feeding spent brewers grains reported that it increased milk yield in lactating cows. The farmers therefore, preferentially fed spent brewers grains to lactating and dry cows, heifers, calves and bulls respectively. However, only (1.7%)of the households interviewed received extension advice on the use of spent brewers' grains. The perception of the farmers/household was that spent brewers' grains is a valuable feed for dairy cattle and increased milk yield production, and maintained good body condition. However,limited information is available on the potential, mode of and constraints to the use of locally produced spent brewers' grains
Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror
Dou, Yimeng; Yuan, Qun; Gao, Zhishan; Yin, Huimin; Chen, Lu; Yao, Yanxia; Cheng, Jinlong
2018-06-01
Partial null interferometry without using any null optics is proposed to measure a concave freeform Zernike mirror. Oblique incidence on the freeform mirror is used to compensate for astigmatism as the main component in its figure, and to constrain the divergence of the test beam as well. The phase demodulated from the partial nulled interferograms is divided into low-frequency phase and high-frequency phase by Zernike polynomial fitting. The low-frequency surface figure error of the freeform mirror represented by the coefficients of Zernike polynomials is reconstructed from the low-frequency phase, applying the reverse optimization reconstruction technology in the accurate model of the interferometric system. The high-frequency surface figure error of the freeform mirror is retrieved from the high-frequency phase adopting back propagating technology, according to the updated model in which the low-frequency surface figure error has been superimposed on the sag of the freeform mirror. Simulations verified that this method is capable of testing a wide variety of astigmatism-dominated freeform mirrors due to the high dynamic range. The experimental result using our proposed method for a concave freeform Zernike mirror is consistent with the null test result employing the computer-generated hologram.
On the computation of the Nijboer-Zernike aberration integrals at arbitrary defocus
Janssen, A.J.E.M.; Braat, J.J.M.; Dirksen, P.
2004-01-01
We present a new computation scheme for the integral expressions describing the contributions of single aberrations to the diffraction integral in the context of an extended Nijboer-Zernike approach. Such a scheme, in the form of a power series involving the defocus parameter with coefficients given
The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long-Evans rats...
Czech Academy of Sciences Publication Activity Database
Farokhi, Sajad; Shamsuddin, S.M.; Sheikh, U.U.; Flusser, Jan; Khansari, M.; Jafari-Khouzani, K.
2014-01-01
Roč. 31, č. 1 (2014), s. 13-27 ISSN 1051-2004 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Zernike moments * Undecimated discrete wavelet transform * Decision fusion * Near infrared * Face recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.256, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0428536.pdf
Magnetic imaging with a Zernike-type phase plate in a transmission electron microscope
DEFF Research Database (Denmark)
Pollard, Shawn; Malac, Marek; Beleggia, Marco
2013-01-01
We demonstrate the use of a hole-free phase plate (HFPP) for magnetic imaging in transmission electron microscopy by mapping the domain structure in PrDyFeB samples. The HFPP, a Zernike-like imaging method, allows for detecting magnetic signals in-focus to correlate the sample crystal structure...... the reference wave distortion from long-range fields affecting electron holography....
An efficient approach for video action classification based on 3d Zernike moments
Lassoued , Imen; Zagrouba , Ezzedine; Chahir , Youssef
2011-01-01
International audience; Action recognition in video and still image is one of the most challenging research topics in pattern recognition and computer vision. This paper proposes a new method for video action classification based on 3D Zernike moments. These last ones aim to capturing both structural and temporal information of a time varying sequence. The originality of this approach consists to represent actions in video sequences by a three-dimension shape obtained from different silhouett...
On soft clipping of Zernike moments for deblurring and enhancement of optical point spread functions
Becherer, Nico; Jödicke, Hanna; Schlosser, Gregor; Hesser, Jürgen; Zeilfelder, Frank; Männer, Reinhard
2006-02-01
Blur and noise originating from the physical imaging processes degrade the microscope data. Accurate deblurring techniques require, however, an accurate estimation of the underlying point-spread function (PSF). A good representation of PSFs can be achieved by Zernike Polynomials since they offer a compact representation where low-order coefficients represent typical aberrations of optical wavefronts while noise is represented in higher order coefficients. A quantitative description of the noise distribution (Gaussian) over the Zernike moments of various orders is given which is the basis for the new soft clipping approach for denoising of PSFs. Instead of discarding moments beyond a certain order, those Zernike moments that are more sensitive to noise are dampened according to the measured distribution and the present noise model. Further, a new scheme to combine experimental and theoretical PSFs in Zernike space is presented. According to our experimental reconstructions, using the new improved PSF the correlation between reconstructed and original volume is raised by 15% on average cases and up to 85% in the case of thin fibre structures, compared to reconstructions where a non improved PSF was used. Finally, we demonstrate the advantages of our approach on 3D images of confocal microscopes by generating visually improved volumes. Additionally, we are presenting a method to render the reconstructed results using a new volume rendering method that is almost artifact-free. The new approach is based on a Shear-Warp technique, wavelet data encoding techniques and a recent approach to approximate the gray value distribution by a Super spline model.
PIZZA: a phase-induced zonal Zernike apodization designed for stellar coronagraphy
Martinache, Frantz
2004-08-01
I explore here the possibilities offered by the general formalism of coronagraphy for the very special case of phase contrast. This technique, invented by Zernike, is commonly used in microscopy, to see phase objects such as micro-organisms, and in strioscopy, to control the quality of optics polishing. It may find application in telescope pupil apodization with significant advantages over classical pupil apodization techniques, including high throughput and no off-axis resolution loss, which is essential for exoplanet imaging.
Carvalho, Luis Alberto
2005-02-01
Our main goal in this work was to develop an artificial neural network (NN) that could classify specific types of corneal shapes using Zernike coefficients as input. Other authors have implemented successful NN systems in the past and have demonstrated their efficiency using different parameters. Our claim is that, given the increasing popularity of Zernike polynomials among the eye care community, this may be an interesting choice to add complementing value and precision to existing methods. By using a simple and well-documented corneal surface representation scheme, which relies on corneal elevation information, one can generate simple NN input parameters that are independent of curvature definition and that are also efficient. We have used the Matlab Neural Network Toolbox (MathWorks, Natick, MA) to implement a three-layer feed-forward NN with 15 inputs and 5 outputs. A database from an EyeSys System 2000 (EyeSys Vision, Houston, TX) videokeratograph installed at the Escola Paulista de Medicina-Sao Paulo was used. This database contained an unknown number of corneal types. From this database, two specialists selected 80 corneas that could be clearly classified into five distinct categories: (1) normal, (2) with-the-rule astigmatism, (3) against-the-rule astigmatism, (4) keratoconus, and (5) post-laser-assisted in situ keratomileusis. The corneal height (SAG) information of the 80 data files was fit with the first 15 Vision Science and it Applications (VSIA) standard Zernike coefficients, which were individually used to feed the 15 neurons of the input layer. The five output neurons were associated with the five typical corneal shapes. A group of 40 cases was randomly selected from the larger group of 80 corneas and used as the training set. The NN responses were statistically analyzed in terms of sensitivity [true positive/(true positive + false negative)], specificity [true negative/(true negative + false positive)], and precision [(true positive + true
Nisius, Britta; Gohlke, Holger
2012-09-24
Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.
Czech Academy of Sciences Publication Activity Database
Podgorná, Eliška; Diallo, I.; Vangenot, Ch.; Sanchez-Mazas, A.; Sabbagh, A.; Černý, Viktor; Poloni, E. S.
2015-01-01
Roč. 15, č. 263 (2015) ISSN 1471-2148 R&D Projects: GA ČR GA13-37998S Institutional support: RVO:67985912 Keywords : NAT2 * acetylation polymorphism * African Sahel * pastoral nomads * subsistence mode * ecoregion * natural selection Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 3.406, year: 2015 http://www.biomedcentral.com/1471-2148/15/263
Protein-protein docking using region-based 3D Zernike descriptors.
Venkatraman, Vishwesh; Yang, Yifeng D; Sael, Lee; Kihara, Daisuke
2009-12-09
Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-alphaRMSD 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods.
Analyzing x-ray hotspot images with Ince-Gaussian modes
Kruse, Michael; Field, John; Nora, Ryan; Benedetti, Robin; Khan, Shahab; Ma, Tammy; Peterson, Luc; Spears, Brian
2017-10-01
X-ray images at the National Ignition Facility (NIF) provide important metrics regarding the shape of the hotspot along a given line-of-sight. The 17% contour from peak brightness is usually used to infer the size of the hotspot as well as determine shape perturbations quantified through the Legendre coefficients P2 and P4. Unfortunately features that lie inside the contour such as those that could arise from tent or fill-tube perturbations are not easily captured. An analysis that takes into account the two-dimensional nature of the x-ray image is desirable. Ince-Gaussian modes (for short: Ince) offer such an analysis and could provide a new way to encode and understand the images recorded at NIF. The Ince modes are the solutions to the paraxial wave equation expressed in elliptical coordinates and thus form an orthonormal basis. Due to their elliptical nature they are suitable for decomposing images that have a non-zero P2 or P4 coefficient. We show that the Ince modes can be used to uncover structure that is missed by the contour analysis and how the modes aid in compressing images produced in large ensemble calculations. Finally a comparison is made to the Zernike modes which form an orthonormal basis on a circular disk. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734741.
Image object recognition based on the Zernike moment and neural networks
Wan, Jianwei; Wang, Ling; Huang, Fukan; Zhou, Liangzhu
1998-03-01
This paper first give a comprehensive discussion about the concept of artificial neural network its research methods and the relations with information processing. On the basis of such a discussion, we expound the mathematical similarity of artificial neural network and information processing. Then, the paper presents a new method of image recognition based on invariant features and neural network by using image Zernike transform. The method not only has the invariant properties for rotation, shift and scale of image object, but also has good fault tolerance and robustness. Meanwhile, it is also compared with statistical classifier and invariant moments recognition method.
Analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field method
Directory of Open Access Journals (Sweden)
N.Yoshida
2007-09-01
Full Text Available An analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field (MOZ-SCF method is presented. MOZ-SCF theory is one of the theories to considering the solvent effects on the solute electronic structure in solution. [Yoshida N. et al., J. Chem. Phys., 2000, 113, 4974] Molecular geometries of water, formaldehyde, acetonitrile and acetone in water are optimized by analytical energy gradient formula. The results are compared with those from the polarizable continuum model (PCM, the reference interaction site model (RISM-SCF and the three dimensional (3D RISM-SCF.
The development of a revised version of multi-center molecular Ornstein-Zernike equation
Kido, Kentaro; Yokogawa, Daisuke; Sato, Hirofumi
2012-04-01
Ornstein-Zernike (OZ)-type theory is a powerful tool to obtain 3-dimensional solvent distribution around solute molecule. Recently, we proposed multi-center molecular OZ method, which is suitable for parallel computing of 3D solvation structure. The distribution function in this method consists of two components, namely reference and residue parts. Several types of the function were examined as the reference part to investigate the numerical robustness of the method. As the benchmark, the method is applied to water, benzene in aqueous solution and single-walled carbon nanotube in chloroform solution. The results indicate that fully-parallelization is achieved by utilizing the newly proposed reference functions.
Application of the Ornstein-Zernike formalism to polymer and copolymer blends
International Nuclear Information System (INIS)
Benmouna, M.
1988-09-01
The Ornstein Zernike formalism is shown to be applicable to polymer and copolymer blends. Direct correlation functions are obtained from the solution problem by using a simple procedure which was suggested before (M. Benmouna, H. Benoit and W. Wu, to be published in Macromolecules). This procedure consists essentially of replacing the volume fraction of solvent by the quantity φ c N c P c (q) where φ c , N c and P c (q) are the volume fraction, the degree of polymerization and the form factor as a function of momentum transfer q, respectively. (author). 9 refs
Russell, Christopher; Wei, Hanying; Zhang, Tielong
The sampling rate of the Venus Express fluxgate magnetometer was set so that it could register the 100 Hz signals previously reported by the electric antenna on the Pioneer Venus Orbiter. At least two minutes of each periapsis pass is devoted to recording at 128 Hz. Many of these passes do observe signals near 100 Hz, and these signals invariably have the properties expected for whistler-mode waves. They are nearly circularly polarized, and they propagate very closely to along the magnetic field. The waves are also only a fraction of a second in duration. They do not occur every orbit. The magnetic field is often nearly horizontal throughout the periapsis pass. When it is, no signals are seen. When the field deviates more than 15o from the horizontal, signals can reach the spacecraft but they again are not always present. The number 15o is quite similar to the size of the cone of non-propagation of the whistler-mode perpendicular to the magnetic field. Thus this observation, too, is consistent with a cloud level source of electric discharges whose electromagnetic radiation is refracted along the vertical upon entering the ionosphere. Only when and where this field is inclined to the horizontal can the signal enter the ionosphere. We continue to refine our estimate of the rate of lightning on Venus, but it is clear that the rate is very significant, comparable to activity in the terrestrial atmosphere.
Extended Nijboer-Zernike approach for the computation of optical point-spread functions.
Janssen, Augustus J E M
2002-05-01
New Bessel-series representations for the calculation of the diffraction integral are presented yielding the point-spread function of the optical system, as occurs in the Nijboer-Zernike theory of aberrations. In this analysis one can allow an arbitrary aberration and a defocus part. The representations are presented in full detail for the cases of coma and astigmatism. The analysis leads to stably converging results in the case of large aberration or defocus values, while the applicability of the original Nijboer-Zernike theory is limited mainly to wave-front deviations well below the value of one wavelength. Because of its intrinsic speed, the analysis is well suited to supplement or to replace numerical calculations that are currently used in the fields of (scanning) microscopy, lithography, and astronomy. In a companion paper [J. Opt. Soc. Am. A 19, 860 (2002)], physical interpretations and applications in a lithographic context are presented, a convergence analysis is given, and a comparison is made with results obtained by using a numerical package.
Directory of Open Access Journals (Sweden)
Meiyu Liang
2013-01-01
Full Text Available In order to improve the spatiotemporal resolution of the video sequences, a novel spatiotemporal super-resolution reconstruction model (STSR based on robust optical flow and Zernike moment is proposed in this paper, which integrates the spatial resolution reconstruction and temporal resolution reconstruction into a unified framework. The model does not rely on accurate estimation of subpixel motion and is robust to noise and rotation. Moreover, it can effectively overcome the problems of hole and block artifacts. First we propose an efficient robust optical flow motion estimation model based on motion details preserving, then we introduce the biweighted fusion strategy to implement the spatiotemporal motion compensation. Next, combining the self-adaptive region correlation judgment strategy, we construct a fast fuzzy registration scheme based on Zernike moment for better STSR with higher efficiency, and then the final video sequences with high spatiotemporal resolution can be obtained by fusion of the complementary and redundant information with nonlocal self-similarity between the adjacent video frames. Experimental results demonstrate that the proposed method outperforms the existing methods in terms of both subjective visual and objective quantitative evaluations.
Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li
2013-01-21
A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.
Comparison of organs' shapes with geometric and Zernike 3D moments.
Broggio, D; Moignier, A; Ben Brahim, K; Gardumi, A; Grandgirard, N; Pierrat, N; Chea, M; Derreumaux, S; Desbrée, A; Boisserie, G; Aubert, B; Mazeron, J-J; Franck, D
2013-09-01
The morphological similarity of organs is studied with feature vectors based on geometric and Zernike 3D moments. It is particularly investigated if outliers and average models can be identified. For this purpose, the relative proximity to the mean feature vector is defined, principal coordinate and clustering analyses are also performed. To study the consistency and usefulness of this approach, 17 livers and 76 hearts voxel models from several sources are considered. In the liver case, models with similar morphological feature are identified. For the limited amount of studied cases, the liver of the ICRP male voxel model is identified as a better surrogate than the female one. For hearts, the clustering analysis shows that three heart shapes represent about 80% of the morphological variations. The relative proximity and clustering analysis rather consistently identify outliers and average models. For the two cases, identification of outliers and surrogate of average models is rather robust. However, deeper classification of morphological feature is subject to caution and can only be performed after cross analysis of at least two kinds of feature vectors. Finally, the Zernike moments contain all the information needed to re-construct the studied objects and thus appear as a promising tool to derive statistical organ shapes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo
Cheng, Yuan-Chieh; Hsu, Ming-Ying; Peng, Wei-Jei; Hsu, Wei-Yao
2017-10-01
Recently, freeform surface widely using to the optical system; because it is have advance of optical image and freedom available to improve the optical performance. For freeform optical fabrication by integrating freeform optical design, precision freeform manufacture, metrology freeform optics and freeform compensate method, to modify the form deviation of surface, due to production process of freeform lens ,compared and provides more flexibilities and better performance. This paper focuses on the fabrication and correction of the free-form surface. In this study, optical freeform surface using multi-axis ultra-precision manufacturing could be upgrading the quality of freeform. It is a machine equipped with a positioning C-axis and has the CXZ machining function which is also called slow tool servo (STS) function. The freeform compensate method of Zernike polynomials results successfully verified; it is correction the form deviation of freeform surface. Finally, the freeform surface are measured experimentally by Ultrahigh Accurate 3D Profilometer (UA3P), compensate the freeform form error with Zernike polynomial fitting to improve the form accuracy of freeform.
International Nuclear Information System (INIS)
Freeborn, Danielle L.; McDaniel, Katherine L.; Moser, Virginia C.; Herr, David W.
2015-01-01
The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long–Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefon (triazole; 1 h), using dosages that produced approximately an ED 30 or an ED 50 –ED 80 change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action. - Highlights: • Pesticides with different modes of action have different effects on in vivo rodent EEG. • The EEG was also changed differently after single vs. repeated treatment with fipronil. • The data suggest that EEG may be used as an apical measure for detecting chemical effects on the central nervous system
Falkena, Henk-Jan
2011-01-01
Versie Definitieve rapportage - 30 mei 2011 Opdrachtgever Stuurgroep Duurzaamheid van de Rijksuniversiteit Groningen Adviescommissie RUG prof dr. H.C. Moll (voorzitter en contactpersoon) prof. dr. S. Brandenburg (hoofd accelerator group van het KVI) prof. dr. J.C. Hummelen (hoogleraar organische
Antunes, Elsa; Schumann, James; Brodie, Graham; Jacob, Mohan V; Schneider, Philip A
2017-07-01
The amount of biosolids increases every year, and social and environmental concerns are also rising due to heavy metals and pathogen contamination. Even though biosolids are considered as a waste material, they could be used as a precursor in several applications, especially in agriculture due to the presence of essential nutrients. Microwave assisted pyrolysis (MWAP) is a promising technology to safely manage biosolids, while producing value-added products, such as biochar, that can be used to improve soil fertility. This study examined the impact of pyrolysis temperature between 300 °C and 800 °C on the chemical and physical properties of biochar obtained from biosolids via MWAP. Preliminary phosphorus adsorption tests were carried out with the biochar produced from biosolids. This research demonstrated that pyrolysis temperature affects biochar specific surface area, ash and volatiles content, but does not impact heavily on the pH, chemical composition and crystalline phases of the resultant biochar. Biochar yield decreases as the pyrolysis temperature increases. Phosphorus adsorption capacity of biochar was approximately around 15 mg/g of biochar. Biochar resulting from MWAP is a potential candidate for land application with an important role in water and nutrient retention, due to the high surface area. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Zhe; Li, Weibo; Jiang, Jun; Zhuang, Xiran; Chen, Wei; Peng, Mei; Wang, Jianhua; Lu, Fan; Shen, Meixiao; Wang, Yuanyuan
2017-11-28
The study aimed to characterize the entire corneal topography and tomography for the detection of sub-clinical keratoconus (KC) with a Zernike application method. Normal subjects (n = 147; 147 eyes), sub-clinical KC patients (n = 77; 77 eyes), and KC patients (n = 139; 139 eyes) were imaged with the Pentacam HR system. The entire corneal data of pachymetry and elevation of both the anterior and posterior surfaces were exported from the Pentacam HR software. Zernike polynomials fitting was used to quantify the 3D distribution of the corneal thickness and surface elevation. The root mean square (RMS) values for each order and the total high-order irregularity were calculated. Multimeric discriminant functions combined with individual indices were built using linear step discriminant analysis. Receiver operating characteristic curves determined the diagnostic accuracy (area under the curve, AUC). The 3rd-order RMS of the posterior surface (AUC: 0.928) obtained the highest discriminating capability in sub-clinical KC eyes. The multimeric function, which consisted of the Zernike fitting indices of corneal posterior elevation, showed the highest discriminant ability (AUC: 0.951). Indices generated from the elevation of posterior surface and thickness measurements over the entire cornea using the Zernike method based on the Pentacam HR system were able to identify very early KC.
Braat, J.J.M.; Dirksen, P.; Janssen, A.J.E.M.; Haver, van S.; Nes, van de A.S.
2005-01-01
The judgment of the imaging quality of an optical system can be carried out by examining its through-focus intensity distribution. It has been shown in a previous paper that a scalar-wave analysis of the imaging process according to the extended Nijboer-Zernike theory allows the retrieval of the
Haver, van S.; Janssen, O.T.A.; Braat, J.J.M.; Janssen, A.J.E.M.; Urbach, H.P.; Pereira, S.F.
2008-01-01
In this paper we introduce a new mask imaging algorithm that is based on the source point integration method (or Abbe method). The method presented here distinguishes itself from existing methods by exploiting the through-focus imaging feature of the Extended Nijboer-Zernike (ENZ) theory of
Haver, van S.; Braat, J.J.M.; Janssen, A.J.E.M.; Janssen, O.T.A.; Pereira, S.F.
2009-01-01
We present details of a novel imaging algorithm based on the extended Nijboer-Zernike (ENZ) theory of diffraction. We derive integral expressions relating the electric field distribution in the entrance pupil of an optical system to the electric field in its focal region. The evaluation of these
Dekemper, Emmanuel; Fussen, Didier; Loodts, Nicolas; Neefs, Eddy
The ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) instrument is a major project of the Belgian Institute for Space Aeronomy (BIRA-IASB) in Brussels, Belgium. It has been designed to profit from the benefits of the limb scattering ge-ometry (vertical resolution, global coverage,...), while providing better accuracy on the tangent height knowledge than classical "knee" methods used by scanning spectrometers. The optical concept is based on 3 AOTF's (UV-Vis-NIR) responsible for the instantaneous spectral filtering of the incoming image (complete FOV larger than 100km x 100km at tangent point), ranging from 250nm to 1800nm, with a moderate resolution of a few nm and a typical acquisition time of 1-10s per image. While the primary goal of the instrument is the measurement of ozone with a good vertical resolution, the ability to record full images of the limb can lead to other applications, like solar occultations. With a pixel FOV of 200rad, the full high-sun image is formed of 45x45 pixels, which is sufficient for pattern recognition using moments analysis for instance. The Zernike polynomials form a complete othogonal set of functions over the unit circle. It is well suited for images showing circular shape. Any such image can then be decomposed into a finite set of weighted polynomials, the weighting is called the moments. Due to atmospheric refraction, the sun shape is modified during apparent sunsets and sunrises. The sun appears more flattened which leads to a modification of its zernike moment description. A link between the pressure or the temperature profile (equivalent to air density through the perfect gas law and the hydrostatic equation) and the Zernike moments of a given image can then be made and used to retrieve these atmospheric parameters, with the advantage that the whole sun is used and not only central or edge pixels. Some retrievals will be performed for different conditions and the feasibility of the method
Protein-protein docking using region-based 3D Zernike descriptors
Directory of Open Access Journals (Sweden)
Sael Lee
2009-12-01
Full Text Available Abstract Background Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. Results We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-αRMSD ≤ 2.5 Å within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. Conclusion We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for
Vasilchenko, A S; Vasilchenko, A V; Valyshev, A V; Rogozhin, E A
2018-02-08
Discovery of a novel bacteriocin is always an event in sciences, since cultivation of most bacterial species is a general problem in microbiology. This statement is reflected by the fact that number of bacteriocins is smaller for tenfold comparing to known antimicrobial peptides. We cultivated Enterococcus faecium on simplified medium to reduce amount of purification steps. This approach allows to purify the novel heavy weight bacteriocin produced by E. faecium ICIS 7. The novelty of this bacteriocin, named enterocin-7, was confirmed by N-terminal sequencing and by comparing the structural-functional properties with available data. Purified enterocin-7 is characterized by a sequence of amino acid residues having no homology in UniProt/SwissProt/TrEMBL databases: NH2 - Asp - Ala - His - Leu - Ser - Glu - Val - Ala - Glu - Arg - Phe - Glu - Asp - Leu - Gly. Isolated thermostable protein has a molecular mass of 65 kDa, which allows it to be classified into class III in bacteriocin classification schemes. Enterocin-7 displayed a broad spectrum of activity against some Gram-positive and Gram-negative microorganisms. Fluorescent microscopy and spectroscopy showed the permeabilizing mechanism of the action of enterocin-7, which is realized within a few minutes.
Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line
International Nuclear Information System (INIS)
Sesé, Luis M.
2016-01-01
Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.
Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line
Energy Technology Data Exchange (ETDEWEB)
Sesé, Luis M., E-mail: msese@ccia.uned.es [Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid (Spain)
2016-03-07
Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.
International Nuclear Information System (INIS)
Cui, J W; Tan, J B; Zhou, Y; Zhang, H
2007-01-01
This paper presents the Zernike moment based model developed to compensate edge location errors for further improvement of the vision measurement accuracy by compensating the slight changes resulting from sampling and establishing mathematic expressions for subpixel location of theoretical and actual edges which are either vertical to or at an angle with X-axis. Experimental results show that the proposed model can be used to achieve a vision measurement accuracy of up to 0.08 pixel while the measurement uncertainty is less than 0.36μm. It is therefore concluded that as a model which can be used to achieve a significant improvement of vision measurement accuracy, the proposed model is especially suitable for edge location of images with low contrast
Target recognition of ladar range images using even-order Zernike moments.
Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi
2012-11-01
Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.
Kihara, Daisuke; Sael, Lee; Chikhi, Rayan; Esquivel-Rodriguez, Juan
2011-09-01
The tertiary structures of proteins have been solved in an increasing pace in recent years. To capitalize the enormous efforts paid for accumulating the structure data, efficient and effective computational methods need to be developed for comparing, searching, and investigating interactions of protein structures. We introduce the 3D Zernike descriptor (3DZD), an emerging technique to describe molecular surfaces. The 3DZD is a series expansion of mathematical three-dimensional function, and thus a tertiary structure is represented compactly by a vector of coefficients of terms in the series. A strong advantage of the 3DZD is that it is invariant to rotation of target object to be represented. These two characteristics of the 3DZD allow rapid comparison of surface shapes, which is sufficient for real-time structure database screening. In this article, we review various applications of the 3DZD, which have been recently proposed.
2D/3D registration using a rotation-invariant cost function based on Zernike moments
Birkfellner, Wolfgang; Yang, Xinhui; Burgstaller, Wolfgang; Baumann, Bernard; Jacob, Augustinus L.; Niederer, Peter F.; Regazzoni, Pietro; Messmer, Peter
2004-05-01
We present a novel in-plane rotation invariant cost function for 2D/3D registration utilizing projection-invariant transformation properties and the decomposition of the X-ray nad the DRR under comparision into orhogonal Zernike moments. As a result, only five dof have to be optimized, and the number of iteration necessary for registration can be significantly reduced. Results in a phantom study show that an accuracy of approximately 0.7° and 2 mm can be achieved using this method. We conclude that reduction of coupled dof and usage of linear independent coefficients for cost function evaluation provide intersting new perspectives for the field of 2D/3D registration.
Potential for protein surface shape analysis using spherical harmonics and 3D Zernike descriptors.
Venkatraman, Vishwesh; Sael, Lee; Kihara, Daisuke
2009-01-01
With structure databases expanding at a rapid rate, the task at hand is to provide reliable clues to their molecular function and to be able to do so on a large scale. This, however, requires suitable encodings of the molecular structure which are amenable to fast screening. To this end, moment-based representations provide a compact and nonredundant description of molecular shape and other associated properties. In this article, we present an overview of some commonly used representations with specific focus on two schemes namely spherical harmonics and their extension, the 3D Zernike descriptors. Key features and differences of the two are reviewed and selected applications are highlighted. We further discuss recent advances covering aspects of shape and property-based comparison at both global and local levels and demonstrate their applicability through some of our studies.
Zernike phase contrast cryo-electron tomography of whole bacterial cells.
Guerrero-Ferreira, Ricardo C; Wright, Elizabeth R
2014-01-01
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. Copyright © 2013 Elsevier Inc. All rights reserved.
Alzheimer's Disease Detection by Pseudo Zernike Moment and Linear Regression Classification.
Wang, Shui-Hua; Du, Sidan; Zhang, Yin; Phillips, Preetha; Wu, Le-Nan; Chen, Xian-Qing; Zhang, Yu-Dong
2017-01-01
This study presents an improved method based on "Gorji et al. Neuroscience. 2015" by introducing a relatively new classifier-linear regression classification. Our method selects one axial slice from 3D brain image, and employed pseudo Zernike moment with maximum order of 15 to extract 256 features from each image. Finally, linear regression classification was harnessed as the classifier. The proposed approach obtains an accuracy of 97.51%, a sensitivity of 96.71%, and a specificity of 97.73%. Our method performs better than Gorji's approach and five other state-of-the-art approaches. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Energy Technology Data Exchange (ETDEWEB)
Freeborn, Danielle L., E-mail: Freeborn.danielle@epa.gov; McDaniel, Katherine L., E-mail: McDaniel.kathy@epa.gov; Moser, Virginia C., E-mail: Moser.ginger@epa.gov; Herr, David W., E-mail: Herr.david@epa.gov
2015-01-15
The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long–Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefon (triazole; 1 h), using dosages that produced approximately an ED{sub 30} or an ED{sub 50}–ED{sub 80} change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action. - Highlights: • Pesticides with different modes of action have different effects on in vivo rodent EEG. • The EEG was also changed differently after single vs. repeated treatment with fipronil. • The data suggest that EEG may be used as an apical measure for detecting chemical effects on the central nervous system.
Belguesmia, Y; Choiset, Y; Prévost, H; Dalgalarrondo, M; Chobert, J-M; Drider, D
2010-01-01
The aim of this research was to purify and characterize the mode of action of enterocin S37, a bacteriocin produced by Enterococcus faecalis S37, a strain recently isolated from the chicken feces. Enterocin S37 has a molecular weight comprised between 4 and 5 kDa. It remained active after 1 h at 80(o)C and at pH values ranging from 4.0 to 9.0. Furthermore, cell-free supernatant of Enterococcus faecalis S37 and purified enterocin S37 were active against Gram-positive bacteria including Listeria monocytogenes EGDe, L. innocua F, Enterococcus faecalis JH2-2, and Lactobacillus brevis F145. The purification of enterocin S37 was performed by ammonium sulfate precipitation followed up by hydrophobic-interaction chromatography procedures. Treatment of enterocin S37 with proteinase K, alpha-chymotrypsin, and papain confirmed its proteinaceous nature, while its treatment with lysozyme and lipase resulted in no alteration of activity. Enterocin S37 is hydrophobic, anti-Listeria and likely acting by depletion of intracellular K(+) ions upon action on K(ATP) channels. This study contributed to gain more insights into the mode of action of enterocins.
Directory of Open Access Journals (Sweden)
Y. Belguesmia
2010-01-01
Full Text Available The aim of this research was to purify and characterize the mode of action of enterocin S37, a bacteriocin produced by Enterococcus faecalis S37, a strain recently isolated from the chicken feces. Enterocin S37 has a molecular weight comprised between 4 and 5 kDa. It remained active after 1 h at 80oC and at pH values ranging from 4.0 to 9.0. Furthermore, cell-free supernatant of Enterococcus faecalis S37 and purified enterocin S37 were active against Gram-positive bacteria including Listeria monocytogenes EGDe, L. innocua F, Enterococcus faecalis JH2-2, and Lactobacillus brevis F145. The purification of enterocin S37 was performed by ammonium sulfate precipitation followed up by hydrophobic-interaction chromatography procedures. Treatment of enterocin S37 with proteinase K, -chymotrypsin, and papain confirmed its proteinaceous nature, while its treatment with lysozyme and lipase resulted in no alteration of activity. Enterocin S37 is hydrophobic, anti-Listeria and likely acting by depletion of intracellular K+ ions upon action on KATP channels. This study contributed to gain more insights into the mode of action of enterocins.
