WorldWideScience

Sample records for zenten nissha supekutoru

  1. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H; Kanayama, K; Endo, N; Koromohara, K; Takayama, H [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  2. Analysis for probability of irradiance fluctuation; Nissha hendo kakuritsu no bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Minowa, J; Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan); Otani, K; Sakuta, K [Electrochemical Laboratory, Tsukuba (Japan)

    1996-10-27

    Distribution of probabilities of solar radiation fluctuation was examined to learn the fluctuation in photovoltaic power generation efficiency for the purpose of improving on the generation system. The measuring setup comprised one base station and nine terminal stations. The terminal stations were arrayed in lattice so that a 4km{times}4km-large area would be covered. The standard deviation in solar radiation fluctuation at an observation spot ANNE stayed constant at approximately 0.1kW/m{sup 2} at all observation hours. In the vicinity of a clearness index range of 0.5-0.6 (a higher index showing a clearer weather) in the daytime, the index fluctuated very much, predicting a half-clear sky with scattered cloud. In the range of 0.2-0.3, fluctuation was small. In the range of 0.6-0.7, fluctuation was small and solar radiation was stable under the clear sky. The scope of fluctuation in the areal average is smaller than that in the average at each of the terminal stations, which is explained by the even-out effect. This means that, if multiple PV systems concentratedly introduced into one region are appropriately coordinated, the outputs from the individual PV systems that are naturally inconsistent are evened out and that the reliability of the network as a whole is consequently enhanced. 5 refs., 7 figs., 1 tab.

  3. Equalizing effect of the fluctuation in areal irradiance; Chiikinai ni okeru shugo nissha no hendo yokusei koka

    Energy Technology Data Exchange (ETDEWEB)

    Minowa, J; Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan); Otani, K; Tsuda, I; Sakuta, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Aggravation in electric power quality is concerned because of irregular output power caused by a large number of photovoltaic power generation systems connected with the power grids. However, averaging of the irregularity may be expected in a wide area due to time-based shift in cloud movements. In order to identify this effect, insolation data were measured in terms of planes at multiple points in the city of Tsukuba to discuss the fluctuation equalizing effect. The system is composed of nine instruments to measure insolation plane characteristics, nine terminal station units, and a base station unit. The insolation data express the horizontal plane insolation intensity at a sampling interval of one minute. Insolation fluctuation (standard deviation of insolation fluctuation components) was defined as an index of the insolation fluctuation. Based on the index, an averaging effect when the photovoltaic systems are installed in a number of locations was considered by using statistic estimation. As a result, the averaging effect was obtained even in an area with a radius of several kilometers. In addition, the measurement data revealed that there is an upper limit in the effect depending on the number of system installation. It was also made clear that the data are affected by distances to connect the photovoltaic power generation systems with each other and by climatic conditions. 3 refs., 6 figs.

  4. Investigation on atmospheric transmittance based on spectral and total direct insolation data; Nissha data ni motozuku taiki tokaritsu no kento

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H; Kanayama, K; Endo, N [Kitami Institute of Technology, Hokkaido (Japan)

    1997-11-25

    Spectral insolation values measured at Kitami since 1994 by using a multi-purpose spectral radiometer, and direct insolation data collected at seven locations are available. Based on these data, effects of sun`s altitude and atmospheric condition on atmospheric transmittance were discussed. Spectra of insolation received on the ground are subjected to scattering and absorption by gas and particulates, and show complex shapes while they transmit from the sun, reach the atmosphere of the earth and pass through the atmosphere. The Bird`s model is shown. Impact of the sun`s altitude on the spectra of insolation directly reaching the ground is small if the altitude is higher than 45 degrees. The impact grows suddenly large when it is lower than 30 degrees. Atmospheric turbidity (caused by aerosols generated by volcanic eruption or exhaust gases) affects the spectral transmittance over the whole wavelength region. Amount of steam in the atmosphere has a strong effect on the spectral transmittance in the steam absorption band. Total transmittance of the atmosphere was sought based on the measurement data of insolation directly reaching the ground at eight locations from Kitami to Shiono-misaki. The transmittance at each location is in a range from 0.75 to 0.83 showing close proximity. These data agreed well also with the average transmittance surveyed by the Meteorological Agency. 7 refs., 8 figs.

