WorldWideScience

Sample records for zeptomole electrochemical detection

  1. Ternary Surface Monolayers for Ultrasensitive (Zeptomole) Amperometric Detection of Nucleic-Acid Hybridization without Signal Amplification

    Science.gov (United States)

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A.; Wang, Joseph

    2010-01-01

    A ternary surface monolayer, consisting of co-assembled thiolated capture probe (SHCP) mercaptohexanol (MCH) and dithiothreitol (DTT), is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers (SAMs). Remarkably low detection limits down to 40 zmole (in 4 μL samples) as well as only 1 CFU E. coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3′,5,5′-tetramethylbenzidine (HRP/TMB) system. Such dramatic improvements in the detection limits (compared to common binary alkanethiol interfaces and to most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to non-specific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration ‘backfillers’ that leads to a remarkably low background noise even in the presence of complex sample matrices. A wide range of surface compositions have been investigated and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety and forensic analysis. PMID:20883023

  2. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification.

    Science.gov (United States)

    Wu, Jie; Campuzano, Susana; Halford, Colin; Haake, David A; Wang, Joseph

    2010-11-01

    A ternary surface monolayer, consisting of coassembled thiolated capture probe, mercaptohexanol and dithiothreitol, is shown to offer dramatic improvements in the signal-to-noise characteristics of electrochemical DNA hybridization biosensors based on common self-assembled monolayers. Remarkably low detection limits down to 40 zmol (in 4 μL samples) as well as only 1 CFU Escherichia coli per sensor are thus obtained without any additional amplification step in connection to the commonly used horseradish peroxidase/3,3',5,5'-tetramethylbenzidine system. Such dramatic improvements in the detection limits (compared to those of common binary alkanethiol interfaces and to those of most electrochemical DNA sensing strategies without target or signal amplification) are attributed primarily to the remarkably higher resistance to nonspecific adsorption. This reflects the highly compact layer (with lower pinhole density) produced by the coupling of the cyclic- and linear-configuration "backfillers" that leads to a remarkably low background noise even in the presence of complex sample matrixes. A wide range of surface compositions have been investigated, and the ternary mixed monolayer has been systematically optimized. Detailed impedance spectroscopy and cyclic voltammetric studies shed useful insights into the surface coverage. The impressive sensitivity and high specificity of the simple developed methodology indicate great promise for a wide range of nucleic acid testing, including clinical diagnostics, biothreat detection, food safety, and forensic analysis.

  3. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  4. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    International Nuclear Information System (INIS)

    Noor, M. Omair; Hrovat, David; Moazami-Goudarzi, Maryam; Espie, George S.; Krull, Ulrich J.

    2015-01-01

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  5. Zeptomole Detection Scheme Based on Levitation Coordinate Measurements of a Single Microparticle in a Coupled Acoustic-Gravitational Field.

    Science.gov (United States)

    Miyagawa, Akihisa; Harada, Makoto; Okada, Tetsuo

    2018-02-06

    We present a novel analytical principle in which an analyte (according to its concentration) induces a change in the density of a microparticle, which is measured as a vertical coordinate in a coupled acoustic-gravitational (CAG) field. The density change is caused by the binding of gold nanoparticles (AuNP's) on a polystyrene (PS) microparticle through avidin-biotin association. The density of a 10-μm PS particle increases by 2% when 500 100-nm AuNP's are bound to the PS. The CAG can detect this density change as a 5-10 μm shift of the levitation coordinate of the PS. This approach, which allows us to detect 700 AuNP's bound to a PS particle, is utilized to detect biotin in solution. Biotin is detectable at a picomolar level. The reaction kinetics plays a significant role in the entire process. The kinetic aspects are also quantitatively discussed based on the levitation behavior of the PS particles in the CAG field.

  6. Electrochemical sensor for detection of carcinoma

    International Nuclear Information System (INIS)

    Thakur, Bhawana; Sawant, Shilpa N.; Jayakumar, S.

    2012-01-01

    Detection of carcinoma in early stage is very important for its effective treatment. Although considerable advancement has been made in its detection and treatment, there is a significant need for rapid, low-cost, sensitive, and selective biosensors for detection of cancer. In recent years, electrochemical detection techniques have received much attention due to their rapid response, high sensitivity, and inherent selectivity. They can provide an inexpensive platform for detection of analytes in clinical diagnostics. Conducting polymers are a versatile material for development of electrochemical biosensors. Due to the conducting nature of these polymers, they act as a transducer to convert the biological signal into electrical signal. These polymers also exhibit good biocompatibility, hence are ideal for immobilisation of biological recognition element during the development of the sensor film. Recently author have demonstrated a whole cell based electrochemical biosensor for detection of the pesticide Lindane at very low concentrations. In the present study, we have tried to develop polyaniline based electrochemical sensor for detection of carcinoma. Polyaniline was deposited on gold interdigitated electrodes by electropolymerization using potentiodynamic method. The polymer film was suitably modified to obtain the sensor film for recognition of the tumour cells. Response of the sensor to various tumour cells such as lung cancer cells, human fibrosarcoma cells, prostate cancer cells, breast cancer cells was studied and was compared to that of normal cells. The sensor electrode could detect tumour cells based on the nature of response obtained

  7. Electrochemical aptasensor for detecting tetracycline in milk

    International Nuclear Information System (INIS)

    Le, Thi Hanh; Pham, Van Phuc; La, Thi Huyen; Le, Quang Huan; Phan, Thi Binh

    2016-01-01

    A rapid, simple and sensitive biosensor system for tetracycline detection is very important in food safety. In this paper we developed a label-free aptasensor for electrochemical detection of tetracycline. According to the electrochemical impendence spectroscopy (EIS) analysis, there was a linear relationship between the concentration of tetracycline and the electron transfer resistance from 10 to 3000 ng ml −1 of the tetracycline concentration. The detection limit was 10 ng ml −1 in 15 min detection duration. The prepared aptasensor showed a good reproducibility with an acceptable stability in tetracycline detection. The recoveries of tetracycline in spiked milk samples were in the range of 88.1%–94.2%. The aptasensor has sensitivity 98% and specificity of 100%. (paper)

  8. Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants

    Directory of Open Access Journals (Sweden)

    Brandy J. Johnson

    2014-06-01

    Full Text Available This effort evaluated the potential of two prototype devices for enhanced electrochemical detection of 2,4,6-trinitrotoluene (TNT and dinitrotoluene (DNT following preconcentration using an organosilicate sorbent. The bench-scale prototype provides adsorption of the targets from aqueous solution followed by elution in a mixture of methanol and potassium chloride (KCl. Following elution, the eluant is diluted using an aqueous KCl solution to provide sufficient electrolyte for electrochemical analysis. Concentrations of methanol greater than 50% were detrimental to sensor performance and lifetime. Calibration of the electrochemical sensor was completed and results of electrochemical analysis were compared to those of HPLC analysis over a range of concentrations and in varied matrices. TNT detection was found to be consistent and detection limits were improved from 200 ppb to 3 ppb depending on the sample volume utilized. DNT detection showed higher variability and significantly greater false response rates. On the basis of these results, a second, more advanced, prototype was developed and utilized in limited field trials with the intention of moving the technology toward in situ applications.

  9. Electrochemical sensors for detection of acetylsalicylic acid

    OpenAIRE

    Šupálková, Veronika; Petřek, Jiří; Havel, Ladislav; Křížková, Soňa; Petrlová, Jitka; Adam, Vojtěch; Potěšil, David; Babula, Petr; Beklová, Miroslava; Horna, Aleš; Kizek, René

    2006-01-01

    Acetylsalicylic acid ( AcSA), or aspirin, was introduced in the late 1890s and has been used to treat a variety of inflammatory conditions. The aim of this work was to suggest electrochemical sensor for acetylsalicylic detection. Primarily, we utilized square wave voltammetry ( SWV) using both carbon paste electrode ( CPE) and of graphite pencil electrode ( GPE) as working ones to indirect determination of AcSA. The principle of indirect determination of AcSA bases in its hydrolysis on salicy...

  10. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  11. Electrochemical Methodologies for the Detection of Pathogens.

    Science.gov (United States)

    Amiri, Mandana; Bezaatpour, Abolfazl; Jafari, Hamed; Boukherroub, Rabah; Szunerits, Sabine

    2018-05-25

    Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current

  12. Electrochemical oxidation and detection of sodium urate in alkaline ...

    African Journals Online (AJOL)

    Electrochemical behaviour of copper oxides electrode in the presence of sodium urate was investigated. The correlation between the anodic oxidation and the amperometric detection of sodium urate in the alkaline medium on copper oxides electrode was analysed by cyclic voltammetry (CV) and electrochemical ...

  13. Electrochemical Sensors for Detection of Acetylsalicylic Acid

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2006-11-01

    Full Text Available Acetylsalicylic acid (AcSA, or aspirin, was introduced in the late 1890s and hasbeen used to treat a variety of inflammatory conditions. The aim of this work was to suggestelectrochemical sensor for acetylsalicylic detection. Primarily, we utilized square wavevoltammetry (SWV using both carbon paste electrode (CPE and of graphite pencilelectrode (GPE as working ones to indirect determination of AcSA. The principle ofindirect determination of AcSA bases in its hydrolysis on salicylic acid (SA, which isconsequently detected. Thus, we optimized both determination of SA and conditions forAcSA hydrolysis and found out that the most suitable frequency, amplitude, step potentialand the composition and pH of the supporting electrolyte for the determination of SA was260 Hz, 50 mV, 10 mV and Britton-Robinson buffer (pH 1.81, respectively. The detectionlimit (S/N = 3 of the SA was 1.3 ng/ml. After that, we aimed on indirect determination ofAcSA by SWV CPE. We tested the influence of pH of Britton-Robinson buffer andtemperature on yield of hydrolysis, and found out that 100% hydrolysis of AcSA wasreached after 80 minutes at pH 1.81 and 90°C. The method for indirect determination ofAcSA has been utilized to analyse pharmaceutical drug. The determined amount of AcSA in the pharmaceutical drug was in good agreement with the declared amounts. Moreover, weused GPE for determination of AcSA in a pharmaceutical drug. Base of the results obtainedfrom stationary electrochemical instrument we used flow injection analysis withelectrochemical detection to determine of salicylates (SA, AcSA, thiosalicylic acid, 3,5-dinitrosalicylic acid and 5-sulfosalicylic acid – SuSA. We found out that we are able todetermine all of detected salicylates directly without any pre-treatment, hydrolysis and so onat units of femtomoles per injection (5 μl.

  14. Gold Cleaning Methods for Electrochemical Detection Applications

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Tenje, Maria; Heiskanen, Arto

    2009-01-01

    ; hydrochloric acid potential cycling; dimethylamine borane reducing agent solutions at 25 and 65 degrees C; and a dilute form of Aqua Regia. Peak-current potential-differences obtained from cyclic voltammetry and charge transfer resistance obtained from electrochemical impedance spectroscopy, as well as X...

  15. Disease-Related Detection with Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2017-10-01

    Full Text Available Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  16. Disease-Related Detection with Electrochemical Biosensors: A Review.

    Science.gov (United States)

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  17. Nanomaterials application in electrochemical detection of heavy metals

    International Nuclear Information System (INIS)

    Aragay, Gemma; Merkoçi, Arben

    2012-01-01

    Highlights: ► We review the recent trends in the application of nanomaterials for electrochemical detection of heavy metals. ► Different types of nanomaterials including metal nanoparticles, different carbon nanomaterials or nanochannels have been applied on the electrochemical analysis of heavy metals in various sensing formats/configurations. ► The great properties of nanomaterials allow the new devices to show advantages in terms of sensing performance (i.e. increase the sensitivity, decrease the detection limits and improve the stability). ► Between the various electrochemical techniques, voltammetric and potentiometric based ones are particularly taking interesting advantages by the incorporation of new nanomaterials due to the improved electrocatalytic properties beside the increase of the sensor's transducing area. - Abstract: Recent trends in the application of nanomaterials for electrochemical detection of heavy metals are shown. Various nanomaterials such as nanoparticles, nanowires, nanotubes, nanochannels, graphene, etc. have been explored either as modifiers of electrodes or as new electrode materials with interest to be applied in electrochemical stripping analysis, ion-selective detection, field-effect transistors or other indirect heavy metals (bio)detection alternatives. The developed devices have shown increased sensitivity and decreased detection limits between other improvements of analytical performance data. The phenomena behind nanomaterials responses are also discussed and some typical responses data of the developed systems either in standard solutions or in real samples are given. The developed nanomaterials based electrochemical systems are giving new inputs to the existing devices or leading to the development of novel heavy metal detection tools with interest for applications in field such as diagnostics, environmental and safety and security controls or other industries.

  18. Fast simultaneous electrochemical detection of tetracycline and fluoxetine in water

    NARCIS (Netherlands)

    Ardelean, Magdalena; Pode, Rodica; Schoonman, J.; Pop, Aniela; Manea, Florica

    2017-01-01

    The electrochemical methods-based protocol for simultaneous detection of tetracycline (TC) from antibiotics class and fluoxetine (FXT) from anti-depressive pharmaceuticals class, which belongs to emerging pollutants from water, was developed in this study using carbon nanofiber-epoxy composite

  19. A miniaturized silicon based device for nucleic acids electrochemical detection

    Directory of Open Access Journals (Sweden)

    Salvatore Petralia

    2015-12-01

    Full Text Available In this paper we describe a novel portable system for nucleic acids electrochemical detection. The core of the system is a miniaturized silicon chip composed by planar microelectrodes. The chip is embedded on PCB board for the electrical driving and reading. The counter, reference and work microelectrodes are manufactured using the VLSI technology, the material is gold for reference and counter electrodes and platinum for working electrode. The device contains also a resistor to control and measuring the temperature for PCR thermal cycling. The reaction chamber has a total volume of 20 μL. It is made in hybrid silicon–plastic technology. Each device contains four independent electrochemical cells.Results show HBV Hepatitis-B virus detection using an unspecific DNA intercalating redox probe based on metal–organic compounds. The recognition event is sensitively detected by square wave voltammetry monitoring the redox signals of the intercalator that strongly binds to the double-stranded DNA. Two approaches were here evaluated: (a intercalation of electrochemical unspecific probe on ds-DNA on homogeneous solution (homogeneous phase; (b grafting of DNA probes on electrode surface (solid phase.The system and the method here reported offer better advantages in term of analytical performances compared to the standard commercial optical-based real-time PCR systems, with the additional incomes of being potentially cheaper and easier to integrate in a miniaturized device. Keywords: Electrochemical detection, Real time PCR, Unspecific DNA intercalator

  20. New analytical portable instrument for microchip electrophoresis with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Pozo-Ayuso, Diego F; Castaño-Alvarez, Mario

    2010-08-01

    A new portable instrument that includes a high voltage power supply, a bipotentiostat, and a chip holder has been especially developed for using microchips electrophoresis with electrochemical detection. The main unit of the instrument has dimensions of 150 x 165 x 70 mm (wxdxh) and consists of a four-outputs high voltage power supply with a maximum voltage of +/-3 KV and an acquisition system with two channels for dual amperometric (DC or pulsed amperometric detection) detection. Electrochemical detection has been selected as signal transduction method because it is relatively easily implemented, since nonoptical elements are required. The system uses a lithium-ion polymer battery and it is controlled from a desktop or laptop PC with a graphical user interface based on LabVIEW connected by serial RS232 or Bluetooth. The last part of the system consists of a reusable chip holder for housing the microchips, which contain all the electrical connections and reservoirs for making the work with microchips easy. The performance of the new instrument has been evaluated and compared with other commercially available apparatus using single- and dual-channel pyrex microchips for the separation of the neurotransmitters dopamine, epinephrine, and 3,4-dihydroxy-L-phenyl-alanine. The reduction of the size of the instrument has not affected the good performance of the separation and detection using microchips electrophoresis with electrochemical detection. Moreover, the new portable instrument paves the way for in situ analysis making the use of microchips electrophoresis easier.

  1. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    Czech Academy of Sciences Publication Activity Database

    Kudr, J.; Richtera, L.; Nejdl, L.; Xhaxhiu, K.; Vítek, Petr; Rutkay-Nedecky, B.; Hynek, D.; Kopel, P.; Adam, V.; Kižek, R.

    2016-01-01

    Roč. 9, č. 1 (2016), UNSP 31 ISSN 1996-1944 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : carbon * cyclic voltammetry * electrochemical impedance spectroscopy * electrochemistry * graphene oxide * heavy metal detection * reduced graphene oxide Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals , electrolysis) Impact factor: 2.654, year: 2016

  2. Electrochemical and Infrared Absorption Spectroscopy Detection of SF₆ Decomposition Products.

    Science.gov (United States)

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-11-15

    Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  3. Fundamentals of electrochemical detection techniques for CE and MCE.

    Science.gov (United States)

    Kubán, Pavel; Hauser, Peter C

    2009-10-01

    The electroanalytical techniques of amperometry, conductometry and potentiometry match well with the instrumental simplicity of CE. Indeed, all three detection approaches have been reported for electrophoretic separations. However, the characteristics of the three methods are quite distinct and these are not related to the optical methods more commonly employed. A detailed discussion of the underlying principles of each is given. The issue of possible effects of the separation voltage on the electrochemical detection techniques is considered in depth, and approaches to the elimination of such interferences are also discussed for each case.

  4. Hybrid carbon nanomaterials for electrochemical detection of biomolecules

    International Nuclear Information System (INIS)

    Laurila, Tomi

    2015-01-01

    Electrochemical detection of different biomolecules in vivo is a promising path towards in situ monitoring of human body and its functions. However, there are several major obstacles, such as sensitivity, selectivity and biocompatiblity, which must be tackled in order to achieve reliably and safely operating sensor devices. Here we show that by utilizing hybrid carbon materials as electrodes to detect two types of neurotransmitters, dopamine and glutamate, several advantages over commonly used electrode materials can be achieved. In particular, we will demonstrate here that it is possible to combine the properties of different carbon allotropes to obtain hybrid materials with greatly improved electrochemical performance. Three following examples of the approach are given: (i) diamond-like carbon (DLC) thin film electrodes with different layer thicknesses, (ii) multi-walled carbon nanotubes grown directly on top of DLC and (iii) carbon nanofibres synthesized on top of DLC thin films. Detailed structural and electrochemical characterization is carried out to rationalize the reasons behind the observed behvior. In addition, results from the atomistic simulations are utilized to obtain more information about the properties of the amorphous carbon thin films. (paper)

  5. Electrochemical Sensor for Explosives Precursors’ Detection in Water

    Directory of Open Access Journals (Sweden)

    Cloé Desmet

    2017-03-01

    Full Text Available Although all countries are intensifying their efforts against terrorism and increasing their mutual cooperation, terrorist bombing is still one of the greatest threats to society. The discovery of hidden bomb factories is of primary importance in the prevention of terrorism activities. Criminals preparing improvised explosives (IE use chemical substances called precursors. These compounds are released in the air and in the waste water during IE production. Tracking sources of precursors by analyzing air or wastewater can then be an important clue for bomb factories’ localization. We are reporting here a new multiplex electrochemical sensor dedicated to the on-site simultaneous detection of three explosive precursors, potentially used for improvised explosive device preparation (hereafter referenced as B01, B08, and B15, for security disclosure reasons and to avoid being detrimental to the security of the counter-explosive EU action. The electrochemical sensors were designed to be disposable and to combine ease of use and portability in a screen-printed eight-electrochemical cell array format. The working electrodes were modified with different electrodeposited metals: gold, palladium, and platinum. These different coatings giving selectivity to the multi-sensor through a “fingerprint”-like signal subsequently analyzed using partial least squares-discriminant analysis (PLS-DA. Results are given regarding the detection of the three compounds in a real environment and in the presence of potentially interfering species.

  6. An electrochemical immunosensor for quantitative detection of ficolin-3

    Science.gov (United States)

    San, Lili; Zeng, Dongdong; Song, Shiping; Zuo, Xiaolei; Zhang, Huan; Wang, Chenguang; Wu, Jiarui; Mi, Xianqiang

    2016-06-01

    Diabetes mellitus (DM) is one of the most common metabolic disorders in the world, of which more than 90% is type-2 diabetes mellitus (T2DM). There is a rather urgent need for reliable, sensitive and quick detection techniques in clinical application of T2DM. Ficolin-3 is a potential biomarker of T2DM, because serum ficolin-3 levels are associated with insulin resistance and predict the incidence of T2DM. Herein, a sandwich-type electrochemical immunosensor was developed for the detection of ficolin-3 in human serum. Cyclic voltammetry and the amperometric current versus time were used to characterize the performance of the immunosensor. Under optimal conditions, the detection limitation of ficolin-3 was 100 ng ml-1 and the linear dynamic range was between 2 and 50 μg ml-1. The method has ideal accuracy, excellent stability and selectivity and has wide application prospects in clinical research.

  7. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zang Jianfeng; Guo Chunxian; Hu Fengping [School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore); Yu Lei [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Li Changming, E-mail: ecmli@ntu.edu.sg [School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore)

    2011-01-10

    A sensitive electrochemical sensor has been fabricated to detect ultratrace nitroaromatic explosives using ordered mesoporus carbon (OMC). OMC was synthesized and characterized by scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption measurements. Glassy carbon electrodes functionalized with OMC show high sensitivity of 62.7 {mu}A cm{sup -2} per ppb towards 2,4,6-trinitrotoluene (TNT). By comparison with other materials such as carbon nanotubes and ordered mesoporous silica, it is found that the high performance of OMC toward sensing TNT is attributed to its large specific surface area and fast electron transfer capability. As low as 0.2 ppb TNT, 1 ppb 2,4-dinitrotoluene and 1 ppb 1,3-dinitrobenzene can be detected on OMC based electrodes. This work renders new opportunities to detect ultratrace explosives for applications of environment protections and home securities against chemical warfare agents.

  8. Multilevel electrochemical signal detections of metalloprotein heterolayers for bioelectronic device

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-Ho; Yoo, Si-Youl; Lee, Taek [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Lee, Hun Joo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2014-01-31

    In the present study, we investigated the simultaneous detection of multilevel electrochemical signals from various metalloprotein heterolayers for the bioelectronic devices. A layer-by-layer assembly method based on simple electrostatic interaction was introduced to form protein bilayers. The gold substrate was modified with poly (ethylene glycol) thiol acid as the precursor, which introduced negative charges to the surface. Based on the isoelectric point, net-charge controlled metalloproteins by pH adjustment were sequentially immobilized on this negatively charged substrate. The degree of protein immobilization on the gold substrate was confirmed by surface plasmon resonance spectroscopy, and the surface topology changes due to the protein immobilization were confirmed by atomic force microscopy. Redox signals in the protein layers were measured by cyclic voltammetry. As a result, various redox signals generated from different metalloproteins on a single electrode were monitored. This proposed method for the detection of multi-level electrochemical signals can be directly applied to bioelectronic devices that store multi-information in a single electrode. - Highlights: • We fabricated heterolayers composed of various metalloproteins. • Metalloproteins were immobilized by layer-by-layer assembly. • The degree of immobilization was controlled by the net charge of metalloproteins. • Various redox signals generated from heterolayers were well monitored.

  9. An Electrochemical DNA Biosensor for the Detection of Salmonella Using Polymeric Films and Electrochemical Labels

    Science.gov (United States)

    Diaz Serrano, Madeline

    Waterborne and foodborne diseases are one of the principal public health problems worldwide. Microorganisms are the major agents of foodborne illness: pathogens such as Salmonella, Campylobacter jejuni and Escherichia coli, and parasites such as cryptosporidium. The most popular methods to detect Salmonella are based on culture and colony counting methods, ELISA, Gel electrophoresis and the polymerase chain reaction. Conventional detection methods are laborious and time-consuming, allowing for portions of the food to be distributed, marketed, sold and eaten before the analysis is done and the problem even detected. By these reasons, the rapid, easy and portable detection of foodborne organisms will facilitate the disease treatment. Our particular interest is to develop a nucleic acid biosensor (NAB) for the detection of pathogenic microorganisms in food and water samples. In this research, we report on the development of a NAB prototype using a polymer modified electrode surface together with sequences of different lengths for the OmpC gene from Salmonella as probes and Ferrocene-labeled target (Fc-ssDNA), Ferrocene-labeled tri(ethylene glycol) (Fc-PEG) and Ruthenium-Ferrocene (Ru-Fe) bimetallic complex as an electrochemical labels. We have optimized several PS films and anchored nucleic acid sequences with different lengths at gold and carbon surfaces. Non contact mode AFM and XPS were used to monitor each step of the NAB preparation, from polymer modification to oligos hybridization (conventional design). The hybridization reaction was followed electrochemically using a Fc-ssDNA and Fc-PEG in solution taking advantage of the morphological changes generated upon hybridization. We observed a small current at the potential for the Fe oxidation without signal amplification at +296 mV vs. Ag/AgCl for the Fc-ssDNA strategy and a small current at +524 mV for the Fc-PEG strategy. The immobilization, hybridization and signal amplification of Biotin- OmpC Salmonella genes

  10. Bionic catalysis of porphyrin for electrochemical detection of nucleic acids

    International Nuclear Information System (INIS)

    Li Jie; Lei Jianping; Wang Quanbo; Wang Peng; Ju Huangxian

    2012-01-01

    Highlights: ► This is the first application of bionic catalysis of porphyrin as detection probe in bioanalysis. ► Porphyrin–DNA–gold nanoparticle probe is synthesized. ► Binding model between FeTMPyP and DNA is verified. ► The detection probe shows excellent electrocatalytic behaviors toward the reduction of O 2 . ► The biosensor exhibited good performance with wide linear range and high specificity. - Abstract: A novel electrochemical strategy was designed for the detection of DNA based on the bionic catalysis of porphyrin. The detection probe was prepared via the assembly of thiolated double strand DNA (dsDNA) with gold nanoparticles (AuNPs), and then interacted with cationic iron (III) meso-tetrakis (N-methylphyridinum-4-yl) porphyrin (FeTMPyP) via groove binding along the dsDNA surface. The resulting nanocomplex was characterized with transmission electron microscopy, UV–vis absorption and circular dichroism spectroscopy. The FeTMPyP–DNA–AuNPs probe on gold electrode demonstrated the excellent electrocatalytic behaviors toward the reduction of O 2 due to the largely loading of FeTMPyP and good conductivity. Based on bionic catalysis of porphyrin for the reduction of O 2 , the resulting biosensor exhibited a good performance for the detection of DNA with a wide linear range from 1 × 10 −12 to 1 × 10 −8 mol L −1 and detection limit of 2.5 × 10 −13 mol L −1 at the signal/noise of 3. More importantly, the biosensor presented excellent ability to discriminate the perfectly complementary target and the mismatched stand. This strategy could be conveniently extended for detection of other biomolecules. To the best of our knowledge, this is the first application of bionic catalysis of porphyrin as detection probe and opens new opportunities for sensitive detection of biorecognition events.

  11. Carbon Nanotube Thread Electrochemical Cell: Detection of Heavy Metals.

    Science.gov (United States)

    Zhao, Daoli; Siebold, David; Alvarez, Noe T; Shanov, Vesselin N; Heineman, William R

    2017-09-19

    In this work, all three electrodes in an electrochemical cell were fabricated based on carbon nanotube (CNT) thread. CNT thread partially insulated with a thin polystyrene coating to define the microelectrode area was used as the working electrode; bare CNT thread was used as the auxiliary electrode; and a micro quasi-reference electrode was fabricated by electroplating CNT thread with Ag and then anodizing it in chloride solution to form a layer of AgCl. The Ag|AgCl coated CNT thread electrode provided a stable potential comparable to the conventional liquid-junction type Ag|AgCl reference electrode. The CNT thread auxiliary electrode provided a stable current, which is comparable to a Pt wire auxiliary electrode. This all-CNT thread three electrode cell has been evaluated as a microsensor for the simultaneous determination of trace levels of heavy metal ions by anodic stripping voltammetry (ASV). Hg 2+ , Cu 2+ , and Pb 2+ were used as a representative system for this study. The calculated detection limits (based on the 3σ method) with a 120 s deposition time are 1.05, 0.53, and 0.57 nM for Hg 2+ , Cu 2+ , and Pb 2+ , respectively. These electrodes significantly reduce the dimensions of the conventional three electrode electrochemical cell to the microscale.

  12. Thin film microelectrodes for electrochemical detection of neurotransmitters

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard

    An important signaling process in the nervous system is the release of chemical messengers called neurotransmitters from neurons. In this thesis alternative thin film electrode materials for applications targeting electrochemical detection of neurotransmitters in chip devices were evaluated...... and conductive polymer microelectrodes made of Pedot:Pss were also fabricated and used successfully to measure transmitter release from cells. The use of different thin film electrodes for low-noise amperometric measurements of single events of transmitter release from neuronal cells was studied....... For this application a very low current noise is needed together with a large temporal resolution. It was shown, that resistive and capacitive properties of thin film electrode materials are determining their usefulness in low-noise amperometric measurements. An analytical expression for the noise was derived...

  13. Microelectrode array fabrication for electrochemical detection with carbon nanotubes

    Science.gov (United States)

    Clark, James

    of one of the best sensitivity density values, compared to the available literature, for the electrochemical detection of dopamine (9.48 µA µM-1 mm-2). The functionalised CNT MEA then illustrated some selectivity compared to common interferents, i.e. ascorbic acid, of a higher concentration. Nonetheless, imaging of the MEA revealed CNTs were being removed from the electrode areas due to extensive use. Therefore, the final results chapter aimed to develop a novel fabrication route for CNT-based MEAs that produced improved CNT retention on the electrodes. This next-generation functionalised CNT-based MEA displayed improved CNT retention, whilst also producing competitive electrochemical impedance values at 1 kHz (17.8 kΩ) and excellent electrochemical selectivity for dopamine vs. ascorbic acid. Overall, this thesis demonstrates the potential for using MEAs as electrochemical detectors of biological molecules, specifically when using functionalised CNTs as the electrode material.

  14. Development of an Electrochemical Immunosensor for Fumonisins Detection in Foods

    Science.gov (United States)

    Kadir, Mohamad Kamal Abdul; Tothill, Ibtisam E.

    2010-01-01

    An electrochemical affinity sensor for the determination of fumonisins mycotoxins (Fms) using monoclonal antibody modified screen-printed gold electrode with carbon counter and silver-silver chloride pseudo-reference electrode is reported in this work. A direct competitive enzyme-linked immunosorbent assay (ELISA) was initially developed, exhibiting a detection limit of 100 µg·L-1 for fumonisins. This was then transferred to the surface of a bare gold screen-printed electrode (SPGE) and detection was performed by chronoamperometry, monitoring the reaction of 3,3’,5,5’-Tetramethylbenzidine dihydrochloride (TMB) and hydrogen peroxide (H2O2) catalysed by HRP at −100 mV potential vs. onboard Ag-AgCl pseudo-reference electrode. The immunosensor exhibited detection limit of 5 µg·L−1 fumonisins with a dynamic range from 1 µg·L−1–1000 µg·L−1. The sensor also performed well in extracted corn samples. PMID:22069591

  15. Integrating Electrochemical Detection with Centrifugal Microfluidics for Real-Time and Fully Automated Sample Testing

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga; Kwasny, Dorota; Amato, Letizia

    2015-01-01

    Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical experime......Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical...

  16. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    Science.gov (United States)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  17. Label-free electrochemical detection of singlet oxygen protein damage

    International Nuclear Information System (INIS)

    Vargová, Veronika; Giménez, Rodrigo E.; Černocká, Hana; Trujillo, Diana Chito; Tulli, Fiorella; Zanini, Verónica I. Paz; Paleček, Emil; Borsarelli, Claudio D.; Ostatná, Veronika

    2016-01-01

    Oxidative damage of proteins results in changes of their structures and functions. In this work, the singlet oxygen ( 1 O 2 )-mediated oxidation of bovine serum albumin (BSA) and urease by blue-light photosensitization of the tris(2,2′-bipyridine)ruthenium(II) cation [Ru(bpy) 3 ] 2+ was studied by square wave voltammetry at glassy carbon electrode and by constant current chronopotentiometry at mercury electrode. Small changes in voltammetric oxidation Tyr and Trp peaks did not indicate significant changes in the BSA structure after photo-oxidation at carbon electrode. On the other hand chronopotentiometric peak H of BSA at HMDE increased during blue-light photosensitization, indicating that photo-oxidized BSA was more susceptible to the electric field-induced denaturation than non-oxidized native BSA. Similar results were obtained for urease, where enzymatic activity was also evaluated. The present results show the capability of label- and reagent-free electrochemical methods to detect oxidative changes in proteins. We believe that these methods will become important tools for detection of various protein damages.

  18. Enzyme-less electrochemical displacement heterogeneous immunosensor for diclofenac detection.

    Science.gov (United States)

    Nguyen, T T K; Vu, T T; Anquetin, G; Tran, H V; Reisberg, S; Noël, V; Mattana, G; Nguyen, Q V; Dai Lam, Tran; Pham, M C; Piro, B

    2017-11-15

    We describe an electrochemical immunosensor based on functionalization of a working electrode by electrografting two functional diazonium salts. The first one is a molecular probe, diclofenac, coupled with an arylamine onto which a specific antibody is immobilized by affinity interactions; the second is a redox probe (a quinone) also coupled with an arylamine, able to transduce the hapten-antibody association into a change in electroactivity. The steric hindrance induced by the antibody leads to a current decrease upon binding of the antibody on the grafted molecular probe; conversely, when diclofenac is present in solution, a displacement equilibrium occurs between the target diffusing into the solution and the grafted probe. This leads to dissociation of the antibody from the electrode surface, event which is transduced into a current increase ("signal-on" detection). The detection limit is ca. 20 fM, corresponding to 6pgL -1 diclofenac, which is competitive compared to other label-free immunosensors. We demonstrate that the sensor is selective and is able to quantify diclofenac in tap water. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electrochemical detection of dopamine using water-soluble sulfonated graphene

    International Nuclear Information System (INIS)

    Li, Su-Juan; He, Jun-Zhi; Zhang, Meng-Jie; Zhang, Rong-Xia; Lv, Xia-Lei; Li, Shao-Hua; Pang, Huan

    2013-01-01

    Graphical abstract: DPV responses of dopamine (DA) at sulfonated graphene based glassy carbon electrode in the presence of ascorbic acid (AA) and uric acid (UA). The separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. -- Abstract: In the present study, a biosensor was prepared using the water-soluble sulfonated graphene with the aim of achieving the selective and sensitive determination of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA). The aromatic π–π stacking and electrostatic attraction between positively charged DA and negatively charged sulfonated graphene can accelerate the electron transfer whereas weakening AA and UA oxidation on the sulfonated graphene-modified electrode. Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize the successful synthesis of sulfonated graphene sheets. Differential pulse voltammetry was used for electrochemical detection, the separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. A broad linear range, low detection limit, along with good ability to suppress the background current from large excess ascorbic acid (AA) and uric acid (UA) were obtained. The as-prepared sulfonated graphene sheets exhibited superior performance over conventional negatively charged Nafion films, such as flexible film thickness, unique nanostructure, excellent anti-interference ability, high sensitivity and selectivity. The proposed method was used to detect DA in real hydrochloride injection sample, human urine and serum samples with satisfactory recovery results

  20. A PVC/polypyrrole sensor designed for beef taste detection using electrochemical methods and sensory evaluation.

    Science.gov (United States)

    Zhu, Lingtao; Wang, Xiaodan; Han, Yunxiu; Cai, Yingming; Jin, Jiahui; Wang, Hongmei; Xu, Liping; Wu, Ruijia

    2018-03-01

    An electrochemical sensor for detection of beef taste was designed in this study. This sensor was based on the structure of polyvinyl chloride/polypyrrole (PVC/PPy), which was polymerized onto the surface of a platinum (Pt) electrode to form a Pt-PPy-PVC film. Detecting by electrochemical methods, the sensor was well characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor was applied to detect 10 rib-eye beef samples and the accuracy of the new sensor was validated by sensory evaluation and ion sensor detection. Several cluster analysis methods were used in the study to distinguish the beef samples. According to the obtained results, the designed sensor showed a high degree of association of electrochemical detection and sensory evaluation, which proved a fast and precise sensor for beef taste detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Determination of pertechnetate by liquid chromatography with reductive electrochemical detection

    International Nuclear Information System (INIS)

    Lewis, J.Y.; Zodda, J.P.; Deutsch, E.; Heineman, W.R.

    1983-01-01

    A method utilizing liquid chromatography with electrochemical detection has been developed for the determination of total TcO 4 - (/sup 99m/TcO 4 - and /sup 99m/TcO 4 - ) in 99 Mo//sup 99m/Tc generator eluents. Pertechnetate, which is the starting material for the preparation of many diagnostic radiopharmaceuticals, is generally present in these eluents in the concentration range of 5 X 10 -8 M to 5 X 10 -6 M. No sample pretreatment is necessary since impurities and other components are separated by the high-pressure liquid chromatography (HPLC) NH 2 -bonded column. By use of both static mercury drop (SMDE) and solid electrode detectors, in conjuction with rigorous deoxygenation procedures, total TcO 4 - in generator eluents is readily determined. A severe electrode fouling phenomenon limits the use of solid electrode detectors to TcO 4 - concentrations less than 10 -7 M, the working range for a carbon electrode being 8.5 X 10 -9 to 1.0 X 10 -7 M. The working range for the SMDE is 2.1 X 10 -8 to 1.0 X 10 -4 M TcO 4 -

  2. Selective Electrochemical Detection of Epinephrine Using Gold Nanoporous Film

    Directory of Open Access Journals (Sweden)

    Dina M. Fouad

    2016-01-01

    Full Text Available Epinephrine (EP is one of the important catecholamine neurotransmitters that play an important role in the mammalian central nervous system. Therefore, it is necessary to determine the change of its concentrations. Nanoporous materials have wide applications that include catalysis, energy storages, environmental pollution control, wastewater treatment, and sensing applications. These unique properties could be attributable to their high surface area, a large pore volume, and uniform pore sizes. A gold nanoporous layer modified gold electrode was prepared and applied for the selective determination of epinephrine neurotransmitter at low concentration in the presence of several other substances including ascorbic acid (AA and uric acid (UA. The constructed electrode was characterized using scanning electron microscopy and cyclic voltammetry. The resulting electrode showed a selective detection of epinephrine with the interferences of dopamine and uric acid over a wide linear range (from 50 μM to 1 mM. The coverage of gold nanoporous on the surface of gold electrode represents a promising electrochemical sensor with high selectivity and sensitivity.

  3. Electrochemical Oxidation and Detection of Sodium Urate in ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    3 Delft University of Technology, 2600 GA Delft, The Netherlands. ABSTRACT: ... both sodium urate and mixture of urate and tartrate as a cumulative response, in alkaline media, the target ..... electrochemical oxygen demand (EOD) using a.

  4. Recent advances in electrochemical detection of important sulfhydryl-containing compounds

    Czech Academy of Sciences Publication Activity Database

    Zlámalová, Magda; Nesměrák, K.

    2016-01-01

    Roč. 147, č. 8 (2016), s. 1331-1338 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : electrochemistry * electrochemical detection * thiol Subject RIV: CG - Electrochemistry Impact factor: 1.282, year: 2016

  5. Development of electrochemical impedance spectroscopy based sensing system for DEHP detection

    KAUST Repository

    Zia, Asif I.; Mohd. Syaifudin, A. R.; Mukhopadhyay, Subhas Chandra; Al-Bahadly, Ibrahim H.; Yu, Paklam; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2011-01-01

    This research work presents a real time and non invasive technique to detect Di(2-ethylhexyl) phthalate (DEHP)content in purified water and quantify its concentration by Electrochemical Impedance Spectroscopy(E.I.S.). Planar Inter-digital capacitive

  6. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.

    Science.gov (United States)

    Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng

    2018-05-23

    Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.

  7. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy

    OpenAIRE

    Dionisia Ortiz-Aguayo; Manel del Valle

    2018-01-01

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)6]3−/[Fe(CN)6]4− as redox probe. Afte...

  8. In-channel electrochemical detection in the middle of microchannel under high electric field.

    Science.gov (United States)

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  9. Pre-treatment technology for electrochemical detection of heavy metal lead and cadmium in food

    Directory of Open Access Journals (Sweden)

    Ke YAN

    2015-04-01

    Full Text Available Wet digestion is used as the pre-treatment technology for the electrochemical detection of heavy metals in food, and the complete wet digestion condition of food sample is optimized by electrochemical experiments. The results show that the experimental samples can be digested completely using the Nitric acid-hydrogen peroxide system and is not pre-digested after adding 10 mL nitric acid at 120~140 ℃ and adding 10~15 mL of hydrogen peroxide during the heating process. The correlation coefficient of electrochemical detect is 0.99 for digestion solution of the samples, and the recovery of standard addition is 82%~115%. Wet digestion as a pre-treatment technology of food samples. It can digest sample fully and meet the requirements of electrochemical detection.

  10. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Development of an electrochemical DNA biosensor for detection of ...

    Indian Academy of Sciences (India)

    2.4 million of deaths.1,2 Southern hybridization tech- niques, radiographic .... Electrochemical DNA sensors can be greatly affected .... 3.5 Diagnostic performance of the biosensor ... Silva M M S, Cavalcanti I T, Barroso M F, Sales M G F.

  12. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  13. A compact multifunctional microfluidic platform for exploring cellular dynamics in real-time using electrochemical detection

    DEFF Research Database (Denmark)

    Zor, Kinga; Heiskanen, Arto; Caviglia, Claudia

    2014-01-01

    and electrochemical analysis platform with in-built fluid handling and detection, enabling complete cell based assays comprising on-line electrode cleaning, sterilization, surface functionalization, cell seeding, cultivation and electrochemical real-time monitoring of cellular dynamics. To demonstrate the versatility...... capability. The here presented platform is aimed at applications utilizing cell based assays, ranging from e.g. monitoring of drug effects in pharmacological studies, characterization of neural stem cell differentiation, and screening of genetically modified microorganisms to environmental monitoring....

  14. Extraordinary tunable dynamic range of electrochemical aptasensor for accurate detection of ochratoxin A in food samples

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    2017-06-01

    Full Text Available We report the design of a sensitive, electrochemical aptasensor for detection of ochratoxin A (OTA with an extraordinary tunable dynamic sensing range. This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement. The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system. Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10−8 to 102 ng/g. Of great significance, the signal response in all OTA concentration ranges is at the same current scale, demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification. Finally, OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions. This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.

  15. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity.

    Science.gov (United States)

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo

    2015-07-02

    Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)₄ ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  16. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    Directory of Open Access Journals (Sweden)

    Md. Abdul Kafi

    2015-07-01

    Full Text Available Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C, C(RGD4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot or three dimensional (rod or pillar like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD, graphene oxide (GO and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  17. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip.

    Science.gov (United States)

    Karuwan, Chanpen; Sukthang, Kreeta; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Patthanasettakul, Viyapol; Wechsatol, Wishsanuruk; Tuantranont, Adisorn

    2011-06-15

    In this work, the use of three-electrode electrochemical sensing system with an electrowetting-on-dielectric (EWOD) digital microfluidic device is reported for quantitative analysis of iodide. T-junction EWOD mixer device was designed using arrays of 50-μm spaced square electrodes for mixing buffer reagent and analyte droplets. For fabrication of EWOD chips, 5-μm thick silver EWOD electrodes were formed on a glass substrate by means of sputtering and lift-off process. PDMS and Teflon thin films were then coated on the electrodes by spin coating to yield hydrophobic surface. An external three-electrode system consisting of Au working, Ag reference and Pt auxiliary wires were installed over EWOD electrodes at the end of T-junction mixer. In experiment, a few-microliter droplets of Tris buffer and iodide solutions were moved toward the mixing junction and transported toward electrochemical electrodes by EWOD process. A short processing time within seconds was achieved at EWOD applied voltage of 300V. The analyte droplets mixed with different concentrations were successfully analyzed by cyclic voltametry. Therefore, the combination of EWOD digital microfluidic and electrochemical sensing system has successfully been demonstrated for rapid chemical analysis with minimal reagent consumption. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Loke, Weng Keong; Nguyen, Nam-Trung

    2014-01-01

    This paper reports a lab-on-a-chip for the detection of Sarin nerve agent based on rapid electrochemical detection. The chemical warfare agent Sarin (C4H10FO2P, O-isopropyl methylphosphonofluoridate) is a highly toxic organophosphate that induces rapid respiratory depression, seizures and death...

  19. Electrochemical DNA sandwich assay with a lipase label for attomole detection of DNA

    DEFF Research Database (Denmark)

    Ferapontova, Elena; Hansen, Majken Nørgaard; Saunders, Aaron Marc

    2010-01-01

    A fast and sensitive electrochemical lipase-based sandwich hybridization assay for detection of attomole levels of DNA has been developed. A combination of magnetic beads, used for pre-concentration and bioseparation of the analyte with a lipase catalyst label allowed detection of DNA with a limi...

  20. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review

    Directory of Open Access Journals (Sweden)

    Jahwarhar Izuan Abdul Rashid

    2017-11-01

    Full Text Available In recent years, electrochemical deoxyribonucleic acid (DNA sensor has recently emerged as promising alternative clinical diagnostic devices especially for infectious disease by exploiting DNA recognition events and converting them into an electrochemical signal. This is because the existing DNA diagnostic method possesses certain drawbacks such as time-consuming, expensive, laborious, low selectivity and sensitivity. DNA immobilization strategies and mechanism of electrochemical detection are two the most important aspects that should be considered before developing highly selective and sensitive electrochemical DNA sensor. Here, we focus on some recent strategies for DNA probes immobilization on the surface of electrochemical transducer such as adsorption, covalent bonding and Avidin/Streptavidin-Biotin interaction on the electrode surface for specific interaction with its complementary DNA target. A numerous approach for DNA hybridization detection based electrochemical technique that frequently used including direct DNA electrochemical detection and label based electrochemical (redox-active indicator, enzyme label and nanoparticles were also discussed in aiming to provide general guide for the design of electrochemical DNA sensor. We also discussed the challenges and suggestions to improve the application of electrochemical DNA sensor at point-care setting. Keywords: Electrochemical DNA sensor, DNA immobilization, DNA hybridization, Electrochemical mechanism

  1. Interference-Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles

    OpenAIRE

    Saha, Suparna; Sarkar, Priyabrata; Turner, Anthony

    2014-01-01

    This paper presents a new approach to detect dopamine in nanomolar range using an electrochemical sensor utilizing a composite made of chitosan-stabilized silver nanoparticles and p-toluene sulfonic acid-doped ultrathin polypyrrole film. Studies included cyclic voltammogram, amperometry, differential pulse voltammetry and also investigation by electrochemical impedance spectroscopy. A detection limit of 0.58 nM was achieved in the linear range 1 x 10(-9) M to 1.2 x 10(-7) M. High sensitivity ...

  2. Development of Electrochemical Biosensors for Ultrasensitive Detection of Bacteria in the Environment

    DEFF Research Database (Denmark)

    Fapyane, Deby

    2018-01-01

    to those conventional methods, are intensively studied. Biosensor technology is one of the strategies for rapid monitoring of pathogens such as bacteria, virus, and parasites in the environment. Among them, the electrochemical biosensor offers simple, rapid, cost-effective and possibility...... for ultrasensitive detection of bacterial cells, DNA and rRNA. Several key operational parameters were assessed such as the optimization of probe design and labeling molecules. Here, more specifically we used two novel labels for the development of the electrochemical biosensor for bacteria detection; cellulase...

  3. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles.

    Science.gov (United States)

    Gandouzi, Islem; Tertis, Mihaela; Cernat, Andreea; Bakhrouf, Amina; Coros, Maria; Pruneanu, Stela; Cristea, Cecilia

    2018-04-01

    The design and development of an electrochemical sensor for the sensitive and selective determination of pyoverdine, a virulence factor secreted by Pseudomonas aeruginosa, bacteria involved in nosocomial infections is presented in this work. The presence of pyoverdine in water and body fluids samples can be directly linked to the presence of the Pseudomonas bacteria, thus being a nontoxic and low cost marker for the detection of water pollution as well as for the biological contamination of other media. The sensor was elaborated using layer-by-layer technique for the deposition of a graphene‑gold nanoparticles composite film on the graphite-based screen printed electrode, from aqueous suspension. Under optimal conditions, the electrochemical signal corresponding to the pyoverdine oxidation process was proportional to its concentration, showing a wide linear range from 1 to 100μmolL -1 and a detection limit of 0.33μmolL -1 . This sensor discriminate with satisfactory recoveries the target analyte in different real matrices and also exhibited low response to other interfering species, proving that this technique is promising for medical and environmental applications. In addition, the proposed nanocomposite platform presented good reproducibility, high and long term stability, the sensitivity for pyoverdine remain unchanged after being stored at 4°C for four weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2006-01-01

    A novel and sensitive electrochemical DNA biosensor based on electrochemically fabricated polyaniline nanowire and methylene blue for DNA hybridization detection is presented. Nanowires of conducting polymers were directly synthesized through a three-step electrochemical deposition procedure in an aniline-containing electrolyte solution, by using the glassy carbon electrode (GCE) as the working electrode. The morphology of the polyaniline films was examined using a field emission scanning electron microscope (SEM). The diameters of the nanowires range from 80 to 100 nm. The polyaniline nanowires-coated electrode exhibited very good electrochemical conductivity. Oligonucleotides with phosphate groups at the 5' end were covalently linked onto the amino groups of polyaniline nanowires on the electrode. The hybridization events were monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The approach described here can effectively discriminate complementary from non-complementary DNA sequence, with a detection limit of 1.0 x 10 -12 mol l -1 of complementary target, suggesting that the polyaniline nanowires hold great promises for sensitive electrochemical biosensor applications

  5. Automated electrochemical detection of iron ions in erythrocytes from melim minipigs suffering from melanoma

    Czech Academy of Sciences Publication Activity Database

    Kremplová, M.; Krejcová, l.; Hynek, D.; Barath, P.; Majzlík, P.; Horák, Vratislav; Adam, V.; Sochor, J.; Cernei, N.; Hubálek, J.; Vrba, R.; Kižek, R.

    2012-01-01

    Roč. 7, č. 7 (2012), s. 5893-5909 ISSN 1452-3981 Institutional research plan: CEZ:AV0Z50450515 Keywords : Automation * Biological sample * Electrochemical detection Subject RIV: CG - Electrochemistry Impact factor: 3.729, year: 2011

  6. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    Science.gov (United States)

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples

    Czech Academy of Sciences Publication Activity Database

    Campuzano, S.; Kuralay, F.; Lobo-Castanón, M.J.; Bartošík, Martin; Vyavahare, K.; Paleček, Emil; Haake, D.A.; Wang, J.

    2011-01-01

    Roč. 26, č. 8 (2011), s. 3577-3583 ISSN 0956-5663 R&D Projects: GA MŠk(CZ) ME09038 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : electrochemical detection * DNA hybridization * self-assembled monolayer Subject RIV: BO - Biophysics Impact factor: 5.602, year: 2011

  8. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine; Poulsen, Claus R.; Jain, Titoo

    2011-01-01

    The demand in the field of medical diagnostics for simple, cost efficient and disposable devices is growing. Here, we present a label free, all-polymer electrochemical biosensor for detection of acute viral disease. The dynamics of a viral infection in human cell culture was investigated in a mic...

  9. Preparation of Electrochemical Biosensor for Detection of Organophosphorus Pesticides

    Directory of Open Access Journals (Sweden)

    Ashish Gothwal

    2014-01-01

    Full Text Available Polyvinyl chloride (PVC can be used to develop reaction beaker which acts as electrochemical cell for the measurement of OP pesticides. Being chemically inert, corrosion resistant, and easy in molding to various shapes and size, PVC can be used for the immobilization of enzyme. Organophosphorus hydrolase was immobilized covalently onto the chemically activated inner surface of PVC beaker by using glutaraldehyde as a coupling agent. The carbon nanotubes paste working electrode was constructed for amperometric measurement at a potential of +0.8 V. The biosensor showed optimum response at pH 8.0 with incubation temperature of 40°C. Km and Imax for substrate (methyl parathion were 322.58 µM and 1.1 µA, respectively. Evaluation study showed a correlation of 0.985, which was in agreement with the standard method. The OPH biosensor lost 50% of its initial activity after its regular use for 25 times over a period of 50 days when stored in 0.1 M sodium phosphate buffer, pH 8.0 at 4°C. No interference was observed by interfering species.

  10. Electrochemical Immunoassay Using Open Circuit Potential Detection Labeled by Platinum Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kanokwan Charoenkitamorn

    2018-02-01

    Full Text Available In this work, a simple electrochemical immunoassay based on platinum nanoparticles (PtNPs using open circuit potential (OCP detection was developed. The detection of human chorionic gonadotropin hormone (hCG as a model analyte, was demonstrated by direct electrical detection of PtNPs in hydrazine solution using OCP measurement without any application of either potential or current to the system. Disposable screen-printed carbon electrodes (SPCEs were utilized for the development of our immunosensor, which required a sample volume as small as 2 μL. After preparation of a sandwich-type immunosystem, hydrazine solution was dropped on the electrode’s surface, which was followed immediately by electrical detection using OCP. The change of the OCP signal originated from electrocatalytic oxidation of the hydrazine on PtNPs. Under the optimal conditions of a pH of 6.0 and a hydrazine concentration of 1 mM, a detection limit of 0.28 ng mL−1 and a linearity of 0–10 ng mL−1 were obtained. The PtNP-based OCP method is a simpler electrochemical detection procedure than those obtained from other electrochemical methods and has an acceptable sensitivity and reproducibility. The simplicity of the detection procedure and the cost-effectiveness of the disposable SPCE illustrate the attractive benefits of this sensor. Moreover, it could be applied to a simplified and miniaturized diagnostic system with minimal user manipulation.

  11. Detection of radiation-induced changes in electrochemical properties of austenitic stainless steels using miniaturized specimens and the single-loop electrochemical potentiokinetic reactivation method

    International Nuclear Information System (INIS)

    Inazumi, T.; Bell, G.E.C.; Kenik, E.A.; Kiuchi, K.

    1993-01-01

    Single-loop electrochemical potentiokinetic reactivation testing of miniaturized (TEM) specimens can provide reliable data comparable to data obtained with larger specimens. Significant changes in electrochemical properties (increased reactivation current and Flade potential) were detected for PCA and type 316 stainless steels irradiated at 200--420 degrees C up to 7--9 dpa. Irradiations in the FFTF Materials Open Test Assembly and in the Oak Ridge Research Reactor are reported on. 45 figs., 5 tabs., 52 refs

  12. Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants.

    Science.gov (United States)

    Hernandez-Vargas, Gustavo; Sosa-Hernández, Juan Eduardo; Saldarriaga-Hernandez, Sara; Villalba-Rodríguez, Angel M; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2018-03-24

    The increasing environmental pollution with particular reference to emerging contaminants, toxic heavy elements, and other hazardous agents is a serious concern worldwide. Considering this global issue, there is an urgent need to design and develop strategic measuring techniques with higher efficacy and precision to detect a broader spectrum of numerous contaminants. The development of precise instruments can further help in real-time and in-process monitoring of the generation and release of environmental pollutants from different industrial sectors. Moreover, real-time monitoring can also reduce the excessive consumption of several harsh chemicals and reagents with an added advantage of on-site determination of contaminant composition prior to discharge into the environment. With key scientific advances, electrochemical biosensors have gained considerable attention to solve this problem. Electrochemical biosensors can be an excellent fit as an analytical tool for monitoring programs to implement legislation. Herein, we reviewed the current trends in the use of electrochemical biosensors as novel tools to detect various contaminant types including toxic heavy elements. A particular emphasis was given to screen-printed electrodes, nanowire sensors, and paper-based biosensors and their role in the pollution detection processes. Towards the end, the work is wrapped up with concluding remarks and future perspectives. In summary, electrochemical biosensors and related areas such as bioelectronics, and (bio)-nanotechnology seem to be growing areas that will have a marked influence on the development of new bio-sensing strategies in future studies.

  13. Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants

    Directory of Open Access Journals (Sweden)

    Gustavo Hernandez-Vargas

    2018-03-01

    Full Text Available The increasing environmental pollution with particular reference to emerging contaminants, toxic heavy elements, and other hazardous agents is a serious concern worldwide. Considering this global issue, there is an urgent need to design and develop strategic measuring techniques with higher efficacy and precision to detect a broader spectrum of numerous contaminants. The development of precise instruments can further help in real-time and in-process monitoring of the generation and release of environmental pollutants from different industrial sectors. Moreover, real-time monitoring can also reduce the excessive consumption of several harsh chemicals and reagents with an added advantage of on-site determination of contaminant composition prior to discharge into the environment. With key scientific advances, electrochemical biosensors have gained considerable attention to solve this problem. Electrochemical biosensors can be an excellent fit as an analytical tool for monitoring programs to implement legislation. Herein, we reviewed the current trends in the use of electrochemical biosensors as novel tools to detect various contaminant types including toxic heavy elements. A particular emphasis was given to screen-printed electrodes, nanowire sensors, and paper-based biosensors and their role in the pollution detection processes. Towards the end, the work is wrapped up with concluding remarks and future perspectives. In summary, electrochemical biosensors and related areas such as bioelectronics, and (bio-nanotechnology seem to be growing areas that will have a marked influence on the development of new bio-sensing strategies in future studies.

  14. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    Science.gov (United States)

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides.

    Science.gov (United States)

    Wang, Yonglan; Jin, Jun; Yuan, Caixia; Zhang, Fan; Ma, Linlin; Qin, Dongdong; Shan, Duoliang; Lu, Xiaoquan

    2015-01-21

    A simple and mild strategy was proposed to develop a novel electrochemical sensor based on zirconia/ordered macroporous polyaniline (ZrO2/OMP) and further used for the detection of methyl parathion (MP), one of the organophosphate pesticides (OPPs). Due to the strong affinity of phosphate groups with ZrO2 and the advantages of OMP such as high catalytic activity and good conductivity, the developed sensor showed a limit of detection as low as 2.28 × 10(-10) mol L(-1) (S/N = 3) by square-wave voltammograms, and good selectivity, acceptable reproducibility and stability. Most importantly, this novel sensor was successfully applied to detect MP in real samples of apple and cabbage. It is expected that this method has potential applications in electrochemical sensing platforms with simple, sensitive, selective and fast analysis.