Palma, V.; Carli, M.; Neri, A.
2011-02-01
In this paper a Multi-view Distributed Video Coding scheme for mobile applications is presented. Specifically a new fusion technique between temporal and spatial side information in Zernike Moments domain is proposed. Distributed video coding introduces a flexible architecture that enables the design of very low complex video encoders compared to its traditional counterparts. The main goal of our work is to generate at the decoder the side information that optimally blends temporal and interview data. Multi-view distributed coding performance strongly depends on the side information quality built at the decoder. At this aim for improving its quality a spatial view compensation/prediction in Zernike moments domain is applied. Spatial and temporal motion activity have been fused together to obtain the overall side-information. The proposed method has been evaluated by rate-distortion performances for different inter-view and temporal estimation quality conditions.
Dong, Shuo; Kettenbach, Joachim; Hinterleitner, Isabella; Bergmann, Helmar; Birkfellner, Wolfgang
2008-01-01
Current merit functions for 2D/3D registration usually rely on comparing pixels or small regions of images using some sort of statistical measure. Problems connected to this paradigm the sometimes problematic behaviour of the method if noise or artefacts (for instance a guide wire) are present on the projective image. We present a merit function for 2D/3D registration which utilizes the decomposition of the X-ray and the DRR under comparison into orthogonal Zernike moments; the quality of the match is assessed by an iterative comparison of expansion coefficients. Results in a imaging study on a physical phantom show that--compared to standard cross--correlation the Zernike moment based merit function shows better robustness if histogram content in images under comparison is different, and that time expenses are comparable if the merit function is constructed out of a few significant moments only.
Czech Academy of Sciences Publication Activity Database
Farokhi, S.; Shamsuddin, S. M.; Flusser, Jan; Sheikh, U. U.; Khansari, M.; Jafari-Khouzani, K.
2013-01-01
Roč. 22, č. 1 (2013), s. 1-11 ISSN 1017-9909 R&D Projects: GA ČR GAP103/11/1552 Keywords : face recognition * infrared imaging * image moments Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.850, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/flusser-rotation and noise invariant near-infrared face recognition by means of zernike moments and spectral regression discriminant analysis.pdf
Osipova, Irina Y.; Chyzh, Igor H.
2001-06-01
The influence of eye jumps on the accuracy of estimation of Zernike coefficients from eye transverse aberration measurements was investigated. By computer modeling the ametropy and astigmatism have been examined. The standard deviation of the wave aberration function was calculated. It was determined that the standard deviation of the wave aberration function achieves the minimum value if the number of scanning points is equal to the number of eye jumps in scanning period. The recommendations for duration of measurement were worked out.
Directory of Open Access Journals (Sweden)
Gnoffo B.
2016-01-01
Full Text Available The results of the analysis of the reactions 78,86Kr +40,48 Ca at 10 AMeV are presented. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS in Catania by using the 4π multidetector CHIMERA, with beams delivered by the Superconductive Cyclotron. The competition among the various disintegration paths and in particular the isospin effects on the decay modes of the produced composite systems are investigated; this provides information about fundamental nuclear quantities such as level density, fission barrier and viscosity. Different isotopic composition and relative richness are observed among the reaction products of the two systems. An odd-even staggering effect is present in the charge distributions, in particular for the light fragments produced by the neutron-poor system. The kinematical characteristics of the IMF seem to indicate a high degree of the relaxation of the formed system. Besides, global features analysis seems to show some differences in the contribution arising from the various reaction mechanisms for the two reactions.
Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction.
Daberdaku, Sebastian; Ferrari, Carlo
2018-02-06
The correct determination of protein-protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein-Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction
Application of 3D Zernike descriptors to shape-based ligand similarity searching
Directory of Open Access Journals (Sweden)
Venkatraman Vishwesh
2009-12-01
Full Text Available Abstract Background The identification of promising drug leads from a large database of compounds is an important step in the preliminary stages of drug design. Although shape is known to play a key role in the molecular recognition process, its application to virtual screening poses significant hurdles both in terms of the encoding scheme and speed. Results In this study, we have examined the efficacy of the alignment independent three-dimensional Zernike descriptor (3DZD for fast shape based similarity searching. Performance of this approach was compared with several other methods including the statistical moments based ultrafast shape recognition scheme (USR and SIMCOMP, a graph matching algorithm that compares atom environments. Three benchmark datasets are used to thoroughly test the methods in terms of their ability for molecular classification, retrieval rate, and performance under the situation that simulates actual virtual screening tasks over a large pharmaceutical database. The 3DZD performed better than or comparable to the other methods examined, depending on the datasets and evaluation metrics used. Reasons for the success and the failure of the shape based methods for specific cases are investigated. Based on the results for the three datasets, general conclusions are drawn with regard to their efficiency and applicability. Conclusion The 3DZD has unique ability for fast comparison of three-dimensional shape of compounds. Examples analyzed illustrate the advantages and the room for improvements for the 3DZD.
Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.
Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F
2011-03-01
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.
Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2012-06-14
A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.
Application of 3D Zernike descriptors to shape-based ligand similarity searching.
Venkatraman, Vishwesh; Chakravarthy, Padmasini Ramji; Kihara, Daisuke
2009-12-17
The identification of promising drug leads from a large database of compounds is an important step in the preliminary stages of drug design. Although shape is known to play a key role in the molecular recognition process, its application to virtual screening poses significant hurdles both in terms of the encoding scheme and speed. In this study, we have examined the efficacy of the alignment independent three-dimensional Zernike descriptor (3DZD) for fast shape based similarity searching. Performance of this approach was compared with several other methods including the statistical moments based ultrafast shape recognition scheme (USR) and SIMCOMP, a graph matching algorithm that compares atom environments. Three benchmark datasets are used to thoroughly test the methods in terms of their ability for molecular classification, retrieval rate, and performance under the situation that simulates actual virtual screening tasks over a large pharmaceutical database. The 3DZD performed better than or comparable to the other methods examined, depending on the datasets and evaluation metrics used. Reasons for the success and the failure of the shape based methods for specific cases are investigated. Based on the results for the three datasets, general conclusions are drawn with regard to their efficiency and applicability. The 3DZD has unique ability for fast comparison of three-dimensional shape of compounds. Examples analyzed illustrate the advantages and the room for improvements for the 3DZD.
Dai, Guang-ming; Campbell, Charles E; Chen, Li; Zhao, Huawei; Chernyak, Dimitri
2009-01-20
In wavefront-driven vision correction, ocular aberrations are often measured on the pupil plane and the correction is applied on a different plane. The problem with this practice is that any changes undergone by the wavefront as it propagates between planes are not currently included in devising customized vision correction. With some valid approximations, we have developed an analytical foundation based on geometric optics in which Zernike polynomials are used to characterize the propagation of the wavefront from one plane to another. Both the boundary and the magnitude of the wavefront change after the propagation. Taylor monomials were used to realize the propagation because of their simple form for this purpose. The method we developed to identify changes in low-order aberrations was verified with the classical vertex correction formula. The method we developed to identify changes in high-order aberrations was verified with ZEMAX ray-tracing software. Although the method may not be valid for highly irregular wavefronts and it was only proven for wavefronts with low-order or high-order aberrations, our analysis showed that changes in the propagating wavefront are significant and should, therefore, be included in calculating vision correction. This new approach could be of major significance in calculating wavefront-driven vision correction whether by refractive surgery, contact lenses, intraocular lenses, or spectacles.
van Haver, S.; Janssen, A. J. E. M.
2013-07-01
The computational methods for the diffraction integrals that occur in the Extended Nijboer-Zernike (ENZ-) approach to circular, aberrated, defocused optical systems are reviewed and updated. In the ENZ-approach, the Debye approximation of Rayleigh's integral for the through-focus, complex, point-spread function is evaluated in semi-analytic form. To this end, the generalized pupil function, comprising phase aberrations as well as amplitude non-uniformities, is assumed to be expanded into a series of Zernike circle polynomials, and the contribution of each of these Zernike terms to the diffraction integral is expressed in the form of a rapidly converging series (containing power functions and/or Bessel functions of various kinds). The procedure of expressing the through-focus point-spread function in terms of Zernike expansion coefficients of the pupil function can be reversed and has led to the ENZ-method of retrieval of pupil functions from measured through-focus (inte! nsity) point-spread functions. The review and update concern the computation for systems ranging from as basic as having low NA and small defocus parameter to high-NA systems, with vector fields and polarization, meant for imaging of extended objects into a multi-layered focal region. In the period 2002-2010, the evolution of the form of the diffraction integral (DI) was dictated by the agenda of the ENZ-team in which a next instance of the DI was handled by amending the computation scheme of the previous one. This has resulted into a variety of ad hoc measures, lack of transparency of the schemes, and sometimes prohibitively slow computer codes. It is the aim of the present paper to reconstruct the whole building of computation methods, using consistently more advanced mathematical tools. These tools are -explicit Zernike expansion of the focal factor in the DI, -Clebsch-Gordan coefficients for the omnipresent problem of linearizing products ofZernike circle polynomials, -recursions for Bessel
Directory of Open Access Journals (Sweden)
Pirrone S.
2016-01-01
Full Text Available The study of the decay modes competition of the compound systems produced in the collisions 78Kr+40Ca and 86Kr+48Ca at 10AMeV is presented. In particular, the N/Z entrance channel influence on the decay paths of the compound systems, directly connected to the isospin influence, is investigated. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS in Catania by using the 4π multi-detector CHIMERA. Charge, mass, angular distributions and kinematical features of the reaction products were studied. The analysis shows some differences in the contribution arising from the various reaction mechanisms for the neutron poor and neutron rich systems. Comparison with theoretical statistical and dynamical models are presented for the two systems. Besides a study of the influence of the energy on the entrance channel is performed for the 78Kr+40Ca reaction, by comparing the results of this experiment to those obtained for the same system at 5.5 AMeV with the INDRA device at GANIL.
Fink, Wolfgang; Micol, Daniel
2006-01-01
We describe a computer eye model that allows for aspheric surfaces and a three-dimensional computer-based ray-tracing technique to simulate optical properties of the human eye and visual perception under various eye defects. Eye surfaces, such as the cornea, eye lens, and retina, are modeled or approximated by a set of Zernike polynomials that are fitted to input data for the respective surfaces. A ray-tracing procedure propagates light rays using Snell’s law of refraction from an input objec...
Han, Jinzhi; Gao, Peng; Zhao, Shengming; Bie, Xiaomei; Lu, Zhaoxin; Zhang, Chong; Lv, Fengxia
2017-01-06
LI-F type peptides (AMP-jsa9) produced by Paenibacillus polymyxa JSa-9 are a group of cyclic lipodepsipeptide antibiotics that exhibit a broad antimicrobial spectrum against Gram-positive bacteria and filamentous fungi, especially Bacillus cereus and Fusarium moniliforme. In this study, to better understand the antibacterial mechanism of AMP-jsa9 against B. cereus, the ultrastructure of AMP-jsa9-treated B. cereus cells was observed by both atomic force microscopy and transmission electron microscopy, and quantitative proteomic analysis was performed on proteins extracted from treated and untreated bacterial cells by using isobaric tag for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to access differentially expressed proteins. Furthermore, multiple experiments were conducted to validate the results of the proteomic analysis, including determinations of ATP, NAD (+) H, NADP (+) H, reactive oxygen species (ROS), the activities of catalase (CAT) and superoxide dismutase (SOD), and the relative expression of target genes by quantitative real-time PCR. Bacterial cells exposed to AMP-jsa9 showed irregular surfaces with bleb projections and concaves; we hypothesize that AMP-jsa9 penetrated the cell wall and was anchored on the cytoplasmic membrane and that ROS accumulated in the cell membrane after treatment with AMP-jsa9, modulating the bacterial membrane properties and increasing membrane permeability. Consequently, the blebs were formed on the cell wall by the impulsive force of the leakage of intercellular contents. iTRAQ-based proteomic analysis detected a total of 1317 proteins, including 176 differentially expressed proteins (75 upregulated (fold >2) and 101 downregulated (fold AMP-jsa9 action against B. cereus can be summarized as: (i) inhibition of bacterial sporulation, thiamine biosynthesis, energy metabolism, DNA transcription and translation, and cell wall biosynthesis, through direct regulation of protein levels; and (ii
Reiner, A; Høye, J S
2005-12-01
The hierarchical reference theory and the self-consistent Ornstein-Zernike approximation are two liquid state theories that both furnish a largely satisfactory description of the critical region as well as phase coexistence and the equation of state in general. Furthermore, there are a number of similarities that suggest the possibility of a unification of both theories. As a first step towards this goal, we consider the problem of combining the lowest order gamma expansion result for the incorporation of a Fourier component of the interaction with the requirement of consistency between internal and free energies, leaving aside the compressibility relation. For simplicity, we restrict ourselves to a simplified lattice gas that is expected to display the same qualitative behavior as more elaborate models. It turns out that the analytically tractable mean spherical approximation is a solution to this problem, as are several of its generalizations. Analysis of the characteristic equations shows the potential for a practical scheme and yields necessary conditions that any closure to the Ornstein-Zernike relation must fulfill for the consistency problem to be well posed and to have a unique differentiable solution. These criteria are expected to remain valid for more general discrete and continuous systems, even if consistency with the compressibility route is also enforced where possible explicit solutions will require numerical evaluations.
Saraee, Mahdieh B; Korayem, Moharam H
2015-08-07
Determining the motion modes and the exact position of a particle displaced during the manipulation process is of special importance. This issue becomes even more important when the studied particles are biological micro/nanoparticles and the goals of manipulation are the transfer of these particles within body cells, repair of cancerous cells and the delivery of medication to damaged cells. However, due to the delicate nature of biological nanoparticles and their higher vulnerability, by obtaining the necessary force of manipulation for the considered motion mode, we can prevent the sample from interlocking with or sticking to the substrate because of applying a weak force or avoid damaging the sample due to the exertion of excessive force. In this paper, the dynamic behaviors and the motion modes of biological micro/nanoparticles such as DNA, yeast, platelet and bacteria due to the 3D manipulation effect have been investigated. Since the above nanoparticles generally have a cylindrical shape, the cylindrical contact models have been employed in an attempt to more precisely model the forces exerted on the nanoparticle during the manipulation process. Also, this investigation has performed a comprehensive modeling and simulation of all the possible motion modes in 3D manipulation by taking into account the eccentricity of the applied load on the biological nanoparticle. The obtained results indicate that unlike the macroscopic scale, the sliding of nanoparticle on substrate in nano-scale takes place sooner than the other motion modes and that the spinning about the vertical and transverse axes and the rolling of nanoparticle occur later than the other motion modes. The simulation results also indicate that the applied force necessary for the onset of nanoparticle movement and the resulting motion mode depend on the size and aspect ratio of the nanoparticle. Copyright © 2015 Elsevier Ltd. All rights reserved.
van Haver, Sven; Janssen, Olaf T. A.; Braat, Joseph J. M.; Janssen, Augustus J. E. M.; Urbach, H. Paul; Pereira, Silvania F.
2008-03-01
In this paper we introduce a new mask imaging algorithm that is based on the source point integration method (or Abbe method). The method presented here distinguishes itself from existing methods by exploiting the through-focus imaging feature of the Extended Nijboer-Zernike (ENZ) theory of diffraction. An introduction to ENZ-theory and its application in general imaging is provided after which we describe the mask imaging scheme that can be derived from it. The remainder of the paper is devoted to illustrating the advantages of the new method over existing methods (Hopkins-based). To this extent several simulation results are included that illustrate advantages arising from: the accurate incorporation of isolated structures, the rigorous treatment of the object (mask topography) and the fully vectorial through-focus image formation of the ENZ-based algorithm.
Shape descriptors for mode-shape recognition and model updating
International Nuclear Information System (INIS)
Wang, W; Mottershead, J E; Mares, C
2009-01-01
The most widely used method for comparing mode shapes from finite elements and experimental measurements is the Modal Assurance Criterion (MAC), which returns a single numerical value and carries no explicit information on shape features. New techniques, based on image processing (IP) and pattern recognition (PR) are described in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD), presented in this article, are the most popular shape descriptors having properties that include efficiency of expression, robustness to noise, invariance to geometric transformation and rotation, separation of local and global shape features and computational efficiency. The comparison of mode shapes is readily achieved by assembling the shape features of each mode shape into multi-dimensional shape feature vectors (SFVs) and determining the distances separating them.
Projahn, Michaela; Daehre, Katrin; Roesler, Uwe; Friese, Anika
2017-01-01
Antimicrobial resistance through extended-spectrum beta-lactamases (ESBLs) and transferable (plasmid-encoded) cephamycinases (pAmpCs) represents an increasing problem in human and veterinary medicine. The presence of ESBL-/pAmpC-producing commensal enterobacteria in farm animals, such as broiler chickens, is considered one possible source of food contamination and could therefore also be relevant for human colonization. Studies on transmission routes along the broiler production chain showed that 1-day-old hatchlings are already affected. In this study, ESBL-/pAmpC-positive broiler parent flocks and their corresponding eggs, as well as various environmental and air samples from the hatchery, were analyzed. The eggs were investigated concerning ESBL-/pAmpC-producing enterobacteria on the outer eggshell surface (before/after disinfection), the inner eggshell surface, and the egg content. Isolates were analyzed concerning their species, their phylogroup in the case of Escherichia coli strains, the respective resistance genes, and the phenotypical antibiotic resistance. Of the tested eggs, 0.9% (n = 560) were contaminated on their outer shell surface. Further analyses using pulsed-field gel electrophoresis showed a relationship of these strains to those isolated from the corresponding parent flocks, which demonstrates a pseudo-vertical transfer of ESBL-/pAmpC-producing enterobacteria into the hatchery. Resistant enterobacteria were also found in environmental samples from the hatchery, such as dust or surfaces which could pose as a possible contamination source for the hatchlings. All 1-day-old chicks tested negative directly after hatching. The results show a possible entry of ESBL-/pAmpC-producing enterobacteria from the parent flocks into the hatchery; however, the impact of the hatchery on colonization of the hatchlings seems to be low. ESBL-/pAmpC-producing enterobacteria occur frequently in broiler-fattening farms. Recent studies investigated the prevalence and
Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru
2012-12-01
Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.
Vasilchenko, Alexey S; Rogozhin, Eugene A; Valyshev, Alexander V
2017-06-01
The aim of this work was to purify and characterize a bacteriocin-like antimicrobial substance produced by an antagonistic active strain of Enterococcus faecium. A novel bacteriocin-like inhibitory substance (BLIS) produced by the E. faecium ICIS 8 strain was purified and characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and N-terminal amino acid sequencing revealed the following partial sequence: NH 2 -APKEKCFPKYCV. The proteinaceous nature of purified BLIS was assessed by treatment with proteolytic enzyme. Studies of the action of BLIS using bacteriological and bioluminescence assays revealed a dose-dependent inhibition of Listeria monocytogenes 88BK and Escherichia coli K12 TG1 lac::lux viability. The interaction of the BLIS with the bacterial surface led to the compensation of a negative charge value, as shown by zeta-potential measurements. Assessments of membrane integrity using fluorescent probes and atomic force microscopy revealed the permeabilization of the cellular barrier structures in both L. monocytogenes and E. coli. The novel BLIS from E. faecium ICIS 8 was characterized by a unique primary peptide sequence and exerted bactericidal activity against L. monocytogenes and E. coli by disrupting membrane integrity.
Amokrane, S; Ayadim, A; Malherbe, J G
2005-11-01
A simple modification of the reference hypernetted chain (RHNC) closure of the multicomponent Ornstein-Zernike equations with bridge functions taken from Rosenfeld's hard-sphere bridge functional is proposed. Its main effect is to remedy the major limitation of the RHNC closure in the case of highly asymmetric mixtures--the wide domain of packing fractions in which it has no solution. The modified closure is also much faster, while being of similar complexity. This is achieved with a limited loss of accuracy, mainly for the contact value of the big sphere correlation functions. Comparison with simulation shows that inside the RHNC no-solution domain, it provides a good description of the structure, while being clearly superior to all the other closures used so far to study highly asymmetric mixtures. The generic nature of this closure and its good accuracy combined with a reduced no-solution domain open up the possibility to study the phase diagram of complex fluids beyond the hard-sphere model.
Braat, Joseph; Dirksen, Peter; Janssen, Augustus J E M
2002-05-01
We assess the validity of an extended Nijboer-Zernike approach [J. Opt. Soc. Am. A 19, 849 (2002)], based on ecently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems. These new series representations yield a flexible means to compute optical point-spread functions, both accurately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the accuracy, as opposed to the more commonly used numerical packages based on strictly numerical integration methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike objects but can also be used for extended objects under various illumination conditions. The calculation schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude terms that contribute to the final image intensity function.
Directory of Open Access Journals (Sweden)
Ahmadi Majid
2003-01-01
Full Text Available This paper introduces a novel method for the recognition of human faces in digital images using a new feature extraction method that combines the global and local information in frontal view of facial images. Radial basis function (RBF neural network with a hybrid learning algorithm (HLA has been used as a classifier. The proposed feature extraction method includes human face localization derived from the shape information. An efficient distance measure as facial candidate threshold (FCT is defined to distinguish between face and nonface images. Pseudo-Zernike moment invariant (PZMI with an efficient method for selecting moment order has been used. A newly defined parameter named axis correction ratio (ACR of images for disregarding irrelevant information of face images is introduced. In this paper, the effect of these parameters in disregarding irrelevant information in recognition rate improvement is studied. Also we evaluate the effect of orders of PZMI in recognition rate of the proposed technique as well as RBF neural network learning speed. Simulation results on the face database of Olivetti Research Laboratory (ORL indicate that the proposed method for human face recognition yielded a recognition rate of 99.3%.
Ikeguchi, Mitsunori; Doi, Junta
1995-09-01
The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.
Hosogi, Naoki; Shigematsu, Hideki; Terashima, Hiroyuki; Homma, Michio; Nagayama, Kuniaki
2011-01-01
Vibrio alginolyticus use flagella to swim. A flagellum consists of a filament, hook and basal body. The basal body is made up of a rod and several ring structures. This study investigates the structure of the T ring which is a unique component of the V. alginolyticus sodium ion-driven flagellar basal body. Using Zernike phase contrast (ZPC) cryo-electron tomography, we compared the 3D structures of purified hook-basal bodies (HBB) from a wild-type strain (KK148) and a deletion mutant lacking MotX and MotY (TH3), which are thought to form the T ring. ZPC images of HBBs had highly improved signal-to-noise ratio compared to conventional phase contrast images. We observed the outline of the HBBs from strains KK148 and TH3, and the TH3 mutant was missing its T ring. In the wild-type strain, the T ring was beneath the LP ring and seemed to form a ring shape with diameter of 32 nm. Copyright © 2010 Elsevier Inc. All rights reserved.
Microwave plasma mode conversion
International Nuclear Information System (INIS)
Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.
1985-01-01
The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt
Izdebski, Krzysztof; Ward, Ronald R.; Yan, Yuling
2012-02-01
HSDI provides a whole new way to investigate visually intra-laryngeal behavior and posturing during phonation by providing detailed real-time information about laryngeal biomechanics that include observations about mucosal wave, wave motion directionality, glottic area wave form, asymmetry of vibrations within and across vocal folds and contact area of the glottis including posterior commissure closure. These observations are fundamental to our understanding and modeling of both normal and disordered phonation. In this preliminary report we focus on direct HSDI in vivo observations of not only the glottic region, but also on the entire supraglottic laryngeal posturing during fry, breathy/hiss and over-pressured phonation modes produced in a non-pathological settings. Analysis included spatio-temporal vibration patterns of vocal folds, multi-line kymograms, spectral PFFT analysis, and Nyquist spatio-temporal plots. The presented examples reveal that supraglottic contraction assists in prolonged closed phase of the vibratory cycle, and that prolonged closed phase is longest in fry and overpressure and shortest albeit complex in hiss. Hiss also allows for vocal fold vibration despite glottis separation. These findings need to be compared to pathologic phonation representing the three voice modes to derive at better differential diagnosis.
Carozzi, T. D.; Woan, G.
2009-05-01
We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.
Riccardi, Alessandro; Petkov, Todor Sergueev; Ferri, Gianluca; Masotti, Matteo; Campanini, Renato
2011-04-01
The authors presented a novel system for automated nodule detection in lung CT exams. The approach is based on (1) a lung tissue segmentation preprocessing step, composed of histogram thresholding, seeded region growing, and mathematical morphology; (2) a filtering step, whose aim is the preliminary detection of candidate nodules (via 3D fast radial filtering) and estimation of their geometrical features (via scale space analysis); and (3) a false positive reduction (FPR) step, comprising a heuristic FPR, which applies thresholds based on geometrical features, and a supervised FPR, which is based on support vector machines classification, which in turn, is enhanced by a feature extraction algorithm based on maximum intensity projection processing and Zernike moments. The system was validated on 154 chest axial CT exams provided by the lung image database consortium public database. The authors obtained correct detection of 71% of nodules marked by all radiologists, with a false positive rate of 6.5 false positives per patient (FP/patient). A higher specificity of 2.5 FP/patient was reached with a sensitivity of 60%. An independent test on the ANODE09 competition database obtained an overall score of 0.310. The system shows a novel approach to the problem of lung nodule detection in CT scans: It relies on filtering techniques, image transforms, and descriptors rather than region growing and nodule segmentation, and the results are comparable to those of other recent systems in literature and show little dependency on the different types of nodules, which is a good sign of robustness.
Larsson, Anders; Gustavsson, Johan S.
The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.
Pavlov, Al. A.; Shevchenko, A. M.; Khotyanovsky, D. V.; Pavlov, A. A.; Shmakov, A. S.; Golubev, M. P.
2017-10-01
We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.
International Nuclear Information System (INIS)
Liu, Yang; Chen, Zhenyu; Yang, Zhile; Li, Kang; Tan, Jiubin
2016-01-01
The accuracy of surface measurement determines the manufacturing quality of membrane mirrors. Thus, an efficient and accurate measuring method is critical in membrane mirror fabrication. This paper formulates this measurement issue as a surface reconstruction problem and employs two-stage trained Zernike polynomials as an inline measuring tool to solve the optical surface measurement problem in the membrane mirror manufacturing process. First, all terms of the Zernike polynomial are generated and projected to a non-circular region as the candidate model pool. The training data are calculated according to the measured values of distance sensors and the geometrical relationship between the ideal surface and the installed sensors. Then the terms are selected by minimizing the cost function each time successively. To avoid the problem of ill-conditioned matrix inversion by the least squares method, the coefficient of each model term is achieved by modified elitist teaching–learning-based optimization. Subsequently, the measurement precision is further improved by a second stage of model refinement. Finally, every point on the membrane surface can be measured according to this model, providing more the subtle feedback information needed for the precise control of membrane mirror fabrication. Experimental results confirm that the proposed method is effective in a membrane mirror manufacturing system driven by negative pressure, and the measurement accuracy can achieve 15 µ m. (paper)
Okuda, Yu; Kushida, Masahiko; Sumida, Kayo; Nagahori, Hirohisa; Nakamura, Yoshimasa; Higuchi, Hashihiro; Kawamura, Satoshi; Lake, Brian G; Cohen, Samuel M; Yamada, Tomoya
2017-08-01
High dietary levels of momfluorothrin, a nongenotoxic synthetic pyrethroid, induced hepatocellular tumors in male and female Wistar rats in a 2-year bioassay. The mode of action (MOA) for rat hepatocellular tumors was postulated to occur via activation of the constitutive androstane receptor (CAR), as momfluorothrin is a close structural analogue of the pyrethroid metofluthrin, which is known to produce rat liver tumors through a CAR-mediated MOA. To elucidate the MOA for rat hepatocellular tumor formation by momfluorothrin, this study was conducted to examine effects on key and associative events of the CAR-mediated MOA for phenobarbital based on the International Programme on Chemical Safety framework. A 2-week in vivo study in Wistar rats revealed that momfluorothrin induced CYP2B activities, increased liver weights, produced hepatocyte hypertrophy and increased hepatocyte replicative DNA synthesis. These effects correlated with the dose-response relationship for liver tumor formation and also showed reversibility upon cessation of treatment. Moreover, momfluorothrin did not increase CYP2B1/2 mRNA expression and hepatocyte replicative DNA synthesis in CAR knockout rats. Using cultured Wistar rat hepatocytes and the RNA interference technique, knockdown of CAR resulted in a suppression of induction of CYP2B1/2 mRNA levels by momfluorothrin. Alternative MOAs for liver tumor formation were excluded. A global gene expression profile analysis of the liver of male Wistar rats treated with momfluorothrin for 2 weeks also showed similarity to the prototypic CAR activator phenobarbital. Overall, these data strongly support that the postulated MOA for momfluorothrin-induced rat hepatocellular tumors as being mediated by CAR activation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Directory of Open Access Journals (Sweden)
Marcelo J. Silva
2011-10-01
Full Text Available Among the alternatives to meet the increasing of world demand for energy, the use of biomass as energy source is one of the most promising as it contributes to reducing emissions of carbon dioxide in the atmosphere. Gasification is a technological process of biomass energy production of a gaseous biofuel. The fuel gas has a low calorific value that can be used in Diesel engine in dual mode for power generation in isolated communities. This study aimed to evaluate the reduction in the consumption of oil Diesel an engine generator, using gas from gasification of wood. The engine generator brand used was a BRANCO, with direct injection power of 7.36 kW (10 HP coupled to an electric generator 5.5 kW. Diesel oil mixed with intake air was injected, as the oil was injected via an injector of the engine (dual mode. The fuel gas was produced in a downdraft gasifier. The engine generator was put on load system from 0.5 kW to 3.5 kW through a set of electrical resistances. Diesel oil consumption was measured with a precision scale. It was concluded that the engine converted to dual mode when using the gas for the gasification of wood decreased Diesel consumption by up to 57%.Dentre as alternativas à crescente demanda energética mundial, o uso da biomassa como fonte de energia é uma das formas mais promissoras, pois contribui para a redução das emissões de dióxido de carbono na atmosfera. A gaseificação é uma tecnologia de transformação energética da biomassa num biocombustível gasoso. O gás de gaseificação é um combustível de baixo poder calorífico que pode ser utilizado em motor ciclo Diesel no modo dual para geração de energia elétrica em comunidades isoladas. Este trabalho teve por objetivo avaliar a redução no consumo de Diesel num motor gerador, com a utilização de gás da gaseificação da madeira. O motor avaliado foi da marca BRANCO, com injeção direta e potência de 7,36 kW (10 cv acoplado a um gerador elétrico de 5
Dubin, D. H. E.
This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.
Wang, Yanbin; You, Zhuhong; Li, Xiao; Chen, Xing; Jiang, Tonghai; Zhang, Jingting
2017-05-11
Protein-protein interactions (PPIs) are essential for most living organisms' process. Thus, detecting PPIs is extremely important to understand the molecular mechanisms of biological systems. Although many PPIs data have been generated by high-throughput technologies for a variety of organisms, the whole interatom is still far from complete. In addition, the high-throughput technologies for detecting PPIs has some unavoidable defects, including time consumption, high cost, and high error rate. In recent years, with the development of machine learning, computational methods have been broadly used to predict PPIs, and can achieve good prediction rate. In this paper, we present here PCVMZM, a computational method based on a Probabilistic Classification Vector Machines (PCVM) model and Zernike moments (ZM) descriptor for predicting the PPIs from protein amino acids sequences. Specifically, a Zernike moments (ZM) descriptor is used to extract protein evolutionary information from Position-Specific Scoring Matrix (PSSM) generated by Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then, PCVM classifier is used to infer the interactions among protein. When performed on PPIs datasets of Yeast and H. Pylori , the proposed method can achieve the average prediction accuracy of 94.48% and 91.25%, respectively. In order to further evaluate the performance of the proposed method, the state-of-the-art support vector machines (SVM) classifier is used and compares with the PCVM model. Experimental results on the Yeast dataset show that the performance of PCVM classifier is better than that of SVM classifier. The experimental results indicate that our proposed method is robust, powerful and feasible, which can be used as a helpful tool for proteomics research.