  5. Influence of spectral solar radiation to the generating power of photovoltaic module; Taiyo denchi shutsuryoku eno taiyoko supekutoru eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Minaki, S.; Ishihara, Y.; Todaka, T.; Harada, K. [Doshisha University, Kyoto (Japan); Oshiro, T.; Nakamura, H. [Japan quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    As to the influence of spectral solar radiation to generating power of solar cells, a study was conducted from the aspects of season, time zone, intensity of solar radiation, etc. In the study, spectral responsive variation correction coefficients were introduced as evaluation values expressing the influence of spectral solar radiation. For the spectral distribution, an all sky spectral pyranometer by wavelength was used, and data were used which were obtained in the measurement in experimental facilities of the solar techno center. Concerning solar cell relative spectral sensitivity values, used were relative spectral sensitivity values of monocrystal and amorphous standard solar cells to the short-circuit current. Spectral response variation correction coefficients are coefficients correcting variations in conversion efficiency of solar cells due to changes in the spectral distribution. The changes of spectral responsive variation correction coefficients were studied using data obtained during April 1994 and March 1996. As a result, it was found that the coefficients showed large changes in summer and small ones in winter and that amorphous solar cells indicate this trend conspicuously. 3 refs., 6 figs., 3 tabs.

  6. Three-dimensional magnetotelluric modeling using SLDM method; Supekutoru bunkai wo fukashita ranchosu process ni motozuku MT ho sanjigen keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K; Takasugi, S [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-10-01

    For 3-D magnetotelluric (MT) modeling, spectral Lanczos decomposition method (SLDM) was applied as high-speed high- accuracy modeling algorithm. SLDM was developed by Druskin to reduce computational time considerably by obtaining responses in the whole frequency domain all at once. The computational time of 3-D modeling was reduced by introducing Maxwell`s equation and Lanczos matrix as transformation matrix. The computation was carried out on the 1km{times}2km{times}2km low resistivity model body of 5 ohm{center_dot}m supposed in the uniform ground of 100 ohm{center_dot}m using 43{times}43{times}31 nodes at 17 frequencies ranging from 0.01Hz to 100Hz. Apparent resistivity at lower frequency decreased with approach to the low resistivity body. The computational time amounted to 6 hours 14 minutes. The 3-D MT modeling using SLDM method was independent of frequency, and its algorithm was superior in computational speed, however, it was inferior in computational time as the number of measuring nodes increased. 2 refs., 3 figs.

  7. Method for estimation of the spectral distribution that influence electric power of PV module; Taiyo denchi shutsuryoku ni eikyo wo ataeru bunko nissha bunpu no suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Y.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    A method was proposed for estimating the spectral distribution using air mass, precipitable water, and clear indexes which are generally obtainable, and a comparative study was made between the spectral distribution obtained by this method and the measured data using output power of PV modules, etc. as indexes. When solar light comes into the atmosphere, it dissipates receiving scattering/absorption by various gases and aerosols. Direct light component and scattered light component which arrive at the earth surface become functions of air mass and precipitable water. The wavelength distribution of scattered light in cloudy sky is not dependent upon air mass, but affected strongly by absorption band by steam of clouds. By relational equations considered of these, output power and short-circuit current of PV modules are obtained to make a comparison with the measured data. As a result, it was found that this method estimated the spectral distribution with accuracy. Further, seasonal changes in the spectral distribution were well reproduced. The simulation of the module output in Sapporo and Okinawa brought a result that the output in Okinawa is 1.93% larger than in Okinawa. 5 refs., 5 figs., 6 tabs.