  16. A Nanocoaxial-Based Electrochemical Sensor for the Detection of Cholera Toxin

    Science.gov (United States)

    Archibald, Michelle; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.; Biology; Physics Collaboration

    We report a nanocoax-based electrochemical sensor for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). The device architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. Proof-of-concept was demonstrated for the detection of cholera toxin (CT), with a linear dynamic range of detection was 10 ng/ml - 1 µg/ml, and a limit of detection (LOD) of 2 ng/ml. This level of sensitivity is comparable to the standard optical ELISA used widely in clinical applications. The nanocoax array thus matches the detection profile of the standard ELISA while providing a simple electrochemical readout and a miniaturized platform with multiplexing capabilities, toward point-of-care (POC) implementation. In addition, next generation nanocoax devices with extended cores are currently under development, which would provide a POC platform amenable for biofunctionalization of ELISA receptor proteins directly onto the device. This work was supported by the National Institutes of Health (National Cancer Institute Award No. CA137681 and National Institute of Allergy and Infectious Diseases Award No. AI100216).

  17. Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen

    Directory of Open Access Journals (Sweden)

    Om Parkash

    2014-11-01

    Full Text Available An electrochemical immunosensor modified with the streptavidin/biotin system on screen printed carbon electrodes (SPCEs for the detection of the dengue NS1 antigen was developed in this study. Monoclonal anti-NS1 capture antibody was immobilized on streptavidin-modified SPCEs to increase the sensitivity of the assay. Subsequently, a direct sandwich enzyme linked immunosorbent assay (ELISA format was developed and optimized. An anti-NS1 detection antibody conjugated with horseradish peroxidase enzyme (HRP and 3,3,5,5'-tetramethybezidine dihydrochloride (TMB/H2O2 was used as an enzyme mediator. Electrochemical detection was conducted using the chronoamperometric technique, and electrochemical responses were generated at −200 mV reduction potential. The calibration curve of the immunosensor showed a linear response between 0.5 µg/mL and 2 µg/mL and a detection limit of 0.03 µg/mL. Incorporation of a streptavidin/biotin system resulted in a well-oriented antibody immobilization of the capture antibody and consequently enhanced the sensitivity of the assay. In conclusion, this immunosensor is a promising technology for the rapid and convenient detection of acute dengue infection in real serum samples.

  18. A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants.

    Science.gov (United States)

    Andrei, Veronica; Sharpe, Erica; Vasilescu, Alina; Andreescu, Silvana

    2016-08-15

    We report the development and characterization of a disposable single use electrochemical sensor based on the oxidase-like activity of nanoceria particles for the detection of phenolic antioxidants. The use of nanoceria in the sensor design enables oxidation of phenolic compounds, particularly those with ortho-dihydroxybenzene functionality, to their corresponding quinones at the surface of a screen printed carbon electrode. Detection is carried out by electrochemical reduction of the resulting quinone at a low applied potential of -0.1V vs the Ag/AgCl electrode. The sensor was optimized and characterized with respect to particle loading, applied potential, response time, detection limit, linear concentration range and sensitivity. The method enabled rapid detection of common phenolic antioxidants including caffeic acid, gallic acid and quercetin in the µM concentration range, and demonstrated good functionality for the analysis of antioxidant content in several wine samples. The intrinsic oxidase-like activity of nanoceria shows promise as a robust tool for sensitive and cost effective analysis of antioxidants using electrochemical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    Science.gov (United States)

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. Copyright © 2016. Published by Elsevier B.V.

  20. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    Directory of Open Access Journals (Sweden)

    Ming Dong

    2017-11-01

    Full Text Available Sulfur hexafluoride (SF6 gas-insulated electrical equipment is widely used in high-voltage (HV and extra-high-voltage (EHV power systems. Partial discharge (PD and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF6 decomposition products, and electrochemical sensing (ES and infrared (IR spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF6 gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF6 decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF6 gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  1. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    Science.gov (United States)

    Dong, Ming; Ren, Ming; Ye, Rixin

    2017-01-01

    Sulfur hexafluoride (SF6) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF6 decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF6 gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF6 decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF6 gas decomposition and is verified to reliably and accurately detect the gas components and concentrations. PMID:29140268

  2. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.

    Science.gov (United States)

    Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent

    2017-10-15

    Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.

    Science.gov (United States)

    Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J

    2017-01-01

    Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

  4. Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method.

    Science.gov (United States)

    Li, Ying; Liu, Bangwei; Li, Xia; Wei, Qingli

    2010-07-15

    In the present study, an electrochemical method for highly sensitive detection of human telomerase activity was developed based on bio-barcode amplification assay. Telomerase was extracted from HeLa cells, then the extract was mixed with telomerase substrate (TS) primer to perform extension reaction. The extension product was hybridized with the capture DNA immobilized on the Au electrode and then reacted with the signal DNA on Au nanoparticles to form a sandwich hybridization mode. Electrochemical signals were generated by chronocoulometric interrogation of [Ru(NH(3))(6)](3+) that quantitatively binds to the DNA on Au nanoparticles via electrostatic interaction. This method can detect the telomerase activity from as little as 10 cultured cancer cells without the polymerase chain reaction (PCR) amplification of telomerase extension product. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. A graphene-based electrochemical sensor for sensitive detection of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-15

    An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptive capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.

  6. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    OpenAIRE

    Rheaume, Jonathan Michael

    2010-01-01

    Solid state electrochemical sensors that measure nitrogen oxides (NOx) in lean exhaust have been investigated in order to help meet future on-board diagnostic (OBD) regulations for diesel vehicles. This impedancemetric detection technology consists of a planar, single cell sensor design with various sensing electrode materials and yttria-stabilized zirconia (YSZ) as the electrolyte. No reference to ambient air is required. An impedance analysis method yields a signal that is proportional to t...

  7. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection.

    Science.gov (United States)

    Wang, Yuedan; Zhou, Zhou; Qing, Xing; Zhong, Weibing; Liu, Qiongzhen; Wang, Wenwen; Li, Mufang; Liu, Ke; Wang, Dong

    2016-08-01

    Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 10(4) and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated. It exhibited that the transfer curve of FECTs shifted to lower gate voltage with increasing cations concentration, the sensitivity reached to 446 μA/dec in the 10(-5)-10(-2) M Pb(2+) concentration range. The ion selective properties of the FECTs have also been systematically studied for the detection of potassium, calcium, aluminum, and lead ions. The devices with different cations showed great difference in response curves. It was suitable for selectively monitoring Pb(2+) with respect to other cations. The results indicated FECTs were very effective for electrochemical sensing of lead ion, which opened a promising perspective for wearable electronics in healthcare and biological application. Graphical Abstract The schematic diagram of fiber organic electrochemical transistors based on polypyrrole and nanofibers for ion sensing.

  8. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection.

    Science.gov (United States)

    Oh, Seung Yun; Hong, Soo Yeong; Jeong, Yu Ra; Yun, Junyeong; Park, Heun; Jin, Sang Woo; Lee, Geumbee; Oh, Ju Hyun; Lee, Hanchan; Lee, Sang-Soo; Ha, Jeong Sook

    2018-04-25

    As part of increased efforts to develop wearable healthcare devices for monitoring and managing physiological and metabolic information, stretchable electrochemical sweat sensors have been investigated. In this study, we report on the fabrication of a stretchable and skin-attachable electrochemical sensor for detecting glucose and pH in sweat. A patterned stretchable electrode was fabricated via layer-by-layer deposition of carbon nanotubes (CNTs) on top of patterned Au nanosheets (AuNS) prepared by filtration onto stretchable substrate. For the detection of glucose and pH, CoWO 4 /CNT and polyaniline/CNT nanocomposites were coated onto the CNT-AuNS electrodes, respectively. A reference electrode was prepared via chlorination of silver nanowires. Encapsulation of the stretchable sensor with sticky silbione led to a skin-attachable sweat sensor. Our sensor showed high performance with sensitivities of 10.89 μA mM -1 cm -2 and 71.44 mV pH -1 for glucose and pH, respectively, with mechanical stability up to 30% stretching and air stability for 10 days. The sensor also showed good adhesion even to wet skin, allowing the detection of glucose and pH in sweat from running while being attached onto the skin. This work suggests the application of our stretchable and skin-attachable electrochemical sensor to health management as a high-performance healthcare wearable device.

  9. Highly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of Glyphosate

    Directory of Open Access Journals (Sweden)

    Zouhour Mazouz

    2017-11-01

    Full Text Available There is a global debate and concern about the use of glyphosate (Gly as an herbicide. New toxicological studies will determine its use in the future under new strict conditions or its replacement by alternative synthetic or natural herbicides. In this context, we designed biomimetic polymer sensing layers for the selective molecular recognition of Gly. Towards this end, complementary surface acoustic wave (SAW and electrochemical sensors were functionalized with polypyrrole (PPy-imprinted polymer for the selective detection of Gly. Their corresponding limits of detection were on the order of 1 pM, which are among the lowest values ever reported in literature. The relevant dissociation constants between PPy and Gly were estimated at [Kd1 = (0.7 ± 0.3 pM and Kd2 = (1.6 ± 1.4 µM] and [Kd1 = (2.4 ± 0.9 pM and Kd2 = (0.3 ± 0.1 µM] for electrochemical and gravimetric measurements, respectively. Quantum chemical calculations permitted to estimate the interaction energy between Gly and PPy film: ΔE = −145 kJ/mol. Selectivity and competitivity tests were investigated with the most common pesticides. This work conclusively shows that gravimetric and electrochemical results indicate that both MIP-based sensors are perfectly able to detect and distinguish glyphosate without any ambiguity.

  10. Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Donglai; Hu, Bin; Kang, Mengmeng [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Wang, Minghua [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); He, Linghao [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Zhang, Zhihong, E-mail: mainzhh@163.com [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); Fang, Shaoming, E-mail: mingfang@zzuli.edu.cn [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China)

    2016-12-30

    Highlights: • An electrochemical sensor based on gold nanoparticles modified with rhodamine B hydrazide (AuNPs-RBH) was developed. • The sensor was applied in the highly sensitive and selective detection of Cu{sup 2+} in water. • The electrochemical sensor displays excellent regeneration, stability, and practicability for Cu{sup 2+} detection. • EIS was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. - Abstract: An electrochemical sensor based on gold nanoparticles (Au NPs) modified with rhodamine B hydrazide (RBH) (AuNPs-RBH) was developed and applied in the highly sensitive and selective detection of Cu{sup 2+} in water. RBH molecules were bounded onto the surface of AuNPs via the strong interaction between the amino groups and Au NPs. The chemical structure variations were characterized by X-ray photoelectron spectroscopy and fluoresence spectroscopy. Additionally, electrochemical impedance spectroscopy was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. Results show that the fabricated sensor exhibits good electrochemical performance because of the presence of Au NPs and high affinity with the Cu{sup 2+} resulting from the strong coordination chemistry between Cu{sup 2+} and RBH. The as-developed sensor towards detecting Cu{sup 2+} has a detection limitation of 12.5 fM within the concentration range of 0.1 pM–1 nM by using the electrochemical impedance technique. It also displays excellent selectivity, regeneration, stability, and practicability for Cu{sup 2+} detection. Therefore, the new strategy of the RBH-based electrochemical sensor exhibits great potential application in environment treatment and protection.

  11. Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection.

    Science.gov (United States)

    Descamps, Emeline; Duroure, Nathalie; Deiss, Frédérique; Leichlé, Thierry; Adam, Catherine; Mailley, Pascal; Aït-Ikhlef, Ali; Livache, Thierry; Nicu, Liviu; Sojic, Neso

    2013-08-07

    Optical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated. Finally, remote fluorescence detection was performed by imaging through the optical fiber bundle itself after hybridisation with the complementary sequence.

  12. An Electrochemical Sensor Based on Novel Ion Imprinted Polymeric Nanoparticles for Selective Detection of Lead Ions

    Directory of Open Access Journals (Sweden)

    Masoud Ghanei-Motlagh

    1999-11-01

    Full Text Available In this study, the novel surface ion-imprinted polymer (IIP particles were prepared and applied as a electrode modifier in stripping voltammetric detection of lead(II ion. A carbon paste electrode (CPE modified with IIP nanoparticles and multi-walled carbon nanotubes (MWCNTs was used for accumulation of toxic lead ions. Various factors that govern on electrochemical signals including carbon paste composition, pH of the preconcentration solution, supporting electrolyte, stirring time, reduction potential and time were studied in detail. The best electrochemical response for Pb(II ions was obtained with a paste composition of 7% (w/w of lead IIP, 10% MWCNTs, 53% (w/w of graphite powder and 30% (w/w of paraffin oil using a solution of 0.1 mol L-1 acetat buffer solution (pH=4.5 with a extraction time of 15 min. A sensitive response for Pb(II ions in the concentration range of 3 to 55 µg L-1 was achived. The proposed electrochemical sensor showed low detection limit (0.5 µg L-1, remarkable selectivity and good reproducibility (RSD = 3.1%. Determination of lead(II content in different environmental water samples was also realized adopting graphite furnace atomic absorptions spectrometry (GF-AAS and the obtained results were satisfactory.

  13. Sensitive Electrochemical Detection of Dopamine With a Nitrogen-doped Graphene Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Wencheng Wang

    2016-09-01

    Full Text Available In this paper nitrogen-doped graphene (NG nanosheets were used as the modifier on the surface of glassy carbon electrode (GCE. The modified electrode (NG/GCE was further applied to the sensitive detection of dopamine (DA by voltammetric method. Due to the unique properties of NG such as large surface area and excellent electrocatalytic activity, electrochemical response of DA was greatly enhanced on NG/GCE with a pair of well-defined redox peaks appeared on cyclic voltammogram. Electrochemical behaviors of DA on NG/GCE were carefully investigated with the electrochemical parameters calculated. Under the selected conditions the oxidation peak currents of DA had a good linear relationship with its concentration in the range from 8.0×10–7 mol L–1 to 8.0×10–4 mol L–1 with a detection limit of 2.55×10–7 mol L–1 (3σ. The proposed method was further applied to the DA injection samples determination with satisfactory results. This work is licensed under a Creative Commons Attribution 4.0 International License.

  14. Combining Electrochemical Sensors with Miniaturized Sample Preparation for Rapid Detection in Clinical Samples

    Science.gov (United States)

    Bunyakul, Natinan; Baeumner, Antje J.

    2015-01-01

    Clinical analyses benefit world-wide from rapid and reliable diagnostics tests. New tests are sought with greatest demand not only for new analytes, but also to reduce costs, complexity and lengthy analysis times of current techniques. Among the myriad of possibilities available today to develop new test systems, amperometric biosensors are prominent players—best represented by the ubiquitous amperometric-based glucose sensors. Electrochemical approaches in general require little and often enough only simple hardware components, are rugged and yet provide low limits of detection. They thus offer many of the desirable attributes for point-of-care/point-of-need tests. This review focuses on investigating the important integration of sample preparation with (primarily electrochemical) biosensors. Sample clean up requirements, miniaturized sample preparation strategies, and their potential integration with sensors will be discussed, focusing on clinical sample analyses. PMID:25558994

  15. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    Science.gov (United States)

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  16. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection

    Science.gov (United States)

    Chung, Da-Jung; Kim, Ki-Chul; Choi, Seong-Ho

    2011-09-01

    An electrochemical DNA biosensor (E-DNA biosensor) was fabricated by avidin-biotin conjugation of a biotinylated probe DNA, 5'-biotin-ATG AGT CTT CTA ACC GAG GTC GAA-3', and an avidin-modified glassy carbon electrode (GCE) to detect the influenza virus (type A). An avidin-modified GCE was prepared by the reaction of avidin and a carboxylic acid-modified GCE, which was synthesized by the electrochemical reduction of 4-carboxyphenyl diazonium salt. The current value of the E-DNA biosensor was evaluated after hybridization of the probe DNA and target DNA using cyclic voltammetry (CV). The current value decreased after the hybridization of the probe DNA and target DNA. The DNA that was used follows: complementary target DNA, 5'-TTC GAC CTC GGT TAG AAG ACT CAT-3' and two-base mismatched DNA, 5'-TTC GAC AGC GGT TAT AAG ACT CAT-3'.

  17. Electrochemical detection of carbidopa using a ferrocene-modified carbon nanotube paste electrode

    Directory of Open Access Journals (Sweden)

    FATEMEH KARIMI

    2009-12-01

    Full Text Available A chemically modified carbon paste electrode (MCPE containing ferrocene (FC and carbon nanotubes (CNT was constructed. The electrochemical behavior and stability of the MCPE were investigated by cyclic voltammetry. The electrocatalytic activity of the MCPE was investigated and it showed good characteristics for the oxidation of carbidopa (CD in phosphate buffer solution (PBS. A linear concentration range of 5 to 600 μM CD, with a detection limit of 3.6±0.17 μM CD, was obtained. The diffusion coefficient of CD and the transfer coefficient ( were also determined. The MCPE showed good reproducibility, remarkable long-term stability and especially good surface renewability by simple mechanical polishing. The results showed that this electrode could be used as an electrochemical sensor for the determination of CD in real samples, such as urine samples.

  18. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    Energy Technology Data Exchange (ETDEWEB)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India); Suri, C. Raman, E-mail: raman@imtech.res.in [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India)

    2013-03-15

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications.

  19. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    International Nuclear Information System (INIS)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa; Suri, C. Raman

    2013-01-01

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications

  20. Sheath-flow electrochemical detection of amino acids with a copper wire electrode in capillary electrophoresis.

    Science.gov (United States)

    Inoue, Junji; Kaneta, Takashi; Imasaka, Totaro

    2012-09-01

    Here, we report the detection of native amino acids using a sheath-flow electrochemical detector with a working electrode made of copper wire. A separation capillary that was inserted into a platinum tube in the detector acted as a grounded electrode for electrophoresis and as a flow channel for sheath liquid. Sheath liquid flowed outside the capillary to support the transport of the separated analytes to the working electrode for electrochemical detection. The copper wire electrode was aligned at the outlet of the capillary in a wall-jet configuration. Amino acids injected into the capillary were separated following elution from the end of the capillary and detection by the copper electrode. Three kinds of copper electrodes with different diameters-50, 125, and 300 μm-were examined to investigate the effect of the electrode diameter on sensitivity. The peak widths of the analytes were independent of the diameter of the working electrode, while the 300-μm electrode led to a decrease in the signal-to-noise ratio compared with the 50- and 125-μm electrodes, which showed no significant difference. The flow rate of the sheath liquid was also varied to optimize the detection conditions. The limits of detection for amino acids ranged from 4.4 to 27 μM under optimal conditions. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High sensitivity and label-free detection of Enterovirus 71 by nanogold modified electrochemical impedance spectroscopy

    Science.gov (United States)

    Wang, Fang-Yu; Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Yang, Jyh-Yuan; Chang, Chia-Ching

    2013-03-01

    Enterovirus 71 (EV71), which is the most fulminant and invasive species of enterovirus, can cause children neurologic complications and death within 2-3 days after fever and rash developed. Besides, EV71 has high sequence similarity with Coxsackie A 16 (CA16) that makes differential diagnosis difficult in clinic and laboratory. Since conventional viral diagnostic method cannot diagnose EV71 quickly and EV71 can transmit at low viral titer, the patients might delay in treatment. A quick, high sensitive, and high specific test for EV71 detection is pivotal. Electrochemical impedance spectroscopy (EIS) has been applied for detecting bio-molecules as biosensors recently. In this study, we try to build a detection platform for EV71 detection by nanogold modified EIS probe. The result shows that our probe can detect 3.6 VP1/50 μl (one EV71 particle has 60 VP1) in 3 minutes. The test can also distinguish EV71 from CA16 and lysozyme. Diagnosis of enterovirus 71 by electrochemical impedance spectroscopy has the potential to apply in clinic.

  2. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, Stefano, E-mail: stefano.cinti@uniroma2.it; Basso, Mattia; Moscone, Danila; Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it

    2017-04-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 %{sub vol}), with a sensitivity of 9.13 μA/mM cm{sup 2} (1574 μA/%{sub vol} cm{sup 2}) and a detection limit equal to 0.52 mM (0.003%{sub vol}). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  3. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    International Nuclear Information System (INIS)

    Cinti, Stefano; Basso, Mattia; Moscone, Danila; Arduini, Fabiana

    2017-01-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 %_v_o_l), with a sensitivity of 9.13 μA/mM cm"2 (1574 μA/%_v_o_l cm"2) and a detection limit equal to 0.52 mM (0.003%_v_o_l). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  4. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus.

    Science.gov (United States)

    Abbaspour, Abdolkarim; Norouz-Sarvestani, Fatemeh; Noori, Abolhassan; Soltani, Noushin

    2015-06-15

    Staphylococcus aureus (S. aureus) is one of the most important human pathogens and causes numerous illnesses. In this study, we report a sensitive and highly selective dual-aptamer-based sandwich immunosensor for the detection of S. aureus. In this bioassay system, a biotinylated primary anti-S.aureus aptamer was immobilized on streptavidin coated magnetic beads (MB), which serves as a capture probe. A secondary anti-S.aureus aptamer was conjugated to silver nanoparticles (Apt-AgNP) that sensitively reports the detection of the target. In the presence of target bacterium, an Apt/S.aureus/apt-AgNP sandwich complex is formed on the MB surface and the electrochemical signal of AgNPs followed through anodic stripping voltammetry. The proposed sandwich assay benefits from advantageous of a sandwich assay for increased specificity, MB as carriers of affinity ligands for solution-phase recognition and fast magnetic separation, AgNPs for signal amplification, and an electrochemical stripping voltammetry read-out as a simple and sensitive detection. The electrochemical immunosensor shows an extended dynamic range from 10 to 1×10(6) cfu/mL with a low detection limit of 1.0 cfu/mL (S/N=3). Furthermore, the possible interference of other analog bacteria was studied. To assess the general applicability of this sensor, we investigated the quantification of S. aureus in real water samples. The results were compared to the experimental results obtained from a plate counting method, which demonstrated an acceptable consistency. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Different strategies for the detection of bioagents using electrochemical and photoelectrochemical genosensors

    Science.gov (United States)

    Voccia, Diego; Bettazi, Francesca; Palchetti, Ilaria

    2015-10-01

    In recent years various kinds of biosensors for the detection of pathogens have been developed. A genosensor consists in the immobilization, onto the surface of a chosen transducer, of an oligonucleotide with a specific base sequence called capture probe. The complementary sequence (the analytical target, i.e. a specific sequence of the DNA/RNA of the pathogen) present in the sample is recognized and captured by the probe through the hybridization reaction. The evaluation of the extent of the hybridization allows one to confirm whether the sample contains the complementary sequence of the probe or not. Electrochemical transducers have received considerable attention in connection with the detection of DNA hybridization. Moreover, recently, with the emergence of novel photoelectrochemically active species and new detection schemes, photoelectrochemistry has resulted in substantial progress in its analytical performance for biosensing applications. In this paper, some examples of electrochemical genosensors for multiplexed pathogen detection are shown. Moreover, the preliminary experiments towards the development of a photoelectrochemical genosensor using a TiO2 - nanocrystal-modified ITO electrode are discussed.

  6. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Geng Ping; Zhang Xinai; Meng Weiwei; Wang Qingjiang; Zhang Wen; Jin Litong; Feng Zhen; Wu Zirong

    2008-01-01

    An electrochemical impedance immunosensor for the detection of Escherichia coli was developed by immobilizing anti-E. coli antibodies at an Au electrode. The immobilization of antibodies at the Au electrode was carried out through a stable acyl amino ester intermediate generated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide (NHS), which could condense antibodies reproducibly and densely on the self-assembled monolayer (SAM). The surface characteristics of the immunosensor before and after the binding reaction of antibodies with E. coli were characterized by atomic force microscopy (AFM). The immobilization of antibodies and the binding of E. coli cells to the electrode could increase the electro-transfer resistance, which was directly detected by electrochemical impedance spectroscopy (EIS) in the presence of Fe(CN) 6 3- /Fe(CN) 6 4- as a redox probe. A linear relationship between the electron-transfer resistance and the logarithmic value of E. coli concentration was found in the range of E. coli cells from 3.0 x 10 3 to 3.0 x 10 7 cfu mL -1 with the detection limit of 1.0 x 10 3 cfu mL -1 . With preconcentration and pre-enrichment steps, it was possible to detect E. coli concentration as low as 50 cfu/mL in river water samples

  7. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens

    Science.gov (United States)

    Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis

    2016-01-01

    Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface. PMID:27827963

  8. Comparison of nanostructured silver-modified silver and carbon ultramicroelectrodes for electrochemical detection of nitrate.

    Science.gov (United States)

    Lotfi Zadeh Zhad, Hamid R; Lai, Rebecca Y

    2015-09-10

    We report the use of silver (Ag)-modified carbon and Ag ultramicroelectrodes (UMEs) for electrochemical detection of nitrate. We investigated several methods for electrodeposition of Ag; our results show that the addition of a complexation agent (ammonium sulfate) in the Ag deposition solution is necessary for electrodeposition of nanostructured Ag that adheres well to the electrode. The electrodeposited Ag on both types of electrodes has branch-like structures that are well-suited for electrocatalytic reduction of nitrate. The use of UMEs is advantageous; the sigmoidal-shaped cyclic voltammogram allows for sensitive detection of nitrate by reducing the capacitive current, as well as enabling easy quantification of the nitrate reduction current. Both cyclic voltammetry and chronoamperometry were used to characterize the electrodes; and independent of the electrochemical interrogation technique, both UMEs were found to have a wide linear dynamic range (4-1000 μM) and a low limit of detection (3.2-5.1 μM). More importantly, they are reusable up to ∼100 interrogation cycles and are selective enough to be used for direct detection of nitrate in a synthetic aquifer sample without any sample pretreatment and/or pH adjustment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Teengam, Prinjaporn [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Siangproh, Weena [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 (Thailand); Tuantranont, Adisorn [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Pathumthani, 12120 (Thailand); Henry, Charles S. [Department of Chemistry, Colorado State University, Fort Collins, CO, 80523 (United States); Vilaivan, Tirayut [Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Nanotec-CU Center of Excellence on Food and Agriculture, Bangkok, 10330 (Thailand)

    2017-02-01

    A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10–200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer. - Highlights: • A paper-based DNA biosensor using AQ-PNA probe and G-PANI modified electrode was first developed. • This developed DNA biosensor was highly specific over the non-complementary DNA. • This sensor was successfully applied to detect the HPV-DNA type 16 obtained from cancer cell lines. • This sensor is inexpensive and

  11. Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection.

    Science.gov (United States)

    Gevaerd, Ava; Blaskievicz, Sirlon F; Zarbin, Aldo J G; Orth, Elisa S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2018-07-30

    The modification of electrode surfaces has been the target of study for many researchers in order to improve the analytical performance of electrochemical sensors. Herein, the use of an imidazole-functionalized graphene oxide (GO-IMZ) as an artificial enzymatic active site for voltammetric determination of progesterone (P4) is described for the first time. The morphology and electrochemical performance of electrode modified with GO-IMZ were characterized by scanning electron microscopy and cyclic voltammetry, respectively. Under optimized conditions, the proposed sensor showed a synergistic effect of the GO sheets and the imidazole groups anchored on its backbone, which promoted a significant enhancement on electrochemical reduction of P4. Figures of merits such as linear dynamic response for P4 concentration ranging from 0.22 to 14.0 μmol L -1 , limit of detection of 68 nmol L -1 and limit of quantification and 210 nmol L -1 were found. In addition, presented a higher sensitivity, 426 nA L µmol -1 , when compared to the unmodified electrode. Overall, the proposed device showed to be a promising platform for a simple, rapid, and direct analysis of progesterone. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Molecular Biosensors for Electrochemical Detection of Infectious Pathogens in Liquid Biopsies: Current Trends and Challenges.

    Science.gov (United States)

    Campuzano, Susana; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-11-03

    Rapid and reliable diagnosis of infectious diseases caused by pathogens, and timely initiation of appropriate treatment are critical determinants to promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in electrochemical affinity biosensors have demonstrated to surpass conventional standards in regards to time, simplicity, accuracy and cost in this field. The tremendous potential offered by electrochemical affinity biosensors to detect on-site infectious pathogens at clinically relevant levels in scarcely treated body fluids is clearly stated in this review. The development and application of selected examples using different specific receptors, assay formats and electrochemical approaches focusing on the determination of specific circulating biomarkers of different molecular (genetic, regulatory and functional) levels associated with bacterial and viral pathogens are critically discussed. Existing challenges still to be addressed and future directions in this rapidly advancing and highly interesting field are also briefly pointed out.

  13. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    International Nuclear Information System (INIS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  14. Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene.

    Science.gov (United States)

    Thangamuthu, Madasamy; Gabriel, Willimann Eric; Santschi, Christian; Martin, Olivier J F

    2018-03-07

    Practice oriented point-of-care diagnostics require easy-to-handle, miniaturized, and low-cost analytical tools. In a novel approach, screen printed carbon electrodes (SPEs), which were functionalized with nanomaterials, are employed for selective measurements of bilirubin, which is an important biomarker for jaundice. Multi-walled carbon nanotubes (MWCNT) and graphene separately deposited on SPEs provide the core of an electrochemical sensor for bilirubin. The electrocatalytic activity towards bilirubin oxidation (bilirubin to biliverdin) was observed at +0.25 V. In addition, a further peak corresponding to the electrochemical conversion of biliverdin into purpurin appeared at +0.48 V. When compared to MWCNT, the graphene type shows a 3-fold lower detection limit (0.3 ± 0.022 nM and 0.1 ± 0.018 nM, respectively), moreover, the graphene type exhibits a larger linear range (0.1-600 µM) than MWCNT (0.5-500 µM) with a two-fold better sensitivity, i.e., 30 nA µM -1 cm -2 , and 15 nA µM -1 cm -2 , respectively. The viability is validated through measurements of bilirubin in blood serum samples and the selectivity is ensured by inhibiting common interfering biological substrates using an ionic nafion membrane. The presented approach enables the design and implementation of low cost and miniaturized electrochemical sensors.

  15. Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene

    Directory of Open Access Journals (Sweden)

    Madasamy Thangamuthu

    2018-03-01

    Full Text Available Practice oriented point-of-care diagnostics require easy-to-handle, miniaturized, and low-cost analytical tools. In a novel approach, screen printed carbon electrodes (SPEs, which were functionalized with nanomaterials, are employed for selective measurements of bilirubin, which is an important biomarker for jaundice. Multi-walled carbon nanotubes (MWCNT and graphene separately deposited on SPEs provide the core of an electrochemical sensor for bilirubin. The electrocatalytic activity towards bilirubin oxidation (bilirubin to biliverdin was observed at +0.25 V. In addition, a further peak corresponding to the electrochemical conversion of biliverdin into purpurin appeared at +0.48 V. When compared to MWCNT, the graphene type shows a 3-fold lower detection limit (0.3 ± 0.022 nM and 0.1 ± 0.018 nM, respectively, moreover, the graphene type exhibits a larger linear range (0.1–600 µM than MWCNT (0.5–500 µM with a two-fold better sensitivity, i.e., 30 nA µM−1 cm−2, and 15 nA µM−1 cm−2, respectively. The viability is validated through measurements of bilirubin in blood serum samples and the selectivity is ensured by inhibiting common interfering biological substrates using an ionic nafion membrane. The presented approach enables the design and implementation of low cost and miniaturized electrochemical sensors.

  16. Proximity hybridization-mediated isothermal exponential amplification for ultrasensitive electrochemical protein detection

    Directory of Open Access Journals (Sweden)

    Yu Y

    2017-08-01

    Full Text Available Yanyan Yu, Gaoxing Su, Hongyan Zhu, Qing Zhu, Yong Chen, Bohui Xu, Yuqin Li, Wei Zhang School of Pharmacy, Nantong University, Nantong, People’s Republic of China Abstract: In this study, we fabricated a novel electrochemical biosensing platform on the basis of target-triggered proximity hybridization-mediated isothermal exponential amplification reaction (EXPAR for ultrasensitive protein analysis. Through rational design, the aptamers for protein recognition were integrated within two DNA probes. Via proximity hybridization principle, the affinity protein-binding event was converted into DNA assembly process. The recognition of protein by aptamers can trigger the strand displacement through the increase of the local concentrations of the involved probes. As a consequence, the output DNA was displaced, which can hybridize with the duplex probes immobilized on the electrode surface subsequently, leading to the initiation of the EXPAR as well as the cleavage of duplex probes. Each cleavage will release the gold nanoparticles (AuNPs binding sequence. With the modification of G-quadruplex sequence, electrochemical signals were yielded by the AuNPs through oxidizing 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. The study we proposed exhibited high sensitivity toward platelet-derived growth factor BB (PDGF-BB with the detection limit of 52 fM. And, this method also showed great selectivity among the PDGF isoforms and performed well in spiked human serum samples. Keywords: electrochemical biosensor, proximity hybridization, PDGF-BB, isothermal exponential amplification, G-quadruplex 

  17. Quantitative Label-Free Cell Proliferation Tracking with a Versatile Electrochemical Impedance Detection Platform

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Carminati, M; Heiskanen, Arto

    2012-01-01

    optimal detection strategies. Electrochemical Impedance Spectroscopy (EIS) has been used to monitor and compare adhesion of different cell lines. HeLa cells and 3T3 fibroblasts have been cultured for 12 hours on interdigitated electrode arrays integrated into a tailor-made cell culture platform. Both......Since the use of impedance measurements for label-free monitoring of cells has become widespread but still the choice of sensing configuration is not unique though crucial for a quantitative interpretation of data, we demonstrate the application of a novel custom multipotentiostat platform to study...... vertical and coplanar interdigitated sensing configuration approaches have been used and compared on the same cell populations....

  18. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection.

    Science.gov (United States)

    Li, Bing; Pan, Genhua; Avent, Neil D; Lowry, Roy B; Madgett, Tracey E; Waines, Paul L

    2015-10-15

    A novel printed graphene electrode modified with electrochemically reduced graphene oxide was developed for the detection of a specific oligonucleotide sequence. The graphene oxide was immobilized onto the surface of a graphene electrode via π-π bonds and electrochemical reduction of graphene oxide was achieved by cyclic voltammetry. A much higher redox current was observed from the reduced graphene oxide-graphene double-layer electrode, a 42% and 36.7% increase, respectively, in comparison with that of a bare printed graphene or reduced graphene oxide electrode. The good electron transfer activity is attributed to a combination of the large number of electroactive sites in reduced graphene oxide and the high conductivity nature of graphene. The probe ssDNA was further immobilized onto the surface of the reduced graphene oxide-graphene double-layer electrode via π-π bonds and then hybridized with its target cDNA. The change of peak current due to the hybridized dsDNA could be used for quantitative sensing of DNA concentration. It has been demonstrated that a linear range from 10(-7)M to 10(-12)M is achievable for the detection of human immunodeficiency virus 1 gene with a detection limit of 1.58 × 10(-13)M as determined by three times standard deviation of zero DNA concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode

    International Nuclear Information System (INIS)

    Deng Chunyan; Chen Jinhua; Chen Xiaoli; Wang Mengdong; Nie Zhou; Yao Shouzhuo

    2009-01-01

    A boron-doped carbon nanotube (BCNT)-modified glassy carbon (GC) electrode was constructed for the detection of L-cysteine (L-CySH). The electrochemical behavior of BCNTs in response to L-cysteine oxidation was investigated. The response current of L-CySH oxidation at the BCNT/GC electrode was obviously higher than that at the bare GC electrode or the CNT/GC electrode. This finding may be ascribed to the excellent electrochemical properties of the BCNT/GC electrode. Moreover, on the basis of this finding, a determination of L-CySH at the BCNT/GC electrode was carried out. The effects of pH, scan rate and interferents on the response of L-CySH oxidation were investigated. Under the optimum experimental conditions, the detection response for L-CySH on the BCNT/GC electrode was fast (within 7 s). It was found to be linear from 7.8 x 10 -7 to 2 x 10 -4 M (r = 0.998), with a high sensitivity of 25.3 ± 1.2 nA mM -1 and a low detection limit of 0.26 ± 0.01 μM. The BCNT/GC electrode exhibited high stability and good resistance against interference by other oxidizable amino acids (tryptophan and tyrosine)

  20. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dionisia Ortiz-Aguayo

    2018-01-01

    Full Text Available This research develops a label-free aptamer biosensor (aptasensor based on graphite-epoxy composite electrodes (GECs for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN6]3−/[Fe(CN6]4− as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM−1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.

  1. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Ortiz-Aguayo, Dionisia; Del Valle, Manel

    2018-01-26

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)₆] 3- /[Fe(CN)₆] 4- as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM -1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.

  2. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy.

    Science.gov (United States)

    Bao, Ting; Shu, Huawei; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2015-03-03

    A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3'-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs-aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1-20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Methionine – Au Nanoparticle Modified Glassy Carbon Electrode: a Novel Platform for Electrochemical Detection of Hydroquinone

    Directory of Open Access Journals (Sweden)

    Jiahong HE

    2014-12-01

    Full Text Available A high sensitive electrochemical sensor based on methionine/gold nanoparticles (MET/AuNPs modified glassy carbon electrode (GCE was fabricated for the quantitative detection of hydroquinone (HQ. The as-modified electrode was characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD techniques. The electrochemical performance of the sensor to HQ was investigated by using cyclic and differential pulse voltammetry, which revealed its excellent electrocatalytic activity and reversibility towards HQ. The separation of anodic and cathodic peak (∆Ep was decreased from 471 mV to 75 mV. The anodic peak current achieved under the optimum conditions was linear with the HQ concentration ranging from 8 μM to 400 μM with the detection limit 0.12 μM (3σ. The as-fabricated sensor also showed a good selectivity towards HQ without demonstrating interference from other coexisting species. Furthermore, the sensor showed a good performance for HQ detection in environmental water, which suggests its potential practical application. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6477

  4. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    Science.gov (United States)

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Nanostructured platform for the detection of Neisseria gonorrhoeae using electrochemical impedance spectroscopy and differential pulse voltammetry

    International Nuclear Information System (INIS)

    Singh, R.; Matharu, Z.; Srivastava, A.K.; Sood, S.; Gupta, R.K.; Malhotra, B.D.

    2012-01-01

    We report on a nanocomposite based genosensor for the detection of Neisseria gonorrhoeae, a bacterium causing the sexually transmitted disease gonorrhoea. Amino-labeled probe DNA was covalently immobilized on electrochemically prepared polyaniline and iron oxide (PANI-Fe 3 O 4 ) nanocomposite film on an indium tin oxide (ITO) electrode. Scanning electron microscopy, transmission electron microscopy, electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) techniques have been employed to characterize surface of the modified electrode. The genosensor has detection limits of 1 x 10 -15 M and 1 x 10 -17 M, respectively, using the EIS and DPV techniques. This biosensor can discriminate a complementary sequence from a single-base mismatch and from non-complementary DNA, and has been utilized for detection of DNA extracted from N. gonorrhoeae culture, and from patient samples with N. gonorrhoeae. It is found to exhibit good specificity for N. gonorrhoeae species and shows no response towards non-gonorrhoeae type of Neisseria species (NgNs) and other gram-negative bacterias (GNBs). The affinity constant for hybridization calculated using the Langmuir adsorption isotherm model is found to be 3. 39 x 10 8 M -1 . (author)

  6. An exonuclease-assisted amplification electrochemical aptasensor for Hg(2+) detection based on hybridization chain reaction.

    Science.gov (United States)

    Bao, Ting; Wen, Wei; Zhang, Xiuhua; Xia, Qinghua; Wang, Shengfu

    2015-08-15

    In this work, a novel electrochemical aptasensor was developed for Hg(2+) detection based on exonuclease-assisted target recycling and hybridization chain reaction (HCR) dual signal amplification strategy. The presence of Hg(2+) induced the T-rich DNA partly folded into duplex-like structure via the Hg(2+) mediated T-Hg(2+)-T base pairs, which triggered the activity of exonuclease III (Exo III). Exo III selectively digested the double-strand DNA containing multiple T-Hg(2+)-T base pairs from its 3'-end, the released Hg(2+) participated analyte recycle. With each digestion cycle, a digestion product named as help DNA was obtained, which acted as a linkage between the capture DNA and auxiliary DNA. The presence of help DNA and two auxiliary DNA collectively facilitated successful HCR process and formed long double-stranded DNA. [Ru(NH3)6](3+) was used as redox indicator, which electrostatically bound to the double strands and produced an electrochemical signal. Exo III-assisted target recycling and HCR dual amplification significantly improved the sensitivity for Hg(2+) with a detection limit of 0.12 pM (S/N=3). Furthermore, the proposed aptasensor had a promising potential for the application of Hg(2+) detection in real aquatic sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haixia [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Jiang Bingying [School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400040 (China); Xiang Yun, E-mail: yunatswu@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Yuyong; Chai Yaqin [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-03-04

    A novel strategy for 'signal on' and sensitive one-spot simultaneous detection of multiple small molecular analytes based on electrochemically encoded barcode quantum dot (QD) tags is described. The target analytes, adenosine triphosphate (ATP) and cocaine, respectively, are sandwiched between the corresponding set of surface-immobilized primary binding aptamers and the secondary binding aptamer/QD bioconjugates. The captured QDs yield distinct electrochemical signatures after acid dissolution, whose position and size reflect the identity and level, respectively, of the corresponding target analytes. Due to the inherent amplification feature of the QD labels and the 'signal on' detection scheme, as well as the sensitive monitoring of the metal ions released upon acid dissolution of the QD labels, low detection limits of 30 nM and 50 nM were obtained for ATP and cocaine, respectively, in our assays. Our multi-analyte sensing system also shows high specificity to target analytes and promising applicability to complex sample matrix, which makes the proposed assay protocol an attractive route for screening of small molecules in clinical diagnosis.

  8. Electrochemical Sandwich Immunoassay for the Ultrasensitive Detection of Human MUC1 Cancer Biomarker

    Directory of Open Access Journals (Sweden)

    Zahra Taleat

    2013-01-01

    Full Text Available A new electrochemical sandwich immunoassay for the ultrasensitive detection of human MUC1 cancer biomarker using protein G-functionalized magnetic beads (MBs and graphite-based screen-printed electrodes (SPEs was developed. Magnetic beads were employed as the platforms for the immobilization and immunoreaction process. A pair of primary and secondary antibodies was used to capture the MUC1 protein. After labeling with a third antibody conjugated with horseradish peroxidase (HRP, the resulting conjugate was trapped at the surface of the graphite-based SPEs and MUC1 determination was carried out by differential pulse voltammetry (DPV at 0.4 V upon H2O2 addition using acetaminophen (APAP as the redox mediator. A linear relationship was obtained for the detection of human MUC1 over a range of 0–25 ppb with the lowest detection limit of 1.34 ppb when HRP was applied as a label. Preliminary experiments were performed using disposable electrochemical sensors in order to optimize some parameters (i.e., incubation times, concentrations, and blocking agent.

  9. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    Science.gov (United States)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  10. Self-assembled monolayer based electrochemical nucleic acid sensor for Vibrio cholerae detection

    International Nuclear Information System (INIS)

    Patel, Manoj K; Solanki, Pratima R; Agrawal, Ved V; Khandelwal, Sachin; Ansari, S G; Malhotra, B D

    2012-01-01

    Nucleic acid sensor has been fabricated by immobilization of thiolated (5' end) single stranded deoxyribonucleic acid probe (ssDNA-SH) onto gold (Au) coated glass electrode for Vibriocholerae detection. This ssDNA-SH/Au bioelectrode characterized using atomic force microscopy (AFM),Fourier transforms infrared spectroscopy (FT-IR) and electrochemical technique, has been used for hybridization detection of genomic DNA (dsDNA/Au). This ssDNA-SH/Au bioelectrode can specifically detect up to 100- 500 ng/μL genomic DNA of Vibriocholeare within 60 s of hybridization time at 25°C by cyclic voltammetry (CV) using methylene blue (MB) as electro-active DNA hybridization indicator. The value of sensitivity of the dsDNA/Au electrode has been determined as 0.027μA/ng cm −2 with regression coefficient as 0.978. This DNA bioelectrode is stable for about 4 months when stored at 4°C.

  11. Development of a PMMA Electrochemical Microfluidic Device for Carcinoembryonic Antigen Detection

    Science.gov (United States)

    Van Anh, Nguyen; Van Trung, Hoang; Tien, Bui Quang; Binh, Nguyen Hai; Ha, Cao Hong; Le Huy, Nguyen; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2016-05-01

    In this study, a poly(methyl methacrylate) (PMMA) microfluidic device fabricated by an inexpensive CO2 laser etching system was developed for detection of carcino-embryonic antigens (CEA). The device was capable of working in continuous mode and was designed with the aid of numerical simulation. The detection of target CEA was based on immuno-assay via magnetic particles and electrochemical sensing. The as-prepared microfluidic can be used to detect CEA at the relatively low concentration of 150 pg mL-1. The device could be reused many times, since the capture and removal of magnetic particles in the assay could be manipulated by an external magnetic field. The proposed approach appears to be suitable for high-throughput and automated analysis of large biomolecules such as tumor markers and pathogens.

  12. A review of post-column photochemical reaction systems coupled to electrochemical detection in HPLC

    International Nuclear Information System (INIS)

    Fedorowski, Jennifer; LaCourse, William R.

    2010-01-01

    Post-column photochemical reaction systems have developed into a common approach for enhancing conventional methods of detection in HPLC. Photochemical reactions as a means of 'derivatization' have a significant number of advantages over chemical reaction-based methods, and a significant effort has been demonstrated to develop an efficient photochemical reactor. When coupled to electrochemical (EC) detection, the technique allows for the sensitive and selective determination of a variety of compounds (e.g., organic nitro explosives, beta-lactam antibiotics, sulfur-containing antibiotics, pesticides and insecticides). This review will focus on developments and methods using post-column photochemical reaction systems followed by EC detection in liquid chromatography. Papers are presented in chronological order to emphasize the evolution of the approach and continued importance of the application.

  13. Disposable inkjet-printed electrochemical platform for detection of clinically relevant HER-2 breast cancer biomarker.

    Science.gov (United States)

    Carvajal, Susanita; Fera, Samantha N; Jones, Abby L; Baldo, Thaisa A; Mosa, Islam M; Rusling, James F; Krause, Colleen E

    2018-05-01

    Rapidly fabricated, disposable sensor platforms hold tremendous promise for point-of-care detection. Here, we present an inexpensive (Receptor 2 (HER-2). Capture antibodies were bound to a chemically modified surface on the WEA and placed into a microfluidic device. A full sandwich immunoassay was constructed following a simultaneous injection of target protein, biotinylated antibody, and polymerized horseradish peroxide labels into the microfluidic device housing the WEA. With an ultra fast assay time, of only 15mins a clinically relevant limit of detection of 12pgmL -1 was achieved. Excellent reproducibility and sensitivity were observed through recovery assays preformed in human serum with recoveries ranging from 76% to 103%. These easily fabricated and scalable electrochemical sensor platforms can be readily adapted for multiplex detection following this rapid assay protocol for cancer diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    Directory of Open Access Journals (Sweden)

    Jong-in Hahm

    2011-03-01

    Full Text Available The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered.

  15. Quantitative enzyme activity determination with zeptomole sensitivity by microfluidic gradient-gel zymography.

    Science.gov (United States)

    Hughes, Alex J; Herr, Amy E

    2010-05-01

    We describe a sensitive zymography technique that utilizes an automated microfluidic platform to report enzyme molecular weight, amount, and activity (including k(cat) and K(m)) from dilute protein mixtures. Calf intestinal alkaline phosphatase (CIP) is examined in detail as a model enzyme system, and the method is also demonstrated for horseradish peroxidase (HRP). The 40 min assay has a detection limit of 5 zmol ( approximately 3 000 molecules) of CIP. Two-step pore-limit electrophoresis with enzyme assay (PLENZ) is conducted in a single, straight microchannel housing a polyacrylamide (PA) pore-size gradient gel. In the first step, pore limit electrophoresis (PLE) sizes and pseudoimmobilizes resolved proteins. In the second step, electrophoresis transports both charged and neutral substrates into the PLE channel to the entrapped proteins. Arrival of substrate at the resolved enzyme band generates fluorescent product that reveals enzyme molecular weight against a fluorescent protein ladder. Additionally, the PLENZ zymography assay reports the kinetic properties of CIP in a fully quantitative manner. In contrast to covalent enzyme immobilization, physical pseudoimmobilization of CIP in the PA gel does not significantly reduce its maximum substrate turnover rate. However, an 11-fold increase in the Michaelis constant (over the free solution value) is observed, consistent with diffusional limitations on substrate access to the enzyme active site. PLENZ offers a robust platform for rapid and multiplexed functional analysis of heterogeneous protein samples in drug discovery, clinical diagnostics, and biocatalyst engineering.

  16. Integrated Circuits for Rapid Sample Processing and Electrochemical Detection of Biomarkers

    Science.gov (United States)

    Besant, Justin

    The trade-off between speed and sensitivity of detection is a fundamental challenge in the design of point-of-care diagnostics. As the relevant molecules in many diseases exist natively at extremely low levels, many gold-standard diagnostic tests are designed with high sensitivity at the expense of long incubations needed to amplify the target analytes. The central aim of this thesis is to design new strategies to detect biologically relevant analytes with both high speed and sensitivity. The response time of a biosensor is limited by the ability of the target analyte to accumulate to detectable levels at the sensor surface. We overcome this limitation by designing a range of integrated devices to optimize the flux of the analyte to the sensor by increasing the effective analyte concentration, shortening the required diffusion distance, and confining the analyte in close proximity to the sensor. We couple these devices with novel ultrasensitive electrochemical transduction strategies to convert rare analytes into a detectable signal. We showcase the clinical utility of these approaches with several applications including cancer diagnosis, bacterial identification, and antibiotic susceptibility profiling. We design and optimize a device to isolate rare cancer cells from the bloodstream with near 100% efficiency and 10 000-fold specificity. We analyse pathogen specific nucleic acids by lysing bacteria in close proximity to an electrochemical sensor and find that this approach has 10-fold higher sensitivity than standard lysis in bulk solution. We design an electronic chip to readout the antibiotic susceptibility profile with an hour-long incubation by concentrating bacteria into nanoliter chambers with integrated electrodes. Finally, we report a strategy for ultrasensitive visual readout of nucleic acids as low as 100 fM within 10 minutes using an amplification cascade. The strategies presented could guide the development of fast, sensitive and low-cost diagnostics

  17. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus.

    Science.gov (United States)

    Manzano, Marisa; Viezzi, Sara; Mazerat, Sandra; Marks, Robert S; Vidic, Jasmina

    2018-02-15

    Diagnostic systems that can deliver highly specific and sensitive detection of hepatitis A virus (HAV) in food and water are of particular interest in many fields including food safety, biosecurity and control of outbreaks. Our aim was the development of an electrochemical method based on DNA hybridization to detect HAV. A ssDNA probe specific for HAV (capture probe) was designed and tested on DNAs from various viral and bacterial samples using Nested-Reverse Transcription Polymerase Chain Reaction (nRT-PCR). To develop the electrochemical device, a disposable gold electrode was functionalized with the specific capture probe and tested on complementary ssDNA and on HAV cDNA. The DNA hybridization on the electrode was measured through the monitoring of the oxidative peak potential of the indicator tripropylamine by cyclic voltammetry. To prevent non-specific binding the gold surface was treated with 3% BSA before detection. High resolution atomic force microscopy (AFM) confirmed the efficiency of electrode functionalization and on-electrode hybridization. The proposed device showed a limit of detection of 0.65pM for the complementary ssDNA and 6.94fg/µL for viral cDNA. For a comparison, nRT-PCR quantified the target HAV cDNA with a limit of detection of 6.4fg/µL. The DNA-sensor developed can be adapted to a portable format to be adopted as an easy-to- use and low cost method for screening HAV in contaminated food and water. In addition, it can be useful for rapid control of HAV infections as it takes only a few minutes to provide the results. Copyright © 2017. Published by Elsevier B.V.

  18. Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer.

    Science.gov (United States)

    Kor, Kamalodin; Zarei, Kobra

    2016-01-01

    A novel electrochemical sensor based on a molecularly imprinted polymer, poly(o-phenylenediamine) (PoPD), has been developed for selective and sensitive detection of furosemide. The sensor was prepared by incorporating of furosemide as template molecules during the electropolymerization of o-phenylenediamine on a gold electrode. To develop the molecularly imprinted polymer (MIP), the template molecules were removed from the modified electrode's surface by washing it with 0.25 mol L(-1) NaOH solution. The imprinted layer was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). The sensor's preparation conditions including furosemide concentration, the number of CV cycles in the electropolymerization process, extraction solution of the template from the imprinted film, the incubation time and the pH level were optimized. The incubation of the MIP-modified electrode, with respect to furosemide concentration, resulted in a suppression of the K4[Fe(CN)6] oxidation process. Under the optimal experimental conditions, the response of the imprinted sensor was linear in the range of 1.0×10(-7)-7.0×10(-6) mol L(-1) of furosemide. The detection limit was obtained as 7.0×10(-8) mol L(-1) for furosemide by using this sensor. The sensor was successfully used to determine the furosemide amount in the tablet and in human urine samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine

    Directory of Open Access Journals (Sweden)

    R. Nurzulaikha

    2015-09-01

    Full Text Available A graphene-tin oxide (G-SnO2 nanocomposite was prepared via a facile hydrothermal route using graphene oxide and Sn precursor solution without addition of any surfactant. The hydrothermally synthesized G-SnO2 nanocomposite was characterized using a field emission scanning electron microscope (FESEM, high resolution transmission electron microscope (HRTEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS. A homogeneous deposition of SnO2 nanoparticles with an average particle size of 10 nm on the graphene was observed in the FESEM and HRTEM images. The G-SnO2 nanocomposite was used to fabricate a modified electrode for the electrochemical detection of dopamine (DA in the presence of ascorbic acid (AA. Differential pulse voltammetry (DPV showed a limit of detection (LoD of 1 μM (S/N = 3 in the presence of ascorbic acid (AA. Keywords: Graphene, Tin oxide, Nanocomposite, Electrochemical sensor, Biosensor, Dopamine

  20. Au-TiO2/Chit modified sensor for electrochemical detection of trace organophosphates insecticides.

    Science.gov (United States)

    Qu, Yunhe; Min, Hong; Wei, Yinyin; Xiao, Fei; Shi, Guoyue; Li, Xiaohua; Jin, Litong

    2008-08-15

    In this paper, Au-TiO2/Chit modified electrode was prepared with Au-TiO2 nanocomposite (Au-TiO2) and Chitosan (Chit) as a conjunct. The Au-TiO2 nanocomposite and the films were characterized by electrochemical and spectroscopy methods. A set of experimental conditions was also optimized for the film's fabrication. The electrochemical and electrocatalytic behaviors of Au-TiO2/Chit modified electrode to trace organophosphates (OPs) insecticides such as parathion were discussed in this work. By differential pulse voltammetry (DPV) measurement, the current responses of Au-TiO2/Chit modified electrode were linear with parathion concentration ranging from 1.0 ng/ml to 7.0 x 10(3)ng/ml with the detection limit of 0.5 ng/ml. In order to evaluate the performance of the detection system, we also examined the real samples successfully in this work. It exhibited a sensitive, rapid and easy-to-use method for the fast determination of trace OPs insecticides.

  1. Electrochemical techniques to detect corrosion in concrete structures in nuclear installations - Technical note

    International Nuclear Information System (INIS)

    2002-01-01

    The mechanism of corrosion in aqueous media is of electrochemical nature. This means that the oxidation of the metal is counterbalanced by the reduction of another substance in another region of the metallic surface. Therefore, zones (anodes and cathodes) with different electrochemical potential, develop. In the case of concrete the electrolyte is constituted by the pore solution, which is very alkaline. This pore solution is formed by mainly a mixture of KOH and NaOH presenting pH values ranging between 12.6-14. The solution is saturated in Ca(OH) 2 . Steel embedded in concrete is naturally protected by this high alkalinity and by the barrier effect of the cover itself. The two main causes of electrochemical corrosion are carbonation and the presence of chlorides. Carbonation usually induces a generalized corrosion while chloride will lead into pitting or localized attack. The corrosion can be easily recognized by the rust presence on the rebar and by the appearance of cracks running parallel to the rebars. The objective of this report is to describe the electrochemical non-destructive techniques that can be used in real size reinforced concrete structures to assess the corrosion condition of their reinforcement. These techniques can be used indistinctly in conventional civil engineering structures or in those of nuclear installations. Electrochemical techniques are used to detect electrochemical corrosion activity of metallic reinforcements. They cannot quantify stress corrosion cracking or hydrogen embrittlement although may give some qualitative information about them. The aims of their applications may be one of the following circumstances: 1. Quality control of new constructions; 2. Condition evaluation of existing structures for: - Identification of steel de-passivation, - Detecting corroding areas for rehabilitation purposes, - Calculation of residual load-bearing capacity of the structure, - Prediction of the damage evolution, - Determination of the

  2. Electrochemical Detecting Lung Cancer-Associated Antigen Based on Graphene-Gold Nanocomposite

    Directory of Open Access Journals (Sweden)

    Zheng Wei

    2017-03-01

    Full Text Available Using a Au nanoparticle/reduced graphene oxide composite (AuNP-RGO, a signal-enhanced electrochemical immunosensor without label was created to detect neuron-specific enolase (NSE. Furthermore, an environmentally-friendly method was developed to prepare AuNP-RGO by employing chitosan (CS, which served as reducing and stabilizing agent. We showed that the sensitivity of the immunosensor designed in this report was remarkably enhanced because of the numerous active sites in the sensor provided by the AuNP-RGO nanostructure. For the quantification of NSE, the immunosensor exhibited a positive linear relationship with the concentration in the range of 0.1 to 2000 ng/mL, where the limit of the detection was 0.05 ng/mL.

