The solar zenith angle dependence of desert albedo
Wang, Zhuo; Barlage, Michael; Zeng, Xubin; Dickinson, Robert E.; Schaaf, Crystal B.
2005-03-01
Most land models assume that the bare soil albedo is a function of soil color and moisture but independent of solar zenith angle (SZA). However, analyses of the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and albedo data over thirty desert locations indicate that bare soil albedo does vary with SZA. This is further confirmed using the in situ data. In particular, bare soil albedo normalized by its value at 60° SZA can be adequately represented by a one-parameter formulation (1 + C)/(1 + 2C * cos(SZA)) or a two-parameter formulation (1 + B1 * f1(SZA) + B2 * f2(SZA)). Using the MODIS and in situ data, the empirical parameters C, B1, and B2 are taken as 0.15, 0.346 and 0.063. The SZA dependence of soil albedo is also found to significantly affect the modeling of land surface energy balance over a desert site.
Improving the solar zenith angle dependence of broadband UV radiometers calibration
M. L. Cancillo
2007-12-01
Full Text Available This paper focusses on the proposal of a new method for the calibration of broadband ultraviolet radiometers. The advantage of the method proposed is the accurate modelling of the dependence on the solar zenith angle. The new model is compared with other one-step calibration methods and with the two-step method, which requires the knowledge of the actual response of the broadband radiometer. For this purpose, three broadband radiometers are calibrated against a spectrophotometer of reference. The new method is validated comparing its predictions with the spectrophotometer measurements using an independent data set.
Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.
2014-03-01
This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.
Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.
2014-03-01
This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.
The Dependence of the Age Parameter from EAS Size and Zenith Angle of Incidence
Chilingarian, A A; Kazarian, S; Hovsepyan, G G; Mamidjanyan, E A; Melkumyan, L G; Sokhoyan, S H
2000-01-01
The quality of the MAKET-ANI detector installation in view of the uniformityof the registration efficiency is demonstrated. Based on a data samplecollected by the MAKET-ANI array in the period of June 1997 - March 1999, thedependencies of the age parameter on the zenith angle and the EAS size(10^5-10^7) are studied. The variation of the age parameter with the showersize can be approximately related to the elongation rate.
Investigation of the zenith angle dependence of cosmic-ray muons at sea level
Mehmet Bektasoglu; Halil Arslan
2013-05-01
Angular distribution of cosmic-ray muons at sea level has been investigated using the Geant4 simulation package. The model used in the simulations was tested by comparing the simulation results with the measurements made using the Berkeley Lab cosmic ray detector. Primary particles’ energy and fluxes were obtained from the experimental measurements. Simulations were run at each zenith angle starting from = 0° up to = 70° with 5° increment. The angular distribution of muons at sea level has been estimated to be in the form $I() = I(0^{°}) \\cos^{n}()$, where (0°) is the muon intensity at 0° and is a function of the muon momentum. The exponent = 1.95 ± 0.08 for muons with energies above 1 GeV is in good agreement, within error, with the values reported in the literature.
Cassini UVIS observations of Titan ultraviolet airglow intensity dependence with solar zenith angle
Royer, E. M.; Ajello, J. M.; Holsclaw, G. M.; West, R. A.; Esposito, L. W.; Bradley, E. T.
2017-01-01
The Cassini Ultraviolet Imaging Spectrometer (UVIS) observed the airglow (dayglow and nightglow) of Titan over a range of solar zenith angles (SZA) from 14 to 150° on five separate observations obtained between 2008 and 2012. The modeling of the solar cycle normalized UVIS observations indicates that a Chapman layer function provides a satisfactory fit to the intensity of the EUV and FUV airglow molecular emissions of the N2 Lyman-Birge-Hopfield band system (LBH a1Πg→X1>∑g+), the Carroll-Yoshino band system (c4'1>∑u+→X1>∑g+), and of several atomic multiplets of nitrogen (NI, II) as a function of SZA. This result shows that the strongest contribution to the Titan dayglow occurs by processes (photoelectrons and photodissociation) involving the solar EUV flux rather than magnetospheric particle precipitation that dominates emission excitation in the nightglow.
Showers with large zenith angles observed in emulsion chambers
任敬儒; 陆穗苓; 解卫; 王承瑞; 何瑁; 张乃健
1997-01-01
Showers with large zenith angles are observed in emulsion chambers exposed at Mt.Kanbala.The intensity of high energy muons is given and the multicore showers with large zenith angles are found.It is indicated that a new phenomenon may exist in the high energy nuclear interactions of cosmic rays.
Chapman Solar Zenith Angle variations at Titan
Royer, Emilie M.; Ajello, Joseph; Holsclaw, Gregory; West, Robert; Esposito, Larry W.; Bradley, Eric Todd
2016-10-01
Solar XUV photons and magnetospheric particles are the two main sources contributing to the airglow in the Titan's upper atmosphere. We are focusing here on the solar XUV photons and how they influence the airglow intensity. The Cassini-UVIS observations analyzed in this study consist each in a partial scan of Titan, while the center of the detector stays approximately at the same location on Titan's disk. We used observations from 2008 to 2012, which allow for a wide range of Solar Zenith Angle (SZA). Spectra from 800 km to 1200 km of altitude have been corrected from the solar spectrum using TIMED/SEE data. We observe that the airglow intensity varies as a function of the SZA and follows a Chapman curve. Three SZA regions are identified: the sunlit region ranging from 0 to 50 degrees. In this region, the intensity of the airglow increases, while the SZA decreases. Between SZA 50 and 100 degrees, the airglow intensity decreases from it maximum to its minimum. In this transition region the upper atmosphere of Titan changes from being totally sunlit to being in the shadow of the moon. For SZA 100 to 180 degrees, we observe a constant airglow intensity close to zero. The behavior of the airglow is also similar to the behavior of the electron density as a function of the SZA as observed by Ågren at al (2009). Both variables exhibit a decrease intensity with increasing SZA. The goal of this study is to understand such correlation. We demonstrate the importance of the solar XUV photons contribution to the Titan airglow and prove that the strongest contribution to the Titan dayglow occurs by solar fluorescence rather than the particle impact that predominates at night.
Influence of solar zenith angle on the enhanced vegetation index of a Guyanese rainforest
Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Herold, M.
2015-01-01
In this study, the effect of solar zenith angle () on enhanced vegetation index (EVI) of a Guyanese tropical rainforest was studied. For this sub-crown resolution, hyperspectral data have been collected with an unmanned aerial vehicle (UAV) at five different solar zenith angles in a 1-day period. Th
Wang, Sheng; Dam-Hansen, Carsten; Zarco Tejada, Pablo J.
Satellite-based imagery in optical domains cannot provide information on the land surface during periods of cloud cover. This issue is especially relevant for high latitudes where overcast days and low solar zenith angles are common. Current remote sensing-based models of evapotranspiration......) with UAV flight campaigns over a willow eddy covariance flux site under different cloudiness levels and solar zenith angles using varying camera settings. Radiance, reflectance, and vegetation indices were validated with ASD measurements and signal to noise metrics and dynamic ranges were assessed. Our....... The multispectral camera (Tetra Mini-MCA6) has 6 channels in the visible and near Infrared. For the laboratory calibration experiment, different camera settings and typical irradiance levels from cloudy to clear sky were designed. The light-source is based on super-continuum generation to produce a continuous solar...
Large zenith angle observations with the high-resolution GRANITE III camera
Petry, D
2001-01-01
The GRANITE III camera of the Whipple Cherenkov Telescope at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona (2300 m a.s.l.) has the highest angular resolution of all cameras used on this telescope so far. The central region of the camera has 379 pixels with an individual angular diameter of 0.12 degrees. This makes the instrument especially suitable for observations of gamma-induced air-showers at large zenith angles since the increase in average distance to the shower maximum leads to smaller shower images in the focal plane of the telescope. We examine the performance of the telescope for observations of gamma-induced air-showers at zenith angles up to 63 degrees based on observations of Mkn 421 and using Monte Carlo Simulations. An improvement to the standard data analysis is suggested.
Assessment of Automated Snow Cover Detection at High Solar Zenith Angles with PROBA-V
2016-01-01
Changes in the snow cover extent are both a cause and a consequence of climate change. Optical remote sensing with heliosynchronous satellites currently provides snow cover data at high spatial resolution with daily revisiting time. However, high latitude image acquisition is limited because reflective sensors of many satellites are switched off at high solar zenith angles (SZA) due to lower signal quality. In this study, the relevance and reliability of high SZA acquisition are objectively q...
Multiple View Zenith Angle Observations of Reflectance From Ponderosa Pine Stands
Johnson, Lee F.; Lawless, James G. (Technical Monitor)
1994-01-01
Reflectance factors (RF(lambda)) from dense and sparse ponderosa pine (Pinus ponderosa) stands, derived from radiance data collected in the solar principal plane by the Advanced Solid-State Array Spectro-radiometer (ASAS), were examined as a function of view zenith angle (theta(sub v)). RF(lambda) was maximized with theta(sub v) nearest the solar retrodirection, and minimized near the specular direction throughout the ASAS spectral region. The dense stand had much higher RF anisotropy (ma)dmurn RF is minimum RF) in the red region than did the sparse stand (relative differences of 5.3 vs. 2.75, respectively), as a function of theta(sub v), due to the shadow component in the canopy. Anisotropy in the near-infrared (NIR) was more similar between the two stands (2.5 in the dense stand and 2.25 in the sparse stand); the dense stand exhibited a greater hotspot effect than 20 the sparse stand in this spectral region. Two common vegetation transforms, the NIR/red ratio and the normalized difference vegetation index (NDVI), both showed a theta(sub v) dependence for the dense stand. Minimum values occurred near the retrodirection and maximum values occurred near the specular direction. Greater relative differences were noted for the NIR/red ratio (2.1) than for the NDVI (1.3). The sparse stand showed no obvious dependence on theta(sub v) for either transform, except for slightly elevated values toward the specular direction.
High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope
Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.
2012-08-01
Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source
Erythemal ultraviolet insolation in New Zealand at solar zenith angles of 30 and 45..
Ryan, K G; Smith, G J; Rhoades, D A; Coppell, R B
1996-05-01
Solar UV radiometers with spectral responsivities that are close to the erythemal/carcinogenic action spectrum of skin have been installed at several centers of population in New Zealand, including Auckland, 37 degrees S, Wellington, 41 degrees S and Christchurch, 43.5 degrees S. The data set covers the period from the time the radiometry program commenced in 1988/1989 to the end of the southern summer, March 1995. The radiometers were recalibrated annually and the data were corrected for changes in the absolute responsivity of the radiometers. Erythemally effective UV irradiances at solar zenith angles of 30 degrees and 45 degrees were then extracted from the data set. No monotonic trend in these data is apparent, although there are statistically significant differences in mean irradiances from one year to the next. An example of this is the decrease observed in all sites following the Mt. Pinatubo eruption in June 1991. The maximum erythemally effective insolations at solar zenith angles of 30 degrees and 45 degrees were consistently lower in Christchurch than in the other two New Zealand sites. This could arise from higher levels of atmospheric turbidity and/or tropospheric ozone at this location. Also, a seasonal increase in erythemally effective UV insolation from spring to autumn was observed each year in all three New Zealand sites.
High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope
Aleksić, J; Antoranz, P; Asensio, M; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Häfner, D; Herrero, A; Hose, J; Hrupec, D; Huber, B; Jankowski, F; Jogler, T; Kadenius, V; Klepser, S; Knoetig, M L; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Partini, S; Persic, M; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R
2012-01-01
The high frequency peaked BL Lac PKS 2155-304 with a redshift of z=0.116 was discovered in 1997 in the very high energy (VHE, E >100GeV) gamma-ray range by the University of Durham Mark VI gamma-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the Southern Cherenkov observatory H.E.S.S. Detection from the Northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE gamma-emission. During the outburst, the VHE gamma-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 hours at large zenith angles. Here we present ...
Assessment of Automated Snow Cover Detection at High Solar Zenith Angles with PROBA-V
Florent Hawotte
2016-08-01
Full Text Available Changes in the snow cover extent are both a cause and a consequence of climate change. Optical remote sensing with heliosynchronous satellites currently provides snow cover data at high spatial resolution with daily revisiting time. However, high latitude image acquisition is limited because reflective sensors of many satellites are switched off at high solar zenith angles (SZA due to lower signal quality. In this study, the relevance and reliability of high SZA acquisition are objectively quantified in the purpose of high latitude snow cover detection, thanks to the PROBA-V (Project for On-Board Autonomy-Vegetation satellite. A snow cover extent classification based on Normalized Difference Snow Index (NDSI and Normalized Difference Vegetation Index (NDVI has been performed for the northern hemisphere on latitudes between 55°N and 75°N during the 2015–2016 winter season. A stratified probabilistic sampling was used to estimate the classification accuracy. The latter has been evaluated among eight SZA intervals to determine the maximum usable angle. The global overall snow classification accuracy with PROBA-V, 82% ± 4%, was significantly larger than the MODIS (Moderate-resolution Imaging Spectroradiometer snow cover extent product (75% ± 4%. User and producer accuracy of snow are above standards and overall accuracy is stable until 88.5° SZA. These results demonstrate that optical remote sensing data can still be used with large SZA. Considering the relevance of snow cover mapping for ecology and climatology, the data acquisition at high solar zenith angles should be continued by PROBA-V.
Fukuda, Y; Ichihara, E; Inoue, K; Ishihara, K; Ishino, H; Itow, Y; Kajita, T; Kameda, J; Kasuga, S; Kobayashi, K; Kobayashi, Y; Koshio, Y; Miura, M; Nakahata, M; Nakayama, S; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Price, L R; Reines, F; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Flanagan, J W; Kibayashi, A; Learned, J G; Matsuno, S; Stenger, V J; Takemori, D; Ishii, T; Kanzaki, J; Kobayashi, T; Mine, S; Nakamura, K; Nishikawa, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Echigo, S; Kohama, M; Suzuki, A T; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Goodman, J A; Sullivan, G W; Hill, J; Jung, C K; Martens, K; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Doki, W; Miyano, K; Okazawa, H; Saji, C; Takahata, M; Nagashima, Y; Takita, M; Yamaguchi, T; Yoshida, M; Kim, S B; Etoh, M; Fujita, K; Hasegawa, A; Hasegawa, T; Hatakeyama, S; Iwamoto, T; Koga, M; Maruyama, T; Ogawa, H; Shirai, J; Suzuki, A; Tsushima, F; Koshiba, M; Nemoto, M; Nishijima, K; Futagami, T; Hayato, Y; Kanaya, Y; Kaneyuki, K; Watanabe, Y; Kielczewska, D; Doyle, R A; George, J S; Stachyra, A L; Wai, L L; Wilkes, R J; Young, K K
1999-01-01
A total of 614 upward through-going muons of minimum energy 1.6 GeV are observed by Super-Kamiokande during 537 detector live days. The measured muon flux is 1.74+/-0.07(stat.)+/-0.02(sys.)x10^{-13}cm^{-2}s^{-1}sr^{-1} compared to an expected flux of 1.97+/-0.44(theo.)x10^{-13}cm^{-2}s^{-1}sr^{-1}. The absolute measured flux is in agreement with the prediction within the errors. However, the zenith angle dependence of the observed upward through-going muon flux does not agree with no-oscillation predictions. The observed distortion in shape is consistent with the \
High-energy spectrum and zenith-angle distribution of atmospheric neutrinos
Sinegovsky, S I; Sinegovskaya, T S
2011-01-01
High-energy neutrinos, arising from decays of mesons produced through the collisions of cosmic ray particles with air nuclei, form the background in the astrophysical neutrino detection problem. An ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. We present results of the calculation of the energy spectrum and zenith-angle distribution of the muon and electron atmospheric neutrinos in the energy range 10 GeV to 10 PeV. The calculation was performed with usage of known hadronic models (QGSJET-II-03, SIBYLL 2.1, Kimel & Mokhov) for two of the primary spectrum parametrizations, by Gaisser & Honda and by Zatsepin & Sokolskaya. The comparison of the calculated muon neutrino spectrum with the IceCube40 experiment data make it clear that even at energies above 100 TeV the prompt neutrino contribution is not so apparent because of tangled uncertainties of the strange (kaons) and charm...