International Nuclear Information System (INIS)
Courant, E.D.; Ruth, R.D.; Wang, J.M.
1979-01-01
The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists
International Nuclear Information System (INIS)
Courant, E.D.; Ruth, R.D.; Wang, J.M.
1979-01-01
The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists
Directory of Open Access Journals (Sweden)
Luis Alberto Vieira de Carvalho
2008-06-01
Full Text Available PURPOSE: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN and discriminant analysis (DA techniques were used. METHODS: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK, installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, against-the-rule astigmatism, "regular" or "normal" shape and post-PRK. RESULTS: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases. Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. CONCLUSION: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.OBJETIVOS: Nosso principal objetivo neste trabalho foi de desenvolver e comparar duas técnicas diferentes para classificação de superfícies corneanas. Uma rede neural artificial alimentada adiante e análise descriminante foram as técnicas de classificação comparadas neste trabalho. MÉTODOS: As entradas para ambos os métodos de classificação foram os primeiros 15 coeficientes de Zernike para 80 córneas mensuradas anteriormente em um topógrafo Eyesys instalado no Departamento de Oftalmologia da Escola Paulista de Medicina - UNIFESP. A rede neural tem 5 saídas que foram associados aos cinco casos típicos contidos na base de dados: ceratocone, astigmatismo a favor da regra, astigmatismo
DEFF Research Database (Denmark)
Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo
1999-01-01
The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...
Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.
Alcusa-Sáez, E; Díez, A; Andrés, M V
2016-03-07
Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.
Mode Combinations and International Operations
DEFF Research Database (Denmark)
Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.
2011-01-01
reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time – providing a potentially important optional path for international expansion. Our data...... key markets (China, UK and USA) as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...
Mode Combinations and International Operations
DEFF Research Database (Denmark)
Benito, Gabriel R. G.; Petersen, Bent; Welch, Lawrence S.
2011-01-01
reveals that companies tend to combine modes of operation; thereby producing unique foreign operation mode “packages” for given activities and/or countries, and that the packages are liable to be modified over time—providing a potentially important optional path for international expansion. The data show...... markets (China, UK and USA) is used as the basis for an exploration of the extent to which, and how and why, companies combine clearly different foreign operation modes. We examine their use of foreign operation mode combinations within given value activities as well as within given countries. The study...
International Nuclear Information System (INIS)
Gaarde, C.
1985-01-01
An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)
International Nuclear Information System (INIS)
Garbet, X.; Mourgues, F.; Samain, A.; Zou, X.
1990-01-01
A serious degradation of confinement with additional heating is commonly observed on most tokamaks. The microtearing modes could provide an explanation for this experimental fact. They are driven linearly unstable by diamagnetism in collisional regimes, but it may be shown that the collisions in non linear regimes provide a small diffusion coefficient which can be only significant at the plasme edge. In the bulk of the plasma, the microtearing turbulence could play a basic role if it is unstable in the collisionless regime. While it is linearly stable without collisions, it could be driven unstable in realistic regimes by the radial diffusion it induces. To study this effect, we have used a model where the non linear action of the modes on a given helicity component is represented by a diffusion operator. They are found unstable for reasonable β p =2μ o nT/B 2 p , with a special radial profile of the potential vector A. The problem arises the validity of this model where non linearities in the trajectories behaviour are replaced by the diffusion which broadens resonances. To test this procedure, we calculate the actual electron distribution function when it is determined by the ergodicity of the field lines. We compute the correlations of the distribution function with the magnetic perturbation and compare them with the analytical expressions derived from the resonance broadening model. (author) 3 refs., 2 figs
Grandison, Scott; Roberts, Carl; Morris, Richard J
2009-03-01
Protein structures are not static entities consisting of equally well-determined atomic coordinates. Proteins undergo continuous motion, and as catalytic machines, these movements can be of high relevance for understanding function. In addition to this strong biological motivation for considering shape changes is the necessity to correctly capture different levels of detail and error in protein structures. Some parts of a structural model are often poorly defined, and the atomic displacement parameters provide an excellent means to characterize the confidence in an atom's spatial coordinates. A mathematical framework for studying these shape changes, and handling positional variance is therefore of high importance. We present an approach for capturing various protein structure properties in a concise mathematical framework that allows us to compare features in a highly efficient manner. We demonstrate how three-dimensional Zernike moments can be employed to describe functions, not only on the surface of a protein but throughout the entire molecule. A number of proof-of-principle examples are given which demonstrate how this approach may be used in practice for the representation of movement and uncertainty.
Ma, Ning; Zhao, Juan; Hanson, Steen G.; Takeda, Mitsuo; Wang, Wei
2016-10-01
Laser speckle has received extensive studies of its basic properties and associated applications. In the majority of research on speckle phenomena, the random optical field has been treated as a scalar optical field, and the main interest has been concentrated on their statistical properties and applications of its intensity distribution. Recently, statistical properties of random electric vector fields referred to as Polarization Speckle have come to attract new interest because of their importance in a variety of areas with practical applications such as biomedical optics and optical metrology. Statistical phenomena of random electric vector fields have close relevance to the theories of speckles, polarization and coherence theory. In this paper, we investigate the correlation tensor for stochastic electromagnetic fields modulated by a depolarizer consisting of a rough-surfaced retardation plate. Under the assumption that the microstructure of the scattering surface on the depolarizer is as fine as to be unresolvable in our observation region, we have derived a relationship between the polarization matrix/coherency matrix for the modulated electric fields behind the rough-surfaced retardation plate and the coherence matrix under the free space geometry. This relation is regarded as entirely analogous to the van Cittert-Zernike theorem of classical coherence theory. Within the paraxial approximation as represented by the ABCD-matrix formalism, the three-dimensional structure of the generated polarization speckle is investigated based on the correlation tensor, indicating a typical carrot structure with a much longer axial dimension than the extent in its transverse dimension.
The Integrated Mode Management Interface
Hutchins, Edwin
1996-01-01
Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the
International Nuclear Information System (INIS)
Bechtel SAIC Company
2002-01-01
Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be
Yasuoka, Fatima M. M.; Matos, Luciana; Cremasco, Antonio; Numajiri, Mirian; Marcato, Rafael; Oliveira, Otavio G.; Sabino, Luis G.; Castro N., Jarbas C.; Bagnato, Vanderlei S.; Carvalho, Luis A. V.
2016-03-01
An optical system that conjugates the patient's pupil to the plane of a Hartmann-Shack (HS) wavefront sensor has been simulated using optical design software. And an optical bench prototype is mounted using mechanical eye device, beam splitter, illumination system, lenses, mirrors, mirrored prism, movable mirror, wavefront sensor and camera CCD. The mechanical eye device is used to simulate aberrations of the eye. From this device the rays are emitted and travelled by the beam splitter to the optical system. Some rays fall on the camera CCD and others pass in the optical system and finally reach the sensor. The eye models based on typical in vivo eye aberrations is constructed using the optical design software Zemax. The computer-aided outcomes of each HS images for each case are acquired, and these images are processed using customized techniques. The simulated and real images for low order aberrations are compared using centroid coordinates to assure that the optical system is constructed precisely in order to match the simulated system. Afterwards a simulated version of retinal images is constructed to show how these typical eyes would perceive an optotype positioned 20 ft away. Certain personalized corrections are allowed by eye doctors based on different Zernike polynomial values and the optical images are rendered to the new parameters. Optical images of how that eye would see with or without corrections of certain aberrations are generated in order to allow which aberrations can be corrected and in which degree. The patient can then "personalize" the correction to their own satisfaction. This new approach to wavefront sensing is a promising change in paradigm towards the betterment of the patient-physician relationship.
Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W
2011-01-01
The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.
International Nuclear Information System (INIS)
Michalik, J.; Kevan, L.
1978-01-01
The electron spin-lattice relaxation of trapped silver atoms in polycrystalline ice matrices and in methanol, ethanol, propylene carbonate, and 2-methyltetrahydrofuran organic glasses has been directly studied as a function of temperature by the saturation-recovery method. Below 40 K the dominant electron spin-lattice relaxation mechanism involves modulation of the electron nuclear dipolar interaction with nuclei in the radical's environment by tunneling of those nuclei between two nearly equal energy configurations. This relaxation mechanism occurs with high efficiency, has a characteristic linear temperature dependence, and is typically found in highly disordered matrices. The efficiency of this relaxation mechanism seems to decrease with decreasing polarity of the matrix. Deuteration experiments show that the tunneling nuclei are protons and in methanol it is shown that the methyl protons have more tunneling modes available than the hydroxyl protons. In polycrystalline ice matrices silver atoms can be stabilized with two different orientations of surrounding water molecules; the efficiency of the tunneling relaxation reflects this difference. From these and previous results on tunneling relaxation of trapped electrons in glassy matrices it appears that tunneling relaxation may be used to distinguish models with different geometrical configurations and to determine the relative rigidity of such configurations around trapped radicals in disordered solids. (author)
Peeling mode relaxation ELM model
International Nuclear Information System (INIS)
Gimblett, C. G.
2006-01-01
This paper discusses an approach to modelling Edge Localised Modes (ELMs) in which toroidal peeling modes are envisaged to initiate a constrained relaxation of the tokamak outer region plasma. Relaxation produces both a flattened edge current profile (which tends to further destabilise a peeling mode), and a plasma-vacuum negative current sheet which has a counteracting stabilising influence; the balance that is struck between these two effects determines the radial extent (rE) of the ELM relaxed region. The model is sensitive to the precise position of the mode rational surfaces to the plasma surface and hence there is a 'deterministic scatter' in the results that has an accord with experimental data. The toroidal peeling stability criterion involves the edge pressure, and using this in conjunction with predictions of rE allows us to evaluate the ELM energy losses and compare with experiment. Predictions of trends with the edge safety factor and collisionality are also made
Komini Babu, Siddharth; Mohamed, Alexander I.; Whitacre, Jay F.; Litster, Shawn
2015-06-01
This paper presents the use of nanometer scale resolution X-ray computed tomography (nano-CT) in the three-dimensional (3D) imaging of a Li-ion battery cathode, including the separate volumes of active material, binder plus conductive additive, and pore. The different high and low atomic number (Z) materials are distinguished by sequentially imaging the lithium cobalt oxide electrode in absorption and then Zernike phase contrast modes. Morphological parameters of the active material and the additives are extracted from the 3D reconstructions, including the distribution of contact areas between the additives and the active material. This method could provide a better understanding of the electric current distribution and structural integrity of battery electrodes, as well as provide detailed geometries for computational models.
Squeezing in multi-mode nonlinear optical state truncation
International Nuclear Information System (INIS)
Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.
2007-01-01
In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases
Schopf, J.M.
1975-01-01
The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.
Energy Technology Data Exchange (ETDEWEB)
Stone, E G
1923-09-12
A process and apparatus are described for producing Portland cement in which pulverized shale is successively heated in a series of inclined rotary retorts having internal stirrers and oil gas outlets, which are connected to condensers. The partially treated shale is removed from the lowermost retort by a conveyor, then fed separately or conjointly into pipes and thence into a number of vertically disposed retorts. Each of these retorts may be fitted interiorly with vertical arranged conveyors which elevate the shale and discharge it over a lip, from whence it falls to the bottom of the retorts. The lower end of each casing is furnished with an adjustable discharge door through which the spent shale is fed to a hopper, thence into separate trucks. The oil gases generated in the retorts are exhausted through pipes to condensers. The spent shale is conveyed to a bin and mixed while hot with ground limestone. The admixed materials are then ground and fed to a rotary kiln which is fired by the incondensible gases derived from the oil gases obtained in the previous retorting of the shale. The calcined materials are then delivered from the rotary kiln to rotary coolers. The waste gases from the kiln are utilized for heating the retorts in which the ground shale is heated for the purpose of extracting therefrom the contained hydrocarbon oils and gases.
International Nuclear Information System (INIS)
Itoh, Sanae.
1991-06-01
After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)
Acoustic propagation mode in a cylindrical plasma
International Nuclear Information System (INIS)
Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo
1975-01-01
The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)
Turbulence and Solar p-Mode Oscillations
Bi, S. L.; Xu, H. Y.
The discrepancy between observed and theoretical mode frequencies can be used to examine the reliability of the standard solar model as a faithful representation of solar real situation. With the help of an improved time-dependent convective model that takes into account contribution of the full spatial and temporal turbulent energy spectrum, we study the influence of turbulent pressure on structure and solar p-mode frequencies. For the radial modes we find that the Reynolds stress produces signification modifications in structure and p-mode spectrum. Compared with an adiabatic approximation, the discrepancy is largely removed by the turbulent correction.
International Nuclear Information System (INIS)
Satya, Y.; Schmidt, G.
1979-01-01
A fully developed tearing mode modifies the magnetic field profile. The effect of this profile modification on the linear growth rate of a different tearing mode in a slab and cylindrical geometry is investigated
Nonlinear trapped electron mode and anomalous heat transport in tokamaks
International Nuclear Information System (INIS)
Kaw, P.K.
1982-01-01
We take the phenomenological point of view that the anomalous electron thermal conductivity produced by the non-linear trapped electron mode should also influence the stability properties of the mode itself. Using a model equation, we show that this effect makes the mode self-stabilizing. A simple expression for the anomalous thermal conductivity is derived, and its scaling properties are discussed. (orig.)
Shigeta, M.; Sato, T.; Dasgupta, B.
1985-01-01
The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.
International Nuclear Information System (INIS)
Cox, A.N.
1982-01-01
Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown
Streaming gravity mode instability
International Nuclear Information System (INIS)
Wang Shui.
1989-05-01
In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs
International Nuclear Information System (INIS)
Saarelma, S.; Kurki-Suonio, T.; Guenter, S.; Zehrfeld, H.-P.
2000-01-01
An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments. (author)
Directory of Open Access Journals (Sweden)
Izildinha MORENO
1999-01-01
Full Text Available O efeito e o modo de ação das bacteriocinas produzidas por L. lactis subsp. lactis ITAL 383 e CNRZ 150 são similares à nisina de L. lactis subsp. lactis ATCC 11454. Estas bacteriocinas apresentaram um modo de ação bactericida, causando a lise de células de L. innocua LIN 11, associada ao decréscimo da absorbância e da viabilidade celular. O efeito letal foi maior para células em fase exponencial comparativamente à fase estacionária de crescimento. A adsorção dessas bacteriocinas às células de L. innocua LIN 11 foi muito rápida e influenciada pelo pH do meio de suspensão; adsorção máxima foi verificada a pH 6,0 e logo após o contato inicial. Perda completa de adsorção ocorreu em pH 2,0.The effect and mode of action of the bacteriocin produced by L. lactis subsp. lactis ITAL 383 and CNRZ 150 are similar to the nisin produced by L. lactis subsp. lactis ATCC 11454. It was clearly bactericidal, and caused lysis of a strain of L. innocua LIN 11 detected by the decrease of absorbance values and the cell viability. Their lethal effect was considerably higher during the logarithmic growth when compared to the stationary phase. Adsorption developed rapidly and was influenced by the pH value of the suspension medium. Maximum adsorption was observed at pH 6,0 and immediately after initial contact and loss at pH 2,0.
Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)
2013-01-01
A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.
Antipastorialism : Resistant Georgic Mode
National Research Council Canada - National Science Library
Zimmerman, Donald
2000-01-01
.... Abolitionists, women, Afro-British slaves, and those who protested land enclosure developed a multivalent, resistant mode of writing, which I name 'antipastoralism', that countered orthodox, poetical...
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
Actively mode-locked diode laser with a mode spacing stability of ∼6 × 10{sup -14}
Energy Technology Data Exchange (ETDEWEB)
Zakharyash, V F; Kashirsky, A V; Klementyev, V M [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)
2015-10-31
We have studied mode spacing stability in an actively mode-locked external-cavity semiconductor laser. It has been shown that, in the case of mode spacing pulling to the frequency of a highly stable external microwave signal produced by a hydrogen standard (stability of 4 × 10{sup -14} over an averaging period τ = 10 s), this configuration ensures a mode spacing stability of 5.92 × 10{sup -14} (τ = 10 s). (control of radiation parameters)
Energy Technology Data Exchange (ETDEWEB)
Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India)
2016-07-07
In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.
International Nuclear Information System (INIS)
Furuuchi, Kazuyuki
2016-01-01
In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.
On Mode Correlation of Solar Acoustic Oscillations
Directory of Open Access Journals (Sweden)
Heon-Young Chang
2009-09-01
Full Text Available In helioseismology it is normally assumed that p-mode oscillations are excited in a statistically independent fashion. Unfortunately, however, this issue is not clearly settled down in that two experiments exist, which apparently look in discrepancy. That is, Appourchaux et al.~(2000 looked at bin-to-bin correlation and found no evidence that the assumption is invalid. On the other hand, Roth (2001 reported that p-mode pairs with nearby frequencies tend to be anti-correlated, possibly by a mode-coupling effect. This work is motivated by an idea that one may test if there exists an excess of anticorrelated power variations of pairs of solar p-modes. We have analyzed a 72-day MDI spherical-harmonic time series to examine temporal variations of p-mode power and their correlation. The power variation is computed by a running-window method after the previous study by Roth (2001, and then distribution function of power correlation between mode pairs is produced. We have confirmed Roth's result that there is an excess of anti-correlated p-mode pairs with nearby frequencies. On the other hand, the amount of excess was somewhat smaller than the previous study. Moreover, the distribution function does not exhibit significant change when we paired modes with non-nearby frequencies, implying that the excess is not due to mode coupling. We conclude that the origin of this excess of anticorrelations may not be a solar physical process, by pointing out the possibility of statistical bias playing the central role in producing the excess.
Effect of modes interaction on the resistive wall mode stability
International Nuclear Information System (INIS)
Chen Longxi; Wu Bin
2013-01-01
Effects of modes interaction on the resistive wall mode (RWM) stability are studied. When considering the modes interaction effects, the linear growth rate of the most unstable (3, 1) mode decreases. After linear evolution, the RWM saturates at the nonlinear phase. The saturation can be attributed to flux piling up on the resistive wall. When some modes exist, the (3, 1) mode saturates at lower level compared with single mode evolution. Meanwhile, the magnetic energy of the (5, 2) mode increases correspondingly, but the magnetic energy saturation level of the (2, 1) mode changes weakly. (authors)
Sernelius, Bo E
2011-01-01
Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The
International Nuclear Information System (INIS)
Pastrnak, J.W.
1986-01-01
This eighteen-month study has been successful in providing the designer and analyst with qualitative guidelines on the occurrence of complex modes in the dynamics of linear structures, and also in developing computer codes for determining quantitatively which vibration modes are complex and to what degree. The presence of complex modes in a test structure has been verified. Finite element analysis of a structure with non-proportional dumping has been performed. A partial differential equation has been formed to eliminate possible modeling errors
International Nuclear Information System (INIS)
Kim, Hui Jun
1993-06-01
This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-07-01
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
International Nuclear Information System (INIS)
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-01-01
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein–Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple S N 2 reaction (Cl − + CH 3 Cl → ClCH 3 + Cl − ) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-07-07
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
DEFF Research Database (Denmark)
Israelsen, Stine Møller
This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...
Transition from L mode to high ion temperature mode in CHS heliotron/torsatron plasmas
International Nuclear Information System (INIS)
Ida, K.; Osakabe, M.; Tanaka, K.
2001-01-01
A high ion temperature mode (high T i mode) is observed for neutral beam heated plasmas in the Compact Helical System (CHS) Heliotron/torsatron. The high T i mode plasma is characterized by a high central ion temperature, T i (0), and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. Transition from L mode to high T i mode has been studied in CHS. The central ion temperature in the high T i mode discharges reaches to 1 keV which is 2.5 times higher than that in the L mode discharges. The ion thermal diffusivity is significantly reduced by a factor of more than 2-3 in the high T i mode plasma. The ion loss cone is observed in neutral particle flux in the energy range of 1-6 keV with a narrow range of pitch angle (90±10 degree) in the high T i mode. However, the degradation of ion energy confinement due to this loss cone is negligible. (author)
High degree modes and instrumental effects
Energy Technology Data Exchange (ETDEWEB)
Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Rabello-Soares, M C; Schou, J [Stanford University, Stanford, CA (United States)], E-mail: skorzennik@cfa.harvard.edu
2008-10-15
Full-disk observations taken with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, or the upgraded Global Oscillations Network Group (GONG) instruments, have enough spatial resolution to resolve modes up to {iota} = 1000 if not {iota} = 1500. The inclusion of such high-degree modes (i.e., {iota} {<=} 1000) improves dramatically inferences near the surface. Unfortunately, observational and instrumental effects cause the characterization of high degree modes to be quite complicated. Indeed, the characteristics of the solar acoustic spectrum are such that, for a given order, mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases. A direct consequence of this property is that individual modes are resolved only at low and intermediate degrees. At high degrees the individual modes blend into ridges and the power distribution of the ridge defines the ridge central frequency, masking the underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than an ad hoc correction scheme) that results in a methodology that can produce unbiased estimates of high-degree modes. This requires that the instrumental characteristics are well understood, a task that has turned out to pose a major challenge. We also present our latest results, where most of the known instrumental and observational effects that affect specifically high-degree modes were removed. These new results allow us to focus our attention on changes with solar activity. Finally, we present variations of mode
OSCILLATING MODE OF TOPINAMBUR TUBERS DRYING
Directory of Open Access Journals (Sweden)
A. V. Golubkivich
2015-01-01
Full Text Available Specifics of a chemical composition of tubers and green material of a topinambur (Helianthus tuberosus, high efficiency and ecological plasticity, profitability of growing, biotechnological potential of use enable to identify a topinambur as a of high-energy cultures of the future. High moisture of various topinambur parts, features of the mechanism of a heat and mass transfer set a problem of search of the new drying methods promoting to increase dehydration efficiency and produce a quality product. A method of calculation of duration of the oscillating mode of topinambur tubers drying in a dense layer is worked out. The topinambur tubers cut on cubes with the side of 6 mm were taken as object of researches. Researches were conducted in the setting of various drying modes: two experiences at the oscillating mode with height of a material layer of 0.07 m and 0.17 m; and also as a check experiment was material drying at a constant temperature of the drying agent. Duration of the oscillating mode of topinambur tubers drying was calculated on their basis of received curves of changes of moisture content at various modes of drying. Estimate indicators were confirmed with experimental data. Results of determination of duration of the oscillating modes of topinambur tubers drying proved that efficiency of the oscillating modes is 18 percent higher, than at control experiment.
Sheshadri, A.; Plumb, R. A.
2017-12-01
The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP
Mode conversion and its utilization of degenerating surface wave modes on a plasma column
International Nuclear Information System (INIS)
Nonaka, S.; Akao, Y.
1983-01-01
Both mode conversion at degenerating points of dispersion relations for surface wave modes on a discharge plasma column and the methods for their detection and utilization are presented. Mode conversions at three degenerating points become observable by using a surface wave resonator when an azimuthal inhomogeneity of plasma is produced by a static magnetic field of about 1 G applied perpendicular to the column axis. Two of the three detected degenerating points can be utilized for an easy and exact determination of the electron density and its distribution in the discharge tube
Sideways wall force produced during tokamak disruptions
Strauss, H.; Paccagnella, R.; Breslau, J.; Sugiyama, L.; Jardin, S.
2013-07-01
A critical issue for ITER is to evaluate the forces produced on the surrounding conducting structures during plasma disruptions. We calculate the non-axisymmetric ‘sideways’ wall force Fx, produced in disruptions. Simulations were carried out of disruptions produced by destabilization of n = 1 modes by a vertical displacement event (VDE). The force depends strongly on γτwall, where γ is the mode growth rate and τwall is the wall penetration time, and is largest for γτwall = constant, which depends on initial conditions. Simulations of disruptions caused by a model of massive gas injection were also performed. It was found that the wall force increases approximately offset linearly with the displacement from the magnetic axis produced by a VDE. These results are also obtained with an analytical model. Disruptions are accompanied by toroidal variation of the plasma current Iφ. This is caused by toroidal variation of the halo current, as verified computationally and analytically.
International Nuclear Information System (INIS)
Takeuchi, Kazumasa A; Chaté, Hugues
2013-01-01
We show, using covariant Lyapunov vectors in addition to standard Lyapunov analysis, that there exists a set of collective Lyapunov modes in large chaotic systems exhibiting collective dynamics. Associated with delocalized Lyapunov vectors, they act collectively on the trajectory and hence characterize the instability of its collective dynamics. We further develop, for globally coupled systems, a connection between these collective modes and the Lyapunov modes in the corresponding Perron–Frobenius equation. We thereby address the fundamental question of the effective dimension of collective dynamics and discuss the extensivity of chaos in the presence of collective dynamics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)
Robust fiber optic flexure sensor exploiting mode coupling in few-mode fiber
Nelsen, Bryan; Rudek, Florian; Taudt, Christopher; Baselt, Tobias; Hartmann, Peter
2015-05-01
Few-mode fiber (FMF) has become very popular for use in multiplexing telecommunications data over fiber optics. The simplicity of producing FMF and the relative robustness of the optical modes, coupled with the simplicity of reading out the information make this fiber a natural choice for communications. However, little work has been done to take advantage of this type of fiber for sensors. Here, we demonstrate the feasibility of using FMF properties as a mechanism for detecting flexure by exploiting mode coupling between modes when the cylindrical symmetry of the fiber is perturbed. The theoretical calculations shown here are used to understand the coupling between the lowest order linearly polarized mode (LP01) and the next higher mode (LP11x or LP11y) under the action of bending. Twisting is also evaluated as a means to detect flexure and was determined to be the most reliable and effective method when observing the LP21 mode. Experimental results of twisted fiber and observations of the LP21 mode are presented here. These types of fiber flexure sensors are practical in high voltage, high magnetic field, or high temperature medical or industrial environments where typical electronic flexure sensors would normally fail. Other types of flexure measurement systems that utilize fiber, such as Rayleigh back-scattering [1], are complicated and expensive and often provide a higher-than necessary sensitivity for the task at hand.
Simulation and Analysis of the Hybrid Operating Mode in ITER
International Nuclear Information System (INIS)
Kessel, C.E.; Budny, R.V.; Indireshkumar, K.
2005-01-01
The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER
Nonlinear PCA: characterizing interactions between modes of brain activity.
Friston, K; Phillips, J; Chawla, D; Büchel, C
2000-01-01
This paper presents a nonlinear principal component analysis (PCA) that identifies underlying sources causing the expression of spatial modes or patterns of activity in neuroimaging time-series. The critical aspect of this technique is that, in relation to conventional PCA, the sources can interact to produce (second-order) spatial modes that represent the modulation of one (first-order) spatial mode by another. This nonlinear PCA uses a simple neural network architecture that embodies a spec...
Sliding mode control and observation
Shtessel, Yuri; Fridman, Leonid; Levant, Arie
2014-01-01
The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...
Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write
Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng
2018-01-01
By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.
DEFF Research Database (Denmark)
2014-01-01
spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33......) for current confinement into the active layer (34). An air-gap layer (102) may be provided between the upper reflector (15) and the SOI wafer (50) acting as a substrate. The lower reflector may be designed as a high-contrast grating (51) by etching....
Structural resonance and mode of flutter of hummingbird tail feathers.
Clark, Christopher J; Elias, Damian O; Girard, Madeline B; Prum, Richard O
2013-09-15
Feathers can produce sound by fluttering in airflow. This flutter is hypothesized to be aeroelastic, arising from the coupling of aerodynamic forces to one or more of the feather's intrinsic structural resonance frequencies. We investigated how mode of flutter varied among a sample of hummingbird tail feathers tested in a wind tunnel. Feather vibration was measured directly at ~100 points across the surface of the feather with a scanning laser Doppler vibrometer (SLDV), as a function of airspeed, Uair. Most feathers exhibited multiple discrete modes of flutter, which we classified into types including tip, trailing vane and torsional modes. Vibratory behavior within a given mode was usually stable, but changes in independent variables such as airspeed or orientation sometimes caused feathers to abruptly 'jump' from one mode to another. We measured structural resonance frequencies and mode shapes directly by measuring the free response of 64 feathers stimulated with a shaker and recorded with the SLDV. As predicted by the aeroelastic flutter hypothesis, the mode shape (spatial distribution) of flutter corresponded to a bending or torsional structural resonance frequency of the feather. However, the match between structural resonance mode and flutter mode was better for tip or torsional mode shapes, and poorer for trailing vane modes. Often, the 3rd bending structural harmonic matched the expressed mode of flutter, rather than the fundamental. We conclude that flutter occurs when airflow excites one or more structural resonance frequencies of a feather, most akin to a vibrating violin string.
Particle Distribution Modification by Low Amplitude Modes
International Nuclear Information System (INIS)
White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.
2009-01-01
Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.
Mode-locked silicon evanescent lasers.
Koch, Brian R; Fang, Alexander W; Cohen, Oded; Bowers, John E
2007-09-03
We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).
Magnetic modes in superlattices
International Nuclear Information System (INIS)
Oliveira, F.A.
1990-04-01
A first discussion of reciprocal propagation of magnetic modes in a superlattice is presented. In the absence of an applied external magnetic field a superllatice made of alternate layers of the type antiferromagnetic-non-magnetic materials presents effects similar to those of phonons in a dielectric superlattice. (A.C.A.S.) [pt
Thermodynamics of Radiation Modes
Pina, Eduardo; de la Selva, Sara Maria Teresa
2010-01-01
We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…
Helicon normal modes in Proto-MPEX
Piotrowicz, P. A.; Caneses, J. F.; Green, D. L.; Goulding, R. H.; Lau, C.; Caughman, J. B. O.; Rapp, J.; Ruzic, D. N.
2018-05-01
The Proto-MPEX helicon source has been operating in a high electron density ‘helicon-mode’. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the ‘helicon-mode’. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besides directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region. ).
Observations on resistive wall modes
International Nuclear Information System (INIS)
Gerwin, R.A.; Finn, J.M.
1996-01-01
Several results on resistive wall modes and their application to tokamaks are presented. First, it is observed that in the presence of collisional parallel dynamics there is an exact cancellation to lowest order of the dissipative and sound wave effects for an ideal Ohm's law. This is easily traced to the fact that the parallel dynamics occurs along the perturbed magnetic field lines for such electromagnetic modes. Such a cancellation does not occur in the resistive layer of a tearing-like mode. The relevance to models for resistive wall modes using an electrostatic Hammett-Perkins type operator to model Landau damping will be discussed. Second, we observe that with an ideal Ohm's law, resistive wall modes can be destabilized by rotation in that part of parameter space in which the ideal MHD modes are stable with the wall at infinity. This effect can easily be explained by interpreting the resistive wall instability in terms of mode coupling between the backward stable MHD mode and a stable mode locked into the wall. Such an effect can occur for very small rotation for tearing-resistive wall modes in which inertia dominates viscosity in the layer, but the mode is stabilized by further rotation. For modes for which viscosity dominates in the layer, rotation is purely stabilizing. For both tearing models, a somewhat higher rotation frequency gives stability essentially whenever the tearing mode is stable with a perfectly conducting wall. These tearing/resistive wall results axe also simply explained in terms of mode coupling. It has been shown that resonant external ideal modes can be stabilized in the presence of resistive wall and resistive plasma with rotation of order the nominal tearing mode growth rate. We show that these modes behave as resistive wall tearing modes in the sense above. This strengthens the suggestion that rotational stabilization of the external kink with a resistive wall is due to the presence of resistive layers, even for ideal modes
Directory of Open Access Journals (Sweden)
Torsten Karzig
2013-11-01
Full Text Available One-dimensional topological superconductors are known to host Majorana zero modes at domain walls terminating the topological phase. Their non-Abelian nature allows for processing quantum information by braiding operations that are insensitive to local perturbations, making Majorana zero modes a promising platform for topological quantum computation. Motivated by the ultimate goal of executing quantum-information processing on a finite time scale, we study domain walls moving at a constant velocity. We exploit an effective Lorentz invariance of the Hamiltonian to obtain an exact solution of the associated quasiparticle spectrum and wave functions for arbitrary velocities. Essential features of the solution have a natural interpretation in terms of the familiar relativistic effects of Lorentz contraction and time dilation. We find that the Majorana zero modes remain stable as long as the domain wall moves at subluminal velocities with respect to the effective speed of light of the system. However, the Majorana bound state dissolves into a continuous quasiparticle spectrum after the domain wall propagates at luminal or even superluminal velocities. This relativistic catastrophe implies that there is an upper limit for possible braiding frequencies even in a perfectly clean system with an arbitrarily large topological gap. We also exploit our exact solution to consider domain walls moving past static impurities present in the system.