  3. LDHs as electrode materials for electrochemical detection and energy storage: supercapacitor, battery and (bio)-sensor.

    Science.gov (United States)

    Mousty, Christine; Leroux, Fabrice

    2012-11-01

    From an exhaustive overview based on applicative academic literature and patent domain, the relevance of Layered Double Hydroxide (LDHs) as electrode materials for electrochemical detection of organic molecules having environmental or health impact and energy storage is evaluated. Specifically the focus is driven on their application as supercapacitor, alkaline or lithium battery and (bio)-sensor. Inherent to the high versatility of their chemical composition, charge density, anion exchange capability, LDH-based materials are extensively studied and their performances for such applications are reported. Indeed the analytical characteristics (sensitivity and detection limit) of LDH-based electrodes are scrutinized, and their specific capacity or capacitance as electrode battery or supercapacitor materials, are detailed.

  4. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A.

    Science.gov (United States)

    Ma, Yibo; Liu, Junsong; Li, Hongdong

    2017-06-15

    In this study, we designed and fabricated an electrochemical impedance aptasensor based on Au nanoparticles (Au-NPs) coated boron-doped diamond (BDD) modified with aptamers, and 6-mercapto-1-hexanol (MCH) for the detection of bisphenol A (BPA). The constructed BPA aptasensor exhibits good linearity from 1.0×10 -14 to 1.0×10 -9 molL -1 . The detection limitation of 7.2×10 -15 molL -1 was achieved, which can be attributed to the synergistic effect of combining BDD with Au-NPs, aptamers, and MCH. The examine results of BPA traces in Tris-HCl buffer and in milk, UV spectra of aptamer/BPA and interference test revealed that the novel aptasensors are of high sensitivity, specificity, stability and repeatability, which could be promising in practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water

    KAUST Repository

    Ding, Baojun

    2016-01-13

    A class of hierarchically porous carbons were prepared by a facile dual-templating approach. The obtained samples were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, Brunaner-Emmett-Teller measurement and electrochemical work station, respectively. The porous carbons could possess large specific surface area, interconnected pore structures, high conductivity and graphitizing degree. The resulting materials were used to prepare integrated modified electrodes. Based on the experimental results, the as-prepared hierarchically porous graphite (HPG) modified electrode showed the best electroactive performances toward the detection of nitrite with a detection limit of 8.1 × 10-3 mM. This HPG electrode was also repeatable and stable for 6 weeks. Moreover, this electrode was used for the determination of nitrite in drinkable water, and had acceptable recoveries. © The Royal Society of Chemistry 2016.

  6. Development of electrochemical impedance spectroscopy based sensing system for DEHP detection

    KAUST Repository

    Zia, Asif I.

    2011-11-01

    This research work presents a real time and non invasive technique to detect Di(2-ethylhexyl) phthalate (DEHP)content in purified water and quantify its concentration by Electrochemical Impedance Spectroscopy(E.I.S.). Planar Inter-digital capacitive sensor is employed to evaluate conductivity, permeability and dielectric properties of material under test. This sensor, consisting of inter-digitated microelectrodes, is fabricated on silicon substrate using thin-film Microelectromechanical system (MEMS) based semiconductor device fabrication technology. Impedance spectrums are obtained with various concentrations of DEHP in purified water by using an electric circuit in order to extract sample conductance. Relationship of sample conductance with DEHP concentration is studied in this research work which enables us to show the ability of E.I.S. to detect DEHP concentration in water and hence can be applied in water treatment process for contamination quantification. © 2011 IEEE.

  7. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tu, Lung-Chen; Chang, Chia-Ching; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang

    2013-01-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics. (paper)

  8. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    Science.gov (United States)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching

    2013-07-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.

  9. Selective electrochemical detection of dopamine in a microfluidic channel on carbon nanoparticulate electrodes.

    Science.gov (United States)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Celebanska, Anna; Niedziolka-Jonsson, Joanna; Opallo, Marcin

    2014-06-07

    There is a continuous need for the construction of detection systems in microfluidic devices. In particular, electrochemical detection allows the separation of signals from the analyte and interfering substances in the potential domain. Here, a simple microfluidic device for the sensitive and selective determination of dopamine in the presence of interfering substances was constructed and tested. It employs a carbon nanoparticulate electrode allowing the separation of voltammetric signals of dopamine and common interfering substances (ascorbic acid and acetaminophen) both in quiescent conditions and in flow due to the electrocatalytic effect. These voltammograms were also successfully simulated. The limit of detection of dopamine detected by square wave voltammetry in 1 mM solutions of interfering substances in phosphate buffered saline is about 100 nM. In human serum a clear voltammetric signal could be seen for a 200 nM solution, sufficient to detect dopamine in the cerebral fluid. Flow injection analysis allows a decrease in the limit of detection down to 3.5 nM.

  10. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    International Nuclear Information System (INIS)

    Tam, Phuong Dinh; Thang, Cao Xuan

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO 2 nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO 2 nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) 6 ] 3−/4− as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10 2 CFU/mL to 1.0 × 10 4 CFU/mL. The detection limit of the immunosensor was 1.0 × 10 2 CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL −1 . Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10 2 CFU/mL to 1.0 × 10 4 CFU/mL. • The detection limit of the immunosensor was 1.0 × 10 2 CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL −1 .

  11. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    International Nuclear Information System (INIS)

    Zia, Asif I; Syaifudin, A R Mohd; Mukhopadhyay, S C; Yu, P L; Al-Bahadly, I H; Gooneratne, Chinthaka P; Kosel, Juergen; Liao, Tai-Shan

    2013-01-01

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle's equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  12. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    KAUST Repository

    Zia, Asif I

    2013-06-10

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates\\' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle\\'s equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  13. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: phuongdinhtam@gmail.com; Thang, Cao Xuan, E-mail: thang.caoxuan@hust.edu.vn

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO{sub 2} nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO{sub 2} nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) {sub 6}] {sup 3−/4−} as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL{sup −1}. Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. • The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL{sup −1}.

  14. Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method.

    Science.gov (United States)

    Yu, Dengbin; Yong, Daming; Dong, Shaojun

    2013-04-01

    Based on the inhibition effect on the respiratory chain activity of microorganisms by toxicants, an electrochemical method has been developed to measure the current variation of a mediator in the presence of microorganisms contacted with a toxicant. Microelectrode arrays were adopted in this study, which can accelerate the mass transfer rate of an analyte to the electrode and also increase the total current signal, resulting in an improvement in detection sensitivity. We selected Escherichia coli as the testee and the standard glucose-glutamic acid as an exogenous material. Under oxygen restriction, the experiments in the presence of toxicant were performed at optimum conditions (solution pH 7.0, 37 degrees C and reaction for 3 hr). The resulting solution was then separated from the suspended microorganisms and was measured by an electrochemical method, using ferricyanide as a mediator. The current signal obtained represents the reoxidation of ferrocyanide, which was transformed to inhibiting efficiency, IC50, as a quantitative measure of toxicity. The IC50 values measured were 410, 570 and 830 mg/L for sodium nitrite, borax and aluminum potassium sulfate, respectively. The results show that the toxicity sequence for these three food additives is consistent with the value reported by other methods. Furthermore, the order of damage degree to the microorganism was also observed to be: sodium nitrite > borax > aluminum potassium sulfate > blank, according to the atomic force microscopy images of E. coli after being incubated for 3 hr with the toxic compound in buffer solutions. The electrochemical method is expected to be a sensitive and simple alternative to toxicity screening for chemical food additives.

  15. Boronic acid based imprinted electrochemical sensor for rutin recognition and detection.

    Science.gov (United States)

    Wang, Chunlei; Wang, Qi; Zhong, Min; Kan, Xianwen

    2016-10-21

    Multi-walled carbon nanotubes (MWNTs) and boronic acid based molecular imprinting polymer (MIP) were successively modified on a glassy carbon electrode surface to fabricate a novel electrochemical sensor for rutin recognition and detection. 3-Aminophenylboronic acid (APBA) was chosen as a monomer for the electropolymerization of MIP film in the presence of rutin. In addition to the imprinted cavities in MIP film to complement the template molecule in shape and functional groups, the high affinity between the boronic acid group of APBA and vicinal diols of rutin also enhanced the selectivity of the sensor, which made the sensor display a good selectivity to rutin. Moreover, the modified MWNTs improved the sensitivity of the sensor for rutin detection. The mole ratios of rutin and APBA, electropolymerized scan cycles and rates, and pH value of the detection solution were optimized. Under optimal conditions, the sensor was used to detect rutin in a linear range from 4.0 × 10 -7 to 1.0 × 10 -5 mol L -1 with a detection limit of 1.1 × 10 -7 mol L -1 . The sensor has also been applied to assay rutin in tablets with satisfactory results.

  16. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling

    Science.gov (United States)

    Gupta, Ankur; Rawal, Takat B.; Neal, Craig J.; Das, Soumen; Rahman, Talat S.; Seal, Sudipta

    2017-06-01

    Two-dimensional (2D) molybdenum disulfide (MoS2) offers attractive properties due to its band gap modulation and has led to significant research-oriented applications (i.e. DNA and protein detection, cell imaging (fluorescent label) etc.). In biology, detection of free radicals (i.e. reactive oxygen species and reactive nitrogen (NO*) species are very important for early discovery and treatment of diseases. Herein, for the first time, we demonstrate the ultra-low (pico-molar) detection of pharmaceutically relevant free radicals using MoS2 for electrochemical sensing. We present pico- to nano- molar level sensitivity in smaller MoS2 with S-deficiency as revealed by x-ray photoelectron spectroscopy. Furthermore, the detection mechanism and size-dependent sensitivity have been investigated by density functional theory (DFT) showing the change in electronic density of states of Mo atoms at edges which lead to the preferred adsorption of H2O2 on Mo edges. The DFT analysis signifies the role of size and S-deficiency in the higher catalytic activity of smaller MoS2 particles and, thus, ultra-low detection.

  17. Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide.

    Science.gov (United States)

    Posha, Biyas; Nambiar, Sindhu R; Sandhyarani, N

    2018-03-15

    We have constructed an aptamer immobilized gold atomic cluster mediated, ultrasensitive electrochemical biosensor (Apt/AuAC/Au) for LPS detection without any additional signal amplification strategy. The aptamer self-assemble onto the gold atomic clusters makes Apt/AuAC/Au an excellent platform for the LPS detection. Differential pulse voltammetry and EIS were used for the quantitative LPS detection. The Apt/AuAC/Au sensor offers an ultrasensitive and selective detection of LPS down to 7.94 × 10 -21 M level with a wide dynamic range from 0.01 attomolar to 1pM. The sensor exhibited excellent selectivity and stability. The real sample analysis was performed by spiking the diluted insulin sample with various concentration of LPS and obtained recovery within 2% error value. The sensor is found to be more sensitive than most of the literature reports. The simple and easy way of construction of this sensor provides an efficient and promising detection of an even trace amount of LPS. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection.

    Science.gov (United States)

    Ocaña, Cristina; Hayat, Akhtar; Mishra, Rupesh; Vasilescu, Alina; del Valle, Manel; Marty, Jean-Louis

    2015-06-21

    In this paper, we have reported a novel electrochemical aptamer-antibody based sandwich biosensor for the detection of lysozyme. In the sensing strategy, an anti-lysozyme aptamer was immobilized onto the carbon electrode surface by covalent binding via diazonium salt chemistry. After incubating with a target protein (lysozyme), a biotinylated antibody was used to complete the sandwich format. The subsequent additions of avidin-alkaline phosphatase as an enzyme label, and a 1-naphthyl phosphate substrate (1-NPP) allowed us to determine the concentration of lysozyme (Lys) via Differential Pulse Voltammetry (DPV) of the generated enzyme reaction product, 1-naphthol. Using this strategy, a wide detection range from 5 fM to 5 nM was obtained for a target lysozyme, with a detection limit of 4.3 fM. The control experiments were carried out by using bovine serum albumin (BSA), cytochrome c and casein. The results showed that the proposed biosensor had good specificity, stability and reproducibility for lysozyme analysis. In addition, the biosensor was applied for detecting lysozyme in spiked wine samples, and very good recovery rates were obtained in the range from 95.2 to 102.0% for lysozyme detection. This implies that the proposed sandwich biosensor is a promising analytical tool for the analysis of lysozyme in real samples.

  19. Sensitive detection of enteropathogenic E. coli using a bfpA gene-based electrochemical sensor

    International Nuclear Information System (INIS)

    Zhang, Wei; Luo, Caihui; Zhong, Liang; Zhao, Dan; Ding, Shijia; Nie, Shichang; Cheng, Wei

    2013-01-01

    We have developed a sensitive assay for enteropathogenic E. coli (EPEC) by integrating DNA extraction, specific polymerase chain reaction (PCR) and DNA detection using an electrode modified with the bundle-forming pilus (bfpA) structural gene. The PCR amplified products are captured on the electrode and hybridized with biotinylated detection probes to form a sandwich hybrid containing two biotinylated detection probes. The sandwich hybridization structure significantly combined the numerous streptavidin alkaline phosphatase on the electrode by biotin-streptavidin connectors. Electrochemical readout is based on dual signal amplification by both the sandwich hybridization structure and the enzyme. The electrode can satisfactorily discriminate complementary and mismatched oligonucleotides. Under optimal conditions, synthetic target DNA can be detected in the 1 pM to 10 nM concentration range, with a detection limit of 0.3 pM. EPEC can be quantified in the 10 to 10 7 CFU mL −1 levels within 3.5 h. The method also is believed to present a powerful platform for the screening of pathogenic microorganisms in clinical diagnostics, food safety and environmental monitoring. (author)

  20. New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer

    Directory of Open Access Journals (Sweden)

    Mouffouk F

    2017-04-01

    Full Text Available Fouzi Mouffouk,1 Sihem Aouabdi,2 Entesar Al-Hetlani,1 Hacene Serrai,3 Tareq Alrefae,4 Liaohai Leo Chen5 1Department of Chemistry, Kuwait University, Safat, Kuwait; 2King Abdullah International Medical Research Center (KAIMRC, Jeddah, Kingdom of Saudi Arabia; 3Department of Radiology and Nuclear Medicine, University Hospital of Gent (UZG, Gent, Belgium; 4Department of Physics, Kuwait University, Safat, Kuwait; 5Surgical Precision Research Lab. Department of Surgery, University of Illinois at Chicago, IL, USA Abstract: Screening and early diagnosis are the key factors for the reduction of mortality rate and treatment cost of cancer. Therefore, sensitive and selective methods that can reveal the low abundance of cancer biomarkers in a biological sample are always desired. Here, we report the development of a novel electrochemical biosensor for early detection of breast cancer by using bioconjugated self-assembled pH-responsive polymeric micelles. The micelles were loaded with ferrocene molecules as “tracers” to specifically target cell surface-associated epithelial mucin (MUC1, a biomarker for breast and other solid carcinoma. The synthesis of target-specific, ferrocene-loaded polymeric micelles was confirmed, and the resulting sensor was capable of detecting the presence of MUC1 in a sample containing about 10 cells/mL. Such a high sensitivity was achieved by maximizing the loading capacity of ferrocene inside the polymeric micelles. Every single event of binding between the antibody and antigen was represented by the signal of hundreds of thousands of ferrocene molecules that were released from the polymeric micelles. This resulted in a significant increase in the intensity of the ferrocene signal detected by cyclic voltammetry. Keywords: electrochemical immunoassay, polymeric nanoparticles, breast cancer biomarkers, biosensors 

  1. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    Science.gov (United States)

    Munshi, Akash S; Martin, R Scott

    2016-02-07

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.

  2. Corrosion detection of carbon steel in water/oil two phases environment by electrochemical noise analysis

    International Nuclear Information System (INIS)

    Gusmano, G.; Montesperelli, G.; De Grandis, A.

    1998-01-01

    The aim of this paper is to demonstrate the effectiveness of the electrochemical noise analysis to detect the onset of corrosion phenomena in a very high resistivity medium. Tests were carried out on carbon steel electrodes immersed in a water/mineral oil two phases environment with high concentration of CO 2 , different aqueous/organic phase ratio, sulphide content between 0 and 0.5 g/l and pH between 1 and 5. The evolution of corrosion phenomena were followed by collecting current and potential noise between three nominally identical electrodes. The noise data were analysed in the time and in the frequency domain. In spite of a great loss of sensitivity of the method with respect to tests performed in aqueous solution, the data indicate a good agreement between the standard deviations and the power level of power spectra density (PSD) of current and potential noise signals and corrosion rates by means of weight loss. The values of the PSD slope, indicate the form of corrosion. The effect of water/oil ratio, sulphide concentration and pH on the corrosion rate was determined. Finally two methods to increase the sensitivity of the electrochemical noise are proposed. (orig.)

  3. Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique

    International Nuclear Information System (INIS)

    Manjunatha, Revanasiddappa; Nagaraju, Dodahalli Hanumantharayudu; Suresh, Gurukar Shivappa; Melo, Jose Savio; D'Souza, Stanislaus F.; Venkatesha, Thimmappa Venkatarangaiah

    2011-01-01

    A selective electrochemical method is fabricated via layer-by-layer (LBL) method using both positively and negatively charged multi walled carbon nanotubes (MWCNTs) on poly (diallyldimetheylammonium chloride) (PDDA)/poly styrene sulfonate (PSS) modified graphite electrode, for the determination of acetaminophen (ACT) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA). The modified electrode was characterized by cyclic voltammetry (CV) electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Experimental conditions such as pH, accumulation potential and time, effect of potential sweep rates and interferents were studied. In CV well defined peaks for AA, ACT and DA are obtained at 24, 186 and 374 mV, respectively. The separations of peaks were 210, 188 and 398 mV between AA and DA, DA and ACT and AA and ACT, respectively. The diffusion coefficient was calculated by chronocoulometric. Chronoamperometric studies showed the linear relationship between oxidation peak current and concentration of ACT in the range 25-400 μM (R = 0.9991). The detection limit was 5 x 10 -7 mol/L. The proposed method gave satisfactory results in the determination of ACT in pharmaceutical and human serum samples.

  4. Towards an Electrochemical Immunosensor System with Temperature Control for Cytokine Detection.

    Science.gov (United States)

    Metzner, Julia; Luckert, Katrin; Lemuth, Karin; Hämmerle, Martin; Moos, Ralf

    2018-04-24

    The cytokine interleukin-13 (IL-13) plays a major role in airway inflammation and is a target of new anti-asthmatic drugs. Hence, IL-13 determination could be interesting in assessing therapy success. Thus, in this work an electrochemical immunosensor for IL-13 was developed and integrated into a fluidic system with temperature control for read-out. Therefore, two sets of results are presented. First, the sensor was set up in sandwich format on single-walled carbon nanotube electrodes and was read out by applying the hydrogen peroxide⁻hydroquinone⁻horseradish peroxidase (HRP) system. Second, a fluidic system was built up with an integrated heating function realized by Peltier elements that allowed a temperature-controlled read-out of the immunosensor in order to study the influence of temperature on the amperometric read-out. The sensor was characterized at the temperature optimum of HRP at 30 °C and at 12 °C as a reference for lower performance. These results were compared to a measurement without temperature control. At the optimum operation temperature of 30 °C, the highest sensitivity (slope) was obtained compared to lower temperatures and a limit of detection of 5.4 ng/mL of IL-13 was calculated. Taken together, this approach is a first step towards an automated electrochemical immunosensor platform and shows the potential of a temperature-controlled read-out.

  5. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers.

  6. Electrochemical Immunosensor for the Detection of Aflatoxin B1 in Palm Kernel Cake and Feed Samples

    Directory of Open Access Journals (Sweden)

    Farah Asilah Azri

    2017-11-01

    Full Text Available Palm kernel cake (PKC is the solid residue following oil extraction of palm kernels and useful to fatten animals either as a single feed with only minerals and vitamins supplementation, or mixed with other feedstuffs such as corn kernels or soy beans. The occurrence of mycotoxins (aflatoxins, ochratoxins, zearalenone, and fumonisins in feed samples affects the animal’s health and also serves as a secondary contamination to humans via consumption of eggs, milk and meats. Of these, aflatoxin B1 (AFB1 is the most toxically potent and a confirmed carcinogen to both humans and animals. Methods such as High Performance Liquid Chromatography (HPLC and Liquid Chromatography–Mass Spectrometry (LC-MS/MS are common in the determination of mycotoxins. However, these methods usually require sample pre-treatment, extensive cleanup and skilled operator. Therefore, in the present work, a rapid method of electrochemical immunosensor for the detection of AFB1 was developed based on an indirect competitive enzyme-linked immunosorbent assay (ELISA. Multi-walled carbon nanotubes (MWCNT and chitosan (CS were used as the electrode modifier for signal enhancement. N-ethyl-N′-(3-dimethylaminopropyl-carbodiimide (EDC and N-hydroxysuccinimide (NHS activated the carboxyl groups at the surface of nanocomposite for the attachment of AFB1-BSA antigen by covalent bonding. An indirect competitive reaction occurred between AFB1-BSA and free AFB1 for the binding site of a fixed amount of anti-AFB1 antibody. A catalytic signal based on horseradish peroxidase (HRP in the presence of hydrogen peroxide (H2O2 and 3,3′,5,5′-tetramethylbenzidine (TMB mediator was observed as a result of attachment of the secondary antibody to the immunoassay system. As a result, the reduction peak of TMB(Ox was measured by using differential pulse voltammetry (DPV analysis. Based on the results, the electrochemical surface area was increased from 0.396 cm2 to 1.298 cm2 due to the electrode

  7. Electrochemical Immunosensor for the Detection of Aflatoxin B₁ in Palm Kernel Cake and Feed Samples.

    Science.gov (United States)

    Azri, Farah Asilah; Selamat, Jinap; Sukor, Rashidah

    2017-11-30

    Palm kernel cake (PKC) is the solid residue following oil extraction of palm kernels and useful to fatten animals either as a single feed with only minerals and vitamins supplementation, or mixed with other feedstuffs such as corn kernels or soy beans. The occurrence of mycotoxins (aflatoxins, ochratoxins, zearalenone, and fumonisins) in feed samples affects the animal's health and also serves as a secondary contamination to humans via consumption of eggs, milk and meats. Of these, aflatoxin B₁ (AFB₁) is the most toxically potent and a confirmed carcinogen to both humans and animals. Methods such as High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LC-MS/MS) are common in the determination of mycotoxins. However, these methods usually require sample pre-treatment, extensive cleanup and skilled operator. Therefore, in the present work, a rapid method of electrochemical immunosensor for the detection of AFB₁ was developed based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). Multi-walled carbon nanotubes (MWCNT) and chitosan (CS) were used as the electrode modifier for signal enhancement. N -ethyl- N '-(3-dimethylaminopropyl)-carbodiimide (EDC) and N -hydroxysuccinimide (NHS) activated the carboxyl groups at the surface of nanocomposite for the attachment of AFB₁-BSA antigen by covalent bonding. An indirect competitive reaction occurred between AFB₁-BSA and free AFB₁ for the binding site of a fixed amount of anti-AFB₁ antibody. A catalytic signal based on horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H₂O₂) and 3,3',5,5'-tetramethylbenzidine (TMB) mediator was observed as a result of attachment of the secondary antibody to the immunoassay system. As a result, the reduction peak of TMB (Ox) was measured by using differential pulse voltammetry (DPV) analysis. Based on the results, the electrochemical surface area was increased from 0.396 cm² to 1.298 cm² due to the

  8. Nanomaterial-based Electrochemical Sensors for the Detection of Glucose and Cholesterol

    Science.gov (United States)

    Ahmadalinezhad, Asieh

    Electrochemical detection methods are highly attractive for the monitoring of glucose, cholesterol, cancer, infectious diseases, and biological warfare agents due to their low cost, high sensitivity, functionality despite sample turbidity, easy miniaturization via microfabrication, low power requirements, and a relatively simple control infrastructure. The development of implantable biosensors is laden with great challenges, which include longevity and inherent biocompatibility, coupled with the continuous monitoring of analytes. Deficiencies in any of these areas will necessitate their surgical replacement. In addition, random signals arising from non-specific adsorption events can cause problems in diagnostic assays. Hence, a great deal of effort has been devoted to the specific control of surface structures. Nanotechnology involves the creation and design of structures with at least one dimension that is below 100 nm. The optical, magnetic, and electrical properties of nanostructures may be manipulated by altering their size, shape, and composition. These attributes may facilitate improvements in biocompatibility, sensitivity and the specific attachment of biomaterials. Thus, the central theme of this dissertation pertains to highlighting the critical roles that are played by the morphology and intrinsic properties of nanomaterials when they are applied in the development of electrochemical biosensors. For this PhD project, we initially designed and fabricated a novel amperometric glucose biosensor based on the immobilization of glucose oxidase (GOx) on a Prussian blue modified nanoporous gold surface, which exhibited a rapid response and a low detection limit of 2.5 microM glucose. The sensitivity of the biosensor was found to be very high (177 microA/mM) and the apparent Michaelis--Menten constant was calculated to be 2.1 mM. Our study has demonstrated that nanoporous gold provides an excellent matrix for enzyme immobilization. To adopt these advanced

  9. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages.

    Science.gov (United States)

    Jampasa, Sakda; Siangproh, Weena; Duangmal, Kiattisak; Chailapakul, Orawon

    2016-11-01

    A simple and highly sensitive electrochemical sensor based on an electrochemically reduced graphene oxide-modified screen-printed carbon electrode (ERGO-SPCE) for the simultaneous determination of sunset yellow (SY) and tartrazine (TZ) was proposed. An ERGO film was coated onto the electrode surface using a cyclic voltammetric method and then characterized by scanning electron microscopy (SEM). In 0.1M phosphate buffer at a pH of 6, the two oxidation peaks of SY and TZ appeared separately at 0.41 and 0.70V, respectively. Surprisingly, the electrochemical response remarkably increased approximately 90- and 20-fold for SY and TZ, respectively, using the modified electrode in comparison to the unmodified electrode. The calibration curves exhibited linear ranges from 0.01 to 20.0µM for SY and from 0.02 to 20.0µM for TZ. The limits of detection were found to be 0.50 and 4.50nM (at S/N=3) for SY and TZ, respectively. Furthermore, this detection platform provided very high selectivity for the measurement of both colorants. This electrochemical sensor was successfully applied to determine the amount of SY and TZ in commercial beverages. Comparison of the results obtained from this proposed method to those obtained by an in-house standard technique proved that this developed method has good agreement in terms of accuracy for practical applications. This sensor offers an inexpensive, rapid and sensitive determination. The proposed system is therefore suitable for routine analysis and should be an alternative method for the analysis of food colorants. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Molecularly imprinted polymer based electrochemical detection of L-cysteine at carbon paste electrode.

    Science.gov (United States)

    Aswini, K K; Vinu Mohan, A M; Biju, V M

    2014-04-01

    A methacrylic acid (MAA) based molecularly imprinted polymer (MIP) modified carbon paste electrode (CPE) was developed for electrochemical detection of L-cysteine (Cys). Characterisation of MIP was done with FTIR and the modified electrode with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). CV, DPV and impedance analysis demonstrated that the modified electrode is responsive towards the target molecule. The optimum percentage composition of MIP for MIP/CPE and the effect of pH towards the electrode response for Cys were studied. The detection of Cys in the range of 2×10(-8) to 18×10(-8)M at MIP/CPE was monitored by DPV with a limit of detection of 9.6nM and R(2) of 0.9974. Also, various physiological interferents such as ascorbic acid, L-tryptophan, D-glucose, D-cysteine and L-cysteine were found to have little effect on DPV response at MIP/CPE. The utility of the electrode was proved by the effective detection of Cys from tap water and human blood plasma samples with reproducible results. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.

    Science.gov (United States)

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2017-01-01

    A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.

  12. Detection of greenhouse gas precursors from diesel engines using electrochemical and photoacoustic sensors.

    Science.gov (United States)

    Mothé, Geórgia; Castro, Maria; Sthel, Marcelo; Lima, Guilherme; Brasil, Laisa; Campos, Layse; Rocha, Aline; Vargas, Helion

    2010-01-01

    Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO(2) Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NO(x) and SO(2) from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel) at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range.

  13. Detection of bovine mastitis pathogens by loop-mediated isothermal amplification and an electrochemical DNA chip.

    Science.gov (United States)

    Kawai, Kazuhiro; Inada, Mika; Ito, Keiko; Hashimoto, Koji; Nikaido, Masaru; Hata, Eiji; Katsuda, Ken; Kiku, Yoshio; Tagawa, Yuichi; Hayashi, Tomohito

    2017-12-22

    Bovine mastitis causes significant economic losses in the dairy industry. Effective prevention of bovine mastitis requires an understanding of the infection status of a pathogenic microorganism in a herd that has not yet shown clinical signs of mastitis and appropriate treatment specific for the pathogenic microorganism. However, bacterial identification by culture has drawbacks in that the sensitivity may be low and the procedure can be complex. In this study, we developed a genetic detection method to identify mastitis pathogens using a simple and highly sensitive electrochemical DNA chip which can specifically detect bacterial DNA in milk specimens. First, we selected microorganisms belonging to 12 families and/or genera associated with mastitis for which testing should be performed. Next, we optimized the conditions for amplifying microorganism DNA by loop-mediated isothermal amplification (LAMP) using 32 primers and the use of a DNA chip capable of measuring all pathogens simultaneously. Sample detection could be completed in just a few hours using this method. Comparison of the results obtained with our DNA chip method and those obtained by bacterial culture verified that when the culture method was set to 100%, the total positive concordance rate of the DNA chip was 85.0% and the total negative concordance rate was 86.9%. Furthermore, the proposed method allows both rapid and highly sensitive detection of mastitis pathogens. We believe that this method will contribute to the development of an effective mastitis control program.

  14. Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms

    Science.gov (United States)

    Rahi, Amid; Sattarahmady, Naghmeh; Heli, Hossein

    2015-12-01

    Gold nanoribbons covered by gold nanoblooms were sonoelectrodeposited on a polycrystalline gold surface at -1800 mV (vs. AgCl) with the assistance of ultrasound and co-occurrence of the hydrogen evolution reaction. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and fabrication of a genosensor, and the process of immobilization and hybridization was detected by electrochemical methods, using methylene blue as a redox marker. The proposed method for detection of the complementary sequence, sequences with base-mismatched (one-, two- and three-base mismatches), and the sequence of non-complementary sequence was assayed. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples without polymerase chain reactions (PCR). The genosensor could detect the complementary sequence with a calibration sensitivity of 0.40 μA dm3 mol-1, a linear concentration range of 10 zmol dm-3 to 10 pmol dm-3, and a detection limit of 1.71 zmol dm-3.

  15. Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events.

    Science.gov (United States)

    Yoo, Min-Sang; Shin, Minguk; Kim, Younghun; Jang, Min; Choi, Yoon-E; Park, Si Jae; Choi, Jonghoon; Lee, Jinyoung; Park, Chulhwan

    2017-05-01

    We developed a single-walled carbon nanotubes (SWCNTs)-based electrochemical biosensor for the detection of Bacillus subtilis, one of the microorganisms observed in Asian dust events, which causes respiratory diseases such as asthma and pneumonia. SWCNTs plays the role of a transducer in biological antigen/antibody reaction for the electrical signal while 1-pyrenebutanoic acid succinimidyl ester (1-PBSE) and ant-B. subtilis were performed as a chemical linker and an acceptor, respectively, for the adhesion of target microorganism in the developed biosensor. The detection range (10 2 -10 10  CFU/mL) and the detection limit (10 2  CFU/mL) of the developed biosensor were identified while the response time was 10 min. The amount of target B. subtilis was the highest in the specificity test of the developed biosensor, compared with the other tested microorganisms (Staphylococcus aureus, Flavobacterium psychrolimnae, and Aquabacterium commune). In addition, target B. subtilis detected by the developed biosensor was observed by scanning electron microscope (SEM) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Detection of Greenhouse Gas Precursors from Diesel Engines Using Electrochemical and Photoacoustic Sensors

    Directory of Open Access Journals (Sweden)

    Aline Rocha

    2010-11-01

    Full Text Available Atmospheric pollution is one of the worst threats to modern society. The consequences derived from different forms of atmospheric pollution vary from the local to the global scale, with deep impacts on climate, environment and human health. Several gaseous pollutants, even when present in trace concentrations, play a fundamental role in important processes that occur in atmosphere. Phenomena such as global warming, photochemical smog formation, acid rain and the depletion of the stratospheric ozone layer are strongly related to the increased concentration of certain gaseous species in the atmosphere. The transport sector significantly produces atmospheric pollution, mainly when diesel oil is used as fuel. Therefore, new methodologies based on selective and sensitive gas detection schemes must be developed in order to detect and monitor pollutant gases from this source. In this work, CO2 Laser Photoacoustic Spectroscopy was used to evaluate ethylene emissions and electrochemical analyzers were used to evaluate the emissions of CO, NOx and SO2 from the exhaust of diesel powered vehicles (rural diesel with 5% of biodiesel, in this paper called only diesel at different engine rotation speeds. Concentrations in the range 6 to 45 ppmV for ethylene, 109 to 1,231 ppmV for carbon monoxide, 75 to 868 ppmV for nitrogen oxides and 3 to 354 ppmV for sulfur dioxide were obtained. The results indicate that the detection techniques used were sufficiently selective and sensitive to detect the gaseous species mentioned above in the ppmV range.

  17. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Ying; Wang, Jun; Liu, Guodong; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2008-06-15

    We present a nanoparticle (NP) label/immunochromatographic electrochemical biosensor (IEB) for rapid and sensitive detection of prostate-specific antigen (PSA) in human serum. This IEB integrates the immunochromatographic strip with the electrochemical detector for transducing quantitative signals. The NP label, made of CdSe@ZnS, serves as a signal-amplifier vehicle. A sandwich immunoreaction was performed on the immunochromatographic strip. The captured NP labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane of the test zone. Experimental parameters (e.g., immunoreaction time, the amount of anti-PSA-NP conjugations applied) and electrochemical detection conditions (e.g., preconcentration potential and time) were optimized using this biosensor for PSA detection. The analytical performance of this biosensor was evaluated with serum PSA samples according to the “figure-of-merits” (e.g., dynamic range, reproducibility, and detection limit). The results were validated with enzyme-linked immunosorbent assay (ELISA) and show high consistency. It is found that this biosensor is very sensitive with the detection limit of 0.02 ng/mL PSA and is quite reproducible. This method is rapid, clinically accurate, and less expensive than other diagnosis tools for PSA; therefore, this IEB coupled with a portable electrochemical analyzer shows great promise for simple, sensitive, quantitative point-of-care testing of disease-related protein biomarkers.

  18. An integrated electrochemical device based on immunochromatographic test strip and enzyme labels for sensitive detection of disease-related biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhexiang; Wang, Jun; Wang, Hua; Li, Yao Q.; Lin, Yuehe

    2012-05-30

    A novel electrochemical biosensing device that integrates an immunochromatographic test strip and a screen-printed electrode (SPE) connected to a portable electrochemical analyzer was presented for rapid, sensitive, and quantitative detection of disease-related biomarker in human blood samples. The principle of the sensor is based on sandwich immunoreactions between a biomarker and a pair of its antibodies on the test strip, followed by highly sensitive square-wave voltammetry (SWV) detection. Horseradish peroxidase (HRP) was used as a signal reporter for electrochemical readout. Hepatitis B surface antigen (HBsAg) was employed as a model protein biomarker to demonstrate the analytical performance of the sensor in this study. Some critical parameters governing the performance of the sensor were investigated in detail. The sensor was further utilized to detect HBsAg in human plasma with an average recovery of 91.3%. In comparison, a colorimetric immunochromatographic test strip assay (ITSA) was also conducted. The result shows that the SWV detection in the electrochemical sensor is much more sensitive for the quantitative determination of HBsAg than the colorimetric detection, indicating that such a sensor is a promising platform for rapid and sensitive point-of-care testing/screening of disease-related biomarkers in a large population

  19. Integrating Paper Chromatography with Electrochemical Detection for the Trace Analysis of TNT in Soil

    Directory of Open Access Journals (Sweden)

    Patrick Ryan

    2015-07-01

    Full Text Available We report on the development of an electrochemical probe for the trace analysis of 2,4,6-trinitrotoluene (TNT in soil samples. The probe is a combination of graphite electrodes, filter paper, with ethylene glycol and choline chloride as the solvent/electrolyte. Square wave chromatovoltammograms show the probes have a sensitivity for TNT of 0.75 nA/ng and a limit of detection of 100 ng. In addition, by taking advantage of the inherent paper chromatography step, TNT can be separated in both time and cathodic peak potential from 4-amino-dinitrotolene co-spotted on the probe or in soil samples with the presence of methyl parathion as a possible interferent.

  20. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Rivas, G.; Ozsoz, M.; Grant, D.H.; Cai, X.; Parrado, C. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-04-01

    An electrochemical biosensor protocol for the detection of radiation-induced DNA damage is described. The procedure employs a dsDNA-coated screen-printed electrode and relies on changes in the guanine-DNA oxidation signal upon exposure to ultraviolet radiation. The decreased signal is ascribed primarily to conformational changes in the DNA and to the photoconversion of the guanine-DNA moiety to a nonelectroactive monomeric base product. Factors influencing the response of these microfabricated DNA sensors, such as irradiation time, wavelength, and distance, are explored, and future prospects are discussed. Similar results are given for the use of bare strip electrodes in connection with irradiated DNA solutions. 8 refs., 4 figs.

  1. Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media

    International Nuclear Information System (INIS)

    Stuart, E J E; Tschulik, K; Compton, R G; Omanović, D; Cullen, J T; Jurkschat, K; Crossley, A

    2013-01-01

    The electrochemistry of silver nanoparticles contained in a consumer product has been studied. The redox properties of silver particles in a commercially available disinfectant cleaning spray were investigated via cyclic voltammetry before particle-impact voltammetry was used to detect single particles in both a typical aqueous electrolyte and authentic seawater media. We show that particle-impact voltammetry is a promising method for the detection of nanoparticles that have leached into the environment from consumer products, which is an important development for the determination of risks associated with the incorporation of nanotechnology into everyday products. (paper)

  2. Optical and electrochemical detection of a verotoxigenic E. coli gene using DNAzyme-labeled stem-loops

    Directory of Open Access Journals (Sweden)

    Gloria Longinotti

    2017-12-01

    Full Text Available The activity of a peroxidase-mimicking DNAzyme was optimized to be used as a catalytic label in a stem-loop genosensor construction for quantifying the gene sequence Shiga-like toxin I of verotoxigenic E. coli. Experimental conditions such as pH, buffer composition, potassium ion concentration, and hemin-to-oligonucleotides ratio, were analyzed to maximize optical and electrochemical responses using microvolumes. Different stem-loop constructions were evaluated to obtain the optimum response against the target concentration. Linear ranges of 0.05-0.5 µM and limits of detection of 174 nM and 144 nM were estimated for the optical and electrochemical measurements, respectively. Selectivity was proved by assaying other verotoxigenic, enterotoxigenic and enteroinvasive sequences. The results show that, if a combination of small-volume electrochemical cells and low-cost untreated screen-printed electrodes with a relatively high geometric area is used, electrochemical measurements present similar sensitivity and limits of detection to the more usual optical ones, allowing the development of low-cost electrochemical biosensors based on the use of soluble DNAzymes as labels.

  3. An electrochemical sensor for sodium dodecyl sulfate detection based on anion exchange using eosin Y/polyethyleneimine modified electrode.

    Science.gov (United States)

    Hao, Xia; Lei, Jing Lei; Li, Nian Bing; Luo, Hong Qun

    2014-12-10

    A simple and effective method for the detection of electrochemically inactive sodium dodecyl sulfate (SDS) has been designed, based on different binding affinity of polyethyleneimine (PEI) toward electrochemically active eosin Y and electrochemically inactive SDS. The stronger binding affinity of the PEI toward SDS than eosin Y results in the decrease of the redox peak current of surface confined eosin Y and provides a quantitative readout for the SDS. The difference in value of the cathodic peak current showed a linear relationship with SDS concentration in a concentration range from 1 to 40 μg mL(-1), and a detection limit of 0.9 μg mL(-1) for SDS was obtained. Furthermore, the method has been successfully applied to the detection of SDS in real samples. The developed approach provided a simple and reliable detection for SDS and might have potential applications in electrochemical methods for inactive molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Generation of Small Single Domain Nanobody Binders for Sensitive Detection of Testosterone by Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Li, Guanghui; Zhu, Min; Ma, Lu; Yan, Junrong; Lu, Xiaoling; Shen, Yanfei; Wan, Yakun

    2016-06-08

    A phage display library of variable domain of the heavy chain only antibody or nanobody (Nb) was constructed after immunizing a bactrian camel with testosterone. With the smaller molecular size (15 kDa), improved solubility, good stability, high affinity, specificity, and lower immunogenicity, Nbs are a promising tool in the next generation of diagnosis and medical applications. Testosterone is a reproductive hormone, playing an important role in normal cardiac function and being the highly predictive marker for many diseases. Herein, a simple and sensitive immunosensor based on electrochemical impedance spectroscopy (EIS) and Nbs was successfully developed for the determination of testosterone. We successfully isolated the antitestosterone Nbs from an immune phage display library. Moreover, one of the Nbs was biotinylated according to in vivo BirA system, which showed the highest production yield and the most stable case. Further, the EIS immunosensor was set up for testosterone detection by applying the biotinylated antitestosterone Nb. As a result, the biosensor exhibited a linear working range from 0.05 to 5 ng mL(-1) with a detection limit of 0.045 ng mL(-1). In addition, the proposed immunosensor was successfully applied in determining testosterone in serum samples. In conclusion, the proposed immunosensor revealed high specificity of testosterone detection and showed as a potential approach for sensitive and accurate diagnosis of testosterone.

  5. A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine-graphene nanocomposites.

    Science.gov (United States)

    Zhao, Zhen; Chen, Hongda; Ma, Lina; Liu, Dianjun; Wang, Zhenxin

    2015-08-21

    It is important to develop methods to determine cylindrospermopsin (CYN) at trace levels since CYN is a kind of widespread cyanobacterial toxin in water sources. In this study, a label-free impedimetric aptasensor has been fabricated for detecting CYN. In this case, the amino-substituted aptamer of CYN was covalently grafted onto the surface of the thionine-graphene (TH-G) nanocomposite through the cross-linker glutaraldehyde (GA). The reaction of the aptamer with CYN was monitored by electrochemical impedance spectroscopy because the CYN induced conformation change of the aptamer can cause a remarkable decrease of the electron transfer resistance. Under optimum conditions, the aptasensor exhibits high sensitivity and a low detection limit for CYN determination. The CYN can be quantified in a wide range of 0.39 to 78 ng mL(-1) with a good linearity (R(2) = 0.9968) and a low detection limit of 0.117 ng mL(-1). In addition, the proposed aptasensor displays excellent stability, reusability and reproducibility.

  6. Simultaneous determination of quinolones for veterinary use by high-performance liquid chromatography with electrochemical detection.

    Science.gov (United States)

    Rodríguez Cáceres, M I; Guiberteau Cabanillas, A; Galeano Díaz, T; Martínez Cañas, M A

    2010-02-01

    A selective method based on high-performance liquid chromatography with electrochemical detection (HPLC-ECD) has been developed to enable simultaneous determination of three fluoroquinolones (FQs), namely danofloxacin (DANO), difloxacin (DIFLO) and sarafloxacin (SARA). The fluoroquinolones are separated on a Novapack C-18 column and detected in a high sensitivity amperometric cell at a potential of +0.8 V. Solid-phase extraction was used for the extraction of the analytes in real samples. The range of concentration examined varied from 10 to 150 ng g(-1) for danofloxacin, from 25 to 100 ng g(-1) for sarafloxacin and from 50 to 315 ng g(-1) for difloxacin, respectively. The method presents detection limits under 10 ng g(-1) and recoveries around 90% for the three analytes have been obtained in the experiments with fortified samples. This HPLC-ECD approach can be useful in the routine analysis of antibacterial residues being less expensive and less complicated than other more powerful tools as hyphenated techniques. 2009 Elsevier B.V. All rights reserved.

  7. Development of an Electrochemical Biosensor for the Detection of Aflatoxin M1 in Milk

    Directory of Open Access Journals (Sweden)

    Jean-Louis Marty

    2010-10-01

    Full Text Available We have developed an electrochemical immunosensor for the detection of ultratrace amounts of aflatoxin M1 (AFM1 in food products. The sensor was based on a competitive immunoassay using horseradish peroxidase (HRP as a tag. Magnetic nanoparticles coated with antibody (anti-AFM1 were used to separate the bound and unbound fractions. The samples containing AFM1 were incubated with a fixed amount of antibody and tracer [AFM1 linked to HRP (conjugate] until the system reached equilibrium. Competition occurs between the antigen (AFM1 and the conjugate for the antibody. Then, the mixture was deposited on the surface of screen-printed carbon electrodes, and the mediator [5-methylphenazinium methyl sulphate (MPMS] was added. The enzymatic response was measured amperometrically. A standard range (0, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.3, 0.4 and 0.5 ppb of AFM1-contaminated milk from the ELISA kit was used to obtain a standard curve for AFM1. To test the detection sensitivity of our sensor, samples of commercial milk were supplemented at 0.01, 0.025, 0.05 or 0.1 ppb with AFM1. Our immunosensor has a low detection limit (0.01 ppb, which is under the recommended level of AFM1 [0.05 µg L-1 (ppb], and has good reproducibility.

  8. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.

    Science.gov (United States)

    Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan

    2016-12-15

    Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  10. A novel electrochemical approach for nuclear factor kappa B detection based on triplex DNA and gold nanoparticles

    International Nuclear Information System (INIS)

    Shen Min; Yang Mei; Li Hao; Liang Zhiqiang; Li Genxi

    2012-01-01

    Highlights: ► A simple, selective, and sensitive electrochemical NF-κB sensor was presented. ► NF-κB was precisely qualified by chronocoulometry with a detection limit of 0.13 nM. ► NF-κB was also successfully detected in contaminated samples by our approach. - Abstract: The transcription factor nuclear factor kappa B (NF-κB) is always a standard for inducible transcription factors, while nearly all NF-κB studies require the measurement of the level of activated NF-κB in cells. Herein we report a novel electrochemical approach for accurate detection of NF-κB with the help of triplex DNA and gold nanoparticles (AuNPs). Firstly, double-stranded DNA (dsDNA) molecules are self-assembled on the surface of a gold electrode. Then, AuNPs are functionalized with triplex-forming oligonucleotide (TFO). Since TFO may act with the dsDNA to form triplex DNA, the TFO functionalized on the AuNPs surfaces will bind with the dsDNA immobilized on the electrode surface, bringing large amounts of electrochemical compounds [Ru(NH 3 ) 6 ] 3+ close to the electrode to generate an intense electrochemical signal. However, in the presence of NF-κB, the protein will capture and bind with the dsDNA to replace TFO–AuNPs, resulting in significant decrease of electrochemical signal of [Ru(NH 3 ) 6 ] 3+ . By using this “on-off” strategy, NF-κB has been quantified in the range from 0.4 to 12.0 nM, with a detection limit of 0.13 nM. This approach has also been successfully used to detect NF-κB in contaminated samples with high specificity.

  11. A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection

    International Nuclear Information System (INIS)

    Guo, Yuanyuan; Su, Shao; Wei, Xinpan; Zhong, Yiling; Su, Yuanyuan; He, Yao; Huang, Qing; Fan, Chunhai

    2013-01-01

    We herein present a new kind of silicon-based electrochemical sensor using a gold nanoparticles-decorated silicon wafer (AuNPs@Si) as a high-performance electrode, which is facilely prepared via in situ AuNPs growth on a silicon wafer. Particularly significantly, the resultant electrochemical sensor is efficacious for label-free DNA detection with high sensitivity due to the unique merits of the prepared silicon-based electrode. Typically, DNA at remarkably low concentrations (1–10 fM) could be readily detected without requiring additional signal-amplification procedures, which is better than or comparable to the lowest DNA concentration ever detected via well-studied signal-amplification-assisted electrochemical sensors. Moreover, the silicon-based sensor features high specificity, allowing unambiguous discrimination of single-based mismatches. We further show that real-time DNA assembly is readily monitored via recording the intensity changes of current signals due to the robust thermal stability of the silicon-based electrode. The unprecedented advantages of the silicon-based electrochemical sensor would offer new opportunities for myriad sensing applications. (paper)

  12. Nanoparticle-functionalized nucleic acids: A strategy for amplified electrochemical detection of some single-base mismatches

    Energy Technology Data Exchange (ETDEWEB)

    Ahangar, Laleh Enayati [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mehrgardi, Masoud A., E-mail: m.mehrgardi@gmail.co [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-02-15

    In this study, nanoparticle-functionalized nucleic acids were employed to improve the sensitivity of electrochemical DNA biosensors that make capable them to detect different types of single-base mismatches (SBMs), including thermodynamically stable ones. The present biosensor was constructed by the immobilization of platinum nanoparticles (Pt-NPs) on the surface of a carbon paste electrode (CPE) via SH-functionalized DNA. A redox probe of 2-mercapto-1-methyl imidazole (MMI), which has different electrochemical behavior on Pt-NP and CPE, was used. This behavior helps to overcome the pinhole effect in DNA hybridization biosensors. Additionally, in the present biosensor, the positioning of the redox probe under the SBM in DNA, which decreases the sensitivity of most DNA biosensors, did not contribute to the observed electrochemical signal.

  13. Nanoparticle-functionalized nucleic acids: A strategy for amplified electrochemical detection of some single-base mismatches

    International Nuclear Information System (INIS)

    Ahangar, Laleh Enayati; Mehrgardi, Masoud A.

    2011-01-01

    In this study, nanoparticle-functionalized nucleic acids were employed to improve the sensitivity of electrochemical DNA biosensors that make capable them to detect different types of single-base mismatches (SBMs), including thermodynamically stable ones. The present biosensor was constructed by the immobilization of platinum nanoparticles (Pt-NPs) on the surface of a carbon paste electrode (CPE) via SH-functionalized DNA. A redox probe of 2-mercapto-1-methyl imidazole (MMI), which has different electrochemical behavior on Pt-NP and CPE, was used. This behavior helps to overcome the pinhole effect in DNA hybridization biosensors. Additionally, in the present biosensor, the positioning of the redox probe under the SBM in DNA, which decreases the sensitivity of most DNA biosensors, did not contribute to the observed electrochemical signal.

  14. Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection.

    Science.gov (United States)

    Ferry, Barbara; Gifu, Elena-Patricia; Sandu, Ioana; Denoroy, Luc; Parrot, Sandrine

    2014-03-01

    Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions. Noradrenaline, adrenaline, serotonin, dopamine and its metabolite 3-methoxytyramine were separated in 1μL of injected sample volume; they were detected above concentrations of 0.5-1nmol/L, with 2.1-9.5% accuracy and intra-assay repeatability equal to or less than 6%. The final method was applied to very low volume dialysates from rat brain containing monoamine traces. The study demonstrates that capillary UHPLC with electrochemical detection is suitable for monitoring dialysate monoamines collected at high sampling rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Efficient alpha particle detection by CR-39 applying 50 Hz-HV electrochemical etching method

    International Nuclear Information System (INIS)

    Sohrabi, M.; Soltani, Z.

    2016-01-01

    Alpha particles can be detected by CR-39 by applying either chemical etching (CE), electrochemical etching (ECE), or combined pre-etching and ECE usually through a multi-step HF-HV ECE process at temperatures much higher than room temperature. By applying pre-etching, characteristics responses of fast-neutron-induced recoil tracks in CR-39 by HF-HV ECE versus KOH normality (N) have shown two high-sensitivity peaks around 5–6 and 15–16 N and a large-diameter peak with a minimum sensitivity around 10–11 N at 25°C. On the other hand, 50 Hz-HV ECE method recently advanced in our laboratory detects alpha particles with high efficiency and broad registration energy range with small ECE tracks in polycarbonate (PC) detectors. By taking advantage of the CR-39 sensitivity to alpha particles, efficacy of 50 Hz-HV ECE method and CR-39 exotic responses under different KOH normalities, detection characteristics of 0.8 MeV alpha particle tracks were studied in 500 μm CR-39 for different fluences, ECE duration and KOH normality. Alpha registration efficiency increased as ECE duration increased to 90 ± 2% after 6–8 h beyond which plateaus are reached. Alpha track density versus fluence is linear up to 10 6  tracks cm −2 . The efficiency and mean track diameter versus alpha fluence up to 10 6  alphas cm −2 decrease as the fluence increases. Background track density and minimum detection limit are linear functions of ECE duration and increase as normality increases. The CR-39 processed for the first time in this study by 50 Hz-HV ECE method proved to provide a simple, efficient and practical alpha detection method at room temperature. - Highlights: • Alpha particles of 0.8 MeV were detected in CR-39 by 50 Hz-HV ECE method. • Efficiency/track diameter was studied vs fluence and time for 3 KOH normality. • Background track density and minimum detection limit vs duration were studied. • A new simple, efficient and low-cost alpha detection method

  16. Electrochemical detection of C-reactive protein using Copper nanoparticles and hybridization chain reaction amplifying signal.

    Science.gov (United States)

    Zhang, Junjun; Zhang, Wenjuan; Guo, Jinjin; Wang, Junchun; Zhang, Yuzhong

    2017-12-15

    In this study, a sandwich-type electrochemical immunosensor for the detection of C-reactive protein (CRP) is described. In design, Copper nanoparticles (Cu NPs) were used for signal tag and hybridization chain reaction (HCR)amplified output signal. The immunosensor fabrication involved three steps: (i) primary antibodies (Ab 1 ) were immobilized on the surface of gold nanoparticles (Au NPs); (ii) the sandwich-type structure formation contained "primary antibodies-antigen-secondary antibodies conjugated with primer (Ab 2 -S 0 )"; and (iii) long DNA concatemers intercalating amounts of Cu NPs was linked to the sandwich-type structure via hybridization reaction. Differential pulse voltammetry (DPV) was used to record the response signal of the immunosensor in phosphate-buffered saline (PBS). Under optimal conditions, the anodic peak currents of Cu NPs at the peak potential of about 0.08V(VS.SCE) were linear with the logarithm of CRP concentration in the range of 1.0 fg mL -1 to 100 ng mL -1 with a detection limit of 0.33 fg mL -1 (at signal/noise [S/N] = 3). In addition, the practical application of immunosensor was evaluated by analyzing CRP in real human serum samples, the recoveries obtained were within 95.3%-103.8%, indicating the immunosensor possessed potential application ability for practical disease diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Electrochemical Microsensors for the Detection of Cadmium(II and Lead(II Ions in Plants

    Directory of Open Access Journals (Sweden)

    Olga Krystofova

    2010-05-01

    Full Text Available Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab, a commercially available miniaturized potentiostat (PalmSens and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II and lead(II ions. The lowest detection limits (hundreds of pM for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM and the homemade instrument (hundreds of nM. Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract with artificially added cadmium(II and lead(II. Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic.

  18. Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode

    Science.gov (United States)

    Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.

    2015-04-01

    A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.

  19. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway

    Science.gov (United States)

    Saylor, Rachel A.; Reid, Erin A.; Lunte, Susan M.

    2016-01-01

    A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor L-DOPA metabolism in a rat brain slice. PMID:25958983

  20. Use of Liquid Chromatography with Electrochemical Detection for the Determination of Antioxidants in Less Common Fruits

    Directory of Open Access Journals (Sweden)

    Zbynek Gazdik

    2008-11-01

    Full Text Available Neurodegenerative disorders (NDD have become the common global health burden over the last several decades. According to World Health Organization (WHO, a staggering 30 million people will be affected by Alzheimer’s disease in Europe and the USA by 2050. Effective therapies in this complex field considering the multitude of symptoms associated with NDD indications, have not been found yet. Based on the results of NDD related studies, prevention appears to be the promise alternative. Antioxidative and anti-inflammatory properties are hypothesized for natural phenolics, a group of plant secondary products that may positively impact neurodegenerative diseases. In these studies, phenolic-rich extracts from less common fruit species: Blue honeysuckle (Lonicera edulis, Turcz. ex. Freyn, Saskatoon berry (Amelanchier alnifolia Nutt., and Chinese hawthorn (Crateagus pinnatifida Bunge were obtained and analyzed to detect neuroprotective substances content and establish a potential therapeutic value. High performance liquid chromatography with electrochemical detection was optimized and further applied on analysis of the extracts of less common fruit species. It was observed that Chinese hawthorn and Blue honeysuckle extracts are potent source of neuroprotective phenolic antioxidants. In accordance the results, it appears that the fruit or formulated products may have the potential for the prevention of neurodegenerative diseases.