Observations of Mkn 421 in 2004 with H.E.S.S. at large zenith angles
Aharonian, F; Aye, K M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Braun, I; Breitling, F; Brown, A M; Bussons-Gordo, J; Chadwick, P M; Chounet, L M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ata, A; O'Connor-Drury, L; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; De Jager, O C; Johnston, S; Khelifi, B; Kirk, J G; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Leroy, N; Martineau-Huynh, O; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; De Naurois, Mathieu; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V V; Sauge, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Skjraasen, O; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J P; Terrier, R; Theoret, C G; Tluczykont, M; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J
2005-01-01
Mkn 421 was observed during a high flux state for nine nights in April and May 2004 with the fully operational High Energy Stereoscopic System (H.E.S.S.) in Namibia. The observations were carried out at zenith angles of 60$^\\circ$--65$^\\circ$, which result in an average energy threshold of 1.5 TeV and a collection area reaching 2~km$^2$ at 10~TeV. Roughly 7000 photons from Mkn~421 were accumulated with an average gamma-ray rate of 8 photons/min. The overall significance of the detection exceeds 100 standard deviations. The light-curve of integrated fluxes above 2~TeV shows changes of the diurnal flux up to a factor of 4.3. For nights of high flux, intra-night variability is detected with a decay time of less than 1 hour. The time averaged energy spectrum is curved and is well described by a power-law with a photon index $\\egamm$ and an exponential cutoff at $\\ecut$~TeV and an average integral flux above 2~TeV of 3 Crab flux units. Significant variations of the spectral shape are detected with a spectral harde...
Kelley, M. C.; Cuevas, R. A.; Hysell, D. L.
2008-02-01
The first results from the 430 MHz Advanced Modular Incoherent Scatter Radar Prototype (AMISR-P) at the Jicamarca Radio Observatory were reported by Hysell et al. (2007). We present additional data showing that the phase velocity of Type I echoes is independent of zenith angle, an unexplained property of these waves. We interpret the results using rocket data by predicting the total line-of-sight velocity at the four zenith angles used. We find that the radars preferentially detect waves within 10% of C s in at least four range gates for all beams and up to eight range gates for the 51 JULIA beam. This result is consistent with recent auroral observations that Type I waves are only generated with k vectors near the electron flow velocity, where the latter is the vector sum of the zero-order drift and the perturbation drift due to large-scale waves in the equatorial case.
Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)
2011-10-15
Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)
Zhao, Xiao-Yan; Yang, Jing-Guo; Gong, Min; He, Jie; Cao, Ting-Ting; Liang, Hui-Min; Sun, Peng
2009-07-01
A novel approach to retrieving atmosphere NO2 slant column density is described, in which the sunlight scattered in the zenith direction and the skylight are used as the light sources. The slant column density of the same azimuth but different obliquities, which are between 0.5 x 10(16) and 11 x 10(16) molecule x cm(-2), with the angle from 85 degrees to 10 degrees, as well as that of the same obliquity but different azimuths, which are between 10(16) and 10(17) molecule cm(-2), were calculated. The study indicates that the results have good correlation with real atmosphere status. The angle spatial distribution could be embodied by the difference of NO2 slant column density in different azimuths and obliquities. The reference spectrum and sample spectrum were collected with the same instrument at the same time, so the measurement accuracy has been improved. This method favored not only real-time monitoring NO2 content of space arbitrary direction, especially near the ground NO2 pollution emergencies, but also overcast and rainy areas where it is very difficult to collect good direct solar spectrum.
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D’Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.
2015-01-01
We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.
2015-01-01
We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60 degrees and 80 degrees. We perform two Rayleigh ana
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.
2015-01-01
We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60 degrees and 80 degrees. We perform two Rayleigh ana
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D’Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.
2015-01-01
We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in
Pothuraju, Thirupathaiah; Haider, Syed A.
2016-07-01
We have developed a model to calculate the photoelectron energy fluxes and emission intensities of the CO Cameron bands in the upper atmosphere of Mars between solar zenith angles 0° to 90°. The production and loss mechanisms of CO (a ^{3}Π) are incorporated in the model. The atmospheric neutral parameters are adopted from the Mars Climate Database (v5.2). The required solar EUV fluxes are taken from the Solar2000 model (v2.37) and scaled to Mars. The photoelectron fluxes are calculated at different solar zenith angles using an analytical yield spectrum approach based on the Monte Carlo method. In this model we have assumed that crustal magnetic fields are horizontal in direction. Thus, photoelectrons are losing their energy at the same height where they are produced. This assumption is valid at mid and high latitudes where magnetic fields are mostly horizontal. We have also developed a coupled chemistry model to calculate the ion and electron density at different solar zenith angles, which are used in the airglow model. The model results are compared with the observations provided by the SPICAM onboard MEX. Our model reproduces the observed intensity profiles quite well. The CO (a ^{3}Π) is produced due to photoelectron excitation/dissociation, photodissociation, and dissociative recombination processes. It is destroyed by CO _{2}, CO and radiative decay. It is found that photon and photoelectron dissociation are dominant production processes of CO (a ^{3}Π), while radiative decay is a major loss mechanism of this state. The estimated photoelectron fluxes, production rates and intensities are decreasing with increasing solar zenith angles.
Grosvenor, D. P.; Wood, R.
2014-07-01
In this paper we use a novel observational approach to investigate MODIS satellite retrieval biases of τ and re (using three different MODIS bands: 1.6, 2.1 and 3.7 μm, denoted as re1.6, re2.1 and re3.7, respectively) that occur at high solar zenith angles (θ0) and how they affect retrievals of cloud droplet concentration (Nd). Utilizing the large number of overpasses for polar regions and the diurnal variation of θ0 we estimate biases in the above quantities for an open ocean region that is dominated by low level stratiform clouds. We find that the mean τ is fairly constant between θ0 = 50° and ~65-70°, but then increases rapidly with an increase of over 70 % between the lowest and highest θ0. The re2.1 and re3.7 decrease with θ0, with effects also starting at around θ0 = 65-70°. At low θ0, the re values from the three different MODIS bands agree to within around 0.2 μm, whereas at high θ0 the spread is closer to 1 μm. The percentage changes of re with θ0 are considerably lower than those for τ, being around 5 % and 7% for re2.1 and re3.7. For re1.6 there was very little change with θ0. Evidence is provided that these changes are unlikely to be due to any physical diurnal cycle. The increase in τ and decrease in re both contribute to an overall increase in Nd of 40-70% between low and high θ0. Whilst the overall re changes are quite small, they are not insignificant for the calculation of Nd; we find that the contributions to Nd biases from the τ and re biases were roughly comparable for re3.7, although for the other re bands the τ changes were considerably more important. Also, when considering only the clouds with the more heterogeneous tops, the importance of the re biases was considerably enhanced for both re2.1 and re3.7. When using the variability of 1 km resolution τ data (γτ) as a heterogeneity parameter we obtained the expected result of increasing differences in τ between high and low θ0 as heterogeneity increased, which was
View angle dependence of cloud optical thicknesses retrieved by MODIS
Marshak, Alexander; Varnai, Tamas
2005-01-01
This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.
Pressure dependence of the contact angle.
Wu, Jiyu; Farouk, T; Ward, C A
2007-06-07
When a liquid and its vapor contact a smooth, homogeneous surface, Gibbsian thermodynamics indicates that the contact angle depends on the pressure at the three-phase line of an isothermal system. When a recently proposed adsorption isotherm for a solid-vapor interface is combined with the equilibrium conditions and the system is assumed to be in a cylinder where the liquid-vapor interface can be approximated as spherical, the contact-angle-pressure relation can be made explicit. It indicates that a range of contact angles can be observed on a smooth homogeneous surface by changing the pressure at the three-phase line, but it also indicates that the adsorption at the solid-liquid interface is negative, and leads to the prediction that the contact angle increases with pressure. The predicted dependence of the contact angle on pressure is investigated experimentally in a system that has an independent mechanism for determining when thermodynamic equilibrium is reached. The predictions are in agreement with the measurements. The results provide a possible explanation for contact angle hysteresis.
Deo, Ravinesh C; Downs, Nathan; Parisi, Alfio V; Adamowski, Jan F; Quilty, John M
2017-05-01
Exposure to erythemally-effective solar ultraviolet radiation (UVR) that contributes to malignant keratinocyte cancers and associated health-risk is best mitigated through innovative decision-support systems, with global solar UV index (UVI) forecast necessary to inform real-time sun-protection behaviour recommendations. It follows that the UVI forecasting models are useful tools for such decision-making. In this study, a model for computationally-efficient data-driven forecasting of diffuse and global very short-term reactive (VSTR) (10-min lead-time) UVI, enhanced by drawing on the solar zenith angle (θs) data, was developed using an extreme learning machine (ELM) algorithm. An ELM algorithm typically serves to address complex and ill-defined forecasting problems. UV spectroradiometer situated in Toowoomba, Australia measured daily cycles (0500-1700h) of UVI over the austral summer period. After trialling activations functions based on sine, hard limit, logarithmic and tangent sigmoid and triangular and radial basis networks for best results, an optimal ELM architecture utilising logarithmic sigmoid equation in hidden layer, with lagged combinations of θs as the predictor data was developed. ELM's performance was evaluated using statistical metrics: correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe efficiency coefficient (ENS), root mean square error (RMSE), and mean absolute error (MAE) between observed and forecasted UVI. Using these metrics, the ELM model's performance was compared to that of existing methods: multivariate adaptive regression spline (MARS), M5 Model Tree, and a semi-empirical (Pro6UV) clear sky model. Based on RMSE and MAE values, the ELM model (0.255, 0.346, respectively) outperformed the MARS (0.310, 0.438) and M5 Model Tree (0.346, 0.466) models. Concurring with these metrics, the Willmott's Index for the ELM, MARS and M5 Model Tree models were 0.966, 0.942 and 0.934, respectively. About 57% of the ELM model's absolute
Nakajima, T
2006-01-01
Consider a perfect AO system with a very fine wavefront sampling interval and a very small actuator interval. If this AO system senses wavefront at a wavelength, lambda_{WFS}, and does science imaging at another wavelength, lambda_{SCI}, the light paths through the turbulent atmosphere at these two wavelengths are slightly different for a finite zenith distance, z. The error in wavefront reconstruction of the science channel associated with this non-common path effect, or so-called chromatic shear, is uncorrectable and sets an upper bound of the system performance. We evaluate the wavefront variance, sigma^2(lambda_{WFS},lambda_{SCI},z) for a typical seeing condition at Mauna Kea and find that this effect is not negligible at a large z. If we require that the Strehl ratio be greater than 99 or 95%, z must be less than about 50 or 60 deg respectively, for the combination of visible wavefront sensing and infrared science imaging.
Penning de Vries, Marloes; Beirle, Steffen; Sihler, Holger; Wagner, Thomas
2017-04-01
The UV Aerosol Index (UVAI) is a simple measure of aerosols from satellite that is particularly sensitive to elevated layers of absorbing particles. It has been determined from a range of instruments including TOMS, GOME-2, and OMI, for almost four decades and will be continued in the upcoming Sentinel missions S5-precursor, S4, and S5. Despite its apparent simplicity, the interpretation of UVAI is not straightforward, as it depends on aerosol abundance, absorption, and altitude in a non-linear way. In addition, UVAI depends on the geometry of the measurement (viewing angle, solar zenith and relative azimuth angles), particularly if viewing angles exceed 45 degrees, as is the case for OMI and TROPOMI (on S5-precursor). The dependence on scattering angle complicates the interpretation and further processing (e.g., averaging) of UVAI. In certain favorable cases, however, independent information on aerosol altitude and absorption may become available. We present a detailed study of the scatter angle dependence using SCIATRAN radiative transfer calculations. The model results were compared to observations of an extensive Siberian smoke plume, of which parts reached 10-12 km altitude. Due to its large extent and the high latitude, OMI observed the complete plume in five consecutive orbits under a wide range of scattering angles. This allowed us to deduce aerosol characteristics (absorption and layer height) that were compared with collocated CALIOP lidar measurements.
Bicycle helmet ventilation and comfort angle dependence.
Brühwiler, Paul A; Ducas, Charline; Huber, Roman; Bishop, Phillip A
2004-09-01
Five modern bicycle helmets were studied to elucidate some of the variations in ventilation performance, using both a heated manikin headform and human subjects (n = 7). Wind speed and head angle were varied to test their influence on the measured steady-state heat exchange (cooling power) in the skull section of the headform. The cooling power transmitted by the helmets varied from about 60% to over 90% of that of the nude headform, illustrating the range of present manufacturer designs. Angling the head forward by 30 degrees was found to provide better cooling power to the skull (up to 25%) for three of the helmets and almost equal cooling power in the remaining two cases. Comparisons of skull ventilation at these angles with human subjects strongly supported the headform results.
Horwitz, J. L.; Zeng, W.
2009-01-01
Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.
Capillary rise with velocity-dependent dynamic contact angle.
Popescu, M N; Ralston, J; Sedev, R
2008-11-04
The classic description of the rate of capillary rise given by the Washburn equation, which assumes that the contact angle preserves the equilibrium value at all times, has been recently questioned in the light of the known experimental dependence of the dynamic contact angle on the velocity of the contact line. For a number of such proposed functions of velocity for the dynamic contact angle, we analyze the resulting dependences of the contact angle and of the time of rise, respectively, on the height of the capillary rise. By applying our results to the particular cases of a high-viscosity silicone oil and water, respectively, in a glass capillary, we show that, in general, strong similarities arise between the various approaches and the classic theory in what concerns the time dependence of the capillary rise, which explains the lack of consistent experimental evidence for deviations in the rate of capillary rise from the Washburn equation. However, for a strong dependency of the contact angle on the velocity in the range of small velocities, as in the case of water on glass, one of the models predicts significant deviations even for the time dependence of the capillary rise. Moreover, our results show that the time or height dependence of the contact angle during the capillary rise can clearly discriminate between the various models.