Ordinary mode auroral kilometric radiation fine structure observed by DE 1
International Nuclear Information System (INIS)
Benson, R.F.; Mellott, M.M.; Huff, R.L.; Gurnett, D.A.
1988-01-01
The fine structure observed with intense right-hand extraordinary (R-X) mode auroral kilometric radiation (AKR) has received major theoretical attention. Data from the Dynamics Explorer 1 plasma wave instrument indicate that left-hand ordinary (L-O) mode AKR posses similar fine structure. Several theories have been proposed to explain the fine structure of the R-X mode AKR. In order to account for the L-O mode fine structure, these theories will have to be modified to produce the L-O mode directly or will have to rely on mode conversion processes from the R-X to the L-O mode
Interaction of discrete and continuous boundary layer modes to cause transition
International Nuclear Information System (INIS)
Durbin, Paul A.; Zaki, Tamer A.; Liu Yang
2009-01-01
The interaction of discrete and continuous Orr-Sommerfeld modes in a boundary layer is studied by computer simulation. The discrete mode is an unstable Tollmien-Schlichting wave. The continuous modes generate jet-like disturbances inside the boundary layer. Either mode alone does not cause transition to turbulence; however, the interaction between them does. The continuous mode jets distort the discrete modes, producing Λ shaped vortices. Breakdown to turbulence is subsequent. The lateral spacing of the Λ's is sometimes the same as the wavelength of the continuous mode, sometimes it differs, depending on the ratio of wavelength to boundary layer thickness.
Brookhaven Linac Isotope Producer
Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...
Task Performance with List-Mode Data
Caucci, Luca
This dissertation investigates the application of list-mode data to detection, estimation, and image reconstruction problems, with an emphasis on emission tomography in medical imaging. We begin by introducing a theoretical framework for list-mode data and we use it to define two observers that operate on list-mode data. These observers are applied to the problem of detecting a signal (known in shape and location) buried in a random lumpy background. We then consider maximum-likelihood methods for the estimation of numerical parameters from list-mode data, and we characterize the performance of these estimators via the so-called Fisher information matrix. Reconstruction from PET list-mode data is then considered. In a process we called "double maximum-likelihood" reconstruction, we consider a simple PET imaging system and we use maximum-likelihood methods to first estimate a parameter vector for each pair of gamma-ray photons that is detected by the hardware. The collection of these parameter vectors forms a list, which is then fed to another maximum-likelihood algorithm for volumetric reconstruction over a grid of voxels. Efficient parallel implementation of the algorithms discussed above is then presented. In this work, we take advantage of two low-cost, mass-produced computing platforms that have recently appeared on the market, and we provide some details on implementing our algorithms on these devices. We conclude this dissertation work by elaborating on a possible application of list-mode data to X-ray digital mammography. We argue that today's CMOS detectors and computing platforms have become fast enough to make X-ray digital mammography list-mode data acquisition and processing feasible.
Guaranteed performance in reaching mode of sliding mode ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
addresses the design of constant plus proportional rate reaching law-based SMC for second-order ... Reaching mode; sliding mode controlled systems; output tracking ... The uncertainty in the input distribution function g is expressed as.
Destabilization of TAE modes by particle anisotropy
International Nuclear Information System (INIS)
Wong, H.V.; Berk, H.L.
1998-01-01
Plasmas heated by ICRF produce energetic particle distribution functions which are sharply peaked in pitch-angle, and the authors show that at moderate toroidal mode numbers, this anisotropy is a competitive and even dominant instability drive when compared with the universal instability drive due to spatial gradient. The universal drive, acting along, destabilizes only co-propagating waves (i.e., waves propagating in the same toroidal direction as the diamagnetic flow of the energetic particles), but stabilizes counter-propagating waves (i.e., waves propagating in the opposite toroidal direction as the diamagnetic flow of the energetic particles). Nonetheless, the authors show that in a tokamak, it is possible that particle anisotropy can produce a larger linear growth rate for counter-propagating waves, and provide a mechanism for preferred destabilization of the counter-propagating TAE modes that are sometimes experimentally observed
Neoclassical tearing modes in a tokamak
International Nuclear Information System (INIS)
Hahm, T.S.
1988-08-01
Linear tearing instability is studied in the banana collisionality regime in tokamak geometry. Neoclassical effects produce significant modifications of Ohm's law and the vorticity equation so that the growth rate of tearing modes driven by Δ' is dramatically reduced compared to the usual resistive MHD value. Consequences of this result, regarding the presence of pressure-gradient-driven neoclassical resistive interchange instabilities and the evolution of magnetic islands in the Rutherford regime, are discussed. 10 refs
Embracing different semiotic modes in undergraduate assignments
Leedham, Maria
2012-01-01
The traditional focus within English for Academic Purposes (EAP) teaching of writing in Higher Education is on language produced as linear prose within genres such as the essay, report or case study. While attention is increasingly paid to disciplinary variation and, to a lesser extent, the different range of genres required in assessment, little research has been conducted on additional semiotic modes which may be employed. This paper focuses on resources such as images and layout and the wa...
Higher order mode damping in Kaon factory RF cavities
International Nuclear Information System (INIS)
Enegren, T.; Poirier, R.; Griffin, J.; Walling, L.; Thiessen, H.A.; Smythe, W.R.
1989-05-01
Proposed designs for Kaon factory accelerators require that the rf cavities support beam currents on the order of several amperes. The beam current has Fourier components at all multiples of the rf frequency. Empty rf buckets produce additional components at all multiples of the revolution frequency. If a Fourier component of the beam coincides with the resonant frequency of a higher order mode of the cavity, which is inevitable if the cavity has a large frequency swing, significant excitation of this mode can occur. The induced voltage may then excite coupled bunch mode instabilities. Effective means are required to damp higher order modes without significantly affecting the fundamental mode. A mode damping scheme based on coupled transmission lines has been investigated and is report
International Nuclear Information System (INIS)
Baumgaertel J.A., Redi M.H., Budny R.V., Rewoldt G., Dorland W.
2005-01-01
Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER
Mode-to-mode energy transfers in convective patterns
Indian Academy of Sciences (India)
Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...
Producing charcoal from wastes
Energy Technology Data Exchange (ETDEWEB)
Pogorelov, V.A.
1983-01-01
Experimental works to use wood wastes for producing charcoal are examined, which are being conducted in the Sverdlovsk assembly and adjustment administration of Soyuzorglestekhmontazh. A wasteless prototype installation for producing fine charcoal is described, along with its subsequent briqueting, which is made on the basis of units which are series produced by the factories of the country. The installation includes subassemblies for preparing and drying the raw material and for producing the charcoal briquets. In the opinion of specialists, the charcoal produced from the wastes may be effectively used in ferrous and nonferrous metallurgy and in the production of pipes.
Azimuthal decomposition of optical modes
CSIR Research Space (South Africa)
Dudley, Angela L
2012-07-01
Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...
Localized Acoustic Surface Modes
Farhat, Mohamed
2015-08-04
We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.
Raman amplification of OAM modes
DEFF Research Database (Denmark)
Ingerslev, Kasper; Gregg, Patrick; Galili, Michael
2017-01-01
The set of fibre modes carrying orbital angular momentum (OAM) is a possible basis for mode division multiplexing. In this regard, fibres supporting OAM modes have been fabricated [1], and optical communication using these fibres, has been demonstrated [2]. A vital part of any long range...
ACCA College English Teaching Mode
Ding, Renlun
2008-01-01
This paper elucidates a new college English teaching mode--"ACCA" (Autonomous Cooperative Class-teaching All-round College English Teaching Mode). Integrated theories such as autonomous learning and cooperative learning into one teaching mode, "ACCA", which is being developed and advanced in practice as well, is the achievement…
Fluxon modes in superconducting multilayers
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Madsen, Søren Peder
2004-01-01
We show how to construct fluxon modes from plasma modes in the inductively coupled stacked Josephson junctions, and consider some special cases of these fluxon modes analytically. In some cases we can find exact analytical solutions when we choose the bias current in a special way. We also consid...
Standardization of Keyword Search Mode
Su, Di
2010-01-01
In spite of its popularity, keyword search mode has not been standardized. Though information professionals are quick to adapt to various presentations of keyword search mode, novice end-users may find keyword search confusing. This article compares keyword search mode in some major reference databases and calls for standardization. (Contains 3…
International Nuclear Information System (INIS)
Suzuki, T.; Sagawa, H.
2000-01-01
Complete text of publication follows. Spin and isospin modes in nuclei are investigated. We discuss some of the following topics. 1. Spin-dipole excitations in 12 C and 16 O are studied (1). Effects of tensor and spin-orbit interactions on the distribution of the strengths are investigated, and neutral current neutrino scattering cross sections in 16 O are obtained for heavy-flavor neutrinos from the supernovae. 2. Gamow-Teller (GT) and spin-dipole (SD) modes in 208 Bi are investigated. Quenching and fragmentation of the GT strength are discussed (2). SD excitations and electric dipole (E1) transitions between the GT and SD states are studied (3). Calculated E1 strengths are compared with the sum rule values obtained within the 1p-1h and 1p-1h + 2p-2h configuration spaces. 3. Coulomb displacement energy (CDE) of the IAS of 14 Be is calculated, and the effects of the halo on the CDE and the configuration of the halo state are investigated. 4. Spreading width of IAS and isospin dependence of the width are investigated (4). Our formula for the width explains very well the observed isospin dependence (5). (author)
Surface tearing modes in tokamaks
International Nuclear Information System (INIS)
Takizuka, Tomonori; Kurita, Gen-ichi; Azumi, Masafumi; Takeda, Tatsuoki
1985-10-01
Surface tearing modes in tokamaks are studied numerically and analytically. The eigenvalue problem is solved to obtain the growth rate and the mode structure. We investigate in detail dependences of the growth rate of the m/n = 2/1 resistive MHD modes on the safety factor at the plasma surface, current profile, wall position, and resistivity. The surface tearing mode moves the plasma surface even when the wall is close to the surface. The stability diagram for these modes is presented. (author)
Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.
2003-01-01
Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are
E. Maira (Elisa)
2018-01-01
markdownabstractIn the last few decades, advances in information and communication technology have dramatically changed the way consumers and producers interact in the marketplace. The Internet and social media have torn down the information barrier between producers and consumers, leading to
International Nuclear Information System (INIS)
Greaves, W.
1993-01-01
This article attempts an assessment of the potential use of futures by the Middle East oil producers. It focuses on Saudi Arabia since the sheer size of Saudi Arabian sales poses problems, but the basic issues discussed are similar for the other Middle East producers. (Author)
Simulation of saturated tearing modes in tokamaks
International Nuclear Information System (INIS)
Nguyen, Canh N.; Bateman, Glenn; Kritz, Arnold H.
2004-01-01
A quasi-linear model, which includes the effect of the neoclassical bootstrap current, is developed for saturated tearing modes in order to compute magnetic island widths in axisymmetric toroidal plasmas with arbitrary aspect ratio and cross-sectional shape. The model is tested in a simple stand-alone code and is implemented in the BALDUR [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1982)] predictive modeling code. It is found that the widths of tearing mode islands increase with decreasing aspect ratio and with increasing elongation. Also, the island widths increase when the gradient of the current density increases at the edge of the islands and when the current density inside the islands is suppressed, such as the suppression caused by the near absence of the bootstrap current within the islands. In simulations of tokamak discharges, it is found that tearing mode island widths oscillate in time in response to periodic sawtooth crashes. The local enhancements in the transport produced by magnetic islands have a noticeable effect on global plasma confinement in simulations of low aspect ratio, high beta tokamaks, where saturated tearing mode islands can occur with widths that are greater than 15% of the plasma minor radius
Further Development of Rotating Rake Mode Measurement Data Analysis
Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.
2013-01-01
The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.
Russell, J.
2016-01-01
This chapter looks at the manufacture of Spielberg’s brand, and the limits of its usage. Spielberg’s directorial work is well known, but Spielberg’s identity has also been established in other ways, and I focus particularly on his work as a producer. At the time of writing, Spielberg had produced (or executive produced) 148 movies and television series across a range of genres that takes in high budget blockbusters and low budget documentaries, with many more to come. In these texts, Spielber...
Using BIM Technology to Optimize the Traditional Interior Design Work Mode
Zhu, Ning Ke
2018-06-01
the development of BIM technology and application in the field of architecture design has produced results, but BIM technology and application in the field of interior design is still immaturity because of construction and decoration engineering separation. The article analyzes the problems that BIM technology lead to the interior design work mode optimization, from the 3D visualization work environment, real-time collaborative design mode, physical analysis design mode, information integration design mode state the application in interior design.
Linear stability of tearing modes
International Nuclear Information System (INIS)
Cowley, S.C.; Kulsrud, R.M.; Hahm, T.S.
1986-05-01
This paper examines the stability of tearing modes in a sheared slab when the width of the tearing layer is much smaller than the ion Larmor radius. The ion response is nonlocal, and the quasineutrality retains its full integal form. An expansion procedure is introduced to solve the quasineutrality equation in powers of the width of the tearing layer over the ion Larmor radius. The expansion procedure is applied to the collisionless and semi-collisional tearing modes. The first order terms in the expansion we find to be strongly stabilizing. The physics of the mode and of the stabilization is discussed. Tearing modes are observed in experiments even though the slab theory predicts stability. It is proposed that these modes grow from an equilibrium with islands at the rational surfaces. If the equilibrium islands are wider than the ion Larmor radius, the mode is unstable when Δ' is positive
Agricultural Producer Certificates
Montgomery County of Maryland — A Certified Agricultural Producer, or representative thereof, is an individual who wishes to sell regionally-grown products in the public right-of-way. A Certified...
Electron heating and current drive by mode converted slow waves
International Nuclear Information System (INIS)
Majeski, R.; Phillips, C.K.; Wilson, J.R.
1994-01-01
An approach to obtaining efficient single pass mode conversion at high parallel wave number from the fast magnetosonic wave to the slow ion Bernstein wave, in a two-ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modeling for the case of deuterium-tritium plasmas in TFTR is presented
Electron heating and current drive by mode converted slow waves
International Nuclear Information System (INIS)
Majeski, R.; Phillips, C.K.; Wilson, J.R.
1994-08-01
An approach to obtaining efficient single pass mode conversion at high parallel wavenumber from the fast magnetosonic wave to the slow ion Bernstein wave, in a two ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modelling for the case of deuterium-tritium plasmas in TFTR is presented
Methods for producing diterpenes
DEFF Research Database (Denmark)
2015-01-01
The present invention discloses that by combining different di TPS enzymes of class I and class II different diterpenes may be produced including diterpenes not identified in nature. Surprisingly it is revealed that a di TPS enzyme of class I of one species may be combined with a di TPS enzyme...... of class II from a different species, resulting in a high diversity of diterpenes, which can be produced....
Polysaccharide-producing microalgae
Energy Technology Data Exchange (ETDEWEB)
Braud, J.P.; Chaumont, D.; Gudin, C.; Thepenier, C.; Chassin, P.; Lemaire, C.
1982-11-01
The production of extracellular polysaccharides is studied with Nostoc sp (cyanophycus), Porphiridium cruentum, Rhodosorus marinus, Rhodella maculata (rhodophyci) and Chlamydomonas mexicana (chlorophycus). The polysaccharides produced are separated by centrifugation of the culture then precipitation with alcohol. Their chemical structure was studied by infrared spectrometry and acid hydrolysis. By their rheological properties and especially their insensitivity to temperatrure and pH variations the polysaccharides produced by Porphryridium cruentum and Rhodella maculata appear as suitable candidates for industrial applications.
Design and construction of a mode converter from TE10(rectangular) to TE11(circular)
International Nuclear Information System (INIS)
Tubbing, B.J.D.
1984-08-01
The design and manufacturing of a wavelength mode converter from the TE 10 (rectangular) mode in oversized rectangular to the TE 11 (circular) mode in oversized circular waveguide is described. A differential equation for the cross-sectional shape of the converter was solved numerically. A stainless-steel mandrel was produced on a numerically controlled milling machine. Sixteen converters were produced by means of electroforming on one mandrel. (Auth.)
Audit mode change, corporate governance
Limei Cao; Wanfu Li; Limin Zhang
2015-01-01
This study investigates changes in audit strategy in China following the introduction of risk-based auditing standards rather than an internal control-based audit mode. Specifically, we examine whether auditors are implementing the risk-based audit mode to evaluate corporate governance before distributing audit resources. The results show that under the internal control-based audit mode, the relationship between audit effort and corporate governance was weak. However, implementation of the ri...
Heterogeneous Silicon III-V Mode-Locked Lasers
Davenport, Michael Loehrlein
Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.
Quasi-optical internal mode converters for 110 GHz gyrotrons
International Nuclear Information System (INIS)
Harper, B.M.; Lorbeck, J.A.; Vernon, R.J.
1995-01-01
Many early gyrotrons had a microwave output in the same mode that was produced in the microwave cavity, e.g. the TE 02 mode. These modes were often converted outside of the tube to a more desirable mode for plasma heating using a system of perturbed-wall waveguide mode converters. The current generation of gyrotrons commonly have cavity modes with a high azimuthal index, such as the rotating TE 22,6 mode. Mode conversion by means of waveguide mode converters is not usually practical for such cases. However, an output of a Gaussian beam or other desirable field pattern can be obtained by using a Vlasov-type launcher feeding a series of two or more reflectors. This system may be placed outside or inside of the gyrotron but there are advantages to placing it within the tube, e.g. allowing for a larger collector and smaller reflectors. When such a converter system is placed inside the gyrotron, it is usually preferable to use a modification to the simple Vlasov launcher such as the Denisov-type launcher, which incorporates a series of perturbations within it. The authors have designed both internal and external versions of such quasi-optical converters. They discuss an internal converter which was designed for use inside of a Varian 110 GHz gyrotron producing the TE 22,6 cavity mode. This design consists of four reflectors which are fed by a Denisov-type launcher. Design techniques for the reflector system are discussed and experimental results are presented
Zero modes and entanglement entropy
Energy Technology Data Exchange (ETDEWEB)
Yazdi, Yasaman K. [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)
2017-04-26
Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.
International Nuclear Information System (INIS)
Verdaguer, E.
1983-01-01
The short wavelength normal modes of self-gravitating rotating polytropic discs in the Bardeen approximation are studied. The discs' oscillations can be seen in terms of two types of modes: the p-modes whose driving forces are pressure forces and the r-modes driven by Coriolis forces. As a consequence of differential rotation coupling between the two takes place and some mixed modes appear, their properties can be studied under the assumption of weak coupling and it is seen that they avoid the crossing of the p- and r-modes. The short wavelength analysis provides a basis for the classification of the modes, which can be made by using the properties of their phase diagrams. The classification is applied to the large wavelength modes of differentially rotating discs with strong coupling and to a uniformly rotating sequence with no coupling, which have been calculated in previous papers. Many of the physical properties and qualitative features of these modes are revealed by the analysis. (author)
Magnetorheological dampers in shear mode
International Nuclear Information System (INIS)
Wereley, N M; Cho, J U; Choi, Y T; Choi, S B
2008-01-01
In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared
Nonlinearity and disorder: Classification and stability of nonlinear impurity modes
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole
2001-01-01
We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...... the case of a power-law nonlinearity in detail. We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including the mode decay or switching to a new stable state, and collapse at the impurity site....
Observation and explanation of the JET n=0 chirping mode
Energy Technology Data Exchange (ETDEWEB)
Boswell, C.J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: christopher.boswell@navy.mil; Berk, H.L. [Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712-1060 (United States); Borba, D.N. [Centro de Fusao Nuclear Associacao Euratom-IST, Instituto Superior Tecnico, 1049001 Lisbon (Portugal); EFDA Close Support Unit, Culham Science Centre, OX14 3DB (United Kingdom); Johnson, T. [Alfven Laboratory, KTH, Euratom-VR Association (Sweden); Pinches, S.D. [Max-Planck Institute for Plasma Physics, EURATOM Association, D-85748 Garching (Germany); Sharapov, S.E. [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)
2006-10-09
Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n=0) have been observed in the JET tokamak when energetic ions, with a mean energy {approx}500keV, were created by high field side ion cyclotron resonance frequency heating. This heating method enables the formation of an energetically inverted ion distribution function that allows ions to spontaneously excite the observed instability, identified as a global geodesic acoustic mode. The interpretation is that phase space structures form and interact with the fluid zonal flow to produce the pronounced frequency chirping.
International Nuclear Information System (INIS)
Roderick, N.F.; Cochrane, K.; Douglas, M.R.
1998-01-01
Previous investigations carried out to study various methods of seeding the hydromagnetic Rayleigh-Taylor instability in magnetohydrodynamic simulations showed features similar to those seen in hydrodynamic calculations. For periodic single-mode initiations the results showed the appearance of harmonics as the single modes became nonlinear. For periodic multi-mode initiations new modes developed that indicated the presence of mode coupling. The MHD simulations used parameters of the high velocity large radius z-pinch experiments performed in the Z-accelerator at Sandia National Laboratories. The cylindrical convergent geometry and variable acceleration of these configurations made comparison with analytic, developed for planar geometry with constant acceleration, difficult. A set of calculations in planar geometry using constant current to produce acceleration and parameters characteristic of the cylindrical implosions has been performed to allow a better comparison. Results of these calculations, comparison with analytic theory, and comparison with the cylindrical configuration calculations will be discussed
Ballooning modes or Fourier modes in a toroidal plasma?
International Nuclear Information System (INIS)
Connor, J.W.; Taylor, J.B.
1987-01-01
The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure
International Nuclear Information System (INIS)
Degeling, A.W.; Martin, Y.R.; Lister, J.B.; Llobet, X.; Bak, P.E.
2003-01-01
TCV (Tokamak a Configuration Variable, R = 0.88 m, a < 0.25 m, BT < 1.54 T) is a highly elongated tokamak, capable of producing limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma -- wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock
Study of resonances produced in Heavy Ion Collisions
Quattrocchi, L.; Acosta, L.; Auditore, L.; Cardella, G.; Chbihi, A.; De Filippo, E.; Favela, F.; Gnoffo, B.; Lanzalone, G.; Martel, I.; Martorana, N. S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.
2018-05-01
At Laboratori Nazionali del Sud of Catania an experiment has been carried out in order to investigate the correlations between particles produced in 12C+24Mg reaction at 35 AMeV incident energy. Two α correlation has been explored because provide information about temperature of 8Be nuclei produced in the reaction, while three α correaltion has been studied in order to evaluate the competition between sequential and direct decay mode of resonances produced in 12C quasi-projectiles.
Energy Technology Data Exchange (ETDEWEB)
Abe, T.; Isida, K.; Vada, Y.
1982-11-18
A mixture of power producing coals with coal briquets of varying composition is proposed for coking in horizontal chamber furnaces. The briquets are produced from petroleum coke, coal fines or semicoke, which make up less than 27 percent of the mixture to be briquetted and coals with a standard coking output of volatile substances and coals with high maximal Gizeler fluidity. The ratio of these coals in the mixture is 0.6 to 2.1 or 18 to 32 percent, respectively. Noncaking or poorly caking coals are used as the power producing coals. The hardness of the obtained coke is DJ15-30 = 90.5 to 92.7 percent.
Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX
Ren, Fang; Yu, Jinyi; Wang, Jianping
2018-05-01
We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.
Generation of high order modes
CSIR Research Space (South Africa)
Ngcobo, S
2012-07-01
Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...
Homogeneous modes of cosmological instantons
Energy Technology Data Exchange (ETDEWEB)
Gratton, Steven; Turok, Neil
2001-06-15
We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or Coleman{endash}De Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe.
Homogeneous modes of cosmological instantons
International Nuclear Information System (INIS)
Gratton, Steven; Turok, Neil
2001-01-01
We discuss the O(4) invariant perturbation modes of cosmological instantons. These modes are spatially homogeneous in Lorentzian spacetime and thus not relevant to density perturbations. But their properties are important in establishing the meaning of the Euclidean path integral. If negative modes are present, the Euclidean path integral is not well defined, but may nevertheless be useful in an approximate description of the decay of an unstable state. When gravitational dynamics is included, counting negative modes requires a careful treatment of the conformal factor problem. We demonstrate that for an appropriate choice of coordinate on phase space, the second order Euclidean action is bounded below for normalized perturbations and has a finite number of negative modes. We prove that there is a negative mode for many gravitational instantons of the Hawking-Moss or ColemanendashDe Luccia type, and discuss the associated spectral flow. We also investigate Hawking-Turok constrained instantons, which occur in a generic inflationary model. Implementing the regularization and constraint proposed by Kirklin, Turok and Wiseman, we find that those instantons leading to substantial inflation do not possess negative modes. Using an alternate regularization and constraint motivated by reduction from five dimensions, we find a negative mode is present. These investigations shed new light on the suitability of Euclidean quantum gravity as a potential description of our universe
Intelligence and musical mode preference
DEFF Research Database (Denmark)
Bonetti, Leonardo; Costa, Marco
2016-01-01
The relationship between fluid intelligence and preference for major–minor musical mode was investigated in a sample of 80 university students. Intelligence was assessed by the Raven’s Advanced Progressive Matrices. Musical mode preference was assessed by presenting 14 pairs of musical stimuli...... differences at the cognitive and personality level related to the enjoyment of sad music....
Aliasing modes in the lattice Schwinger model
International Nuclear Information System (INIS)
Campos, Rafael G.; Tututi, Eduardo S.
2007-01-01
We study the Schwinger model on a lattice consisting of zeros of the Hermite polynomials that incorporates a lattice derivative and a discrete Fourier transform with many properties. Such a lattice produces a Klein-Gordon equation for the boson field and the exact value of the mass in the asymptotic limit if the boundaries are not taken into account. On the contrary, if the lattice is considered with boundaries new modes appear due to aliasing effects. In the continuum limit, however, this lattice yields also a Klein-Gordon equation with a reduced mass
Sideways Force Produced During Disruptions
Strauss, H. R.; Paccagnella, R.; Breslau, J.; Jardin, S.; Sugiyama, L.
2012-10-01
We extend previous studies [1] of vertical displacement events (VDE) which can produce disruptions. The emphasis is on the non axisymmetric ``sideways'' wall force Fx. Simulations are performed using the M3D [2] code. A VDE expels magnetic flux through the resistive wall until the last closed flux surface has q VDE is presented. The wall force depends strongly on γτw, where γ is the mode growth rate and τw is the wall resistive penetration time. The force Fx is largest when γτw is a constant of order unity, which depends on the initial conditions. For large values of γτw, the wall force asymptotes to a relatively smaller value, well below the critical value ITER is designed to withstand. The principle of disruption mitigation by massive gas injection is to cause a disruption with large γτw. [4pt] [1] H. R. Strauss, R. Paccagnella, and J. Breslau,Phys. Plasmas 17, 082505 (2010) [2] W. Park, E.V. Belova, G.Y. Fu, X. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6, 1796 (1999).
Standards and producers' liability
International Nuclear Information System (INIS)
Kretschmer, F.
1979-01-01
The author discusses the liability of producers and the diligence required, which has to come up to technical standards and the latest state of technology. The consequences of this requirement with regard to claims for damages are outlined and proposals for reforms are pointed out. (HSCH) [de
Producing superhydrophobic roof tiles
International Nuclear Information System (INIS)
Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J
2016-01-01
Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic–inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie–Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol–gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie–Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating. (paper)
SEARCH FOR GLOBAL f-MODES AND p-MODES IN THE {sup 8}B NEUTRINO FLUX
Energy Technology Data Exchange (ETDEWEB)
Lopes, Ilídio, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Física, Escola de Ciências e Tecnologia, Universidade de Évora, Colégio Luis António Verney, 7002-554 Évora (Portugal)
2013-11-01
The impact of global acoustic modes on the {sup 8}B neutrino flux time series is computed for the first time. It is shown that the time fluctuations of the {sup 8}B neutrino flux depend on the amplitude of acoustic eigenfunctions in the region where the {sup 8}B neutrino flux is produced: modes with low n (or order) that have eigenfunctions with a relatively large amplitude in the Sun's core strongly affect the neutrino flux; conversely, modes with high n that have eigenfunctions with a minimal amplitude in the Sun's core have a very small impact on the neutrino flux. It was found that the global modes with a larger impact on the {sup 8}B neutrino flux have a frequency of oscillation in the interval 250 μHz to 500 μHz (or a period in the interval 30 minutes to 70 minutes), such as the f-modes (n = 0) for the low degrees, radial modes of order n ≤ 3, and the dipole mode of order n = 1. Their corresponding neutrino eigenfunctions are very sensitive to the solar inner core and are unaffected by the variability of the external layers of the solar surface. If time variability of neutrinos is observed for these modes, it will lead to new ways of improving the sound speed profile inversion in the central region of the Sun.
Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks
International Nuclear Information System (INIS)
Gianakon, T.A.; Hegna, C.C.; Callen, J.D.
1997-05-01
Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm's law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise Δ' stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface
Inter-comb synchronization by mode-to-mode locking
Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo
2016-08-01
Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52 × 10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.
Modes of DNA repair and replication
International Nuclear Information System (INIS)
Hanawalt, P.; Kondo, S.
1979-01-01
Modes of DNA repair and replication require close coordination as well as some overlap of enzyme functions. Some classes of recovery deficient mutants may have defects in replication rather than repair modes. Lesions such as the pyrimidine dimers produced by ultraviolet light irradiation are the blocks to normal DNA replication in vivo and in vitro. The DNA synthesis by the DNA polymerase 1 of E. coli is blocked at one nucleotide away from the dimerized pyrimidines in template strands. Thus, some DNA polymerases seem to be unable to incorporate nucleotides opposite to the non-pairing lesions in template DNA strands. The lesions in template DNA strands may block the sequential addition of nucleotides in the synthesis of daughter strands. Normal replication utilizes a constitutive ''error-free'' mode that copies DNA templates with high fidelity, but which may be totally blocked at a lesion that obscures the appropriate base pairing specificity. It might be expected that modified replication system exhibits generally high error frequency. The error rate of DNA polymerases may be controlled by the degree of phosphorylation of the enzyme. Inducible SOS system is controlled by recA genes that also control the pathways for recombination. It is possible that SOS system involves some process other than the modification of a blocked replication apparatus to permit error-prone transdimer synthesis. (Yamashita, S.)
Damping Measurements of Plasma Modes
Anderegg, F.; Affolter, M.; Driscoll, C. F.
2010-11-01
For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.
Mode synthesizing atomic force microscopy and mode-synthesizing sensing
Passian, Ali; Thundat, Thomas George; Tetard, Laurene
2013-05-17
A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.