  8. Influence of frequency spectra to annoyance caused by road traffic noise; Doro kotsu soon no urusasa ni oyobosu shuhasu supekutoru no eikyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, T [Japan Automobile Research Institute Inc., Tsukuba (Japan); Hashimoto, T [Seikei University, Tokyo (Japan)

    1997-10-01

    This paper describes a study of annoyance to road traffic noise in laboratories. To measure the annoyance to road traffic noise, subjective evaluation test was carried out using 48 road traffic noise recorded at various points in the city. Among the frequency spectra of these noise, the differences on the SPL of high frequency component were significant. As a result, we found that: (1) annoyance was different while A-weighted SPLs were the same, (2) fluctuation strength had the highest correlation with annoyance, (3) besides A-weighted SPL, roughness and sharpness contributed to annoyance -simultaneously, (4) contribution of high frequency noise was significant to annoyance. 2 refs., 11 figs., 1 tab.

  9. Development of multi-filter spectroradiometry; Filter hoshiki ni yoru bunka hosharyo no keisoku hoho to sono supekutoru no hyogen hoho ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Y; Aoshima, T; Minoda, T; Kato, T; Kondo, S [Eiko Instruments Trading Co. Ltd., Tokyo (Japan)

    1996-10-27

    Described in this paper is a technique of solar radiation spectroradiometry in which high-resolution wavelength computation adds to a multi-filter method. The solar spectrum upon entering the atmosphere is scattered and absorbed by parameter-constituting elements such as gas, aerosol, cloud particles, etc., and its spectral contour is complicatedly deformed relative to wavelength. Taking advantage of the fact that the scattering and absorbing characteristics of some of the elements are constant relative to wavelength, a simple equation was constructed to enable high-resolution spectrum measurement wavelength-wise, and this compensates for the limit in measurable wavelength that the conventional multi-filter method suffers from. The new method discussed here is not so expensive as the grating method thanks to the employment of filters, is capable of determining spectral radiation quantities with a precision of {plus_minus}5%, and is reduced in terms of the capacity of memory for data storage. The new method enables data collection under various atmospheric conditions that the four seasons present, which the difficult-to-apply and expensive spectroradiometer fails. It is expected that this method will find its use in collecting basic data for the designing of photovoltaic power generation systems, in the study of photochemical reaction in agriculture, and in collecting basic data for daylight lighting. 1 ref., 6 figs., 2 tabs.

  10. Optimization of the half-acceptance angle for a non-imaging refractive concentrator using an insolation model; Nissha model wo riyoshita kussetsugata hikessho shukoki no kyoyo nyusha kakudo no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, K; Suzuki, A; Saito, T [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    The application of concentrating optical systems to PV modules is under investigation because of anxious supply of materials for crystalline PV cells and cost limitation. However, since the height of the conventional CPC (compound parabolic concentrator) is considerably larger than the width of a concentration part, its application to PV cells is unsuitable. A non-imaging refractive lens was thus devised. Since the portion from a refractive surface to a concentration part of this lens is made of transparent resin with the same refractive index, the lens can reduce interface transmission, reflection loss and the height of concentrators. The half-acceptance angle for maximizing yearly optical concentration was selected using an insolation model for titled concentrators. In the case of a tilt angle equal to the latitude (35deg) of Tokyo, a maximum yearly optical concentration ratio of 1.71 was obtained at a half- acceptance angle of 23deg in calculation. The optimum half-acceptance angle increased linearly with the tilt angle in a range of 20-35deg. 4 refs., 6 figs.