Drop Size Dependence of the Contact Angle of Nanodroplets
GUO Hong-Kai; FANG Hai-Ping
2005-01-01
@@ The contact angle of nanosized non-polarized argon sessile droplets on a solid substrate is studied by using molecular dynamics simulations.It is found that the drop size dependence of the contact angle is sensitive to the interaction between the liquid molecules and solid molecules.The contact angle decreases with the decreasing drop size for larger interaction between the liquid molecules and the solid substrate, and vice versa.This observation is consistent with most of the previous theoretical and experimental results.
Angle-dependent bandgap engineering in gated graphene superlattices
García-Cervantes, H.; Sotolongo-Costa, O. [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Gaggero-Sager, L. M. [CIICAp, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Naumis, G. G. [Instituto Física, Depto. de Física-Química, Universidad Nacional Autónoma de México (UNAM). Apdo. Postal 20-364, 01000, México D.F., México (Mexico); Rodríguez-Vargas, I., E-mail: isaac@fisica.uaz.edu.mx [Centro de Investigación en Ciencias, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, México (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac., México (Mexico)
2016-03-15
Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results show that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.
Symmetry constraints for the emission angle dependence of HBT radii
Heinz, Ulrich W; Lisa, M A; Wiedemann, Urs Achim
2002-01-01
We discuss symmetry constraints on the azimuthal oscillations of two-particle correlation (Hanbury Brown--Twiss interferometry) radii for non-central collisions between equal spherical nuclei. We also propose a new method for correcting in a model-independent way the emission angle dependent correlation function for finite event plane resolution and angular binning effects.
Bessel-like beams with z-dependent cone angles
Belyi, VN
2009-08-01
Full Text Available A new type of Bessel-like optical beams, which is distinguished by the dependence on the cone angle from the longitudinal coordinate, is investigated. Such beams have the properties of Bessel beams (ring-spatial spatial spectrum) as well as Gaussian...
XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY
Fawley, William; Lindberg, Ryan; Kim, K-J; Shvyd' ko, Yuri
2010-08-23
The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinal and transverse coherence of the radiation output.
Contact angle dependence of the resonant properties of sessile drops
Sharp, James
2012-02-01
A simple optical deflection technique was used to monitor the vibrations of microlitre sessile drops of glycerol/water mixtures with glycerol compositions ranging from 0% to 75%. A photodiode was used to detect time dependent variations in the intensity of laser light reflected from the droplets. The intensity variations were Fourier transformed to obtain information about the resonant properties of the drops (frequency and width of the resonance). These experiments were performed on a range of different substrates where the contact angle formed by the droplets varied between 38±2^o and 160±4^o. The measured resonant frequency values were found to be in agreement with a recently developed theory of vibrations which considers standing wave states along the profile length of the droplet. The widths of the resonances were also compared with theories which predict the influence of substrate effects, surface contamination effects and bulk viscous effects on the damping of capillary waves at the free surface of the droplets. These experiments indicate that the dominant source of damping in sessile liquid droplet is due to bulk viscous effects but that for small contact angles damping due to the droplet/substrate interaction becomes more important.
Potential pitfalls of strain rate imaging: angle dependency
Castro, P. L.; Greenberg, N. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.
2000-01-01
Strain Rate Imaging (SRI) is a new echocardiographic technique that allows for the real-time determination of myocardial SR, which may be used for the early and accurate detection of coronary artery disease. We sought to study whether SR is affected by scan line alignment in a computer simulation and an in vivo experiment. Through the computer simulation and the in vivo experiment we generated and validated safe scanning sectors within the ultrasound scan sector and showed that while SRI will be an extremely valuable tool in detecting coronary artery disease there are potential pitfalls for the unwary clinician. Only after accounting for these affects due to angle dependency, can clinicians utilize SRI's potential as a valuable tool in detecting coronary artery disease.
Angle Dependence of the Orbital Magnetoresistance in Bismuth
Aurélie Collaudin
2015-06-01
Full Text Available We present an extensive study of angle-dependent transverse magnetoresistance in bismuth, with a magnetic field perpendicular to the applied electric current and rotating in three distinct crystallographic planes. The observed angular oscillations are confronted with the expectations of semiclassic transport theory for a multivalley system with anisotropic mobility and the agreement allows us to quantify the components of the mobility tensor for both electrons and holes. A quadratic temperature dependence is resolved. As Hartman argued long ago, this indicates that inelastic resistivity in bismuth is dominated by carrier-carrier scattering. At low temperature and high magnetic field, the threefold symmetry of the lattice is suddenly lost. Specifically, a 2π/3 rotation of magnetic field around the trigonal axis modifies the amplitude of the magnetoresistance below a field-dependent temperature. By following the evolution of this anomaly as a function of temperature and magnetic field, we map the boundary in the (field, temperature plane separating two electronic states. In the less symmetric state, confined to low temperature and high magnetic field, the three Dirac valleys cease to be rotationally invariant. We discuss the possible origins of this spontaneous valley polarization, including a valley-nematic scenario.
Solute concentration-dependent contact angle hysteresis and evaporation stains.
Li, Yueh-Feng; Sheng, Yu-Jane; Tsao, Heng-Kwong
2014-07-08
The presence of nonvolatile solutes in a liquid drop on a solid surface can affect the wetting properties. Depending on the surface-activity of the solutes, the extent of contact angle hysteresis (CAH) can vary with their concentration and the pattern of the evaporation stain is altered accordingly. In this work, four types of concentration-dependent CAH and evaporation stains are identified for a water drop containing polymeric additives on polycarbonate. For polymers without surface-activity such as dextran, advancing and receding contact angles (θa and θr) are independent of solute concentrations, and a concentrated stain is observed in the vicinity of the drop center after complete evaporation. For polymers with weak surface-activity such as poly(ethylene glycol) (PEG), both θa and θr are decreased by solute addition, and the stain pattern varies with increasing PEG concentration, including a concentrated stain and a mountain-like island. For polymers with intermediate surface-activity such as sodium polystyrenesulfonate (NaPSS), θa descends slightly, but θr decreases significantly after the addition of a substantial amount of NaPSS, and a ring-like stain pattern is observed. Moreover, the size of the ring stain can be controlled by NaPSS concentration. For polymers with strong surface-activity such as poly(vinylpyrrolidone) (PVP), θa remains essentially a constant, but θr is significantly lowered after the addition of a small amount of PVP, and the typical ring-like stain is seen.
Angle dependence of Andreev scattering at semiconductor-superconductor interfaces
Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka
1999-01-01
and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle...
Dynamic behavior of polymer surface and the time dependence of contact angle
WANG Xinping; CHEN Zhifang; SHEN Zhiquan
2005-01-01
Time-dependent contact angles were measured by depositing sessile drops of water on the polymer surfaces and monitoring the drop shape as a function of time. It was found that contact angles decreased sharply with contact time and the equilibrium contact angle was finally attained after a certain time. Values of starting (θs) and equilibrium contact angles (θe) obtained by the sessile drop method depend on polymer properties. The Wilhelmy plate technique was used to measure advancing and receding contact angles. The variations of starting (θs) and equilibrium contact angles (θe), advancing (θa) and receding contact angles (θr) have been studied on the oxidized surface of polymers containing polybutadiene block to explore the cause of time-dependence in contact angle measurement and the meaning of θs and θe. The results showed the linear relationships between starting (θs) and advancing contact angles (θa), the equilibrium (θe) and receding contact angles (θr). The similar relationship was also established between the contact angle hysteresis (θa-θr) and differences (θs-θe) in starting contact angles and equilibrium contact angles. Therefore, time-dependence in contact angle measurement was mainly attributed to the surface reconstruction when water drops were deposited on polymer surfaces. The starting contact angle was contributed by the hydrophobic component on polymer surface and the equilibrium contact angle mainly by the hydrophilic component of polymer. These results not only demonstrated the interdependency between two contact angle measurements, the sessile drop method and the Wilhelmy plate technique, but also provided the experimental evidence to explain the cause of time-dependent contact angle. This may also provide a new method to study dynamic behavior of polymer surface.
Design of a structure with low incident and viewing angle dependence inspired by Morpho butterflies
Wang, Wanlin; Zhang, Wang; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di; Lin, Hai-Qing
2013-01-01
Morpho butterflies are well known for their brilliant iridescent colors, which arise from periodic arrays of scales. These brilliant colors have a low angle dependence, in contrast to similar phenomena that are commonly caused by the periodic structures. We designed a structure with a low incident and viewing angle dependence inspired by Morpho butterflies. This structure was studied using the finite-difference time-domain method. The lamellae distribution of tree-like structure was found to be the determining factor for producing a low incident angle dependence. Two advanced models were designed to produce a low viewing angle dependence. Model I was constructed using two layers of scales. The particle swarm optimization algorithm was used to construct Model II. The angle dependence of Model II exhibited a large viewing angle range under various incident angles. PMID:24305852
Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.
Lee, Kang Il; Hughes, E R; Humphrey, V F; Leighton, T G; Choi, Min Joo
2007-01-01
The Biot and the modified Biot-Attenborough (MBA) models have been found useful to understand ultrasonic wave propagation in cancellous bone. However, neither of the models, as previously applied to cancellous bone, allows for the angular dependence of acoustic properties with direction. The present study aims to account for the acoustic anisotropy in cancellous bone, by introducing empirical angle-dependent input parameters, as defined for a highly oriented structure, into the Biot and the MBA models. The anisotropy of the angle-dependent Biot model is attributed to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment. The angle-dependent MBA model employs a simple empirical way of using the parametric fit for the fast and the slow wave speeds. The angle-dependent models were used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the trabecular alignment of cancellous bone. The predictions were compared with those of the Schoenberg model for anisotropy in cancellous bone and in vitro experimental measurements from the literature. The angle-dependent models successfully predicted the angular dependence of phase velocity of the fast wave with direction. The root-mean-square errors of the measured versus predicted fast wave velocities were 79.2 m s(-1) (angle-dependent Biot model) and 36.1 m s(-1) (angle-dependent MBA model). They also predicted the fact that the slow wave is nearly independent of propagation angle for angles about 50 degrees , but consistently underestimated the slow wave velocity with the root-mean-square errors of 187.2 m s(-1) (angle-dependent Biot model) and 240.8 m s(-1) (angle-dependent MBA model). The study indicates that the angle-dependent models reasonably replicate the acoustic anisotropy in cancellous bone.
Vaughan, Arthur H. (Inventor)
1993-01-01
A strip imaging wide angle optical system is provided. The optical system is provided with a 'virtual' material stop to avoid aberrational effects inherent in wide angle optical systems. The optical system includes a spherical mirror section for receiving light from a 180 deg strip or arc of a target image. Light received by the spherical mirror section is reflected to a frustoconical mirror section for subsequent rereflection to a row of optical fibers. Each optical fiber transmits a portion of the received light to a detector. The optical system exploits the narrow cone of acceptance associated with optical fibers to substantially eliminate vignetting effects inherent in wide angle systems. Further, the optical system exploits the narrow cone of acceptance of the optical fibers to substantially limit spherical aberration. The optical system is ideally suited for any application wherein a 180 deg strip image need be detected, and is particularly well adapted for use in hostile environments such as in planetary exploration.
Evaluation of angle dependence in spectral emissivity of ceramic tiles measured by FT-IR
Kobayashi, C.; Ogasawara, N.; Yamada, H.; Yamada, S.; Kikuchi, T.
2015-05-01
Ceramic tiles are widely used for building walls. False detections are caused in inspections by infrared thermography because of the infrared reflection and angle dependence of emissivity. As the first problem, ceramic tile walls are influenced from backgrounds reflection. As the second problem, in inspection for tall buildings, the camera angles are changed against the height. Thus, to reveal the relation between the emissivity and angles is needed. However, there is very little data about it. It is impossible to decrease the false detection on ceramic tile walls without resolving these problems; background reflection and angle dependence of emissivity. In this study, the angle problem was investigated. The purpose is to establish a revision method in the angle dependence of the emissivity for infrared thermography. To reveal the relation between the emissivity and angles, the spectral emissivity of a ceramic tile at various angles was measured by FT-IR and infrared thermographic instrument. These two experimental results were compared with the emissivity-angle curves from the theoretical formula. In short wavelength range, the two experimental results showed similar behavior, but they did not agree with the theoretical curve. This will be the subject of further study. In long wavelength range, the both experimental results almost obeyed the theoretical curve. This means that it is possible to revise the angle dependence of spectral emissivity, for long wavelength range.
Incidence Angle and Polarization Dependence of Photo-Induced FMR in Co/Pd Multilayers
Saeki, J; Matsuda, T; Kitamoto, Y; Munekata, H
2014-01-01
Dependence of photo-induced FMR (phi-FMR) on incident angle of excitation and probing laser beams has been studied in a [Co (dCo = 0.78 nm) / Pd (dPd = 0.81 nm) ]5 multi-layer film with the aim to find experimentally the limitation of inducement and detection of magnetization dynamics with oblique light incidence. We have found, in the experiments changing the incident angle of a pump beam, that phi-FMR is observed up to the grazing incident angle of 88 degrees with p-polarized excitation pulses, whereas it disappears at the incidence angle of around 65 degrees with s-polarized excitation. As for the experiments changing the incident angle of a probe beam, phi-FMR disappears at the incidence angle of 65 degrees for both s- and p-polarizations, whereas it reappears with further increasing the angle for the p-polarization and vanishes at 75 degrees.
Relativistic calculations of angle-dependent photoemission time delay
Kheifets, Anatoli; Mandal, Ankur; Deshmukh, Pranawa C.; Dolmatov, Valeriy K.; Keating, David A.; Manson, Steven T.
2016-07-01
Angular dependence of photoemission time delay for the valence n p3 /2 and n p1 /2 subshells of Ar, Kr, and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.
THE BEHAVIOR OF THE PITCH ANGLE OF SPIRAL ARMS DEPENDING ON OPTICAL WAVELENGTH
Martínez-García, Eric E.; Puerari, Ivânio; Rosales-Ortega, F. F.; Luna, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla, Pue. (Mexico); González-Lópezlira, Rosa A. [Centro de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, México, C.P. 58089 (Mexico); Fuentes-Carrera, Isaura, E-mail: ericmartinez@inaoep.mx [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U. P. Adolfo López Mateos, Zacatenco, 07730 México, D.F. (Mexico)
2014-09-20
Based on integral field spectroscopy data from the CALIFA survey, we investigate the possible dependence of spiral arm pitch angle with optical wavelength. For three of the five studied objects, the pitch angle gradually increases at longer wavelengths. This is not the case for two objects where the pitch angle remains constant. This result is confirmed by the analysis of SDSS data. We discuss the possible physical mechanisms to explain this phenomenon, as well as the implications of the results.
Intra–cavity generation of Bessel–like beams with longitudinally dependent cone angles
Litvin, IA
2010-02-01
Full Text Available The authors report on two resonator systems for producing Bessel–like beams with longitudinally dependent cone angles (LDBLBs). Such beams have extended propagation distances as compared to conventional Bessel– Gauss beams, with a far field pattern...