Energy Technology Data Exchange (ETDEWEB)
Porco, J. [Alpha Natural Resources, Latrobe, PA (US). Alpha Energy Global Marketing
2004-07-01
The focus is on the Central Appalachian coal industry. Alpha Natural Resources was formed in 2002 from Pittston Coal's Virginia and Coastal operations. AMCI's U.S. operations and Mears Enterprises in Pennsylvania were acquired later. The company produces 20-21 million tonnes per year and sells 20 million tonnes of steam coal and 10 million tonnes of exports, including some coal that is brokered. Foundry coke is a major product. Capital investment has resulted in increased productivity. Central Appalachia is expected to continue as a significant coal-producing region for supplying metallurgical coke. Production is expected to stabilize, but not increase; so the mines will have a longer life. 31 slides/overheads are included.
International Nuclear Information System (INIS)
Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi
2015-01-01
A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback
Dimuons produced by antineutrinos
International Nuclear Information System (INIS)
Benvenuti, A.; Cline, D.; Ford, W.T.; Imlay, R.; Ling, T.Y.; Mann, A.K.; Orr, R.; Reeder, D.D.; Rubbia, C.; Stefanski, R.; Sulak, L.; Wanderer, P.
1975-01-01
In a run with a predominantly phi-bar beam we have observed seven dimuon events which show clearly that dimuons are produced by phi-bar as well as by phi. Using the signature of those events we tentatively identify twelve dimuon events from earlier runs as phi-bar-induced. The characteristics of the total sample support the explanation that dimuons arise from new hadron production
Dynamic mode decomposition for plasma diagnostics and validation
Taylor, Roy; Kutz, J. Nathan; Morgan, Kyle; Nelson, Brian A.
2018-05-01
We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system with high fidelity. This allows for a reduction in the computational cost and, at the same time, accurate approximations of the problem, even if the data are sparsely sampled. We demonstrate the use of the method on both numerical and experimental data, showing that it is a successful mathematical architecture for characterizing the helicity injected torus with steady inductive (HIT-SI) magnetohydrodynamics. Importantly, the DMD produces interpretable, dominant mode structures, including a stationary mode consistent with our understanding of a HIT-SI spheromak accompanied by a pair of injector-driven modes. In combination, the 3-mode DMD model produces excellent dynamic reconstructions across the domain of analyzed data.
Examining the Modes Malware Suppliers Use to Provide Goods and Services
Directory of Open Access Journals (Sweden)
Tony Bailetti
2016-02-01
Full Text Available Malware suppliers use various modes to provide goods and services to customers. By mode, we mean “the way” the malware supplier chooses to function. These modes increase monetization opportunities and enable many security breaches worldwide. A theoretically sound framework that can be used to examine the various modes that malware suppliers use to produce and sell malware is needed. We apply a general model specified recently by Hagiu and Wright to study five modes that malware suppliers use to deliver goods and services to their customers. The framework presented in this article can be used to predict the mode in which a malware supplier will function; to study which types of malware suppliers, agents, and customers are attracted to each mode; to discover new modes; and to better understand the threat a malware supplier presents.
Equilibrium calculations and mode analysis
International Nuclear Information System (INIS)
Herrnegger, F.
1987-01-01
The STEP asymptotic stellarator expansion procedure was used to study the MHD equilibrium and stability properties of stellarator configurations without longitudinal net-current, which also apply to advanced stellarators. The effects of toroidal curvature and magnetic well, and the Shafranov shift were investigated. A classification of unstable modes in toroidal stellarators is given. For WVII-A coil-field configurations having a β value of 1% and a parabolic pressure profile, no free-boundary modes are found. This agrees with the experimental fact that unstable behavior of the plasma column is not observed for this parameter range. So a theoretical β-limit for stability against ideal MHD modes can be estimated by mode analysis for the WVII-A device
Tapping mode microwave impedance microscopy
Lai, K.; Kundhikanjana, W.; Peng, H.; Cui, Y.; Kelly, M. A.; Shen, Z. X.
2009-01-01
We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately
Common mode and coupled failure
International Nuclear Information System (INIS)
Taylor, J.R.
1975-10-01
Based on examples and data from Abnormal Occurence Reports for nuclear reactors, a classification of common mode or coupled failures is given, and some simple statistical models are investigated. (author)
Amplitude damping of vortex modes
CSIR Research Space (South Africa)
Dudley, Angela L
2010-09-01
Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...
Multiresonance modes in sine–Gordon brane models
Energy Technology Data Exchange (ETDEWEB)
Cruz, W.T., E-mail: wilamicruz@gmail.com [Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Juazeiro do Norte, 63040-540 Juazeiro do Norte-Ceará (Brazil); Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil); Dantas, D.M., E-mail: davi@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil)
2016-12-15
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.
Impact of magnetic fields on the R-mode instability
International Nuclear Information System (INIS)
Rezzolla, L.
2001-01-01
The instability of r-mode oscillations in rapidly rotating neutron stars has attracted attention as a potential mechanism for producing high frequency, almost periodic gravitational waves. The analyses carried out so far have shown the existence of the instability and have considered damping by shear and bulk viscosity, as well as the interaction with a solid star crust. However, the magnetohydrodynamic coupling of the modes with a stellar magnetic field, which is likely to be present, has not been fully investigated yet. Here we discuss the relevance of a magnetic field, its modifications under the action of the r-mode instability, and how the interaction between r-mode oscillations and a magnetic field might limit the onset and duration of the instability. (author)
Multiresonance modes in sine–Gordon brane models
International Nuclear Information System (INIS)
Cruz, W.T.; Maluf, R.V.; Dantas, D.M.; Almeida, C.A.S.
2016-01-01
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.
Formation and termination of High ion temperature mode in Heliotron/torsatron plasmas
International Nuclear Information System (INIS)
Ida, K.; Kondo, K.; Nagasaki, K.
1997-01-01
Physics of the formation and termination of High ion temperature mode (high T i mode) are studied by controlling density profiles and radial electric field. High ion temperature mode is observed for neutral beam heated plasmas in Heliotron/torsatron plasmas (Heliotron-E). This high T i mode plasma is characterized by a peaked ion temperature profile and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. This high T i mode is terminated by flattening the electron density caused by either gas puffing or second harmonic ECH (core density 'pump-out'). (author)
International Nuclear Information System (INIS)
Lazaros, Avrilios
2000-01-01
The interaction of ECRH with the m/n=2/1 tearing mode, which was observed in toroidal plasmas, is attributed to the superthermal electrons which are produced on the EC resonance by the ECRH. Superthermal electrons diffusing across the q=2 surface, exchange power with the m/n=2/1 MHD mode which is either suppressed or enhanced. When the EC resonance is outside the rational surface, the mode is always suppressed. When the EC resonance is inside the rational surface, modes with large amplitude are enhanced while modes with small amplitude are suppressed. (author)
Fiber cavities with integrated mode matching optics.
Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias
2017-07-17
In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.
International Nuclear Information System (INIS)
Tchangnwa Nya, F; Ayadim, A; Germain, Ph; Amokrane, S
2012-01-01
We examine the question of the accuracy of the static correlation functions used as input in the mode coupling theory (MCT) of non-ergodic states in binary mixtures. We first consider hard-sphere mixtures and compute the static pair structure from the Ornstein-Zernike equations with the Percus-Yevick closure and more accurate ones that use bridge functions deduced from Rosenfeld’s fundamental measures functional. The corresponding MCT predictions for the non-ergodicity lines and the transitions between multiple glassy states are determined from the long-time limit of the density autocorrelation functions. We find that while the non-ergodicity transition line is not very sensitive to the input static structure, up to diameter ratios D 2 /D 1 = 10, quantitative differences exist for the transitions between different glasses. The discrepancies with the more accurate closures become even qualitative for sufficiently asymmetric mixtures. They are correlated with the incorrect behavior of the PY structure at high size asymmetry. From the example of ultra-soft potential it is argued that this issue is of general relevance beyond the hard-sphere model. (paper)
CMB Polarization B-mode Delensing with SPTpol and Herschel
Energy Technology Data Exchange (ETDEWEB)
Manzotti, A.; et al.
2017-01-16
We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg$^2$ patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the $\\textit{Herschel}$ $500\\,\\mu m$ map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range $300 < \\ell < 2300$; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at $6.9 \\sigma$. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.
Saturation of single toroidal number Alfvén modes
International Nuclear Information System (INIS)
Wang, X; Briguglio, S
2016-01-01
The results of numerical simulations are presented to illustrate the saturation mechanism of a single toroidal number Alfvén mode, driven unstable, in a tokamak plasma, by the resonant interaction with energetic ions. The effects of equilibrium geometry non-uniformities and finite mode radial width on the wave-particle nonlinear dynamics are discussed. Saturation occurs as the fast-ion density flattening produced by the radial flux associated to the resonant particles captured in the potential well of the Alfvén wave extends over the whole region where mode-particle power exchange can take place. The occurrence of two different saturation regimes is shown. In the first regime, dubbed resonance detuning, that region is limited by the resonance radial width (that is, the width of the region where the fast-ion resonance frequency matches the mode frequency). In the second regime, called radial decoupling, the power exchange region is limited by the mode radial width. In the former regime, the mode saturation amplitude scales quadratically with the growth rate; in the latter, it scales linearly. The occurrence of one or the other regime can be predicted on the basis of linear dynamics: in particular, the radial profile of the fast-ion resonance frequency and the mode structure. Here, we discuss how such properties can depend on the considered toroidal number and compare simulation results with the predictions obtained from a simplified nonlinear pendulum model. (paper)
International Nuclear Information System (INIS)
Odegaard, S.W.; Tjoem, P.O.; Hagemann, G.B.; Jensen, D.R.; Bergstroem, M.; Herskind, B.; Sletten, G.; Toermaenen, S.; Wilson, J.N.; Hamamoto, I.; Spohr, K.; Huebel, H.; Goergen, A.; Schoenwasser, G.; Bracco, A.; Leoni, S.; Maj, A.; Petrache, C.M.; Bednarczyk, P.; Curien, D.
2002-01-01
The wobbling mode is a direct consequence of rotational motion of a triaxial body. The wobbling degree of freedom introduces sequences of bands with increasing number of wobbling quanta and a characteristic ΔI=1 decay pattern between the bands in competition with the in-band decay. A favorable candidate for establishing this exotic excitation mode is found for the first time in one of the Lu-isotopes for which stable triaxial superdeformed shapes are expected
A modulation model for mode splitting of magnetic perturbations in the Mega Ampere Spherical Tokamak
International Nuclear Information System (INIS)
Hole, M J; Appel, L C
2009-01-01
Recent observations of magnetic fluctuation activity in the Mega Ampere Spherical Tokamak (MAST) reveal the presence of plasmas with bands of both low and high frequency magnetic fluctuations. Such plasmas exhibit a spectrum of low frequency modes with adjacent toroidal mode numbers, for which the measured frequency is near the Doppler shifted rotation frequency of the plasma. These are thought to be tearing modes. Also present are a spectrum of high frequency modes (e.g. Alfven, fishbone and/or ICE). The frequency and mode number of the tearing mode and its harmonics is identical to the frequency and mode number splitting of the high frequency MHD activity, strongly suggesting that the high frequency splitting is produced by modulation of the high and low frequency modes. We describe a strong modulation model, in which the nonlinear terms are fitted to produce the amplitude envelope profile of the tearing mode. A bispectral analysis proves that the low frequency modes are indeed in phase with the fundamental, while Fourier-SVD mode analysis confirms the mode numbers are toroidal harmonics. Employing this model, the sideband amplitude profile of the high frequency modes is predicted, and found to be in good agreement with experimental observations. Also, toroidal mode number splitting of the high frequency activity matches the mode number of the tearing mode. Weak evidence is found to indicate the Alfvenic sidebands are in phase with the Alfven eigenmode fundamental. The findings support predictions of a strong modulation model, and suggest a need to further develop nonlinear MHD theory to predict the amplitude of coupled sidebands, and so corroborate the observed nonlinear plasma response.
The evolution of transmission mode
Forbes, Mark R.; Hauffe, Heidi C.; Kallio, Eva R.; Okamura, Beth; Sait, Steven M.
2017-01-01
This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289251
Producing quality radiographic images
International Nuclear Information System (INIS)
Cullinan, A.M.
1987-01-01
This book gives an overview of physics, equipment, imaging, and quality assurance in the radiology department. The chapters are laid out with generous use of subheads to allow for quick reference, Points are illustrated with clear, uncluttered line diagrams and well-produced images. The accompanying explanations are miniature lessons by themselves. Inserted at various points throughout the text are important notes that highlight key concepts. The chapter ''Image Evaluation and Application of Radiographic Principles'' present a systematic approach to evaluating radiographs and contains several sample radiographs to illustrate the points made
Mode locking and spatiotemporal chaos in periodically driven Gunn diodes
DEFF Research Database (Denmark)
Mosekilde, Erik; Feldberg, Rasmus; Knudsen, Carsten
1990-01-01
oscillation entrains with the external signal. This produces a devil’s staircase of frequency-locked solutions. At higher microwave amplitudes, period doubling and other forms of mode-converting bifurcations can be seen. In this interval the diode also exhibits spatiotemporal chaos. At still higher microwave...
International Nuclear Information System (INIS)
Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.
1977-01-01
A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states
Management of small producers waste in Slovenia
International Nuclear Information System (INIS)
Fabjan, Marija; Rojc, Joze
2007-01-01
Available in abstract form only. Full text of publication follows: Radioactive materials are extensively used in Slovenia in various fields and applications in medicine, industry and research. For the managing of radioactive waste raised from these establishments the Agency for radwaste management (ARAO) was authorised as the state public service of managing the radioactive waste in 1999. The public service of the radioactive waste of small producers in Slovenia is performed in line with the Governmental decree on the Mode, Subject and Terms of Performing the Public Service of Radioactive Waste Management (Official Gazette RS No. 32/99). According to the Decree the scope of the public service includes: 'collection of the waste from small producers at the producers' premises and its transportation to the storage facility for treatment, storing and disposal', 'acceptance of radioactive waste in case of emergency situation on the premises, in case of transport accidents or some other accidents', 'acceptance of radioactive waste in cases when the producer is unknown', 'management (collection, transport, pre-treatment, storing, together with QA and radiation protection measures) of radioactive waste', 'treatment and conditioning of radioactive waste for storing and disposal', and 'operating of the Central Interim Storage for LIL waste from small producers'. After taking over the performing of the public service, ARAO first started with the project for refurbishment and modernization of the Central Interim Storage Facility, including improvements of the storage utilization and rearrangement of the stored waste. (authors)
Packaged mode multiplexer based on silicon photonics
Chen, H.; Koonen, A.M.J.; Snyder, B.; Raz, O.; Boom, van den H.P.A.; Chen, X.
2012-01-01
A silicon photonics based mode multiplexer is proposed. Four chirped grating couplers structure can support all 6 channels in a two-mode fiber and realize LP01 and LP11 mode selective exciting. The packaged device is tested.
DEFF Research Database (Denmark)
Feldt, Liv Egholm; Hein Jessen, Mathias
Since the beginning of the 1990’s, civil society has attracted both scholarly and political interest as the ‘third sphere’ outside the state and the market not only a normatively privileged site of communication and ‘the public sphere’, but also as a resource for democratization processes...... and social cohesion, as well as a provider of welfare services from a welfare state in dire straits. However, such a view upholds a sharp distinction between the three sectors and their distinct logic. This article claims that the separation of spheres is a fundamental part of our ‘social imaginary......’ and as such dominates our way of thinking about civil society. Yet, this view hinders the understanding of how civil society is not a pre-existing or given sphere, but a sphere which is constantly produced both discursively, conceptually and practically. Through two examples; 1,the case of philanthropy in the beginning...
Challenges in higher order mode Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk
2015-01-01
A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...
Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko
2013-11-04
We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.
Tearing modes in toroidal geometry
International Nuclear Information System (INIS)
Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.
1988-01-01
The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed
Boundary methods for mode estimation
Pierson, William E., Jr.; Ulug, Batuhan; Ahalt, Stanley C.
1999-08-01
This paper investigates the use of Boundary Methods (BMs), a collection of tools used for distribution analysis, as a method for estimating the number of modes associated with a given data set. Model order information of this type is required by several pattern recognition applications. The BM technique provides a novel approach to this parameter estimation problem and is comparable in terms of both accuracy and computations to other popular mode estimation techniques currently found in the literature and automatic target recognition applications. This paper explains the methodology used in the BM approach to mode estimation. Also, this paper quickly reviews other common mode estimation techniques and describes the empirical investigation used to explore the relationship of the BM technique to other mode estimation techniques. Specifically, the accuracy and computational efficiency of the BM technique are compared quantitatively to the a mixture of Gaussian (MOG) approach and a k-means approach to model order estimation. The stopping criteria of the MOG and k-means techniques is the Akaike Information Criteria (AIC).
Audit mode change, corporate governance
Directory of Open Access Journals (Sweden)
Limei Cao
2015-12-01
Full Text Available This study investigates changes in audit strategy in China following the introduction of risk-based auditing standards rather than an internal control-based audit mode. Specifically, we examine whether auditors are implementing the risk-based audit mode to evaluate corporate governance before distributing audit resources. The results show that under the internal control-based audit mode, the relationship between audit effort and corporate governance was weak. However, implementation of the risk-based mode required by the new auditing standards has significantly enhanced the relationship between audit effort and corporate governance. Since the change in audit mode, the Big Ten have demonstrated a significantly better grasp of governance risk and allocated their audit effort accordingly, relative to smaller firms. The empirical evidence indicates that auditors have adjusted their audit strategy to meet the regulations, risk-based auditing is being achieved to a degree, reasonable and effective corporate governance helps to optimize audit resource allocation, and smaller auditing firms in particular should urgently strengthen their risk-based auditing capability. Overall, our findings imply that the mandatory switch to risk-based auditing has optimized audit effort in China.
Tapping mode microwave impedance microscopy
Lai, K.
2009-01-01
We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.
Reconfigurable Mixed Mode Universal Filter
Directory of Open Access Journals (Sweden)
Neelofer Afzal
2014-01-01
Full Text Available This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite large number of active elements. It needs three digitally programmable current feedback amplifiers and three digitally programmable current conveyors. Use of six active elements is justified by introducing three additional reduced hardware mixed mode universal filter configurations and its comparison with reported filters.
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-04-20
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...
Macroscopic (and microscopic massless modes
Directory of Open Access Journals (Sweden)
Michael C. Abbott
2015-05-01
Full Text Available We study certain spinning strings exploring the flat directions of AdS3×S3×S3×S1, the massless sector cousins of su(2 and sl(2 sector spinning strings. We describe these, and their vibrational modes, using the D(2,1;α2 algebraic curve. By exploiting a discrete symmetry of this structure which reverses the direction of motion on the spheres, and alters the masses of the fermionic modes s→κ−s, we find out how to treat the massless fermions which were previously missing from this formalism. We show that folded strings behave as a special case of circular strings, in a sense which includes their mode frequencies, and we are able to recover this fact in the worldsheet formalism. We use these frequencies to calculate one-loop corrections to the energy, with a version of the Beisert–Tseytlin resummation.
Physics of resistive wall modes
International Nuclear Information System (INIS)
Igochine, V.
2012-01-01
The advanced tokamak regime is a promising candidate for steady-state tokamak operation which is desirable for a fusion reactor. This regime is characterized by a high bootstrap current fraction and a flat or reversed safety factor profile, which leads to operation close to the pressure limit. At this limit, an external kink mode becomes unstable. This external kink is converted into the slowly growing resistive wall mode (RWM) by the presence of a conducting wall. Reduction of the growth rate allows one to act on the mode and to stabilize it. There are two main factors which determine the stability of the RWM. The first factor comes from external magnetic perturbations (error fields, resistive wall, feedback coils, etc). This part of RWM physics is the same for tokamaks and reversed field pinch configurations. The physics of this interaction is relatively well understood and based on classical electrodynamics. The second ingredient of RWM physics is the interaction of the mode with plasma flow and fast particles. These interactions are particularly important for tokamaks, which have higher plasma flow and stronger trapped particle effects. The influence of the fast particles will also be increasingly more important in ITER and DEMO which will have a large fraction of fusion born alpha particles. These interactions have kinetic origins which make the computations challenging since not only particles influence the mode, but also the mode acts on the particles. Correct prediction of the ‘plasma–RWM’ interaction is an important ingredient which has to be combined with external field's influence (resistive wall, error fields and feedback) to make reliable predictions for RWM behaviour in tokamaks. All these issues are reviewed in this paper. (special topic)
Power Producer Production Valuation
Directory of Open Access Journals (Sweden)
M. Kněžek
2008-01-01
Full Text Available The ongoing developments in the electricity market, in particular the establishment of the Prague Energy Exchange (PXE and the associated transfer from campaign-driven sale to continuous trading, represent a significant change for power companies. Power producing companies can now optimize the sale of their production capacities with the objective of maximizing profit from wholesale electricity and supporting services. The Trading Departments measure the success rate of trading activities by the gross margin (GM, calculated by subtracting the realized sales prices from the realized purchase prices and the production cost, and indicate the profit & loss (P&L to be subsequently calculated by the Control Department. The risk management process is set up on the basis of a business strategy defining the volumes of electricity that have to be sold one year and one month before the commencement of delivery. At the same time, this process defines the volume of electricity to remain available for spot trading (trading limits.
Antibiotics produced by Streptomyces.
Procópio, Rudi Emerson de Lima; Silva, Ingrid Reis da; Martins, Mayra Kassawara; Azevedo, João Lúcio de; Araújo, Janete Magali de
2012-01-01
Streptomyces is a genus of Gram-positive bacteria that grows in various environments, and its shape resembles filamentous fungi. The morphological differentiation of Streptomyces involves the formation of a layer of hyphae that can differentiate into a chain of spores. The most interesting property of Streptomyces is the ability to produce bioactive secondary metabolites, such as antifungals, antivirals, antitumorals, anti-hypertensives, immunosuppressants, and especially antibiotics. The production of most antibiotics is species specific, and these secondary metabolites are important for Streptomyces species in order to compete with other microorganisms that come in contact, even within the same genre. Despite the success of the discovery of antibiotics, and advances in the techniques of their production, infectious diseases still remain the second leading cause of death worldwide, and bacterial infections cause approximately 17 million deaths annually, affecting mainly children and the elderly. Self-medication and overuse of antibiotics is another important factor that contributes to resistance, reducing the lifetime of the antibiotic, thus causing the constant need for research and development of new antibiotics. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.
Cyclotron produced radiopharmaceuticals
International Nuclear Information System (INIS)
Kopicka, K.; Fiser, M.; Hradilek, P.; Hanc, P.; Lebeda, O.
2003-01-01
Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides /compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed. (author)
Renormalized modes in cuprate superconductors
Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.
2018-04-01
The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.
Transformation and Modes of Production
DEFF Research Database (Denmark)
Høst, Jeppe Engset
2015-01-01
modes of production and examine the ways of life that are enabled by the two modes of production. The central questions are around how market-based fisheries management transforms the principal preconditions for the self-employed fishers; and, in turn, why capitalist organized large-scale fisheries......The introduction of private and individual transferable quotas is widely considered to have a negative impact on small- and medium-sized fishing operations. In this chapter, I set out to explore this in a theoretical manner. I discuss the differences in the fishing operations as two contrasting...
International Nuclear Information System (INIS)
Pan'ko, G.F.; Prisedskij, V.V.; Klimov, V.V.
1983-01-01
Anisotropic diffusional scattering of electrons on PbZrO 3 crystal in the temperature range of phase transition has been recorded. As a result of its analysis it has been established that in lead zirconate the rotational vibrational mode G 25 plays the role of soft mode. The experiment is carried out using PbZrO 3 monocrystals in translucent electron microscope EhM-200, operating in the regime of microdiffraction at accelerating voltage of 150 kV and beam current 50 μA; sample preparation is realized using the method of shearing and fragmentation
Modifications needed to operate PWR's plants in G-Mode
International Nuclear Information System (INIS)
Stainman, J.P.
1985-01-01
The production of electricity from PWR nuclear plants represents 44% of the total production of electricity in France for 1984, and 68% of the electricity produced by Thermal power plants (127 TWh over 187 TWh). These data show clearly that the French PWR plants do not work in ''base mode'' anymore but have to fit production with consumption, in other words to assume the frequency control. To participate permanently to the load follow and frequency control, it appeared that some improvements in the field of pressurizer level and pressure control were necessary as well as in the field of operator aids computer. It should be noted that these improvements are useful even without taking into account the constraints due to load follow and frequency control because of the mechanical stress in the CVCS piping, for instance. Some additional tests are planned to better identify this specific problem. The need of a more flexible operating mode than ones given by the initial system (black control rods), significantly reduced in 1973 due to the application of the ECCS criterion, led EDF and Framatome to develop a new operating mode (G. Mode) allowing a faster power escalation (5% PN/mn) whatever the fuel burn-up. This new operating mode improves significantly also the flexibility of operation when the frequency control is needed, and helps a lot the operators in such cases. All the 900 MWe Nuclear plants will be able to operate in ''G mode'' before the end of 1984
Ductile mode grinding of reaction-bonded silicon carbide mirrors.
Dong, Zhichao; Cheng, Haobo
2017-09-10
The demand for reaction-bonded silicon carbide (RB-SiC) mirrors has escalated recently with the rapid development of space optical remote sensors used in astronomy or Earth observation. However, RB-SiC is difficult to machine due to its high hardness. This study intends to perform ductile mode grinding to RB-SiC, which produces superior surface integrity and fewer subsurface damages, thus minimizing the workload of subsequent lapping and polishing. For this purpose, a modified theoretical model for grain depth of cut of grinding wheels is presented, which correlates various processing parameters and the material characteristics (i.e., elastic module) of a wheel's bonding matrix and workpiece. Ductile mode grinding can be achieved as the grain depth of cut of wheels decreases to be less than the critical cut depth of workpieces. The theoretical model gives a roadmap to optimize the grinding parameters for ductile mode grinding of RB-SiC and other ultra-hard brittle materials. Its feasibility was validated by experiments. With the optimized grinding parameters for RB-SiC, the ductile mode grinding produced highly specular surfaces (with roughness of ∼2.2-2.8 nm Ra), which means the material removal mechanism of RB-SiC is dominated by plastic deformation rather than brittle fracture. Contrast experiments were also conducted on fused silica, using the same grinding parameters; this produced only very rough surfaces, which further validated the feasibility of the proposed model.
Feedback stabilization system for pulsed single longitudinal mode tunable lasers
Esherick, Peter; Raymond, Thomas D.
1991-10-01
A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.
DEFF Research Database (Denmark)
Mackinney-Valentin, Maria
A textbook for school children 13-16 on fashion. Ethics, designers, social identity, zeitgeist, and gender are among the key themes.......A textbook for school children 13-16 on fashion. Ethics, designers, social identity, zeitgeist, and gender are among the key themes....
Effects of toroidicity on resistive tearing modes
International Nuclear Information System (INIS)
Izzo, R.; Monticello, D.A.; Manickam, J.; Strauss, H.R.; Grimm, R.; McGuire, K.
1983-03-01
A reduced set of resistive MHD equations is solved numerically in three dimensions to study the stability of tokamak plasmas. Toroidal effects are included self-consistently to leading and next order in inverse aspect ratio, epsilon. The equations satisfy an energy integral. In addition, the momentum equation yields the Grad-Shafranov equation correct to all orders in epsilon. Low beta plasma are studied using several different q-profiles. In all cases, the linear growth rates are reduced by finite toroidicity. Excellent agreement with resistive PEST is obtianed. In some cases, toroidal effects lead to complete stabilization of the mode. Nonlinear results show smaller saturated island widths for finite aspect ratio compared to the cylindrical limit. If the current channel is wide enough so as to produce steep gradients towards the outside of the plasma, both the finite aspect ratio cases and cylindrical cases disrupt
Comparing data quality and cost from three modes of on-board transit passenger surveys.
2015-06-01
This report presents the findings from a research project investigating the relative data quality and administration costs for three : different modes of surveying bus passengers that produce results generalizable to the full passenger population. Th...
Active pixel image sensor with a winner-take-all mode of operation
Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor); Mead, Carver (Inventor)
2003-01-01
An integrated CMOS semiconductor imaging device having two modes of operation that can be performed simultaneously to produce an output image and provide information of a brightest or darkest pixel in the image.
Apsche, Jack A.
2005-01-01
In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…
Pietralla, N.; Beller, J.; Beck, T.; Derya, V.; Löher, B.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Zweidinger, M.
2014-09-01
We report on our recent nuclear resonance fluorescence experiments on l52,l54,l56Gd. Decay branches of the scissors mode to intrinsic excitations are observed. They are interpreted as a new signature for a spherical-to-deformed nuclear shape phase transition.
Cancellieri, G
1991-01-01
This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.
Rubble Mound Breakwater Failure Modes
DEFF Research Database (Denmark)
Burcharth, H. F.; Z., Liu
1995-01-01
The RMBFM-Project (Rubble Mound Breakwater Failure Modes) is sponsored by the Directorate General XII of the Commission of the European Communities under the Contract MAS-CT92- 0042, with the objective of contributing to the development of rational methods for the design of rubble mound breakwate...
Mode structure of active resonators
Ernst, G.J.; Witteman, W.J.
1973-01-01
An analysis is made of the mode structure of lasers when the interaction with the active medium is taken into account. We consider the combined effect of gain and refractive-index variations for arbitrary mirror configurations. Using a dimensionless round-trip matrix for a medium with a quadratic
Energy balance in tearing modes
International Nuclear Information System (INIS)
Wesson, J.A.
1993-01-01
The energy balance in tearing modes is described in terms of exact separate energy balance equations. Each of these equations describes identified physical processes, and their sum gives the conservation of total energy. One of the energy balance equations corresponds to Furth's description. (Author)
Radiation produced biomaterials
International Nuclear Information System (INIS)
Rosiak, J.M.
1998-01-01
radiation technique. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as modification of material surfaces to improve their biocompatibility and ability to bond antigens and antibodies have been the main subject of their investigations. The rising interest in the field of application of radiation to bioengineering was also recognized by the International Atoimc Energy Agency, which has initiated the international programs relating to those studies. In these lectures some directions of investigations on the formation of hydrogels and their applications for biomedical purposes have been specified. Also, some examples of commercialized products being produced by means of radiation technique have been presented
Quantum Accelerator Modes from the Farey Tree
International Nuclear Information System (INIS)
Buchleitner, A.; D'Arcy, M.B.; Fishman, S.; Gardiner, S.A.; Guarneri, I.; Ma, Z.-Y.; Rebuzzini, L.; Summy, G.S.
2006-01-01
We show that mode locking finds a purely quantum nondissipative counterpart in atom-optical quantum accelerator modes. These modes are formed by exposing cold atoms to periodic kicks in the direction of the gravitational field. They are anchored to generalized Arnol'd tongues, parameter regions where driven nonlinear classical systems exhibit mode locking. A hierarchy for the rational numbers known as the Farey tree provides an ordering of the Arnol'd tongues and hence of experimentally observed accelerator modes
Energy Technology Data Exchange (ETDEWEB)
Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)
2015-03-16
A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.