  1. Preparation of Environmental and Food Samples to Support the Heavy Metals Detection by Stripping Electrochemical

    International Nuclear Information System (INIS)

    Iswani S

    2002-01-01

    Preparation of environmental and food samples to support the heavy metals detection by stripping electrochemistry was done. The water samples taken directly from the ground water were acidified with 1 mL of HNO 3 acic suprapure was not digested, while the soils samples which have already dried in the oven at 105 o C, ware grinded and sieved through 150 μm, werte digested with HNO 3 acic suprapure in the digestion bomb at 150 o C for 3-4 hours. The mussels samples which have already freezed in the freezer were peeled, dried with N 2 liquid, grinded and dried again in the freeze drier at the pressure of ≅ 10 -2 mBar, and then were grinded again, weighted, digested with HNO 3 acic and HClO 4 suprapure in the digestion bomb at 150 o C for 3 hours. Food samples were homogenized by electric mixer, dried with freeze dried, homogenized again by using ZrO 2 ball mill, weighted, digested by HPA (high Pressure Asher). The heavy metals in the food samples solution of digestion product were detected by using Polarographic Analyzer EGandG of SWV and DPASV methods, while in the water, soils and the mussels solution were detected by using PDV 2000 and Polarograf E-505, DPASV method. The method validity were tested with SRM materials such as soil-5, soil-7, water W-4, and coppepoda. The heavy metals detection results in the water, soils, mussels, and food by electrochemical method were reported in this paper. (author)

  2. Electrochemical detection of uric acid using ruthenium-dioxide-coated carbon nanotube directly grown onto Si wafer

    Science.gov (United States)

    Shih, Yi-Ting; Lee, Kuei-Yi; Lin, Chung-Kuang

    2015-12-01

    Carbon nanotubes (CNTs) directly grown onto a Si substrate by thermal chemical vapor deposition were used in uric acid (UA) detection. The process is simple and formation is easy without the need for additional chemical treatments. However, CNTs lack selectivity and sensitivity to UA. To enhance the electrochemical analysis, ruthenium oxide was used as a catalytic mediator in the modification of electrodes. The electrochemical results show that RuO2 nanostructures coated onto CNTs can strengthen the UA signal. The peak currents of RuO2 nanostructures coated onto CNTs linearly increase with increasing UA concentration, meaning that they can work as electrodes for UA detection. The lowest detection limit and highest sensitivity were 55 nM and 4.36 µA/µM, respectively. Moreover, the characteristics of RuO2 nanostructures coated onto CNTs were examined by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy.

  3. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes

    International Nuclear Information System (INIS)

    Tran, Lam Dai; Nguyen, Binh Hai; Van Hieu, Nguyen; Tran, Hoang Vinh; Nguyen, Huy Le; Nguyen, Phuc Xuan

    2011-01-01

    In this study, a novel CS/Fe 3 O 4 nanobiocomposite-based platform for electrochemical detection of HIV-1 was developed. The most attractive feature of this system is a suitable microenvironment (Fe 3 O 4 nanoparticles) which could contribute to electron transfer and thus sensitivity enhancement when using methylene blue (MB) as an external mediator and Square Wave Voltammetry (SWV), Electrochemical Impedance Spectroscopy (EIS) techniques. The proposed screen printed electrode (SPE) had a low detection limit (as low as 50 pM), acceptable stability and good reproducibility, which would be valuable for clinical diagnosis. In addition, this sensing interface may be feasibly adapted for multiplexed detection of other species of bacterial pathogens.

  4. Pencil graphite electrodes for improved electrochemical detection of oleuropein by the combination of Natural Deep Eutectic Solvents and graphene oxide.

    Science.gov (United States)

    Gomez, Federico J V; Spisso, Adrian; Fernanda Silva, María

    2017-11-01

    A novel methodology is presented for the enhanced electrochemical detection of oleuropein in complex plant matrices by Graphene Oxide Pencil Grahite Electrode (GOPGE) in combination with a buffer modified with a Natural Deep Eutectic Solvent, containing 10% (v/v) of Lactic acid, Glucose and H 2 O (LGH). The electrochemical behavior of oleuropein in the modified-working buffer was examined using differential pulse voltammetry. The combination of both modifications, NADES modified buffer and nanomaterial modified electrode, LGH-GOPGE, resulted on a signal enhancement of 5.3 times higher than the bare electrode with unmodified buffer. A calibration curve of oleuropein was performed between 0.10 to 37 μM and a good linearity was obtained with a correlation coefficient of 0.989. Detection and quantification limits of the method were obtained as 30 and 102 nM, respectively. In addition, precision studies indicated that the voltammetric method was sufficiently repeatable, %RSD 0.01 and 3.16 (n = 5) for potential and intensity, respectively. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract prepared by ultrasound-assisted extraction. The results obtained with the proposed electrochemical sensor were compared with Capillary Zone Electrophoresis analysis with satisfactory results. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Design and Electrochemical Study of Platinum-Based Nanomaterials for Sensitive Detection of Nitric Oxide in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maduraiveeran Govindhan

    2016-11-01

    Full Text Available The extensive physiological and regulatory roles of nitric oxide (NO have spurred the development of NO sensors, which are of critical importance in neuroscience and various medical applications. The development of electrochemical NO sensors is of significant importance, and has garnered a tremendous amount of attention due to their high sensitivity and selectivity, rapid response, low cost, miniaturization, and the possibility of real-time monitoring. Nanostructured platinum (Pt-based materials have attracted considerable interest regarding their use in the design of electrochemical sensors for the detection of NO, due to their unique properties and the potential for new and innovative applications. This review focuses primarily on advances and insights into the utilization of nanostructured Pt-based electrode materials, such as nanoporous Pt, Pt and PtAu nanoparticles, PtAu nanoparticle/reduced graphene oxide (rGO, and PtW nanoparticle/rGO-ionic liquid (IL nanocomposites, for the detection of NO. The design, fabrication, characterization, and integration of electrochemical NO sensing performance, selectivity, and durability are addressed. The attractive electrochemical properties of Pt-based nanomaterials have great potential for increasing the competitiveness of these new sensors and open up new opportunities in the creation of novel NO-sensing technologies for biological and medical applications.

  6. Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing.

    Science.gov (United States)

    Aronoff-Spencer, Eliah; Venkatesh, A G; Sun, Alex; Brickner, Howard; Looney, David; Hall, Drew A

    2016-12-15

    Yeast cell lines were genetically engineered to display Hepatitis C virus (HCV) core antigen linked to gold binding peptide (GBP) as a dual-affinity biobrick chimera. These multifunctional yeast cells adhere to the gold sensor surface while simultaneously acting as a "renewable" capture reagent for anti-HCV core antibody. This streamlined functionalization and detection strategy removes the need for traditional purification and immobilization techniques. With this biobrick construct, both optical and electrochemical immunoassays were developed. The optical immunoassays demonstrated detection of anti-HCV core antibody down to 12.3pM concentrations while the electrochemical assay demonstrated higher binding constants and dynamic range. The electrochemical format and a custom, low-cost smartphone-based potentiostat ($20 USD) yielded comparable results to assays performed on a state-of-the-art electrochemical workstation. We propose this combination of synthetic biology and scalable, point-of-care sensing has potential to provide low-cost, cutting edge diagnostic capability for many pathogens in a variety of settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine.

    Science.gov (United States)

    Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong

    2016-09-01

    A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Automated microfluidically controlled electrochemical biosensor for the rapid and highly sensitive detection of Francisella tularensis.

    Science.gov (United States)

    Dulay, Samuel B; Gransee, Rainer; Julich, Sandra; Tomaso, Herbert; O'Sullivan, Ciara K

    2014-09-15

    Tularemia is a highly infectious zoonotic disease caused by a Gram-negative coccoid rod bacterium, Francisella tularensis. Tularemia is considered as a life-threatening potential biological warfare agent due to its high virulence, transmission, mortality and simplicity of cultivation. In the work reported here, different electrochemical immunosensor formats for the detection of whole F. tularensis bacteria were developed and their performance compared. An anti-Francisella antibody (FB11) was used for the detection that recognises the lipopolysaccharide found in the outer membrane of the bacteria. In the first approach, gold-supported self-assembled monolayers of a carboxyl terminated bipodal alkanethiol were used to covalently cross-link with the FB11 antibody. In an alternative second approach F(ab) fragments of the FB11 antibody were generated and directly chemisorbed onto the gold electrode surface. The second approach resulted in an increased capture efficiency and higher sensitivity. Detection limits of 4.5 ng/mL for the lipopolysaccharide antigen and 31 bacteria/mL for the F. tularensis bacteria were achieved. Having demonstrated the functionality of the immunosensor, an electrode array was functionalised with the antibody fragment and integrated with microfluidics and housed in a tester set-up that facilitated complete automation of the assay. The only end-user intervention is sample addition, requiring less than one-minute hands-on time. The use of the automated microfluidic set-up not only required much lower reagent volumes but also the required incubation time was considerably reduced and a notable increase of 3-fold in assay sensitivity was achieved with a total assay time from sample addition to read-out of less than 20 min. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Simultaneous electrochemical detection of dopamine and uric acid over ceria supported three dimensional gold nanoclusters

    Science.gov (United States)

    Palanisamy, Sivakumar

    2014-12-01

    CeO2 is well known for being an active material to support the growth of Au nanoclusters (Au NCs). In this work, three dimensional (3D) Au NCs were deposited on three different shaped CeO2 nanostructures such as nanoparticles (NPs), nanorod arrays (NRAs) and nanoflowers (NFs) modified Ti substrate for electrochemical simultaneous detection of dopamine (DA) and uric acid (UA). The electrodeposition of 3D Au NCs were carried out via cyclic voltammetric (CV) method at over-potential, while CeO2 nanostructures were deposited by galvanostatic constant current method under the optimized conditions. The morphology and elemental composition analysis of 3D Au NCs with CeO2 nanostructures were characterized by SEM, XRD, XPS and EDAX measurements. The electrocatalytic activity of 3D Au NCs on different CeO2 supports were thoroughly investigated by using voltammetric and amperometric techniques. According to the obtained results, CeO2 NPs supported 3D Au NCs (3D Au NCs@CeO2 NPs) displayed strong signal for DA as compared to that of CeO2 NRAs (3D Au NCs@CeO2 NRAs) and CeO2 NFs supported 3D Au NCs (3D Au NCs@CeO2 NFs). In addition, the 3D Au NCs@CeO2 NPs electrode resulted in more sensitive and simultaneous detection of DA in the presence of excess UA. Thus, the 3D Au NCs@CeO2 NPs electrode can practically be applied for the detection of DA using biological samples.

  10. Four nondestructive electrochemical tests for detecting sensitization in type 304 and 304L stainless steels

    International Nuclear Information System (INIS)

    Majidi, A.P.; Streicher, A.

    1986-01-01

    Three different electrochemical reactivation tests are compared with etch structures produced in the electrolytic oxalic acid etch test. These nondestructive tests are needed to evaluate welded stainless steel pipes and other plant equipment for susceptibility to intergranular attack. Sensitization associated with precipitates of chromium carbides at grain boundaries can make these materials subject to intergranular attack in acids and, in particular, to intergranular stress corrosion cracking in high-temperature (289 0 C) water on boiling water nuclear reactor power plants. In the first of the two older reactivation tests, sensitization is detected by the electrical charge generated during reactivation. In the second, it is measured by the ratio of maximum currents generated by a prior anodic loop and the reactivation loop. A third, simpler reactivation method based on a measurement of the maximum current generated during reactivation is proposed. If the objective of the field tests, which are to be carried out with portable equipment, is to distinguish between nonsensitized and sensitized material, this can be accomplished most simply, most rapidly, and at lowest cost by an evaluation of oxalic acid etch structures

  11. Characterization of Screen-Printed Organic Electrochemical Transistors to Detect Cations of Different Sizes

    Directory of Open Access Journals (Sweden)

    Laura Contat-Rodrigo

    2016-09-01

    Full Text Available A novel screen-printing fabrication method was used to prepare organic electrochemical transistors (OECTs based on poly(3,4-ethylenedioxythiophene doped with polysterene sulfonate (PEDOT:PSS. Initially, three types of these screen-printed OECTs with a different channel and gate areas ratio were compared in terms of output characteristics, transfer characteristics, and current modulation in a phosphate buffered saline (PBS solution. Results confirm that transistors with a gate electrode larger than the channel exhibit higher modulation. OECTs with this geometry were therefore chosen to investigate their ion-sensitive properties in aqueous solutions of cations of different sizes (sodium and rhodamine B. The effect of the gate electrode was additionally studied by comparing these all-PEDOT:PSS transistors with OECTs with the same geometry but with a non-polarizable metal gate (Ag. The operation of the all-PEDOT:PSS OECTs yields a response that is not dependent on a Na+ or rhodamine concentration. The weak modulation of these transistors can be explained assuming that PEDOT:PSS behaves like a supercapacitor. In contrast, the operation of Ag-Gate OECTs yields a response that is dependent on ion concentration due to the redox reaction taking place at the gate electrode with Cl− counter-ions. This indicates that, for cation detection, the response is maximized in OECTs with non-polarizable gate electrodes.

  12. Carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of microRNA24.

    Science.gov (United States)

    Li, Fengye; Peng, Jing; Zheng, Qiong; Guo, Xiang; Tang, Hao; Yao, Shouzhuo

    2015-01-01

    A simple and ultrasensitive microRNA (miRNA) electrochemical biosensor employing multiwalled carbon nanotube (MWCNT)-polyamidoamine (PAMAM) dendrimer and methylene blue (MB) redox indicator is reported in this work. The assay utilizes a glass carbon (GC) electrode modified with MWCNT-PAMAM, on which the oligonucleotide capture probes are immobilized. The electrochemical detection of miRNAs is completed by measuring the reduction signal change of MB before and after the probe hybridization with target miRNA (miRNA24 is used as a model case). The MWCNT-PAMAM/GC electrode shows greatly enhanced signal to MB reduction in contrast to bare GC electrode. The functionalization of MWCNT with PAMAM maintains the electrochemical property of MWCNT to MB reduction but minimizes the undesired adsorption of MB on the MWCNT surface. The effect of experimental variables on the miRNA detection is investigated and optimized. A detection limit of 0.5 fM and a linear peak current density-concentration relationship up to 100 nM are obtained following 60 min hybridization. The proposed assay is successfully used to detect miRNA24 in total RNA sample extracted from HeLa cells.

  13. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine.

    Science.gov (United States)

    Koteshwara Reddy, K; Satyanarayana, M; Yugender Goud, K; Vengatajalabathy Gobi, K; Kim, Hern

    2017-10-01

    An efficient electrochemical sensor for selective detection of the neurotransmitter, epinephrine (Epn), has been fabricated with the aid of a functionalized multiwall carbon nanotube-chitosan biopolymer nanocomposite (Chit-fCNT) electrode. Multiwall carbon nanotubes (CNT) were successfully functionalized with the aid of nitric acid and confirmed by the Raman spectral data. Functionalized carbon nanotubes (fCNT) were dispersed in chitosan solution and the resulting bio-nanocomposite was used for the fabrication of sensor surface by drop and cast method. Electrochemical characteristics of the fabricated sensor were understood using cyclic, differential pulse voltammetry (CV, DPV) and electrochemical impedance analysis for the detection of Epn in phosphate buffer (pH7.4). CV and impedance analysis revealed that the Chit-fCNT modified electrode enhances the electrodic reaction of Epn and facilitated the electron transfer more readily compared to that of bare electrode. Applying DPV for the detection of Epn, achieved 30nM as the lowest detection limit in the determination range of 0.05-10μM and the analytical time as low as 10s. Selective determination of Epn against the coexistence of a number of biological electroactive interferents and reproducible results for the determination of Epn were demonstrated. The present biosensor has been found efficient for successful direct determination of Epn from pharmaceutical adrenaline formulations and urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy.

    Science.gov (United States)

    Wang, Huan; Zhang, Yihe; Ma, Hongmin; Ren, Xiang; Wang, Yaoguang; Zhang, Yong; Wei, Qin

    2016-12-15

    In this work, an ultrasensitive electrochemical sensor was developed for detection of Hg(2+). Gold nanoparticles decorated bovine serum albumin reduction of graphene oxide (AuNP-BSA-rGO) were used as subsurface material for the immobilization of triple-helix DNA. The triple-helix DNA containing a thiol labelled single-stranded DNA (sDNA) and a thymine-rich DNA (T-rich DNA), which could be unwinded in the present of Hg(2+) to form more stable thymine-Hg(2+)-thymine (T-Hg(2+)-T) complex. T-Hg(2+)-T complex was then removed and the sDNA was left on the electrode. At this time, gold nanoparticle carrying thiol labelled cytosine-rich complementary DNA (cDNA-AuNP) could bind with the free sDNA. Meanwhile, the other free cDNA on AuNP could bind with each other in the present of Ag(+) to form the stable cytosine-Ag(+)-cytosine (C-Ag(+)-C) complex and circle amplification. Plenty of C-Ag(+)-C could form silver nanoclusters by electrochemical reduction and the striping signal of Ag could be measured for purpose of the final electrochemical detection of Hg(2+). This sensor could detect Hg(2+) over a wide concentration range from 0.1 to 130nM with a detection limit of 0.03nM. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jana Vlachova

    2015-01-01

    Full Text Available Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH. It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  16. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode.

    Science.gov (United States)

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-22

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  17. Integration of Microchip Electrophoresis with Electrochemical Detection Using an Epoxy-Based Molding Method to Embed Multiple Electrode Materials

    Science.gov (United States)

    Johnson, Alicia S.; Selimovic, Asmira; Martin, R. Scott

    2012-01-01

    This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified in a similar fashion to electrochemical flow cells used in liquid chromatography. PMID:22038707

  18. Development of electrochemical immunosensors based on different serum antibody immobilization methods for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Tran, Quang Huy; Hanh Nguyen, Thi Hong; Phan, Thi Nga; Mai, Anh Tuan; Nguyen, Thi Thuy; Vu, Quang Khue

    2012-01-01

    This paper describes the development of electrochemical immunosensors based on human serum antibodies with different immobilization methods for detection of Japanese encephalitis virus (JEV). Human serum containing anti-JEV antibodies was used to immobilize onto the surface of silanized interdigitated electrodes by four methods: direct adsorption (APTES-serum), covalent binding with a cross linker of glutaraldehyde (APTES-GA-serum), covalent binding with a cross linker of glutaraldehyde combined with anti-human IgG (APTES-GA-anti-HIgG-serum) and covalent binding with a cross linker of glutaraldehyde combined with a bioaffinity of protein A (APTES-GA-PrA-serum). Atomic force microscopy was used to verify surface characteristics of the interdigitated electrodes before and after treatment with serum antibodies. The output signal of the immunosensors was measured by the change of conductivity resulting from the specific binding of JEV antigens and serum antibodies immobilized on the electrodes, with the help of horseradish peroxidase (HRP)-labeled secondary antibody against JEV. The results showed that the APTES-GA-PrA-serum method provided the highest signal of the electrochemical immunosensor for detection of JEV antigens, with the linear range from 25 ng ml −1 to 1 μg ml −1 , and the limit of detection was about 10 ng ml −1 . This study shows a potential development of novel electrochemical immunosensors applied for virus detection in clinical samples in case of possible outbreaks

  19. The determination of fenspiride in human plasma and urine by liquid chromatography with electrochemical or ultraviolet detection.

    Science.gov (United States)

    Sauveur, C; Baune, A; Vergnes, N; Jeanniot, J P

    1989-01-01

    A selective and sensitive method for the determination of fenspiride in biological fluids is described. The method involves liquid-liquid extraction followed by separation on a reversed-phase column with electrochemical detection for low levels of the drug in plasma (less than or equal to 100 ng ml-1) or UV absorption for higher concentrations in plasma or urine. The method is suitable for pharmacokinetic analyses and drug monitoring studies.

  20. Development of electrochemical biosensors and solid-phase amplification methods for the detection of human papillomavirus genes

    OpenAIRE

    Civit Pitarch, Laia

    2012-01-01

    A rapid, accurate and reliable diagnosis is crucial for the identification of a disease, like cancer, where an early detection can improve patient survival outcomes. Cervical cancer is the third most commonly diagnosed and the fourth leading cause of cancer death in women. It is well known that persistent infections with high-risk human papillomaviruses (HPV) are the primary cause of cervical cancer. Electrochemical DNA biosensors have received important attention owing to their characterist...

  1. Innovative approach for the electrochemical detection of non-electroactive organophosphorus pesticides using oxime as electroactive probe

    International Nuclear Information System (INIS)

    Dong, Jing; Hou, Juying; Jiang, Jianxia; Ai, Shiyun

    2015-01-01

    Highlights: • Novel approach for electrochemical detection of non-electroactive OPs was proposed. • PAM was used as electroactive probe for the first time. • The detection system displayed high sensitivity and promptness. • The developed sensor was used in real samples with satisfactory results. - Abstract: An innovative approach for sensitive and simple electrochemical detection of non-electroactive organophosphorus pesticides (OPs) was described in this report. The novel strategy emphasized the fabrication of an oxime-based sensor via attaching pralidoxime (PAM) on graphene quantum dots (GQDs) modified glassy carbon electrode. The introduction of GQDs significantly increased the effective electrode area, and then enlarged the immobilization quantity of PAM. Thus, the oxidation current of PAM was obviously increased. Relying on the nucleophilic substitution reaction between oxime and OPs, fenthion was detected using PAM as the electroactive probe. Under optimum conditions, the difference of oxidation current of PAM was proportional to fenthion concentration over the range from 1.0 × 10 −11 M to 5.0 × 10 −7 M with a detection limit of 6.8 × 10 −12 M (S/N = 3). Moreover, the favorable detection performance in water and soil samples heralded the promising applications in on-site OPs detection

  2. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Reverté, Laia [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain); Prieto-Simón, Beatriz [ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, SA 5095 (Australia); Campàs, Mònica, E-mail: monica.campas@irta.cat [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain)

    2016-02-18

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  3. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    International Nuclear Information System (INIS)

    Reverté, Laia; Prieto-Simón, Beatriz; Campàs, Mònica

    2016-01-01

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  4. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Energy Technology Data Exchange (ETDEWEB)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Ahmad, Haslina; Harun, Siti Norain [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia)

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  5. Enhancing graphene/CNT based electrochemical detection using magneto-nanobioprobes

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Priyanka Sharma, V Bhalla, E Senthil Prasad, V Dravid, G Shekhawat & C. Raman Suri ### Abstract This protocol describes an optimized signal amplification strategy to develop an ultra-sensitive magneto-electrochemical biosensing platform. The new protocol combines the advantages of carbon nanotube (CNT) and reduced graphene oxide (rGO) together with electrochemical bursting of magnetic nanoparticles. The method involves synthesis of gold-iron (Au/Fe) nano-structures function...

  6. Redox-Magnetohydrodynamic Microfluidics Without Channels and Compatible with Electrochemical Detection Under Immunoassay Conditions

    Science.gov (United States)

    Weston, Melissa C.; Nash, Christena K.; Fritsch, Ingrid

    2010-01-01

    A unique capability of redox-magnetohydrodynamics (redox-MHD) for handling liquids on a small scale was demonstrated. A 1.2-μL solution plug was pumped from an injection site to a detector without the need for a channel to direct the flow. The redox pumping species did not interfere with enzymatic activity in a solution compatible with enzyme-linked immunoassays. Alkaline phosphatase (AP), a common enzyme label, converted p-aminophenyl phosphate (PAPP) to p-aminophenol (PAPR) in the presence of 2.5 mM Ru(NH3)6Cl2 and 2.5 mM Ru(NH3)6 Cl3, in 0.1 M Tris buffer (pH=9). A solution plug containing PAPP (no AP) was pumped through the surrounding solution containing AP (no PAPP), and the enzymatically-generated PAPR was easily detected and distinguishable electrochemically from the pumping species with square wave voltammetry down to 0.1 mM concentrations. The test device consisted of a silicon chip containing individually-addressable microband electrodes, placed on a 0.5-T NdFeB permanent magnet with the field oriented perpendicular to the chip. A 8.0-mm wide × 15.5-mm long × 1.5-mm high volume of solution was contained by a poly(dimethylsiloxane) gasket and capped with a glass slide. A steady-state fluid velocity of ~30 μm/s was generated in a reinforcing flow configuration between oppositely polarized sets of pumping electrodes with ~2.1 μA. PMID:20681513

  7. Evaluation of a point-of-care electrochemical meter to detect subclinical ketosis and hypoglycaemia in lactating dairy cows.

    Science.gov (United States)

    Zakian, A; Tehrani-Sharif, M; Mokhber-Dezfouli, M R; Nouri, M; Constable, P D

    2017-04-01

    To evaluate and validate a hand-held electrochemical meter (Precision Xtra®) as a screening test for subclinical ketosis and hypoglycaemia in lactating dairy cattle. Method comparison study using a convenience sample. Blood samples were collected into plain tubes from the coccygeal vessels of 181 Holstein cows at 2-4 weeks of lactation during summer in Iran. Blood β-hydroxybutyrate concentration (BHB) and glucose concentration were immediately measured by the electrochemical meter after applying 20 μL of blood to the reagent strip. Passing-Bablok regression and Bland-Altman plots were used to determine the accuracy of the meter against laboratory reference methods (BHB dehydrogenase and glucose oxidase). Serum BHB ranged from 0.1 to 7.3 mmol/L and serum glucose ranged from 0.9 to 5.1 mmol/L. Passing-Bablok regression analysis indicated that the electrochemical meter and reference methods were linearly related for BHB and glucose, with a slope estimate that was not significantly different from 1.00. Clinically minor, but statistically significant, differences were present for the intercept value for Passing-Bablok regression analysis for BHB and glucose, and bias estimates in the Bland-Altman plots for BHB and glucose. The electrochemical meter provided a clinically useful method to detect subclinical ketosis and hypoglycaemia in lactating dairy cows. Compared with other method validation studies using the meter, we attributed the improved performance of the electrochemical meter to application of a fixed volume of blood (20 μL) to the reagent strip, use of the meter in hot ambient conditions and use of glucose oxidase as the reference method for glucose analysis. © 2017 Australian Veterinary Association.

  8. Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes

    KAUST Repository

    Wang, Zhijuan

    2011-05-01

    Reduced graphene oxide (rGO)-modified glassy carbon electrode is used to detect the methicillin-resistant Staphylococcus aureus (MRSA) DNA by using electrochemical impedance spectroscopy. Our experiments confirm that ssDNA, before and after hybridization with target DNA, are successfully anchored on the rGO surface. After the probe DNA, pre-adsorbed on rGO electrode, hybridizes with target DNA, the measured impedance increases dramatically. It provides a new method to detect DNA with high sensitivity (10-13M, i.e., 100 fM) and selectivity. © 2011 Elsevier B.V.

  9. A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos.

    Science.gov (United States)

    Wang, Limin; Lu, Donglai; Wang, Jun; Du, Dan; Zou, Zhexiang; Wang, Hua; Smith, Jordan N; Timchalk, Charles; Liu, Fengquan; Lin, Yuehe

    2011-02-15

    We present a novel portable immunochromatographic electrochemical biosensor (IEB) for simple, rapid, and sensitive biomonitoring of trichloropyridinol (TCP), a metabolite biomarker of exposure to organophosphorus insecticides. Our new approach takes the advantage of immunochromatographic test strip for a rapid competitive immunoreaction and a disposable screen-printed carbon electrode for a rapid and sensitive electrochemical analysis of captured HRP labeling. Several key experimental parameters (e.g. immunoreaction time, the amount of HRP labeled TCP, concentration of the substrate for electrochemical measurements, and the blocking agents for the nitrocellulose membrane) were optimized to achieve a high sensitivity, selectivity and stability. Under optimal conditions, the IEB has demonstrated a wide linear range (0.1-100 ng/ml) with a detection limit as low as 0.1 ng/ml TCP. Furthermore, the IEB has been successfully applied for biomonitoring of TCP in the rat plasma samples with in vivo exposure to organophosphorus insecticides like Chlorpyrifos-oxon (CPF-oxon). The IEB thus opens up new pathways for designing a simple, rapid, clinically accurate, and quantitative tool for TCP detection, as well as holds a great promise for in-field screening of metabolite biomarkers, e.g., TCP, for humans exposed to organophosphorus insecticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Sulfur-adlayer-coated gold electrode for the in vitro electrochemical detection of uric acid in urine.

    Science.gov (United States)

    Miah, Md Rezwan; Alam, Muhammad Tanzirul; Ohsaka, Takeo

    2010-06-11

    The present article demonstrates the electrochemical oxidation of uric acid (UA) at sulfur-adlayer-coated gold (S-Au) electrode in alkaline media. At S-Au electrode, UA oxidized at a significantly lower overpotential with a higher current density as compared to the bare Au electrode. The oxidation of UA at the S-Au electrode is highly selective in the presence of the other commonly existing bio-molecules in urine. The proposed electrochemical sensor not only exhibited good reproducibility, but also showed a fast amperometric response to UA in the concentration range of 0.0025-5 mM with a low detection limit of 0.4 microM. Copyright 2010. Published by Elsevier B.V.

  11. Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I.

    Science.gov (United States)

    Tang, Dianping; Tang, Juan; Li, Qunfang; Su, Biling; Chen, Guonan

    2011-10-01

    This work reports an aptamer-based, disposable, and multiplexed sensing platform for simultaneous electrochemical determination of small molecules, employing adenosine triphosphate (ATP) and cocaine as the model target analytes. The multiplexed sensing strategy is based on target-induced release of distinguishable redox tag-conjugated aptamers from a magnetic graphene platform. The electronic signal of the aptasensors could be further amplified by coupling DNase I with catalytic recycling of self-produced reactants. The assay was based on the change in the current at the various peak potentials in the presence of the corresponding signal tags. Experimental results revealed that the multiplexed electrochemical aptasensor enabled the simultaneous monitoring of ATP and cocaine in a single run with wide working ranges and low detection limits (LODs: 0.1 pM for ATP and 1.5 pM for cocaine). This concept offers promise for rapid, simple, and cost-effective analysis of biological samples.

  12. Electrochemical immunosensor with nanocellulose-Au composite assisted multiple signal amplification for detection of avian leukosis virus subgroup J.

    Science.gov (United States)

    Liu, Chao; Dong, Jing; Waterhouse, Geoffrey I N; Cheng, Ziqiang; Ai, Shiyun

    2018-03-15

    A sensitive sandwich-type electrochemical immunosensor was developed for the detection of avian leukosis virus subgroup J (ALV-J), which benefitted from multiple signal amplification involving graphene-perylene-3,4,9,10-tetracarboxylic acid nanocomposites (GR-PTCA), nanocellulose-Au NP composites (NC-Au) and the alkaline phosphatase (ALP) catalytic reaction. GR-PTCA nanocomposites on glassy carbon electrodes served as the immunosensor platform. Due to their excellent electrical conductivity and abundant polycarboxylic sites, the GR-PTCA nanocomposites allowed fast electron transfer and good immobilization of primary antibodies, thereby affording a strong immunosensor signal in the presence of ALV-J. The detected signal could be further amplified by the introduction of NC-Au composites as a carrier of secondary antibodies (Ab 2 ) and by harnessing the catalytic properties of Au and ALP. Under optimized testing conditions, the electrochemical immunosensor displayed excellent analytical performance for the detection of ALV-J, showing a linear current response from 10 2.08 to 10 4.0 TCID 50 /mL (TCID 50 : 50% tissue culture infective dose) with a low detection limit of 10 1.98 TCID 50 /mL (S/N = 3). In addition to high sensitivity, the immunosensor showed very good selectivity, reproducibility and operational stability, demonstrating potential application for the quantitative detection of ALV-J in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays.

    Science.gov (United States)

    Jin, Wei; Wu, Guosheng; Chen, Aicheng

    2014-01-07

    Owing to the severe toxicity and mobility of Cr(VI) in biological and environmental systems, it is of great importance to develop convenient and reliable methods for its detection. Here we report on a facile and effective electrochemical technique for monitoring Cr(VI) concentrations based on the utilization of Au nanoparticle-decorated titania nanotubes (TiO2NTs) grown on a titanium substrate. It was found that the electrochemical reduction of Cr(VI) at the Ti/TiO2NT/Au electrode exhibited an almost 23 fold improvement in activity as compared to a polycrystalline gold electrode, due to its nanoparticle/nanotubular heterojunction infrastructure. As a result, the Ti/TiO2NT/Au electrode demonstrated a wide linear concentration range from 0.10 μM to 105 μM, a low detection limit of 0.03 μM, and a high sensitivity of 6.91 μA μM(-1) Cr(VI) via amperometry, satisfying the detection requirements of the World Health Organization (WHO). Moreover, the Ti/TiO2NT/Au electrode exhibited good resistance against interference from coexisting Cr(III) and other metal ions, and excellent recovery for Cr(VI) detection in both tap and lake water samples. These attributes suggest that this hybrid sensor has strong potential in applications for the selective detection of Cr(VI).

  14. Detection of CO2•- in the Electrochemical Reduction of Carbon Dioxide in N,N-Dimethylformamide by Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Kai, Tianhan; Zhou, Min; Duan, Zhiyao; Henkelman, Graeme A; Bard, Allen J

    2017-12-27

    The electrocatalytic reduction of CO 2 has been studied extensively and produces a number of products. The initial reaction in the CO 2 reduction is often taken to be the 1e formation of the radical anion, CO 2 •- . However, the electrochemical detection and characterization of CO 2 •- is challenging because of the short lifetime of CO 2 •- , which can dimerize and react with proton donors and even mild oxidants. Here, we report the generation and quantitative determination of CO 2 •- in N,N-dimethylformamide (DMF) with the tip generation/substrate collection (TG/SC) mode of scanning electrochemical microscopy (SECM). CO 2 was reduced at a hemisphere-shaped Hg/Pt ultramicroelectrode (UME) or a Hg/Au film UME, which were utilized as the SECM tips. The CO 2 •- produced can either dimerize to form oxalate within the nanogap between SECM tip and substrate or collected at SECM substrate (e.g., an Au UME). The collection efficiency (CE) for CO 2 •- depends on the distance (d) between the tip and substrate. The dimerization rate (6.0 × 10 8 M -1 s -1 ) and half-life (10 ns) of CO 2 •- can be evaluated by fitting the collection efficiency vs distance curve. The dimerized species of CO 2 •- , oxalate, can also be determined quantitatively. Furthermore, the formal potential (E 0 ') and heterogeneous rate constant (k 0 ) for CO 2 reduction were determined with different quaternary ammonium electrolytes. The significant difference in k 0 is due to a tunneling effect caused by the adsorption of the electrolytes on the electrode surface at negative potentials.

  15. Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes.

    Science.gov (United States)

    Martín-Yerga, Daniel; Álvarez-Martos, Isabel; Blanco-López, M Carmen; Henry, Charles S; Fernández-Abedul, M Teresa

    2017-08-15

    In this work, we report a simple and yet efficient stencil-printed electrochemical platform that can be integrated into the caps of sample containers and thus, allows in-field quantification of Cd(II) and Pb(II) in river water samples. The device exploits the low-cost features of carbon (as electrode material) and paper/polyester transparency sheets (as substrate). Electrochemical analysis of the working electrodes prepared on different substrates (polyester transparency sheets, chromatographic, tracing and office papers) with hexaammineruthenium(III) showed that their electroactive area and electron transfer kinetics are highly affected by the porosity of the material. Electrodes prepared on transparency substrates showed the best electroanalytical performance for the simultaneous determination of Cd(II) and Pb(II) by square-wave anodic stripping voltammetry. Interestingly, the temperature and time at which the carbon ink was cured had significant effect on the electrochemical response, especially the capacitive current. The amount of Cd and Pb on the electrode surface can be increased about 20% by in situ electrodeposition of bismuth. The electrochemical platform showed a linear range comprised between 1 and 200 μg/L for both metals, sensitivity of analysis of 0.22 and 0.087 μA/ppb and limits of detection of 0.2 and 0.3 μg/L for Cd(II) and Pb(II), respectively. The analysis of river water samples was done directly in the container where the sample was collected, which simplifies the procedure and approaches field analysis. The developed point-of-need detection system allowed simultaneous determination of Cd(II) and Pb(II) in those samples using the standard addition method with precise and accurate results. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite

    Directory of Open Access Journals (Sweden)

    Hoang V. Tran

    2018-05-01

    Full Text Available In this paper, we demonstrate a promising method to fabricate a non-enzymatic stable, highly sensitive and selective hydrogen peroxide sensor based on a chitosan/silver nanoparticles (CS/AgNPs hybrid. Using this composite, we elaborated both electrochemical and colorimetric sensors for hydrogen peroxide detection. The colorimetric sensor is based on a homogenous reaction which fades the color of CS/AgNPs solutions from red-orange to colorless depending on hydrogen peroxide concentration. For the electrochemical sensor, CS/AgNPs were immobilized on glassy carbon electrodes and hydrogen peroxide was measured using cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The response time is less than 10 s and the detection limit is 5 μM. Keywords: Spectrophotometric detection, Electrochemical impedance spectroscopy, Square wave voltammetry, Cyclic voltammetry, Chitosan/silver nanoparticles (CS/AgNPs hybrid, Hydrogen peroxide

  17. Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruiyi; Yang, Tingting [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li, Zaijun, E-mail: zaijunli@jiangnan.edu.cn [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Gu, Zhiguo; Wang, Guangli; Liu, Junkang [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2017-02-15

    Integration of noble metal nanomaterials on graphene nanosheets potentially paves one way to improve their electronic, chemical and electrochemical properties. The study reported synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel composite (Pd@Au/N,S-MGA). The as-prepared composite offers a well-defined three-dimensional architecture with rich of mesopores. The Pd@Au nanoalloys were dispersed on the graphene framework networks and their active sites were fully exposed. The unique structure achieves to ultra high electron/ion conductivity, electrocatalytic activity and structural stability. The sensor based on the Pd@Au/N,S-MGA creates ultrasensitive electrochemical response towards dopamine due to significantly electrochemical synergy between Pd, Au and N,S-MGA. Its differential pulse voltammetric signal linearly increases with the increase of dopamine concentration in the range from 1.0 × 10{sup −9} M to 4.0 × 10{sup −5} M with the detection limit of 3.6 × 10{sup −10} M (S/N = 3). The analytical method provides the advantage of sensitivity, reproducibility, rapidity and long-term stability. It has been successfully applied in the detection of trace dopamine in biological samples. The study also opens a window on the electronic properties of graphene aerogel and metal nanomaterials as well their nanohybrids to meet needs of further applications as nanoelectronics in diagnosis, bioanalysis and catalysis. - Graphical abstract: We reported a new palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel. The sensor based on the nanohybrid exhibits ultrahigh sensitivity, reproducibility and stability to electrochemical detection of dopamine. - Highlights: • We reported Pd@A/nitrogen and sulphur-functionalized multiple graphene aerogel. • The nanohybrid offers unique three-dimensional architecture with rich of mesopores. • The architecture achieve to ultrahigh

  18. Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine

    International Nuclear Information System (INIS)

    Li, Ruiyi; Yang, Tingting; Li, Zaijun; Gu, Zhiguo; Wang, Guangli; Liu, Junkang

    2017-01-01

    Integration of noble metal nanomaterials on graphene nanosheets potentially paves one way to improve their electronic, chemical and electrochemical properties. The study reported synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel composite (Pd@Au/N,S-MGA). The as-prepared composite offers a well-defined three-dimensional architecture with rich of mesopores. The Pd@Au nanoalloys were dispersed on the graphene framework networks and their active sites were fully exposed. The unique structure achieves to ultra high electron/ion conductivity, electrocatalytic activity and structural stability. The sensor based on the Pd@Au/N,S-MGA creates ultrasensitive electrochemical response towards dopamine due to significantly electrochemical synergy between Pd, Au and N,S-MGA. Its differential pulse voltammetric signal linearly increases with the increase of dopamine concentration in the range from 1.0 × 10"−"9 M to 4.0 × 10"−"5 M with the detection limit of 3.6 × 10"−"1"0 M (S/N = 3). The analytical method provides the advantage of sensitivity, reproducibility, rapidity and long-term stability. It has been successfully applied in the detection of trace dopamine in biological samples. The study also opens a window on the electronic properties of graphene aerogel and metal nanomaterials as well their nanohybrids to meet needs of further applications as nanoelectronics in diagnosis, bioanalysis and catalysis. - Graphical abstract: We reported a new palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel. The sensor based on the nanohybrid exhibits ultrahigh sensitivity, reproducibility and stability to electrochemical detection of dopamine. - Highlights: • We reported Pd@A/nitrogen and sulphur-functionalized multiple graphene aerogel. • The nanohybrid offers unique three-dimensional architecture with rich of mesopores. • The architecture achieve to ultrahigh electron

  19. A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure.

    Science.gov (United States)

    Xiong, Erhu; Wu, Liang; Zhou, Jiawan; Yu, Peng; Zhang, Xiaohua; Chen, Jinhua

    2015-01-01

    In this paper, a simple, selective and reusable electrochemical biosensor for the sensitive detection of mercury ions (Hg(2+)) has been developed based on thymine (T)-rich stem-loop (hairpin) DNA probe and a dual-signaling electrochemical ratiometric strategy. The assay strategy includes both "signal-on" and "signal-off" elements. The thiolated methylene blue (MB)-modified T-rich hairpin DNA capture probe (MB-P) firstly self-assembled on the gold electrode surface via Au-S bond. In the presence of Hg(2+), the ferrocene (Fc)-labeled T-rich DNA probe (Fc-P) hybridized with MB-P via the Hg(2+)-mediated coordination of T-Hg(2+)-T base pairs. As a result, the hairpin MB-P was opened, the MB tags were away from the gold electrode surface and the Fc tags closed to the gold electrode surface. These conformation changes led to the decrease of the oxidation peak current of MB (IMB), accompanied with the increase of that of Fc (IFc). The logarithmic value of IFc/IMB is linear with the logarithm of Hg(2+) concentration in the range from 0.5 nM to 5000 nM, and the detection limit of 0.08 nM is much lower than 10nM (the US Environmental Protection Agency (EPA) limit of Hg(2+) in drinking water). What is more, the developed DNA-based electrochemical biosensor could be regenerated by adding cysteine and Mg(2+). This strategy provides a simple and rapid approach for the detection of Hg(2+), and has promising application in the detection of Hg(2+) in real environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells.

    Science.gov (United States)

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh; Ojani, Reza; Kavoosian, Saeid

    2017-06-15

    Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH 2 ) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN) 6 3-/4- redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×10 5 cells/mL and 1.0×10 5 -6.0×10 6 cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid.

    Science.gov (United States)

    Zhang, Lijun; Wang, Guiheng; Wu, Di; Xiong, Can; Zheng, Lei; Ding, Yunsheng; Lu, Hongbo; Zhang, Guobing; Qiu, Longzhen

    2018-02-15

    In this study, an organic electrochemical transistor sensor (OECT) with a molecularly imprinted polymer (MIP)-modified gate electrode was prepared for the detection of ascorbic acid (AA). The combination of the amplification function of an OECT and the selective specificity of MIPs afforded a highly sensitive, selective OECT sensor. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were carried out to monitor the stepwise fabrication of the modified electrodes and the adsorption capacity of the MIP/Au electrodes. Atomic force microscopy was employed for examining the surface morphology of the electrodes. Important detection parameters, pH and detection temperature were optimized. With the change in the relative concentration of AA from 1μM to 100μM, the MIP-OECT sensor exhibited a low detection limit of 10nM (S/N > 3) and a sensitivity of 75.3μA channel current change per decade under optimal conditions. In addition, the MIP-OECT sensor exhibited excellent specific recognition ability to AA, which prevented the interference from other structurally similar compounds (e.g., aspartic acid, glucose, uric acid, glycine, glutathione, H 2 O 2 ), and common metal ions (K + , Na + , Ca 2+ , Mg 2+ , and Fe 2+ ). In addition, a series of vitamin C beverages were analyzed to demonstrate the feasibility of the MIP-OECT sensor. Using the proposed principle, several other sensors with improved performance can be constructed via the modification of organic electrochemical transistors with appropriate MIP films. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Development of a Novel Biosensor Using Cationic Antimicrobial Peptide and Nickel Phthalocyanine Ultrathin Films for Electrochemical Detection of Dopamine

    Directory of Open Access Journals (Sweden)

    Maysa F. Zampa

    2012-01-01

    Full Text Available The antimicrobial peptide dermaseptin 01 (DS 01, from the skin secretion of Phyllomedusa hypochondrialis frogs, was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPc, widely used in electronic devices, using layer-by-layer technique. The films were used as a biosensor to detect the presence of dopamine (DA, a neurotransmitter associated with diseases such as Alzheimer's and Parkinson's, with detection limits in the order of 10−6 mol L−1. The use of DS 01 in LbL film generated selectivity in the detection of DA despite the presence of ascorbic acid found in biological fluids. This work is the first to report that the antimicrobial peptide and NiTsPc LbL film exhibits electroanalytical activity to DA oxidation. The selectivity in the detection of DA is a fundamental aspect for the development of electrochemical sensors with potential applications in the biomedical and pharmaceutical industries.

  3. Development of an integrated microsystem for the multiplexed detection of breast cancer markers in serum using electrochemical immunosensors

    Science.gov (United States)

    Fragoso, Alex; Laboria, Noemi; Botero, Mary Luz; Bejarano, Diego; Latta, Daniel; Hansen-Hagge, Thomas E.; Kemmner, Wolfgang; Katakis, Ioanis; Gärtner, Claudia; Drese, Klaus; O'Sullivan, Ciara K.

    2010-02-01

    A microsystem integrating electrochemical biosensoric detection for the simultaneous multiplexed detection of protein markers of breast cancer is reported. The immobilization of antibodies against each of carcinoembryonic antigen (CEA), prostate specific antigen (PSA) and cancer antigen 15-3 (CA15-3) was achieved via crosslinking to a bipodal dithiol chemisorbed on gold electrodes. This bipodal dithiol had the double function of eliminating non-specific binding and optimal spacing of the anchor antibodies for maximum accessibility to the target proteins. Storage conditions were optimized, demonstrating a long-term stability of the reporter conjugates jointly stored within a single reservoir in the microsystem. The final system has been optimized in terms of incubation times, temperatures and simultaneous, multiplexed detection of the protein markers was achieved in less than 10 minutes with less than ng/mL detection limits. The microsystem has been validated using real patient serum samples and excellent correlation with ELISA results obtained.

  4. Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptor.

    Science.gov (United States)

    Ribeiro, J A; Pereira, C M; Silva, A F; Sales, M Goreti F

    2017-08-15

    An electrochemical biosensor was developed by merging the features of Molecular Imprinting technique and Screen-Printed Electrode (SPE) for the simple and fast screening of cardiac biomarker myoglobin (Myo) in point-of-care (POC). The MIP artificial receptor for Myo was prepared by electrooxidative polymerization of phenol (Ph) on a AuSPE in the presence of Myo as template molecule. The choice of the most effective protein extraction procedure from the various extraction methods tested (mildly acidic/basic solutions, pure/mixed organic solvents, solutions containing surfactants and enzymatic digestion methods), and the optimization of the thickness of the polymer film was carefully undertaken in order to improve binding characteristics of Myo to the imprinted polymer receptor and increase the sensitivity of the MIP biosensor. The film thickness was optimized by adjusting scan rate and the number of cycles during cyclic voltammetric electropolymerization of Ph. The thickness of the polyphenol nanocoating of only few nanometres (∼4.4 nm), and similar to the protein diameter, brought in significant improvements in terms of sensor sensitivity. The binding affinity of MIP receptor film was estimated by fitting the experimental data to Freundlich isotherm and a ∼8 fold increase in the binding affinity of Myo to the imprinted polymer (K F = 0.119 ± 0.002 ng -1  mL) when compared to the non-imprinted polymer (K F  = 0.015 ± 0.002 ng -1  mL) which demonstrated excellent (re)binding affinity for the imprinted protein. The incubation of the Myo MIP receptor modified electrode with increasing concentration of protein (from 0.001 ng mL -1 to 100 μg mL -1 ) resulted in a decrease of the ferro/ferricyanide redox current. LODs of 2.1 and 14 pg mL -1 were obtained from calibration curves built in neutral buffer and diluted artificial serum, respectively, using SWV technique, enabling the detection of the protein biomarker at clinically relevant levels. The

  5. Sensitive Electrochemical Detection of Native and Aggregated x-Synuclein Protein Involved in Parkinson's Disease

    NARCIS (Netherlands)

    Masarik, Michal; Stobiecka, Agata; Kizek, René; Jelen, Frantisek; Pechan, Zdenk; Hoyer, Wolfgang; Subramaniam, Vinod; Palecek, Emil

    2004-01-01

    The aggregation of α-synuclein, a 14 kDa protein, is involved in several human neurodegenerative disorders, including Parkinson's disease. We studied native and in vitro aggregated α-synuclein by circular dichroism (CD), atomic force microscopy (AFM) and electrochemical methods. We used constant

  6. Novel Insights into the Electrochemical Detection of Nitric Oxide in Biological Systems

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Lojek, Antonín; Hrbáč, J.; Kuchta, R.; Kadlec, J.; Kubala, Lukáš

    2014-01-01

    Roč. 60, č. 1 (2014), s. 8-12 ISSN 0015-5500 R&D Projects: GA MŠk(CZ) EE2.3.30.0030; GA ČR(CZ) GP13-40882P Institutional support: RVO:68081707 Keywords : nitric oxide * electrochemical detector * biological systems Subject RIV: BO - Biophysics Impact factor: 1.000, year: 2014

  7. Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles.

    Science.gov (United States)

    Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2013-11-07

    Electrochemical sensing of methyl salicylate, a key plant volatile has been achieved using a gold nanoparticle (AuNP) modified screen printed carbon electrode (SPCE). The electrochemical response of planar gold electrodes, SPCE and AuNP-SPCE in alkaline electrolyte in the presence and absence of methyl salicylate were studied to understand the amperometric response of various electrochemical reactions. The reaction mechanism includes hydrolysis of methyl salicylate and the oxidation of negative species. The electrochemical responses were recorded using cyclic voltammetry and differential pulse voltammetry techniques, where the results showed characteristic signals for methyl salicylate oxidation. Among the examined electrodes, AuNP-SPCE possessed three fold better sensitivity than planar gold and 35 times better sensitivity than SPCE (at 0.5 V). The methyl salicylate sensing by AuNP-SPCE possessed 95% of its methyl salicylate response. The electroanalytical results of soybean extract showed that AuNP-SPCE can be employed for the determination of methyl salicylate in real samples.

  8. Nanomolar electrochemical detection of caffeic acid in fortified wine samples based on gold/palladium nanoparticles decorated graphene flakes.

    Science.gov (United States)

    Thangavelu, Kokulnathan; Raja, Nehru; Chen, Shen-Ming; Liao, Wei-Cheng

    2017-09-01

    Amalgamation of noble metal nanomaterials on graphene flakes potentially paves one way to improve their physicochemical properties. This paper deals with the simultaneous electrochemical deposition of gold and palladium nanoparticles on graphene flakes (Au/PdNPs-GRF) for the sensitive determination of caffeic acid (CA). The physiochemical properties of the prepared Au/PdNPs-GRF was characterized by using numerous analytical techniques such as scanning electron microscopy, electron dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, Raman spectroscopy and electrochemical impedance spectroscopy. The enhanced electrochemical determination of CA at Au/PdNPs deposition on GRF were studied by using cyclic voltammetry and differential pulse voltammetry. In results, Au/PdNPs-GRF electrode exhibited an excellent electrocatalytic activity towards CA with wide linear range and low limit of detection of 0.03-938.97µM and 6nM, respectively. Eventually, the Au/PdNPs-GRF was found as a selective and stable active material for the sensing of CA. In addition, the proposed sensor showed the adequate results in real sample analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Facile electrochemical pretreatment of multiwalled carbon nanotube - Polydimethylsiloxane paste electrode for enhanced detection of dopamine and uric acid

    Science.gov (United States)

    Buenaventura, Angelo Gabriel E.; Yago, Allan Christopher C.

    2018-05-01

    A facile electrochemical pretreatment via anodization was done on Carbon Paste Electrodes (CPEs) composed of Multiwalled Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS) binder to produce `anodized' CPEs (ACPE). Cyclic Voltammetry (CV) technique was used to anodize the CPEs. The anodization step, performed in various solutions (0.2 M NaOH(aq), 0.06 M BR Buffer at pH 7.0, and 0.2 M HNO3(aq)), were found to enhance the electrochemical properties of the ACPEs compared to non-anodized CPE. Electrochemical Impedance Spectroscopy (EIS) measurements revealed a significantly lower charge transfer resistance (Rct) for the ACPEs (4.01-6.25 kΩ) as compared to CPE (25.9 kΩ). Comparison of the reversibility analysis for Fe(CN)63-/4- redox couple showed that the ACPEs have peak current ratio (Ia/Ic) at range of 0.97-1.10 while 1.92 for the CPE; this result indicated better electrochemical reversible behaviors for Fe(CN)63-/4- redox couple using the ACPEs. CV Anodization process was further optimized by varying solution and CV parameters (i.e. pH, composition, number of cycles, and potential range), and the resulting optimized ACPE was used for enhanced detection of Dopamine (DA) and Uric Acid (UA) in the presence of excess Ascorbic Acid (AA). Employing Differential Pulse Voltammetry technique, enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained. The anodic peak currents for the oxidation of DA and UA appeared at 0.263V and 0.414 V, respectively, and it was observed to be linearly increasing with increasing concentrations of biomolecules (25-100 µM). The detection limit was determined to be 3.86 µM for DA and 5.61 µM for UA. This study showed a quick and cost-effective pretreatment for CPEs based on MWCNT-PDMS composite which lead to significant enhancement on its electrochemical properties.

  10. Enhanced electrocatalytic activity of graphene-gold nanoparticles hybrids for peroxynitrite electrochemical detection on hemin-based electrode.

    Science.gov (United States)

    Wang, Beibei; Ji, Xueping; Ren, Jujie; Ni, Ruixing; Wang, Lin

    2017-12-01

    A simple, ultrasensitive peroxynitrite anion (ONOO - ) electrochemical sensing platform was developed by immobilizing hemin on a density controllable electrochemically reduced graphene oxide-Au nanoparticles (ERGO-AuNPs) nanohybrids. The ERGO-AuNPs in situ nanohybrids were produced onto a glass carbon electrode (GCE) by one-step electrodeposition, the density of which could be easily controlled by electrodeposited time. The morphology of ERGO-AuNPs nanohybrids was characterized by a scanning electron microscope (SEM). The ERGO-AuNPs nanohybrids showed a high electrocatalytic activity for immobilized-hemin, because the nanostructures hybrids could effectively promote electron transfer rate between hemin and the electrode. Due to nanohybrids-enhanced catalytic effect for hemin, they were firstly selected for use as a highly sensitive electrochemical platform for ONOO - detection. The resulted sensor showed a high electrocatalytic activity toward ONOO - oxidation, being free from the electroactive interferents, including nitrite, nitrate, dopamine and uric acid at an applied potential of 0.7V. The sensor exhibited a high sensitivity of 123.1nAμM -1 and a lower detection limit of 0.1μM, and a wide linear range of 2.4×10 -6 to 5.5×10 -5 M, which could be attributed to the synergy between ERGO and AuNPs in hybrids. The nanohybrids in situ preparation and ONOO - detection methods would be beneficial to developing other sensing interface and have promising applications in biological molecules analysis and clinical diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Localization of proteins in paint cross-sections by scanning electrochemical microscopy as an alternative immunochemical detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Sciutto, Giorgia; Prati, Silvia [Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, Via Guaccimanni 42, Ravenna 48121 (Italy); Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Mazzeo, Rocco, E-mail: rocco.mazzeo@unibo.it [Microchemistry and Microscopy Art Diagnostic Laboratory, University of Bologna, Via Guaccimanni 42, Ravenna 48121 (Italy); Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Zangheri, Martina; Roda, Aldo; Bardini, Luca; Valenti, Giovanni; Rapino, Stefania [Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy); Marcaccio, Massimo, E-mail: massimo.marcaccio@unibo.it [Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi, Bologna 2 40126 (Italy)

    2014-06-01

    Highlights: • Advanced immuno-electrochemical detection of proteins in paint samples by SECM. • Analysis performed directly on cross-section with high spatial resolution. • Identification of HRP catalytic activity for a selective location of analyte. • Satisfactory results were obtained for aged real samples. • The way forward for an extensive application of SECM in conservation science is shown. - Abstract: The qualitative identification of proteinaceous substances, as well as their location within a complex paint stratigraphy, is one of the most challenging issues in the characterization of painting materials. Nevertheless, information on paint components represent a crucial task for studies concerning both the ancient painting techniques adopted and the state of conservation, being fundamental investigations for the selection of appropriate conservation actions. The present research was aimed at developing a new detection approach for the immunochemical localization of ovalbumin in paint cross-sections based on the use of scanning electrochemical microscopy (SECM). The immunochemical analyses were performed using an anti-ovalbumin primary antibody and a secondary antibody labelled with horseradish peroxidase (HRP). SECM measurements were performed in feedback mode using benzoquinone (BQ)/hydroquinone (H{sub 2}Q) redox couple. In presence of hydrogen peroxide (H{sub 2}O{sub 2}), HRP catalyzes the re-oxidation of H{sub 2}Q to BQ and the increment of BQ concentration in correspondence of the target protein was detected by SECM through the electrochemical reduction of the regenerated BQ at the microelectrode. Indeed, the localization of ovalbumin was possible thanks to a clear discrimination of SECM currents, achieved by the comparison of the measurements recorded before and after H{sub 2}O{sub 2} administration, based on the HRP on/off approach. The method was evaluated both on samples from standard mocks-up and on a historical sample, collected from a

  12. An ultrasensitive electrochemical immunosensor for the detection of prostate-specific antigen based on conductivity nanocomposite with halloysite nanotubes.

    Science.gov (United States)

    Li, Yueyuan; Khan, Malik Saddam; Tian, Lihui; Liu, Li; Hu, Lihua; Fan, Dawei; Cao, Wei; Wei, Qin

    2017-05-01

    A sensitive label-free amperometric electrochemical immunosensor for detection of prostate-specific antigen (PSA) was proposed in this work. The nanocomposite of halloysite nanotubes with polypyrrole shell and palladium nanoparticles (HNTs@PPy-Pd) was used as a novel signal label. The HNTs with adequate hydroxyl groups are economically available raw materials. PPy, as an electrically conducting polymer material, can be absorbed to the surface of HNTs by in situ oxidative polymerization of the pyrrole monomer and form a shell on the HNTs. The shell of PPy could not only improve the conductivity of the nanocomposite but also absorb large amounts of Pd nanoparticles (NPs). The Pd NPs with high electrocatalytic activity toward the reduction of H 2 O 2 and the HNTs@PPy-Pd nanocomposite as the analytical signal label could improve the sensitivity of the immunosensor. Under optimal conditions, the immunosensor showed a low detection limit (0.03 pg/mL) and a wide linear range (0.0001 to 25 ng/mL) of PSA. Moreover, its merits such as good selectivity, acceptable reproducibility, and stability indicate that the fabricated immunosensor has a promising application potential in clinical diagnosis. Graphical Abstract A new label-free amperometric electrochemical immunosensor based on HNTs@PPy-Pd nanocomposite for quantitative detection of PSA.