Refined Monte Carlo method for simulating angle-dependent partial frequency redistributions
Lee, J.-S.
1982-01-01
A refined algorithm for generating emission frequencies from angle-dependent partial frequency redistribution functions R sub II and R sub III is described. The improved algorithm has as its basis a 'rejection' technique that, for absorption frequencies x less than 5, involves no approximations. The resulting procedure is found to be essential for effective studies of radiative transfer in optically thick or temperature varying media involving angle-dependent partial frequency redistributions.
Krause, Pascal; Schlegel, H Bernhard
2015-06-04
The angle-dependence of strong field ionization of O2, N2, CO2, and CH2O has been studied theoretically using a time-dependent configuration interaction approach with a complex absorbing potential (TDCIS-CAP). Calculation of the ionization yields as a function of the direction of polarization of the laser pulse produces three-dimensional surfaces of the angle-dependent ionization probability. These three-dimensional shapes and their variation with laser intensity can be interpreted in terms of ionization from the highest occupied molecular orbital (HOMO) and lower lying orbitals, and the Dyson orbitals for the ground and excited states of the cations.
The Dependency of Nematic and Twist-bend Mesophase Formation on Bend Angle
Mandle, Richard J.; Archbold, Craig T.; Sarju, Julia P.; Andrews, Jessica L.; Goodby, John W.
2016-11-01
We have prepared and studied a family of cyanobiphenyl dimers with varying linking groups with a view to exploring how molecular structure dictates the stability of the nematic and twist-bend nematic mesophases. Using molecular modelling and 1D 1H NOESY NMR spectroscopy, we determine the angle between the two aromatic core units for each dimer and find a strong dependency of the stability of both the nematic and twist-bend mesophases upon this angle, thereby satisfying earlier theoretical models.
Impacts of gantry angle dependent scanning beam properties on proton PBS treatment
Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook
2017-01-01
While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also
Impacts of gantry angle dependent scanning beam properties on proton PBS treatment.
Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook
2017-01-21
While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also
Magnetic zenith effect in ionospheric modifications
Gurevich, A.V.; Zybin, K.P.; Carlson, H.C.; Pedersen, T
2002-12-09
The theory of ionospheric modification for the beam of powerful radio emission directed along magnetic field lines is developed. Nonlinear process of beam self-focusing on striations is shown to determine strong amplification of heating and acceleration of plasma electrons. It results in a dramatic enhancement of optic emission from the magnetic zenith region in ionospheric F-layer. An excellent agreement between the theory and recent fundamental observations at HAARP facility (Alaska) [T. Pedersen et al., Geophys. Res. Lett. (2002), in press] is demonstrated.
Heliostat tilt and azimuth angle charts and the heliostat orientation protractor
Elsayed, M.M.; Al-Rabghi, O.M. (Thermal Energy Dept., King Abdulaziz Univ., Jeddah 21413 (SA))
1992-02-01
This paper reports that using cartesian heliostat field coordinates analytical expressions were derived for the heliostat tilt angle s, and heliostat azimuth angle {gamma} (clockwise from south). These expressions are dependent on the field cartesian coordinates of the center of the heliostat and the solar zenith and azimuth angles (clockwise from south), {theta}{sub z} and {Psi}, respectively. Here, cylindrical coordinates are conveniently used to derive the expressions for the heliostat angles s and {gamma}. The expression of {gamma}is used to construct the so-called heliostat orientation protractor. The protractor is a useful tool to determine the instantaneous heliostat azimuth angle as will be illustrated.
A mechanism for the dependence of sunspot group tilt angles on cycle strength
Işık, Emre
2015-01-01
The average tilt angle of sunspot groups emerging throughout the solar cycle determines the net magnetic flux crossing the equator, which is correlated with the strength of the subsequent cycle. I suggest that a deep-seated, non-local process can account for the observed cycle-dependent changes in the average tilt angle. Motivated by helioseismic observations indicating cycle-scale variations in the sound speed near the base of the convection zone, I determined the effect of a thermally perturbed overshoot region on the stability of flux tubes and on the tilt angles of emerging flux loops. I found that 5-20 K of cooling is sufficient for emerging flux loops to reproduce the reported amplitude of cycle-averaged tilt angle variations, suggesting that it is a plausible effect responsible for the nonlinearity of the solar activity cycle.
Percutaneous Zenith endografting for abdominal aortic aneurysms.
Heyer, Kamaldeep S; Resnick, Scott A; Matsumura, Jon S; Amaranto, Daniel; Eskandari, Mark K
2009-03-01
A completely percutaneous approach to infrarenal abdominal aortic aneurysm (AAA) endografting has the theoretic benefits of being minimally invasive and more expedient. Our goal was to demonstrate the utility of this approach using a suprarenal fixation device and a suture-mediated closure system. We conducted a single-institution, retrospective review of 14 patients who underwent percutaneous AAA repair with the Zenith device between August 2003 and March 2007. Immediate and delayed access-related outcomes were examined over a mean follow-up of 12.1+/-2.0 months. Mean AAA size was 5.6 cm. Immediate arterial closure and technical success rate was 96% (27/28 vessels). One immediate hemostatic failure required open surgical repair. Over follow-up, one vessel required operative repair for new-onset claudication. No other immediate or delayed complications (thrombosis, pseudoaneurysm, infection, or deep venous thrombosis) were detected. A percutaneous approach for the treatment of AAA has several advantages over femoral artery cutdown but also has its own unique set of risks in the immediate and late postoperative period. Ultimately, the "preclose technique" can be safely applied for the Zenith device despite its large-bore delivery system.
Analysis of accuracy and precision of GNSS zenith tropospheric delay
Bohanec, Jure
2016-01-01
The aim of the thesis was to compare the calculations of zenith tropospheric delay, computed within the meteorological model, with an independently acquired calculation of three GNSS data processing methods. Data analysis was done in the absolute and relative mode of determination. Using absolute mode of zenith tropospheric delay computation we computed the differences between the computed zenith tropospheric delay with the meteorological model ALADIN, taken as a reference, and results of zen...
Campbell, Kaleb; Madkhaly, Samaya; de Medeiros, Dillon; Bali, Samir; Macklin Quantum Information Sciences Collaboration
2016-05-01
Progress toward undergraduate oriented experiments on image storage in room-temperature atomic vapor using Electromagnetically Induced Transparency is described. Using a scanning longitudinal magnetic field technique we diagnose and suppress stray magnetic fields and polarization impurity. We consider the pump-probe angular dependence of the EIT signal but at much smaller angles of less than a milliradian.
THE VIRIAL OF ANGLE-DEPENDENT POTENTIALS IN MOLECULAR-DYNAMICS SIMULATIONS
BEKKER, H; AHLSTROM, P
1994-01-01
It is proved that the scalar virial of potentials that only depend on angles is zero. This is proved for nonperiodic boundary conditions as well as periodic boundary condition (PBC) systems. This theory is tested on an molecular dynamics simulation of butane with PBC.
Self-healing of Bessel-like beams with longitudinally dependent cone angles
Litvin, I
2015-09-01
Full Text Available Bessel beams have been extensively studied, but to date have been created over a finite region inside the laboratory. Recently Bessel-like beams with longitudinally dependent cone angles have been introduced allowing for a potentially infinite quasi...
Angle dependence of argon gas cluster sputtering yields for organic materials.
Seah, M P; Spencer, S J; Shard, A G
2015-02-19
The first angle-dependent measurements of the sputtering yield of an organic material using argon gas cluster ions under a wide range of conditions are reported in order to develop an analytical description of the behavior important for the development of the application of secondary ion mass spectrometry to organic and biological systems. Data are presented for Irganox 1010 using argon gas cluster ion beams of 5 and 10 keV energy, E, with cluster sizes, n, from 1000 to 5000. The measurements are conducted in an X-ray photoelectron spectrometer for a range of angles from 0 to 80° from the surface normal. The results support the Universal Equation for argon gas cluster sputtering yields with the angle dependence incorporated into the equation via a simple angle dependence of the parameter A. This explains how and why the angular dependence of the sputtering yield changes significantly with increasing E/n. These results are also accurately confirmed using the published measurements for polystyrene by Rading et al.
Action-angle coordinates for time-dependent completely integrable Hamiltonian systems
Giachetta, Giovanni; Mangiarotti, Luigi [Department of Mathematics and Physics, University of Camerino, Camerino (Italy)]. E-mails: giovanni.giachetta@unicam.it; luigi.mangiarotti@unicam.it; Sardanashvily, Gennadi [Department of Theoretical Physics, Physics Faculty, Moscow State University, Moscow (Russian Federation)]. E-mail: sard@grav.phys.msu.su
2002-07-26
A time-dependent completely integrable Hamiltonian system is proved to admit the action-angle coordinates around any instantly compact regular invariant manifold. Written relative to these coordinates, its Hamiltonian and first integrals are functions only of action coordinates. (author). Letter-to-the-editor.
Liu, Han-Chun; Ye, Tianyu; Mani, R. G. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich (Switzerland)
2015-02-14
Linear polarization angle, θ, dependent measurements of the microwave radiation-induced oscillatory magnetoresistance, R{sub xx}, in high mobility GaAs/AlGaAs 2D electron devices have shown a θ dependence in the oscillatory amplitude along with magnetic field, frequency, and extrema-dependent phase shifts, θ{sub 0}. Here, we suggest a microwave frequency dependence of θ{sub 0}(f) using an analysis that averages over other smaller contributions, when those contributions are smaller than estimates of the experimental uncertainty.
Peeling-angle dependence of the stick-slip instability during adhesive tape peeling.
Dalbe, Marie-Julie; Santucci, Stéphane; Vanel, Loïc; Cortet, Pierre-Philippe
2014-12-28
The influence of peeling angle on the dynamics observed during the stick-slip peeling of an adhesive tape has been investigated. This study relies on a new experimental setup for peeling at a constant driving velocity while keeping constant the peeling angle and peeled tape length. The thresholds of the instability are shown to be associated with a subcritical bifurcation and bistability of the system. The velocity onset of the instability is moreover revealed to strongly depend on the peeling angle. This could be the consequence of peeling angle dependance of either the fracture energy of the adhesive-substrate joint or the effective stiffness at play between the peeling front and the point at which the peeling is enforced. The shape of the peeling front velocity fluctuations is finally shown to progressively change from typical stick-slip relaxation oscillations to nearly sinusoidal oscillations as the peeling angle is increased. We suggest that this transition might be controlled by inertial effects possibly associated with the propagation of the peeling force fluctuations through elongation waves in the peeled tape.
Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen
2015-12-15
Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.
Angle-dependent discoloration structures in wing scales of Morpho menelaus butterfly
NIU ShiChao; LI Bo; YE JunFeng; MU ZhengZhi; ZHANG JunQiu; LIU Yan; HAN ZhiWu
2016-01-01
The Morpho butterfly is famous for its typical structural color and has increasingly attracted the interest of scholars in a wide variety of research fields.Herein,it was found that the color of Morpho menelaus butterfly wings is not only structure-based but also viewing-angle-dependent.Firstly,the discoloration effect of this typical butterfly was confirmed by a series of experiments.Then,the general form,arrangements,and geometrical dimensions of the scales were observed using a stereomicroscope.Scanning electron microscopy was also used to examine the two-dimensional morphologies and structures of a single scale.Afterwards,one model with the optimized three-dimensional profile of the structure was described using Pro-engineer software.The associate model was then analyzed to reconstruct the process between the incident light and the model surface.Finally,the mechanism of the angle-dependent discoloration effect was analyzed by theoretical calculation and optical simulation.Different light propagation paths and the length of the incident light at different angles caused destructive or constructive interference between the light reflected from the different layers.The different spectra of the reflected light make the wings appear with different structural colors,thereby endowing the angle-dependent discoloration effect.The consistency of the calculation and simulation results confirms that these structures possess an excellent angle-dependent discoloration effect.This functional "biomimetic structure" would not only be of great scientific interest but could also have a great impact in a wide range of applications such as reflective displays,credit card security,and military stealth technology.
Yu Tong
2016-02-01
Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.
Estimates of radiance reflected towards the zenith at the surface of the sea
E. Aas
2010-10-01
Full Text Available Remote sensing of water colour by ship-mounted sensors represents an important tool for the validation of satellite products and the monitoring of water quality. The recorded radiance from the sea has to be corrected for the surface-reflected radiance from sun and sky in order to obtain the water-leaving radiance. Here the simple case of radiance reflected towards the zenith is studied. A set of observed sky radiance and solar irradiance data from Oslo has been used together with a Gaussian slope distribution for the sea surface in order to estimate the reflected radiance. The spectral range studied is 405–650 nm, the solar zenith angles are in the range 37°–76°, and the wind speeds are up to 10 m s^{−1}. The analysis of the results show that the reflected radiance has to be separated into three contributions: sky radiance and sun rays reflected at the foam-free surface and irradiance reflected by whitecaps and foam. It is then demonstrated that by using four input values, namely the downward irradiance, the sky radiance from the zenith, the solar zenith angle and the wind speed, it is possible to obtain by simple expressions estimates of the reflected radiance that only differ from the former calculated values by relative errors of less than 5%. The analysis also indicates that for the spectral range studied neither the water-leaving radiance nor the surface-reflected radiance can be disregarded relative to the other one in the Case 2 waters of the Oslofjord-Skagerrak area. The results form a first step towards the study of reflected radiance in viewing angles differing from the nadir direction.
Estimates of radiance reflected towards the zenith at the surface of the sea
E. Aas
2010-06-01
Full Text Available Remote sensing of water colour by ship-mounted sensors represents an important tool for the validation of satellite products and the monitoring of water quality. The recorded radiance from the sea has to be corrected for the surface-reflected radiance from sun and sky in order to obtain the water-leaving radiance. Here the simple case of radiance reflected towards the zenith is studied. A set of observed sky radiance and solar irradiance data from Oslo has been used together with a Gaussian slope distribution for the sea surface in order to estimate the reflected radiance. The spectral range studied is 405–650 nm, the solar zenith angles are in the range 37°–76°, and the wind speeds are up to 10 m s^{−1}. The analysis of the results show that the reflected radiance has to be separated into three contributions: sky radiance and sun rays reflected at the foam-free surface and irradiance reflected by whitecaps and foam. It is then demonstrated that by using four input values, namely the downward irradiance, the sky radiance from the zenith, the solar zenith angle and the wind speed, it is possible to obtain by simple expressions estimates of the reflected radiance that only differ from the former calculated values by relative errors of 4% or less. The analysis also indicates that for the spectral range studied neither the water-leaving radiance nor the surface-reflected radiance can be disregarded relative to the other one in the Case 2 waters of the Oslofjord-Skagerrak area. The results form a first step towards the study of reflected radiance in viewing angles differing from the nadir direction.