Experiments on helical modes in magnetized thin foil-plasmas
Yager-Elorriaga, David
2017-10-01
This paper gives an in-depth experimental study of helical features on magnetized, ultrathin foil-plasmas driven by the 1-MA linear transformer driver at University of Michigan. Three types of cylindrical liner loads were designed to produce: (a) pure magneto-hydrodynamic (MHD) modes (defined as being void of the acceleration-driven magneto-Rayleigh-Taylor instability, MRT) using a non-imploding geometry, (b) pure kink modes using a non-imploding, kink-seeded geometry, and (c) MRT-MHD coupled modes in an unseeded, imploding geometry. For each configuration, we applied relatively small axial magnetic fields of Bz = 0.2-2.0 T (compared to peak azimuthal fields of 30-40 T). The resulting liner-plasmas and instabilities were imaged using 12-frame laser shadowgraphy and visible self-emission on a fast framing camera. The azimuthal mode number was carefully identified with a tracking algorithm of self-emission minima. Our experiments show that the helical structures are a manifestation of discrete eigenmodes. The pitch angle of the helix is simply m / kR , from implosion to explosion, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Thus, the pitch angle increases (decreases) during implosion (explosion) as R becomes smaller (larger). We found that there are one, or at most two, discrete helical modes that arise for magnetized liners, with no apparent threshold on the applied Bz for the appearance of helical modes; increasing the axial magnetic field from zero to 0.5 T changes the relative weight between the m = 0 and m = 1 modes. Further increasing the applied axial magnetic fields yield higher m modes. Finally, the seeded kink instability overwhelms the intrinsic instability modes of the plasma. These results are corroborated with our analytic theory on the effects of radial acceleration on the classical sausage, kink, and higher m modes. Work supported by US DOE award DE-SC0012328, Sandia National Laboratories
International Nuclear Information System (INIS)
Thumm, M.
1984-07-01
This work reports on measurements and calculations (coupled mode equations) on the conversion of circular elecric TEsub(0n) gyrotron mode compositions (TE 01 to TE 04 ) at 28 and 70 GHz to the linearly polarized TE 11 mode by means of a mode converter system using periodic waveguide wall perturbations. Mode transducers with axisymmetric radius perturbations transform the TEsub(0n) gyrotron mode mixture to the more convenient TE 01 mode for long-distance transmission through overmoded waveguides. Proper matching of the phase differences between the TEsub(0n) modes and of lengths and perturbation amplitudes of the several converter sections is required. A mode converter with constant diameter and periodically perturbed curvature transfers the unpolarized TE 01 mode into the TE 11 mode which produces an almost linearly polarized millimeter-wave beam needed for efficient electron cyclotron heating (ECRH) of plasmas in thermonuclear fusion devices. The experimentally determined TEsub(0n)-to-TE 01 conversion efficiency is (98+-1)% at 28 and 70 GHz (99% predicted) while the TE 01 -to-TE 11 converter has a (96+-2)% conversion efficiency at 28 GHz (95% predicted) and (94+-2)% at 70 GHz (93% predicted); ohmic losses are included. (orig./AH)
International Nuclear Information System (INIS)
Guzdar, P.N.; Drake, J.F.
1993-01-01
The generation of shear flow by resistive ballooning modes and resistive interchange modes is compared and contrasted using a 3-D fluid code. The resistive ballooning modes give rise to poloidally asymmetric transport and hence drive poloidal rotation due to the Reynold's Stress as well as the anomalous Stringer/Winsor mechanism. On the other hand the resistive interchange mode can drive shear flow only through the Reynold's Stress. The studies show that if the self-consistent sheared flow is suppressed, the resistive ballooning modes give rise to a larger anomalous transport than produced by the resistive interchange modes. Furthermore the shear flow generated by the resistive ballooning modes is larger than that driven by the resistive interchange modes due to the combined effect of the dual mechanisms stated earlier. As a consequence strong suppression of the fluctuations as well as reduction of the transport occurs for resistive ballooning modes. On the other hand, for the resistive interchange modes the level of fluctuation as well as the anomalous transport is not reduced by the self consistent shear flow generated by the Reynold's Stress. This latter result is in agreement with some earlier 3-D simulation of resistive interchange modes
Energy Technology Data Exchange (ETDEWEB)
Sharpes, Nathan; Kumar, Prashant [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar; Abdelmoula, Hichem [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Adler, Jan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Institute of Dynamics and Vibration Research (IDS), Leibniz Universität, Hannover 30167 (Germany); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)
2016-07-18
Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the “Elephant” two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.
Single-mode fiber laser based on core-cladding mode conversion.
Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N
2008-02-15
A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.
Energy Technology Data Exchange (ETDEWEB)
Mou, Chengbo, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Arif, Raz [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Physics Department, Faculty of Science, University of Sulaimani, Sulaimani, Kurdistan Region (Iraq); Lobach, Anatoly S.; Spitsina, Nataliya G. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Khudyakov, Dmitry V. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Physics Instrumentation Center of the Institute of General Physics A.M. Prokhorov Russian Academy of Sciences, Troitsk, Moscow Region 142190 (Russian Federation); Kazakov, Valery A. [Keldysh Center, Onezhskaya 8, Moscow 125438 (Russian Federation)
2015-02-09
We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.
Characteristics of edge-localized modes in the experimental advanced superconducting tokamak (EAST)
DEFF Research Database (Denmark)
Jiang, M.; Xu, G.S.; Xiao, C.
2012-01-01
Edge-localized modes (ELMs) are the focus of tokamak edge physics studies because the large heat loads associated with ELMs have great impact on the divertor design of future reactor-grade tokamaks such as ITER. In the experimental advanced superconducting tokamak (EAST), the first ELMy high...... confinement modes (H-modes) were obtained with 1 MW lower hybrid wave power in conjunction with wall conditioning by lithium (Li) evaporation and real-time Li powder injection. The ELMs in EAST at this heating power are mostly type-III ELMs. They were observed close to the H-mode threshold power and produced...
CMB B-mode auto-bispectrum produced by primordial gravitational waves
Tahara, Hiroaki W. H.; Yokoyama, Jun'ichi
2018-01-01
Gravitational waves from inflation induce polarization patterns in the cosmic microwave background (CMB). It is known that there are only two types of non-Gaussianities of the gravitational waves in the most general covariant scalar field theory having second-order field equations, namely, generalized G-inflation. One originates from the inherent non-Gaussianity in general relativity, and the other from a derivative coupling between the Einstein tensor and the scalar field. We calculate polarization bispectra induced by these non-Gaussianities by transforming them into separable forms by virtue of the Laplace transformation. It is shown that future experiments can constrain the new one but cannot detect the general relativistic one.
Toroidal Trivelpiece-Gould modes
International Nuclear Information System (INIS)
Stoessel, F.P.
1979-01-01
Electron plasma waves are treated in quasi-electrostatic approximation in a toroidal cavity of rectangular cross-section in an infinitely strong azimuthal magnetic field. The differential equation for the electrostatic potential, derived from fluid equations, can be separated using cylindrical coordinates. The eigenvalue problem for the radial dependence is solved numerically by a shooting method. Eigenvalues are given for different aspect ratios. Comparison with appropriate modes of the straight geometry shows that the toroidal frequencies generally lie some percent above those for the straight case. Plots of the eigenfunctions demonstrate clearly the influence of toroidicity. The deviation from symmetry (which should appear for straight geometry) depends not only on the aspect ratio but also strongly on the mode numbers. (author)
Hypersonic modes in nanophononic semiconductors.
Hepplestone, S P; Srivastava, G P
2008-09-05
Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.
Nuclear scissors mode with pairing
International Nuclear Information System (INIS)
Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.
2008-01-01
The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.
International Nuclear Information System (INIS)
Hartley, D. J.; Ludington, A.; Pifer, R.; Seyfried, E. P.; Vanhoy, J. R.; Janssens, R. V. F.; Carpenter, M. P.; Lauritsen, T.; McCutchan, E. A.; Zhu, S.; Riedinger, L. L.; Darby, I. G.; Riley, M. A.; Aguilar, A.; Wang, X.; Chiara, C. J.; Chowdhury, P.; Lakshmi, S.; Tandel, S. K.; Tandel, U.
2009-01-01
The collective wobbling mode, the strongest signature for the rotation of a triaxial nucleus, has previously been seen only in a few Lu isotopes in spite of extensive searches in nearby isotopes. A sequence of transitions in the N=94 167 Ta nucleus exhibiting features similar to those attributed to the wobbling bands in the Lu nuclei has now been found. This band feeds into the πi 13/2 band at a relative energy similar to that seen in the established wobbling bands and its dynamic moment of inertia and alignment properties are nearly identical to the i 13/2 structure over a significant frequency range. Given these characteristics, it is likely that the wobbling mode has been observed for the first time in a nucleus other than Lu, making this collective motion a more general phenomenon.
Fracture modes in human teeth.
Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R
2009-03-01
The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.
Fundamental-mode sources in approach to critical experiments
International Nuclear Information System (INIS)
Goda, J.; Busch, R.
2000-01-01
An equivalent fundamental-mode source is an imaginary source that is distributed identically in space, energy, and angle to the fundamental-mode fission source. Therefore, it produces the same neutron multiplication as the fundamental-mode fission source. Even if two source distributions produce the same number of spontaneous fission neutrons, they will not necessarily contribute equally toward the multiplication of a given system. A method of comparing the relative importance of source distributions is needed. A factor, denoted as g* and defined as the ratio of the fixed-source multiplication to the fundamental-mode multiplication, is used to convert a given source strength to its equivalent fundamental-mode source strength. This factor is of interest to criticality safety as it relates to the 1/M method of approach to critical. Ideally, a plot of 1/M versus κ eff is linear. However, since 1/M = (1 minus κ eff )/g*, the plot will be linear only if g* is constant with κ eff . When g* increases with κ eff , the 1/M plot is said to be conservative because the critical mass is underestimated. However, it is possible for g* to decrease with κ eff yielding a nonconservative 1/M plot. A better understanding of g* would help predict whether a given approach to critical will be conservative or nonconservative. The equivalent fundamental-mode source strength g*S can be predicted by experiment. The experimental method was tested on the XIX-1 core on the Fast Critical Assembly at the Japan Atomic Energy Research Institute. The results showed a 30% difference between measured and calculated values. However, the XIX-1 reactor had significant intermediate-energy neutrons. The presence of intermediate-energy neutrons may have made the cross-section set used for predicted values less than ideal for the system
Tilting mode in field-reversed configurations
International Nuclear Information System (INIS)
Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.
1982-01-01
Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal
Protected Edge Modes without Symmetry
Directory of Open Access Journals (Sweden)
Michael Levin
2013-05-01
Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.
Directory of Open Access Journals (Sweden)
Schmitz Michael
2016-03-01
Full Text Available In this paper I first introduce Tomasello’s notion of thought and his account of its emergence and development through differentiation, arguing that it calls into question the theory bias of the philosophical tradition on thought as well as its frequent atomism. I then raise some worries that he may be overextending the concept of thought, arguing that we should recognize an area of intentionality intermediate between action and perception on the one hand and thought on the other. After that I argue that the co-operative nature of humans is reflected in the very structure of their intentionality and thought: in co-operative modes such as the mode of joint attention and action and the we-mode, they experience and represent others as co-subjects of joint relations to situations in the world rather than as mere objects. In conclusion, I briefly comment on what Tomasello refers to as one of two big open questions in the theory of collective intentionality, namely that of the irreducibility of jointness.
Mode pumping experiments on biomolecules
International Nuclear Information System (INIS)
Austin, R.H.; Erramilli, S.; Xie, A.; Schramm, A.
1995-01-01
We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T 1 and T 2 relaxation measurements at 1650 cm -1 . (2) Probing the influence of collective dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm -1 . A form of action spectrum using FEL excitation will be used to probe this state
Magnetorheological Damper Working in Squeeze Mode
Directory of Open Access Journals (Sweden)
Xinglong Gong
2014-05-01
Full Text Available This research is focused on evaluation of the magnetorheological fluids (MRFs based damper which works in squeeze mode. The operation direction of this damper is parallel to the direction of the external magnetic field. Before testing, commercial software ANSYS was used to analyze the magnetic field distribution inside the damper generated by charging current in the coil. The performance of the damper was tested by using the MTS809 (produced by MTS Systems Corporation, USA. For simulation of this damper, a mathematical model was set up. Experimental results showed that the small squeezed MR damper could produce large damping force; for example, the maximum damping force is nearly 6 kN, while the amplitude is 1.2 mm, the frequency is 1.0 Hz, and the current is 2.0 A, and the damping force was controllable by changing the current in the coil. The damping force versus displacement curves are complex. We divide them into four regions for simulation. The maximum damper force increased quickly with the increasing of the current in coil. This kind of damper can be used in vibration isolation for precise equipment.
A microwave FEL [free electron laser] code using waveguide modes
International Nuclear Information System (INIS)
Byers, J.A.; Cohen, R.H.
1987-08-01
A free electron laser code, GFEL, is being developed for application to the LLNL tokamak current drive experiment, MTX. This single frequency code solves for the slowly varying complex field amplitude using the usual wiggler-averaged equations of existing codes, in particular FRED, except that it describes the fields by a 2D expansion in the rectangular waveguide modes, using coupling coefficients similar to those developed by Wurtele, which include effects of spatial variations in the fields seen by the wiggler motion of the particles. Our coefficients differ from those of Wurtele in two respects. First, we have found a missing √2γ/a/sub w/ factor in his C/sub z/; when corrected this increases the effect of the E/sub z/ field component and this in turn reduces the amplitude of the TM mode. Second, we have consistently retained all terms of second order in the wiggle amplitude. Both corrections are necessary for accurate computation. GFEL has the capability of following the TE/sub 0n/ and TE(M)/sub m1/ modes simultaneously. GFEL produces results nearly identical to those from FRED if the coupling coefficients are adjusted to equal those implied by the algorithm in FRED. Normally, the two codes produce results that are similar but different in detail due to the different treatment of modes higher than TE/sub 01/. 5 refs., 2 figs., 1 tab
Color center lasers passively mode locked by quantum wells
International Nuclear Information System (INIS)
Islam, M.N.; Soccolich, C.E.; Bar-Joseph, I.; Sauer, N.; Chang, T.Y.; Miller, B.I.
1989-01-01
This paper describes how, using multiple quantum well (MQW) saturable absorbers, the authors passively mode locked a NaCl color center laser to produce 275 fs transform-limited, pedestal-free pulses with as high as 3.7 kW peak power. The pulses are tunable from λ = 1.59 to 1.7 μm by choosing MQW's with different bandgaps. They shortened the output pulses from the laser to 25 fs using the technique of soliton compression in a fiber. The steady-state operation of the laser requires the combination of a fast saturable absorber and gain saturation. In addition to the NaCl laser, they passively mode locked a Tl 0 (1):KCl color center laser and produced -- 22 ps pulses. Although the 275 fs pulses from the NaCl laser are Gaussian, when broadened, the pulses acquire an asymmetric spectrum because of carrier-induced refractive index changes
Predicting the Diversity of Foreign Entry Modes
DEFF Research Database (Denmark)
Hashai, Niron; Geisler Asmussen, Christian; Benito, Gabriel
2007-01-01
diversity across value chain activities and host markets. Analyzing a sample of Israeli based firms we show that larger firms exhibit a higher degree of entry mode diversity both across value chain activities and across host markets. Higher levels of knowledge intensity are also associated with more......This paper expands entry mode literature by referring to multiple modes exerted in different value chain activities within and across host markets, rather than to a single entry mode at the host market level. Scale of operations and knowledge intensity are argued to affect firms' entry mode...... diversity in firms' entry modes across both dimensions....
Nonlinear surface elastic modes in crystals
Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.
1990-03-01
The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.
Effect of helium irradiation on fracture modes
International Nuclear Information System (INIS)
Hanamura, T.; Jesser, W.A.
1982-01-01
The objective of this work is to determine the crack opening mode during in-situ HVEM tensile testing and how it is influenced by test temperature and helium irradiation. Most cracks were mixed mode I and II. However, between 250 0 C and room temperature the effect of helium irradiation is to increase the amount of mode I crack propagation. Mode II crack opening was observed as grain boundary sliding initiated by a predominantly mode I crack steeply intersecting the grain boundary. Mode II crack opening was absent in irradiated specimens tested between 250 0 C and room temperature, but could be restored by a post irradiation anneal
Mixed-Mode Crack Growth in Wood
Directory of Open Access Journals (Sweden)
Octavian POP
2012-09-01
Full Text Available In timber elements the mixed mode dependsessentially of wood anatomy and load configuration.In these conditions, in order to evaluate the materialbehavior and the fracture process, it’s necessary toseparate the part of each mode. The mixed modeseparation allows evaluating the amplitude offracture mode. In the present paper, using a mixedmodecrack growth specimen made in Douglas fir,the mixed mode crack growth process is studythanks to marks tracking method. Using the markstracking method the characteristic displacementsassociated to opening and shear mode aremeasured. From the experimental measurements,the energy release rate associated to opening andshear modes is calculated into to account the crackadvancement during the test.
A method for producing a hydrocarbon resin
Energy Technology Data Exchange (ETDEWEB)
Tsachev, A B; Andonov, K S; Igliyev, S P
1980-11-25
Rock coal resin (KS), for instance, with a relative density of 1,150 to 1,190 kilograms per cubic meter, which contains 8 to 10 percent naphthaline, 1.5 to 2.8 percent phenol and 6 to 15 percent substances insoluble in toluene, or its mixture with rock coal or oil fractions of resin are subjected to distillation (Ds) in a pipe furnace with two evaporators (Is) and a distillation tower with a temperature mode in the second stage of 320 to 360 degrees and 290 to 340 degrees in the pitch compartment. A hydrocarbon resin is produced with a high carbon content, especially for the production of resin and dolomite refractory materials, as well as fuel mixtures for blast furnace and open hearth industry.
International Nuclear Information System (INIS)
Anon.
1992-01-01
Uranium producers came alive in August, helping spot prices crack the $8.00 barrier for the first time since March. The upper end of NUKEM's price range actually finished the month at $8.20. Scrambling to fulfill their long-term delivery contracts, producers dominate the market. In the span of three weeks, five producers came out for 2 million lbs U3O8, ultimately buying nearly 1.5 million lbs. One producer accounted for over half this volume. The major factor behind rising prices was that producers required specific origins to meet contract obligations. Buyers willing to accept open origins created the lower end of NUKEM's price range
Quasinormal modes of semiclassical electrically charged black holes
Energy Technology Data Exchange (ETDEWEB)
Fernandez Piedra, Owen Pavel [Departamento de Fisica y Quimica, Facultad de Mecanica, Universidad de Cienfuegos, Carretera a Rodas, km 4, Cuatro Caminos, Cienfuegos (Cuba); De Oliveira, Jeferson, E-mail: opavel@ucf.edu.cu, E-mail: jeferson@fma.if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970, Sao Paulo (Brazil)
2011-04-21
We report the results concerning the influence of vacuum polarization due to quantum massive vector, scalar and spinor fields on the scalar sector of quasinormal modes in spherically symmetric charged black holes. The vacuum polarization from quantized fields produces a shift in the values of the quasinormal frequencies, and correspondingly the semiclassical system becomes a better oscillator with respect to the classical Reissner-Nordstroem black hole.
Analysis of magnetic damping problem by the coupled mode superposition method
International Nuclear Information System (INIS)
Horie, Tomoyoshi; Niho, Tomoya
1997-01-01
In this paper we describe the coupled mode superposition method for the magnetic damping problem, which is produced by the coupled effect between the deformation and the induced eddy current of the structures for future fusion reactors and magnetically levitated vehicles. The formulation of the coupled mode superposition method is based on the matrix equation for the eddy current and the structure using the coupled mode vectors. Symmetric form of the coupled matrix equation is obtained. Coupled problems of a thin plate are solved to verify the formulation and the computer code. These problems are solved efficiently by this method using only a few coupled modes. Consideration of the coupled mode vectors shows that the coupled effects are included completely in each coupled mode. (author)
PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.
Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko
2014-08-11
A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.
Higher order mode optical fiber Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.
2016-01-01
We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....
Path planning during combustion mode switch
Jiang, Li; Ravi, Nikhil
2015-12-29
Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.
Management modes for iodine-129
International Nuclear Information System (INIS)
White, I.F.; Smith, G.M.
1984-01-01
This study completes a two-stage programme, supported by the Commission of the European Communities, on management modes for iodine-129. The models for the radiological assessment of iodine-129 management modes have been reviewed and, where necessary, revised, and a generic radiological assessment has been carried out using these models. Cost benefit analysis has been demonstrated for a variety of iodine-129 management modes; for a wide range of assumptions, the costs of abatement of atmospheric discharges would be outweighed by the radiological benefits. The cost benefit analysis thus complements and confirms the preliminary conclusion of the previous study: iodine-129 should be trapped to a large extent from the off-gases of a large reprocessing plant and disposed of by other suitable means, in order to ensure that all exposures from this radionuclide are as low as reasonably achievable. Once the major fraction of the iodine-129 throughput of a reprocessing plant has been trapped from the dissolver off-gases, there are unlikely to be strong radiation protection incentives either for further trapping from the dissolver off-gases or for trapping from the vessel off-gases. In a generic study it is not possible to state an optimum choice of process(es) for abatement of atmospheric discharges of iodine-129. This choice must be determined by assessments in the specific context of a particular reprocessing plant, its site, the waste disposal routes that are actually available, and also in the wider context of the management plans for all radioactive wastes at the plant in question
Language Differences and Operation Mode
DEFF Research Database (Denmark)
Dasi, Angels; Pedersen, Torben
2013-01-01
Language serves different purposes depending on the international activity in question. Language has many dimensions and firms’ communicative requirements vary by operational platform. We argue that different dimensions of language vary in their importance depending on the operation mode chosen...... for a foreign market, so that language distance matters in the case of a home-based sales force, while language incidence is key when operating through a local agent. The hypotheses are tested on a large data set encompassing 462 multinational corporations headquartered in Finland, South Korea, New Zealand......, and Sweden that have undertaken a business operation in a foreign country....
Psaltic Modes - Meanings and Symbolics
Directory of Open Access Journals (Sweden)
Domin Adam
2015-10-01
Full Text Available The Universe of Byzantine music is a profound one, that is why every side should be analysed for getting to the essence of psaltical soul of the singing. Every sign has a certain meaning, every mode has a certain composition and every singing genre is interpreted in a certain way. It is important to search and analyse the historical evolution of every of the mentioned categories for being able to form a holistic image about what Byzantine music meant and means.
Applications of sliding mode control
Ghommam, Jawhar; Zhu, Quanmin
2017-01-01
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry. .
Normal modes and continuous spectra
International Nuclear Information System (INIS)
Balmforth, N.J.; Morrison, P.J.
1994-12-01
The authors consider stability problems arising in fluids, plasmas and stellar systems that contain singularities resulting from wave-mean flow or wave-particle resonances. Such resonances lead to singularities in the differential equations determining the normal modes at the so-called critical points or layers. The locations of the singularities are determined by the eigenvalue of the problem, and as a result, the spectrum of eigenvalues forms a continuum. They outline a method to construct the singular eigenfunctions comprising the continuum for a variety of problems
Acoustic rotation modes in complex plasmas
International Nuclear Information System (INIS)
Bai Dongxue; Wang Zhengxiong; Wang Xiaogang
2004-01-01
Acoustic rotation modes in complex plasmas are investigated in a cylindrical system with an axial symmetry. The linear mode solution is derived. The mode in an infinite area is reduced to a classical dust acoustic wave in the region away from the centre. When the dusty plasma is confined in a finite region, the breathing and rotating-void behaviour are observed. Vivid structures of different mode number solutions are illustrated
Mode damping in a commensurate monolayer solid
DEFF Research Database (Denmark)
Bruch, Ludwig Walter; Hansen, Flemming Yssing
1997-01-01
with an elastic-continuum theory of the response of modes of either parallel or perpendicular polarization for a spherical adsorbate on a hexagonal substrate. The results are applied to the discussion of computer simulations and inelastic atomic-scattering experiments for adsorbates on graphite. The extreme...... of substrate modes with strong anomalous dispersion, and enables a semiquantitative account of observed avoided crossings of the adlayer perpendicular vibration mode and the substrate Rayleigh mode....
International Nuclear Information System (INIS)
EVANS, TE; MOYER, RA; THOMAS, PR; WATKINS, JG; OSBORNE, TH; BOEDO, JA; FENSTERMACHER, ME; FINKEN, KH; GROEBNER, RJ; GROTH, M; HARRIS, JH; LAHAYE, RJ; LASNIER, CJ; MASUZAKI, S; OHYABU, N; PRETTY, D; RHODES, TL; REIMERDES, H; RUDAKOV, DL; SCHAFFER, MJ; WANG, G; ZENG, L.
2003-01-01
OAK-B135 A stochastic magnetic boundary, produced by an externally applied edge resonant magnetic perturbation, is used to suppress large edge localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H-mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H-mode transport barrier is unaffected by the stochastic boundary. The core confinement of these discharges is unaffected, despite a three-fold drop in the toroidal rotation in the plasma core. These results demonstrate that stochastic boundaries are compatible with H-modes and may be attractive for ELM control in next-step burning fusion tokamaks
Evans, T E; Moyer, R A; Thomas, P R; Watkins, J G; Osborne, T H; Boedo, J A; Doyle, E J; Fenstermacher, M E; Finken, K H; Groebner, R J; Groth, M; Harris, J H; La Haye, R J; Lasnier, C J; Masuzaki, S; Ohyabu, N; Pretty, D G; Rhodes, T L; Reimerdes, H; Rudakov, D L; Schaffer, M J; Wang, G; Zeng, L
2004-06-11
A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
Viscoelastic modes in chiral liquid crystals
Indian Academy of Sciences (India)
amit@fs.rri.local.net (Amit Kumar Agarwal)
our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic ... In the vicinity of the direct beam for a sample aligned in the Bragg mode and. 297 ... experimental investigations on these modes. Duke and Du ..... scattering volume is not true in practice. In an actual ...
Spiral modes in cold cylindrical systems
International Nuclear Information System (INIS)
Robe, H.
1975-01-01
The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de
Silicon Photonic Integrated Circuit Mode Multiplexer
DEFF Research Database (Denmark)
Ding, Yunhong; Ou, Haiyan; Xu, Jing
2013-01-01
We propose and demonstrate a novel silicon photonic integrated circuit enabling multiplexing of orthogonal modes in a few-mode fiber (FMF). By selectively launching light to four vertical grating couplers, all six orthogonal spatial and polarization modes supported by the FMF are successfully...
MDM: A Mode Diagram Modeling Framework
DEFF Research Database (Denmark)
Wang, Zheng; Pu, Geguang; Li, Jianwen
2012-01-01
Periodic control systems used in spacecrafts and automotives are usually period-driven and can be decomposed into different modes with each mode representing a system state observed from outside. Such systems may also involve intensive computing in their modes. Despite the fact that such control...
PLC-based mode multi/demultiplexers for mode division multiplexing
Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide
2017-02-01
Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.
[Distiller Yeasts Producing Antibacterial Peptides].
Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V
2015-01-01
A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.
High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers
Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.
1991-01-01
The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.
Parametric Landau damping of space charge modes
Energy Technology Data Exchange (ETDEWEB)
Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab
2016-09-23
Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.
Topological Coherent Modes in Trapped Bose Gas
International Nuclear Information System (INIS)
Yukalov, V.I.; Marzlin, K.-P.; Yukalova, E.P.; Bagnato, V.S.
2005-01-01
The report reviews the problem of topological coherent modes, which are nonlinear collective states of Bose-condensed atoms. Such modes can be generated by means of alternating external fields, whose frequencies are in resonance with the transition frequencies between the related modes. The Bose gas with generated topological coherent modes is a collective nonlinear analog of a resonant atom. Such systems exhibit a variety of nontrivial effects, e.g. interference fringes, interference current, mode locking, dynamic transitions, critical phenomena, chaotic motion, harmonic generation, parametric conversion, atomic squeezing, and entanglement production
'Snowflake' H Mode in a Tokamak Plasma
International Nuclear Information System (INIS)
Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.
2010-01-01
An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔW ELM /W p ) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.
Nonlinear coupling of kink modes in Tokamaks
International Nuclear Information System (INIS)
Dagazian, R.Y.
1975-07-01
The m = 2, n = 1 kink mode is shown to be capable of destabilizing the m = 1, n = 1 internal kink. A nonlinear Lagrangian theory is developed for the coupling of modes of different pitch, and it is applied to the interaction of these modes. The coupling to the m = 2 mode provides sufficient additional destabilization to the internal mode to permit it to account even quantitatively (where it had failed when considered by itself) for many of the features of the disruptive instability. (U.S.)
Critical cladding radius for hybrid cladding modes
Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann
2018-05-01
In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.
Medical cannabis use in Canada: vapourization and modes of delivery.
Shiplo, Samantha; Asbridge, Mark; Leatherdale, Scott T; Hammond, David
2016-10-29
The mode of medical cannabis delivery-whether cannabis is smoked, vapourized, or consumed orally-may have important implications for its therapeutic efficacy and health risks. However, there is very little evidence on current patterns of use among Canadian medical cannabis users, particularly with respect to modes of delivery. The current study examined modes of medical cannabis delivery following regulatory changes in 2014 governing how Canadians access medical cannabis. A total of 364 approved adult Canadian medical cannabis users completed an online cross-sectional survey between April and June 2015. The survey examined patterns of medical cannabis use, modes of delivery used, and reasons for use. Participants were recruited through a convenience sample from nine Health Canada licensed producers. Using a vapourizer was the most popular mode of delivery for medical cannabis (53 %), followed by smoking a joint (47 %). The main reason for using a vapourizer was to reduce negative health consequences associated with smoking. A majority of current vapourizer users reported using a portable vapourizer (67.2 %), followed by a stationary vapourizer (41.7 %), and an e-cigarette or vape pen (19.3 %). Current use of a vapourizer was associated with fewer respiratory symptoms (AOR = 1.28, 95 % CI 1.05-1.56, p = 0.01). The findings suggest an increase in the popularity of vapourizers as the primary mode of delivery among approved medical users. Using vapourizers has the potential to prevent some of the adverse respiratory health consequences associated with smoking and may serve as an effective harm reduction method. Monitoring implications of such current and future changes to medical cannabis regulations may be beneficial to policymakers.
Medical cannabis use in Canada: vapourization and modes of delivery
Directory of Open Access Journals (Sweden)
Samantha Shiplo
2016-10-01
Full Text Available Abstract Background The mode of medical cannabis delivery—whether cannabis is smoked, vapourized, or consumed orally—may have important implications for its therapeutic efficacy and health risks. However, there is very little evidence on current patterns of use among Canadian medical cannabis users, particularly with respect to modes of delivery. The current study examined modes of medical cannabis delivery following regulatory changes in 2014 governing how Canadians access medical cannabis. Methods A total of 364 approved adult Canadian medical cannabis users completed an online cross-sectional survey between April and June 2015. The survey examined patterns of medical cannabis use, modes of delivery used, and reasons for use. Participants were recruited through a convenience sample from nine Health Canada licensed producers. Results Using a vapourizer was the most popular mode of delivery for medical cannabis (53 %, followed by smoking a joint (47 %. The main reason for using a vapourizer was to reduce negative health consequences associated with smoking. A majority of current vapourizer users reported using a portable vapourizer (67.2 %, followed by a stationary vapourizer (41.7 %, and an e-cigarette or vape pen (19.3 %. Current use of a vapourizer was associated with fewer respiratory symptoms (AOR = 1.28, 95 % CI 1.05–1.56, p = 0.01. Conclusions The findings suggest an increase in the popularity of vapourizers as the primary mode of delivery among approved medical users. Using vapourizers has the potential to prevent some of the adverse respiratory health consequences associated with smoking and may serve as an effective harm reduction method. Monitoring implications of such current and future changes to medical cannabis regulations may be beneficial to policymakers.
Resistive wall mode active control physics design for KSTAR
International Nuclear Information System (INIS)
Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Bak, J. G.; Lee, S. G.; Oh, Y. K.