  13. Polyhydroquinone-graphene composite as new redox species for sensitive electrochemical detection of cytokeratins antigen 21-1

    Science.gov (United States)

    Wang, Huiqiang; Rong, Qinfeng; Ma, Zhanfang

    2016-07-01

    Polyhydroquinone-graphene composite as a new redox species was synthesized simply by a microwave-assisted one-pot method through oxidative polymerization of hydroquinone by graphene oxide, which exhibited excellent electrochemical redox activity at 0.124 V and can remarkably promote electron transfer. The as-prepared composite was used as immunosensing substrate in a label-free electrochemical immunosensor for the detection of cytokeratins antigen 21-1, a kind of biomarker of lung cancer. The proposed immunosensor showed wide liner range from 10 pg mL-1 to 200 ng mL-1 with a detection limit 2.3 pg mL-1, and displayed a good stability and selectivity. In addition, this method has been used for the analysis of human serum sample, and the detection results showed good consistence with those of ELISA. The present substrate can be easily extended to other polymer-based nanocomposites.

  14. Titania nanotube-modified screen printed carbon electrodes enhance the sensitivity in the electrochemical detection of proteins.

    Science.gov (United States)

    Mandal, Soumit S; Navratna, Vikas; Sharma, Pratyush; Gopal, B; Bhattacharyya, Aninda J

    2014-08-01

    The use of titania nanotubes (TiO2-NT) as the working electrode provides a substantial improvement in the electrochemical detection of proteins. A biosensor designed using this strategy provided a robust method to detect protein samples at very low concentrations (Cprotein ca 1ng/μl). Reproducible measurements on protein samples at this concentration (Ip,a of 80+1.2μA) could be achieved using a sample volume of ca 30μl. We demonstrate the feasibility of this strategy for the accurate detection of penicillin binding protein, PBP2a, a marker for methicillin resistant Staphylococcus aureus (MRSA). The selectivity and efficiency of this sensor were also validated using other diverse protein preparations such as a recombinant protein tyrosine phosphatase (PTP10D) and bovine serum albumin (BSA). This electrochemical method also presents a substantial improvement in the time taken (few minutes) when compared to conventional enzyme-linked immunosorbent assay (ELISA) protocols. It is envisaged that this sensor could substantially aid in the rapid diagnosis of bacterial infections in resource strapped environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection

    Directory of Open Access Journals (Sweden)

    Amadou L. Ndiaye

    2016-09-01

    Full Text Available Here, we report on the use of electrochemical methods for the detection of volatiles fatty acids (VFAs, namely acetic acid. We used tetra-tert-butyl phthalocyanine (PcH2-tBu as the sensing material and investigated its electroanalytical properties by means of cyclic voltammetry (CV and square wave voltammetry (SWV. To realize the electrochemical sensing system, the PcH2-tBu has been dropcast-deposited on carbon (C orgold (Auscreen-printed electrodes (SPEs and characterized by cyclic voltammetry and scanning electron microscopy (SEM. The SEM analysis reveals that the PcH2-tBu forms mainly aggregates on the SPEs. The modified electrodes are used for the detection of acetic acid and present a linear current increase when the acetic acid concentration increases. The Cmodified electrode presents a limit of detection (LOD of 25.77 mM in the range of 100 mM–400 mM, while the Aumodified electrode presents an LOD averaging 40.89 mM in the range of 50 mM–300 mM. When the experiment is realized in a buffered condition, theCmodified electrode presents a lower LOD, which averagesthe 7.76 mM. A pronounced signal decay attributed to an electrode alteration is observed in the case of the gold electrode. This electrode alteration severely affects the coating stability. This alteration is less perceptible in the case of the carbon electrode.

  16. Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A.

    Science.gov (United States)

    Hu, Liangsheng; Fong, Chi-Chun; Zhang, Xuming; Chan, Leo Lai; Lam, Paul K S; Chu, Paul K; Wong, Kwok-Yin; Yang, Mengsu

    2016-04-19

    A photorefreshable and photoenhanced electrochemical sensing platform for bisphenol A (BPA) detection based on Au nanoparticles (NPs) decorated carbon doped TiO2 nanotube arrays (TiO2/Au NTAs) is described. The TiO2/Au NTAs were prepared by quick annealing of anodized nanotubes in argon, followed by controllable electrodeposition of Au NPs. The decoration of Au NPs not only improved photoelectrochemical behavior but also enhanced electrocatalytic activities of the resulted hybrid NTAs. Meanwhile, the high photocatalytic activity of the NTAs allowed the electrode to be readily renewed without damaging the microstructures and surface states after a short UV treatment. The electrochemical detection of BPA on TiO2/Au NTAs electrode was significantly improved under UV irradiation as the electrode could provide fresh reaction surface continuously and the further increased photocurrent resulting from the improved separation efficiency of the photogenerated electron-hole pairs derived from the consumption of holes by BPA. The results showed that the refreshable TiO2/Au NTAs electrode is a promising sensor for long-term BPA monitoring with the detection limit (S/N = 3) of 6.2 nM and the sensitivity of 2.8 μA·μM(-1)·cm(-2).

  17. The Polypyrrole/Multiwalled Carbon Nanotube Modified Au Microelectrode for Sensitive Electrochemical Detection of Trace Levels of Pb2+

    Directory of Open Access Journals (Sweden)

    Xuxing Zhu

    2017-03-01

    Full Text Available The sensitive detection of trace levels of heavy metal ions such as Pb2+ is of significant importance due to the health hazard they pose. In this paper, we present a polypyrrole (PPy/multiwalled carbon nanotube (MWCNT-modified Au microelectrode. The PPy/MWCNT composite film was electrochemically deposited on the microelectrode by cyclic voltammetry (CV. The composite film was investigated by scanning electron microscope (SEM, CV, and electrochemical impedance spectroscopy (EIS, and the results show that this film presents a uniformly distributed and web-like entangled structure and good conductivity. Differential pulse stripping voltammetry (DPSV was applied to determine trace levels of Pb2+. Experimental conditions including accumulation time and deposition potential were optimized. In optimal conditions, the PPy/MWCNT-modified microelectrode performed sensitive detection of Pb2+ within a concentration range from 1 to 100 μg·L−1, and the limit of detection was 0.65 μg·L−1 at the signal-to-noise ratio of three.

  18. Comparison of Electrochemical Immunosensors and Aptasensors for Detection of Small Organic Molecules in Environment, Food Safety, Clinical and Public Security

    Directory of Open Access Journals (Sweden)

    Benoit Piro

    2016-02-01

    Full Text Available We review here the most frequently reported targets among the electrochemical immunosensors and aptasensors: antibiotics, bisphenol A, cocaine, ochratoxin A and estradiol. In each case, the immobilization procedures are described as well as the transduction schemes and the limits of detection. It is shown that limits of detections are generally two to three orders of magnitude lower for immunosensors than for aptasensors, due to the highest affinities of antibodies. No significant progresses have been made to improve these affinities, but transduction schemes were improved instead, which lead to a regular improvement of the limit of detections corresponding to ca. five orders of magnitude over these last 10 years. These progresses depend on the target, however.

  19. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Electrochemical aptasensor for detecting Der p2 allergen using polycarbonate-based double-generation gold nanoparticle chip

    Directory of Open Access Journals (Sweden)

    Ming-Che Shen

    2017-04-01

    Full Text Available In this study, a novel aptamer-based impedimetric biosensor for detecting the group 2 allergen of Dermatophagoides pteronyssinus (Der p2 was developed. First, an anodic aluminum oxide (AAO membrane was prepared. A modified AAO barrier-layer surface with an array of nanohemispheres of 400 nm in diameter was used as a template for the nanoelectroforming of a nickel mold. After electroforming, the AAO template was etched and a nickel nanomold with a concave nanostructure array was produced. The formed nanostructured nickel nanomold was then used in the replica molding of a nanostructured polycarbonate (PC substrate via hot embossing. Finally, a gold thin film was sputtered onto the PC substrate to form a double-generation gold nanoparticle electrode (array of nanohemispheres with smaller nanoparticles orderly distributed on each nanohemisphere. After immobilizing specifically designed aptamers on the fabricated electrode, electrochemical impedance spectroscopy was used to determine the concentration of Der p2. The sensitivity of the proposed scheme for the detection of the dust mite antigen Der p2 was 2.088 Ω / (ng/mL × cm2 with a dynamic detection range of 27.5–400 ng/mL and detection limit of 16.47 ng/mL.The aptamer-based impedimetric biosensor proposed in this study possesses many advantages such as high sensitivity, low cost, and high consistency over currently used sensors. The proposed sensor was found to be useful for the rapid detection of rare molecules present in an analyte. Keywords: Aptamers, Der p2 dust mite allergen detection, Nanostructured biosensors, Electrochemical impedance spectroscopy

  1. HPLC/EC (High Pressure Liquid Chromatography/Electrochemical Detection) Studies of Selected Explosive Components, Nitroanilines, and Nitrophenols with Dual Electrode Electrochemical Detection.

    Science.gov (United States)

    1985-09-01

    advantage of HPLC/EC for the separation and detection of electroactive species is well documented in the literature (1-5). It has been demonstrated that...Zorbax, Alltech Spherisorb or BAS Biophase columns. The injection valve was a Rheodyne Model 7120 fitted with a 20 pL loop and mounted vertically for

  2. Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: detection of trinucleotide repeats

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Havran, Luděk; Kizek, René; Paleček, Emil

    2004-01-01

    Roč. 20, č. 5 (2004), s. 985-994 ISSN 0956-5663 R&D Projects: GA MPO 1H-PK/42; GA AV ČR IAA4004108; GA AV ČR IBS5004355; GA AV ČR KJB4004302; GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemical sensors * DNA hybridization * DNA labeling Subject RIV: BO - Biophysics Impact factor: 3.251, year: 2004

  3. A single-surface electrochemical biosensor for the detection of DNA triplet repeat expansion

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Horáková Brázdilová, Petra; Cahová, Kateřina; Pečinka, Petr

    2006-01-01

    Roč. 18, č. 2 (2006), s. 141-151 ISSN 1040-0397 R&D Projects: GA MPO(CZ) 1H-PK/42; GA AV ČR(CZ) IAA4004402 Institutional research plan: CEZ:AV0Z50040507 Keywords : DNA hybridization * electrochemical biosensor * enzyme-linked assay Subject RIV: BO - Biophysics Impact factor: 2.444, year: 2006

  4. Evaluation of the BYG Carba Test, a New Electrochemical Assay for Rapid Laboratory Detection of Carbapenemase-Producing Enterobacteriaceae

    Science.gov (United States)

    Yunus, Sami; Massart, Marion; Huang, Te-Din; Glupczynski, Youri

    2015-01-01

    Accurate detection of carbapenemase-producing Enterobacteriaceae (CPE) constitutes a major laboratory diagnostic challenge. We evaluated an electrochemical technique (the BYG Carba test) which allows detection of CPE in less than 35 min. The BYG Carba test was first validated in triplicate against 57 collection isolates with previously characterized β-lactam resistance mechanisms (OXA-48, n = 12; KPC, n = 8; NDM, n = 8; VIM, n = 8; IMP, n = 3; GIM, n = 1; GES-6, n = 1; no carbapenemase, n = 16) and against a panel of 10 isolates obtained from the United Kingdom National External Quality Assessment Service (NEQAS). The test was then evaluated prospectively against 324 isolates referred to the national reference center for suspicion of CPE. The BYG Carba test results were compared with those obtained with the Carba NP test using multiplex PCR sequencing as the gold standard. Of the 57 collection and the 10 NEQAS isolates, all but one GES-6-producing isolate were correctly identified by the Carba BYG test. Among the 324 consecutive Enterobacteriaceae isolates tested prospectively, 146 were confirmed as noncarbapenemase producers by PCR while 178 harbored a carbapenemase gene (OXA-48, n = 117; KPC, n = 25; NDM, n = 23; and VIM, n = 13). Prospectively, in comparison with PCR results, the BYG Carba test displayed 95% sensitivity and 100% specificity versus 89% and 100%, respectively, for the Carba NP test. The BYG Carba test is a novel, rapid, and efficient assay based on an electro-active polymer biosensing technology discriminating between CPE and non-CPE. The precise electrochemical signal (electrochemical impedance variations) allows the establishment of real-time objective measurement and interpretation criteria which should facilitate the accreditation process of this technology. PMID:26637378

  5. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Teo Peik-See

    2014-08-01

    Full Text Available The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE and its simultaneous detection of dopamine (DA and ascorbic acid (AA is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV and differential pulse voltammetry (DPV analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1–9 mM and 0.5–100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3 was found to be 0.42 and 0.12 µM for AA and DA, respectively.

  6. In-Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an Electrochemical Microfluidic Biosensor

    Directory of Open Access Journals (Sweden)

    Thi Luyen Tran

    2015-01-01

    Full Text Available A triple electrode setup with a Pt pseudo-reference electrode integrated in a polydimethylsiloxane- (PDMS- based microchamber was designed and fabricated. The integrated electrodes were deposited onto SiO2/Si substrate by sputtering. The PDMS microchamber was patterned using an SU-8 mold and sealed with electrodes in oxygen plasma. Polypyrrole nanowires (PPy NWs were electrochemically grown in situ at an accurate position of the working electrode in the sealed microchamber instead of in an open system. The DNA probe sequences were simply introduced into the channel to form bonds with the nanowires. A detection limit of 20 pM was achieved using a lock-in amplifier. The electrochemical characteristics produced by the hybridization of DNA strands in the microchamber showed a good signal/noise ratio and high sensitivity. Measurement of the DNA sensor in narrow space also required much less volume of the analytical sample compared with that in an open measuring cell. Results showed that this simple system can potentially fabricate nanostructures and detect bio/chemical molecules in a sealed system.

  7. Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-01

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection of target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.

  8. Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water

    Directory of Open Access Journals (Sweden)

    Marketa Kominkova

    2014-02-01

    Full Text Available Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED. Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer and potential changes (1,000, 1,100 and 1,200 mV offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments.

  9. Label-Free Electrochemical Detection of the Specific Oligonucleotide Sequence of Dengue Virus Type 1 on Pencil Graphite Electrodes

    Science.gov (United States)

    Souza, Elaine; Nascimento, Gustavo; Santana, Nataly; Ferreira, Danielly; Lima, Manoel; Natividade, Edna; Martins, Danyelly; Lima-Filho, José

    2011-01-01

    A biosensor that relies on the adsorption immobilization of the 18-mer single-stranded nucleic acid related to dengue virus gene 1 on activated pencil graphite was developed. Hybridization between the probe and its complementary oligonucleotides (the target) was investigated by monitoring guanine oxidation by differential pulse voltammetry (DPV). The pencil graphite electrode was made of ordinary pencil lead (type 4B). The polished surface of the working electrode was activated by applying a potential of 1.8 V for 5 min. Afterward, the dengue oligonucleotides probe was immobilized on the activated electrode by applying 0.5 V to the electrode in 0.5 M acetate buffer (pH 5.0) for 5 min. The hybridization process was carried out by incubating at the annealing temperature of the oligonucleotides. A time of five minutes and concentration of 1 μM were found to be the optimal conditions for probe immobilization. The electrochemical detection of annealing between the DNA probe (TS-1P) immobilized on the modified electrode, and the target (TS-1T) was achieved. The target could be quantified in a range from 1 to 40 nM with good linearity and a detection limit of 0.92 nM. The specificity of the electrochemical biosensor was tested using non-complementary sequences of dengue virus 2 and 3. PMID:22163916

  10. Detection of localized and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Ohl, P.C.; Bell, G.E.C.; Wilson, D.F.

    1995-12-01

    Underground waste tanks fabricated from mild steel store more than 60 million gallons of radioactive waste from 50 years of weapons production. Leaks are suspected in a significant number of tanks. The probable modes of corrosion failures are reported to be localized corrosion (e.g. nitrate stress corrosion cracking and pitting). The use of electrochemical noise (EN) for the monitoring and detection of localized corrosion processes has received considerable attention and application over the last several years. Proof of principle laboratory tests were conducted to verify the capability of EN evaluation to detect localized corrosion and to compare the predictions of general corrosion obtained from EN with those derived from other sources. Simple, pre-fabricated flat and U-bend specimens of steel alloys A516-Grade 60 (UNS K02100) and A537-CL 1 (UNS K02400) were immersed in temperature controlled simulated waste solutions. The simulated waste solution was either 5M NaNO 3 with 0.3M NaOH at 90 C or 11M NaNO 3 with 0.15M NaOH at 95 C. The electrochemical noise activity from the specimens was monitored and recorded for periods ranging between 140 and 240 hours. At the end of each test period, the specimens were metallographically examined to correlated EN data with corrosion damage

  11. Simultaneous determination of active ingredients in Erigeron breviscapus (Vant.) Hand-Mazz. by capillary electrophoresis with electrochemical detection.

    Science.gov (United States)

    Chu, Qingcui; Wu, Ting; Fu, Liang; Ye, Jiannong

    2005-03-09

    A high-performance capillary electrophoresis (CE) with electrochemical detection (ED) method was developed for the determination of the pharmacologically active ingredients in Erigeron breviscapus (Vant.) Hand-Mazz. and its extract phytopharmaceuticals in this work. Under the optimum conditions, nine analytes, baicalein, naringenin, scopoletin, kaempferol, apigenin, scutellarin, luteolin, caffeic acid and protocatechuic acid were separated within 24 min in a borax buffer (pH 8.7). Notably, excellent linearity was obtained over two orders of magnitude with detection limits (S/N=3) ranged from 1.0 x 10(-7) g/mL to 5.6 x 10(-7) g/mL for all nine analytes. This method was successfully used in the analysis of E. breviscapus (Vant.) Hand-Mazz. and its phytopharmaceuticals with a relatively simple extraction procedure, and the assay results were satisfactory.

  12. Formation of three-dimensional nano-porous silver films and application toward electrochemical detection of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Junpeng [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Niu, Yuchao [Department of Materials Science and Engineering, Shandong Jianzhu University, Fengming Road, Lingang Development Zone, Jinan 250101 (China); Bai, Yanwen; Xiao, Xinxin; Yang, Chuncheng; Yang, Jianfei; Yang, Jinyue [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2013-11-15

    By using the chemically dealloying method, three-dimensional nano-porous silver films (3-D NPSFs) are fabricated into a novel sensor for detecting hydrogen peroxide. The precursor films are prepared by high vacuum magnetron co-sputtering. High-resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM) are taken to investigate the structure and the micro morphology of the precursor films and nano-porous films. We find that the precursor films are composed of glassy matrix and nanocrystallines. After dealloying, the films exhibit a combination of homogenously distributed pores and silver filaments, and exhibit an open, three dimensional bicontinuous interpenetrating ligament–channel structure. Thickness and morphology of the films can be easily controlled by the sputtering time and alloy composition of the precursor films, respectively. In addition, NPSFs show a good linear responding for the concentration of hydrogen peroxide in phosphate buffered solutions, which indicates NPSFs could be a promising electrochemical material for hydrogen peroxide detection.

  13. Detection of Cu2+ in Water Based on Histidine-Gold Labeled Multiwalled Carbon Nanotube Electrochemical Sensor

    Directory of Open Access Journals (Sweden)

    Rilong Zhu

    2017-01-01

    Full Text Available Based on the strong interaction between histidine and copper ions and the signal enhancement effect of gold-labeling carbon nanotubes, an electrochemical sensor is established and used to measure copper ions in river water. In this study the results show that the concentrations of copper ion have well linear relationship with the peak current in the range of 10−11–10−7 mol/L, and the limit of detection is 10−12 mol/L. When using this method to detect copper ions in the Xiangjiang River, the test results are consistent with the atomic absorption method. This study shows that the sensor is convenient to be used in daily monitoring of copper ions in river water.

  14. Determination of undecylenic and sorbic acids in cosmetic preparations by high performance liquid chromatography with electrochemical detection.

    Science.gov (United States)

    Bousquet, Ennio; Spadaro, A; Santagati, N A; Scalia, S; Ronsisvalle, G

    2002-11-07

    A highly sensitive and selective method for the determination of sorbic (SA) and undecylenic acid (UA) in cosmetic formulations by a high performance liquid chromatography method with electrochemical detection (ECD) is described. The pre-column derivatizations of SA and UA and the internal standard (cyclohexanoic acid (cHA)) were carried out using 1-(2,5-dihydroxyphenyl)-2-bromoethanone (2,5-DBE) as an electroactive labeling reagent previously synthesized in our lab. The resulting electroactive esters were separated by isocratic elution of a 5 micrometer Hypersil CN column with acetonitrile-acetate buffer eluent. The compounds were detected by a porous graphite electrode set at an oxidation potential of +0.45 V. The analytical method developed in this study is suitable for quality control assays of complex cosmetic formulations containing sorbic and/or UA.

  15. Label-Free Electrochemical Detection of Vanillin through Low-Defect Graphene Electrodes Modified with Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jingyao Gao

    2018-03-01

    Full Text Available Graphene is an excellent modifier for the surface modification of electrochemical electrodes due to its exceptional physical properties and, for the development of graphene-based chemical and biosensors, is usually coated on glassy carbon electrodes (GCEs via drop casting. However, the ease of aggregation and high defect content of reduced graphene oxides degrade the electrical properties. Here, we fabricated low-defect graphene electrodes by catalytically thermal treatment of HPHT diamond substrate, followed by the electrodeposition of Au nanoparticles (AuNPs with an average size of ≈60 nm on the electrode surface using cyclic voltammetry. The Au nanoparticle-decorated graphene electrodes show a wide linear response range to vanillin from 0.2 to 40 µM with a low limit of detection of 10 nM. This work demonstrates the potential applications of graphene-based hybrid electrodes for highly sensitive chemical detection.

  16. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    Science.gov (United States)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  17. [Application of DNA-based electrochemical biosensor in rapid detection of Escherichia coli exist in licorice decoction].

    Science.gov (United States)

    Zhao, Yu-Wen; Wang, Hai-Xia; Bie, Song-Tao; Shao, Qian; Wang, Chun-Hua; Wang, Dong-Heng; Li, Zheng

    2018-03-01

    A new method for detection of Escherichia coli exist in licorice decoction was developed by using DNA-based electrochemical biosensor. The thiolated capture probe was immobilized on a gold electrode at first. Then the aptamer for Escherichia coli was combined with the capture probe by hybridization. Due to the stronger interaction between the aptamer and the E. coli, the aptamer can dissociate from the capture probe in the presence of E. coli in licorice decoction. The biotinylated detection probe was hybridized with the single-strand capture probe. As a result, the electrochemical response to Escherichia coli can be measured by using differential pulse voltammetric in the presence of α-naphthyl phosphate. The plot of peak current vs. the logarithm of concentration in the range from 2.7×10² to 2.7×10⁸ CFU·mL⁻¹ displayed a linear relationship with a detection limit of 50 CFU·mL⁻¹. The relative standard deviation of 3 successive scans was 2.5%,2.1%,4.6% for 2×10²,2×10⁴,2×106:⁶ CFU·mL⁻¹ E. coli, respectively. The proposed procedure showed better specificity to E. coli in comparison to Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. In the detection of the real extractum glycyrrhizae, the results between the proposed strategy and the GB assay showed high degree of agreement, demonstrating the designed biosensor could be utilized as a powerful tool for microbial examination for traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  18. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis.

    Directory of Open Access Journals (Sweden)

    Ruchika Mohan

    Full Text Available BACKGROUND: Urinary tract infection (UTI is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management. METHODOLOGY/PRINCIPAL FINDINGS: The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both. CONCLUSION/SIGNIFICANCE: We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for

  19. Hazards of Secondary Bromadiolone Intoxications Evaluated using High-performance Liquid Chromatography with Electrochemical Detection

    Directory of Open Access Journals (Sweden)

    René Kizek

    2007-07-01

    Full Text Available This study reported on the possibility of intoxications of non-target wild animalsassociated with use of bromadiolone as the active component of rodenticides withanticoagulation effects. A laboratory test was done with earthworms were exposed tobromadiolone-containing granules under the conditions specified in the modified OECD207 guideline. No mortality of earthworms was observed during the fourteen days longexposure. When the earthworms from the above test became a part of the diet of commonvoles in the following experiment, no mortality of consumers was observed too. However,electrochemical analysis revealed higher levels of bromadiolone in tissues fromearthworms as well as common voles compared to control animals. There were determinedcomparable levels of bromadiolone in the liver tissue of common voles after primary(2.34±0.10 μg/g and secondary (2.20±0.53 μg/g intoxication. Therefore, the risk ofsecondary intoxication of small mammalian species feeding on bromadiolone-containing earthworms is the same as of primary intoxication through baited granules. Bromadiolone bio-accumulation in the food chain was monitored using the newly developed analytical procedure based on the use of a liquid chromatography coupled with electrochemical detector (HPLC-ED. The HPLC-ED method allowed to determine the levels of bromadiolone in biological samples and is therefore suitable for examining the environmental hazards of this substance.

  20. Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation.

    Science.gov (United States)

    Yang, Yuan; Wang, Yan-Zhai; Fang, Zhen; Yu, Yang-Yang; Yong, Yang-Chun

    2018-02-01

    Toxicity assessment of water is of great important to the safety of human health and to social security because of more and more toxic compounds that are spilled into the aquatic environment. Therefore, the development of fast and reliable toxicity assessment methods is of great interest and attracts much attention. In this study, by using the electrochemical activity of Shewanella oneidensis MR-1 cells as the toxicity indicator, 3,5-dichlorophenol (DCP) as the model toxic compound, a new biosensor for water toxicity assessment was developed. Strikingly, the presence of DCP in the water significantly inhibited the maximum current output of the S. oneidensis MR-1 in a three-electrode system and also retarded the current evolution by the cells. Under the optimized conditions, the maximum current output of the biosensor was proportional to the concentration of DCP up to 30 mg/L. The half maximal inhibitory concentration of DCP determined by this biosensor is about 14.5 mg/L. Furthermore, simultaneous monitoring of the retarded time (Δt) for current generation allowed the identification of another biosensor signal in response to DCP which could be employed to verify the electrochemical result by dual confirmation. Thus, the present study has provided a reliable and promising approach for water quality assessment and risk warning of water toxicity.

  1. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells.

    Science.gov (United States)

    Wang, Tianshu; Liu, Jiyang; Gu, Xiaoxiao; Li, Dan; Wang, Jin; Wang, Erkang

    2015-07-02

    Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10(6) cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells. Copyright © 2015. Published by Elsevier B.V.

  2. An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer

    International Nuclear Information System (INIS)

    Qin Haixia; Liu Jiyang; Chen Chaogui; Wang Jiahi; Wang Erkang

    2012-01-01

    Highlights: ► An electrochemical aptasensor for selective detection of peptide is constructed. ► This aptasensor is based on grapheme multilayer via layer-by-layer assembly. ► Such multilayer facilitates electron transfer and provides more adsorption sites. - Abstract: Here we demonstrate for the first time that by physically adsorbing aptamer onto conductive film assembled via alternate adsorption of graphene/polyelectrolyte and methylene blue/polyelectrolyte, a label-free electrochemical aptasensor with high sensitivity and selectivity for peptide detection is constructed. Graphene multilayer derived from layer-by-layer assembly has played significant roles in this sensing strategy: allowing accumulation of methylene blue, facilitating electron transfer and providing much more adsorption site. As compared to previous electrochemical aptasensors, the current sensor based on graphene multilayer alternated with electroactive molecule layer offers extremely high capability for sensitive detection of target without interference of environmental surrounding. This electroactive probe-confined graphene multilayer confers great flexibility to combine with differential pulse voltammetry (DPV) together. In the presence of target D entiomer of arginine vasopressin (D-VP), the binding of peptide to aptamer block the electron transfer process of MB, leading to decreased current peak of DPV. By this way, this electrochemical aptasensor based on electroactive molecule-intercalated graphene multilayer provide highly sensitive and specific detection of D-VP with the lowest detectable concentration of 1 ng mL −1 and a wide detection range from 1 to 265 ng mL −1 .

  3. A novel electrochemical sensor for detecting hyperin with a nanocomposite of ZrO2-SDS-SWCNTs as decoration.

    Science.gov (United States)

    Li, Shuo; Lei, Sheng; Yu, Qian; Zou, Lina; Ye, Baoxian

    2018-08-01

    A novel high-sensitive electrochemical sensor with glassy carbon electrode (GCE) as support for hyperin determination is successfully designed and constructed, and the well-shaped nano-meter modified material is synthesized via a one-step and facile route. Functionalized with surfactant sodium dodecyl sulfate (SDS), Single-Walled Carbon Nanotubes (SWCNTs) are synchronously grafted with ZrO 2 nanoparticles to develop into the as-prepared nano-composite (ZrO 2 -SDS-SWCNTs). Compared to the previous reports related with hyperin detection, the linear range gets wider and detection limit (LOD) becomes lower with the aid of this novel nano-composite modified glassy carbon electrode (ZrO 2 -SDS-SWCNTs/GCE). The crystalline phases and functionalization of the preparation process has been investigated by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) instrument analysis, respectively, and the micro-morphology of related modified materials is also visibly characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). In addition, electrochemical properties of the modified materials are comparably explored by means of impedance spectroscopy (EIS) and cyclic voltammograms (CV). According to the established calibration curve under optimized condition, the peak current (Differential pulse voltammetry (DPV) signal) keeps a linear relationship with hyperin concentration in the ranges of 1.0 × 10 -9 - 3.0 × 10 -7 mol L -1 , meanwhile detection limit reaches as low as 5 × 10 -10 mol L -1 (S/N = 3). As for practical applications, the proposed sensor has also worked well on sensitive hyperin determination in real species Abelmoschus manihot. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evaluation of electrochemical, UV/VIS and Raman spectroelectrochemical detection of Naratriptan with screen-printed electrodes.

    Science.gov (United States)

    Hernández, Carla Navarro; Martín-Yerga, Daniel; González-García, María Begoña; Hernández-Santos, David; Fanjul-Bolado, Pablo

    2018-02-01

    Naratriptan, active pharmaceutical ingredient with antimigraine activity was electrochemically detected in untreated screen-printed carbon electrodes (SPCEs). Cyclic voltammetry and differential pulse voltammetry were used to carry out quantitative analysis of this molecule (in a Britton-Robinson buffer solution at pH 3.0) through its irreversible oxidation (diffusion controlled) at a potential of +0.75V (vs. Ag pseudoreference electrode). Naratriptan oxidation product is an indole based dimer with a yellowish colour (maximum absorption at 320nm) so UV-VIS spectroelectrochemistry technique was used for the very first time as an in situ characterization and quantification technique for this molecule. A reflection configuration approach allowed its measurement over the untreated carbon based electrode. Finally, time resolved Raman Spectroelectrochemistry is used as a powerful technique to carry out qualitative and quantitative analysis of Naratriptan. Electrochemically treated silver screen-printed electrodes are shown as easy to use and cost-effective SERS substrates for the analysis of Naratriptan. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water.

    Science.gov (United States)

    Sahoo, Dibakar; Mandal, Abhishek; Mitra, Tapas; Chakraborty, Kaushik; Bardhan, Munmun; Dasgupta, Anjan Kumar

    2018-01-17

    Present study reveals the low concentrations (∼4 ppm) of pesticide sensing vis-à-vis degradation of pesticides with the help of nontoxic zinc oxide quantum dots (QD). In our study, we have taken four different pesticides viz., aldrin, tetradifon, glyphosate, and atrazine, which are widely used in agriculture and have structural dissimilarities/diversity. By using optical sensing techniques such as steady state and time-resolved fluorescence, we have analyzed the detailed exciton dynamics of QD in the presence of different pesticides. It has been found that the pesticide containing good leaving groups (-Cl) can interact with QD promptly and has high binding affinity (∼10 7 M -1 ). The different binding signatures of QD with different pesticides enable us to differentiate between the pesticides. Time resolved fluorescence spectroscopy provides significant variance (∼150-300 ns) for different pesticides. Furthermore, a large variation (10 5 Ω to 7 × 10 4 Ω) in the resistance of QD in the presence of different pesticides was revealed by electrochemical sensing technique. Moreover, during the interaction with pesticides, QD can also act as a photocatalyst to degrade pesticides. Present investigation explored the fact that the rate of degradation is positively affected by the binding affinity, i.e., the greater the binding, the greater is the degradation. What is more, both optical and electrochemical measurements of QD, in tandem, as described in our study could be utilized as the pattern recognition sensor for detection of several pesticides.

  6. Towards the use of protein A-tagged gold nanoparticles for signal amplification of electrochemical immunosensors in virus detection

    International Nuclear Information System (INIS)

    Huy Tran, Quang; Thuy Nguyen, Thanh; Chung Pham, Van; Hong Hanh Nguyen, Thi; Tuan Mai, Anh

    2012-01-01

    In this paper we represent a study on the potential use of protein A-tagged gold nanoparticles applied for signal amplification of electrochemical immunosensors. Gold nanoparticles (GNPs) were synthesized by the chemical reduction of tetrachloroauric (III) acid trihydrate using sodium ascorbate, and then tagged with protein A (PrA) via ultracentrifugation. UV-Vis spectroscopy and transmission electron microscopy were used to verify the characteristics of formed GNPs/PrA complex. The analyzed results indicate that GNPs were found spherically, homogeneously, and with an average diameter of about 10 nm. Immunoelectron microscopy was then used to investigate the bioactivity of the GNPs/PrA complex in solution by the effective binding of GNPs to viral particles. Scanning electron and fluorescence microscopies were also used to investigate the distribution and the bioactivity of the GNPs/PrA complex on the surface of the interdigitated sensor. Consequently, this study provided some assumptions of the potential application of protein A-tagged gold nanoparticles for signal amplification of electrochemical immunosensors in virus detection from clinical samples

  7. One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Liu, Juan; Zhang, Xiao-Yan; Cui, Xiao-Li; Lin, Yuehe

    2011-04-27

    This paper described the preparation, characterization, and electrochemical properties of a graphene-ZrO2 nanocomposite (GZN) and its application for both the enrichment and detection of methyl parathion (MP). GZN was fabricated using electrochemical deposition and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), which showed the successful formation of nanocomposites. Due to the strong affinity to the phosphoric group and the fast electron-transfer kinetics of GZN, both the extraction and electrochemical detection of organophosphorus (OP) agents at the same GZN modified electrochemical sensor was possible. The combination of solid-phase extraction and stripping voltammetric analysis allowed fast, sensitive, and selective determination of MP in garlic samples. The stripping response was highly linear over the MP concentrations ranging from 0.5 ng mL-1 to 100 ng mL-1, with a detection limit of 0.1 ng mL-1. This new nanocomposite-based electrochemical sensor provides an opportunity to develop a field-deployable, sensitive, and quantitative method for monitoring exposure to OPs.

  8. [Simultaneous determination of four compounds in Sanjing Shuanghuanglian Oral Liquid by high performance liquid chromatography-diode array detection-electrochemical detection].

    Science.gov (United States)

    Liu, Lin; Suo, Zhirong; Zheng, Jianbin

    2006-05-01

    Chlorogenic acid, caffeic acid, baicalin and luteolin in Sanjing Shuanghuanglian Oral Liquid were simultaneously detected and identified using a high performance liquid chromatography coupled with diode array detection and electrochemical detection (HPLC-DAD-ECD). The separation was performed on a Zorbax SB-C18 column (150 mm x 4.6 mm i. d., 5.0 microm). The mobile phase consisted of (A) methanol and (B) methanol-water-acetic acid (50: 50: 1, v/v/v) using a linear gradient elution of 2%A-3%A at 0-3 min, 3%A-25%A at 3-15 min, 25%A-80%A at 15-20 min. The flow rate was 0.8 mL/min. The DAD detection was used at 275 nm. The ECD detection was done at 0.7 V. The column thermostat set at 30 degrees C. The limits of detection of the 4 compounds were 1 mg/L for chlorogenic acid, 0.2 mg/L for caffeic acid, 9 mg/L for baicalin, 7 mg/L for luteolin. The average recoveries were between 96.6%-99.6% with relative standard deviations (RSDs) of 2.5%-4.1%. The method is simple, rapid, reproducible and accurate. It can be used for the routine analysis of the four compounds in Shuanghuanglian Oral Liquid.

  9. Development and Electrochemical Investigations of an EIS- (Electrolyte-Insulator-Semiconductor based Biosensor for Cyanide Detection

    Directory of Open Access Journals (Sweden)

    Michael J. Schöning

    2007-08-01

    Full Text Available A cyanide biosensor based on a pH-sensitive p-doped electrolyte-insulator-semiconductor (EIS structure with an immobilised enzyme (cyanidase is realised at thelaboratory scale. The immobilisation of the cyanidase is performed in two distinct steps:first, the covalent coupling of cyanidase to an N-hydroxysuccinimide- (NHS activatedSepharoseTM gel and then, the physical entrapment of NHS-activated SepharoseTM with theimmobilised cyanidase in a dialysis membrane onto the EIS structure. The immobilisationof the cyanidase to the NHS-activated SepharoseTM is studied by means of gelelectrophoresis measurements and investigations using an ammonia- (NH3 selectiveelectrode. For the electrochemical characterisation of the cyanide biosensor,capacitance/voltage and constant capacitance measurements, respectively, have beencarried out. A differential measurement procedure is presented to evaluate the cyanideconcentration-dependent biosensor signals.

  10. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis

    International Nuclear Information System (INIS)

    Arduini, Fabiana; Moscone, Danila; Cinti, Stefano; Scognamiglio, Viviana

    2016-01-01

    This overview (with 114 refs.) covers the progress made between 2010 and 2015 in the field of nanomaterial based electrochemical biosensors for pesticides in food. Its main focus is on strategies to analyze real samples. The review first gives a short introduction into the most often used bio recognition elements. These include (a) enzymes (resulting in inhibition-based and direct catalytic biosensors), (b) antibodies (resulting in immunosensors), and (c) aptamers (resulting in aptasensors). The next main section covers the various kinds of nanomaterials for use in biosensors and includes carbonaceous species (carbon nanotubes, graphene, carbon black and others), and non-carbonaceous species in the form of nanoparticles, rods, or porous materials. Aspects of sample treatment and real sample analysis are treated next before discussing vanguard technologies in tailor-made food analysis. (author)

  11. Development of a lab-on-chip electrochemical immunosensor for detection of Polycyclic Aromatic Hydrocarbons (PAH) in environmental water

    Science.gov (United States)

    Felemban, Shifa; Vazquez, Patricia; Dehnert, Jan; Goridko, Vadim; Tijero, Maria; Moore, Eric

    2017-06-01

    The work described in this manuscript focuses on how the integration of immunoassay techniques in combination with electrochemical detection can provide a portable and very accurate solution for detection of water pollutants that are detrimental for human health. In particular, we focus our work on the quantification of polycyclic aromatic hydrocarbons (PAHs) in polluted water. Our integrative approach facilitates a real-time detection of this family of organic compounds, by reducing the time of analysis to less than one hour. Additionally, the use of a lab-on-a-chip platform delivers a portable solution that could be used in situ. Optimization of a displacement assay that investigates the presence and concentration of Benzo[a]pyrene in water, allows with the miniaturization of the standard ELISA format into a highly accurate system that provides fast results. The limits of detection obtained are comparable to those of available state-of-the art tools, and achieve the values set by European Drinking Water Directive, 0.10ng/l, as the limit for PAHs in drinking water.

  12. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.

    Science.gov (United States)

    Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju

    2015-01-01

    In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comparison of electrochemical skin conductance and vibration perception threshold measurement in the detection of early diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Amit Goel

    Full Text Available The early diagnosis of diabetic peripheral neuropathy (DPN is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC test in detecting early DPN, compared with the vibration perception threshold (VPT test and diabetic neuropathy symptom (DNS score, using the modified neuropathy disability score (NDS as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6. Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21% had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413. The sensitivity of feet ESC 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN.

  14. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells

    International Nuclear Information System (INIS)

    Wang, Tianshu; Liu, Jiyang; Gu, Xiaoxiao; Li, Dan; Wang, Jin; Wang, Erkang

    2015-01-01

    Highlights: • Fc-PAH was modified on the surface of graphene to prepare hybid nanocomposite (Fc-PAH-G). • A cytosensor was constructed with Fc-PAH-G, PSS and aptamer AS1411 by LBL technology. • The sensing interface introduced more redox probe and enhanced current signal on electrode. • The sensor showed a detection range of 10–10 6 cells/mL with a detection limit of 10 cells/mL. - Abstract: Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10 6 cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells

  15. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianshu [College of Physics, Jilin University, Changchun, Jilin 130012 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Liu, Jiyang; Gu, Xiaoxiao; Li, Dan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Wang, Jin, E-mail: jin.wang.1@stonybrook.edu [College of Physics, Jilin University, Changchun, Jilin 130012 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 (United States); Wang, Erkang, E-mail: ekwang@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2015-07-02

    Highlights: • Fc-PAH was modified on the surface of graphene to prepare hybid nanocomposite (Fc-PAH-G). • A cytosensor was constructed with Fc-PAH-G, PSS and aptamer AS1411 by LBL technology. • The sensing interface introduced more redox probe and enhanced current signal on electrode. • The sensor showed a detection range of 10–10{sup 6} cells/mL with a detection limit of 10 cells/mL. - Abstract: Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10{sup 6} cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells.

  16. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianjuan [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gan Wuer, E-mail: wgan@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan Lingzhong; Deng Yun; Yang Qinghua; He Youzhao [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH{sub 4} and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL{sup -1} (3{sigma}) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL{sup -1} Sn(IV) standard solution.

  17. Electrochemical detection of rutin with a carbon ionic liquid electrode modified by Nafion, graphene oxide and ionic liquid composite

    International Nuclear Information System (INIS)

    Hu, S.; Xiang, J.; Zhang, L.; Zhu, H.; Liu, S.; Sun, W.

    2012-01-01

    We report on a carbon ionic liquid electrode modified with a composite made from Nafion, graphene oxide and ionic liquid, and its application to the sensitive determination of rutin. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. It shows excellent cyclic voltammetric and differential pulse voltammetric performance due to the presence of nanoscale graphene oxide and the ionic liquid, and their interaction. A pair of well-defined redox peaks of rutin appears at pH 3.0, and the reduction peak current is linearly related to its concentration in the range from 0.08 μM to 0.1 mM with a detection limit of 0.016 μM (at 3σ). The modified electrode displays excellent selectivity and good stability, and was successfully applied to the determination of rutin in tablets with good recovery. (author)

  18. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode.

    Science.gov (United States)

    Jiang, Xianjuan; Gan, Wuer; Wan, Lingzhong; Deng, Yun; Yang, Qinghua; He, Youzhao

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH(4) and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL(-1) (3σ) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL(-1) Sn(IV) standard solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. SnO(2) quantum dots-reduced graphene oxide composite for enzyme-free ultrasensitive electrochemical detection of urea.

    Science.gov (United States)

    Dutta, Dipa; Chandra, Sudeshna; Swain, Akshaya K; Bahadur, Dhirendra

    2014-06-17

    Most of the urea sensors are biosensors and utilize urease, which limit their use in harsh environments. Recently, because of their exceptional ability to endorse faster electron transfer, carbonaceous material composites and quantum dots are being used for fabrication of a sensitive transducer surface for urea biosensors. We demonstrate an enzyme free ultrasensitive urea sensor fabricated using a SnO2 quantum dots (QDs)/reduced graphene oxide (RGO) composite. Due to the synergistic effect of the constituents, the SnO2 QDs/RGO (SRGO) composite proved to be an excellent probe for electrochemical sensing. The morphology and structure of the composite was characterized by various techniques, and it was observed that SnO2 QDs are decorated on RGO layers. Electrochemical studies were performed to evaluate the characteristics of the sensor toward detection of urea. Amperometry studies show that the SRGO/GCE electrode is sensitive to urea in the concentration range of 1.6 × 10(-14)-3.9 × 10(-12) M, with a detection limit of as low as 11.7 fM. However, this is an indirect measurement for urea wherein the analytical signal is recorded as a decrease in the amperommetric and/or voltammetric current from the solution redox species ferrocyanide. The porous structure of the SRGO matrix offers a very low transport barrier and thus promotes rapid diffusion of the ionic species from the solution to the electrode, leading to a rapid response time (∼5 s) and ultrahigh sensitivity (1.38 μA/fM). Good analytical performance in the presence of interfering agents, low cost, and easy synthesis methodology suggest that SRGO can be quite promising as an electroactive material for effective urea sensing.

  20. Poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemically detecting dopamine at low concentration

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Hui; Liang, Jiachen; Ji, Chunguang; Zhang, Haifeng; Pei, Qi; Zhang, Yuyang; Zhang, Yu [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Hisaeda, Yoshio [Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Song, Xi-Ming, E-mail: songlab@lnu.edu.cn [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2016-08-01

    Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) (PVIPS), a novel kind of poly(zwitterionic liquids) (PZILs) containing both imidazolium cation and sulfonate anion, was successfully modified on the surface of polypyrrole/graphene oxide nanosheets (PPy/GO) by covalent bonding. The obtained novel PZILs functionalized PPy/GO nanosheets (PVIPS/PPy/GO) modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with high stability, sensitivity, selectivity and wide linear range (40–1220 nM), especially having a lower detection limit (17.3 nM). The excellent analytical performance is attributed to the strongly negative charges on the surface of modified GCE in aqueous solution, which is different from conventional poly(ionic liquids) modified GCE. DA cations could be quickly enriched on the electrode surface by electrostatic interaction in solution due to the existence of −SO{sub 3}{sup −} groups with negative charge at the end of pendant groups in zwitterionic PVIPS, resulting in a change of the electrons transmission mode in the oxidation of DA, that is, from a typical diffusion-controlled process at conventional poly(1-vinyl-3-ethylimidazole bromide) (PVEIB)/PPy/GO modified GCE to a typical surface-controlled process. - Graphical Abstract: Novel poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide nanosheets were successfully synthesized and presented an excellent performance for determination to DA. Display Omitted - Highlights: • Zwitterionic PVIPS functionalized PPy/GO nanosheets were successfully synthesized. • Their surface charge property has been obviously changed to electronegativity. • The excellent electrochemical catalytic activities towards DA were achieved. • −SO{sub 3}{sup −} groups with negative charge changed the transmission mode of electrons. • PVIPS/PPy/GO can act as an electrode material for detecting DA at low concentration.

  1. Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker

    Energy Technology Data Exchange (ETDEWEB)

    Li Ya [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Song Zhongju [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-07-30

    Graphical abstract: Electrodeposition of gold-platinum alloy (Au-PtNPs) on carbon nanotubes as electrochemical sensing interface and HRP as blocking agent for the fabrication of high sensitive immunosensor. Display Omitted Highlights: > In this work, we proposed a novel electrochemical sensing surface. > The sensing surface possessed larger electro-active areas and higher conductivity due to the introduction of MWCNTs. > The signal could be amplified effectively by synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of H{sub 2}O{sub 2}. > Biomolecules could be immobilized on the surface of Au-PtNPs tightly with the bioactivity kept well. > The simple fabrication method provided a new potential for the future development of practical devices for clinical diagnosis application. - Abstract: A novel electrochemical sensing interface, electrodeposition of gold-platinum alloy nanoparticles (Au-PtNPs) on carbon nanotubes, was proposed and used to fabricate a label-free amperometric immunosensor. On the one hand, the multiwalled carbon nanotubes (MWCNTs) could increase active area of the electrode and enhance the electron transfer ability between the electrode and redox probe; on the other hand, the Au-PtNPs not only could be used to assemble biomolecules with bioactivity kept well, but also could further facilitate the shuttle of electrons. In the meanwhile, horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) was employed to block the possible remaining active sites and avoid the nonspecific adsorption. With the synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of hydrogen peroxide (H{sub 2}O{sub 2}), the signal could be amplified and the sensitivity could be enhanced. Using alpha-fetoprotein (AFP) as model analyte, the fabricated immunosensor exhibited two wide linear ranges in the concentration ranges of 0.5-20 ng mL{sup -1} and 20-200 ng mL{sup -1} with a detection limit of 0.17 ng mL{sup -1} at a signal-to-noise of

  2. Topotactic Conversion of Copper(I) Phosphide Nanowires for Sensitive Electrochemical Detection of H2O2 Release from Living Cells.

    Science.gov (United States)

    Li, Zhenzhen; Xin, Yanmei; Wu, Wenlong; Fu, Baihe; Zhang, Zhonghai

    2016-08-02

    In this work, we clearly demonstrate for the first time the use of transition-metal phosphides to set up a new cathodic analysis platform for sensitive and selective electrochemical nonenzymatic detection of H2O2. With the help of a facile topotactic conversion method, the noble metal-free electrocatalyst of copper(I) phosphide nanowires on three-dimensional porous copper foam (Cu3P NWs/CF) is fabricated with electrochemical anodized Cu(OH)2 NWs as precursor. The Cu3P NWs/CF-based sensor presents excellent electrocatalytic activity for H2O2 reduction with a detection limit of 2 nM, the lowest detection limit achieved by noble-metal free electrocatalyst, which guarantees the possibility of sensitive and reliable detection of H2O2 release from living tumorigenic cells, thus showing the potential application as a sensitive cancer cell detection probe.

  3. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    OpenAIRE

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-01-01

    Sulfur hexafluoride (SF6) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes ...

  4. Protein electrochemistry using graphene-based nano-assembly: an ultrasensitive electrochemical detection of protein molecules via nanoparticle-electrode collisions.

    Science.gov (United States)

    Li, Da; Liu, Jingquan; Barrow, Colin J; Yang, Wenrong

    2014-08-04

    We describe a new electrochemical detection approach towards single protein molecules (microperoxidase-11, MP-11), which are attached to the surface of graphene nanosheets. The non-covalently functionalized graphene nanosheets exhibit enhanced electroactive surface area, where amplified redox current is produced when graphene nanosheets collide with the electrode.

  5. Lab-on-a-disc platform for screening of genetically modified E. coli cells via cell-free electrochemical detection of p-Coumaric acid

    DEFF Research Database (Denmark)

    Sanger, Kuldeep; Zor, Kinga; Jendresen, Christian Bille

    2017-01-01

    filtration and electrochemical detection units, the sample filtration was performed by rotating the disc using a programmable closed-loop stepper motor. The electrodes, patterned on plastic substrate, were connected through a printed circuit board to the slip ring using a robust magnetic clamping system...

  6. Pyrrole-phenylboronic acid: a novel monomer for dopamine recognition and detection based on imprinted electrochemical sensor.

    Science.gov (United States)

    Zhong, Min; Teng, Ying; Pang, Shufen; Yan, Liqin; Kan, Xianwen

    2015-02-15

    A molecular imprinting polymer (MIP) based electrochemical sensor was successfully prepared for dopamine (DA) recognition and detection using pyrrole-phenylboronic acid (py-PBA) as a novel electropolymerized monomer. py-PBA could form cyclic boronic ester bond with DA, thus endowing a double recognition capacity of the sensor to DA in the combination of the imprinted effect of MIP. Compared with the sensor prepared using pyrrole or phenylboronic acid as electropolymerized monomer, the present sensor exhibited a remarkable high imprinted factor to DA. The influence factors including pH value, the mole ratio between monomer and template molecule, electropolymerization scan rate, and scan cycles of electropolymerization process were investigated and optimized. Under the optimal conditions, the sensor could recognize DA from its analogs and monosaccharides. A linear ranging from 5.0 × 10(-8) to 1.0 × 10(-5) mol/L for the detection of DA was obtained with a detection limit of 3.3 × 10(-8) mol/L (S/N = 3). The sensor has been applied to analyze DA in injection samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Determination of catechins in human urine subsequent to tea ingestion by high-performance liquid chromatography with electrochemical detection.

    Science.gov (United States)

    Yang, B; Arai, K; Kusu, F

    2000-07-15

    The title determination was conducted by HPLC with electrochemical detection using an ODS column and a mobile phase of acetonitrile: 0.1 M phosphate buffer (pH 2.5) (15:85, v/v). The eight catechins, gallocatechin (GC), epigallocatechin (EGC), catechin (C), epicatechin (EC), epigallocatechin gallate (EGCg), gallocatechin gallate (GCg), epicatechin gallate (ECg), and catechin gallate (Cg), were detected at 0.6 V vs Ag/AgCl. Good linear relationships between current and amount were noted for 0.5-250 pmol of each catechin, with a correlation coefficient of 0.999 in each case. The detection limit for any one was 0.5 pmol (signal to noise ratio, S/N = 3). After the ingestion of 340 ml canned green tea, GC, EGC, C, and EC, mostly in conjugated form, were determined in urine samples. Conjugated catechins were hydrolyzed by enzymes using sulfatase and beta-glucuronidase. The time courses of the above four catechins showed a maxima at 1-3 h after tea ingestion. (+), (-)-EC and (+), (-)-C were present in canned tea.

  8. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs).

    Science.gov (United States)

    Tuteja, Satish K; Chen, Rui; Kukkar, Manil; Song, Chung Kil; Mutreja, Ruchi; Singh, Suman; Paul, Ashok K; Lee, Haiwon; Kim, Ki-Hyun; Deep, Akash; Suri, C Raman

    2016-12-15

    A label-free immunosensor based on electrochemical impedance spectroscopy has been developed for the sensitive detection of a cardiac biomarker myoglobin (cMyo). Hydrothermally synthesized graphene quantum dots (GQDs) have been used as an immobilized template on screen printed electrodes for the construction of an impedimetric sensor platform. The GQDs-modified electrode was conjugated with highly specific anti-myoglobin antibodies to develop the desired immunosensor. The values of charge transfer resistance (Rct) were monitored as a function of varying antigen concentration. The Rct value of the immunosensor showed a linear increase (from 0.20 to 0.31kΩ) in the range of 0.01-100ng/mL cMyo. The specific detection of cMyo was also made in the presence of other competing proteins. The limit of detection for the proposed immunosensor was estimated as 0.01ng/mL which is comparable to the standard ELISA techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs

    Directory of Open Access Journals (Sweden)

    Samar Damiati

    2018-02-01

    Full Text Available Hepatic oval cells (HOCs are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab, which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV and square wave voltammetry (SWV were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection.

  10. A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+.

    Science.gov (United States)

    Zhou, Na; Li, Jinhua; Chen, Hao; Liao, Chunyang; Chen, Lingxin

    2013-02-21

    A simple and sensitive electrochemical assay strategy of stripping voltammetry for mercury ions (Hg(2+)) detection is described based on the synergistic effect between ionic liquid functionalized graphene oxide (GO-IL) and gold nanoparticles (AuNPs). The AuNPs-GO-IL modified onto glassy carbon electrode (GCE) resulted in highly enhanced electron conductive nanostructured membrane and large electroactive surface area, which was excellently examined by scanning electron microscopy and cyclic voltammetry. After accumulating Hg(2+), anodic stripping voltammetry (ASV) was performed, and differential pulse voltammetry (DPV) was employed for signal recording of Hg(2+). Several main experimental parameters were optimized, i.e., deposition potential and time of AuNPs were -0.2 V and 180 s, respectively, and accumulation potential and time of Hg(2+) were -0.3 V and 660 s, respectively. Under the optimal conditions, this AuNPs-GO-IL-GCE sensor attained a good linearity in a wide range of 0.1-100 nM (R = 0.9808) between the concentration of the Hg(2+) standard and peak current. The limit of detection was estimated to be 0.03 nM at a signal-to-noise ratio of 3σ. A variety of common coexistent ions in water samples were investigated, showing no obvious interferences on the Hg(2+) detection. The practical application of the proposed sensor has been carried out and demonstrated as feasible for determination of trace levels of Hg(2+) in drinking and environmental water samples.

  11. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs)

    Science.gov (United States)

    Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A.; Schuster, Bernhard

    2018-01-01

    Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection. PMID:29443890

  12. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    Science.gov (United States)

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  13. Embedded Disposable Functionalized Electrochemical Biosensor with a 3D-Printed Flow Cell for Detection of Hepatic Oval Cells (HOCs).

    Science.gov (United States)

    Damiati, Samar; Peacock, Martin; Leonhardt, Stefan; Damiati, Laila; Baghdadi, Mohammed A; Becker, Holger; Kodzius, Rimantas; Schuster, Bernhard

    2018-02-14

    Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection.

  14. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Cheng, Wei [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Ju, Huangxian [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ding, Shijia, E-mail: dingshijia@163.com [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2014-10-10

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL{sup −1} in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring.

  15. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    International Nuclear Information System (INIS)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo; Cheng, Wei; Ju, Huangxian; Ding, Shijia

    2014-01-01

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL −1 in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring

  16. The Enhanced Photo-Electrochemical Detection of Uric Acid on Au Nanoparticles Modified Glassy Carbon Electrode

    Science.gov (United States)

    Shi, Yuting; Wang, Jin; Li, Shumin; Yan, Bo; Xu, Hui; Zhang, Ke; Du, Yukou

    2017-07-01

    In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121 c UA (μM) + 0.3122 ( R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.

  17. Tailoring super-hydrophobic properties of electrochemical biosensor for early cancer detection

    KAUST Repository

    Malara, Natalia

    2016-08-08

    In this paper, we demonstrate an organic electrochemical transistor (OECT) based on the conductive polymer PEDOT:PSS for the analysis of the cell culture medium upon interaction with circulating cells isolated form peripheral blood sampling of health, sub-clinical and cancer patients. The device comprises arrays of super-hydrophobic micro-pillars in which a finite number of pillars incorporates nano-electrodes for site specific measurements of a solution. Due to its nano-scale architecture, the device realizes time and space resolved measurement of biological solution. Tumor metabolism could produce reactive species able to determine a different electronic behavior of correspondent microenviroment. On this basis, the device here presented the changes in the ESR signals was used to identify electronic changes occurring in the analysis of different type of microenvironment. Our results demonstrate that the device is able to register significative difference to differentiate healthy individuals form cancer patients, through an easy blood sampling. In conclusion, these preliminary data are suggestive of a novel test potentially useful to early identification of subjects at risk to development cancer disease.