Observation of wavelength-dependent Brewster angle shift in 3D photonic crystals
Priya,
2016-01-01
The interaction of polarized light with photonic crystals exhibit unique features due to its sub-wavelength nature on the surface and the periodic variation of refractive index in the depth of the crystals. Here, we present a detailed study of polarization anisotropy in light scattering associated with three-dimensional photonic crystals with face centered cubic symmetry over a broad wavelength and angular range. The polarization anisotropy leads to a shift in the conventional Brewster angle defined for a planar interface with certain refractive index. The observed shift in Brewster angle strongly depends on the index contrast and lattice constant. Polarization-dependent stop gap measurements are performed on photonic crystals with different index contrast and lattice constants. These measurements indicate unique stop gap branching at high-symmetry points in the Brillouin zone of the photonic crystals. The inherited stop gap branching is observed for TE polarization whereas that is suppressed for TM polarizat...
Farnes, J S
2014-01-01
Direction-dependent instrumental polarisation introduces wide-field polarimetric aberrations and limits the dynamic range of low-frequency interferometric images. We therefore provide a detailed two-dimensional analysis of the Giant Metrewave Radio Telescope (GMRT) primary beam in full-Stokes at 325 MHz and 610 MHz. We find that the directional dependence is essentially independent of the feed and is dominated by the curvature of the dishes reflecting mesh. The developed beam models are used to reduce wide-field instrumental polarisation in 610 MHz observations by subtracting the expected response from the $uv$-data itself. Furthermore, a new technique for polarisation angle calibration is presented that allows for calibration using an unpolarised source and therefore can be implemented at arbitrarily low observational frequencies. This technique has the advantage that it calibrates the polarisation angle independently of ionospheric Faraday rotation and source variability. It also removes the need for known ...
Zenith Movie showing Phoenix's Lidar Beam (Animation)
2008-01-01
[figure removed for brevity, see original site] Click on image for animation A laser beam from the Canadian-built lidar instrument on NASA's Phoenix Mars Lander can be seen in this contrast-enhanced sequence of 10 images taken by Phoenix's Surface Stereo Imager on July 26, 2008, during early Martian morning hours of the mission's 61st Martian day after landing. The view is almost straight up and includes about 1.5 kilometer (about 1 mile) of the length of the beam. The camera, from its position close to the lidar on the lander deck, took the images through a green filter centered on light with wavelength 532 nanometers, the same wavelength of the laser beam. The movie has been artificially colored to to approximately match the color that would be seen looking through this filter on Mars. Contrast is enhanced to make the beam more visible. The lidar beam can be seen extending from the lower right to the upper right, near the zenith, as it reflects off particles suspended in the atmosphere. Particles that scatter the beam directly into the camera can be seen to produce brief sparkles of light. In the background, dust can be seen drifting across the sky pushed by winds aloft. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.
Super-Kamiokande atmospheric neutrino data, zenith distributions, and three-flavor oscillations
Fogli, G L; Marrone, A; Scioscia, G
1999-01-01
We present a detailed analysis of the zenith angle distributions of atmospheric neutrino events observed in the Super-Kamiokande (SK) underground experiment, assuming two-flavor and three-flavor oscillations (with one dominant mass scale) among active neutrinos. In particular, we calculate the five angular distributions associated to sub-GeV and multi-GeV \\mu-like and e-like events and to upward through-going muons, for a total of 30 accurately computed observables (zenith bins). First we study how such observables vary with the oscillation parameters, and then we perform a fit to the experimental data as measured in SK for an exposure of 33 kTy (535 days). In the two-flavor mixing case, we confirm the results of the SK Collaboration analysis, namely, that \
Simulations of impinging droplets with surfactant-dependent dynamic contact angle
Ganesan, Sashikumaar
2015-11-01
An arbitrary Lagrangian-Eulerian (ALE) finite element scheme for computations of soluble surfactant droplet impingement on a horizontal surface is presented. The numerical scheme solves the time-dependent Navier-Stokes equations for the fluid flow, scalar convection-diffusion equation for the surfactant transport in the bulk phase, and simultaneously, surface evolution equations for the surfactants on the free surface and on the liquid-solid interface. The effects of surfactants on the flow dynamics are included into the model through the surface tension and surfactant-dependent dynamic contact angle. In particular, the dynamic contact angle (θd) of the droplet is defined as a function of the surfactant concentration at the contact line and the equilibrium contact angle (θe0) of the clean surface using the nonlinear equation of state for surface tension. Further, the surface forces are included into the model as surface divergence of the surface stress tensor that allows to incorporate the Marangoni effects without calculating the surface gradient of the surfactant concentration on the free surface. In addition to a mesh convergence study and validation of the numerical results with experiments, the effects of adsorption and desorption surfactant coefficients on the flow dynamics in wetting, partially wetting and non-wetting droplets are studied in detail. It is observed that the effects of surfactants are more in wetting droplets than in the non-wetting droplets. Further, the presence of surfactants at the contact line reduces the equilibrium contact angle further when θe0 is less than 90°, and increases it further when θe0 is greater than 90°. Nevertheless, the presence of surfactants has no effect on the contact angle when θe0 = 90 °. The numerical study clearly demonstrates that the surfactant-dependent contact angle has to be considered, in addition to the Marangoni effect, in order to study the flow dynamics and the equilibrium states of surfactant
T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis
Nozaki, Taiki; Kaneko, Yasuhito; Yu, Hon J.; Yoshioka, Hiroshi [University of California Irvine, Department of Radiological Sciences, Orange, CA (United States); Kaneshiro, Kayleigh [University of California Irvine, School of Medicine, Irvine, CA (United States); Schwarzkopf, Ran [University of California Irvine, Department of Orthopedic Surgery, Irvine, CA (United States); Hara, Takeshi [Gifu University Graduate School of Medicine, Department of Intelligent Image Information, Division of Regeneration and Advanced Medical Sciences, Gifu (Japan)
2016-06-15
To create and evaluate normalized T1rho profiles of the entire femoral cartilage in healthy subjects with three-dimensional (3D) angle- and depth-dependent analysis. T1rho images of the knee from 20 healthy volunteers were acquired on a 3.0-T unit. Cartilage segmentation of the entire femur was performed slice-by-slice by a board-certified radiologist. The T1rho depth/angle-dependent profile was investigated by partitioning cartilage into superficial and deep layers, and angular segmentation in increments of 4 over the length of segmented cartilage. Average T1rho values were calculated with normalized T1rho profiles. Surface maps and 3D graphs were created. T1rho profiles have regional and depth variations, with no significant magic angle effect. Average T1rho values in the superficial layer of the femoral cartilage were higher than those in the deep layer in most locations (p < 0.05). T1rho values in the deep layer of the weight-bearing portions of the medial and lateral condyles were lower than those of the corresponding non-weight-bearing portions (p < 0.05). Surface maps and 3D graphs demonstrated that cartilage T1rho values were not homogeneous over the entire femur. Normalized T1rho profiles from the entire femoral cartilage will be useful for diagnosing local or early T1rho abnormalities and osteoarthritis in clinical applications. (orig.)
Seah, Martin P; Spencer, Steve J; Shard, Alex G
2013-10-01
A study is reported of the depth resolution and angle dependence of sputtering yields using the reference organic material, Irganox 1010, for a new coronene(+) depth profiling ion source at 8 and 16 keV beam energies. This source provides excellent depth profiles as shown by 8.5 nm marker layers of Irganox 3114. Damage occurs but may be ignored for angles of incidence above 70° from the surface normal, as shown by X-ray photoelectron spectroscopy (XPS) of the C 1s peak structure. Above 70°, XPS profiles of excellent depth resolution are obtained. The depth resolution, after removal of the thickness of the delta layers, shows a basic contribution of 5.7 nm together with a contribution of 0.043 times the depth sputtered. This is lower than generally reported for cluster sources. The coronene(+) source is thus found to be a useful and practical source for depth profiling organic materials. The angle dependencies of both the undamaged and damaged materials are described by a simple equation. The sputtering yields for the undamaged material are described by a universal equation and are consistent with those obtained for C60(+) sputtering. Comparison with the sputtering yields using an argon gas cluster ion source shows great similarities, but the yields for both the coronene(+) and C60(+) primary ion sources are slightly lower.
Broadband RF-amplitude-dependent flip angle pulses with linear phase slope.
Koos, Martin R M; Feyrer, Hannes; Luy, Burkhard
2017-09-01
Pulse sequences in NMR spectroscopy sometimes require the application of pulses with effective flip angles different from 90° and 180°. Previously (Magn. Reson. Chem. 2015, 53, 886-893), offset-compensated broadband excitation pulses with RF-amplitude-dependent effective flip angles (RADFA) were introduced that are applicable in such cases. However, especially RF-amplitude-restricted RADFA pulses turned out to perform not as good as desired in terms of achievable bandwidths. Here, a class of RF-amplitude-restricted RADFA pulses with linear phase slope is introduced that allows excitation over much larger bandwidths with better performance. In this theoretical work, the basic principle of the pulse class is explained, their physical limits explored, and their properties, also compared with other pulse classes, discussed in detail. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Mohit Raghuwanshi
2013-02-01
Full Text Available Herein we numerically study the excitation angle-dependant far-field and near-field optical properties of vertical plasmonic nanowires arranged in an unconventional linear geometry: Fibonacci number chain. The first five numbers in the Fibonacci series (1, 1, 2, 3, 5 were mapped to the size of gold nanowires, and arranged in a linear chain to study their optical interactions, and compared them to conventional chain of vertical gold nanowires. By harnessing the radiative and evanescent coupling regimes in the geometry, we found a systematic variation in the far-field extinction and near-field confinement in the geometries. Our simulation studies revealed enhanced backscattered intensity in the far-field radiation pattern at excitation angles along the chain-length of Fibonacci geometry, which was otherwise absent for conventional chain of plasmonic nanowires. Such angular reconfiguration of optical fields in unconventional linear geometries can be harnessed for tunable on-chip plasmonics.
A study of angle dependent surface plasmon polaritons in nano-hole array structures
Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)
2016-07-21
We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.
Hansen, W. E-mail: hansen@metrs1.mw.tu-dresden.de; Richter, D
2002-01-01
In addition to liquid NE213 scintillators also stilbene solid crystals are applied traditionally for fast neutron spectrometry. A proper evaluation of experimental data provides a precise determination of the nonlinear light output function for the given scintillator/photomultiplier combination, and for stilbene additionally an adequate correction of the anisotropy effect. Calibration experiments with monoenergetic neutrons (1.2, 2.5, 5.0, 13.95, 14.8, 19.0 MeV) and various neutron incidence angles were carried out at the accelerator facility of the PTB Braunschweig for two cylindrical scintillators (diameter 30 mm x 25 mm, diameter 10 mm x 10 mm). An improved analytic light output function as well as an adequate angle dependent correction function were derived.
NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies
Wooden, Diane H.; Lederer, Susan M.; Bus, Schlete; Tokunaga, Alan; Jehin, Emmanuel; Howell, Ellen S.; Nolan, Michael C.; Ryan, Erin; Fernandez, Yan; Harker, David; Benner, Lance A.; Lovell, Amy; Moskovitz, Nicholas; Kerr, Tom; Woodward, Charles
2015-01-01
We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the
NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies
Wooden, Diane H.; Lederer, Susan M.; Bus, Schelte; Tokunaga, Alan; Jehin, Emmanuel; Howell, Ellen S.; Nolan, Michael C.; Ryan, Erin; Fernandez, Yan; Harker, David; Reddy, Vishnu; Benner, Lance AM; Lovell, Amy; Moskovitz, Nicholas; Kerr, Tom; Woodward, Charles
2015-08-01
We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the
Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles
Goldmann, Maximilian; West, Adam H C; Yoder, Bruce L; Signorell, Ruth
2015-01-01
We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. Firstly, aerosol photoemission studies can be performed for many different materials, including liquids. Secondly, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.
The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature
Zhang, Z. H., E-mail: zhaohui@physics.umanitoba.ca; Bai, Lihui; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2 Canada (Canada); Hemour, S.; Wu, K. [École Polytechnique de Montréal, Montréal, H3T 1J4 Canada (Canada); Fan, X. L.; Xue, D. S. [The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Houssameddine, D. [Everspin Technologies, 1347 N. Alma School Road, Chandler, Arizona 85224 (United States)
2015-03-15
The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ) was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, its angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.
The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature
Z. H. Zhang
2015-03-01
Full Text Available The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, its angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.
Time dependent behavior of impact angle in turbulkent pipe flows experience erosion
Guzman, Amador; Oyarzun, Diego; Walczak, Magdalena; Aguirre, Javiera
Erosion-corrosion in pipe systems transporting slurry turbulent flows is of a great importance in industrial and mining applications, where large volumes of suspended solids are sent up to hundreds of kilometers, to be further processed. The slurry is typically sent over large diameter steel pipes, which not always have an anti-abrasion coating. During the transport, the thickness of the pipe diminishes and eventually leaks and breaks, due to the combined effects of wear and corrosion. The processes of pipe degradation are further enhanced by the content of the slurry electrolytes that might switch from neutral to aggressive. The understanding of these processes in terms of operational parameters is critical for anticipating and mitigating a catastrophic outcome. This paper describes turbulent flow numerical simulations in a slurry transporting steel pipe with an emphasis on the correlation between the time dependent impact angle in the vicinity of the steel pipe and the rate of material loss. Full numerical simulations in a 3D long domain by using an Eulerian -Eulerian two phase flow approach coupled to a κ-epsilon turbulent model are performed for different solid particle concentration and flow velocity and compared to existing experimental and numerical results for validation with and without gravity. Time-dependent axisymmetric turbulent flow simulations are performed for determining both the time dependent behavior of the axial and radial velocities near the pipe wall and the impact angle. Finantial support from Conicyt through the Fondecyt proposal 1141107 is acknowledged.
Future constraints on angle-dependent non-Gaussianity from large radio surveys
Raccanelli, Alvise; Shiraishi, Maresuke; Bartolo, Nicola; Bertacca, Daniele; Liguori, Michele; Matarrese, Sabino; Norris, Ray P.; Parkinson, David
2017-03-01
We investigate how well future large-scale radio surveys could measure different shapes of primordial non-Gaussianity; in particular we focus on angle-dependent non-Gaussianity arising from primordial anisotropic sources, whose bispectrum has an angle dependence between the three wavevectors that is characterized by Legendre polynomials PL and expansion coefficients cL. We provide forecasts for measurements of galaxy power spectrum, finding that Large-Scale Structure (LSS) data could allow measurements of primordial non-Gaussianity that would be competitive with, or improve upon, current constraints set by CMB experiments, for all the shapes considered. We argue that the best constraints will come from the possibility to assign redshift information to radio galaxy surveys, and investigate a few possible scenarios for the EMU and SKA surveys. A realistic (futuristic) modeling could provide constraints of fNLloc ≈ 1(0 . 5) for the local shape, fNL of O(10) (O(1)) for the orthogonal, equilateral and folded shapes, and cL=1 ≈ 80(2) , cL=2 ≈ 400(10) for angle-dependent non-Gaussianity showing that only futuristic galaxy surveys will be able to set strong constraints on these models. Nevertheless, the more futuristic forecasts show the potential of LSS analyses to considerably improve current constraints on non-Gaussianity, and so on models of the primordial Universe. Finally, we find the minimum requirements that would be needed to reach σ(cL=1) = 10, which can be considered as a typical (lower) value predicted by some (inflationary) models.