2014-01-01
As KSTAR H-mode operation approaches the region where the resistive wall mode (RWM) can be unstable, an important issue for future long pulse, high beta plasma operation is to evaluate RWM active feedback control performance using a planned active/passive RWM stabilization system on the device. In particular, an optimal design of feedback sensors allows mode stabilization up to the highest achievable β N close to the ideal with-wall limit, β N wall , with reduced control power requirements. The computed ideal n = 1 mode structure from the DCON code has been input to the VALEN-3D code to calculate the projected performance of an active RWM control system in the KSTAR three-dimensional conducting structure device geometry. Control performance with the midplane locked mode detection sensors, off-midplane saddle loops, and magnetic pickup coils is examined. The midplane sensors measuring the radial component of the mode perturbation is found to be strongly affected by the wall eddy current. The off-axis saddle loops with proper compensation of the prompt applied field are computed to provide stabilization at β N up to 86% of β N wall but the low RWM amplitude computed in the off-axis regions near the sensors can produce a low signal-to-noise ratio. The required control power and bandwidth are also estimated with varied noise levels in the feedback sensors. Further improvements have been explored by examining a new RWM sensor design motivated by the off-midplane poloidal magnetic field sensors in NSTX. The new sensors mounted off of the copper passive stabilizer plates near the device midplane show a clear advantage in control performance corresponding to achieving 99% of β N wall without the need of compensation of the prompt field. The result shows a significant improvement of RWM feedback stabilization using the new sensor set which motivates a future feedback sensor upgrade
International Nuclear Information System (INIS)
Slipchenko, S. O.; Bondarev, A. D.; Vinokurov, D. A.; Nikolaev, D. N.; Fetisova, N. V.; Sokolova, Z. N.; Pikhtin, N. A.; Tarasov, I. S.
2009-01-01
Asymmetric Al 0.3 Ga 0.7 As/GaAs/InGaAs heterostructures with a broadened waveguide produced by the method of MOCVD epitaxy are studied. It is established that the precision shift of the active region to one of the cladding layers ensures the generation of the chosen mode of high order in the transverse broadened waveguide. It is experimentally established that this shift brings about an increase in internal optical losses and a decrease in the internal quantum efficiency of stimulated emission. It is shown experimentally that the shift of the active region to the n-type cladding layer governs the sublinear form of the power-current characteristic for semiconductor lasers; in the case of a shift of the active region towards the p-type cladding layer, the laser diodes demonstrated a linear dependence of optical power on the pump current in the entire range of pump currents.
A method of producing hydroxymethyfurfural
DEFF Research Database (Denmark)
2011-01-01
The present invention relates to a method of producing 5-hydroxymethylfurfural by dehydration of fructose and/or glucose and/or mannose.......The present invention relates to a method of producing 5-hydroxymethylfurfural by dehydration of fructose and/or glucose and/or mannose....
Producers' Complex Risk Management Choices
Pennings, J.M.E.; Isengildina, O.; Irwin, S.H.; Garcia, P.; Good, D.L.
2008-01-01
Producers have a wide variety of risk management instruments available, making their choice(s) complex. The way producers deal with this complexity can vary and may influence the impact that the determinants, such as risk aversion, have on their choices. A recently developed choice bracketing
Method of producing molybdenum-99
Pitcher, Eric John
2013-05-28
Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.
Tekna's produced water conference 2005
International Nuclear Information System (INIS)
2005-01-01
The conference has 22 presentations discussing topics on discharge reduction, produced water quality, produced water re-injection, chemicals particularly environmentally friendly ones, separation technology, reservoir souring, total water management systems, pollution, oil in water problems and platform operation. Various field tests and experiences particularly from the offshore petroleum sector are presented (tk)
DOES ELECTRIC CAR PRODUCE EMISSIONS?
Directory of Open Access Journals (Sweden)
Vladimír RIEVAJ
2017-03-01
Full Text Available This article focuses on the comparison of the amount of emissions produced by vehicles with a combustion engine and electric cars. The comparison, which is based on the LCA factor results, indicates that an electric car produces more emissions than a vehicle with combustion engine. The implementation of electric cars will lead to an increase in the production of greenhouse gases.
Accelerated reliability demonstration under competing failure modes
International Nuclear Information System (INIS)
Luo, Wei; Zhang, Chun-hua; Chen, Xun; Tan, Yuan-yuan
2015-01-01
The conventional reliability demonstration tests are difficult to apply to products with competing failure modes due to the complexity of the lifetime models. This paper develops a testing methodology based on the reliability target allocation for reliability demonstration under competing failure modes at accelerated conditions. The specified reliability at mission time and the risk caused by sampling of the reliability target for products are allocated for each failure mode. The risk caused by degradation measurement fitting of the target for a product involving performance degradation is equally allocated to each degradation failure mode. According to the allocated targets, the accelerated life reliability demonstration test (ALRDT) plans for the failure modes are designed. The accelerated degradation reliability demonstration test plans and the associated ALRDT plans for the degradation failure modes are also designed. Next, the test plan and the decision rules for the products are designed. Additionally, the effects of the discreteness of sample size and accepted number of failures for failure modes on the actual risks caused by sampling for the products are investigated. - Highlights: • Accelerated reliability demonstration under competing failure modes is studied. • The method is based on the reliability target allocation involving the risks. • The test plan for the products is based on the plans for all the failure modes. • Both failure mode and degradation failure modes are considered. • The error of actual risks caused by sampling for the products is small enough
Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability
DEFF Research Database (Denmark)
Laurila, Marko; Jørgensen, Mette Marie; Hansen, Kristian Rymann
2012-01-01
We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode inst...
Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern
DEFF Research Database (Denmark)
Schunk, Gerhard; Fuerst, Josef U.; Förtsch, Michael
2014-01-01
Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMR...
Tearing mode instability due to anomalous resistivity
International Nuclear Information System (INIS)
Furuya, Atsushi; Itoh, Sanae I.; Yagi, Masatoshi
2000-01-01
Tearing mode instability in the presence of microscopic truculence is investigates. The effects of microscopic turbulence on tearing mode are taken as drags which are calculated by one-point renormalization method and mean-field approximation. These effects are reduced to effective diffusivities in reduced MHD equations. Using these equations, the stability analyses of the tearing mode are performed. It is shown that a finite amplitude of fluctuation enhances the growth rate of tearing mode. For very high values of turbulent diffusivities, marginally stable state exists. The effects of each turbulent diffusivity on mode stability are examined near marginal stability boundary. Parameter dependence of the resistive ballooning mode turbulence on tearing mode is analyzed as an example. (author)
Anomalous normal mode oscillations in semiconductor microcavities
Energy Technology Data Exchange (ETDEWEB)
Wang, H. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Hou, H.Q.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States)
1997-04-01
Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.
Mode-routed fiber-optic add-drop filter
Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)
2000-01-01
New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.
GATS Mode 4 Negotiation and Policy Options
Directory of Open Access Journals (Sweden)
Kil-Sang Yoo
2004-06-01
Full Text Available This study reviews the characteristics and issues of GATS Mode 4 and guesses the effects of Mode 4 liberalization on Korean economy and labor market to suggest policy options to Korea. Mode 4 negotiation started from the trade perspective, however, since Mode 4 involves international labor migration, it also has migration perspective. Thus developed countries, that have competitiveness in service sector, are interested in free movement of skilled workers such as intra-company transferees and business visitors. On the other hand, developing countries, that have little competitiveness in service sector, are interested in free movement of low-skilled workers. Empirical studies predict that the benefits of Mode 4 liberalization will be focused on developed countries rather than developing countries. The latter may suffer from brain drain and reduction of labor supply. Nevertheless developed countries are reluctant to Mode 4 negotiation because they can utilize skilled workers from developing countries by use of their own temporary visa programs. They are interested in Mode 4 related with Mode 3 in order to ease direct investment and movement of natural persons to developing countries. Regardless of the direction of a single undertaking of Mode 4 negotiation, the net effects of Mode 4 liberalization on Korean economy and labor market may be negative. The Korean initial offer on Mode 4 is the same as the UR offer. Since Korean position on Mode 4 is most defensive, it is hard to expect that Korean position will be accepted as the single undertaking of Mode 4 negotiation. Thus Korea has to prepare strategic package measures to minimize the costs of Mode 4 liberalization and improve competitiveness of service sector.
Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer
International Nuclear Information System (INIS)
Shinohara, Kouji
1997-08-01
We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs
A new algebraic growth of nonlinear tearing mode
International Nuclear Information System (INIS)
Li, D.
1995-01-01
It is found that the quasilinear modification of magnetic field produces a nonlinear Lorentz force opposing the linear driving force and slowing down the vortex flow. A new algebraic growth appears due to this damping mechanism to oppose the linear growth of the tearing mode. This effect was eliminated in Rutherford's model [Phys. Fluids 16, 1903 (1973)] under the flux average operation and the assumption ∂/∂t much-lt η/δ 2 (here η is the resistivity, δ is the resistive layer width). A unified analytical model is developed by using standard perturbation theory for the linear and nonlinear growth of the tearing mode. The inertia effect and quasilinear effects of both the current density and the magnetic field have been included. A nonlinear evolution equation is analytically derived for the tearing mode to describe the linear growth, Rutherford's behavior, and the new behavior. The classical linear result is exactly recovered as the quasilinear effects are negligible. It is shown that a more slowly algebraic growth like Ψ 1 ∝t can become dominant in the nonlinear phase instead of Rutherford behavior like Ψ 1 ∝t 2 , provided the tearing mode in the linear phase is strongly unstable. Here Ψ 1 is the magnetic flux perturbation. copyright 1995 American Institute of Physics
A typology of coastal researchers’ modes of interactions with stakeholders
Directory of Open Access Journals (Sweden)
Milligan Jessica
2004-09-01
Full Text Available A feature of the management of natural resources in the coastal zone is that it involves multiple stakeholders. It has been suggested that the effectiveness of coastal management relies on the cooperation of this multitude of stakeholders in decision-making. This study reports on the findings of an investigation into the modes of interaction used by coastal researchers to communicate with stakeholders. A qualitative research methodology was used through both telephone and in-depth face-toface interviews to elucidate the mechanisms of interaction and, in turn, produce a typology of interaction modes. It was found that there were five main modes of interaction: Limited; Mediator Achieved; Key Stakeholder; Full Interaction and Mixed and that the discipline area in which the researcher worked did not dictate their preferred mode of interaction. It was concluded that although there are a number of limitations to effective participation, these interactions have significant implications for meaningful participation in the management of coastal resources.
Tunable deformation modes shape contractility in active biopolymer networks
Stam, Samantha; Banerjee, Shiladitya; Weirich, Kim; Freedman, Simon; Dinner, Aaron; Gardel, Margaret
Biological polymer-based materials remodel under active, molecular motor-driven forces to perform diverse physiological roles, such as force transmission and spatial self-organization. Critical to understanding these biomaterials is elucidating the role of microscopic polymer deformations, such as stretching, bending, buckling, and relative sliding, on material remodeling. Here, we report that the shape of motor-driven deformations can be used to identify microscopic deformation modes and determine how they propagate to longer length scales. In cross-linked actin networks with sufficiently low densities of the motor protein myosin II, microscopic network deformations are predominantly uniaxial, or dominated by sliding. However, longer-wavelength modes are mostly biaxial, or dominated by bending and buckling, indicating that deformations with uniaxial shapes do not propagate across length scales significantly larger than that of individual polymers. As the density of myosin II is increased, biaxial modes dominate on all length scales we examine due to buildup of sufficient stress to produce smaller-wavelength buckling. In contrast, when we construct networks from unipolar, rigid actin bundles, we observe uniaxial, sliding-based contractions on 1 to 100 μm length scales. Our results demonstrate the biopolymer mechanics can be used to tune deformation modes which, in turn, control shape changes in active materials.
Producing colour pictures from SCAN
International Nuclear Information System (INIS)
Robichaud, K.
1982-01-01
The computer code SCAN.TSK has been written for use on the Interdata 7/32 minicomputer which will convert the pictures produced by the SCAN program into colour pictures on a colour graphics VDU. These colour pictures are a more powerful aid to detecting errors in the MONK input data than the normal lineprinter pictures. This report is intended as a user manual for using the program on the Interdata 7/32, and describes the method used to produce the pictures and gives examples of JCL, input data and of the pictures that can be produced. (U.K.)
Producing new radionuclides for medicine
International Nuclear Information System (INIS)
Michaut, C.
2009-01-01
The Arronax cyclotron, a new particle accelerator dedicated to the production of radionuclides for medicine and research has been commissioned in Nantes (France). Because of its unique features: an energy of 70 MeV and an intensity of 750 μA, Arronax will produce radionuclides that can not be produce in present cyclotrons. Among others it will produce Strontium-82 and Germanium-68 that are the precursors for Rubidium-82 and Gallium-68 respectively. 20 per cent of the research works will be dedicated to other domains like radioactive wastes, the radiation biological damage and the radiation damage on electronic devices. (A.C.)
Cellulase producing microorganism ATCC 55702
Dees, H. Craig
1997-01-01
Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.
Methods of producing cesium-131
Meikrantz, David H; Snyder, John R
2012-09-18
Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.
Resonant MHD modes with toroidal coupling
International Nuclear Information System (INIS)
Connor, J.W.; Hastie, R.J.; Taylor, J.B.
1990-07-01
This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions
Trapped modes in a dummy extraction septum for CERN Proton Synchrotron
International Nuclear Information System (INIS)
Persichelli, S.
2014-01-01
The term trapped mode is usually referred to a mode that can not propagate in the beam pipe, but is localized in a particular region inside the device, producing narrow resonances peaks in the coupling impedance. They can be excited by the presence of discontinuities inside different devices of an accelerator, producing unwanted beam instabilities. It is therefore important to identify trapped modes, especially for new elements to be installed in a high-intensity accelerator. We present a recent study of the coupling impedance due to trapped modes in a new extraction septum that will be installed in the CERN Proton Synchrotron in the framework of PS Multi-turn extraction (MTE) commissioning. Simulation and theoretical calculations were performed in order to understand performance limitations of the machine, to find cures to reduce the instabilities, and to evaluate beam-induced heating.
Methods of producing transportation fuel
Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB
2011-12-27
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.
Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning
2016-03-01
Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Investigation of exotic fission modes
International Nuclear Information System (INIS)
Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.
2002-01-01
Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted
Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators
International Nuclear Information System (INIS)
Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong
2015-01-01
We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices
Targeting specific azimuthal modes using wall changes in turbulent pipe flow
van Buren, Tyler; Hellström, Leo; Marusic, Ivan; Smits, Alexander
2017-11-01
We experimentally study turbulent pipe flow at Re =3486 using stereoscopic particle image velocimetry. Using pipe inserts with non-circular geometry to perturb the flow upstream of the measurement location, we excite specific naturally occurring energetic modes. We consider inserts that directly manipulate the flow momentum (vortex generators), and/or induce secondary flows through Reynolds stresses (sinusoidally varying wall shape). These inserts substantially change the mean flow, and produce distinct regions of low and high momentum corresponding to the mode being excited. The inserts add energy in the targeted modes while simultaneously reducing the energy in the non-excited azimuthal modes. In addition, inserts designed to excite two modes simultaneously exhibit non-linear interactions. Supported under ONR Grant N00014-15-1-2402, Program Manager/Director Thomas Fu and the Australian Research Council.
Cyclotron operating mode determination based on intelligent methods
International Nuclear Information System (INIS)
Ouda, M.M.E.M.
2011-01-01
Particle accelerators are generators that produce beams of charged particles with energies depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Main applications are isotopes production, nuclear reactions studies, and mass spectroscopy studies and other industrial applications. The cyclotron is a complicated machine depends on using a strong magnetic field and high frequency-high voltage electric field together to accelerate and bend charged particles inside the accelerating chamber. It consists of the following main parts, the radio frequency system, the main magnet with the auxiliary concentric and harmonic coils, the electrostatic deflector, and the ion source, the beam transport system, and high precision and high stability DC power supplies.To accelerate a particle to certain energy, one has to adjust the cyclotron operating parameters to be suitable to accelerate this particle to that energy. If the cyclotron operating parameters together are adjusted to accelerate a charged particle to certain energy, then these parameters together are named the operating mode to accelerate this particle to that energy. For example the operating mode to accelerate protons to 18 MeV is named the (18 MeV protons operating mode). The operating mode includes many parameters that must be adjusted together to be successful to accelerate, extract, focus, steer a particle from the ion source to the experiment. Due to the big number of parameters in the operating modes, 19 parameters have been selected in this thesis to be used in an intelligent system based on feed forward back propagation neural network to determine the parameters for new operating modes. The new intelligent system depends on the available information about the currently used operating modes.The classic way to determine a new operating mode was depending on trial and error method to
Raff, Lionel M.
1989-06-01
The unimolecular decomposition reactions of 1,2-difluoroethane upon mode-specific excitation to a total internal energy of 7.5 eV are investigated using classical trajectory methods and a previously formulated empirical potential-energy surface. The decomposition channels for 1,2-difluoroethane are, in order of importance, four-center HF elimination, C-C bond rupture, and hydrogen-atom dissociation. This order is found to be independent of the particular vibrational mode excited. Neither fluorine-atom nor F2 elimination reactions are ever observed even though these dissociation channels are energetically open. For four-center HF elimination, the average fraction of the total energy partitioned into internal HF motion varies between 0.115-0.181 depending upon the particular vibrational mode initially excited. The internal energy of the fluoroethylene product lies in the range 0.716-0.776. Comparison of the present results with those previously obtained for a random distribution of the initial 1,2-difluoroethane internal energy [J. Phys. Chem. 92, 5111 (1988)], shows that numerous mode-specific effects are present in these reactions in spite of the fact that intramolecular energy transfer rates for this system are 5.88-25.5 times faster than any of the unimolecular reaction rates. Mode-specific excitation always leads to a total decomposition rate significantly larger than that obtained for a random distribution of the internal energy. Excitation of different 1,2-difluoroethane vibrational modes is found to produce as much as a 51% change in the total decomposition rate. Mode-specific effects are also seen in the product energy partitioning. The rate coefficients for decomposition into the various channels are very sensitive to the particular mode excited. A comparison of the calculated mode-specific effects with the previously determined mode-to-mode energy transfer rate coefficients [J. Chem. Phys. 89, 5680 (1988)] shows that, to some extent, the presence of mode
Circular waveguide mode converters at 140 GHz
International Nuclear Information System (INIS)
Trulsen, J.; Woskoboinikow, P.; Temkin, R.J.
1986-01-01
A unified derivation of the coupled mode equations for circular waveguide is presented. Also, approximate design criteria for TE/sub 0n/ to TE/sub 0n'/ axisymmetric, TE 01 to TE 11 wriggle, and TE 01 to TM 11 bend converters are reviewed. Numerically solving the coupled mode equations, an optimized set of mode converters has been designed for conversion of a 2 millimeter wave TE 03 mode into TE 11 . This set consists of axisymmetric TE 03 to TE 02 and TE 02 to TE 01 converters followed by a wriggle TE 01 to TE 11 converter. This mode converter set was fabricated and tested using a 3 kW, 137 GHz gyrotron. A TE 11 mode purity of better than 97% was achieved. The TE 01 to TE 11 wriggle converter was experimentally optimized for a measured conversion efficiency of better than 99% not including ohmic losses
Mixed-mode fracture of ceramics
Energy Technology Data Exchange (ETDEWEB)
Petrovic, J.J.
1985-01-01
The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.
Mode conversion in hybrid optical fiber coupler
Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.
2012-04-01
Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.
OBSERVATIONS OF SAUSAGE MODES IN MAGNETIC PORES
International Nuclear Information System (INIS)
Morton, R. J.; Erdelyi, R.; Jess, D. B.; Mathioudakis, M.
2011-01-01
We present here evidence for the observation of the magnetohydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 A 'blue continuum' filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magnetoacoustic sausage oscillations. Multiple signatures of the magnetoacoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magnetoacoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage-type magnetoacoustic MHD wave modes in pores.
Tearing mode analysis in tokamaks, revisited
International Nuclear Information System (INIS)
Nishimura, Y.; Callen, J.D.; Hegna, C.C.
1997-12-01
A new Δ' shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio (ε ≤ 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease Δ', are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low β regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m ≥ 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code
Model for a Torsional-Mode Ultrasonic Transducer for an Acousto-Optic In-Fiber Isolator
Directory of Open Access Journals (Sweden)
Gerald T. Moore
2010-01-01
torsional modes in a cylindrical fiber. This model predicts that almost all of the power applied to the transducer is radiated into the desired mode. The paper also discusses effects produced by acoustic absorption and the dependence of the acoustic velocity on temperature.
Chang, Chi-Cheng; Lei, Hao; Tseng, Ju-Shih
2011-01-01
Although ubiquitous learning enhances students' access to learning materials, it is crucial to find out which media presentation modes produce the best results for English listening comprehension. The present study examined the effect of media presentation mode (sound and text versus sound) on English listening comprehension and cognitive load.…
Chang, Chi-Cheng; Lei, Hao; Tseng, Ju-Shih
2014-01-01
Although ubiquitous learning enhances students' access to learning materials, it is crucial to find out which media delivery modes produce the best results for English listening comprehension. The present study examined the effect of media delivery mode (sound and text vs. sound) on English listening comprehension and cognitive load. Participants…
Schunk, Gerhard; Fürst, Josef U; Förtsch, Michael; Strekalov, Dmitry V; Vogl, Ulrich; Sedlmeir, Florian; Schwefel, Harald G L; Leuchs, Gerd; Marquardt, Christoph
2014-12-15
Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.
Adaptive variational mode decomposition method for signal processing based on mode characteristic
Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng
2018-07-01
Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.
Effects of multiple modes interaction on the resistive wall mode instability
International Nuclear Information System (INIS)
Chen, Longxi; Lei, Wenqing; Ma, Zhiwei; Wu, Bin
2013-01-01
The effects of multiple modes interaction on the resistive wall mode (RWM) are studied in a slab geometry with and without plasma flow. The modes interaction can have a large effect on both the linear growth rate and the nonlinear saturation level of the RWM. We found that modes interaction can suppress the linear growth rate for the most unstable mode. The plasma flow can also help to control the growth of the RWM. The RWM can be stabilized completely by a plasma flow when considering the modes interaction. The effect of modes interaction on the RWM is stronger for the mode rational surface in the vacuum than that in the plasma. The modes interaction results in a substantially lowered saturation level for the most unstable RWM. (paper)
Wavelength-selectable and steady single-mode erbium-doped fiber multiple ring laser
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang
2017-11-01
To achieve a stable and selectable C-band erbium-doped fiber (EDF) laser with single-longitudinal-mode output, a multiple ring architecture is proposed and demonstrated experimentally. In this work, we design a passively quadruple-ring structure in the cavity of an EDF laser to produce a Vernier effect with a mode filter for suppressing the multimode spikes significantly. In addition, the output performance and stability of the proposed EDF ring laser are discussed.
Charge modes of pulsed high energy and high density plasma injection source
International Nuclear Information System (INIS)
Cheng, D.Y.
1974-01-01
Detonation (snowplow), deflagration and other modes of discharge can be produced in a single coaxial plasma gun. Conservation laws of mass, momentum and energy together with the entropy production condition of the discharge phenomena are used to identify dense discharge modes. The Rankine-Hugoniot relation for a magnetized plasma is derived. Discussions of how to design a deflagration plasma gun to yield a prescribed plasma kinetic energy and plasma beam density are given
Improved Empirical Mode Decomposition Algorithm of Processing Complex Signal for IoT Application
Yang, Xianzhao; Cheng, Gengguo; Liu, Huikang
2015-01-01
Hilbert-Huang transform is widely used in signal analysis. However, due to its inadequacy in estimating both the maximum and the minimum values of the signals at both ends of the border, traditional HHT is easy to produce boundary error in empirical mode decomposition (EMD) process. To overcome this deficiency, this paper proposes an enhanced empirical mode decomposition algorithm for processing complex signal. Our work mainly focuses on two aspects. On one hand, we develop a technique to obt...
A Minimal Model to Explore the Influence of Distant Modes on Mode-Coupling Instabilities
Kruse, Sebastian; Hoffmann, Norbert
2010-09-01
The phenomenon of mode-coupling instability is one of the most frequently explored mechanisms to explain self-excited oscillation in sliding systems with friction. A mode coupling instability is usually due to the coupling of two modes. However, further modes can have an important influence on the coupling of two modes. This work extends a well-known minimal model to describe mode-coupling instabilities in order to explore the influence of a distant mode on the classical mode-coupling pattern. This work suggests a new minimal model. The model is explored and it is shown that a third mode can have significant influence on the classical mode-coupling instabilities where two modes are coupling. Different phenomena are analysed and it is pointed out that distant modes can only be ignored in very special cases and that the onset friction-induced oscillations can even be very sensitive to minimal variation of a distant mode. Due to the chosen academic minimal-model and the abandonment of a complex Finite-Element model the insight stays rather phenomenological but a better understanding of the mode-coupling mechnanism can be gained.
Modes of spheroidal ion plasmas at the Brillouin limit
International Nuclear Information System (INIS)
Tinkle, M.D.; Greaves, R.G.; Surko, C.M.
1996-01-01
The confinement properties and collective modes of single-component plasmas are investigated in a quadrupole Penning trap. Brillouin-density pure ion plasmas are generated by electron-beam ionization of a low-pressure gas. Large, spheroidal, steady-state plasmas are produced, extending out to contact one or more of the trap electrodes. With the density fixed at the Brillouin limit by the high ion production rate, the electrode potentials determine the plasma shape. The frequencies of azimuthally propagating cyclotron and diocotron modes are found to vary significantly with the plasma aspect ratio. For oblate plasmas, the frequencies are in good agreement with a simple fluid model. copyright 1996 American Institute of Physics
Analysis of the ITER cryoplant operational modes
International Nuclear Information System (INIS)
Henry, D.; Journeaux, J.Y.; Roussel, P.; Michel, F.; Poncet, J.M.; Girard, A.; Kalinin, V.; Chesny, P.
2007-01-01
In the framework of an EFDA task, CEA is carrying out an analysis of the various ITER cryoplant operational modes. According to the project integration document, ITER is designed to be operated 365 days per year in order to optimize the available time of the Tokamak. It is anticipated that operation will be performed in long periods separated by maintenance periods (e.g. 10 days continuous operation and 1 week break) with annual or bi-annual major shutdown periods of a few months for maintenance, further installation and commissioning. For this operation schedule, auxiliary subsystems like the cryoplant and the cryodistribution have to cope with different heat loads which depend on the different ITER operating states. The cryoplant consists of four identical 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. All of these cryogenic subsystems have to operate in parallel to remove the heat loads from the magnet, 80 K shields, cryopumps and other small users. After a brief recall of the main particularities of a cryogenic system operating in a Tokamak environment, the first part of this study is dedicated to the assessment of the main ITER operation states. A new design of refrigeration loop for the HTS current leads, the updated layout of the cryodistribution system and revised strategy for operations of the cryopumps have been taken into consideration. The relevant normal operating scenarios of the cryoplant are checked for the typical ITER operating states like plasma operation state, short term stand by, short term maintenance, or test and conditioning state. The second part of the paper is dedicated to the abnormal operating modes coming from the magnets and from those generated by the cryoplant itself. The occurrence of a fast discharge or a quench of the magnets generates large heat loads disturbances and produces exceptional high mass flow rates which have to be managed by the cryoplant, while a failure of a cryogenic component induces
Quantum random walks using quantum accelerator modes
International Nuclear Information System (INIS)
Ma, Z.-Y.; Burnett, K.; D'Arcy, M. B.; Gardiner, S. A.
2006-01-01
We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and hence how momentum transfer that depends on the atoms' internal state can be achieved. When combined with microwave driving of the transition between the states, a different type of atomic beam splitter results. This permits the realization of a biased quantum random walk through quantum accelerator modes
A simple theory of linear mode conversion
International Nuclear Information System (INIS)
Cairns, R.A.; Lashmore-Davies, C.N.; Woods, A.M.
1984-01-01
A summary is given of the basic theory of linear mode conversion involving the construction of differential equations for the mode amplitudes based on the properties of the dispersion relation in the neighbourhood of the mode conversion point. As an example the transmission coefficient for tunneling from the upper hybrid resonance through the evanescent region to the adjacent cut-off is treated. 7 refs, 3 figs
Ponderomotive modification of drift tearing modes
International Nuclear Information System (INIS)
Urquijo, G.; Singh, R.; Sen, A.
1997-01-01
The linear characteristics of drift tearing modes are investigated in the presence of a significant background of radio-frequency (RF) waves in the ion cyclotron range of frequencies. The ponderomotive force, arising from the radial gradients in the RF field energy, is found to significantly modify the inner layer solutions of the drift tearing modes. It can have a stabilizing influence, even at moderate RF powers, provided the field energy has a decreasing radial profile at the mode rational surface. (author)
Coupled mode theory of periodic waveguides arrays
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Chigrin, Dmitry N.
We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....
Majorana Zero Modes in Graphene
Directory of Open Access Journals (Sweden)
P. San-Jose
2015-12-01
Full Text Available A clear demonstration of topological superconductivity (TS and Majorana zero modes remains one of the major pending goals in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here, we demonstrate an alternative approach for the creation of TS in graphene-superconductor junctions without the need for spin-orbit coupling. Our prediction stems from the helicity of graphene’s zero-Landau-level edge states in the presence of interactions and from the possibility, experimentally demonstrated, of tuning their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter, in particular, exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero-bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.
Correlations between locked modes and impurity influxes
Energy Technology Data Exchange (ETDEWEB)
Fishpool, G M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K D [UKAEA Culham Lab., Abingdon (United Kingdom)
1994-07-01
An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.
Theory of tokamak resistive fishbone modes
International Nuclear Information System (INIS)
Shi Bingren; Sui Guofang
1995-12-01
A special kind of internal kink mode, the fishbone, can be excited by the energetic particles in tokamak plasmas. Theoretical analyses of fishbone modes based on the ideal MHD framework have predicted that two branches of modes exists. One is the Chen-White branch with ω∼ω-bar dm , corresponding to a higher threshold in β h ; the other is the Coppis branch with ω∼ω *i , and a much lower threshold in β h . The latter mode would put a rather unfavourable restriction on heating efficiency and on plasma confinement. However. It is found that the resistivity effect is essential for this mode. In this paper, a new resistive fishbone mode analysis is carried out. In the (γ mhd ,β H ) space, the stability diagram shows complicate structure, the Coppis branch is replaced by a weakly unstable mode and there is no longer closed stable region. The growth rate of this mode varies with β h , its peak value is still very low compared to other internal modes. The implications of these results to future tokamak experiments are discussed. (8 figs.)
Suspensions with reduced violin string modes
International Nuclear Information System (INIS)
Lee, B H; Ju, L; Blair, D G
2006-01-01
We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz
Suspensions with reduced violin string modes
Energy Technology Data Exchange (ETDEWEB)
Lee, B H; Ju, L; Blair, D G [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)
2006-03-02
We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz.
International Nuclear Information System (INIS)
Toi, K.; Morisaki, T.; Sakakibara, S.
1995-02-01
In CHS rapid H-mode transition is observed in NBI heated deuterium and hydrogen plasmas without obvious isotope effect, when a net plasma current is ramped up to increase the external rotational transform. The H-mode of CHS has many similarities with those in tokamaks. Recent measurement with fast response Langmuir probes has revealed that the rapid change in floating potential occurs at the transition, but the change follows the formation of edge transport barrier. The presence of ι/2π = 1 surface near the edge and sawtooth crash triggered by internal modes may play an important role for determining the H-mode transition in CHS. (author)
Mode coupling in spin torque oscillators
International Nuclear Information System (INIS)
Zhang, Steven S.-L.; Zhou, Yan; Li, Dong; Heinonen, Olle
2016-01-01
A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.
Failure Modes of thin supported Membranes
DEFF Research Database (Denmark)
Hendriksen, Peter Vang; Høgsberg, J.R.; Kjeldsen, Ane Mette
2007-01-01
Four different failure modes relevant to tubular supported membranes (thin dense films on a thick porous support) were analyzed. The failure modes were: 1) Structural collapse due to external pressure 2) burst of locally unsupported areas, 3) formation of surface cracks in the membrane due to TEC......-mismatches, and finally 4) delamination between membrane and support due to expansion of the membrane on use. Design criteria to minimize risk of failure by the four different modes are discussed. The theoretical analysis of the two last failure modes is compared to failures observed on actual components....