  18. Graphene Oxide-Poly(dimethylsiloxane)-Based Lab-on-a-Chip Platform for Heavy-Metals Preconcentration and Electrochemical Detection.

    Science.gov (United States)

    Chałupniak, Andrzej; Merkoçi, Arben

    2017-12-27

    Herein, we present the application of a novel graphene oxide-poly(dimethylsiloxane) (GO-PDMS) composite in reversible adsorption/desorption, including detection of heavy metals. GO-PDMS was fabricated by simple blending of GO with silicon monomer in the presence of tetrahydrofuran, followed by polymerization initiated upon the addition of curing agent. We found GO concentration, curing agent concentration, pH, and contact time among the most important factors affecting the adsorption of Pb(II) used as a model heavy metal. The mechanism of adsorption is based on surface complexation, where oxygen active groups of negative charge can bind with bivalent metal ions Me(II). To demonstrate a practical application of this material, we fabricated microfluidic lab-on-a-chip platform for heavy-metals preconcentration and detection. This device consists of a screen-printed carbon electrode, a PDMS chip, and a GO-PDMS chip. The use of GO-PDMS preconcentration platform significantly improves the sensitivity of electrochemical detection of heavy metals (an increase of current up to 30× was observed), without the need of modifying electrodes or special reagents addition. Therefore, samples being so far below the limit of detection (0.5 ppb) were successfully detected. This approach is compatible also with real samples (seawater) as ionic strength was found as indifferent for the adsorption process. To the best of our knowledge, GO-PDMS was used for the first time in sensing application. Moreover, due to mechanical resistance and outstanding durability, it can be used multiple times unlike other GO-based platforms for heavy-metals adsorption.

  19. Strategically functionalized carbon nanotubes as the ultrasensitive electrochemical probe for picomolar detection of sildenafil citrate (Viagra).

    Science.gov (United States)

    Gopalan, Anantha Iyengar; Lee, Kwang Pill; Komathi, Shanmugasundaram

    2011-02-15

    The present work demonstrates the utility of the functionalized carbon nanotubes, poly(4-aminobenzene sulfonic acid) (PABS) grafted multiwalled carbon nanotubes, MWNT-g-PABS, as an electrode modifier towards achieving ultrasensitive detection of a model drug, sildenafil citrate (SC). PABS units in MWNT-g-PABS interact with SC, pre-concentrate and accumulate at the surface. The electron transduction from SC to electrode is augmented via MWNT-g-PABS. As a result, the MWNT-g-PABS modified electrode exhibited ultrasensitive (57.7 μA/nM) and selective detection of SC with a detection limit of 4.7 pM. The present work provides scope towards targeting ultrasensitivity for the detection of biomolecules/drug through rational design and incorporation of appropriate chemical components to carbon nanotubes. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Coupling conducting polymers and mediated electrochemical responses for the detection of Listeria

    International Nuclear Information System (INIS)

    Minett, A.I.; Barisci, J.N.; Wallace, G.G.

    2003-01-01

    Different signal generation techniques were investigated for the development of a biosensor for Listeria monocytogenes. Conventional amperometry at an antibody-containing polypyrrole film electrode was found to be unsuccessful in detecting levels below 10 6 cells ml -1 . More successful was the coupling of a covalently modified film with the use of electron mediators in a single device. This sensor was capable of reproducibly detecting Listeria at levels of 10 5 cells ml -1 in 30 min

  1. Electroactive Properties of 1-propyl-3-methylimidazolium Ionic Liquid Covalently Bonded on Mesoporous Silica Surface: Development of an Electrochemical Sensor Probed for NADH, Dopamine and Uric Acid Detection

    International Nuclear Information System (INIS)

    Maroneze, Camila M.; Rahim, Abdur; Fattori, Natália; Costa, Luiz P. da; Sigoli, Fernando A.; Mazali, Italo O.; Custodio, Rogério; Gushikem, Yoshitaka

    2014-01-01

    Graphical abstract: - Abstract: A hybrid organic-inorganic porous material was successfully prepared through chemical modification of a non-ordered mesoporous silica, obtained by the sol-gel process, with 1-propyl-3-methylimidazolium groups. The porous material was evaluated as a platform for the development of electrochemical sensors, here probed toward the electrooxidation of NADH (β-nicotinamide adenine dinucleotide), uric acid (UA) and dopamine (DA). The presence of cationic imidazolium groups on the surface of the hybrid silica-based material allowed the electrochemical detection of these biomolecules without any other electron mediator or biomolecular recognition component. Such behavior highlights the potentiality of this material to be applied in the development of new electrochemical sensing devices. Theoretical calculations based on density functional theory emphasizes that the cationic character of imidazolium group provides better oxidation conditions if the solvent effect is minimized

  2. Modification of glassy carbon electrode with a polymer/mediator composite and its application for the electrochemical detection of iodate

    International Nuclear Information System (INIS)

    Li, Ta-Jen; Lin, Chia-Yu; Balamurugan, A.; Kung, Chung-Wei; Wang, Jen-Yuan; Hu, Chih-Wei; Wang, Chun-Chieh; Chen, Po-Yen; Vittal, R.; Ho, Kuo-Chuan

    2012-01-01

    Highlights: ► FAD and PEDOT are combined to modify the glassy carbon electrode for IO 3 − sensing. ► The doping of FAD into PEDOT matrix can almost be viewed as an irreversible process. ► The optimal cycle number for preparing the GCE/PEDOT/FAD electrode is found to be 9. ► The detection limit of the GCE/PEDOT/FAD electrode for IO 3 − is found to be 0.16 μM. ► The GCE/PEDOT/FAD electrode possesses enough selectivity toward IO 3 − . - Abstract: A modified glassy carbon electrode was prepared by depositing a composite of polymer and mediator on a glassy carbon electrode (GCE). The mediator, flavin adenine dinucleotide (FAD) and the polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically deposited as a composite on the GCE by applying cyclic voltammetry (CV). This modified electrode is hereafter designated as GCE/PEDOT/FAD. FAD was found to significantly enhance the growth of PEDOT. Electrochemical quartz crystal microbalance (EQCM) analysis was performed to study the mass changes in the electrode during the electrodeposition of PEDOT, with and without the addition of FAD. The optimal cycle number for preparing the modified electrode was determined to be 9, and the corresponding surface coverage of FAD (Γ FAD ) was ca. 5.11 × 10 −10 mol cm −2 . The amperometric detection of iodate was performed in a 100 mM buffer solution (pH 1.5). The GCE/PEDOT/FAD showed a sensitivity of 0.78 μA μM −1 cm −2 , a linear range of 4–140 μM, and a limit of detection of 0.16 μM for iodate. The interference effects of 250-fold Na + , Mg 2+ , Ca 2+ , Zn 2+ , Fe 2+ , Cl − , NO 3 − , I − , SO 4 2− and SO 3 2− , with reference to the concentration of iodate were negligible. The long-term stability of GCE/PEDOT/FAD was also investigated. The GCE/PEDOT/FAD electrode retained 82% of its initial amperometric response to iodate after 7 days. The GCE/PEDOT/FAD was also applied to determine iodate in a commercial salt.

  3. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline

    International Nuclear Information System (INIS)

    Zhu, Min; Li, Guanghui; Li, Min; Zhou, Zikai; Liu, Hong; Lei, Hongtao; Shen, Yanfei; Wan, Yakun

    2015-01-01

    We describe an electrochemical immunoassay for the Cry1Ab toxin that is produced by Bacillus thuringiensis. It is making use of a nanobody (a heavy-chain only antibody) that was selected from an immune phage displayed library. A biotinylated primary nanobody and a HRP-conjugated secondary nanobody were applied in a sandwich immunoassay where horseradish peroxidase (HRP) is used to produce polyaniline (PANI) from aniline. PANI can be easily detected by differential pulse voltammetry at a working voltage as low as 40 mV (vs. Ag/AgCl) which makes the assay fairly selective. This immunoassay for Cry1Ab has an analytical range from 0.1 to 1000 ng∙mL -1 and a 0.07 ng∙mL -1 lower limit of detection. The average recoveries of the toxin from spiked samples are in the range from 102 to 114 %, with a relative standard deviation of <7.5 %. The results demonstrated that the assay represented an attractive alternative to existing immunoassays in enabling affordable, sensitive, robust and specific determination of this toxin. (author)

  4. Electrochemical fecal pellet sensor for simultaneous real-time ex vivo detection of colonic serotonin signalling and motility

    Science.gov (United States)

    Morris, Rachel; Fagan-Murphy, Aidan; MacEachern, Sarah J.; Covill, Derek; Patel, Bhavik Anil

    2016-03-01

    Various investigations have focused on understanding the relationship between mucosal serotonin (5-HT) and colonic motility, however contradictory studies have questioned the importance of this intestinal transmitter. Here we described the fabrication and use of a fecal pellet electrochemical sensor that can be used to simultaneously detect the release of luminal 5-HT and colonic motility. Fecal pellet sensor devices were fabricated using carbon nanotube composite electrodes that were housed in 3D printed components in order to generate a device that had shape and size that mimicked a natural fecal pellet. Devices were fabricated where varying regions of the pellet contained the electrode. Devices showed that they were stable and sensitive for ex vivo detection of 5-HT, and no differences in the fecal pellet velocity was observed when compared to natural fecal pellets. The onset of mucosal 5-HT was observed prior to the movement of the fecal pellet. The release of mucosal 5-HT occurred oral to the fecal pellet and was linked to the contraction of the bowel wall that drove pellet propulsion. Taken, together these findings provide new insights into the role of mucosal 5-HT and suggest that the transmitter acts as a key initiator of fecal pellet propulsion.

  5. Rapid Diagnostic Device for Subclinical Mastitis Based on Electrochemical Detection of Superoxide Produced from Neutrophils in Fresh Milk

    Science.gov (United States)

    Okada, Kohei; Fukuda, Junji; Suzuki, Hiroaki

    Electrochemical microdevices were fabricated to identify mastitic cows based on the increased number of neutrophils in raw milk. Because neutrophils produce superoxide (O2·-), the amount of O2·- can be used as an early indicator for subclinical mastitis. In the microdevices, O2·- was detected on a gold electrode using superoxide dismutase immobilized via a self-assembled monolayer of cysteine. In a preliminary test using xanthine oxidase to produce O2·-, one of the devices detected the production and rapid extinction of O2·-. When neutrophils obtained from a mastitic cow were concentrated by centrifugation and introduced into the device, a current increase distinctly different from the background was observed. Furthermore, a micropillar structure was fabricated on the gold electrode to trap and collect neutrophils, thereby facilitating the concentration of these cells around the electrode. The measured current clearly depended on the number of neutrophils in raw milk samples, demonstrating the applicability of the device for rapid diagnosis of subclinical mastitis.

  6. Electrodes Modification Based on Metal-Free Phthalocyanine: Example of Electrochemical Sensors for the Detection of Acetic Acid

    Directory of Open Access Journals (Sweden)

    Amadou L. Ndiaye

    2015-01-01

    Full Text Available Electroanalytical properties of tetra-tert-butyl phthalocyanine (PcH2-tBu modified electrodes are studied by cyclic voltammetry (CV. The modified electrodes are obtained by CV deposition techniques on gold (Au and glassy carbon (C screen-printed electrodes (SPEs and used for the electrochemical detection of acetic acid (AA. Based on the CV experiments, the electrodeposition mechanism is detailed. The modified PcH2-tBu electrodes reveal one oxidation and one reduction peak within the potential window of the working electrodes. In the presence of the analyte (acetic acid, the modified electrodes show sensitivity in the range of 10 mM to 400 mM. For the PcH2-tBu modified Au electrode, a limit of detection (LOD of 5.89 mM (based on the +0.06 V peak was obtained while for the PcH2-tBu modified C electrode a LOD of 17.76 mM (based on the +0.07 V peak was achieved. A signal decay of 17%, based on 20 experiments, is obtained when gold is used as working electrode. If carbon is used as working electrode a value of 7% is attained. A signal decay is observed after more than 50 cycles of experiments and is more pronounced when higher concentrations of acetic acid are used. A mechanism of sensing is proposed at the end.

  7. Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations.

    Science.gov (United States)

    Rocha, Paulo R F; Schlett, Paul; Kintzel, Ulrike; Mailänder, Volker; Vandamme, Lode K J; Zeck, Gunther; Gomes, Henrique L; Biscarini, Fabio; de Leeuw, Dago M

    2016-10-06

    Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 μVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 μVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations.

  8. Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification.

    Science.gov (United States)

    Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng

    2016-02-16

    As is well-known, graphene shows a remarkable difference in affinity toward nonstructured single-stranded (ss) DNA and double-stranded (ds) DNA. This property makes it popular to prepare DNA-based optical sensors. In this work, taking this unique property of graphene in combination with the sensitive electrochemical transducer, we report a novel affinity-mediated homogeneous electrochemical aptasensor using graphene modified glassy carbon electrode (GCE) as the sensing platform. In this approach, the specific aptamer-target recognition is converted into an ultrasensitive electrochemical signal output with the aid of a novel T7 exonuclease (T7Exo)-assisted target-analog recycling amplification strategy, in which the ingeniously designed methylene blue (MB)-labeled hairpin DNA reporters are digested in the presence of target and, then, converted to numerous MB-labeled long ssDNAs. The distinct difference in differential pulse voltammetry response between the designed hairpin reporters and the generated long ssDNAs on the graphene/GCE allows ultrasensitive detection of target biomolecules. Herein, the design and working principle of this homogeneous electrochemical aptasensor were elucidated, and the working conditions were optimized. The gel electrophoresis results further demonstrate that the designed T7Exo-assisted target-analog recycling amplification strategy can work well. This electrochemical aptasensor realizes the detection of biomolecule in a homogeneous solution without immobilization of any bioprobe on electrode surface. Moreover, this versatile homogeneous electrochemical sensing system was used for the determination of biomolecules in real serum samples with satisfying results.

  9. Improved Bi Film Wrapped Single Walled Carbon Nanotubes for Ultrasensitive Electrochemical Detection of Trace Cr(VI)

    Science.gov (United States)

    Zhou, Shilin; Xue, Zi-Ling; Xu, Lina; Gu, Yingying; Miao, Yuqing

    2014-01-01

    We report here the successful fabrication of an improved Bi film wrapped single walled carbon nanotubes modified glassy carbon electrode (Bi/SWNTs/GCE) as a highly sensitive platform for ultratrace Cr(VI) detection through catalytic adsorptive cathodic stripping voltammetry (AdCSV). The introduction of negatively charged SWNTs extraordinarily decreased the size of Bi particles to nanoscale due to electrostatic interaction which made Bi(III) cations easily attracted onto the surface of SWNTs in good order, leading to higher quality of Bi film deposition. The obtained Bi/SWNTs composite was well characterized with electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), the static water contact angle and the voltammetric measurements. The results demonstrates the improvements in the quality of Bi film deposited on the surface of SWNTs such as faster speed of electron transfer, more uniform and smoother morphology, better hydrophilicity and higher stripping signal. Using diethylene triaminepentaacetic acid (DTPA) as complexing ligand, the fabricated electrode displays a well-defined and highly sensitive peak for the reduction of Cr(III)-DTPA complex at −1.06 V (vs. Ag/AgCl) with a linear concentration range of 0–25 nM and a fairly low detection limit of 0.036 nM. No interference was found in the presence of coexisting ions, and good recoveries were achieved for the analysis of a river sample. In comparison to previous approaches using Bi film modified GCE, the newly designed electrode exhibits better reproducibility and repeatability towards aqueous detection of trace Cr(VI) and appears to be very promising as the basis of a highly sensitive and selective voltammetric procedure for Cr(VI) detection at trace level in real samples. PMID:24771881

  10. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    Directory of Open Access Journals (Sweden)

    Rishi R. Parajuli

    2008-12-01

    Full Text Available Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to

  11. Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection.

    Science.gov (United States)

    Inoue, K; Kato, K; Yoshimura, Y; Makino, T; Nakazawa, H

    2000-11-10

    A simple and sensitive method using high-performance liquid chromatography with multi-electrode electrochemical detection (HPLC-ED) including a coulometric array of four electrochemical sensors has been developed for the determination of bisphenol A in water and human serum. For good separation and detection of bisphenol A, a CAPCELL PAK UG 120 C18 reversed-phase column and a mobile phase consisting of 0.3% phosphoric acid-acetonitrile (60:40) were used. The detection limit obtained by the HPLC-ED method was 0.01 ng/ml (0.5 pg), which was more than 3000-times higher than the detection limit obtained by the ultraviolet (UV) method, and more than 200-times higher than the detection limit obtained by the fluorescence (FL) method. Bisphenol A in water and serum samples was pretreated by solid-phase extraction (SPE) after removing possible contamination derived from a plastic SPE cartridges and water used for the pretreatment. A trace amount (ND approximately 0.013 ng/ml) of bisphenol A was detected from the parts of cartridges (filtration column, sorbent bed and frits) by extraction with methanol, and it was completely removed by washing with at least 15 ml of methanol in the operation process. The concentrations of bisphenol A in tap water and Milli-Q-purified water were found to be 0.01 and 0.02 ng/ml, respectively. For that reason, bisphenol A-free water was made to trap bisphenol A in water using an Empore disk. In every pretreatment, SPE methods using bisphenol A-free water and washing with 15 ml of methanol were done in water and serum samples. The yields obtained from the recovery tests using water to which 0.5 or 0.05 ng/ml of bisphenol A was added were 83.8 to 98.2%, and the RSDs were 3.4 to 6.1%, respectively. The yields obtained from the recovery tests by OASIS HLB using serum to which 1.0 ng/ml or 0.1 ng/ml of bisphenol A was added were 79.0% and 87.3%, and the RSDs were 5.1% and 13.5%, respectively. The limits of quantification in water and serum sample

  12. Improved Bi film wrapped single walled carbon nanotubes for ultrasensitive electrochemical detection of trace Cr(VI)

    International Nuclear Information System (INIS)

    Ouyang, Ruizhuo; Zhang, Wangyao; Zhou, Shilin; Xue, Zi-Ling; Xu, Lina; Gu, Yingying; Miao, Yuqing

    2013-01-01

    Highlights: • Electrostatic interaction improves the quality of Bi deposition. • The designed Bi/SWNTs/GCE shows many advantages over Bi/GCE toward Cr VI detection. • The Bi/SWNTs/GCE exhibits good analyzing behavior with pretty low detection limit. • The fabricated sensor is better of reproducibility, repeatability and life time. • River samples were successfully analyzed using current sensor for Cr VI detection. -- Abstract: We report here the successful fabrication of an improved Bi film wrapped single walled carbon nanotubes modified glassy carbon electrode (Bi/SWNTs/GCE) as a highly sensitive platform for ultratrace Cr(VI) detection through catalytic adsorptive cathodic stripping voltammetry (AdCSV). The introduction of negatively charged SWNTs extraordinarily decreased the size of Bi particles to nanoscale due to electrostatic interaction which made Bi(III) cations easily attracted onto the surface of SWNTs in good order, leading to higher quality of Bi film deposition. The obtained Bi/SWNTs composite was well characterized with electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), the static water contact angle and the voltammetric measurements. The results demonstrate the improvements in the quality of Bi film deposited on the surface of SWNTs such as faster speed of electron transfer, more uniform and smoother morphology, better hydrophilicity and higher stripping signal. Using diethylene triaminepentaacetic acid (DTPA) as complexing ligand, the fabricated electrode displays a well-defined and highly sensitive peak for the reduction of Cr(III)–DTPA complex at −1.06 V (vs. Ag/AgCl) with a linear concentration range of 0–25 nM and a fairly low detection limit of 0.036 nM. No interference was found in the presence of coexisting ions, and good recoveries were achieved for the analysis of a river sample. In comparison to previous approaches using Bi film modified GCE, the newly designed electrode exhibits better

  13. Graphene blended with SnO2 and Pd-Pt nanocages for sensitive non-enzymatic electrochemical detection of H2O2 released from living cells.

    Science.gov (United States)

    Fu, Yamin; Huang, Di; Li, Congming; Zou, Lina; Ye, Baoxian

    2018-07-19

    This paper described a novel, facile and nonenzymatic electrochemical biosensor to detect hydrogen peroxide (H 2 O 2 ). The sensor was fabricated based on Pd-Pt nanocages and SnO 2 /graphene nanosheets modified electrode (PdPt NCs@SGN/GCE). The electrochemical behavior of PdPt NCs@SGN/GCE exhibited excellent catalytic activity toward H 2 O 2 with fast response, high selectivity, superior sensitivity, low detection limit of 0.3 μM and large linear range from 1 μM to 300 μM. Under these obvious advantages, the constructed biosensor provided to be reliable for determination of H 2 O 2 secreted from human cervical cancer cells (Hela cells). Hence, the proposed biosensor is a promising candidate for detection of H 2 O 2 in situ released from living cells in clinical diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles.

    Science.gov (United States)

    Goh, Madeline Shuhua; Pumera, Martin

    2011-01-01

    The detection of explosives in seawater is of great interest. We compared response single-, few-, and multilayer graphene nanoribbons and graphite microparticle-based electrodes toward the electrochemical reduction of 2,4,6-trinitrotoluene (TNT). We optimized parameters such as accumulation time, accumulation potential, and pH. We found that few-layer graphene exhibits about 20% enhanced signal for TNT after accumulation when compared to multilayer graphene nanoribbons. However, graphite microparticle-modified electrode provides higher sensitivity, and there was no significant difference in the performance of single-, few-, and multilayer graphene nanoribbons and graphite microparticles for the electrochemical detection of TNT. We established the limit of detection of TNT in untreated seawater at 1 μg/mL.

  15. An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes.

    Science.gov (United States)

    Tran, H V; Piro, B; Reisberg, S; Huy Nguyen, L; Dung Nguyen, T; Duc, H T; Pham, M C

    2014-12-15

    We design an electrochemical immunosensor for miRNA detection, based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. An original immunological approach is followed, using antibodies directed to DNA.RNA hybrids. An electrochemical ELISA-like amplification strategy was set up using a secondary antibody conjugated to horseradish peroxidase (HRP). Hydroquinone is oxidized into benzoquinone by the HRP/H2O2 catalytic system. In turn, benzoquinone is electroreduced into hydroquinone at the electrode. The catalytic reduction current is related to HRP amount immobilized on the surface, which itself is related to miRNA.DNA surface density on the electrode. This architecture, compared to classical optical detection, lowers the detection limit down to 10 fM. Two miRNAs were studied: miR-141 (a prostate biomarker) and miR-29b-1 (a lung cancer biomarker). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Electrochemical detection of short HIV sequences on chitosan/Fe{sub 3}O{sub 4} nanoparticle based screen printed electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Lam Dai, E-mail: lamtd@ims.vast.ac.vn [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18, Hoang Quoc Viet Road (Viet Nam); Nguyen, Binh Hai [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18, Hoang Quoc Viet Road (Viet Nam); Van Hieu, Nguyen [International Training Institute for Materials Science, Hanoi University of Science and Technology, 1, Dai Co Viet Road, Hanoi (Viet Nam); Tran, Hoang Vinh; Nguyen, Huy Le [Faculty of Chemical Technology, Hanoi University of Science and Technology, 1, Dai Co Viet Road, Hanoi (Viet Nam); Nguyen, Phuc Xuan [Institute of Materials Science, Vietnamese Academy of Science and Technology, 18, Hoang Quoc Viet Road (Viet Nam)

    2011-03-12

    In this study, a novel CS/Fe{sub 3}O{sub 4} nanobiocomposite-based platform for electrochemical detection of HIV-1 was developed. The most attractive feature of this system is a suitable microenvironment (Fe{sub 3}O{sub 4} nanoparticles) which could contribute to electron transfer and thus sensitivity enhancement when using methylene blue (MB) as an external mediator and Square Wave Voltammetry (SWV), Electrochemical Impedance Spectroscopy (EIS) techniques. The proposed screen printed electrode (SPE) had a low detection limit (as low as 50 pM), acceptable stability and good reproducibility, which would be valuable for clinical diagnosis. In addition, this sensing interface may be feasibly adapted for multiplexed detection of other species of bacterial pathogens.

  17. Construction and characterisation of a modular microfluidic system: coupling magnetic capture and electrochemical detection

    DEFF Research Database (Denmark)

    Godino, N.; Snakenborg, Detlef; Kutter, Jörg Peter

    2010-01-01

    , and a polycarbonate base where permanent magnets are hosted; these parts are designed to fit so that wire bonding and encapsulation are avoided. This system can perform bioassays over the surface of magnetic beads and uses only 50 mu L of bead suspension per assay. Following detection, captured beads are released...

  18. Efficient Bisphenol-A detection based on the ternary metal oxide (TMO) composite by electrochemical approaches

    International Nuclear Information System (INIS)

    Ahmed, Jahir; Rahman, Mohammed M.; Siddiquey, Iqbal A.; Asiri, Abdullah M.; Hasnat, Mohammad A.

    2017-01-01

    Highlights: •Ternary metal oxides (TMO) composites prepared by wet-chemical method. •Highly sensitive and selective Bisphenol A (BPA) sensor by I–V method. •Ultra-low detection limit was obtained by 3N/S. •Real environmental samples were analyzed. •Health care and environmental safety -- Abstract: A facile wet chemical method in basic medium was used to synthesis the ternary metal oxides (TMO; ZnO.CoO.FeO) composites at low temperature. The calcined TMO was characterized by FESEM, EDS, UV/vis., FTIR spectroscopy, EIS, and XRD systematically. Glassy carbon electrode (GCE) was modified with the TMO using 5% Nafion at room conditions. The resultant electrode was used for selective detection of Bisphenol-A (BPA) using cyclic voltammetry (CV). It was observed that the TMO electrode exhibited an excellent sensitivity (3.28 μAμM −1 cm −2 ), low detection limit (LOD: 1.2 ± 0.1 nM; S/N = 3), higher stability, very good repeatability, and reproducibility. In diagnostic exploration, a linear calibration plot was obtained for a wide range of concentration of BPA (LDR: 0.80 to 7.20 μM; r 2 : 0.99). This method represents an efficient way of sensitive sensor development for the detection of toxic and carcinogenic phenolic compounds.

  19. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode

    International Nuclear Information System (INIS)

    Deng, Chunyan; Chen, Jinzhuo; Nie, Zhou; Yang, Minghui; Si, Shihui

    2012-01-01

    In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 μA mM −1 , and the detection limit of 1.4 × 10 −6 M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite. - Highlights: ► Polythionine (PTH) was used as a mediator for electrocatalytic reduction of nitrite. ► Carbon nanotubes (CNTs) improve electron transfer between the electrode and nitrite. ► The PTH/CNT/glassy carbon electrode showed excellent nitrite detection performance.

  20. Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer sensitivity

    DEFF Research Database (Denmark)

    Trimarco, Daniel Bøndergaard; Scott, Søren Bertelsen; Thilsted, Anil Haraksingh

    2018-01-01

    -time detection of reaction products and intermediates during electrochemistry experiments. Herein, we present a new type of electrochemistry – mass spectrometry (EC-MS) based on a versatile gas inlet to vacuum fabricated onto a silicon microchip, and compare it to established techniques with focus...

  1. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor.

    Science.gov (United States)

    Wisitsoraat, A; Sritongkham, P; Karuwan, C; Phokharatkul, D; Maturos, T; Tuantranont, A

    2010-12-15

    This work reports a new cholesterol detection scheme using functionalized carbon nanotube (CNT) electrode in a polydimethylsiloxane/glass based flow injection microfluidic chip. CNTs working, silver reference and platinum counter electrode layers were fabricated on the chip by sputtering and low temperature chemical vapor deposition methods. Cholesterol oxidase prepared in polyvinyl alcohol solution was immobilized on CNTs by in-channel flow technique. Cholesterol analysis based on flow injection chronoamperometric measurement was performed in 150-μm-wide and 150-μm-deep microchannels. Fast and sensitive real-time detection was achieved with high throughput of more than 60 samples per hour and small sample volume of 15 μl. The cholesterol sensor had a linear detection range between 50 and 400 mg/dl. In addition, low cross-sensitivities toward glucose, ascorbic acid, acetaminophen and uric acid were confirmed. The proposed system is promising for clinical diagnostics of cholesterol with high speed real-time detection capability, very low sample consumption, high sensitivity, low interference and good stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Attomole detection of isotope-labeled compounds in chemical defense research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Buchholz, B.A.; Pawley, N.H.; Mauthe, R.E.; Dingley, K.; Turteltaub, K.

    1996-11-01

    AMS detects 14C at zeptomole to femtomole sensitivities. We detected the effect of ChE-blocking pyridostigmine bromide on the CNS uptake of a pyrethroid insecticide at scaled human-equivalent exposures in rats. Significant blood to brain protection from permethrin dosed at 5mg/kg is seen in the CNS of rats receiving pyridostigmine bromide pretreatments in chow at 2mg/kg/day. The synergy of these compounds was suggested as a precursor to some symptoms of `Gulf War Syndrome`.

  3. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    Science.gov (United States)

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  4. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong Feng; Chen, Dong Mei [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. - Highlights: • Conformational switch of i-motif is used for the detection of glucose and urea. • The sensor can be regenerated. • The proposed method is successfully applied in real sample assay. • Our method is label-free and inexpensive.

  5. Rapid extraction and quantitative detection of the herbicide diuron in surface water by a hapten-functionalized carbon nanotubes based electrochemical analyzer.

    Science.gov (United States)

    Sharma, Priyanka; Bhalla, Vijayender; Tuteja, Satish; Kukkar, Manil; Suri, C Raman

    2012-05-21

    A solid phase extraction micro-cartridge containing a non-polar polystyrene absorbent matrix was coupled with an electrochemical immunoassay analyzer (EIA) and used for the ultra-sensitive detection of the phenyl urea herbicide diuron in real samples. The EIA was fabricated by using carboxylated carbon nanotubes (CNTs) functionalized with a hapten molecule (an amine functionalized diuron derivative). Screen printed electrodes (SPE) were modified with these haptenized CNTs and specific in-house generated anti diuron antibodies were used for bio-interface development. The immunodetection was realized in a competitive electrochemical immunoassay format using alkaline phosphatase labeled secondary anti-IgG antibody. The addition of 1-naphthyl phosphate substrate resulted in the production of an electrochemically active product, 1-naphthol, which was monitored by using differential pulse voltammetry (DPV). The assay exhibited excellent sensitivity and specificity having a dynamic response range of 0.01 pg mL(-1) to 10 μg mL(-1) for diuron with a limit of detection of around 0.1 pg mL(-1) (n = 3) in standard water samples. The micro-cartridge coupled hapten-CNTs modified SPE provided an effective and efficient electrochemical immunoassay for the real-time monitoring of pesticides samples with a very high degree of sensitivity.

  6. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline.

    Science.gov (United States)

    Liu, Su; Wang, Yu; Xu, Wei; Leng, Xueqi; Wang, Hongzhi; Guo, Yuna; Huang, Jiadong

    2017-02-15

    In this paper, a novel sandwich-type electrochemical aptasensor has been fabricated and applied for sensitive and selective detection of antibiotic oxytetracycline (OTC). This sensor was based on graphene-three dimensional nanostructure gold nanocomposite (GR-3D Au) and aptamer-AuNPs-horseradish peroxidase (aptamer-AuNPs-HRP) nanoprobes as signal amplification. Firstly, GR-3D Au film was modified on glassy carbon electrode only by one-step electrochemical coreduction with graphite oxide (GO) and HAuCl 4 at cathodic potentials, which enhanced the electron transfer and loading capacity of biomolecules. Then the aptamer and HRP modified Au nanoparticles provide high affinity and ultrasensitive electrochemical probe with excellent specificity for OTC. Under the optimized conditions, the peak current was linearly proportional to the concentration of OTC in the range of 5×10 -10 -2×10 -3 gL -1 , with a detection limit of 4.98×10 -10 gL -1 . Additionally, this aptasensor had the advantages in high sensitivity, superb specificity and showed good recovery in synthetic samples. Hence, the developed sandwich-type electrochemical aptasensor might provide a useful and practical tool for OTC determination and related food safety analysis and clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Electrochemical detection of specific DNA and respiratory activity of Escherichia coli

    International Nuclear Information System (INIS)

    Yamanaka, Keiichiro; Ikeuchi, Tomohiko; Saito, Masato; Nagatani, Naoki; Tamiya, Eiichi

    2012-01-01

    We present two rapid and simplified detection methods for Escherichia coli involving the use of a hand-held potentiostat and a disposable screen-printed carbon electrode. E. coli is one of the indicator organisms used to access for food safety. Commonly, microbiological culture techniques take more than one day to yield results and therefore, a simple, cost-effective, in situ detection system is required for testing food safety. This report describes two complementary techniques for high- and low-sensitivity detection of E. coli. High-sensitivity detection relies upon quantification of DNA amplification by using polymerase chain reaction (PCR), while the simplified, low-sensitivity detection can be obtained through measurement of oxygen consumption due to respiration; importantly, both techniques utilize the same type of electrode. The former entails mixing the PCR mixture with Hoechst, an electro-active DNA intercalator, and then, measuring the oxidation current. Binding of Hoechst molecules to the amplified DNA causes the peak current to decrease because of the slow diffusion of the Hoechst-amplified DNA complex to the electrode surface. The results showed that the oxidation peak current of Hoechst decreased depending on the number of E. coli cells added to the PCR mixture as the template for amplification, and the sensitivity of the method was as low as a single bacterium. Oxygen consumption was detected by direct measurement of the cell-containing culture medium. This method required only 10 μL to be applied on the screen-printed electrode, and the reduction in oxygen current was clearly observed within 30 min when a minimum of 1 × 10 5 cells were present. These results were obtained without purifying the culture, and the samples were applied onto the electrode without any surface modifications. The techniques describes in this report are versatile, because they require the same type of electrode, have simplistic nature, use a hand-held potentiostat, and have

  8. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine.

    Science.gov (United States)

    Yao, Yong; Zhang, Chunsun

    2016-10-01

    A novel screen-printed microfluidic paper-based analytical device with all-carbon electrode-enabled electrochemical assay (SP-ACE-EC-μPAD) has been developed. The fabrication of these devices involved wax screen-printing, which was simple, low-cost and energy-efficient. The working, counter and reference electrodes were screen-printed using carbon ink on the patterned paper devices. Different wax screen-printing processes were examined and optimized, which led to an improved method with a shorter heating time (~5 s) and a lower heating temperature (75 °C). Different printing screens were examined, with a 300-mesh polyester screen yielding the highest quality wax screen-prints. The carbon electrodes were screen-printed on the μPADs and then examined using cyclic voltammetry. The analytical performance of the SP-ACE-EC-μPADs for the detection of glucose and uric acid in standard solutions was investigated. The results were reproducible, with a linear relationship [R(2) = 0.9987 (glucose) or 0.9997 (uric acid)] within the concentration range of interest, and with detection limits as low as 0.35 mM (glucose) and 0.08 mM (uric acid). To determine the clinical utility of the μPADs, chronoamperometry was used to analyze glucose and uric acid in real urine samples using the standard addition method. Our devices were able to detect the analytes of interest in complex real-world biological samples, and have the potential for use in a wide variety of applications.

  9. Electrochemical immunosensors for the detection of survival motor neuron (SMN) protein using different carbon nanomaterials-modified electrodes.

    Science.gov (United States)

    Eissa, Shimaa; Alshehri, Nawal; Rahman, Anas M Abdel; Dasouki, Majed; Abu-Salah, Khalid M; Zourob, Mohammed

    2018-03-15

    Spinal muscular atrophy is an untreatable potentially fatal hereditary disorder caused by loss-of-function mutations in the survival motor neuron (SMN) 1 gene which encodes the SMN protein. Currently, definitive diagnosis relies on the demonstration of biallelic pathogenic variants in SMN1 gene. Therefore, there is an urgent unmet need to accurately quantify SMN protein levels for screening and therapeutic monitoring of symptomatic newborn and SMA patients, respectively. Here, we developed a voltammetric immunosensor for the sensitive detection of SMN protein based on covalently functionalized carbon nanofiber-modified screen printed electrodes. A comparative study of six different carbon nanomaterial-modified electrodes (carbon, graphene (G), graphene oxide (GO), single wall carbon nanotube (SWCNT), multi-wall carbon nanotube (MWCNT), and carbon nanofiber (CNF)) was performed. 4-carboxyphenyl layers were covalently grafted on the six electrodes by electroreduction of diazonium salt. Then, the terminal carboxylic moieties on the electrodes surfaces were utilized to immobilize the SMN antibody via EDC/NHS chemistry and to fabricate the immunosensors. The electrochemical characterization and analytical performance of the six immunosensors suggest that carbon nanofiber is a better electrode material for the SMN immunosensor. The voltammetric SMN carbon nanofiber-based immunosensor showed high sensitivity (detection limit of 0.75pg/ml) and selectivity against other proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and dystrophin (DMD). We suggest that this novel biosensor is superior to other developed assays for SMN detection in terms of lower cost, higher sensitivity, simplicity and capability of high throughput screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Targeted deposition of antibodies on a multiplex CMOS microarray and optimization of a sensitive immunoassay using electrochemical detection.

    Directory of Open Access Journals (Sweden)

    John Cooper

    2010-03-01

    Full Text Available The CombiMatrix ElectraSense microarray is a highly multiplex, complementary metal oxide semiconductor with 12,544 electrodes that are individually addressable. This platform is commercially available as a custom DNA microarray; and, in this configuration, it has also been used to tether antibodies (Abs specifically on electrodes using complementary DNA sequences conjugated to the Abs.An empirical method is described for developing and optimizing immunoassays on the CombiMatrix ElectraSense microarray based upon targeted deposition of polypyrrole (Ppy and capture Ab. This process was automated using instrumentation that can selectively apply a potential or current to individual electrodes and also measure current generated at the electrodes by an enzyme-enhanced electrochemical (ECD reaction. By designating groups of electrodes on the array for different Ppy deposition conditions, we determined that the sensitivity and specificity of a sandwich immunoassay for staphylococcal enterotoxin B (SEB is influenced by the application of different voltages or currents and the application time. The sandwich immunoassay used a capture Ab adsorbed to the Ppy and a reporter Ab labeled for fluorescence detection or ECD, and results from these methods of detection were different.Using Ppy deposition conditions for optimum results, the lower limit of detection for SEB using the ECD assay was between 0.003 and 0.01 pg/ml, which represents an order of magnitude improvement over a conventional enzyme-linked immunosorbant assay. In the absence of understanding the variables and complexities that affect assay performance, this highly multiplexed electrode array provided a rapid, high throughput, and empirical approach for developing a sensitive immunoassay.

  11. Electrochemical coupled immunosensing platform based on graphene oxide/gold nanocomposite for sensitive detection of Cronobacter sakazakii in powdered infant formula.

    Science.gov (United States)

    Shukla, Shruti; Haldorai, Yuvaraj; Bajpai, Vivek K; Rengaraj, Arunkumar; Hwang, Seung Kyu; Song, Xinjie; Kim, Myunghee; Huh, Yun Suk; Han, Young-Kyu

    2018-06-30

    A sensitive electrochemical immunosensing platform for the detection of Cronobacter sakazakii was developed using a graphene oxide/gold (GO/Au) composite. Transmission electron microscopy showed that the Au nanoparticles, with an average size of GCE). The electrochemical sensing performance of immunofunctionalized GCE was characterized by cyclic voltammetry and differential pulse voltammetry. Under optimized conditions, in pure culture there was a linear relationship between electrical signal and C. sakazakii levels over the range 2.0 × 10 2 -2.0 × 10 7 cfu/mL (R 2 = 0.999), with a detection limit of 2.0 × 10 1 cfu/mL. The total analytical time was 15 min per sample. The C. sakazakii electrochemical immunosensing assay was able to successfully detect 2.0 × 10 1 cfu/mL of C. sakazakii in artificially contaminated powdered infant formula without any enrichment or pre-enrichment steps. Furthermore, the recovery rates of the C. sakazakii electrochemical immunosensing assay following spiking of powdered infant formula with different concentrations of C. sakazakii (cfu/mL) were 82.58% at 2.0 × 10 1 cfu/mL, 84.86% at 2.0 × 10 2 cfu/mL, and 95.40% at 2.0 × 10 3 cfu/mL. The C. sakazakii electrochemical immunosensing assay had good selectivity, reproducibility, and reactivity compared with other Cronobacter spp. and/or pathogens belonging to other genera, indicating its significant potential in the clinical diagnosis of C. sakazakii. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium(VI)

    International Nuclear Information System (INIS)

    Ouyang Ruizhuo; Bragg, Stefanie A.; Chambers, James Q.; Xue Ziling

    2012-01-01

    Highlights: ► Fabrication of a flower-like self-assembly of two AuNP layers on a GCE. ► Cr(VI) detection: 10–1200 ng L −1 concentration range; 2.9 ng L −1 detection limit. ► The 1st AuNP layer on the GCE surface as anchors for a thiol sol–gel film. ► The sol–gel film link the 1st AuNP layer to the 2nd AuNP layer. ► Functionalization of the 2nd AuNP layer by a thiol pyridinium for HCrO 4 − detection. - Abstract: We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNP layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol–gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNP layer is then self-assembled on the surface of the sol–gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10–1200 ng L −1 and a low detection limit of 2.9 ng L −1 . In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy.

  13. An Electrochemical Sensor Based on Nanostructured Hollandite-type Manganese Oxide for Detection of Potassium Ions

    Directory of Open Access Journals (Sweden)

    Alex S. Lima

    2009-08-01

    Full Text Available The participation of cations in redox reactions of manganese oxides provides an opportunity for development of chemical sensors for non-electroactive ions. A sensor based on a nanostructured hollandite-type manganese oxide was investigated for voltammetric detection of potassium ions. The detection is based on the measurement of anodic current generated by oxidation of Mn(III to Mn(IV at the surface of the electrode and the subsequent extraction of the potassium ions into the hollandite structure. In this work, an amperometric procedure at an operating potential of 0.80 V (versus SCE is exploited for amperometric monitoring. The current signals are linearly proportional to potassium ion concentration in the range 4.97 × 10−5 to 9.05 × 10−4 mol L−1, with a correlation coefficient of 0.9997.

  14. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    Science.gov (United States)

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  15. Electrochemical platform for the detection of transmembrane proteins reconstituted into liposomes

    Czech Academy of Sciences Publication Activity Database

    Vacek, J.; Zatloukalová, M.; Geletičová, J.; Kubala, M.; Modriansky, M.; Fekete, Ladislav; Mašek, J.; Hubatka, F.; Turánek, J.

    2016-01-01

    Roč. 88, č. 8 (2016), s. 4548-4556 ISSN 0003-2700 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : detection * transmembrane proteins * liposomes * electrochemistry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 6.320, year: 2016

  16. In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gaston; Cherubini, Thomas; Pankratova, Nadezda; Confalonieri, Fabio; Massa, Francesco; Tercier-Waeber, Mary-Lou; Abdou, Melina; Schäfer, Jörg; Bakker, Eric

    2018-04-03

    A new submersible probe for the in situ detection of nitrate, nitrite, and chloride in seawater is presented. Inline coupling of a desalination unit, an acidification unit, and a sensing flow cell containing all-solid-state membrane electrodes allows for the potentiometric detection of nitrate and nitrite after removal of the key interfering ions in seawater, chloride and hydroxide. Thus, the electrodes exhibited attractive analytical performances for the potentiometric detection of nitrate and nitrite in desalinated and acidified seawater: fast response time ( t 95 macronutrient levels with salinity cycles, which is of special interest in recessed coastal water bodies. The system is capable of autonomous operation during deployment, with routines for repetitive measurements (every 2 h), data storage and management, and computer visualization of the data in real time. In situ temporal profiles observed in the Arcachon Bay (France) showed valuable environmental information concerning tide-dependent cycles of nitrate and chloride levels in the lagoon, which are here observed for the first time using direct in situ measurements. The submersible probe based on membrane electrodes presented herein may facilitate the study of biogeochemical processes occurring in marine ecosystems by the direct monitoring of nitrate and nitrite levels, which are key chemical targets in coastal waters.

  17. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.

    Science.gov (United States)

    Liu, Aihua; Lang, Qiaolin; Liang, Bo; Shi, Jianguo

    2017-01-15

    Glucoamylase-displayed bacteria (GA-bacteria) and glucose dehydrogenase-displayed bacteria (GDH-bacteria) were co-immobilized on multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) to construct GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor. The biosensor was developed by optimizing the loading amount and the ratio of GA-bacteria to GDH-bacteria. The as-prepared biosensor exhibited a wide dynamic range of 0.2-10mM and a low detection limit of 0.1mM maltose (S/N=3). The biosensor also had a linear response to glucose in the range of 0.1-2.0mM and a low detection limit of 0.04mM glucose (S/N=3). Interestingly, at the same concentration, glucose was 3.75-fold sensitive than that of maltose at the proposed biosensor. No interferences were observed for other possible mono- and disaccharides. The biosensor also demonstrated good long-term storage stability and repeatability. Further, using both GDH-bacteria/MWNTs/GCE biosensor and GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor, glucose and maltose in real samples can be detected. Therefore, the proposed biosensor is capable of monitoring the food manufacturing and fermentation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fabrication of tunable microreactor with enzyme modified magnetic nanoparticles for microfluidic electrochemical detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Jin; Zhang Lei; Lei Jianping [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ju Huangxian, E-mail: hxju@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China)

    2012-01-04

    Highlights: Black-Right-Pointing-Pointer An enzyme microreactor is prepared using an enzyme-nanoparticles packed microchannel. Black-Right-Pointing-Pointer The optimal performance can be obtained by the tunable length of the microreactor. Black-Right-Pointing-Pointer Baseline separation from interferents can be achieved with a microfluidic device. Black-Right-Pointing-Pointer A pretreatment-free determination method for glucose is proposed. - Abstract: A microfluidic device was designed for amperometric determination of glucose by packing enzyme modified magnetic nanoparticles (MNPs) in its microchannel as an enzyme microreactor. Glucose oxidase was covalently attached to the surface of MNPs and localized in the microchannel by the help of an external magnetic field, leading to a tunable packing length. By changing the length of microreactor from 3 to 10 mm, the performance for glucose detection was optimized. The optimal linear range to glucose was from 25 {mu}M to 15 mM with a detection limit of 11 {mu}M at a length of 6 mm. The inter- and intra-day precisions for determination of 1.0 mM glucose were 0.8% and 1.7%, respectively, and the device-to-device reproducibility was 95.6%. The enzyme reactor remained its 81% activity after three-week storage. Due to the advantages of the device and fracture sampling technique, serum samples could be directly sampled through the fracture to achieve baseline separation from ascorbic acid, and proteins in the samples did not interfere with the detection. This work provided a promising way for pretreatment-free determination of glucose with low cost and excellent performance.

  19. Fabrication of tunable microreactor with enzyme modified magnetic nanoparticles for microfluidic electrochemical detection of glucose

    International Nuclear Information System (INIS)

    Sheng Jin; Zhang Lei; Lei Jianping; Ju Huangxian

    2012-01-01

    Highlights: ► An enzyme microreactor is prepared using an enzyme-nanoparticles packed microchannel. ► The optimal performance can be obtained by the tunable length of the microreactor. ► Baseline separation from interferents can be achieved with a microfluidic device. ► A pretreatment-free determination method for glucose is proposed. - Abstract: A microfluidic device was designed for amperometric determination of glucose by packing enzyme modified magnetic nanoparticles (MNPs) in its microchannel as an enzyme microreactor. Glucose oxidase was covalently attached to the surface of MNPs and localized in the microchannel by the help of an external magnetic field, leading to a tunable packing length. By changing the length of microreactor from 3 to 10 mm, the performance for glucose detection was optimized. The optimal linear range to glucose was from 25 μM to 15 mM with a detection limit of 11 μM at a length of 6 mm. The inter- and intra-day precisions for determination of 1.0 mM glucose were 0.8% and 1.7%, respectively, and the device-to-device reproducibility was 95.6%. The enzyme reactor remained its 81% activity after three-week storage. Due to the advantages of the device and fracture sampling technique, serum samples could be directly sampled through the fracture to achieve baseline separation from ascorbic acid, and proteins in the samples did not interfere with the detection. This work provided a promising way for pretreatment-free determination of glucose with low cost and excellent performance.

  20. Horseradish peroxidase functionalized gold nanorods as a label for sensitive electrochemical detection of alpha-fetoprotein antigen.

    Science.gov (United States)

    Guo, Jinjin; Han, Xiaowei; Wang, Junchun; Zhao, Junqing; Guo, Zilin; Zhang, Yuzhong

    2015-12-15

    In this study, a novel tracer, horseradish peroxidase (HRP) functionalized gold nanorods (Au NRs) nanocomposites (HRP-Au NRs), was designed to label the signal antibodies for sensitive electrochemical measurement of alpha-fetoprotein (AFP). The preparation of HRP-Au NRs nanocomposites and the labeling of secondary antibody (Ab2) were performed by one-pot assembly of HRP and Ab2 on the surface of Au NRs. The immunosensor was fabricated by assembling carbon nanotubes (CNTs), Au NRs, and capture antibodies (Ab1) on the glassy carbon electrode. In the presence of AFP antigen, the labels were captured on the surface of the Au NRs/CNTs via specific recognition of antigen-antibody, resulting in the signal intensity being clearly increased. Differential pulse voltammetry (DPV) was employed to record the response signal of the immunosensor in phosphate-buffered saline (PBS) containing hydrogen peroxide (H2O2) and 3,3',5,5'-tetramethylbenzidine (TMB). Under optimal conditions, the signal intensity was linearly related to the concentration of AFP in the range of 0.1-100 ng ml(-1), and the limit of detection was 30 pg ml(-1) (at signal/noise [S/N] = 3). Furthermore, the immunoassay method was evaluated using human serum samples, and the recovery obtained was within 99.0 and 102.7%, indicating that the immunosensor has potential clinical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Device for electrochemical detection of metal sample surface resistance and passivation against corrosion in electrolyte

    International Nuclear Information System (INIS)

    Urbancik, L.; Bar, J.; Nemec, J.; Sima, A.

    1986-01-01

    The device consists of a teflon vessel with sealing and an opening below the electrolyte level. Into it is submerged an electrode connected to a dc voltage supply whose other pole is connected to a sample of the metal which is pressed to the opening in the sealing with a flexible strap. The teflon vessel and the sealing are integral. The device is simpler and less costly than those manufactured so far. The operating capability of damaged sealing may be renewed by simple mechanical working. The device may be used for detecting the resistance and passivation of steam generator metal tubes. (J.B.). 1 fig

  2. Electrochemical sensing using comparison of voltage-current time differential values during waveform generation and detection

    Science.gov (United States)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.

  3. Single electrode electrochemical detection in hybrid poly(dimethylsiloxane)/glass multichannel micro devices

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Ney Henrique; Almeida, Andre Luis de Jesus de; Piazzeta, Maria Helena de Oliveira; Gobbia, Angelo Luiz [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil). Lab. de Microfabricacao; Jesus, Dosil Pereira de [Instituto Nacional de Ciencia e Tecnologia em Bioanalitica (INCTBio), Campinas, SP (Brazil); Deblire, Ariane; Silva, Jose Alberto Fracassi da [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    The fabrication process of a novel multichannel {mu}TAS based on PDMS and glass materials and with fully-integrated electrodes for amperometric detection has been described. Using the facilities of the Microfabrication Lab. (LMF) at Brazilian Synchrotron Light Laboratory (LNLS), soft-lithography, lift-off and O{sub 2} plasma surface activation sealing techniques were employed for rapid proto typing of cost effective PDMS/glass microchips. Fast calibration procedures were possible for the electro oxidation of hydroquinone, thiocyanate, and acetaminophen using Au and Cu electrodes. (author)

  4. Electrochemical detection of a powerful estrogenic endocrine disruptor: ethinylestradiol in water samples through bioseparation procedure.

    Science.gov (United States)

    Martínez, Noelia A; Pereira, Sirley V; Bertolino, Franco A; Schneider, Rudolf J; Messina, Germán A; Raba, Julio

    2012-04-20

    The synthetic estrogen ethinylestradiol (EE2) is an active component of oral contraceptives (OCs), considered as an endocrine disrupting compound (EDC). It is excreted from humans and released via sewage treatment plant effluents into aquatic environments. EDCs are any environmental pollutant chemical that, once incorporated into an organism, affects the hormonal balance of various species including humans. Its presence in the environment is becoming of great importance in water quality. This paper describes the development of an accurate, sensitive and selective method for capture, preconcentration and determination of EE2 present in water samples using: magnetic particles (MPs) as bioaffinity support for the capture and preconcentration of EE2 and a glassy carbon electrode modified with multi-walled carbon nanotubes (MWCNTs/GCE) as detection system. The capture procedure was based on the principle of immunoaffinity, the EE2 being extracted from the sample using the anti-EE2 antibodies (anti-EE2 Ab) which were previously immobilized on MPs. Subsequently the analyte desorption was done employing a sulfuric acid solution and the determination of the EE2 in the pre-concentrated solution was carried out by square wave voltammetry (SWV). This method can be used to determine EE2 in the range of 0.035-70 ng L(-1) with a detection limit (LOD) of 0.01 ng L(-1) and R.S.D.levels. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO

    Science.gov (United States)

    He, Gege; Tian, Liangliang; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Pu, Wanrong; Zhang, Jinkun; Li, Lu

    2018-01-01

    Transition metal oxides (TMOs) have attracted extensive research attentions as promising electrocatalytic materials. Despite low cost and high stability, the electrocatalytic activity of TMOs still cannot satisfy the requirements of applications. Inspired by kinetics, the design of hollow porous structure is considered as a promising strategy to achieve superior electrocatalytic performance. In this work, cubic NiO hollow porous architecture (NiO HPA) was constructed through coordinating etching and precipitating (CEP) principle followed by post calcination. Being employed to detect glucose, NiO HPA electrode exhibits outstanding electrocatalytic activity in terms of high sensitivity (1323 μA mM-1 cm-2) and low detection limit (0.32 μM). The excellent electrocatalytic activity can be ascribed to large specific surface area (SSA), ordered diffusion channels, and accelerated electron transfer rate derived from the unique hollow porous features. The results demonstrate that the NiO HPA could have practical applications in the design of nonenzymatic glucose sensors. The construction of hollow porous architecture provides an effective nanoengineering strategy for high-performance electrocatalysts.

  6. A new electrochemical sensor containing a film of chitosan-supported ruthenium: detection and quantification of sildenafil citrate and acetaminophen

    Energy Technology Data Exchange (ETDEWEB)

    Delolo, Fabio Godoy; Rodrigues, Claudia; Silva, Monize Martins da; Batista, Alzir Azevedo, E-mail: fabiodelolo@hotmail.com, E-mail: daab@power.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica. Lab. de Estrutura e Reatividade de Compostos Inorganicos; Dinelli, Luis Rogerio [Universidade Federal de Uberlandia (UFU), Ituiutaba, MG (Brazil). Faculdade de Ciencias Integradas do Pontal; Delling, Felix Nicolai; Zukerman-Schpector, Julio [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica. Lab. de Cristalografia Estereodinamica e Modelagem Molecular

    2014-03-15

    This work presents the construction of a novel electrochemical sensor for detection of organic analytes, using a glassy carbon electrode (GCE) modified with a chitosan-supported ruthenium film. The ruthenium-chitosan film was obtained starting from the mer-[RuCl{sub 3}(dppb)(H{sub 2}O)] complex as a [1,4-bis(diphenylphosphine)butane] (dppb) precursor, and chitosan (QT). The structure of the chitosan-supported ruthenium film on the surface of the glassy carbon electrode was characterized by UV-Vis spectroscopy, electron paramagnetic resonance (EPR), scanning electron microscopy (SEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS) techniques. The glassy carbon electrode was modified with a film formed from the evaporation of 5 μL of a solution composed of 5 mg chitosan-supported ruthenium (RuQT) in 10 mL of 0.1 mol L{sup -1} acetic acid. The modified electrode was tested as a sensor for sildenafil citrate (Viagra® 50 mg) and acetaminophen (Tylenol®) detection. The technique utilized for these analyses was differential pulse voltammetry (DPV) in 0.1 mol L{sup -1} H{sub 2}SO{sub 4} (pH 1.0) and 0.1 mol L{sup -1} CH{sub 3}COOK (pH 6.5) as supporting electrolyte. All analyses were carried out during a month using the same electrode. The electrode was washed only with water in between the analyses, keeping it in the refrigerator when it was not in use. This electrode was stable during the period utilized showing no degradation and presenting a linear response over the evaluated concentration interval (1.25 × 10{sup -5} to 4.99 × 10{sup -4} mol L{sup -1}). (author)

  7. A new electrochemical sensor containing a film of chitosan-supported ruthenium: detection and quantification of sildenafil citrate and acetaminophen

    International Nuclear Information System (INIS)

    Delolo, Fabio Godoy; Rodrigues, Claudia; Silva, Monize Martins da; Batista, Alzir Azevedo; Dinelli, Luis Rogerio; Delling, Felix Nicolai; Zukerman-Schpector, Julio

    2014-01-01

    This work presents the construction of a novel electrochemical sensor for detection of organic analytes, using a glassy carbon electrode (GCE) modified with a chitosan-supported ruthenium film. The ruthenium-chitosan film was obtained starting from the mer-[RuCl 3 (dppb)(H 2 O)] complex as a [1,4-bis(diphenylphosphine)butane] (dppb) precursor, and chitosan (QT). The structure of the chitosan-supported ruthenium film on the surface of the glassy carbon electrode was characterized by UV-Vis spectroscopy, electron paramagnetic resonance (EPR), scanning electron microscopy (SEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS) techniques. The glassy carbon electrode was modified with a film formed from the evaporation of 5 μL of a solution composed of 5 mg chitosan-supported ruthenium (RuQT) in 10 mL of 0.1 mol L -1 acetic acid. The modified electrode was tested as a sensor for sildenafil citrate (Viagra® 50 mg) and acetaminophen (Tylenol®) detection. The technique utilized for these analyses was differential pulse voltammetry (DPV) in 0.1 mol L -1 H 2 SO 4 (pH 1.0) and 0.1 mol L -1 CH 3 COOK (pH 6.5) as supporting electrolyte. All analyses were carried out during a month using the same electrode. The electrode was washed only with water in between the analyses, keeping it in the refrigerator when it was not in use. This electrode was stable during the period utilized showing no degradation and presenting a linear response over the evaluated concentration interval (1.25 × 10 -5 to 4.99 × 10 -4 mol L -1 ). (author)

  8. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.