Strongly angle-dependent magnetoresistance in Weyl semimetals with long-range disorder
Behrends, Jan; Bardarson, Jens H.
2017-08-01
The chiral anomaly in Weyl semimetals states that the left- and right-handed Weyl fermions, constituting the low energy description, are not individually conserved, resulting, for example, in a negative magnetoresistance in such materials. Recent experiments see strong indications of such an anomalous resistance response; however, with a response that at strong fields is more sharply peaked for parallel magnetic and electric fields than expected from simple theoretical considerations. Here, we uncover a mechanism, arising from the interplay between the angle-dependent Landau-level structure and long-range scalar disorder, that has the same phenomenology. In particular, we analytically show, and numerically confirm, that the internode scattering time decreases exponentially with the angle between the magnetic field and the Weyl node separation in the large field limit, while it is insensitive to this angle at weak magnetic fields. Since, in the simplest approximation, the internode scattering time is proportional to the anomaly-related conductivity, this feature may be related to the experimental observations of a sharply peaked magnetoresistance.
Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling
Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu
2016-08-01
Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.
Takashi Shibayama
2015-11-01
Full Text Available This paper addresses the local incidence angle dependence of several polarimetric indices corresponding to landslides in forested areas. Landslide is deeply related to the loss of human lives and their property. Various kinds of remote sensing techniques, including aerial photography, high-resolution optical satellite imagery, LiDAR and SAR interferometry (InSAR, have been available for landslide investigations. SAR polarimetry is potentially an effective measure to investigate landslides because fully-polarimetric SAR (PolSAR data contain more information compared to conventional single- or dual-polarization SAR data. However, research on landslide recognition utilizing polarimetric SAR (PolSAR is quite limited. Polarimetric properties of landslides have not been examined quantitatively so far. Accordingly, we examined the polarimetric scattering properties of landslides by an assessment of how the decomposed scattering power components and the polarimetric correlation coefficient change with the local incidence angle. In the assessment, PolSAR data acquired from different directions with both spaceborne and airborne SARs were utilized. It was found that the surface scattering power and the polarimetric correlation coefficient of landslides significantly decrease with the local incidence angle, while these indices of surrounding forest do not. This fact leads to establishing a method of effective detection of landslide area by polarimetric information.
Renormalizing coupled scalars with a momentum dependent mixing angle in the MSSM
Díaz, M A
1994-01-01
The renormalization of a system of coupled scalars fields is analyzed. By introducing a momentum dependent mixing angle we diagonalize the inverse propagator matrix at any momentum p^2. The zeros of the inverse propagator matrix, \\ie, the physical masses, are then calculated keeping the full momentum dependence of the self energies. The relation between this method and others previously published is studied. This idea is applied to the one-loop renormalization of the CP-even neutral Higgs sector of the Minimal Supersymmetric Model, considering top and bottom quarks and squarks in the loops. Presented in the Eighth Meeting of the Division of Particles and Fields of the American Physical Society ``DPF'94'', The University of New Mexico Albuquerque NM, August 2-6, 1994.
Mance, Deni; Baldus, Marc, E-mail: m.baldus@uu.nl [NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht (Netherlands); Gast, Peter; Huber, Martina [Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden (Netherlands); Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru [International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia and Novosibirsk State University, Pirogova 2, Novosibirsk 63009 (Russian Federation)
2015-06-21
We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.
Future Constraints on Angle-Dependent Non-Gaussianity from Large Radio Surveys
Raccanelli, Alvise; Bartolo, Nicola; Bertacca, Daniele; Liguori, Michele; Matarrese, Sabino; Norris, Ray P; Parkinson, David
2015-01-01
We investigate how well future large-scale radio surveys could measure different shapes of primordial non-Gaussianity; in particular we focus on angle-dependent non-Gaussianity arising from primordial anisotropic sources, whose bispectrum has an angle dependence between the three wavevectors that is characterized by Legendre polynomials $\\mathcal{P}_L$ and expansion coefficients $c_L$. We provide forecasts for measurements of galaxy power spectrum, finding that Large-Scale Structure (LSS) data could allow measurements of primordial non-Gaussianity competitive or improving upon current constraints set by CMB experiments, for all the shapes considered. We argue that the best constraints will come from the possibility to assign redshift information to radio galaxy surveys, and investigate a few possible scenarios for the EMU and SKA surveys. A realistic (futuristic) modeling could provide constraints of $f_{\\rm NL}^{\\rm loc} \\approx 1 (0.5)$ for the local shape, $f_{\\rm NL}$ of $\\mathcal{O}(10) (\\mathcal{O}(1))$...
Wijewardana, Y. N. S.; Kawamoto, Ken; Komatsu, Toshiko
2014-01-01
) mixed sands representing four different particle size fractions ranging from 0.105 to 0.84 mm. Initial soil-water contact angle (αi), and the time dependence of contact angle were measured by the sessile drop method. Results showed that the αi value for fine and middle sand fractions increased rapidly...
Gingival zenith and its role in redefining esthetics: A clinical study
Babita Pawar
2011-01-01
Full Text Available Background: The purpose of this study was to quantify some clinical parameters useful as esthetic guidelines when gingival contour is modified and to compare the left and right sides of six maxillary anterior teeth. Materials and Methods: Maxillary casts mounted on an articulator according to the axis orbital plane were photographed from 35 young adults. The angle formed between the gingival line and maxillary midline (GLA and the distance between the gingival zenith of the lateral incisor and the gingival line were measured (LID using a flexible protractor and digital vernier caliper, respectively. The asymmetry was evaluated using a paired t test for the left vs right measurements of GLA and LID. The descriptive statistics for GLA and LID were calculated. Results: The GLA measurements of the left side (86.74.2 were significantly greater than those of the right side (84.65.4, and the mean absolute symmetry for GLA was 1.74.4. The mean LID measurement was 0.920.11. Conclusions: The gingival zenith of the canine is apical to the gingival zenith of the incisors (GLA <90 and the gingival zenith of the lateral incisor is below or on (17% the gingival line when head is oriented on the axis orbital plane. A directional asymmetry was shown with the right side higher than the left side. Along with the other parameters related to dental esthetics, these clinical parameters may serve as esthetic guidelines and may enable us to obtain a more predictable outcome.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth
2016-09-01
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
Oe, Momoko; Ogawa, Hiroto
2013-01-01
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent 'escape behavior' from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind
Shiraishi, Masao; Takamatsu, Koichi; Murakami, Masahide; Nakano, Akihiro
2004-02-01
Secondary flow in an inclined orifice pulse tube refrigerator at typical inclination angles of 0-180° was studied by using a smoke-wire flow visualization technique. It was revealed that the secondary flow formed a unicellular convective flow in the pulse tube and had two flow patterns depending on the angle. This dependence of flow pattern on the inclination angle is well explained by the superposition of gravity-driven convective flow on acoustic streaming. Even if the cold end was lower than the hot end, the gravity-driven convective flow occurred and the secondary flow was affected by gravity.
Angle-dependent magnetoresistance and quantum oscillations in high-mobility semimetal LuPtBi
Xu, Guizhou
2017-03-14
The recent discovery of ultrahigh mobility and large positive magnetoresistance in topologically non-trivial Half-Heusler semimetal LuPtBi provides a unique playground for studying exotic physics and significant perspective for device applications. As an fcc-structured electron-hole-compensated semimetal, LuPtBi theoretically exhibits six symmetrically arranged anisotropic electron Fermi pockets and two nearly-spherical hole pockets, offering the opportunity to explore the physics of Fermi surface with a simple angle-related magnetotransport properties. In this work, through the angle-dependent transverse magnetoresistance measurements, in combination with high-field SdH quantum oscillations, we achieved to map out a Fermi surface with six anisotropic pockets in the high-temperature and low-field regime, and furthermore, identify a possible magnetic field driven Fermi surface change at lower temperatures. Reasons account for the Fermi surface change in LuPtBi are discussed in terms of the field-induced electron evacuation due to Landau quantization.
Photon energy dependence of angle-resolved photoemission spectroscopy in graphene
Ayria, Pourya; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Czank, Thomas R.; Tanaka, Shin-ichiro; Saito, Riichiro
2015-11-01
The photon energy dependence of angle-resolved photoemission spectroscopy (ARPES) in graphene is investigated experimentally and theoretically. By applying light with energy of around 46 eV , we found an unexpected increase in the ARPES relative intensity of graphene for the p branch (ARPES spectra brightened by the p -polarized light) with respect to the s branch (those brightened by the s -polarized light). The origin of the enhanced p -branch intensity is explained by first-principles calculations, in which we show (1) the optical dipole vector as a function of final-state energies of the excited electron, (2) the absorption intensity as a function of the incident light angle, and (3) the symmetry of the initial and the final states. The calculated results imply that the dipole vector of the excited electron near 46 eV has an exceptionally large component in the normal direction of the graphene surface compared to that within the graphene plane, which could be the main reason for the enhancement of the p -branch intensity.
Zerouaoui, Mohamed Fadel; Bahije, Loubna; Zaoui, Fatima; Regragui, Salwa
2014-06-01
Many difficulties may arise during the finishing phase of orthodontic treatment on account of discrepancy between mandibular and maxillary tooth size. In 1958, Bolton devised the index that bears his name and enables possible tooth-size discrepancy to be diagnosed. Use of this index in practice has shown that it can vary depending on the different angle malocclusion classes. The aim of this work is to study variations of the Bolton index as a function of the malocclusion class in the Moroccan population, and to compare the results obtained with those of other populations. Ninety models were therefore selected in different groups of dental Class I, Class II and Class III malocclusions. The mesiodistal (MD) diameters of 12 maxillary and mandibular teeth were measured and the anterior and general Bolton indices were calculated. The results obtained show that there is no significant difference between the various groups of angle malocclusion classes, and that some other populations present results similar to those of the Moroccan sample.
Park, Yeonok; Park, Chulkyu; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Lee, Minsik; Cho, Heemoon; Choi, Sungil; Koo, Yangseo [Yonsei University, Wonju (Korea, Republic of)
2014-09-15
Digital breast tomosynthesis (DBT) is considered in clinics as a standard three-dimensional imaging modality, allowing the earlier detection of cancer. It typically acquires only 10-30 projections over a limited angle range of 15 - 60 .deg. with a stationary detector and typically uses a computationally-efficient filtered-backprojection (FBP) algorithm for image reconstruction. However, a common FBP algorithm yields poor image quality resulting from the loss of average image value and the presence of severe image artifacts due to the elimination of the dc component of the image by the ramp filter and to the incomplete data, respectively. As an alternative, iterative reconstruction methods are often used in DBT to overcome these difficulties, even though they are still computationally expensive. In this study, as a compromise, we considered a projection-angle dependent filtering method in which one-dimensional geometry-adapted filter kernels are computed with the aid of a conjugate-gradient method and are incorporated into the standard FBP framework. We implemented the proposed algorithm and performed systematic simulation works to investigate the imaging characteristics. Our results indicate that the proposed method is superior to a conventional FBP method for DBT imaging and has a comparable computational cost, while preserving good image homogeneity and edge sharpening with no serious image artifacts.
Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure
Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.
2013-01-01
As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.
Liu, Han-Chun; Samaraweera, Rasanga L.; Mani, R. G.; Reichl, C.; Wegscheider, W.
2016-12-01
We examine the microwave frequency (f ) variation of the angular phase shift, θ0, observed in the polarization-angle dependence of microwave-induced magnetoresistance oscillations in a high-mobility GaAs/AlGaAs two-dimensional electron system. By fitting the diagonal resistance Rx x versus θ plots to an empirical cosine square law, we extract θ0 and trace its quasicontinuous variation with f . The results suggest that the overall average of θ0 extracted from Hall bar device sections with length-to-width ratios of L /W =1 and 2 is the same. We compare the observations with expectations arising from the "ponderomotive force" theory for microwave radiation-induced transport phenomena.
Angle dependent magnetothermopower of α-(ET)2KHg(SCN)4
Krstovska, D.; Steven, E.; Choi, E. S.; Brooks, J. S.
2011-10-01
The magnetic field and angle dependences of the thermopower and Nernst effect for the quasi-two dimensional (q2D) organic conductor α-(ET)2KHg(SCN)4 are measured at temperatures below (4 K) and above (9 K) the transition temperature in fields of up to 31 T. In addition, a theoretical model involving a magnetic breakdown effect between the q1D and q2D bands is proposed in order to simulate the data. Analysis of the background components of the thermopower and Nernst effect imply that at low temperatures, in the CDW state, the properties of α-(ET)2KHg(SCN)4 are determined mostly by the orbits on new, open Fermi sheets. The quantum oscillations observed in both thermoelectric effects at fields above 8 T are caused only by the α orbit.
Simultaneous Multi-angle Observations of Strong Langmuir Turbulence at HAARP
Watanabe, Naomi; Golkowski, Mark; Sheerin, James P.; Watkins, Brenton J.
2015-10-01
We report results from a recent series of experiments employing the HF transmitter of the High Frequency Active Auroral Research Program (HAARP) to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. The Modular UHF Ionospheric Radar (MUIR) located at the HAARP facility is used as the primary diagnostic. Short pulse, low duty cycle experiments are used to avoid generation of artificial field-aligned irregularities and isolate ponderomotive plasma turbulence effects. The HF pump frequency is close to the 3rd gyro-harmonic frequency and the HF pointing angle and MUIR look angle are between the HF Spitze angle and Magnetic Zenith angle. Plasma line spectra measured simultaneously in different spots of the interaction region display differences dependent on the aspect angle of the HF pump beam in the boresight direction and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Lines, cascade, collapse, coexistence, spectra are observed in agreement with existing theory and simulation results of Strong Langmuir Turbulence in ionospheric interaction experiments. It is found that SLT at HAARP is most readily observed at a HF pointing angle of 11° and UHF observation angle of 15°, which is consistent with the magnetic zenith effect as documented in previous works and optimal orientation of the refracted HF electric field vector.
Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook
Widener, K; Bharadwaj, N; Johnson, K
2012-03-06
The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.
Frederiksen, Thomas; Munuera, C.; Ocal, C.;
2009-01-01
by contacting the molecular layers with the tip of a conductive force microscope. Measurements done under low-load conditions permit us to obtain reliable tilt-angle and molecular length dependencies of the low-bias conductance through the alkanethiol layers. The observed dependence on tilt-angle is stronger...... for the longer molecular chains. Our calculations confirm the observed trends and explain them as a result of two mechanisms, namely, a previously proposed intermolecular tunneling enhancement as well as a hitherto overlooked tilt-dependent molecular gate effect....
Tilt angle dependence of the modulated interference effects in photo-elastic modulators
Talukder, Md. Abdul Ahad; Geerts, Wilhelmus J.