Research of the Power Plant Operational Modes
Directory of Open Access Journals (Sweden)
Koismynina Nina M.
2017-01-01
Full Text Available In this article the algorithm of the power plant operational modes research is offered. According to this algorithm the program for the modes analysis and connection power transformers choice is developed. The program can be used as educational means for studying of the power plant electric part, at the same time basic data are provided. Also the program can be used for the analysis of the working power plants modes. Checks of the entered data completeness and a choice correctness of the operational modes are provided in the program; in all cases of a deviation from the correct decisions to the user the relevant information is given.
Mode coupling in spin torque oscillators
Energy Technology Data Exchange (ETDEWEB)
Zhang, Steven S.-L., E-mail: ZhangShule@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Zhou, Yan, E-mail: yanzhou@hku.hk [Department of Physics, The University of Hong Kong, Hong Kong (China); Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong (China); Li, Dong, E-mail: geodesic.ld@gmail.com [Department of Physics, Centre for Nonlinear Studies, and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Heinonen, Olle, E-mail: heinonen@anl.gov [Material Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Northwestern-Argonne Institute of Science and Technology, 2145 Sheridan Road, Evanston, IL 60208 (United States); Computation Institute, The Unversity of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637 (United States)
2016-09-15
A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Our results show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. The acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature. - Highlights: • Deriving equations for coupled modes in spin torque oscillators. • Including Hamiltonian formalism and elimination of three–magnon processes. • Thermal bath of magnons central to mode coupling. • Numerical examples of circular and elliptical devices.
Spatial mode discriminator based on leaky waveguides
Xu, Jing; Liu, Jialing; Shi, Hongkang; Chen, Yuntian
2018-06-01
We propose a conceptually simple and experimentally compatible configuration to discriminate the spatial mode based on leaky waveguides, which are inserted in-between the transmission link. The essence of such a spatial mode discriminator is to introduce the leakage of the power flux on purpose for detection. Importantly, the leaky angle of each individual spatial mode with respect to the propagation direction are different for non-degenerated modes, while the radiation patterns of the degenerated spatial modes in the plane perpendicular to the propagation direction are also distinguishable. Based on these two facts, we illustrate the operation principle of the spatial mode discriminators via two concrete examples; a w-type slab leaky waveguide without degeneracy, and a cylindrical leaky waveguide with degeneracy. The correlation between the leakage angle and the spatial mode distribution for a slab leaky waveguide, as well as differences between the in-plane radiation patterns of degenerated modes in a cylindrical leaky waveguide, are verified numerically and analytically. Such findings can be readily useful in discriminating the spatial modes for optical communication or optical sensing.
Mode-locking of a terahertz laser by direct phase synchronization.
Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J
2012-09-10
A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
Advances towards QH-mode viability for ELM-stable operation in ITER
International Nuclear Information System (INIS)
Garofalo, A.M.; Burrell, K.H.; DeBoo, J.C.; Schaffer, M.J.; Snyder, P.B.; Solomon, W.M.; Park, J.-K.; Lanctot, M.J.; Reimerdes, H.; McKee, G.R.; Schmitz, L.
2011-01-01
The application of static, non-axisymmetric, nonresonant magnetic fields (NRMFs) to high beta DIII-D plasmas has allowed sustained operation with a quiescent H-mode (QH-mode) edge and both toroidal rotation and neutral beam injected torque near zero. Previous studies have shown that QH-mode operation can be accessed only if sufficient radial shear in the plasma flow is produced near the plasma edge. In past experiments, this flow shear was produced using neutral beam injection (NBI) to provide toroidal torque. In recent experiments, this torque was nearly completely replaced by the torque from applied NRMFs. The application of the NRMFs does not degrade the global energy confinement of the plasma. Conversely, the experiments show that the energy confinement quality increases with lower plasma rotation. Furthermore, the NRMF torque increases plasma resilience to locked modes at low rotation. These results open a path towards QH-mode utilization as an edge-localized mode (ELM)-stable H-mode in the self-heated burning plasma scenario, where toroidal momentum input from NBI may be small or absent.
Transverse multibunch modes for non-rigid bunches, including mode coupling
Energy Technology Data Exchange (ETDEWEB)
Berg, J S; Ruth, R D [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)
Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong
2016-06-13
We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.
Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode
Yuan, Sheng-Nan; Fang, Yun-Tuan
2017-10-01
In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.
Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars
International Nuclear Information System (INIS)
Schenk, A.K.; Arras, P.; Flanagan, E.E.; Teukolsky, S.A.; Wasserman, I.
2002-01-01
We develop the formalism required to study the nonlinear interaction of modes in rotating Newtonian stars, assuming that the mode amplitudes are only mildly nonlinear. The formalism is simpler than previous treatments of mode-mode interactions for spherical stars, and simplifies and corrects previous treatments for rotating stars. At linear order, we elucidate and extend slightly a formalism due to Schutz, show how to decompose a general motion of a rotating star into a sum over modes, and obtain uncoupled equations of motion for the mode amplitudes under the influence of an external force. Nonlinear effects are added perturbatively via three-mode couplings, which suffices for moderate amplitude modal excitations; the formalism is easy to extend to higher order couplings. We describe a new, efficient way to compute the modal coupling coefficients, to zeroth order in the stellar rotation rate, using spin-weighted spherical harmonics. The formalism is general enough to allow computation of the initial trends in the evolution of the spin frequency and differential rotation of the background star. We apply this formalism to derive some properties of the coupling coefficients relevant to the nonlinear interactions of unstable r modes in neutron stars, postponing numerical integrations of the coupled equations of motion to a later paper. First, we clarify some aspects of the expansion in stellar rotation frequency Ω that is often used to compute approximate mode functions. We show that, in zero-buoyancy stars, the rotational modes (those modes whose frequencies vanish as Ω→0) are orthogonal to zeroth order in Ω. From an astrophysical viewpoint, the most interesting result of this paper is that many couplings of r modes to other rotational modes are small: either they vanish altogether because of various selection rules, or they vanish to lowest order in Ω or in compressibility. In particular, in zero-buoyancy stars, the coupling of three r modes is forbidden
Energy Technology Data Exchange (ETDEWEB)
Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.
2008-06-09
Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for
Simulation of electron thermal transport in H-mode discharges
International Nuclear Information System (INIS)
Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.
2009-01-01
Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.
Single-particle states vs. collective modes: friends or enemies ?
Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.
2018-05-01
The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other. However, the nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.
Price satisfaction and producer loyalty
DEFF Research Database (Denmark)
Mutonyi, Sarah; Beukel, Karin; Gyau, Amos
2016-01-01
Purpose The purpose of this paper is to investigate which dimensions of price satisfaction influence producers’ trust in buyers and assess the mediating role of such trust in the relationship between price satisfaction and producer loyalty in fresh fruit supply chains. Design/methodology/approach......Purpose The purpose of this paper is to investigate which dimensions of price satisfaction influence producers’ trust in buyers and assess the mediating role of such trust in the relationship between price satisfaction and producer loyalty in fresh fruit supply chains. Design...... reliability, and relative price are dimensions of price satisfaction that affect producers’ trust in the buyer. Moreover, trust between the producer and the buyer is found to be a strong mediator between price satisfaction and producer loyalty. The findings support recent studies about trust and its mediating...... between the multi-dimensional nature of price satisfaction and producer loyalty with trust as a mediating variable in the business-to-business (B2B) context. Although B2B relationships have been shown to be of great importance for smallholders in enhancing business performance with their buyers, little...
Producing liquid fuels from biomass
Solantausta, Yrjo; Gust, Steven
The aim of this survey was to compare, on techno-economic criteria, alternatives of producing liquid fuels from indigenous raw materials in Finland. Another aim was to compare methods under development and prepare a proposal for steering research related to this field. Process concepts were prepared for a number of alternatives, as well as analogous balances and production and investment cost assessments for these balances. Carbon dioxide emissions of the alternatives and the price of CO2 reduction were also studied. All the alternatives for producing liquid fuels from indigenous raw materials are utmost unprofitable. There are great differences between the alternatives. While the production cost of ethanol is 6 to 9 times higher than the market value of the product, the equivalent ratio for substitute fuel oil produced from peat by pyrolysis is 3 to 4. However, it should be borne in mind that the technical uncertainties related to the alternatives are of different magnitude. Production of ethanol from barley is of commercial technology, while biomass pyrolysis is still under development. If the aim is to reach smaller carbon dioxide emissions by using liquid biofuels, the most favorable alternative is pyrolysis oil produced from wood. Fuels produced from cultivated biomass are more expensive ways of reducing CO2 emissions. Their potential of reducing CO2 emissions in Finland is insignificant. Integration of liquid fuel production to some other production line is more profitable.
Human body may produce bacteria.
Salerian, Alen J
2017-06-01
"Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Produced water - composition and analysis
International Nuclear Information System (INIS)
Kvernheim, Arne Lund
1998-01-01
Produced water can be defined as ''High volume waste-water separated from oil and gas that is produced from subsurface formations''. The water contains aliphatic and aromatic hydrocarbons, particulate matter and soluble salts as well as elements originating from formations and from sea water injections. Residues of chemicals may also be present. The accepted North Sea discharge limit is 40 ppm. In this presentation the focus will be on the chemical composition of produced water and on the challenges involved in developing and implementing analytical methods. The focus will also be on the development of a new oil-in-water analytical method as a replacement for the Freon method. 7 refs., 1 tab
Method of producing grouting mortar
Energy Technology Data Exchange (ETDEWEB)
Shelomov, I K; Alchina, S I; Dizer, E I; Gruzdeva, G A; Nikitinskii, V I; Sabirzyanov, A K
1980-10-07
A method of producing grouting mortar by mixing the cement with an aqueous salt solution is proposed. So as to increase the quality of the mortar through an acceleration of the time for hardening, the mixture is prepared in two stages, in the first of which 20-30% of the entire cement batch hardens, and in the second of which the remainder of the cement hardens; 1-3-% of an aqueous salt solution is used in quantities of 0.5/1 wt.-% of weight of the cement. The use of this method of producing grouting mortar helps to increase the flexural strength of the cement brick up to 50% after two days ageing by comparison with the strength of cement brick produced from grouting mortar by ordinary methods utilizing identical quantities of the initial components (cement, water, chloride).
Apparatus for producing laser targets
International Nuclear Information System (INIS)
Jarboe, T.R.; Baker, W.R.
1975-01-01
This patent relates to an apparatus and method for producing deuterium targets or pellets of 25u to 75u diameter. The pellets are sliced from a continuously spun solid deuterium thread at a rate of up to 10 pellets/second. The pellets after being sliced from the continuous thread of deuterium are collimated and directed to a point of use, such as a laser activated combustion or explosion chamber wherein the pellets are imploded by laser energy or laser produced target plasmas for neutral beam injection
Producing deep-water hydrocarbons
International Nuclear Information System (INIS)
Pilenko, Thierry
2011-01-01
Several studies relate the history and progress made in offshore production from oil and gas fields in relation to reserves and the techniques for producing oil offshore. The intention herein is not to review these studies but rather to argue that the activities of prospecting and producing deep-water oil and gas call for a combination of technology and project management and, above all, of devotion and innovation. Without this sense of commitment motivating men and women in this industry, the human adventure of deep-water production would never have taken place
Method for producing redox shuttles
Pupek, Krzysztof Z.; Dzwiniel, Trevor L.; Krumdick, Gregory K.
2015-03-03
A single step method for producing a redox shuttle having the formula 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate) is provided, the method comprising phosphorylating tert butyl hydroquinone with a phosphate-containing reagent. Also provided is method for producing 2,5-di-tert-butyl-1,4-phenylene tetraethyl bis(phosphate), the method comprising solubilizing tert-butyl hydroquinone and tetrabutylammonium bromide with methyltetrahydrofuran to create a mixture; heating the mixture while adding base to the mixture in an amount to turn the mixture orange; and adding diethyl chlorophosphate to the orange mixture in an amount to phosphorylate the hydroquinone.
Edge Localized Modes: resent experimental findings and related issues
International Nuclear Information System (INIS)
Kamiya, K.
2007-01-01
Edge Localized Mode (ELM) measurements in the tokamaks, including JT-60U, DIII-D, ASDEX-U and JET, are reviewed. An ELMy H-mode operation having Type-I ELMs is nominated as the reference inductive operational scenario for ITER (Q DT =10), which is normally observed for the best performing H-mode in many tokamaks,. However, the ELMs produce pulsed heat and particle fluxes that can lead to a rapid erosion of the divertor plate. It is estimated that the peak heat flux to the divertor would reduce the lifetime of the divertor to several hundred shots in ITER (e.g. an acceptable divertor lifetime could be realized only by an upper limit of ELM energy loss normalized by pedestal stored energy, ΔDW ELM /W ped ∼ 5-6%). Approaches to control the Type-I ELMs, such as '' Ergodization '' on DIII-D, '' Pace making by a shallow pellet injection '' on ASDEX-U, '' Vertical motion '' on TCV, have been successfully demonstrated in many tokamaks. On the other hand, finding alternative scenarios to Type-I ELMy H-mode operation are also a key area of research for current tokamaks. Specifically, '' Quiescent H-mode (QH-mode) '' on DIII-D, ASDEX-U and JT-60U, and '' Grassy ELMs '' on JT-60U demonstrated a high confinement (being comparable to that of Type-I ELMy H-mode plasmas at similar parameters) in the absence of large, ELM induced, transient heat/particle fluxes to the divertor targets. ELM dynamics measurements in the SOL at the midplane show large, rapid variations of the SOL parameters. Recent data from a fast resolved measurements, such as scanning probe, radial interferometer chord, BES and tangentially viewing fast-gated camera at the midplane, suggest a filamentary structure of the perturbation with fast radial propagation in later phases and parallel propagation of the ELM pulse at around the sound speed of pedestal ions. The results are qualitatively consistent with nonlinear ballooning theory, although a more quantitative physics understanding, including detailed
X- and O-mode ECH breakdown and startup in TCA
International Nuclear Information System (INIS)
Whaley, D.R.; Goodman, T.P.; Pochelon, A.; Behn, R.; Cardinali, A.; Duval, B.P.; Joye, B.; Tran, M.Q.
1992-02-01
We have performed a comparative study of X- and O-mode high field side launch for ECH breakdown and startup of tokamak plasmas. We observe that X-mode power is not absorbed at the cyclotron resonance but uniquely at the upper hybrid resonance, displaced to the lower field side of the cyclotron resonance. O-mode power, however, is absorbed at the cyclotron resonance as well. We also observe that the displacement of the upper hybrid resonance to the low field side with O-mode launch is significantly smaller than with X-mode launch due to the lower densities produced at the same microwave power level. The result is a more central and less localized breakdown with O-mode launch. The breakdown characteristics of X- and O-mode launch are seen to affect the position of the initial plasma current centroid in the poloidal cross section. We observe a strong correlation between the initial current ramp and the initial plasma current position which is most likely due to the dependence of the plasma inductance, toroidal electric field, and field-line connection lengths on the plasma major radius. X-mode startup occurs further to the low field side where current ramp rates are observed to be poor. (author) 18 figs., 23 refs
Mode coupling in hybrid square-rectangular lasers for single mode operation
Energy Technology Data Exchange (ETDEWEB)
Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)
2016-08-15
Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.
Numerical study of the quasinormal mode excitation of Kerr black holes
International Nuclear Information System (INIS)
Dorband, Ernst Nils; Diener, Peter; Tiglio, Manuel; Berti, Emanuele; Schnetter, Erik
2006-01-01
We present numerical results from three-dimensional evolutions of scalar perturbations of Kerr black holes. Our simulations make use of a high-order accurate multiblock code which naturally allows for adapted grids and smooth inner (excision) and outer boundaries. We focus on the quasinormal ringing phase, presenting a systematic method for extraction of the quasinormal mode frequencies and amplitudes and comparing our results against perturbation theory. The detection of a single mode in a ringdown waveform allows for a measurement of the mass and spin of a black hole; a multimode detection would allow a test of the Kerr nature of the source. Since the possibility of a multimode detection depends on the relative mode amplitude, we study this topic in some detail. The amplitude of each mode depends exponentially on the starting time of the quasinormal regime, which is not defined unambiguously. We show that this time-shift problem can be circumvented by looking at appropriately chosen relative mode amplitudes. From our simulations we extract the quasinormal frequencies and the relative and absolute amplitudes of corotating and counterrotating modes (including overtones in the corotating case). We study the dependence of these amplitudes on the shape of the initial perturbation, the angular dependence of the mode, and the black hole spin, comparing against results from perturbation theory in the so-called asymptotic approximation. We also compare the quasinormal frequencies from our numerical simulations with predictions from perturbation theory, finding excellent agreement. For rapidly rotating black holes (of spin j=0.98) we can extract the quasinormal frequencies of not only the fundamental mode, but also of the first two overtones. Finally we study under what conditions the relative amplitude between given pairs of modes gets maximally excited and present a quantitative analysis of rotational mode-mode coupling. The main conclusions and techniques of our
Orbital angular momentum of general astigmatic modes
International Nuclear Information System (INIS)
Visser, Jorrit; Nienhuis, Gerard
2004-01-01
We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere
Mode Contributions to the Casimir Effect
Intravaia, F.; Henkel, C.
2010-04-01
Applying a sum-over-modes approach to the Casimir interaction between two plates with finite conductivity, we isolate and study the contributions of surface plasmons and Foucault (eddy current) modes. We show in particular that for the TE-polarization eddy currents provide a repulsive force that cancels, at high temperatures, the Casimir free energy calculated with the plasma model.
Line-mode browser development days
Anna Pantelia
2013-01-01
Twelve talented web developers have travelled to CERN from all over the world to recreate a piece of web history: the line-mode browser. See the line-mode browser simulator that they created here. Read more about the birth of the web here.
Simultaneous Emotions: Entwining Modes in Children's Books
Cadden, Mike
2005-01-01
Critics and teachers tend to pay attention to genre and ignore mode as an area of consideration. This study examines three novels for young readers that are comparable in terms of their entwining opposing modes (irony and romance, comedy and tragedy) as a successful crossover strategy for appeal to readers young and old. I share implications for…
Spatial mode discrimination using second harmonic generation
DEFF Research Database (Denmark)
Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David
2007-01-01
Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...
Innovation of University Teaching Faculty Management Mode
Han, Yuzheng; Wang, Boyu
2015-01-01
With the deepening of university reform in China, the traditional teaching faculty management mode has been exposed more and more defects. To make innovation of the university teaching faculty management mode becomes the voice of the times. Universities should conduct careful research on this issue in the development. Starting from the…
Tapping mode atomic force microscopy in liquid
Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan
1994-01-01
We show that standard silicon nitride cantilevers can be used for tapping mode atomic force microscopy (AFM) in air, provided that the energy of the oscillating cantilever is sufficiently high to overcome the adhesion of the water layer. The same cantilevers are successfully used for tapping mode
Multiple Modes of Inquiry in Earth Science
Kastens, Kim A.; Rivet, Ann
2008-01-01
To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…
Angular-momentum-bearing modes in fission
International Nuclear Information System (INIS)
Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.
1989-03-01
The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs
On-chip mode division multiplexing technologies
DEFF Research Database (Denmark)
Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei
2016-01-01
Space division multiplexing (SDM) is currently widely investigated in order to provide enhanced capacity thanks to the utilization of space as a new degree of multiplexing freedom in both optical fiber communication and on-chip interconnects. Basic components allowing the processing of spatial...... photonic integrated circuit mode (de) multiplexer for few-mode fibers (FMFs)....
Connection between adiabaticity and the mirror mode
International Nuclear Information System (INIS)
Cohen, R.H.
1976-01-01
The size of magnetic moment jumps of a particle in a long, thin equilibrium magnetic mirror field is shown to be related to the complex zeroes of the mirror mode parameter B + 4πdP/sub perpendicular//dB. A consequence is that adiabaticity places a lower limit on β than does the mirror mode
Confinement mechanisms in the radiatively improved mode
Tokar, M. Z.; R. Jaspers,; Koslowski, H. R.; Kramer-Flecken, A.; Messiaen, A. M.; Ongena, J.; Rogister, A. A.; Unterberg, B.; Weynants, R. R.
1999-01-01
The characteristics of the toroidal ion temperature gradient (ITG) instability, considered as the main source of anomalous transport in the low (L) confinement mode of tokamaks, are analysed for the conditions of the radiatively improved (RI) mode triggered by seeding of impurities. Based on
Viscoresistive g-modes and ballooning
International Nuclear Information System (INIS)
Dagazian, R.Y.; Paris, R.B.
1980-01-01
The resistive G-mode and its particular form, the resistive ballooning mode, are treated as limits of a single simple model. MHD theory including parallel and perpendicular viscosity, finite shear, and finite beta is employed to study their linear stability
STABILIZATION OF UNUSUAL SUBSTRATE COORDINATION MODES IN DINUCLEAR MACROCYCLIC COMPLEXES
Directory of Open Access Journals (Sweden)
Vasile Lozan
2010-06-01
Full Text Available The steric protection offered by the macrobinucleating hexaazaditiophenolate ligand (L allows for the preparation of the first stable dinuclear nickel(II borohydride bridged complex, which reacts rapidly with elemental sulphur producing a tetranuclear nickel(II complex [{(LNi2}2(μ-S6]2+ bearing a helical μ4-hexa- sulfide ligand. The [(LCoII 2]2+ fragment have been able to trap a monomethyl orthomolybdate in the binding pocket. Unusual coordination modes of substrate in dinuclear macrocyclic compounds was demonstrated.
Beam dynamics studies for transverse electromagnetic mode type rf deflectors
Directory of Open Access Journals (Sweden)
Shahid Ahmed
2012-02-01
Full Text Available We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM_{110} type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.
Single mode dye-doped polymer photonic crystal lasers
International Nuclear Information System (INIS)
Christiansen, Mads B; Buß, Thomas; Smith, Cameron L C; Petersen, Sidsel R; Jørgensen, Mette M; Kristensen, Anders
2010-01-01
Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e.g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be −0.045 or −0.066 nm K -1 , depending on the material
Modes of spheroidal ion plasmas at the Brillouin limit
International Nuclear Information System (INIS)
Tinkle, M. D.; Greaves, R. G.; Surko, C. M.
1995-01-01
Brillouin-density pure ion plasmas have been generated in a quadrupole Penning tray by electron-beam ionization of a low-pressure gas. Large, spheroidal, steady-state plasmas are produced that extend to one of the trap electrodes. With the density fixed at the Brillouin limit by the high ion production rate, the electrode potentials determine the plasma shape. The frequencies of azimuthally propagating cyclotron and diocotron modes are found to vary significantly with the plasma aspect ratio. For oblate plasmas, we are able to test theoretical predictions of a simple fluid model, and the frequencies are in good agreement
Sliding Mode Control of a Slewing Flexible Beam
Wilson, David G.; Parker, Gordon G.; Starr, Gregory P.; Robinett, Rush D., III
1997-01-01
An output feedback sliding mode controller (SMC) is proposed to minimize the effects of vibrations of slewing flexible manipulators. A spline trajectory is used to generate ideal position and velocity commands. Constrained nonlinear optimization techniques are used to both calibrate nonlinear models and determine optimized gains to produce a rest-to-rest, residual vibration-free maneuver. Vibration-free maneuvers are important for current and future NASA space missions. This study required the development of the nonlinear dynamic system equations of motion; robust control law design; numerical implementation; system identification; and verification using the Sandia National Laboratories flexible robot testbed. Results are shown for a slewing flexible beam.
Single mode dye-doped polymer photonic crystal lasers
DEFF Research Database (Denmark)
Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron
2010-01-01
Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...
Atomic physics effects on tokamak edge drift-tearing modes
International Nuclear Information System (INIS)
Hahm, T.S.
1993-01-01
The effects of ionization and charge exchange on the linear stability of drift-tearing modes are analytically investigated. In particular, the linear instability threshold Δ Th , produced by ion sound wave coupling [Phys. Rev. Lett. 40, 1500 (1978)] is modified. In the strongly collisional regime, the ionization breaks up the near cancellation of the perturbed electric field and the pressure gradient along the magnetic field, and increases the threshold. In the semicollisional regime, both ionization and charge exchange act as drag on the ion parallel velocity [Phys. Fluids B 4, 2567 (1992)], and consequently decrease the threshold by reducing the effectiveness of ion sound wave propagation
Beam dynamics studies for transverse electromagnetic mode type rf deflectors
International Nuclear Information System (INIS)
Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Michael; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin
2012-01-01
We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type RF deflectors: normal- and super-conducting. The compact size of these cavities as compared to the conventional TM 110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.
Marketing Hardwoods to Furniture Producers
Steven A. Sinclair; Robert J. Bush; Philip A. Araman
1989-01-01
This paper discusses some of the many problems in developing marketing programs for small wood products manufacturers. It examines the problems of using price as a dominant means for getting and attracting customers. The marketing of hardwood lumber to furniture producers is then used as an example. Data from 36 furniture lumber buyers is presented to illustrate...
Importance of producing impactful research
CSIR Research Space (South Africa)
Nienaber, S
2010-11-01
Full Text Available from the more pragmatic issue of funding. Funding agencies, organisational leadership and policymakers need scientists to prove that the science we produce makes enough of an impact to merit further funding in future. This emphasis and pressure around...
Method of producing vegetable puree
DEFF Research Database (Denmark)
2004-01-01
A process for producing a vegetable puree, comprising the sequential steps of: a)crushing, chopping or slicing the vegetable into pieces of 1 to 30 mm; b) blanching the vegetable pieces at a temperature of 60 to 90°C; c) contacted the blanched vegetable pieces with a macerating enzyme activity; d......) blending the macerated vegetable pieces and obtaining a puree....
Optical Cladding Waveguides in Dielectric Crystals Produced by Femtosecond Laser Inscription
Directory of Open Access Journals (Sweden)
Chen Feng
2013-11-01
Full Text Available In this work, the recent progress of our research on optical cladding waveguides in dielectric crystals produced by femtosecond laser inscription has been overviewed. With different scales at cross sections, the cladding waveguides support guidance from single mode to highly multi-modes, and work for wavelength till mid-infrared regimes. Applications of the fabricated cladding structures as new integrated light sources are introduced.
Modes and Mode Volumes for Leaky Optical Cavities and Plasmonic Nanoresonators
DEFF Research Database (Denmark)
Hughes, Stephen; Kristensen, Philip Trøst
2013-01-01
Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties r...... methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics....
International Nuclear Information System (INIS)
Hinton, F.L.; Chu, M.S.; Dominguez, R.R.
1985-01-01
A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)
Newer nonconventional modes of mechanical ventilation
Directory of Open Access Journals (Sweden)
Preet Mohinder Singh
2014-01-01
Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.
Tearing mode saturation with finite pressure
International Nuclear Information System (INIS)
Lee, J.K.
1988-01-01
With finite pressure, the saturation of the current-driven tearing mode is obtained in three-dimensional nonlinear resistive magnetohydrodynamic simulations for Tokamak plasmas. To effectively focus on the tearing modes, the perturbed pressure effects are excluded while the finite equilibrium pressure effects are retained. With this model, the linear growth rates of the tearing modes are found to be very insensitive to the equilibrium pressure increase. The nonlinear aspects of the tearing modes, however, are found to be very sensitive to the pressure increase in that the saturation level of the nonlinear harmonics of the tearing modes increases monotonically with the pressure rise. The increased level is associated with enhanced tearing island sizes or increased stochastic magnetic field region. (author)
Operating modes of superconducting tunnel junction device
Energy Technology Data Exchange (ETDEWEB)
Maehata, Keisuke [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering
1998-07-01
In the Electrotechnical Laboratory, an Nb type superconducting tunnel junction (STJ) device with 200 x 200 sq. micron in area and super high quality was manufactured. By using 55-fe source, response of this large area STJ to X-ray was measured. In this measurement, two action modes with different output wave height from front amplifier were observed. Then, in this study, current-voltage feature of the element in each action mode was analyzed to elucidate a mechanism to form such two action modes. The feature was analyzed by using first order approximate solution on cavity resonance mode of Sine-Gordon equation. From the analytical results, it could be supposed that direction and magnitude of effective magnetic field penetrating into jointed area changed by an induction current effect owing to impressing speed of the magnetic field, which brings two different current-voltage features to make possible to observe two action modes with different pulse wave height. (G.K.)
Reynolds stress of localized toroidal modes
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.
1995-02-01
An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant
Transportation Modes Classification Using Sensors on Smartphones
Directory of Open Access Journals (Sweden)
Shih-Hau Fang
2016-08-01
Full Text Available This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.
Alfven frequency modes and global Alfven eigenmodes
International Nuclear Information System (INIS)
Villard, L.; Vaclavik, J.
1996-07-01
The spectrum of n=0 Alfven modes is calculated analytically and numerically in cylindrical and toroidal geometries. It includes Global Alfven Eigenmodes (GAE) and Surface Modes (SM) of the fast magnetoacoustic wave. These modes are not induced by toroidicity. The n=0 GAEs owe their existence to the shear. The frequency spacing between different radial and poloidal modes and the correlation of eigenfrequencies with changes in the edge density are examined and found in complete agreement with experimental observations of what has been named the 'Alfven Frequency Mode' (AFM) so far. Although the eigenfrequency is related to the edge density, the n=0 GAE (AFM) is not necessarily edge-localized. (author) figs., tabs., refs
Reynolds stress of localized toroidal modes
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.
1995-01-01
An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at π/2 (or -π/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant. (author). 15 refs
International Nuclear Information System (INIS)
Benova, E.; Ghanashev, I.; Zhelyazkov, I.
1992-01-01
The modelling of isotropic plasma columns sustained by travelling electromagnetic waves in the dipolar mode (angular dependence exp imφ, m=±1) shows that the m=±1 modes have identical dispersion characteristics. In the presence of an external static magnetic field, however, the modes behave rather differently. This observation arose in studying the axial structures of magnetized plasma columns surrounded by vacuum and produced by travelling electromagnetic waves in the dipolar modes. We examine the propagation of electromagnetic waves along a homogeneous cold plasma column of radius R and electron number density n immersed in an axial constant magnetic field. (author) 3 refs., 3 figs
Poloidal rotation and the evolution of H-mode and VH-mode profiles
International Nuclear Information System (INIS)
Hinton, F.L.; Staebler, G.M.; Kim, Y.B.
1993-12-01
The physics which determines poloidal rotation, and its role in the development of profiles during H- and VH-modes, is discussed. A simple phenomenological transport model, which incorporates the rvec E x rvec B flow shear suppression of turbulence, is shown to predict profile evolution similar to that observed experimentally during H-mode and VH-mode
Few-mode erbium-doped fiber amplifier with photonic lantern for pump spatial mode control
Lopez-Galmiche, G.; Eznaveh, Z. Sanjabi; Antonio-Lopez, J.E.; Benitez, A. M. Velazquez; Rodriguez-Asomoza, Jorge; Mondragon, J. J. Sanchez; Gonnet, C.; Sillard, P.; Li, G.; Schülzgen, A.; Okonkwo, C.M.; Amezcua Correa, R.
2016-01-01
We demonstrate a few-mode erbium-doped fiber amplifier employing a mode-selective photonic lantern for controlling the modal content of the pump light. Amplification of six spatial modes in a 5 m long erbium-doped fiber to x223C;6.2x2009;x2009;dBm average power is obtained while maintaining high
van Weerdenburg, J.J.A.; Antonio-Lopez, J.E.; Alvarado-Zacarias, J.; Molin, D.; Bigot-Astruc, M.; van Uden, R.; de Waardt, H.; Koonen, A.M.J.; Amezcua-Correa, R.; Sillard, P.; Okonkwo, C.M.
2016-01-01
By exploiting strong coupling in higher-order modes, we experimentally demonstrate reduced differential mode group delay by a factor of 3. Comparing LP02+LP21 with respect to LP01+LP11 3-mode transmission, a 27% reduction in equalizer length is shown after 53.4km MMF transmission.