    Science.gov (United States)

    Lu, Lu

    2018-07-01

    Electrochemical (bio)sensors have attracted much attention due to their high sensitivity, fast response time, biocompatibility, low cost and easy miniaturization. Specially, ever-growing necessity and interest have given rise to the fast development of electrochemical (bio)sensors for the detection of small biomolecules. They play enormous roles in the life processes with various biological function, such as life signal transmission, genetic expression and metabolism. Moreover, their amount in body can be used as an indicator for diagnosis of many diseases. For example, an abnormal concentration of blood glucose can indicate hyperglycemia or hypoglycemia. Graphene (GR) shows great applications in electrochemical (bio)sensors. Compared with two-dimensional (2D) GR that is inclined to stack together due to the strong π-π interaction, monolithic 3D porous GR has larger specific area, superior mechanical strength, better stability, higher conductivity and electrocatalytic activity. So they attracted more and increasing attention as sensing materials for small biomolecules. This review focuses on the recent advances and strategies in the fabrication methods of 3D porous GR and the development of various electrochemical (bio)sensors based on porous GR and its nanocomposites for the detection of small biomolecules. The challenges and future efforts direction of high-performance electrochemical (bio)sensors based on 3D porous GR for more sensitive analysis of small biomolecules are discussed and proposed. It will give readers an overall understanding of their progress and provide some theoretical guidelines for their future efforts and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    Science.gov (United States)

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  10. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Science.gov (United States)

    Tam, Phuong Dinh; Trung, Tran; Tuan, Mai Anh; Chien, Nguyen Duc

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when immerged in double distilled water and kept refrigerated.

  11. MnMoO4 nanolayers : Synthesis characterizations and electrochemical detection of QA

    Science.gov (United States)

    Muthamizh, S.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V.

    2018-04-01

    MnMoO4 nanolayers were prepared by precipitation method. The MnMoO4 nanolayers were synthesized by using commercially available (CH3COO)2Mn.4H2O and Na2WO4.2H2O. The XRD pattern reveals that the synthesized MnMoO4 has monoclinic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MnMoO4 nanolayers. DRS-UV analysis shows that MnMoO4 has a band gap of 2.59 eV. FE-SEM and HR-TEM analysis along with EDAX confirms the material morphology in stacked layers like structure in nano scale. Synthesized nanolayers were utilized for the detection of biomolecule quercetin (QA).

  12. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    International Nuclear Information System (INIS)

    Phuong Dinh Tam; Mai Anh Tuan; Tran Trung; Nguyen Duc Chien

    2009-01-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when emerged in double distilled water and kept refrigerated.

  13. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Phuong Dinh Tam; Mai Anh Tuan [International Training Institute for Materials Science (Viet Nam); Tran Trung [Department of Electrochemistry, Hung-Yen University of Technology and Education (Viet Nam); Nguyen Duc Chien [Institute of Engineering Physics, Hanoi University of Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam)], E-mail: tr_trunghut@yahoo.com

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when emerged in double distilled water and kept refrigerated.

  14. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    Science.gov (United States)

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor

    Directory of Open Access Journals (Sweden)

    Sun K

    2017-03-01

    Full Text Available Kai Sun, Yong Chang, Binbin Zhou, Xiaojin Wang, Lin Liu Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China Abstract: This article presents a general method for the detection of protein kinase with a peptide-like kinase inhibitor as the bioreceptor, and it was done by converting gold nanoparticles (AuNPs-based colorimetric assay into sensitive electrochemical analysis. In the colorimetric assay, the kinase-specific aptameric peptide triggered the aggregation of AuNPs in solution. However, the specific binding of peptide to the target protein (kinase inhibited its ability to trigger the assembly of AuNPs. In the electrochemical analysis, peptides immobilized on a gold electrode and presented as solution triggered together the in situ formation of AuNPs-based network architecture on the electrode surface. Nevertheless, the formation of peptide–kinase complex on the electrode surface made the peptide-triggered AuNPs assembly difficult. Electrochemical impedance spectroscopy was used to measure the change in surface property in the binding events. When a ferrocene-labeled peptide (Fc-peptide was used in this design, the network of AuNPs/Fc-peptide produced a good voltammetric signal. The competitive assay allowed for the detection of protein kinase A with a detection limit of 20 mU/mL. This work should be valuable for designing novel optical or electronic biosensors and likely lead to many detection applications. Keywords: electrochemical biosensor, colorimetric assay, gold nanoparticle, aptameric peptide, protein kinase A, signal amplification 

  16. Interactions between Human Antibodies and Synthetic Conformational Peptide Epitopes: Innovative Approach for Electrochemical Detection of Biomarkers of Multiple Sclerosis at Platinum Electrodes

    International Nuclear Information System (INIS)

    Bellagha-Chenchah, W.; Sella, C.; Fernandez, F. Real; Peroni, E.; Lolli, F.; Amatore, C.

    2015-01-01

    The detection of human antibodies of Multiple Sclerosis patients was investigated based on the electrochemical oxidation of a synthetic antigenic probe, a glycopeptide Fc-CSF114(Glc) bearing a ferrocenyl moiety. Electrochemical measurements were carried out at platinum microband electrodes without any electrode surface modification. A microfluidic device was designed in order to both minimize peptide consumption and increase the number of experiments with low volumes of samples. The specific interactions between Fc-CSF114(Glc) and antibodies were evidenced through comparison with electrochemical responses obtained from the ferrocenyl unglycosylated peptide Fc-CSF114 used as negative control. The interactions between Fc-CSF114(Glc) and autoantibodies were characterized by a shift of the oxidation potential towards positive values. A mechanism for peptide oxidation was proposed based on a diffusion control of mass transport and the formation of adsorbed layers able to mediate electron transfer. Results showed efficient antigen-antibody recognition without any electrode grafting or further addition of labels in solution. Preliminary tests using human sera from Multiple Sclerosis patients and healthy donors validated this new approach aimed at developing innovative and fast diagnostic tools, based on electrochemical synthetic antigenic probes

  17. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection.

    Science.gov (United States)

    Huang, Linhong; Hou, Keyu; Jia, Xiao; Pan, Haibo; Du, Min

    2014-05-01

    Hexagonal Ag nanoplates (NPs) were synthesized by polyvinylpyrrolidone (PVP) and trisodium citrate (TSC) which selectively absorbed to Ag (100) and Ag (111) surfaces, then were anchored to graphene (GN) to form novel Ag NPs/GN composite. The thickness of Ag NPs is ~4 nm and the length is 18-66 nm. Transmission electron microscopy (TEM) image shows that the plates are f-c-c crystals containing {111} facets on their two planar surfaces. Zeta potential indicated that the surface of Ag NPs/GN is negatively charged while vanillin is positively charged. Thus Ag NPs/GN modified on glass carbon electrodes (GCE) allowed abundant adsorption for vanillin and electron transfer between vanillin and Ag NPs/GN/GCE. Square wave voltammetry (SWV) results indicated that the over potential on Ag NPs/GN/GCE negatively shifts 52 mV than that on Ag NPs/GCE. Ag NPs/GN with enhanced surface area and good conductivity exhibited an excellent electrocatalytic activity toward the oxidation of vanillin. The corresponding linear range was estimated to be from 2 to 100 μM (R(2)=0.998), and the detection limit is 3.32×10(-7) M (S/N=3). The as-prepared vanillin sensor exhibits good selectivity and potential application in practical vanillin determination. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. An Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold Electrode

    Directory of Open Access Journals (Sweden)

    Abderrazak Maaref

    2012-10-01

    Full Text Available The detection of pathogenic bacteria remains a challenge for the struggle against biological weapons, nosocomial diseases, and for food safety. In this research, our aim was to develop an easy-to-use electrochemical immunosensor for the detection of pathogenic Staphylococcus aureus ATCC25923. The biosensor was elaborated by the immobilization of anti-S. aureus antibodies using a self-assembled monolayer (SAMs of 3-Mercaptopropionic acid (MPA. These molecular assemblies were spontaneously formed by the immersion of the substrate in an organic solvent containing the SAMs that can covalently bond to the gold surface. The functionalization of the immunosensor was characterized using two electrochemical techniques: cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. Here, the analysis was performed in phosphate buffer with ferro/ferricyanide as the redox probe. The EIS technique was used for affinity assays: antibody-cell binding. A linear relationship between the increment in the electron transfer resistance (RCT and the logarithmic value of S. aureus concentration was observed between 10 and 106 CFU/mL. The limit of detection (LOD was observed at 10 CFU/mL, and the reproducibility was calculated to 8%. Finally, a good selectivity versus E. coli and S. epidermidis was obtained for our developed immunosensor demonstrating its specificity towards only S. aureus.

  19. Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction.

    Science.gov (United States)

    Liu, Lingzhi; Song, Chao; Zhang, Zhang; Yang, Juan; Zhou, Lili; Zhang, Xing; Xie, Guoming

    2015-08-15

    Measurement of microRNA (miRNA) levels in body fluids is a crucial tool for the early diagnosis and prognosis of cancers. In this study, we developed an electrochemical assay to detect miRNA-21 by fabricating the electrode with layer-by-layer assembly of oxidized single-walled carbon nanotubes and nanodiamonds. Tetrahedron-structured probes with free-standing probe on the top served as receptors to hybridize with target miRNA directly. The probes were immobilized on the deposited gold nanoparticles through a well-established strong Au-S bond. The electrochemical signal was mainly derived from an ultrasensitive pattern by combining hybridization chain reaction with DNA-functionalized AuNPs, which provided DNAzyme to catalyze H2O2 reduction. Differential pulse voltammetry was applied to record the electrochemical signals, which was increased linearly with the target miRNA-21, and the linear detection range was 10 fM to 1.0 nM. The limit of detection reached 1.95 fM (S/N=3), and the proposed biosensor exhibited good reproducibility and stability, as well as high sensitivity. Hence, this biosensor has a promising potential in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ultra-sensitive detection of ibuprofen (IBP) by electrochemical aptasensor using the dendrimer-quantum dot (Den-QD) bioconjugate as an immobilization platform with special features

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: m.roushani@ilam.ac.ir; Shahdost-fard, Faezeh

    2017-06-01

    This study describes a high-performance electrochemical aptasensor which is employed to detect Ibuprofen (IBP) as a painkiller drug by using a novel platform as an integrated sensing interface. In order to make the aptasensor, the Den-QD bioconjugate was immobilized on the surface of a GC electrode and followed the Apt was incubated on this surface. The incubation of the IBP on the aptasensor surface and the formation of the Apt/IBP complex, led to a hindered electron transfer reaction on the sensing surface, which decreased the peak current of the redox probe. Under the optimum condition, the assay had two dynamic ranges with a detection limit down to 333 fM. The developed aptasensor reliably detects IBP in a real sample. Our results demonstrated that the proposed strategy has many advantages and the Den-QD bioconjugate may become a promising nanocomposite for the electrochemical sensing applications. - Highlights: • Fabrication of an ultrasensitive electrochemical nanotool based on target-including conformational switching of an Apt. • The covalent attachment of a 5'-NH2-3'-AgNPs terminated Apt on the surface of a GCE electrode with CdTe QDs. • The use of CdTe QDs as a platform and the elimination of antibodies or enzymes are the advantages of this aptasensor.

  1. Study of electrochemical corrosion parameters in the detection of fission fragments in solid state trace detectors (SSTD)

    International Nuclear Information System (INIS)

    Silva Oliveira, S. da; Rogers, J.D.

    1980-01-01

    The basic properties of the electrochemical corrosion method, for the Makrofol E plastic, irradiated with fission fragments from a 252 Cf source were studied and discussed in this paper. (A.C.A.S.) [pt

  2. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Linhong [Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research for Functional Materials, Fuzhou University, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Hou, Keyu; Jia, Xiao [Institute of Research for Functional Materials, Fuzhou University, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Pan, Haibo, E-mail: hbpan@fzu.edu.cn [Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research for Functional Materials, Fuzhou University, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Du, Min [Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2014-05-01

    Hexagonal Ag nanoplates (NPs) were synthesized by polyvinylpyrrolidone (PVP) and trisodium citrate (TSC) which selectively absorbed to Ag (100) and Ag (111) surfaces, then were anchored to graphene (GN) to form novel Ag NPs/GN composite. The thickness of Ag NPs is ∼ 4 nm and the length is 18–66 nm. Transmission electron microscopy (TEM) image shows that the plates are f-c-c crystals containing {111} facets on their two planar surfaces. Zeta potential indicated that the surface of Ag NPs/GN is negatively charged while vanillin is positively charged. Thus Ag NPs/GN modified on glass carbon electrodes (GCE) allowed abundant adsorption for vanillin and electron transfer between vanillin and Ag NPs/GN/GCE. Square wave voltammetry (SWV) results indicated that the over potential on Ag NPs/GN/GCE negatively shifts 52 mV than that on Ag NPs/GCE. Ag NPs/GN with enhanced surface area and good conductivity exhibited an excellent electrocatalytic activity toward the oxidation of vanillin. The corresponding linear range was estimated to be from 2 to 100 μM (R{sup 2} = 0.998), and the detection limit is 3.32 × 10{sup −7} M (S/N = 3). The as-prepared vanillin sensor exhibits good selectivity and potential application in practical vanillin determination. - Highlights: • Hexagonal Ag nanoplates were synthesized by controlling of PVP and trisodium citrate. • Ag nanoplates/GN composite allowed adsorption and electron transfer of vanillin. • The composite with good dispersion exhibits enhanced surface area and good catalysis. • Vanillin on the Ag NPs/GN/GCE shows high sensitivity and selectivity.

  3. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection

    International Nuclear Information System (INIS)

    Huang, Linhong; Hou, Keyu; Jia, Xiao; Pan, Haibo; Du, Min

    2014-01-01

    Hexagonal Ag nanoplates (NPs) were synthesized by polyvinylpyrrolidone (PVP) and trisodium citrate (TSC) which selectively absorbed to Ag (100) and Ag (111) surfaces, then were anchored to graphene (GN) to form novel Ag NPs/GN composite. The thickness of Ag NPs is ∼ 4 nm and the length is 18–66 nm. Transmission electron microscopy (TEM) image shows that the plates are f-c-c crystals containing {111} facets on their two planar surfaces. Zeta potential indicated that the surface of Ag NPs/GN is negatively charged while vanillin is positively charged. Thus Ag NPs/GN modified on glass carbon electrodes (GCE) allowed abundant adsorption for vanillin and electron transfer between vanillin and Ag NPs/GN/GCE. Square wave voltammetry (SWV) results indicated that the over potential on Ag NPs/GN/GCE negatively shifts 52 mV than that on Ag NPs/GCE. Ag NPs/GN with enhanced surface area and good conductivity exhibited an excellent electrocatalytic activity toward the oxidation of vanillin. The corresponding linear range was estimated to be from 2 to 100 μM (R 2 = 0.998), and the detection limit is 3.32 × 10 −7 M (S/N = 3). The as-prepared vanillin sensor exhibits good selectivity and potential application in practical vanillin determination. - Highlights: • Hexagonal Ag nanoplates were synthesized by controlling of PVP and trisodium citrate. • Ag nanoplates/GN composite allowed adsorption and electron transfer of vanillin. • The composite with good dispersion exhibits enhanced surface area and good catalysis. • Vanillin on the Ag NPs/GN/GCE shows high sensitivity and selectivity

  4. Signal-on electrochemical assay for label-free detection of TdT and BamHI activity based on grown DNA nanowire-templated copper nanoclusters.

    Science.gov (United States)

    Hu, Yufang; Zhang, Qingqing; Xu, Lihua; Wang, Jiao; Rao, Jiajia; Guo, Zhiyong; Wang, Sui

    2017-11-01

    Electrochemical methods allow fast and inexpensive analysis of enzymatic activity. Here, a simple and yet efficient "signal-on" electrochemical assay for sensitive, label-free detection of DNA-related enzyme activity was established on the basis of terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. TdT, which is a template-independent DNA polymerase, can catalyze the sequential addition of deoxythymidine triphosphate (dTTP) at the 3'-OH terminus of single-stranded DNA (ssDNA); then, the TdT-yield T-rich DNA nanowires can be employed as the synthetic template of copper nanoclusters (CuNCs). Grown DNA nanowires-templated CuNCs (noted as DNA-CuNCs) were attached onto graphene oxide (GO) surface and exhibited unique electrocatalytic activity to H 2 O 2 reduction. Under optimal conditions, the proposed biosensor was utilized for quantitatively monitoring TdT activity, with the observed LOD of 0.1 U/mL. It also displayed high selectivity to TdT with excellent stability, and offered a facile, convenient electrochemical method for TdT-relevant inhibitors screening. Moreover, the proposed sensor was successfully used for BamHI activity detection, in which a new 3'-OH terminal was exposed by the digestion of a phosphate group. Ultimately, it has good prospects in DNA-related enzyme-based biochemical studies, disease diagnosis, and drug discovery. Graphical Abstract Extraordinary TdT-generated DNA-CuNCs are synthesized and act as a novel electrochemical sensing platform for sensitive detection of TdT and BamHI activity in biological environments.

  5. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum.

    Science.gov (United States)

    Ruiyi, Li; Ling, Liu; Hongxia, Bei; Zaijun, Li

    2016-05-15

    Graphene aerogel has attracted increasing attention due to its large specific surface area, high-conductivity and electronic interaction. The paper reported a facile synthesis of nitrogen-doped multiple graphene aerogel/gold nanostar (termed as N-doped MGA/GNS) and its use as the electrochemical sensing platform for detection of double stranded (dsDNA). On the one hand, the N-doped MGA offers a much better electrochemical performance compared with classical graphene aerogel. Interestingly, the performance can be enhanced by only increasing the cycle number of graphene oxide gelation. On the other hand, the hybridization with GNS further enhances the electrocatalytic activity towards Fe(CN)6(3-/4-). In addition, the N-doped MGA/GNS provides a well-defined three-dimensional architecture. The unique structure make it is easy to combine with dsDNA to form the electroactive bioconjugate. The integration not only triggers an ultrafast DNA electron and charge transfer, but also realizes a significant synergy between N-doped MGA, GNS and dsDNA. As a result, the electrochemical sensor based on the hybrid exhibits highly sensitive differential pulse voltammetric response (DPV) towards dsDNA. The DPV signal linearly increases with the increase of dsDNA concentration in the range from 1.0×10(-)(21) g ml(-)(1) to 1.0×10(-16) g ml(-1) with the detection limit of 3.9×10(-22) g ml(-1) (S/N=3). The sensitivity is much more than that of all reported DNA sensors. The analytical method was successfully applied in the electrochemical detection of circulating free DNA in human serum. The study also opens a window on the electrical properties of multiple graphene aerogel and DNA as well their hybrids to meet the needs of further applications as special nanoelectronics in molecule diagnosis, bioanalysis and catalysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. High specificity of spot urinary free metanephrines in diagnosis and prognosis of pheochromocytomas and paragangliomas by HPLC with electrochemical detection.

    Science.gov (United States)

    Zuo, Ming; Zhen, Qianna; Zhang, Xiaoqing; Zou, Wenbi; Yang, Xiangchun; Tian, Gang; Shi, Zhenghu; Li, Qifu; Ding, Min

    2018-03-01

    The metanephrines (MNs) in plasma and urine were proposed as biomarkers for the diagnosis of pheochromocytomas and paragangliomas (PPGLs). However, plasma free MNs and 24h urinary fractionated MNs were not satisfactory enough in specificity for the diagnosis of PPGLs. Moreover, the collection of 24h urine was inconvenient. This work examined the diagnostic and prognostic efficiency of free MNs in spot urine for PPGLs. We measured free MNs concentration in spot urine and plasma of 28 PPGLs patients and 155 control subjects by HPLC with electrochemical detection. Postoperative free MNs levels in spot urine and plasma of 14 PPGLs patients were also determined. Creatinine (Cr) concentration was used for the correction of urine volume. The specificity of spot urinary free MNs/Cr in the diagnosis of PPGLs was significantly higher than that of plasma free MNs [normetanephrine (NMN), 98.7% (95.4%-99.8%) vs 93.0% (87.4%-96.6%); metanephrine (MN), 93.6% (88.5%-96.9%) vs 84.5% (77.5%-90.0%)]. Meanwhile, the positive likelihood ratios for spot urinary free NMN/Cr and MN/Cr were 69.21 and 13.29, compared with 12.68 and 5.30 for plasma free NMN and MN, respectively. For the PPGLs patients underwent surgery, the plasma free MNs level appeared an abnormal elevation and yielded false-positive results for some patients. Our findings were validated in an independent cohort, resulting in the specificity of 100% for both urinary free NMN/Cr and MN/Cr, and 97.3% and 83.8% for plasma free NMN and MN, respectively. Spot urinary free MNs/Cr, superior to plasma free MNs, presented a promising biomarker for the diagnosis and prognosis of PPGLs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Screening for cystic fibrosis via a magnetic and microfluidic immunoassay format with electrochemical detection using a copper nanoparticle-modified gold electrode

    International Nuclear Information System (INIS)

    Benuzzi, Maria Luz Scala; Pereira, Sirley V.; Raba, Julio; Messina, Germán A.

    2016-01-01

    This article describes a microfluidic electrochemical immunoassay that features two strategies, viz. (a), the incorporation of magnetic nanoparticles (MNPs) into the central microfluidic channel and acting as a bioaffinity support for the immobilization of the antibody against the immunoreactive trypsin (anti-IRT), and (b), the electrodeposition of copper nanoparticles (CuNPs) on a gold electrode. IRT, a marker for cystic fibrosis, is extracted from blood samples onto a disk using ultrasonication, eluted, and then injected into the detection system where it is captured by anti-IRT-loaded nanoparticles (anti-IRT-Ab-MNPs). Bound IRT is electrochemically quantified after addition of HRP-labeled anti-IRT-Ab which, in the presence of H 2 O 2 , catalyzes the oxidation of catechol to form o-benzoquinone which is detected at a working potential of −1 50 mV (vs. Ag/AgCl). The electrochemical response to benzoquinone is proportional to the concentration of IRT in the range from 0 to 580 ng⋅mL −1 . The coefficients of variation are <5 % for within-day assays, and <6.4 % for between-day assays. The method was compared to a commercial ELISA for IRT where is showed a correlation coefficient of close to 1. In our perception, this approach represents an attractive alternative to existing methods for screening newborns for cystic fibrosis. (author)

  8. Development and validation of an indirect pulsed electrochemical detection method for monitoring the inhibition of Abl1 tyrosine kinase.

    Science.gov (United States)

    Chen, Hui; Wang, Xu; Chopra, Shruti; Adams, Erwin; Van Schepdael, Ann

    2014-03-01

    A new method for monitoring the enzyme inhibition of Abl1 tyrosine kinase by liquid chromatography-indirect pulsed electrochemical detection (LC-InPED) was developed. In this method, adsorption of a peptide analyte at the noble metal electrode suppresses the oxidation of polyols under alkaline condition to elicit an indirect response resulting in a negative peak of the target peptide. Among the reagents tested, D-gluconic acid sodium salt gave the best overall signal to noise (S/N) values for the indirect detection of p-Abltide, the product of Abl1 enzymatic reaction. 50 μM D-gluconic acid sodium salt dissolved in a mixture of 78% water-22% acetonitrile-0.03% trifluoroacetic acid (TFA) was used as the mobile phase. Chromatographic separation was achieved on an Alltima C18 (I.D. 5 μm; 250 mm × 4.6 mm) column with the mobile phase flow rate of 0.5 ml/min. 0.5M sodium hydroxide was added post-column to maintain alkaline conditions in the PED cell. The limit of quantification (LOQ) was 0.2 μM for p-Abltide, which was about 50-fold lower than direct PED analysis. The residual plot of the linear calibration curve indicated a good fit with a linear model within the investigated concentration range of p-Abltide. Intra- and inter-day precision was not more than 6.5% and accuracy was from -5.75% to +1.54%. The validated LC-InPED method was successfully applied for monitoring of p-Abltide in Abl1 enzyme reaction and the inhibition study of Abl1. The determined IC50 values of model inhibitors, imatinib, nilotinib and dasatinib, were 601.4 nM (R(2)=0.99), 32.3 nM (R(2)=0.99) and 1.3 nM (R(2)=0.98), respectively. These results were consistent with literature data. To the best of our knowledge this is the first time a LC-InPED method has been used to monitor an enzyme reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  10. Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Khoshsafar, Hosein; Bagheri, Hasan; Madrakian, Tayyebeh

    2014-01-01

    A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of cadmium. This sensor was designed by incorporation of multi-walled carbon nanotubes (MWCNTs) and a new synthesized Schiff base into the carbon paste ionic liquid electrode (CPE IL ) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Cd(II). The detection limit of the method was found to be 0.08 μg L −1 (S/N = 3) that is lower than the maximum contaminant level of Cd(II) allowed by the Environmental Protection Agency (EPA) in standard drinking waters. The proposed electrode exhibits good applicability for monitoring Cd(II) in various real samples. - Highlights: • A new nanocomposite was prepared and applied to the modification of CPE. • The prepared nanocomposite was characterized by scanning electron microscopy. • The electrode was used to the rapid and selective determination of Cd(II)

  11. Biochip for Real-Time Monitoring of Hepatitis B Virus (HBV) by Combined Loop-Mediated Isothermal Amplification and Solution-Phase Electrochemical Detection

    Science.gov (United States)

    Tien, Bui Quang; Ngoc, Nguyen Thy; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-06-01

    Accurate in situ diagnostic tests play a key role in patient management and control of most infectious diseases. To achieve this, use of handheld biochips that implement sample handling, sample analysis, and result readout together is an ideal approach. We present herein a fluid-handling biochip for real-time electrochemical monitoring of nucleic acid amplification based on loop-mediated isothermal amplification and real-time electrochemical detection on a microfluidic platform. Intercalation between amplifying DNA and free redox probe in solution phase was used to monitor the number of DNA copies. The whole diagnostic process is completed within 70 min. Our platform offers a fast and easy tool for quantification of viral pathogens in shorter time and with limited risk of all potential forms of cross-contamination. Such diagnostic tools have potential to make a huge difference to the lives of millions of people worldwide.

  12. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    International Nuclear Information System (INIS)

    Liu Xianggang; Cheng Ziqiang; Fan Hai; Ai Shiyun; Han Ruixia

    2011-01-01

    Highlights: → A sensitive electrochemical biosensor for the detection of gene sequence was developed. → The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. → The hybrid nanomaterials could provide a porous structure with good properties. → The biosensor has highly selectivity and sensitivity. → The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10 -12 to 1.0 x 10 -9 M (R = 0.9863) with a detection limit of 4.3 x 10 -13 M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  13. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianggang [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Cheng Ziqiang, E-mail: czqsd@126.com [College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong (China); Fan Hai [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Han Ruixia [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-07-15

    Highlights: > A sensitive electrochemical biosensor for the detection of gene sequence was developed. > The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. > The hybrid nanomaterials could provide a porous structure with good properties. > The biosensor has highly selectivity and sensitivity. > The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10{sup -12} to 1.0 x 10{sup -9} M (R = 0.9863) with a detection limit of 4.3 x 10{sup -13} M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  14. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification.

    Science.gov (United States)

    Liu, Shufeng; Lin, Ying; Liu, Tao; Cheng, Chuanbin; Wei, Wenji; Wang, Li; Li, Feng

    2014-06-15

    Hybridization chain reaction (HCR) strategy has been well developed for the fabrication of various biosensing platforms for signal amplification. Herein, a novel enzyme-free and label-free ultrasensitive electrochemical DNA biosensing platform for the detection of target DNA and adenosine triphosphate (ATP) was firstly proposed, in which three auxiliary DNA probes were ingeniously designed to construct the dendritic DNA concatamer via HCR strategy and used as hexaammineruthenium(III) chloride (RuHex) carrier for signal amplification. With the developed dendritic DNA concatamer-based signal amplification strategy, the DNA biosensor could achieve an ultrasensitive electrochemical detection of DNA and ATP with a superior detection limit as low as 5 aM and 20 fM, respectively, and also demonstrate a high selectivity for DNA and ATP detection. The currently proposed dendritic DNA concatamer opens a promising direction to construct ultrasensitive DNA biosensing platform for biomolecular detection in bioanalysis and clinical biomedicine, which offers the distinct advantages of simplicity and cost efficiency owing to no need of any kind of enzyme, chemical modification or labeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide - polyaniline composite.

    Science.gov (United States)

    Wang, Jidong; Wang, Xiaoyu; Tang, Hengshan; Gao, Zehua; He, Shengquan; Li, Jian; Han, Shumin

    2018-02-15

    In this work, a novel ultrasensitive electrochemical biosensor was developed for the detection of K562 cell by a signal amplification strategy based on multiple layer CdS QDs functionalized polystyrene microspheres(PS) as bioprobe and graphene oxide(GO) -polyaniline(PANI) composite as modified materials of capture electrode. Due to electrostatic force of different charge, CdS QDs were decorated on the surface of PS by PDDA (poly(diallyldimethyl-ammonium chloride)) through a layer-by-layer(LBL) assemble technology, in which the structure of multiple layer CdS QDs increased the detection signal intensity. Moreover, GO-PANI composite not only enhanced the electron transfer rate, but also increased tumor cells load ratio. The resulting electrochemical biosensor was used to detect K562 cells with a lower detection limit of 3 cellsmL -1 (S/N = 3) and a wider linear range from 10 to 1.0 × 10 7 cellsmL -1 . This sensor was also used for mannosyl groups on HeLa cells and Hct116 cells, which showed high specificity and sensitivity. This signal amplification strategy would provide a novel approach for detection, diagnosis and treatment for tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs-Based Electrochemical Biosensors

    Directory of Open Access Journals (Sweden)

    Weiwei Ye

    2017-05-01

    Full Text Available The wide abuse of antibiotics has accelerated bacterial multiresistance, which means there is a need to develop tools for rapid detection and characterization of bacterial response to antibiotics in the management of infections. In the study, an electrochemical biosensor based on nanoporous alumina membrane and graphene quantum dots (GQDs was developed for bacterial response to antibiotics detection. Anti-Salmonella antibody was conjugated with amino-modified GQDs by glutaraldehyde and immobilized on silanized nanoporous alumina membranes for Salmonella bacteria capture. The impedance signals across nanoporous membranes could monitor the capture of bacteria on nanoporous membranes as well as bacterial response to antibiotics. This nanoporous membrane and GQD-based electrochemical biosensor achieved rapid detection of bacterial response to antibiotics within 30 min, and the detection limit could reach the pM level. It was capable of investigating the response of bacteria exposed to antibiotics much more rapidly and conveniently than traditional tools. The capability of studying the dynamic effects of antibiotics on bacteria has potential applications in the field of monitoring disease therapy, detecting comprehensive food safety hazards and even life in hostile environment.

  17. Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H2O2 Detection

    Directory of Open Access Journals (Sweden)

    Wenbo Dong

    2017-07-01

    Full Text Available An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT and β-cyclodextrin-included-ferrocene (β-CD-FE complex for the determination of H2O2. Ferrocene (FE was included in β-cyclodextrin (β-CD to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H2O2. It was found that the CTS-CAT could produce a strong reduction peak current in response to H2O2 and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H2O2 concentration in the range of 1.0 × 10−7–6.0 × 10−3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.

  18. Nanoparticle-Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase: An Exposure Biomarker of Organophosphate Pesticides and Nerve AgentsOrganophosphate Pesticides and Nerve Agents

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Wang, Jun; Barry, Richard C.; Petersen, Catherine E.; Timchalk, Charles; Gassman, Paul L.; Lin, Yuehe

    2008-11-01

    A nanoparticle-based electrochemical immunosensor has been developed for the detection of phosphorylated acetylcholinesterase (AChE) adducts, which is a potential exposure biomarker for organophosphate pesticides (OP) and chemical warfare nerve agent exposures. Zirconia nanoparticles (ZrO2 NPs) were used as selective sorbents to capture the phosphorylated AChE adduct, and quantum dots (ZnS@CdS, QDs) were used as tags to label monoclonal anti-AChE antibody to track the immunorecognition events. The sandwich-like immunoreactions were performed among the ZrO2 NPs, which were pre-coated on a screen printed electrode (SPE) by electrodeposition, phosphorylated AChE and QD-anti-AChE. The captured QD tags were determined on the SPE by electrochemical stripping analysis of its metallic component (cadmium) after an acid-dissolution step. Paraoxon was used as a model OP insecticide to prepare the phosphorylated AChE adduct to demonstrate the proof of principle for this sensor technology. The paraoxon-AChE adduct was characterized by Fourier Transform Infrared Spectrum, and the binding affinity of anti-AChE to the paraoxon-AChE was validated with an enzyme-linked immunosorbent assay. The parameters (e.g., amount of ZrO2 NP, QD-anti-AChE concentration,) that govern the electrochemical response of immunosensors were optimized. The voltammetric response of the immunosensor is highly linear over the range of 10 pM to 4 nM paraoxon-AChE, and the limit of detection is estimated to be 8 pM. This new nanoparticle-based electrochemical immunosensor thus provides a sensitive and quantitative tool for biomonitoring exposure to OP pesticides and nerve agents.

  19. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude.

    Science.gov (United States)

    Hutton, Laura A; O'Neil, Glen D; Read, Tania L; Ayres, Zoë J; Newton, Mark E; Macpherson, Julie V

    2014-05-06

    The development of a novel analytical technique, electrochemical X-ray fluorescence (EC-XRF), is described and applied to the quantitative detection of heavy metals in solution, achieving sub-ppb limits of detection (LOD). In EC-XRF, electrochemical preconcentration of a species of interest onto the target electrode is achieved here by cathodic electrodeposition. Unambiguous elemental identification and quantification of metal concentration is then made using XRF. This simple electrochemical preconcentration step improves the LOD of energy dispersive XRF by over 4 orders of magnitude (for similar sample preparation time scales). Large area free-standing boron doped diamond grown using microwave plasma chemical vapor deposition techniques is found to be ideal as the electrode material for both electrodeposition and XRF due to its wide solvent window, transparency to the XRF beam, and ability to be produced in mechanically robust freestanding thin film form. During electrodeposition it is possible to vary both the deposition potential (Edep) and deposition time (tdep). For the metals Cu(2+) and Pb(2+) the highest detection sensitivities were found for Edep = -1.75 V and tdep (=) 4000 s with LODs of 0.05 and 0.04 ppb achieved, respectively. In mixed Cu(2+)/Pb(2+) solutions, EC-XRF shows that Cu(2+) deposition is unimpeded by Pb(2+), across a broad concentration range, but this is only true for Pb(2+) when both metals are present at low concentrations (10 nM), boding well for trace level measurements. In a dual mixed metal solution, EC-XRF can also be employed to either selectively deposit the metal which has the most positive formal reduction potential, E(0), or exhaustively deplete it from solution, enabling uninhibited detection of the metal with the more negative E(0).

  20. Electrochemical immunoassay for thyroxine detection using cascade catalysis as signal amplified enhancer and multi-functionalized magnetic graphene sphere as signal tag

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing; Zhuo, Ying, E-mail: yingzhuo@swu.edu.cn; Chai, Yaqin; Yu, Yanqing; Liao, Ni; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn

    2013-08-06

    Graphical abstract: -- Highlights: •A reusable electrochemical immunosensor is developed for thyroxine detection. •Cascade catalysis as signal amplified enhancer. •Multi-functionalized magnetic graphene sphere as signal tag. •The novel strategy has the advantages of high sensitivity, good selectivity and reproducibility. -- Abstract: This paper constructed a reusable electrochemical immunosensor for the detection of thyroxine at an ultralow concentration using cascade catalysis of cytochrome c (Cyt c) and glucose oxidase (GOx) as signal amplified enhancer. It is worth pointing out that numerous Cyt c and GOx were firstly carried onto the double-stranded DNA polymers based on hybridization chain reaction (HCR), and then the amplified responses could be achieved by cascade catalysis of Cyt c and GOx recycling with the help of glucose. Moreover, multi-functionalized magnetic graphene sphere was synthesized and used as signal tag, which not only exhibited good mechanical properties, large surface area and an excellent electron transfer rate of graphene, but also possessed excellent redox activity and desirable magnetic property. With a sandwich-type immunoreaction, the proposed cascade catalysis amplification strategy could greatly enhance the sensitivity for the detection of thyroxine. Under the optimal conditions, the immunosensor showed a wide linear ranged from 0.05 pg mL{sup −1} to 5 ng mL{sup −1} and a low detection limit down to 15 fg mL{sup −1}. Importantly, the proposed method offers promise for reproducible and cost-effective analysis of biological samples.

  1. Enzyme-free electrochemical immunosensor configured with Au-Pd nanocrystals and N-doped graphene sheets for sensitive detection of AFP.

    Science.gov (United States)

    Zhao, Lifang; Li, Songjun; He, Jing; Tian, Guihong; Wei, Qin; Li, He

    2013-11-15

    A novel electrochemical immunosensor capable of enzyme-free detection of alpha fetoprotein (AFP) is reported. This immunosensor was fabricated in a sandwich-like format where catalytic Au-Pd nanocrystals and highly conductive N-doped graphene sheets were incorporated. The significant catalysis by Au-Pd nanocrystals toward hydrogen peroxide, along with the increased electron transfer by graphene sheets, caused signal generation and increased sensitivity, which enables the enzyme-free detection of AFP. With a low detection limit at 0.005 ng mL(-1), this novel immunosensor worked well over the broad linear range of 0.05-30 ng mL(-1). Unlike previously reported enzyme-based electrochemical immunosensors, which often involve the complicated steps for enzyme loading and necessary treatments to keep the activity of enzyme, this novel immunosensor is simple in nature and employed catalytic Au-Pd nanoparticles and highly conductive graphene, which thus enables reliable and sensitive detection for clinic usage. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite

    International Nuclear Information System (INIS)

    Chen, Yuan; Liu, Xiaoying; Zhang, Si; Yang, Liuqing; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2017-01-01

    A simple and efficient eletrochemical sensing platform for simultaneous detection of hydroquinone (HQ), catechol (CC) and resorcinol (RC) based on the Au-Pd bimetallic and graphene is described in this paper. The Au-Pd reduced graphene oxide (Au-Pd NF/rGO) was prepared by the electrochemical co-reduction deposition via cyclic voltammetry method (CV). The Au-Pd NF/rGO nanocomposite was examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electrochemical methods CV and differential pulse voltammety (DPV) study showed that the three dihydroxybenzene isomers can be catalytically oxidized and discriminated simultaneously on the Au-Pd NF/rGO/GCE. The presence of Pd makes the performance of the sensor superior to that of in the absence of it. Owing to the integrated superior conductivity and excellent catalytic property of Au-Pd NF/rGO, the sensitive and simultaneous detection of HQ, CC and RC was realized in the individual or triple-components solution based on the as proposed Au-Pd NF/rGO/GCE, which shows wide linear range and low detection limit. The detection of them in tap water, river water and lake water were also successfully performed and good recovery was obtained.

  3. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy. Keywords: Self-assembly, Gold electrode, Carbon nanotubes, Electrochemical detection, Mercury

  4. A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen.

    Science.gov (United States)

    Yan, Mei; Zang, Dejin; Ge, Shenguang; Ge, Lei; Yu, Jinghua

    2012-01-01

    A novel screen-printed electrode (SPEs) on sheets of vegetable parchment was prepared. The obtained SPEs were stable, convenient, inexpensive and suitable for large-area screen-printing. With these SPEs, we explored the fabrication of a novel, disposable and highly sensitive electro-analytical immunosensor using graphene nanosheets (GS) and horseradish peroxidase (HRP)-labeled signal antibody functionalized with gold nanoparticles (HRP-Ab(2)/Au NPs). GS was used to increase the conductivity and stability of this immunosensor due to its fast electron transportation and good biocompatibility. Au NPs could not only provide a large surface area for the immobilization of HRP-Ab(2) but also enhance the electroreduction between HRP and H(2)O(2) to amplify the electrochemical signal on the sandwich immuno-complexes modified SPEs. The proposed SPEs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical methods involving cyclic voltammetry (CV), and electrochemical impedence method. Using prostate specific antigen (PSA) as a model analyte, this immunosensor showed a wide linear range over 6 orders of magnitude with the minimum value down to 2 pg mL(-1). In addition, this immunosensor could avoid the need of deoxygenation for the electrochemical immunoassay. Thus, it provided a promising potential in clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.

    Science.gov (United States)

    Yan, Genping; Wang, Yonghong; He, Xiaoxiao; Wang, Kemin; Liu, Jinquan; Du, Yudan

    2013-06-15

    We report here a highly sensitive and label-free electrochemical aptasensing technology for detection of interferon-gamma (IFN-γ) based on graphene controlled assembly and enzyme cleavage-assisted target recycling amplification strategy. In this work, in the absence of IFN-γ, the graphene could not be assembled onto the 16-mercaptohexadecanoic acid (MHA) modified gold electrode because the IFN-γ binding aptamer was strongly adsorbed on the graphene due to the strong π-π interaction. Thus the electronic transmission was blocked (eT OFF). However, the presence of target IFN-γ and DNase I led to desorption of aptamer from the graphene surface and further cleavage of the aptamer, thereby releasing the IFN-γ. The released IFN-γ could then re-attack other aptamers on the graphene, resulting in the successive release of the aptamers from the graphene. At the same time, the "naked" graphene could be assembled onto the MHA modified gold electrode with hydrophobic interaction and π-conjunction, mediating the electron transfer between the electrode and the electroactive indicator. Then, measurable electrochemical signals were generated (eT ON), which was related to the concentration of the IFN-γ. By taking advantages of graphene and enzyme cleavage-assisted target recycling amplification, the developed label-free electrochemical aptasensing technology showed a linear response to concentration of IFN-γ range from 0.1 to 0.7 pM. The detection limit of IFN-γ was determined to be 0.065 pM. Moreover, this aptasensor shows good selectivity toward the target in the presence of other relevant proteins. Our strategy thus opens new opportunities for label-free and amplified detection of other kinds of proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.

    Science.gov (United States)

    Zhang, Yan; Xiao, Jian; Sun, Yimin; Wang, Lu; Dong, Xulin; Ren, Jinghua; He, Wenshan; Xiao, Fei

    2018-02-15

    The rapidly growing demand for in situ real-time monitoring of chemical information in vitro and in vivo has attracted tremendous research efforts into the design and construction of high-performance biosensor devices. Herein, we develop a new type of flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen-doped carbon nanotube arrays, and explore its practical application in in situ electrochemical detection of cancer biomarker H 2 O 2 secreted from live cancer cells. Our results demonstrate that carbon fiber material with microscale size and fascinating mechanical properties can be used as a robust and flexible microelectrode substrate in the electrochemical biosensor system. And the highly ordered nitrogen-doped carbon nanotube arrays that grown on carbon fiber possess high surface area-to-volume ratio and abundant active sites, which facilitate the loading of high-density and uniformly dispersed gold nanoparticles on it. Benefited from the unique microstructure and excellent electrocatalytic properties of different components in the nanohybrid fiber microelectrode, an effective electrochemical sensing platform based on it has been built up for the sensitive and selective detection of H 2 O 2 , the detection limit is calculated to be 50nM when the signal-to-noise ratio is 3:1, and the linear dynamic range is up to 4.3mM, with a high sensitivity of 142µAcm -2 mM -1 . These good sensing performances, coupled with its intrinsic mechanical flexibility and biocompatibility, allow for its use in in situ real-time tracking H 2 O 2 secreted from breast cancer cell lines MCF-7 and MBA-MD-231, and evaluating the sensitivity of different cancer cells to chemotherapy or radiotherapy treatments, which hold great promise for clinic application in cancer diagnose and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detection of an ylide intermediate in the electrochemically-induced Stevens rearrangement of an ammonium salt by in situ UV–vis spectroelectrochemistry

    International Nuclear Information System (INIS)

    Capobianco, Amedeo; Caruso, Tonino; Palombi, Laura; Peluso, Andrea

    2013-01-01

    Highlights: ► Mechanistic insights of the electro-induced Stevens rearrangement are provided. ► The reduction of PhCOCH 2 N + (CH 3 ) 2 CH 2 Ph is ascribed to a one-electron transfer process. ► An electrogenerated ammonium ylide has been detected by UV-spectroelectrochemistry. -- Abstract: The electrochemically-induced Stevens rearrangement of 2-(benzyldimethyl)ammonium acetophenone has been investigated by in situ UV–vis spectroelectrochemistry. Voltammetric analysis and absorption spectra recorded during the potentiostatic reduction indicate that the reaction proceeds via a one-electron transfer with a Platinum cathode and generation of an ammonium ylide intermediate

  8. A novel electrochemical immunosensor using β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase as labels for ultrasensitive detection of alpha-fetoprotein.

    Science.gov (United States)

    Gao, Jian; Ma, Hongmin; Lv, Xiaohui; Yan, Tao; Li, Na; Cao, Wei; Wei, Qin

    2015-09-17

    In this work, a novel sandwich-type electrochemical immunosensor based on host-guest interaction was fabricated for the detection of alpha-fetoprotein (AFP). Due to the large specific surface area of multiwalled carbon nanotubes and the unique supramolecular recognition ability of β-cyclodextrins, ferrocenecarboxylic acid (Fc) was incorporated into this sensor platform by host-guest interaction to generate an electrochemical signal. And β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase (GOD-CD-Ag), was used as a label to improve the analytical performance of the immunosensor by the dual amplification strategy. The obtained GOD-CD-Ag conjugates could convert glucose into gluconic acid with the formation of hydrogen peroxide (H2O2). And then silver nanoparticles could in situ catalyze the reduction of the generated H2O2, dramatically improving the oxidation reaction of Fc. The developed immunosensor shows a wide linear calibration range from 0.001 to 5.0 ng/mL with a low detection limit (0.2 pg/mL) for the detection of AFP. The method, with ideal reproducibility and selectivity, has a wide application prospect in clinical research. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Electrochemical Aptatoxisensor Responses on Nanocomposites Containing Electro-Deposited Silver Nanoparticles on Poly(Propyleneimine Dendrimer for the Detection of Microcystin-LR in Freshwater

    Directory of Open Access Journals (Sweden)

    Mawethu P. Bilibana

    2016-11-01

    Full Text Available A sensitive and reagentless electrochemical aptatoxisensor was developed on cobalt (II salicylaldiimine metallodendrimer (SDD–Co(II doped with electro-synthesized silver nanoparticles (AgNPs for microcystin-LR (L, l-leucine; R, l-arginine, or MC-LR, detection in the nanomolar range. The GCE|SDD–Co(II|AgNPs aptatoxisensor was fabricated with 5’ thiolated aptamer through self-assembly on the modified surface of the glassy carbon electrode (GCE and the electronic response was measured using cyclic voltammetry (CV. Specific binding of MC-LR with the aptamer on GCE|SDD–Co(II|AgNPs aptatoxisensor caused the formation of a complex that resulted in steric hindrance and electrostatic repulsion culminating in variation of the corresponding peak current of the electrochemical probe. The aptatoxisensor showed a linear response for MC-LR between 0.1 and 1.1 µg·L−1 and the calculated limit of detection (LOD was 0.04 µg·L−1. In the detection of MC-LR in water samples, the aptatoxisensor proved to be highly sensitive and stable, performed well in the presence of interfering analog and was comparable to the conventional analytical techniques. The results demonstrate that the constructed MC-LR aptatoxisensor is a suitable device for routine quantification of MC-LR in freshwater and environmental samples.

  10. Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor.

    Science.gov (United States)

    Kaur, Balwinder; Erdmann, Cristiane Andreia; Daniëls, Mathias; Dehaen, Wim; Rafiński, Zbigniew; Radecka, Hanna; Radecki, Jerzy

    2017-12-05

    In the present work, gold electrodes were modified using a redox-active layer based on dipyrromethene complexes with Cu(II) or Co(II) and a dipodal anion receptor functionalized with dipyrromethene. These modified gold electrodes were then applied for the electrochemical detection of anions (Cl - , SO 4 2- , and Br - ) in a highly diluted water solution (in the picomolar range). The results showed that both systems, incorporating Cu(II) as well as Co(II) redox centers, exhibited highest sensitivity toward Cl - . The selectivity sequence found for both systems was Cl - > SO 4 2- > Br - . The high selectivity of Cl - anions can be attributed to the higher binding constant of Cl - with the anion receptor and the stronger electronic effect between the central metal and anion in the complex. The detection limit for the determination of Cl - was found at the 1.0 pM level for both sensing systems. The electrodes based on Co(II) redox centers displayed better selectivity toward Cl - anion detection than those based on Cu(II) centers which can be attributed to the stronger electronic interaction between the receptor-target anion complex and the Co(II)/Co(III) redox centers in comparison to the Cu(II)/Cu(I) system. Applicability of gold electrodes modified with DPM-Co(II)-DPM-AR for the electrochemical determination of Cl - anions was demonstrated using the artificial matrix mimicking human serum.

  11. Coupling of an indicator-free electrochemical DNA biosensor with polymerase chain reaction for the detection of DNA sequences related to the apolipoprotein E

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, Fausto; Marrazza, Giovanna; Palchetti, Ilaria; Cesaretti, S.; Mascini, Marco

    2002-09-26

    This paper describes a disposable indicator-free electrochemical DNA biosensor applied to the detection of apolipoprotein E (apoE) sequences in PCR samples. In the indicator-free assays, the duplex formation was detected by measuring the electrochemical signal of the guanine base of nucleic acids. The biosensor format involved the immobilisation of an inosine-modified (guanine-free) probe onto a screen-printed electrode (SPE) transducer and the detection of the duplex formation in connection with the square-wave voltammetric measurement of the oxidation peak of the guanine of the target sequence. The indicator-free scheme has been characterised using 23-mer oligonucleotides as model: parameters affecting the hybridisation assay such as probe immobilisation conditions, hybridisation time, use of hybridisation accelerators were examined and optimised. The analysis of PCR samples (244 bp DNA fragments, obtained by amplification of DNA extracted from human blood) required a further optimisation of the experimental procedure. In particular, a lower steric hyndrance of the probe modified surface was essential to allow an efficient hybridisation of the target DNA fragment. Negative controls have been performed using the PCR blank and amplicons unrelated to the immobilised probe. A 10 min hybridisation time allowed a full characterisation of each sample.

  12. One-Step Electrosynthesis of Graphene Oxide-Doped Polypyrrole Nanocomposite as a Nanointerface for Electrochemical Impedance Detection of Cell Adhesion and Proliferation Using Two Approaches

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-01-01

    Full Text Available A novel nanointerface of graphene oxide-doped polypyrrole (GO/PPy is prepared on the surface of an indium tin oxide (ITO electrode for electrochemical impedance detection of cell adhesion and proliferation through a facile one-step electropolymerization. The prepared GO/PPy nanocomposite had a robust surface and provided a biocompatible substrate for A549 cells adhesion and proliferation. The adhesion and proliferation of A549 cells on the surface of the GO/PPy modified ITO electrode directly increased the electron transfer resistance of [Fe(CN6]3−/4− redox probe and influenced the impedance properties of the GO/PPy modified ITO electrode system. Based on these results, the adhesion and proliferation of A549 cells could be detected by electrochemical impedance technology using two approaches. Therefore, the present paper confirms that the GO/PPy nanocomposite film provides an excellent biological-electrical interface for cell immobilization and offers advantages of simple, low-cost fabrication and multiparameter detection and possesses potential application in cytological studies.

  13. Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires.

    Science.gov (United States)

    Yu, Yanyan; Chen, Zuanguang; Jian, Wensi; Sun, Duanping; Zhang, Beibei; Li, Xinchun; Yao, Meicun

    2015-02-15

    In this work, a simple and label-free electrochemical biosensor with duel amplification strategy was developed for DNA detection based on isothermal exponential amplification (EXPAR) coupled with hybridization chain reaction (HCR) of DNAzymes nanowires. Through rational design, neither the primer nor the DNAzymes containing molecular beacons (MBs) could react with the duplex probe which were fixed on the electrode surface. Once challenged with target, the duplex probe cleaved and triggered the EXPAR mediated target recycle and regeneration circles as well as the HCR process. As a result, a greater amount of targets were generated to cleave the duplex probes. Subsequently, the nanowires consisting of the G-quadruplex units were self-assembled through hybridization with the strand fixed on the electrode surface. In the presence of hemin, the resulting catalytic G-quadruplex-hemin HRP-mimicking DNAzymes were formed. Electrochemical signals can be obtained by measuring the increase in reduction current of oxidized 3.3',5.5'-tetramethylbenzidine sulfate (TMB), which was generated by DNAzyme in the presence of H2O2. This method exhibited ultrahigh sensitivity towards avian influenza A (H7N9) virus DNA sequence with detection limits of 9.4 fM and a detection range of 4 orders of magnitude. The biosensor was also capable of discriminating single-nucleotide difference among concomitant DNA sequences and performed well in spiked cell lysates. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Highly-sensitive and rapid detection of ponceau 4R and tartrazine in drinks using alumina microfibers-based electrochemical sensor.

    Science.gov (United States)

    Zhang, Yuanyuan; Hu, Lintong; Liu, Xin; Liu, Bifeng; Wu, Kangbing

    2015-01-01

    Alumina microfibers were prepared and used to construct an electrochemical sensor for simultaneous detection of ponceau 4R and tartrazine. In pH 3.6 acetate buffer, two oxidation waves at 0.67 and 1.01 V were observed. Due to porous structures and large surface area, alumina microfibers exhibited high accumulation efficiency to ponceau 4R and tartrazine, and increased their oxidation signals remarkably. The oxidation mechanisms were studied, and their oxidation reaction involved one electron and one proton. The influences of pH value, amount of alumina microfibers and accumulation time were examined. As a result, a highly-sensitive, rapid and simple electrochemical method was newly developed for simultaneous detection of ponceau 4R and tartrazine. The detection limits were 0.8 and 2.0 nM for ponceau 4R and tartrazine. This new sensor was used in different drink samples, and the results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Integration of a Graphite/PMMA CompositeElectrode into a Poly(methyl methacrylate) (PMMA) Substrate for Electrochemical Detection in Microchips

    Science.gov (United States)

    Regel, Anne; Lunte, Susan

    2013-01-01

    Traditional fabrication methods for polymer microchips, the bonding of two substrates together to form the microchip, can make the integration of carbon electrodes difficult. We have developed a simple and inexpensive method to integrate graphite/PMMA composite electrodes (GPCEs) into a PMMA substrate. These substrates can be bonded to other PMMA layers using a solvent-assisted thermal bonding method. The optimal composition of the GPCEs for electrochemical detection was determined using cyclic voltammetry with dopamine as a test analyte. Using the optimized GPCEs in an all-PMMA flow cell with flow injection analysis, it was possible to detect 50 nM dopamine under the best conditions. These electrodes were also evaluated for the detection of dopamine and catechol following separation by microchip electrophoresis (ME). PMID:23670816

  16. In-Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an Electrochemical Microfluidic Biosensor

    OpenAIRE

    Tran, Thi Luyen; Chu, Thi Xuan; Do, Phuc Quan; Pham, Duc Thanh; Trieu, Van Vu Quan; Huynh, Dang Chinh; Mai, Anh Tuan

    2015-01-01

    A triple electrode setup with a Pt pseudo-reference electrode integrated in a polydimethylsiloxane- (PDMS-) based microchamber was designed and fabricated. The integrated electrodes were deposited onto SiO2/Si substrate by sputtering. The PDMS microchamber was patterned using an SU-8 mold and sealed with electrodes in oxygen plasma. Polypyrrole nanowires (PPy NWs) were electrochemically grown in situ at an accurate position of the working electrode in the sealed microchamber instead of in an ...

  17. A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical Detection of Anthrax Protective Antigen

    Science.gov (United States)

    2014-08-01

    Electrochemical Oxidation of Catechol and Para - Aminophenol Esters in the Presence of Hydrolases. Bioelectrochem. Bioenerg. 1980, 7, 11–24. 26. Evans-Nguyen, K. M...platform. Analytical HPLC (a) and MALDI-TOF (b) traces of biligand capture agentwithno thermal treatment, and after 5 days of storage as a powder at...sample of biligand was stored for 5 days at 65 C under nitrogen atmosphere. Analy- tical HPLC traces (Figure 4a) andMALDI-TOF (Figure 4b) reveal

  18. Single-Use Disposable Electrochemical Label-Free Immunosensor for Detection of Glycated Hemoglobin (HbA1c) Using Differential Pulse Voltammetry (DPV).

    Science.gov (United States)

    Molazemhosseini, Alireza; Magagnin, Luca; Vena, Pasquale; Liu, Chung-Chiun

    2016-07-01

    A single-use disposable in vitro electrochemical immunosensor for the detection of HbA1c in undiluted human serum using differential pulse voltammetry (DPV) was developed. A three-electrode configuration electrochemical biosensor consisted of 10-nm-thin gold film working and counter electrodes and a thick-film printed Ag/AgCl reference electrode was fabricated on a polyethylene terephthalate (PET) substrate. Micro-fabrication techniques including sputtering vapor deposition and thick-film printing were used to fabricate the biosensor. This was a roll-to-roll cost-effective manufacturing process making the single-use disposable in vitro HbA1c biosensor a reality. Self-assembled monolayers of 3-Mercaptopropionic acid (MPA) were employed to covalently immobilize anti-HbA1c on the surface of gold electrodes. Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) confirmed the excellent coverage of MPA-SAM and the upward orientation of carboxylic groups. The hindering effect of HbA1c on the ferricyanide/ferrocyanide electron transfer reaction was exploited as the HbA1c detection mechanism. The biosensor showed a linear range of 7.5-20 µg/mL of HbA1c in 0.1 M PBS. Using undiluted human serum as the test medium, the biosensor presented an excellent linear behavior (R² = 0.999) in the range of 0.1-0.25 mg/mL of HbA1c. The potential application of this biosensor for in vitro measurement of HbA1c for diabetic management was demonstrated.