2017-05-01
The effect of the PEM tilt angle and incident polarization on the PEM interference is studied for a single axis photo-elastic modulator. The dc, 1ω , and 2ω components of the detector signal vary periodically as a function of PEM tilt angle. Although it is possible to adjust the PEM tilt angle to minimize the 1ω or 2ω detector signal at small tilt angles, it is not possible to null both of them simultaneously. For the case where no analyzer is used, the ac detector signals can be minimized simultaneously by adjusting the polarization angle of the light incident on the PEM and the PEM tilt angle. Direct observations of the detector signal indicate that the effects of refraction index and thickness variations are opposite consistent with a lower polarizability for compressive strain of the modulator.
Tilt angle dependence of the modulated interference effects in photo-elastic modulators
Md. Abdul Ahad Talukder
2017-05-01
Full Text Available The effect of the PEM tilt angle and incident polarization on the PEM interference is studied for a single axis photo-elastic modulator. The dc, 1ω, and 2ω components of the detector signal vary periodically as a function of PEM tilt angle. Although it is possible to adjust the PEM tilt angle to minimize the 1ω or 2ω detector signal at small tilt angles, it is not possible to null both of them simultaneously. For the case where no analyzer is used, the ac detector signals can be minimized simultaneously by adjusting the polarization angle of the light incident on the PEM and the PEM tilt angle. Direct observations of the detector signal indicate that the effects of refraction index and thickness variations are opposite consistent with a lower polarizability for compressive strain of the modulator.
Dosimetric dependence on the collimator angle in prostate volumetric modulated arc therapy
Muhammad Isa
2014-12-01
Full Text Available Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV and organs-at-risk (OARs in prostate volumetric modulated arc therapy (VMAT when varying collimator angle. The collimator angle has the largest impact and is worth considering, so, its awareness is essential for a planner to produce an optimal prostate VMAT plan in a reasonable time frame. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o were created systematically using a Harold heterogeneous pelvis phantom. The conformity index (CI, homogeneity index (HI, gradient index (GI, machine monitor units (MUs, dose-volume histogram and mean and maximum dose of the PTV were calculated and analyzed. On the other hand, the dose-volume histogram and mean and maximum doses of the OARs such as the bladder, rectum and femoral heads for different collimator angles were determined from the plans.Results: There was no significant difference, based on the planned dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. A higher CI (0.53 and lower HI (0.064 were found in the 45o collimator angle. In addition, the 15o collimator angle provided a lower value of HI similar to the 45o collimator angle. Collimator angles of 75o and 90o were found to be good for rectum sparing, and collimator angles of 75o and 30o were found to be good for sparing of right and left femur, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: Our study indicates that the dosimetric results provide support and guidance to allow the clinical radiation physicists to make careful decisions in implementing suitable collimator angles to improve the PTV coverage and OARs sparing in prostate VMAT.
Mirica Karlovits
2015-03-01
Full Text Available Color-travel pigments, which exhibit much more extensive color change as well provide angle-dependent optical effect can be used in many industrial products. In present paper the multi-color effect pigment printed on three different foils with different background color (black, silver and transparent was investigated. The pigment was based on synthetically produced transparent silicon dioxide platelets coated with titanium dioxide. CIEL*a*b* values and reflection of prints were measured by multi-angle spectrophotometer at constant illumination at an angle of 45º and different viewing angles (-15º, 15°, 25º, 45º, 75º and 110º were used. The measurements of printed multi-color pigment showed that CIEL*a*b* color coordinates varied to great extents, depending on detection angles as well on color of the printing substrate. The study revealed that pigmnet printed on black background obtained significant change in color. The study has also shown that when viewing angle increases, the reflection curves decreases.
Muster, Tim H; Prestidge, Clive A
2002-03-02
The time-dependent wetting of sulfathiazole compacts with sessile water drops was evaluated using video microscopy. The influence of sulfathiazole crystalline form, particle size, pre-saturation with water, humidity and compaction pressure on the droplet spreading kinetics and contact angles are reported. The rate and extent of droplet spreading decreased for compact surfaces of high microscopic roughness; this was determined by atomic force microscopy (AFM). Pre-saturation of powder compacts with water (pre-saturated with sulfathiazole) enhanced droplet spreading and enabled pseudo-equilibrium contact angles to be determined for up to 10 min. Sessile-drop contact angles on both sulfathiazole powder compacts and single crystals are compared with particle contact angles determined by liquid penetration. This study has led to an improved understanding of the influence of physical heterogeneities and the face-specific surface chemistry of individual crystals on the wetting characteristics of pharmaceutical compacts.
Schneider, Kai; Kadoch, Benjamin; Bassenne, Maxime; Esmaily-Moghadam, Mahdi; Farge, Marie; Bos, Wouter
2016-11-01
We present multiscale statistics of particle trajectories in isotropic turbulence and compare the behaviour of fluid and inertial particles. The directional change of inertial particles is quantified by considering the curvature angle for different time increments. Distinct scaling behaviors of the mean angle are observed for short, intermediate and long time lags. We also introduce the scale-dependent torsion angle, which quantifies the directional change of particles moving out of the plane. The influence of the Stokes and Reynolds numbers on the mean angles and on the probability distributions are analyzed. Finally, we assess the impact of LES and particle SGS modeling on those statistics. MF and KS thankfully acknowledge financial support from CTR, Stanford.
Prutskij, T.; Brito-Orta, R. [Instituto de Ciencias, BUAP, Puebla (Mexico); Pelosi, C. [IMEM/CNR, Parma (Italy)
2008-09-15
We compare measured and calculated polarization-angle dependencies of the intensity of the photoluminescence emission from MOVPE-grown GaInP{sub 2} layers with different ordering parameters. We measured the polarization-angle dependencies of the emission propagating along the [001],[110] and [1 anti 10] directions at room temperature. Symmetry considerations were used to calculate the dependence of the relative intensity of the PL emission which was linearly polarized along different directions and to estimate the value of the valence-band splitting by fitting the measured dependencies with calculated curves. An intriguing influence of the polarization of the exciting beam on the relative amount of the polarized PL emission was observed in the emission from the (110) plane. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Design and experimental research of angle self-compensation setup for BSDF measurement
Chao Qi; Hongchen Liu; Yuanli Wei; Jingmin Dai
2009-01-01
When using a single reference to measure the bi-directional scattering distribution function(BSDF),the incident zenith angle of the tested sample must be identical to that of the reference.In order to get the hemisphere space scattering characteristic on the sample surface,usually a motor drives the sample tilting,then the incident zenith angle is changed and needs to be the compensated by another motor.We mathematically deduce the expression of compensation angle when the incident zenith angle is changed by the rotation of motor.After the incident angle is compensated,the scattering zenith angle and azimuth angle are deduced too.The uncertainty of the system is 0.75%.Scattering measurements are performed on copper sample with visible light under different temperatures.
Komar, C M; Dorelli, J C; Glocer, A; Kuznetsova, M M
2013-01-01
A new, efficient, and highly accurate method for tracing magnetic separators in global magnetospheric simulations with arbitrary clock angle is presented. The technique is to begin at a magnetic null and iteratively march along the separator by finding where four magnetic topologies meet on a spherical surface. The technique is verified using exact solutions for separators resulting from an analytic magnetic field model that superposes dipolar and uniform magnetic fields. Global resistive magnetohydrodynamic simulations are performed using the three-dimensional BATS-R-US code with a uniform resistivity, in eight distinct simulations with interplanetary magnetic field (IMF) clock angles ranging from 0 (parallel) to 180 degrees (anti-parallel). Magnetic nulls and separators are found in the simulations, and it is shown that separators traced here are accurate for any clock angle, unlike the last closed field line on the Sun-Earth line that fails for southward IMF. Trends in magnetic null locations and the struc...
Calculation of effective dose in whole body in dependence of angle of collimator for photon fields
Fuenzalida, M. [Universidad de la Frontera, Temuco (Chile). Programa de Magister en Fisica Medica; Varon, C.; Piriz, G.; Banguero, Y.; Lozano, E.; Mancilla, C., E-mail: fisicamedica@incancer.c [Instituto Nacional del Cancer, Santiago (Chile). Unidad de Fisica Medica
2011-07-01
The objective of this work is to obtain quantifiable data of whole body effective dose for photons fields of 6 MV and 18 MV in function of the collimator angle of a Varian Clinac 21EX lineal accelerator. It has been made a variety of studies which investigate the form to reduce the dose in whole body with photons fields, specially over the potential risks and the influence of the collimator angle, as performed Stanthakis et al. [1] with the Monte Carlo method. As a result of this work, the values of whole body effective doses are higher with a 0 deg collimator than with a 90 deg collimator, and as the field size increases, the effective doses difference in whole body, between 0 deg and 90 deg collimator angle, for both energies, becomes smaller. (author)
Distance-dependent influences on angle metrology with autocollimators in deflectometry
Geckeler, Ralf D.; Just, Andreas
2008-08-01
The application of electronic autocollimators to the deflectometric measurement of synchrotron optics in beamline metrology laboratories is steadily increasing. The main reason for this is the availability of commercial high-resolution autocollimators capable of providing highly stable angle metrology down to aperture sizes of a few millimeters, even for uncoated optical surfaces. The measuring beam of the autocollimator not only provides the straight propagation of light as a natural straightness standard, but also tracing back the angle measurement to primary standards via calibration enables one to measure surface shape without any recourse to material straightness artifacts. The Physikalisch-Technische Bundesanstalt (PTB) provides the traceability of angle measurements by autocollimators to the radian (rad) - the SI unit of the plane angle - by use of its WMT 220 angle comparator. The fundamental principle of this comparator is the subdivision of the circle, representing an error-free natural standard of 2π rad. It is realized by various self- and cross-calibration methods. Autocollimators are calibrated by direct comparison with this primary standard with standard uncertainties down to 0.003 arcsec (15 nrad). As the aperture sizes of autocollimators decrease, issues such as the transferability / applicability of the calibration to the measurement conditions in the deflectometric set-up become more and more significant. In this paper we are focusing on the investigation of the influence of the distance between the autocollimator and the surface under test on its angle response. Information on the optimized use and accurate calibration of autocollimators for deflectometric applications is provided.
Hashimoto, Yukio
2016-01-01
A numerical method to solve the TDHFB equations by using a hybrid basis of the two-dimensional harmonic oscillator eigenfunctions and one-dimensional Lagrange mesh with the Gogny effective interaction is applied to the head-on collisions of the superfluid nuclei ${}^{20}$O's. Taking the energies around the barrier top energy, the trajectories, pairing energies, and numbers of transferred nucleons are displayed. Their dependence on the relative gauge angle at the initial time is studied by taking typical sample points of the gauge angle. It turned out that the functional form of the flux of the neutrons across a section plane is proportional to the sine of the two times of the gauge angle.
Sugai, I., E-mail: isao.Sugai@kek.jp [High Energy Accelerator Research Organization, Accelerator Laboratory, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Oyaizu, M. [High Energy Accelerator Research Organization, Institute of Particle and Nuclear Studies, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Takeda, Y. [High Energy Accelerator Research Organization, Accelerator Laboratory, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Kawakami, H. [High Energy Accelerator Research Organization, Institute of Particle and Nuclear Studies, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Kawasaki, K.; Hattori, T. [Department of Physics, Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo 152-8550 (Japan); Kadono, T. [Department of Physics, University of Tokyo, Hongo, 7-3-1, Bunkyo, Tokyo 113-0033 (Japan)
2015-09-01
We fabricated high-lifetime thin nitride carbon stripper (NCS) foils with high nitrogen contents using ion-beam sputtering with reactive nitrogen gas and investigated the dependence of their lifetimes on the sputter angle. The nitrogen in carbon foils plays a critical role in determining their lifetime. Therefore, in order to investigate the effects of the nitrogen level in NCS foils on foil lifetime, we measured the sputtering yield for different sputter angles at a sputtering voltage of 10 kV while using carbon-based targets. We also measured the nitrogen-to-carbon thickness ratios of the foils using Rutherford backscattering spectrometry. The foils made at a sputter angle of 15° using a glassy amorphous carbon target exhibited an average increase of 200-fold in lifetime when compared to commercially available foils.
Dossou, Kokou B
2015-01-01
Diffraction gratings are famous for their ability to exhibit, near a Wood anomaly, an arbitrarily large angular dispersion, e.g., with respect to the incidence angle or wavelength. For a diffraction grating under incidence by a plane wave at a fixed frequency, by rotating the incidence angle at a given angular velocity, the field propagated by a nonzero diffraction order will rotate at increasingly fast angular velocity as the incidence angle approaches the angle where Wood anomaly occurs. Such a fast rotating diffracted field has the potential to generate a substantial Doppler shift. Indeed, under the assumption of a grating with infinite extent, the expression for the instantaneous frequency shift perceived by an observer, who is looking into the light radiated by the diffraction order, is derived and it is in full agreement with the prediction from an interpretation based on the Doppler shift generated by a rotation of light sources. In particular the classical (non-relativistic) Doppler shift can take arb...
Temperature dependent small-angle neutron scattering of CTABr-magnetic fluid emulsion
V K Aswal; J V Joshi; P S Goyal; Rajesh Patel; R V Upadhyay; R V Mehta
2004-08-01
Small-angle neutron scattering studies have been carried out to check the structural integrity of citryltrimethylammonium bromide (CTABr) micelles in a magnetic fluid for different magnetic fluid concentrations at two different temperatures 303 and 333 K. It is found that the CTABr micelles grow with increasing magnetic fluid concentration and there is a decrease in the micellar size with increase in temperature.
Hansen, M.J.; Beard, T.D.; Hewett, S.W.
2005-01-01
We sought to determine how much measurement errors affected tests of density dependence of spearing and angling catchability for walleye Sander vitreus by quantifying relationships between spearing and angling catch rates (catch/h) and walleye population density (number/acre) in northern Wisconsin lakes. The mean measurement error of spearing catch rates was 43.5 times greater than the mean measurement error of adult walleye population densities, whereas the mean measurement error of angling catch rates was only 5.6 times greater than the mean measurement error of adult walleye population densities. The bias-corrected estimate of the relationship between spearing catch rate and adult walleye population density was similar to the ordinary-least-squares regression estimate but differed significantly from the geometric mean (GM) functional regression estimate. In contrast, the bias-corrected estimate of the relationship between angling catch rate and total walleye population density was intermediate between ordinary-least-squares and GM functional regression estimates. Catch rates of walleyes in both spearing and angling fisheries were not linearly related to walleye population density, which indicated that catch rates in both fisheries were hyperstable in relation to walleye population density. For both fisheries, GM functional regression overestimated the degree of hyperdepletion in catch rates and ordinary-least-squares regression overestimated the degree of hyperstability in catch rates. However, ordinary-least-squares regression induced significantly less bias in tests of density dependence than GM functional regression, so it may be suitable for testing the degree of density dependence in fisheries for which fish population density is estimated with mark-recapture methods similar to those used in our study. ?? Copyright by the American Fisheries Society 2005.
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Howell, Ellen S.; Fernandez, Yan; Harker, David E.; Ryan, Erin; Lovell, Amy; Woodward, Charles E.; Benner, Lance A.
2015-01-01
Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.