  11. Design optimization of ideal non-imaging concentrators for solar collectors by use of yearly insolation model with frequency distribution; Dosu bunpu wo koryoshita nenkan nissha model ni yoru shunetsuyo riso hikessho shukoki no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, A [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    Optimization was carried out for the 2D-CPC (compound parabolic concentrator) known as an ideal 2-dimensional non-imaging concentrator for its application to stationary solar heat concentrators. A non-imaging optical system is a system that has an angle for incident light called an acceptance angle, and is treated as an effective tool in the field of solar energy application. Analysis was conducted from the viewpoint of energy and exergy on the presumption of constant temperature operation. For the analysis of constant temperature heat concentration, it needs to be presumed that heat concentrators are in operation only in the presence of insolation that is more than a specified level (critical insolation). When the acceptance angle is fixed for optimization, energy efficiency does not have a peak with respect to the critical probability insolation intensity (in a probability model considering frequency distribution). On the other hand, for the optimization of exergy efficiency, the half-acceptance angle should be within a 35-40{degree} range (agreeing with the optimum angle cost-wise), and the critical probability insolation should be set at 250-300W/m{sup 2} (1/4 of the maximum insolation intensity). The obtained results are low in model dependency and are sufficiently reliable. 14 refs., 4 figs.

  12. Relation between peak period of microtremor spectral ratio (horizontal and vertical components) and basement depth; Bido no suiheido/jogedo supekutoru hi no peak to kiso shindo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Mizutani, K; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    The peak period of the horizontal/vertical spectral ratio of microtremors was referred to the underground structure for the purpose of finding out if it was possible to estimate the ground structure by use of the peak period of the spectral ratio. The observation was carried in the areas of Morioka City and Hachinohe City using seismographs for measuring east-west, north-south, and up-down motions. As for the relationship between the peak period of the spectral ratio distribution involving 490 observation sites and the known gravity anomalies in the Morioka City area, it was found that the peak period of the spectral ratio tended to be shorter from west toward east while the gravity anomalies were greater from west toward east. Again, as for the relations with the underground geology, the period was longer when the distance to the granite basement was greater, and shorter when smaller. In the Hachinohe City area, relations not only of the first period peak but also of the second period peak to the basement were disclosed, which indicates the possibility that the peak period of the spectral ratio will be used as a means for estimating the basement structure. 2 refs., 8 figs.

  13. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Yoshioka, M; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  14. Theoretical research relating to excitation spectrum of furan. Application of integral direct coupled cluster linear response (direct CCLR) method; Furan no reiki supekutoru ni kansuru ronriteki kenkyu. Integral-direct Coupled Cluster Linear Response (direct CCLR) ho no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Shigemitsu, Yasuhiro. [Nagasaki Industrial Technology Center, Nagasaki (Japan)

    1999-07-01

    heoretical researches relating to excitation spectrum of furan have been carried out for many years, and they reveal the problems that should be solved in order to predict highly reliable excitation energy. In general, it is difficult to uniformly obtain highly reliable calculation results for all excitation states since different excitation states show different electronic correlative effects. Means for obtaining the electron states in ground state and excited state and calculating the energy difference thereof is the mainstream of the theoretical calculation of the excitation energy. CASSCF/CASPT 2 developed by Roos et al. is a typical method excellent in quantitative description. Recently, the comparison between direct CCLR and CASSCF/CASPT 2 as examples for calculating the excitation spectrum of furan was carried out by using the same ground function. For Rydberg excitation, CC3, CAS, CASPT 2 show good agreement with each other. (NEDO)

  15. Generation of metallic arc spectrum of pumping discharge of XeCl laser; XeCl ekishima laser reiki hoden ni okeru arc iko to kinzoku supekutoru no hassei

    Energy Technology Data Exchange (ETDEWEB)

    Koike, H.; Yukimura, K. [Doshisha University, Kyoto (Japan)

    1997-12-20

    An arc generation of a long-pulse spiker-sustainer excimer laser with about 250ns of pulse width , is discussed by using time-varying spectroscopic method. First arcing occurs during a main discharge for laser excitation and shows XeII spectrum, while a glow-like discharge represents only XeI spectrum, the metallic spectrum such as Nil caused by vaporization of electrode material begins to appear just after the termination of the main discharge. Second arcing occurs after about 2{mu}s, which brings strong intensity of Nil spectrum. It means that the reignition arc might be produced in a metallic vapor that appears during the main discharge. Accordingly, it is concluded that the reignition arc is inherently metallic, which is different from the main arc with rare gas plasma. 9 refs., 9 figs.