  19. Facile hydrothermal synthesis of polyhedral Fe3O4 nanocrystals, influencing factors and application in the electrochemical detection of H2O2

    International Nuclear Information System (INIS)

    Yuan Kefeng; Ni Yonghong; Zhang Li

    2012-01-01

    Highlights: ► Fe 3 O 4 polyhedra had been successfully synthesized by a facile hydrothermal technology. ► The as-obtained product exhibited the room-temperature ferrimagnetic property. ► The final product could be prepared into an electrochemical sensor for the detection of H 2 O 2 . - Abstract: Polyhedral Fe 3 O 4 nanocrystals have been successfully synthesized by a facile hydrothermal technique, employing FeSO 4 ·7H 2 O, N 2 H 4 and NH 3 ·H 2 O as the reactants without the assistance of any surfactant. The phase of the as-obtained Fe 3 O 4 was characterized by X-ray powder diffraction (XRD) and further proved by Rietveld refinement of XRD data. Energy dispersive spectrometry (EDS) and scanning electron microscopy (SEM) were used for the composition and morphology analyses of the final product. Some factors influencing the formation of polyhedral Fe 3 O 4 nanocrystals were systematically investigated, including the reaction temperature and time, and the original volume ratio of NH 3 ·H 2 O/N 2 H 4 ·H 2 O. It was found that the as-prepared Fe 3 O 4 polyhedra exhibited a good electrochemical property in 0.1 M phosphate buffer solution (PBS) with pH 7.0 and could be prepared into an electrochemical sensor for the detection of H 2 O 2 . The linear response range of the sensor was 10.0 × 10 −6 to 140.0 × 10 −6 M and a sensitivity was 11.05 μA/mM. Furthermore, the room-temperature magnetic property of the product was also investigated.

  20. Single-Use Disposable Electrochemical Label-Free Immunosensor for Detection of Glycated Hemoglobin (HbA1c Using Differential Pulse Voltammetry (DPV

    Directory of Open Access Journals (Sweden)

    Alireza Molazemhosseini

    2016-07-01

    Full Text Available A single-use disposable in vitro electrochemical immunosensor for the detection of HbA1c in undiluted human serum using differential pulse voltammetry (DPV was developed. A three-electrode configuration electrochemical biosensor consisted of 10-nm-thin gold film working and counter electrodes and a thick-film printed Ag/AgCl reference electrode was fabricated on a polyethylene terephthalate (PET substrate. Micro-fabrication techniques including sputtering vapor deposition and thick-film printing were used to fabricate the biosensor. This was a roll-to-roll cost-effective manufacturing process making the single-use disposable in vitro HbA1c biosensor a reality. Self-assembled monolayers of 3-Mercaptopropionic acid (MPA were employed to covalently immobilize anti-HbA1c on the surface of gold electrodes. Electrochemical impedance spectroscopy (EIS and X-ray photoelectron spectroscopy (XPS confirmed the excellent coverage of MPA-SAM and the upward orientation of carboxylic groups. The hindering effect of HbA1c on the ferricyanide/ferrocyanide electron transfer reaction was exploited as the HbA1c detection mechanism. The biosensor showed a linear range of 7.5–20 µg/mL of HbA1c in 0.1 M PBS. Using undiluted human serum as the test medium, the biosensor presented an excellent linear behavior (R2 = 0.999 in the range of 0.1–0.25 mg/mL of HbA1c. The potential application of this biosensor for in vitro measurement of HbA1c for diabetic management was demonstrated.

  1. Fabrication of gold nanoparticles-decorated reduced graphene oxide as a high performance electrochemical sensing platform for the detection of toxicant Sudan I

    International Nuclear Information System (INIS)

    Li, Junhua; Feng, Haibo; Li, Jun; Feng, Yonglan; Zhang, Yaqian; Jiang, Jianbo; Qian, Dong

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •A well-dispersed AuNPs/RGO nanocomposite was fabricated via a green and in situ reduction method. •This nanocomposite displays excellent electro-catalysis activity for the oxidation of Sudan I. •The AuNPs/RGO/GCE exhibits superior comprehensive properties for the detection of Sudan I. •This proposed method was successfully applied to detect Sudan I in chilli powder and ketchup sauce. -- Abstract: In this paper, we are presenting a facile, green and in situ synthesis strategy for the convenient preparation of well-dispersed gold nanoparticles (AuNPs)-decorated reduced graphene oxide (RGO) without the use of any template molecules and poisonous reductant. The as-synthesized nanocomposite has been detailedly characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis as well as electrochemical technologies. The morphological and structural characterizations illustrate that AuNPs can be efficiently decorated on RGO with the Au content of 20.33 wt% in the matrix and the size of the embedded AuNPs vary between 25 and 40 nm. The electrochemical investigations confirm that the small-sized AuNPs on the RGO film can remarkably boost the electrocatalytic activity for the oxidation of Sudan I, which can be used as an enhanced electrochemical sensing platform for the sensitively detection of the toxicant Sudan I. Moreover, the kinetic parameter studies demonstrate that the Sudan I electro-oxidation at the AuNPs/RGO electrode is a diffusion-controlled process which involves two-electron and two-proton transfer. Under the optimal conditions, a wide linear range of Sudan I detection from 0.01 to 70 μmol L −1 with good linearity (R 2 = 0.9965, 0.9942) and a low detection limit (1.0 nmol L −1 , S/N = 3) were obtained. In comparison with the existing analogues ever reported

  2. Electrochemical Detection of E. coli O157:H7 in Water after Electrocatalytic and Ultraviolet Treatments Using a Polyguanine-Labeled Secondary Bead Sensor

    Directory of Open Access Journals (Sweden)

    Michael G. Beeman

    2018-05-01

    Full Text Available The availability of clean drinking water is a significant problem worldwide. Many technologies exist for purifying drinking water, however, many of these methods require chemicals or use simple methods, such as boiling and filtering, which may or may not be effective in removing waterborne pathogens. Present methods for detecting pathogens in point-of-use (POU sterilized water are typically time prohibitive or have limited ability differentiating between active and inactive cells. This work describes a rapid electrochemical sensor to differentially detect the presence of active Escherichia coli (E. coli O157:H7 in samples that have been partially or completely sterilized using a new POU electrocatalytic water purification technology based on superradicals generated by defect laden titania (TiO2 nanotubes. The sensor was also used to detect pathogens sterilized by UV-C radiation for a comparison of different modes of cell death. The sensor utilizes immunomagnetic bead separation to isolate active bacteria by forming a sandwich assay comprised of antibody functionalized secondary magnetic beads, E. coli O157:H7, and polyguanine (polyG oligonucleotide functionalized secondary polystyrene beads as an electrochemical tag. The assay is formed by the attachment of antibodies to active receptors on the membrane of E. coli, allowing the sensor to differentially detect viable cells. Ultravioloet (UV-C radiation and an electrocatalytic reactor (ER with integrated defect-laden titania nanotubes were used to examine the sensors’ performance in detecting sterilized cells under different modes of cell death. Plate counts and flow cytometry were used to quantify disinfection efficacy and cell damage. It was found that the ER treatments shredded the bacteria into multiple fragments, while UV-C treatments inactivated the bacteria but left the cell membrane mostly intact.

  3. Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes.

    Science.gov (United States)

    Jampasa, Sakda; Wonsawat, Wanida; Rodthongkum, Nadnudda; Siangproh, Weena; Yanatatsaneejit, Pattamawadee; Vilaivan, Tirayut; Chailapakul, Orawon

    2014-04-15

    An electrochemical biosensor based on an immobilized anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe was successfully developed for the selective detection of human papillomavirus (HPV) type 16 DNA. A 14-mer acpcPNA capture probe was designed to recognize a specific 14 nucleotide region of HPV type 16 L1 gene. The redox-active label anthraquinone (AQ) was covalently attached to the N-terminus of the acpcPNA probe through an amide bond. The probe was immobilized onto a chitosan-modified disposable screen-printed carbon electrode via a C-terminal lysine residue using glutaraldehyde as a cross-linking agent. Hybridization with the target DNA was studied by measuring the electrochemical signal response of the AQ label using square-wave voltammetric analysis. The calibration curve exhibited a linear range between 0.02 and 12.0 µM with a limit of detection and limit of quantitation of 4 and 14 nM, respectively. This DNA sensing platform was successfully applied to detect the HPV type 16 DNA from a PCR amplified (240 bp fragment of the L1 gene) sample derived from the HPV type 16 positive human cancer cell line (SiHa), and failed to detect the HPV-negative c33a cell line. The sensor probe exhibited very high selectivity for the complementary 14 base oligonucleotide over the non-complementary oligonucleotides with sequences derived from HPV types 18, 31 and 33. The proposed sensor provides an inexpensive tool for the early stage detection of HPV type 16, which is an important biomarker for cervical cancer. © 2013 Elsevier B.V. All rights reserved.

  4. Electrochemical Detection of E. coli O157:H7 in Water after Electrocatalytic and Ultraviolet Treatments Using a Polyguanine-Labeled Secondary Bead Sensor.

    Science.gov (United States)

    Beeman, Michael G; Nze, Ugochukwu C; Sant, Himanshu J; Malik, Hammad; Mohanty, Swomitra; Gale, Bruce K; Carlson, Krista

    2018-05-10

    The availability of clean drinking water is a significant problem worldwide. Many technologies exist for purifying drinking water, however, many of these methods require chemicals or use simple methods, such as boiling and filtering, which may or may not be effective in removing waterborne pathogens. Present methods for detecting pathogens in point-of-use (POU) sterilized water are typically time prohibitive or have limited ability differentiating between active and inactive cells. This work describes a rapid electrochemical sensor to differentially detect the presence of active Escherichia coli (E. coli) O157:H7 in samples that have been partially or completely sterilized using a new POU electrocatalytic water purification technology based on superradicals generated by defect laden titania (TiO₂) nanotubes. The sensor was also used to detect pathogens sterilized by UV-C radiation for a comparison of different modes of cell death. The sensor utilizes immunomagnetic bead separation to isolate active bacteria by forming a sandwich assay comprised of antibody functionalized secondary magnetic beads, E. coli O157:H7, and polyguanine (polyG) oligonucleotide functionalized secondary polystyrene beads as an electrochemical tag. The assay is formed by the attachment of antibodies to active receptors on the membrane of E. coli , allowing the sensor to differentially detect viable cells. Ultravioloet (UV)-C radiation and an electrocatalytic reactor (ER) with integrated defect-laden titania nanotubes were used to examine the sensors’ performance in detecting sterilized cells under different modes of cell death. Plate counts and flow cytometry were used to quantify disinfection efficacy and cell damage. It was found that the ER treatments shredded the bacteria into multiple fragments, while UV-C treatments inactivated the bacteria but left the cell membrane mostly intact.

  5. A sensitive label-free electrochemical immunosensor for detection of cytokeratin 19 fragment antigen 21-1 based on 3D graphene with gold nanopaticle modified electrode.

    Science.gov (United States)

    Zeng, Yan; Bao, Jing; Zhao, Yanan; Huo, Danqun; Chen, Mei; Yang, Mei; Fa, Huanbao; Hou, Changjun

    2018-02-01

    Previous studies have confirmed that cytokeratin 19 fragment antigen 21-1 (CYFRA 21-1) serves as a powerful biomarker in non-small cell lung cancer (NSCLC). Herein, we report for the first time a label-free electrochemical immunosensor for sensitive and selective detection of tumor marker CYFRA21-1. In this work, three-dimensional graphene @ gold nanoparticles (3D-G@Au) nanocomposite was modified on the glassy carbon electrode (GCE) surface to enhance the conductivity of immunosensor. The anti-CYFRA21-1 captured and fixed on the modified GCE through the cross-linking of chitosan (CS), glutaraldehyde (GA) and anti-CYFRA21-1. The differential pulse voltammetry (DPV) peak current change due to the specific interaction between anti-CYFRA21-1 and CYFRA21-1 on the modified electrode surface was utilized to detect CYFRA21-1. Under optimized conditions, the proposed electrochemical immunosensor was employed to detect CYFRA21-1 and exhibited a wide linear range of 0.25-800ngmL -1 and low detection limit of 100pgmL -1 (S/N = 3). Moreover, the recovery rates of serum samples were in the range from 95.2% to 108.7% and the developed immunosensor also shows a good correlation (less than 6.6%) with enzyme-linked immunosorbent assay (ELISA) in the detection of clinical serum samples. Therefore, it is expected that the proposed immunosensor based on a 3D-G@Au has great potential in clinical medical diagnosis of CYFRA21-1. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene.

    Science.gov (United States)

    Kerr-Phillips, Thomas E; Aydemir, Nihan; Chan, Eddie Wai Chi; Barker, David; Malmström, Jenny; Plesse, Cedric; Travas-Sejdic, Jadranka

    2018-02-15

    A highly selective, label-free sensor for the non-Hodgkin lymphoma gene, with an aM detection limit, utilizing electrochemical impedance spectroscopy (EIS) is presented. The sensor consists of a conducting electrospun fibre mat, surface-grafted with poly(acrylic acid) (PAA) brushes and a conducting polymer sensing element with covalently attached oligonucleotide probes. The sensor was fabricated from electrospun NBR rubber, embedded with poly(3,4-ethylenedioxythiophene) (PEDOT), followed by grafting poly(acrylic acid) brushes and then electrochemically polymerizing a conducting polymer monomer with ssDNA probe sequence pre-attached. The resulting non-Hodgkin lymphoma gene sensor showed a detection limit of 1aM (1 × 10 -18 mol/L), more than 400 folds lower compared to a thin-film analogue. The sensor presented extraordinary selectivity, with only 1%, 2.7% and 4.6% of the signal recorded for the fully non-complimentary, T-A and G-C base mismatch oligonucleotide sequences, respectively. We suggest that such greatly enhanced selectivity is due to the presence of negatively charged carboxylic acid moieties from PAA grafts that electrostatically repel the non-complementary and mismatch DNA sequences, overcoming the non-specific binding. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ultrasensitive electrochemical detection of DNA based on Zn²⁺ assistant DNA recycling followed with hybridization chain reaction dual amplification.

    Science.gov (United States)

    Qian, Yong; Wang, Chunyan; Gao, Fenglei

    2015-01-15

    A new strategy to combine Zn(2+) assistant DNA recycling followed with hybridization chain reaction dual amplification was designed for highly sensitive electrochemical detection of target DNA. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of the target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme hybridized with the MB and catalyzed its cleavage in the presence of Zn(2+) cofactor and resulting in a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles triggering the cleavage of MB, thus forming numerous MB fragments. The MB fragments triggered the HCR and formed a long double-helix DNA structure. Because both H1 and H2 were labeled by biotin, a lot of SA-ALP was captured on the electrode surface, thus catalyzing a silver deposition process for electrochemical stripping analysis. This novel cascade signal amplification strategy can detect target DNA down to the attomolar level with a dynamic range spanning 6 orders of magnitude. This highly sensitive and specific assay has a great potential to become a promising DNA quantification method in biomedical research and clinical diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  9. Electrochemical Noise Sensors for Detection of Localized and General Corrosion of Natural Gas Transmission Pipelines. Final Report for the Period July 2001-October 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Sophie J.; Covino, Jr., Bernard S.; Russell, James H.; Holcomb, Gordon R.; Cramer, Stephen D.; Ziomek-Moroz, Margaret

    2002-12-01

    The U.S. Department of Energy, National Energy Technology Laboratory funded a Natural Gas Infrastructure Reliability program directed at increasing and enhancing research and development activities in topics such as remote leak detection, pipe inspection, and repair technologies and materials. The Albany Research Center (ARC), U.S. Department of Energy was funded to study the use of electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines. As part of this, ARC entered into a collaborative effort with the corrosion sensor industry to demonstrate the capabilities of commercially available remote corrosion sensors for use with the Nation's Gas Transmission Pipeline Infrastructure needs. The goal of the research was to develop an emerging corrosion sensor technology into a monitor for the type and degree of corrosion occurring at key locations in gas transmission pipelines.

  10. Development of highly sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth and lead sulfide nanoparticles for the detection of pathogenic Aeromonas.

    Science.gov (United States)

    Fernandes, António Maximiano; Abdalhai, Mandour H; Ji, Jian; Xi, Bing-Wen; Xie, Jun; Sun, Jiadi; Noeline, Rasoamandrary; Lee, Byong H; Sun, Xiulan

    2015-01-15

    In this paper, we reported the construction of new high sensitive electrochemical genosensor based on multiwalled carbon nanotubes-chitosan-bismuth complex (MWCNT-Chi-Bi) and lead sulfide nanoparticles for the detection of pathogenic Aeromonas. Lead sulfide nanoparticles capped with 5'-(NH2) oligonucleotides thought amide bond was used as signalizing probe DNA (sz-DNA) and thiol-modified oligonucleotides sequence was used as fixing probe DNA (fDNA). The two probes hybridize with target Aeromonas DNA (tDNA) sequence (fDNA-tDNA-szDNA). The signal of hybridization is detected by differential pulse voltammetry (DPV) after electrodeposition of released lead nanoparticles (PbS) from sz-DNA on the surface of glass carbon electrode decorated with MWCNT-Chi-Bi, which improves the deposition and traducing electrical signal. The optimization of incubation time, hybridization temperature, deposition potential, deposition time and the specificity of the probes were investigated. Our results showed the highest sensibility to detect the target gene when compared with related biosensors and polymerase chain reaction (PCR). The detection limit for this biosensor was 1.0×10(-14) M. We could detect lower than 10(2) CFU mL(-1) of Aeromonas in spiked tap water. This method is rapid and sensitive for the detection of pathogenic bacteria and would become a potential application in biomedical diagnosis, food safety and environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Ultrasensitive Electrochemical Detection of Clostridium perfringens DNA Based Morphology-Dependent DNA Adsorption Properties of CeO2 Nanorods in Dairy Products

    Directory of Open Access Journals (Sweden)

    Xingcan Qian

    2018-06-01

    Full Text Available Foodborne pathogens such as Clostridium perfringens can cause diverse illnesses and seriously threaten to human health, yet far less attention has been given to detecting these pathogenic bacteria. Herein, two morphologies of nanoceria were synthesized via adjusting the concentration of NaOH, and CeO2 nanorod has been utilized as sensing material to achieve sensitive and selective detection of C. perfringens DNA sequence due to its strong adsorption ability towards DNA compared to nanoparticle. The DNA probe was tightly immobilized on CeO2/chitosan modified electrode surface via metal coordination, and the DNA surface density was 2.51 × 10−10 mol/cm2. Under optimal experimental conditions, the electrochemical impedance biosensor displays favorable selectivity toward target DNA in comparison with base-mismatched and non-complementary DNA. The dynamic linear range of the proposed biosensor for detecting oligonucleotide sequence of Clostridium perfringens was from 1.0 × 10−14 to 1.0 × 10−7 mol/L. The detection limit was 7.06 × 10−15 mol/L. In comparison, differential pulse voltammetry (DPV method quantified the target DNA with a detection limit of 1.95 × 10−15 mol/L. Moreover, the DNA biosensor could detect C. perfringens extracted DNA in dairy products and provided a potential application in food quality control.

  12. Sonochemical and sustainable synthesis of graphene-gold (G-Au) nanocomposites for enzymeless and selective electrochemical detection of nitric oxide.

    Science.gov (United States)

    Geetha Bai, Renu; Muthoosamy, Kasturi; Zhou, Meifang; Ashokkumar, Muthupandian; Huang, Nay Ming; Manickam, Sivakumar

    2017-01-15

    In this study, a sonochemical approach was utilised for the development of graphene-gold (G-Au) nanocomposite. Through the sonochemical method, simultaneous exfoliation of graphite and the reduction of gold chloride occurs to produce highly crystalline G-Au nanocomposite. The in situ growth of gold nanoparticles (AuNPs) took place on the surface of exfoliated few-layer graphene sheets. The G-Au nanocomposite was characterised by UV-vis, XRD, FTIR, TEM, XPS and Raman spectroscopy techniques. This G-Au nanocomposite was used to modify glassy carbon electrode (GCE) to fabricate an electrochemical sensor for the selective detection of nitric oxide (NO), a critical cancer biomarker. G-Au modified GCE exhibited an enhanced electrocatalytic response towards the oxidation of NO as compared to other control electrodes. The electrochemical detection of NO was investigated by linear sweep voltammetry analysis, utilising the G-Au modified GCE in a linear range of 10-5000μM which exhibited a limit of detection of 0.04μM (S/N=3). Furthermore, this enzyme-free G-Au/GCE exhibited an excellent selectivity towards NO in the presence of interferences. The synergistic effect of graphene and AuNPs, which facilitated exceptional electron-transfer processes between the electrolyte and the GCE thereby improving the sensing performance of the fabricated G-Au modified electrode with stable and reproducible responses. This G-Au nanocomposite introduces a new electrode material in the sensitive and selective detection of NO, a prominent biomarker of cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Achievements and Prospects in Electrochemical-Based Biosensing Platforms for Aflatoxin M1 Detection in Milk and Dairy Products

    Directory of Open Access Journals (Sweden)

    Ana-Maria Gurban

    2017-12-01

    Full Text Available Aflatoxins, which are mainly produced by Aspergillus flavus and parasiticus growing on plants and products stored under inappropriate conditions, represent the most studied group of mycotoxins. Contamination of human and animal milk with aflatoxin M1, the hydroxylated metabolite of aflatoxin B1, is an important health risk factor due to its carcinogenicity and mutagenicity. Due to the low concentration of this aflatoxin in milk and milk products, the analytical methods used for its quantification have to be highly sensitive, specific and simple. This paper presents an overview of the analytical methods, especially of the electrochemical immunosensors and aptasensors, used for determination of aflatoxin M1.

  14. Quinone-Based Polymers for Label-Free and Reagentless Electrochemical Immunosensors: Application to Proteins, Antibodies and Pesticides Detection

    Directory of Open Access Journals (Sweden)

    Minh-Chau Pham

    2013-01-01

    Full Text Available Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox transducers for probing biomolecular interactions in sensors. Our group has been working on devices based on such modified electrodes with a view to applications for proteins, antibodies and organic pollutants using a reagentless label-free electrochemical immunosensor format. Herein, these developments are briefly reviewed and put into perspective.

  15. Capture, isolation and electrochemical detection of industrially-relevant engineered aerosol nanoparticles using poly (amic) acid, phase-inverted, nano-membranes

    Energy Technology Data Exchange (ETDEWEB)

    Okello, Veronica A. [Department of Chemistry, Center for Advanced Sensors and Environmental Systems (CASE), State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Gass, Samuel; Pyrgiotakis, Georgios [Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Department of Environmental Health, 665 Huntington Avenue, Boston, MA 02115-6021 (United States); Du, Nian; Lake, Andrew; Kariuki, Victor [Department of Chemistry, Center for Advanced Sensors and Environmental Systems (CASE), State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Sotiriou, Georgios A. [Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Department of Environmental Health, 665 Huntington Avenue, Boston, MA 02115-6021 (United States); Addolorato, Jessica [Department of Chemistry, Center for Advanced Sensors and Environmental Systems (CASE), State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Demokritou, Philip, E-mail: pdemokri@hsph.harvard.edu [Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Department of Environmental Health, 665 Huntington Avenue, Boston, MA 02115-6021 (United States); Sadik, Omowunmi A., E-mail: osadik@binghamton.edu [Department of Chemistry, Center for Advanced Sensors and Environmental Systems (CASE), State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Exposure level assessment of aerosol nanoparticles reported using Harvard's VENGES. • Device equipped with pi-conjugated conducting PAA membrane filters/sensor arrays. • PAA membrane motifs used to capture, isolate and detect the nanoparticles. • Manipulating the PAA delocalized π electron enabled electrocatalytic detection. • Fe{sub 2}O{sub 3}, ZnO and TiO{sub 2} quantified using impedance spectroscopy and cyclic voltammetry. - Abstract: Workplace exposure to engineered nanoparticles (ENPs) is a potential health and environmental hazard. This paper reports a novel approach for tracking hazardous airborne ENPs by applying online poly (amic) acid membranes (PAA) with offline electrochemical detection. Test aerosol (Fe{sub 2}O{sub 3}, TiO{sub 2} and ZnO) nanoparticles were produced using the Harvard (Versatile Engineered Generation System) VENGES system. The particle morphology, size and elemental composition were determined using SEM, XRD and EDS. The PAA membrane electrodes used to capture the airborne ENPs were either stand-alone or with electron-beam gold-coated paper substrates. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conceptually illustrate that exposure levels of industry-relevant classes of airborne nanoparticles could be captured and electrochemically detected at PAA membranes filter electrodes. CV parameters showed that PAA catalyzed the reduction of Fe{sub 2}O{sub 3} to Fe{sup 2+} with a size-dependent shift in reduction potential (E{sup 0}). Using the proportionality of peak current to concentration, the amount of Fe{sub 2}O{sub 3} was found to be 4.15 × 10{sup −17} mol/cm{sup 3} PAA electrodes. Using EIS, the maximum phase angle (Φ{sub max}) and the interfacial charge transfer resistance (R{sub ct}) increased significantly using 100 μg and 1000 μg of TiO{sub 2} and ZnO respectively. The observed increase in Φ{sub max} and R{sub ct} at increasing

  16. A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish.

    Science.gov (United States)

    Jiang, Donglei; Liu, Yan; Jiang, Hui; Rao, Shengqi; Fang, Wu; Wu, Mangang; Yuan, Limin; Fang, Weiming

    2018-04-15

    A novel screen-printed cell-based electrochemical sensor was developed to assess bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs). Screen-printed carbon electrode (SPCE), which possesses excellent properties such as low-cost, disposable and energy-efficient, was modified with multi-walled carbon nanotubes (MWNTs) to improve electrochemical signals and enhance the sensitivity. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide (NaAgl/GO) hydrogel were immobilized on the MWNTs/SPCE to serve as recognition element. Electrochemical impedance spectroscopy (EIS) was employed to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC 12 -HSL). Experimental results show that 3OC 12 -HSL caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of 3OC 12 -HSL in the range of 0.1-1μM, and the detection limit for 3OC 12 -HSL was calculated to be 0.094μM. These results were confirmed via cell viability, SEM, TEM analysis. Next, the sensor was successfully applied to monitoring the production of AHLs by spoilage bacteria in three different freshwater fish juice samples which efficiently proved the practicability of this cell based method. Therefore, the proposed cell sensor may serve as an innovative and effective approach to the measurement of quorum signaling molecule and thus provides a new avenue for real-time monitoring the spoilage bacteria in freshwater fish production. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite

    Science.gov (United States)

    Kim, Hyeong-U.; Kim, Hye Youn; Kulkarni, Atul; Ahn, Chisung; Jin, Yinhua; Kim, Yeongseok; Lee, Kook-Nyung; Lee, Min-Ho; Kim, Taesung

    2016-10-01

    This paper reports a biosensor based on a MoS2-graphene (MG) composite that can measure the parathyroid hormone (PTH) concentration in serum samples from patients. The interaction between PTH and MG was analysed via an electrochemical sensing technique. The MG was functionalized using L-cysteine. Following this, PTH could be covalently immobilized on the MG sensing electrode. The properties of MG were evaluated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. Following optimization of immobilized materials—such as MG, PTH, and alkaline phosphatase (ALP)—the performance of the MG sensor was investigated via cyclic voltammetry, to assess its linearity, repeatability, and reproducibility. Electrochemical impedance spectroscopy was performed on graphene oxide (GO) and MG-modified electrodes to confirm the capture of a monoclonal antibody (MAb) targeting PTH. Furthermore, the ALP-PTH-MG sensor exhibits a linear response towards PTH from artificial serum over a range of 1-50 pg mL-1. Moreover, patient sera (n = 30) were evaluated using the ALP-PTH-MG sensor and compared using standard equipment (Roche E 170). The P-value is less than 0.01 when evaluated with a t-test using Welch’s correction. This implies that the fabricated sensor can be deployed for medical diagnosis.

  18. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode

    Directory of Open Access Journals (Sweden)

    Sorina Motoc

    2016-10-01

    Full Text Available In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP and diclofenac (DCF in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA and multiple-pulsed amperometry (MPA. This electrode exhibited the possibility to selectively detect IBP and DCF by simple switching the detection potential using CA. However, the MPA operated under optimum working conditions of four potential levels selected based on CV shape in relation to the potential value, pulse time, and potential level number, and order allowed the selective/simultaneous detection of IBP and DCF characterized by the enhanced detection performance. For this application, the HKUST-CNF electrode exhibited a good stability and reproducibility of the results was achieved.

  19. Electrochemical Selective and Simultaneous Detection of Diclofenac and Ibuprofen in Aqueous Solution Using HKUST-1 Metal-Organic Framework-Carbon Nanofiber Composite Electrode.

    Science.gov (United States)

    Motoc, Sorina; Manea, Florica; Iacob, Adriana; Martinez-Joaristi, Alberto; Gascon, Jorge; Pop, Aniela; Schoonman, Joop

    2016-10-17

    In this study, the detection protocols for the individual, selective, and simultaneous determination of ibuprofen (IBP) and diclofenac (DCF) in aqueous solutions have been developed using HKUST-1 metal-organic framework-carbon nanofiber composite (HKUST-CNF) electrode. The morphological and electrical characterization of modified composite electrode prepared by film casting was studied by scanning electronic microscopy and four-point-probe methods. The electrochemical characterization of the electrode by cyclic voltammetry (CV) was considered the reference basis for the optimization of the operating conditions for chronoamperometry (CA) and multiple-pulsed amperometry (MPA). This electrode exhibited the possibility to selectively detect IBP and DCF by simple switching the detection potential using CA. However, the MPA operated under optimum working conditions of four potential levels selected based on CV shape in relation to the potential value, pulse time, and potential level number, and order allowed the selective/simultaneous detection of IBP and DCF characterized by the enhanced detection performance. For this application, the HKUST-CNF electrode exhibited a good stability and reproducibility of the results was achieved.

  20. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Tajabadi, M.T. [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Sookhakian, M., E-mail: m.sokhakian@gmail.com [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Yoon, G.H. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Korea (Korea, Republic of); Hamouda, A.M.S. [Mechanical and Industrial Engineering Department, College of Engineering, Qatar University, 2713, Doha (Qatar); Azarang, Majid [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Institute of Nanotechnology & Catalysis Research, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Y., E-mail: yatimah70@um.edu.my [University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-11-15

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H{sub 2}O{sub 2}). The behaviors of the hybrid electrodes towards H{sub 2}O{sub 2} reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml{sup −1} N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H{sub 2}O{sub 2} detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  1. Electrodeposition of flower-like platinum on electrophoretically grown nitrogen-doped graphene as a highly sensitive electrochemical non-enzymatic biosensor for hydrogen peroxide detection

    International Nuclear Information System (INIS)

    Tajabadi, M.T.; Sookhakian, M.; Zalnezhad, E.; Yoon, G.H.; Hamouda, A.M.S.; Azarang, Majid; Basirun, W.J.; Alias, Y.

    2016-01-01

    Highlights: • Nitrogen doped graphene with different thickness by electrophoretic deposition. • The conductivity of N-graphene layer depends on the tickness. • Support of platinum shows efficient electrocatalytic performance for biosensor. • CV curves and amperometric responses improved and optimized in the presence of N-graphene. - Abstract: An efficient non-enzymatic biosensor electrode consisting of nitrogen-doped graphene (N-graphene) and platinum nanoflower (Pt NF) with different N-graphene loadings were fabricated on indium tin oxide (ITO) glass using a simple layer-by-layer electrophoretic and electrochemical sequential deposition approach. N-graphene was synthesized by annealing graphene oxide with urea at 900 °C. The structure and morphology of the as-fabricated non-enzymatic biosensor electrodes were determined using X-ray diffraction, field emission electron microscopy, transmission electron microscopy, Raman and X-ray photoelectron spectra. The as-fabricated Pt NF-N-graphene-modified ITO electrodes with different N-graphene loadings were utilized as a non-enzymatic biosensor electrode for the detection of hydrogen peroxide (H_2O_2). The behaviors of the hybrid electrodes towards H_2O_2 reduction were assessed using chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy analysis. The Pt NF-N-graphene-modified ITO electrode with a 0.05 mg ml"−"1 N-graphene loading exhibited the lowest detection limit, fastest amperometric sensing, a wide linear response range, excellent stability and reproducibility for the non-enzymatic H_2O_2 detection, due to the synergistic effect between the electrocatalytic activity of the Pt NF and the high conductivity and large surface area of N-graphene.

  2. Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157:H7 with signal amplification on a SG-PEDOT-AuNPs electrode interface.

    Science.gov (United States)

    Guo, Yuna; Wang, Yu; Liu, Su; Yu, Jinghua; Wang, Hongzhi; Cui, Min; Huang, Jiadong

    2015-01-21

    A novel electrochemical immunosensor assay (EIA) for highly sensitive and specific detection of Escherichia coli O157:H7 has been developed. This immunosensor is constructed by the assembly of capture antibody on SG-PEDOT-AuNPs composites modified glass carbon electrode. In the presence of target E. coli O157:H7, horseradish peroxidase (HRP)-labeled antibody is captured on the electrode surface to form a sandwich-type system via the specific identification. As a result, E. coli O157:H7 detection is realized by outputting a redox current from electro-reduction of hydrogen peroxide reaction catalyzed by HRP. In our assay, the combination of the unique properties of sulfonated graphene (SG) and gold nanoparticles (AuNPs) can not only accelerate electron transfer on electrode interface, but also provide an excellent scaffold for the conjugation of capture antibody that significantly improves the target capture efficiency and enhances the sensitivity of the biosensor. The results reveal the calibration plot obtained for E. coli O157:H7 is approximately linear from 7.8 × 10-7.8 × 10(6) colony-forming unit (cfu) mL(-1) with the limit of detection of 3.4 × 10 cfu mL(-1). In addition, the biosensor has been successfully applied to the quantitative assay of E. coli O157:H7 in synthetic samples (spring water and milk). Hence, the developed electrochemical-based immunosensor might provide a useful and practical tool for E. coli O157:H7 determination and related food safety analysis and clinical diagnosis.

  3. Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection.

    Science.gov (United States)

    Gan, Xiaorong; Zhao, Huimin; Wong, Kwok-Yin; Lei, Dang Yuan; Zhang, Yaobin; Quan, Xie

    2018-05-15

    Surface functionalization is an effective strategy in the precise control of electronic surface states of two-dimensional materials for promoting their applications. In this study, based on the strong coordination interaction between the transition-metal centers and N atoms, the surface functionalization of few-layer MoS 2 nanosheets was successfully prepared by liquid phase exfoliation method in N, N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone, and formamide. The cytotoxicity of surface-functionalized MoS 2 nanosheets was for the first time evaluated by the methylthiazolyldiphenyl-tetrazoliumbromide assays. An electrochemical sensor was constructed based on glass carbon electrode (GCE) modified by MoS 2 nanosheets obtained in DMF, which exhibits relatively higher sensitivity to Cd 2+ detection and lower cytotoxicity against MCF-7 cells. The mechanisms of surface functionalization and selectively detecting Cd 2+ were investigated by density functional theory calculations together with various spectroscopic measurements. It was found that surface-functionalized MoS 2 nanosheets could be generated through Mo-N covalent bonds due to the orbital hybridization between the 5 s orbitals of Mo atoms and the 2p orbitals of N atoms of the solvent molecules. The high selectivity of the sensor is attributed to the coordination reaction between Cd 2+ and O donor atoms of DMF adsorbed on MoS 2 nanosheets. The robust anti-interference is ascribed to the strong binding energy of Cd 2+ and O atoms of DMF. Under the optimum conditions, the electrochemical sensor exhibits highly sensitive and selective assaying of Cd 2+ with a measured detection limit of 0.2 nM and a linear range from 2 nM to 20 μM. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A novel l-leucine modified Sol-Gel-Carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis.

    Science.gov (United States)

    Khamlichi, Redouan El; Bouchta, Dounia; Anouar, El Hassane; Atia, Mounia Ben; Attar, Aisha; Choukairi, Mohamed; Tazi, Saloua; Ihssane, Raissouni; Faiza, Chaoukat; Khalid, Draoui; Khalid, Riffi Temsamani

    2017-02-01

    Neuroblastoma is a pediatric neuroblastic tumor arising in the sympathetic nervous crest cells. A high grade of Neuroblastoma is characterized by a high urinary excretion of homovanillic acid and dopamine. In this work l-leucine modified Sol-Gel-Carbon electrode was used for a sensitive voltammetric determination of homovanillic acid and dopamine in urine. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry; the modified electrode has shown an increase in the effective area of up to 40%, a well-separated oxidation peaks and an excellent electrocatalytic activity. High sensitivity and selectivity in the linear range of 0,4-100μML -1 of homovanillic acid and 10-120μML -1 of dopamine were also obtained. Moreover, a sub-micromolar limit of detection of 0.1μM for homovanillic acid and 1.0μM for the dopamine was achieved. Indeed, high reproducibility with simple preparation and regeneration of the electrode surface made this electrode very suitable for the determination of homovanillic acid and dopamine in pharmaceutical and clinical preparations. The mechanism of homovanillic acid and the electrochemical oxidation at l-leucine modified Sol-Gel-Carbon electrode is described out the B3P86/6-31+G(d,p) level of theory as implemented in Gaussian software. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. One-pot preparation of conducting composite containing abundant amino groups on electrode surface for electrochemical detection of von willebrand factor

    Science.gov (United States)

    Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang

    2018-03-01

    A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.

  6. Novel method of determination of D9-tetrahydrocannabinol(THC) in human serum by high-performance liquid chromatography with electrochemical detection.

    Science.gov (United States)

    Kokubun, Hideya; Uezono, Yasuhito; Matoba, Motohiro

    2014-04-01

    In Europe and the United States, D9-tetrahydrocannabinol(THC, dronabinol), one of the psychoactive constituents of cannabis, has been used for both its anti-emetic and orexigenic effects in cancer patient receiving chemotherapy.However, dronabinol has not yet been launched in the market in Japan.In the future, it is necessary to ascertain the pharmacokinetics of dronabinol in cancer paitient.Therefore, we developed an HPLC procedure using electrochemical detection(ECD)for quan- titation of the concentrations of dronabinol in blood.An eluent of 50mM KH2PO4/CH3CN(9:16)was used as the mobile phase.The column was used the XTerra®RP18, and the voltage of the electrochemical detector in dronabinol was set at 400 mV.As a result, the calibration curve was linear in the range of 10 ng/mL to 100 ng/mL(y=964.85x -3,419, r=0.997).The lower limit of quantification was 0.5 ng/mL(S/N=3).The relative within-runs and between-runs standard deviations for the assay dronabinol were less than 4.7%. The method reported here is superior to previously reported methods in cancer patient.

  7. A sandwich-type electrochemical immunoassay for ultrasensitive detection of non-small cell lung cancer biomarker CYFRA21-1.

    Science.gov (United States)

    Zeng, Yan; Bao, Jing; Zhao, Yanan; Huo, Danqun; Chen, Mei; Qi, Yanli; Yang, Mei; Fa, Huanbao; Hou, Changjun

    2018-04-01

    Many studies confirm that the aberrant expression of Cytokeratin 19 fragment 21-1 (CYFRA21-1) is highly correlated with non-small cell lung cancer (NSCLC), especially for squamous cell carcinoma. Herein, we report a sandwich-type electrochemical immunosensor based on signal amplification strategy of multiple nanocomposites to test CYFRA21-1 selectively and sensitively. The proposed immunosensor fabricated by three-dimensional graphene (3D-G), chitosan (CS) and glutaraldehyde (GA) composite on the glass carbon electrode (GCE) with a large surface area is prepared to immobilize primary antibodies (Ab 1 ) and provide excellent conductivity. To further amplify the electrochemical signal, the trace tag on the foundation of gold nanoparticles (AuNPs) is coated with amino-functionalized carbon nanotube (MWCNT-NH 2 ) nanocomposite through thionine linking, which provides more amino groups to capture more horseradish peroxidase-labeled antibodies (HPR-Ab 2 ) and enhances the conductivity. Under optimal conditions, the developed immunosensor exhibits excellent analytical performance for the determination of CYFRA21-1 with a wide linear range from 0.1 to 150ng·mL -1 and a low detection limit (LOD) of 43pg·mL -1 . Furthermore, satisfactory results are obtained for the determination of CYFRA21-1 in real clinical serum samples, indicating the potential of the immunoassay to be applied in clinical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Label-free and reagentless electrochemical detection of PCR fragments using self-assembled quinone derivative monolayer: Application to Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Zhang, Q D; March, G; Noel, V

    2012-01-01

    We report a signal-on, label-free and reagentless electrochemical DNA biosensor, based on a mixed self-assembled monolayer of thiolated hydroxynaphthoquinone and thiolated oligonucleotide. Electrochemical changes resulting from hybridization were evidenced with oligonucleotide targets (as models...

  9. Facile Synthesis of Boron-doped Graphene Nanosheets with Hierarchical Microstructure at Atmosphere Pressure for Metal-free Electrochemical Detection of Hydrogen Peroxide

    International Nuclear Information System (INIS)

    Yeh, Min-Hsin; Li, Yan-Sheng; Chen, Guan-Lin; Lin, Lu-Yin; Li, Ta-Jen; Chuang, Hui-Min; Hsieh, Cheng-Yu; Lo, Shen-Chuan; Chiang, Wei-Hung; Ho, Kuo-Chuan

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • B-doped graphene nanosheets (BGNs) were used as a catalyst for sensing H 2 O 2 . • BGNs were synthesized by an atmospheric-pressure carbothermal reaction. • BGNs with hierarchical microstructure provide more electron transport pathways. • B atoms act as the active sites by transferring charges to neighboring C atoms. • Electrocatalytic ability of BGNs was characterized by a rotating disk electrode. -- Abstract: Hydrogen peroxide (H 2 O 2 ) is an essential mediator for most of the oxidative biological reactions in enzyme-based biosensor systems, such as glucose oxidase, cholesterol oxidase, and alcohol oxidase. Synthesis of new catalysts to detect the concentration of H 2 O 2 more precisely is indispensable for enzyme-based electrochemical biosensors. In this study, boron-doped graphene nanosheets (BGNs) with 2.2 atomic percentage (at%) boron doping level and a hierarchical microstructure were synthesized by an atmospheric-pressure carbothermal reaction as a noble-metal free catalyst for sensing H 2 O 2 . The isolated boron atoms on the BGNs surface act as the electrocatalytic sites by transferring charges to neighbor carbon atoms, and the hierarchical microstructure provides multidimensional electron transport pathways for charge transfer and therefore enhances the electrocatalytic ability. BGNs possess a higher reduction current in the cyclic voltammetry (CV) measurement than that of pristine graphene nanosheets (GNs) over the detection range of 0.0 to 10.0 mM at −0.4 V (vs. Ag/AgCl). The BGNs modified electrochemical sensor shows a linear range from 1.0 to 20.0 mM of H 2 O 2 with a sensitivity of 266.7 ± 3.8 μA mM −1 cm −2 and limit of detection (LOD) of 3.8 μM at a signal-to-noise (S/N) ratio of 3. The beneficial hierarchical microstructure and the synergetic effects arising from doping boron in GNs accomplish the better performance of the BGNs modified electrochemical sensor

  10. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  11. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  12. A sensitive electrochemical immunosensor based on poly(2-aminobenzylamine) film modified screen-printed carbon electrode for label-free detection of human immunoglobulin G.

    Science.gov (United States)

    Putnin, Thitirat; Jumpathong, Watthanachai; Laocharoensuk, Rawiwan; Jakmunee, Jaroon; Ounnunkad, Kontad

    2018-08-01

    This work focuses on fabricating poly(2-aminobenzylamine)-modified screen-printed carbon electrode as an electrochemical immunosensor for the label-free detection of human immunoglobulin G. To selectively detect immunoglobulin G, the anti-immunoglobulin G antibody with high affinity to immunoglobulin G was covalently linked with the amine group of poly(2-aminobenzylamine) film-deposited screen-printed carbon electrode. The selectivity for immunoglobulin G was subsequently assured by being challenged with redox-active interferences and adventitious adsorption did not significantly interfere the analyte signal. To obviate the use of costly secondary antibody, the [Fe(CN) 6 ] 4-/3- redox probe was instead applied to measure the number of human immunoglobulin G through the immunocomplex formation that is quantitatively related to the level of the differential pulse voltammetric current. The resulting immunosensor exhibited good sensitivity with the detection limit of 0.15 ng mL -1 , limit of quantitation of 0.50 ng mL -1 and the linear range from 1.0 to 50 ng mL -1 . Given those striking analytical performances and the affordability arising from using cheap screen-printed carbon electrode with label-free detection, the immunosensor serves as a promising model for the next-step development of a diagnostic tool.

  13. Horseradish peroxidase and antibody labeled gold nanoparticle probe for amplified immunoassay of ciguatoxin in fish samples based on capillary electrophoresis with electrochemical detection.

    Science.gov (United States)

    Zhang, Zhaoxiang; Liu, Ying; Zhang, Chaoying; Luan, Wenxiu

    2015-03-01

    This paper describes a new amplified immunoassay with horseradish peroxidase (HRP) and antibody (Ab) labeled gold nanoparticles (AuNPs) probe hyphenated to capillary electrophoresis (CE) with electrochemical (EC) detection for ultrasensitive determination of ciguatoxin CTX1B. AuNPs were conjugated with HRP and Ab, and then incubated with limited amount of CTX1B to produce immunocomplex. The immunoreactive sample was injected into capillary for CE separation and EC detection. Enhanced sensitivity was obtained by adopting the AuNPs as carriers of HRP and Ab at high HRP/Ab molar ratio. The calibration curve of CTX1B was in the range of 0.06-90 ng/mL. The detection limit was 0.045 ng/mL, which is 38-fold lower than that of HPLC-MS method for CTX1B analysis. The proposed method was successfully applied for the quantification of CTX1B in contamined fish samples by simultaneously labeling Ab and HRP on AuNPs. The amplified IA with HRP and Ab labeled AuNPs probe hyphenated to CE and EC detection provides a sensitive analytical approach for the determination of trace ciguatoxin in complex samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection.

    Science.gov (United States)

    Novak, Ivana; Janeiro, Patricia; Seruga, Marijan; Oliveira-Brett, Ana Maria

    2008-12-23

    Several flavonoids present in red grape skins from four varieties of Portuguese grapes were determined by reverse-phase high-performance liquid chromatography (RP-HPLC) with electrochemical detection (ECD). Extraction of flavonoids from red grape skins was performed by ultrasonication, and hydrochloric acid in methanol was used as extraction solvent. The developed RP-HPLC method used combined isocratic and gradient elution with amperometric detection with a glassy carbon-working electrode. Good peak resolution was obtained following direct injection of a sample of red grape extract in a pH 2.20 mobile phase. Eleven different flavonoids: cyanidin-3-O-glucoside (kuromanin), delphinidin-3-O-glucoside (myrtillin), petunidin-3-O-glucoside, peonidin-3-O-glucoside, malvidin-3-O-glucoside (oenin), (+)-catechin, rutin, fisetin, myricetin, morin and quercetin, can be separated in a single run by direct injection of sample solution. The limit of detection obtained for these compounds by ECD was 20-90 pg/L, 1000 times lower when compared with photodiode array (PDA) limit of detection of 12-55 ng/L. RP-HPLC-ECD was characterized by an excellent sensitivity and selectivity, and appropriate for the simultaneous determination of these electroactive phenolic compounds present in red grape skins.

  15. Synthesis and application of bismuth ferrite nanosheets supported functionalized carbon nanofiber for enhanced electrochemical detection of toxic organic compound in water samples.

    Science.gov (United States)

    Ramaraj, Sukanya; Mani, Sakthivel; Chen, Shen-Ming; Kokulnathan, Thangavelu; Lou, Bih-Show; Ali, M Ajmal; Hatamleh, A A; Al-Hemaid, Fahad M A

    2018-03-15

    Recently, the multiferroic material has fabulous attention in numerous applications owing to its excellent electronic conductivity, unique mechanical property, and higher electrocatalytic activity, etc. In this paper, we reported that the synthesis of bismuth ferrite (BiFeO 3 ) nanosheets integrated functionalized carbon nanofiber (BiFeO 3 NS/F-CNF) nanocomposite using a simple hydrothermal technique. Herein, the structural changes and crystalline property of prepared BiFeO 3 NS/F-CNF nanocomposite were characterized using Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). From this detailed structural evolution, the formation of nanosheets like BiFeO 3 and its nanocomposite with F-CNF were scrutinized and reported. Furthermore, the as-prepared BiFeO 3 NS/F-CNF nanocomposite modified glassy carbon electrode (GCE) was applied for electrochemical detection of catechol (CC). As expected, BiFeO 3 NS/F-CNF/GCE shows excellent electrocatalytic activity as well as 3.44 (F-CNF/GCE) and 7.92 (BiFeO 3 NS/GCE) fold higher electrochemical redox response for CC sensing. Moreover, the proposed sensor displays a wide linear range from 0.003 to 78.02 µM with a very low detection limit of 0.0015 µM. In addition, we have validated the real-time application of our developed CC sensor in different water samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin.

    Science.gov (United States)

    Heydari-Bafrooei, Esmaeil; Amini, Maryam; Ardakani, Mehdi Hatefi

    2016-11-15

    A sensitive aptasensor based on a robust nanocomposite of titanium dioxide nanoparticles, multiwalled carbon nanotubes (MWCNT), chitosan and a novel synthesized Schiff base (SB) (TiO2/MWCNT/CHIT/SB) on the surface of a glassy carbon electrode (GCE) was developed for thrombin detection. The resultant nanocomposite can provide a large surface area, excellent electrocatalytic activity, and high stability, which would improve immobilization sites for biological molecules, allow remarkable amplification of the electrochemical signal and contribute to improved sensitivity. Thrombin aptamers were simply immobilized onto the TiO2-MWCNT/CHIT-SB nanocomposite matrix through simple π - π stacking and electrostatic interactions between CHIT/SB and aptamer strands. The electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyze the surface characterization of unmodified GCE and TiO2-MWCNT/CHIT-SB modified GCE, and also the interaction between aptamer and thrombin. In the presence of thrombin, the aptamer on the adsorbent layer captures the target on the electrode interface, which makes a barrier for electrons and inhibits electron transfer, thereby resulting in decreased DPV and increased impedance signals of the TiO2-MWCNT/CHIT-SB modified GCE. Furthermore, the proposed aptasensor has a very low LOD of 1.0fmolL(-1) thrombin within the detection range of 0.00005-10nmolL(-1). The aptasensor also presents high specificity and reproducibility for thrombin, which is unaffected by the coexistence of other proteins. Clinical application was performed with analysis of the thrombin levels in blood and CSF samples obtained from patients with MS, Parkinson, Epilepsy and Polyneuropathy using both the aptasensor and commercial ELISA kit. The results revealed the proposed system to be a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

    Science.gov (United States)

    Liu, Lin; Xia, Ning; Liu, Huiping; Kang, Xiaojing; Liu, Xiaoshuan; Xue, Chan; He, Xiaoling

    2014-03-15

    MicroRNAs (miRNAs) are believed to be important for cancer diagnosis and prognosis, serving as reliable molecular biomarkers. In this work, we presented a label-free and highly sensitive electrochemical genosensor for miRNAs detection with the triple signal amplification of gold nanoparticles (AuNPs), alkaline phosphatase (ALP) and p-aminophenol (p-AP) redox cycling. The label-free strategy is based on the difference in the structures of RNA and DNA. Specifically, miRNAs were first captured by the pre-immobilized DNA probes on a gold electrode. Next, the cis-diol group of ribose sugar at the end of the miRNAs chain allowed 3-aminophenylboronic acid (APBA)/biotin-modified multifunctional AuNPs (denoted as APBA-biotin-AuNPs) to be attached through the formation of a boronate ester covalent bond, which facilitated the capture of streptavidin-conjugated alkaline phosphatase (SA-ALP) via the biotin-streptavidin interaction. After the addition of the 4-aminophenylphosphate (p-APP) substrate, the enzymatic conversion from p-APP to p-AP occurred. The resulting p-AP could be cycled by a chemical reducing reagent after its electro-oxidization on the electrode (known as p-AP redox cycling), thus enabling an increase in the anodic current. As a result, the current increased linearly with the miRNAs concentration over a range of 10 fM-5 pM, and a detection limit of 3 fM was achieved. We believe that this work will be valuable for the design of new types of label-free and sensitive electrochemical biosensors. © 2013 Published by Elsevier B.V.

  18. Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy

    International Nuclear Information System (INIS)

    Liu, Hongying; Bei, Xiaoqiong; Xia, Qiuting; Fu, Yan; Zhang, Shi; Liu, Maochuan; Fan, Kai; Zhang, Mingzhen; Yang, Yong

    2016-01-01

    We describe a sensitive enzyme-free bioassay for the determination of microRNA-21. It is based on a combination of target-triggered hybridization chain reaction, tagging with CdTe quantum dots (QDs), and anodic stripping voltammetry. Firstly, a thiolated capture hairpin probe SH-HP1 was immobilized on the surface of a gold electrode. HP1 unfolds in the presence of microRNA-21. If hairpin probe 2 (HP2) is present, a HP1-HP2 complex will be formed which possesses an exposed stem of HP2, and microRNA is released in parallel. The released microRNA-21 triggers a hybridization chain reaction and this leads to form an exposed DNA segment of HP2 and cycle use microRNA-21. With the aid of assistant DNA A1 and A2, the exposed DNA segment of HP2 progressed to a long double strand. The strand is rich in CdTe QDs with the help of QDs-A1. Then, the attached QDs were dissolved with HNO 3 to give dissolved Cd(II) ions. Finally, the corresponding electrochemical current response of Cd(II) is monitored by anodic stripping voltammetry and used to quantify the concentration of microRNA-21. More microRNA-21 participated in this reaction increases the number of CdTe QDs, which results in increased electrochemical current. Thus, an ultrasensitive detection of microRNA-21 is accomplished by anodic stripping voltammetry. This gene assay displays a detection limit as low as 33 aM. It can discriminate between complementary DNA sequence and single-base mismatched DNA, indicating its high specificity. (author)

  19. Chirality detection of enantiomers using twisted optical metamaterials

    Science.gov (United States)

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825

  20. Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene

    Science.gov (United States)

    Juanjuan, Zhang; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2014-04-01

    Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H2 environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 × 103 S m-1), specific surface area (1258 m2 g-1), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 +/- 0.15 cm s-1), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o-dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 × 10-8 to 1.8 × 10-4 M for HQ and 1 × 10-8 to 2.0 × 10-4 M for DHB. The detection limit is 1.5 × 10-8 M for HQ and 3.3 × 10-9 M for DHB (S/N = 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8-103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which can be potentially

  1. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors.

    Science.gov (United States)

    López-Marzo, Adaris M; Hoyos-de-la-Torre, Raquel; Baldrich, Eva

    2018-03-20

    Gold nanoparticles (AuNPs) have been exploited as signal-producing tags in electrochemical biosensors. However, the electrochemical detection of AuNPs is currently performed using corrosive acid solutions, which may raise health and environmental concerns. Here, oxidant salts, and specifically the environmentally friendly and occupational safe NaNO 3 /NaCl mixture, have been evaluated for the first time as potential alternatives to the acid solutions traditionally used for AuNPs electrooxidation. In addition, a new strategy to improve the sensitivity of the biosensor through PEG-based ligand exchange to produce less compact and easier to oxidize AuNPs immunoconjugates is presented too. As we show, the electrochemical immunosensor using NaNO 3 /NaCl measurement solution for AuNPs electrooxidation and detection, coupled to the employment of PEG-capped nanoimmunoconjugates, produced results comparable to classical HCl detection. The procedure developed was next tested for human matrix metallopeptidase-9 (hMMP9) analysis, exhibiting a 0.18-23 ng/mL linear range, a detection limit of 0.06 ng/mL, and recoveries between 95 and 105% in spiked human plasma. These results show that the procedure developed is applicable to the analysis of protein biomarkers in blood plasma and could contribute to the development of more environmentally friendly AuNP-based electrochemical biosensors.

  2. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging.

  4. Synthesis and Characterization of Polyaniline/Graphene Composite Nanofiber and Its Application as an Electrochemical DNA Biosensor for the Detection of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Fatimah Syahidah Mohamad

    2017-12-01

    Full Text Available This article describes chemically modified polyaniline and graphene (PANI/GP composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether-alt-maleic acid (PMVEA. Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR and Raman spectroscopy, transmission electron microscopy (TEM and scanning electron microscopy (SEM. SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene. The composite nanofibers with an immobilized DNA probe were used for the detection of Mycobacterium tuberculosis by using an electrochemical technique. A photochemical indicator, methylene blue (MB was used to monitor the hybridization of target DNA by using differential pulse voltammetry (DPV method. The detection range of DNA biosensor was obtained from of 10−6–10−9 M with the detection limit of 7.853 × 10−7 M under optimum conditions. The results show that the composite nanofibers have a great potential in a range of applications for DNA sensors.

  5. Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid

    Science.gov (United States)

    Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong

    2017-04-01

    This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.

  6. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Jiri Kudr

    2014-12-01

    Full Text Available In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II, Cu(II and Pb(II ion quantification, while Zn(II did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933.

  7. Facilitating the indirect detection of genomic DNA in an electrochemical DNA biosensor using magnetic nanoparticles and DNA ligase

    Directory of Open Access Journals (Sweden)

    Roozbeh Hushiarian

    2015-12-01

    This technique was found to be reliably repeatable. The indirect detection of genomic DNA using this method is significantly improved and showed high efficiency in small amounts of samples with the detection limit of 5.37 × 10−14 M.

  8. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    Science.gov (United States)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural charac