  16. Investigation of spectral distribution and variation of irradiance with the passage time of CSI lamps which constitute a solar simulator; Solar simulator ni shiyosuru CSI lamp no supekutoru bunpu, hosha shodo no keiji henka ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T; Yamada, T; Noguchi, T [Japan Quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    Study was made on time-variation of the performance of CSI lamps for solar simulators. In order to accurately evaluate the standard heat collection performance of solar systems in a room, MITI installed an artificial solar light source in the Solar Techno-Center of Japan Quality Assurance Organization for trial use and evaluation. CSI lamp is superior in durability, and can simulate the solar light in the daytime. The light source is composed of 72 metal halide lamps of 1kW arranged in a plane of 3.5times3.5m. The study result on time-variation of a spectral distribution and irradiance by intermittent switching of lamps showed a sufficient durability of 2000h. To ensure the accuracy of a solar heat collector measurement system enough, periodic calibration is being carried out using reference goods. To ensure the reliability and stability for a switching system, periodic maintenance of a power source, stabilizer and electric system is also being carried out in addition to CSI lamps. The stable irradiance and accuracy are being kept by such maintenance and periodic exchange of lamps. 6 figs., 4 tabs.

  17. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 3. Observation data on global solar radiation and sunshine duration; 1974 nendo zenten nissharyo, nissho jikan no kansoku shiryo. 3. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report includes observation data on global solar radiation and sunshine duration for R and D on solar energy system. The global solar radiation data include the following measured by bimetal pyranometer in 1954-1970: Monthly and yearly mean value, average value, standard deviation, coefficient of variation, and maximum and minimum value. The sunshine duration data include the following measured by Jordan's heliograph in 1941-1970: Monthly and yearly total value, 10-year mean value, average value, standard deviation, coefficient of variation, and maximum and minimum value. Annual variations of the global solar radiation at 16 typical sites all over the country are illustrated using the average values, and secular variations of the monthly and yearly mean values at 16 sites are also illustrated. Annual variations of the sunshine duration at 17 typical sites are illustrated using the average values, and secular variations of the monthly and yearly total values at 17 sites are also illustrated. Profiles of the global solar radiation and sunshine duration, and their coefficients of variation are illustrated for every country. (NEDO)

  18. Photovoltaic power generation field test at Industrial Technology Research Institute. Prefectural office building in a sunshine-rich district (Kanagawa Prefectural Industrial Technology Research Institute); Sangyo gijutsu sogo kenkyusho taiyoko hatsuden field test jigyo (nissha ryoko chiku no kenchosha). Kanagawaken sangyo gijutsu sogo kenkyusho

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, H [Kanagawa Prefectural Government Office, Yokohama (Japan)

    1997-05-30

    The result of a photovoltaic power generation field test in fiscal 1996 on a prefectural office building in a sunshine-rich district is reported. It is a lighting power source installed in fiscal 1994 on the third-floor rooftop of the management information building of Kanagawa Prefectural Industrial Technology Research Institute. It has a capacity of 25kW, operating on system interconnection (no back flow), and has a single 15-series/26-parallel array (mono-crystal modules) facing 38deg westward from due south and inclined at an elevation angle of 20deg. From the 240000kWh insolation that contributed to power generation, a DC power output of 28000kWh was obtained, output of 25000kWh after conversion into AC. The module efficiency was 10.8-13.8%, higher when the daily mean temperature was lower. In the case of 3kW type expected to diffuse into the residential and commercial sector and household sector, one will output 3000kWh a year, which is an appropriate capacity as a locally distributed type power generating system in view of the monthly consumption of 2000kWh by a household in general in the Tokyo Electric Power Co., Ltd. service area. No problem is found in reliability of the tested system. Although the power it generates is less than what this office consumes, it is effective in enlightening people about resources saving and peak cut in summer