Gowd, Snigdha; Shankar, T; Chatterjee, Suravi; Mohanty, Pritam; Sahoo, Nivedita; Baratam, Srinivas
2017-08-01
To investigate the two clinical parameters, such as gingival zenith positions (GZPs) and gingival zenith levels (GZLs), of maxillary anterior dentition in bimaxillary protrusion cases and collate it with severiety of crown inclination. Gingival zenith position and GZL in 40 healthy patients (29 females and 11 males) with an average age of 21.5 years were assessed. Inclusion criteria involved absence of periodontal diseases, Angle's class I molar relationship, and upper anterior proclination within 25 to 45° based on Steiner's analysis; exclusion criteria included spacing, crowding, anterior restoration and teeth with incisor attrition or rotation. The GZP was evaluated using digital calipers from voxel-based morphometry (VBM), and GZL was assessed from the tangent drawn from GZP of central incisor and canines to the linear vertical distance of GZP of lateral incisor. All the central incisors showed a GZP distal to VBM with a mean average of 1 mm. Severe proclination between 40 and 45° showed a statistically significant variation. Lateral incisors displayed a mean of 0.5 mm deviation of GZP from the vertically bisected midline. In 80% of canine population, GZP was centralized. We conclude that the degree of proclination of maxillary anterior dentition was correlated to the gingival contour in bimaxillary cases. The investigation revealed that there is a variation in the location of GZP as the severity of proclination increases. This study highlights the importance of microesthetics in fixed orthodontic treatment. The gingival contour should be unaltered while retraction during management of bimaxillary protrusion.
Ye, Tianyu; Mani, R. G. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich (Switzerland)
2014-11-10
We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-induced magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.
A deep-seated mechanism for cycle-dependent sunspot group tilt angles
Isik, Emre
2016-07-01
The cycle-averaged tilt angle of sunspot groups is an important quantity in determining the magnetic flux diffusing across the equator, which is highly correlated with the strength of the next cycle. This quantity has recently been reported to be anti-correlated with the strength of the solar cycle. I suggest that a deep-seated thermodynamic cycle can be responsible for the observed correlation. Motivated by helioseismic indications, I calculate the effect of cooling of the convective overshoot region on the stability and dynamics of thin, unstable flux tubes. I find that only 5-20 K of cooling in the layer can explain the observed range of tilt angle fluctuations among different cycles. This mechanism can play a role in the nonlinear saturation and amplitude fluctuations of the solar dynamo.
Nuclear Dependence in Weak Structure Functions and the Determination of Weak Mixing Angle
Athar, M Sajjad; Simo, I Ruiz; Vacas, M J Vicente
2013-01-01
We have studied nuclear medium effects in the weak structure functions $F^A_2(x)$ and $F^A_3(x)$ and in the extraction of weak mixing angle using Paschos Wolfenstein(PW) relation. We have modified the PW relation for nonisoscalar nuclear target. We have incorporated the medium effects like Pauli blocking, Fermi motion, nuclear binding energy, nucleon correlations, pion $\\&$ rho cloud contributions, and shadowing and antishadowing effects.
2014-01-01
The aim of this work is to investigate a theoretical study of a vertical junction silicon solar cell capacitance under monochromatic illumination. By solving the continuity equation and using a one dimensional model in frequency modulation, we derive the analytical expressions of both excess minority carrier density and photovoltage. Based on these expressions, the solar cell capacitance was calculated; we then exhibited the effects of both temperature and incidence angle on the solar cell ca...
Fluid epitaxialization effect on velocity dependence of dynamic contact angle in molecular scale.
Ito, Takahiro; Hirata, Yosuke; Kukita, Yutaka
2010-02-07
Molecular dynamics simulations were used to investigate the effect of epitaxial ordering of the fluid molecules on the microscopic dynamic contact angle. The simulations were performed in a Couette-flow-like geometry where two immiscible fluids were confined between two parallel walls moving in opposite directions. The extent of ordering was varied by changing the number density of the wall particles. As the ordering becomes more evident, the change in the dynamic contact angle tends to be more sensitive to the increase in the relative velocity of the contact line to the wall. Stress components around the contact line is evaluated in order to examine the stress balance among the hydrodynamic stresses (viscous stress and pressure), the deviation of Young's stress from the static equilibrium condition, and the fluid-wall shear stress induced by the relative motion between them. It is shown that the magnitude of the shear stress on the fluid-wall surface is the primary contribution to the sensitivity of the dynamic contact angle and that the sensitivity is intensified by the fluid ordering near the wall surface.
Shao, Xi; Zhang, Bin; Cao, Changyong
2014-11-01
Moon reflects sun light and its surface is radiometicly stable, making it an ideal target for calibrating satellite radiometers. Since lunar irradiance depends strongly on lunar phase and differs between waxing and waning phases, an accurate modeling of dependence of lunar irradiance on lunar phase angle is needed and requires long term consistent observations of the moon. Since its operation in 1998, the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite makes regular observations of moon through space view for about 15 years with comprehensive coverage of lunar phases varying from waxing to waning. Two of these VIRS bands are reflected solar bands centered at 0.62 and 1.61um. Lunar measurements through space view of VIRS are not subject to atmospheric effects. Therefore, long term lunar observation by VIRS on TRMM is an invaluable dataset for both verifying and calibrating lunar irradiance models. In this study, analysis of long-term lunar observations using VIRS data are performed and phase-angle dependence of lunar irradiance is modeled. Effects of waxing and waning phases on lunar irradiance for two visible bands of VIRS are quantified. It is found that the lunar disk-integrated intensity of waxing lunar phase is higher than those of waning phase for phase angle >40° for both channels and is consistent with the fact that the waning moon shows more of dark maria. The derived phase angledependences of lunar disk effective reflectance for these two channels are compared with model.
Kumagai, A.; Konoike, T.; Uchida, K. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Osada, T., E-mail: osada@issp.u-tokyo.ac.j [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)
2010-06-01
We report a novel angle-dependent magnetotransport phenomenon in layered conductors under strong interlayer electric fields. Interlayer conduction shows the Stark cyclotron resonance (SCR) when electron orbital motion becomes periodic in k-space. The SCR amplitude oscillates depending on magnetic field orientations. The conventional angle-dependent magnetoresistance oscillation (AMRO) switches to the angle-dependent SCR in high electric fields. We predict angle-dependent SCR due to electron orbital motion in layered conductors with coherent interlayer coupling. In addition, we demonstrate the expected switching from conventional AMRO to angle-dependent SCR in high electric fields using an organic conductor {alpha}-(BEDT-TTF){sub 2}NH{sub 4}Hg(SCN){sub 4}. This is the first observation of the SCR with orbital origin in bulk crystals.
Baver, Christine E.; Parlange, J.-Yves; Stoof, Cathelijne R.; DiCarlo, David A.; Wallach, Rony; Durnford, Deanna S.; Steenhuis, Tammo S.
2014-06-01
Pore velocity-dependent dynamic contact angles provide a mechanism for explaining the formation of fingers/columns in porous media. To study those dynamic contact angles when gravity is present, rectangular capillary tubes were used to facilitate observation of the complete interface without geometric distortion. Results show that the Hoffman (1975) relationship between dynamic contact angle and water velocity applies to gravity-affected flow fields, and that it (when adjusted for nonzero static contact angles) can be used to model dynamic capillary pressures for unstable wettings fronts in porous media by assuming that (1) pressure at the wetting front is discontinuous, (2) the flow field behind the fingertip is highly heterogeneous, and (3) the front line advances one or a few pores at the time. We demonstrate the utility of the Hoffman relationship for porous media with a published infiltration experiment by calculating the capillary pressure successfully at the unstable wetting front as a function of the flux of water in the finger and the grain size diameter.
Soda, Kazuo, E-mail: j45880a@cc.nagoya-u.ac.jp [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kondo, Hiroki; Yamaguchi, Kanta; Kato, Masahiko [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Tatsuhito; Niwa, Ken; Kusaba, Keiji; Hasegawa, Masashi [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Xeniya, Kozina; Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)
2015-09-15
Highlights: • Nb hydrides in 10-GPa supercritical water are studied by photoelectron spectroscopy. • The hydride components of the Nb 3d core-level spectra are increased with the depth. • The bulk valence-band spectrum shows a split band due to the Nb–H bond formation. • The hydrides are formed in the bulk and their surfaces are covered with Nb oxides. - Abstract: Nb hydrides formation in 10-GPa supercritical water has been investigated by angle-dependent micro-beam hard X-ray photoemission spectroscopy. In the Nb 3d core-level spectra, Nb hydride components are found in the slightly high binding energy side of the metallic components, and the oxide ones are observed even though little oxides are recognized in X-ray diffraction patterns. Obtained emission-angle dependence of the Nb 3d core-level spectra of Nb hydride specimens shows that the Nb hydride components increase with the emission angle decreased i.e. the sampling depth increased, while the oxide ones decrease. The bulk valence-band spectrum is obtained by decomposing the measured valence-band spectra into a bulk and surface components with use of the emission-angle dependence of the core-level and valence-band spectra; it consists of two bands. This implies the Nb–H chemical bond formation and Nb in an oxidation state, consistent with reported band structure calculations and the observed core-level chemical shifts. Thus it is confirmed by valence-band and core-level photoelectron spectroscopy that the Nb hydrides are formed inside the specimen, irrespective to the well-known high oxidation ability of supercritical water.
HF-induced airglow at magnetic zenith: theoretical considerations
E. V. Mishin
2005-01-01
Full Text Available Observations of airglow at 630nm (red line and 557.7nm (green line during HF modification experiments at the High Frequency Active Auroral Research Program (HAARP heating facility are analyzed. We propose a theoretical framework for understanding the generation of Langmuir and ion acoustic waves during magnetic zenith injections. We show that observations of HF-induced airglow in an underdense ionosphere as well as a decrease in the height of the emitting volume are consistent with this scenario.
A faster switching regime for zenithal bistable nematic displays
Rudin, J
1997-12-01
A simpler and faster switching regime for Zenithal Bistable Nematic displays is reported. A cell, based on homeotropic alignment of nematic liquid crystal over a continuous blazed monograting on one surface, can be switched using bipolar pulses an order of magnitude faster than monopolar pulses of the same voltage. We propose that this regime relies on simple dielectric coupling to drive the cell into a higher energy state with a long pulse time, and the relaxation into a lower energy state after the creation of surface defects from a shorter applied pulse. Although flexoelectric effects are observed, they do not form the basis of state selection as was proposed for the monopolar pulses
HF-Induced Airglow at Magnetic Zenith: Theoretical Considerations
2007-11-02
zenith (MZ) (Kosch et at the High Frequency Active Auroral Research Program al., 2002a; Pedersen et al., 2003). The same is true for the ( HAARP ) heating...fo’sinx must be met. For MZ injec- X _h k2 r 2 ə. Here, r, is the thermal electron gyroradius tions at the HAARP heating facility (XL- 14.60 ), Huhr...Langmuir waves (Kuo et al., 1997). These shadow height at the HAARP site increased from -230 to waves saturate via spectral transfer toward small ki, due
Kim, C.G. E-mail: cgkim@omega.sunmoon.ac.kr; Kim, H.C.; Ahn, S.J.; Cha, S.Y.; Chang, S.K
2000-06-02
The harmonics of magnetic induction and magnetostriction during AC magnetization in electrical steel were measured as a function of the magnetizing angle with respect to [0 0 1] axis, phi (cursive,open) Greek. The relative amplitudes of odd and even harmonics, respectively, for magnetic induction and magnetostriction decrease with the harmonic order, accompanying the contraction of the amplitudes. The decreasing contraction order of magnetostriction harmonics with phi (cursive,open) Greek is shown to be an even number multiple of that of magnetic induction. This relationship could provide an easy distinction of harmonics characteristics of magnetostriction from that of magnetic induction.
Valley-dependent Brewster angles and Goos-Hänchen effect in strained graphene.
Wu, Zhenhua; Zhai, F; Peeters, F M; Xu, H Q; Chang, Kai
2011-04-29
We demonstrate theoretically how local strains in graphene can be tailored to generate a valley-polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K') show different Brewster-like angles and Goos-Hänchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K' valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.
Characterizing time-dependent contact angles for sands hydrophobized with oleic and stearic acids
Subedi, S; Kawamoto, K; Jayarathna, L
2012-01-01
-frequency precipitation. A potential solution is to alter soil grain surfaces to become water repellent by mixing or coating the soil cover material with hydrophobic agents (HAs). In this study, hydrophobic CBs comprised of sands mixed with environmentally friendly HAs (oleic acid [OA] and stearic acid [SA]) were studied....... Water repellency (WR) characteristics for hydrophobized sand samples with different HA contents and representing different coating methods (mixing in and solvent aided) were measured. Initial contact angles (αi) for OA-coated samples sharply increased with increasing HA content and reached peak values...
Flight Test Techniques for Quantifying Pitch Rate and Angle of Attack Rate Dependencies
Grauer, Jared A.; Morelli, Eugene A.; Murri, Daniel G.
2017-01-01
Three different types of maneuvers were designed to separately quantify pitch rate and angle of attack rate contributions to the nondimensional aerodynamic pitching moment coefficient. These maneuvers combined pilot inputs and automatic multisine excitations, and were own with the subscale T-2 and Bat-4 airplanes using the NASA AirSTAR flight test facility. Stability and control derivatives, in particular C(sub mq) and C(sub m alpha(.)) were accurately estimated from the flight test data. These maneuvers can be performed with many types of aircraft, and the results can be used to increase simulation prediction fidelity and facilitate more accurate comparisons with wind tunnel experiments or numerical investigations.
Choi, D; Nookala, P; Patyal, B
2012-06-01
To determine the cross calibration factors which can predict more accurate dose distribution for fixed beam IMRT QA using Octavius phantom. The ion chamber based Octavius 2D-array detector (PTW, Freiburg, Germany) is a step in the right direction to measure the absolute dose and dose distribution for patient specific IMRT QA. However, the directional dependency of this detector made it less than desirable for angle dependent IMRT QA. We evaluated the new Octavius system (PTW, Freiburg, Germany) for angle dependent IMRT QA which compensates the response due to directional dependency. The system is designed for full arc VMAT QA, but does not always work for the discrete angle IMRT QA due to non-averaging of errors caused by directional dependence of detectors. The proposed method uses correction factors for each gantry angle. The dose for a 10cm × 10cm open field for each gantry angle was calculated by treatment planning system and measured using the Octavius phantom. The correction factors were determined at each gantry angle and the dose distribution was renormalized at each angle using correction factors. The discrepancy between measured and planned dose per monitor unit depended on the gantry angle and were in the range of +-4% using the PTW method. Using our method, uncertainty due to the detector angle dependency was eliminated. The new method removes the angle dependency of ion chamber based 2D array detector for the fixed beam IMRT QA. It provides fast, accurate and more realistic results for angle dependent IMRT QA. © 2012 American Association of Physicists in Medicine.
Multi-angle Spectra Evolution of Ionospheric Turbulence Excited by RF Interactions at HAARP
Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Watanabe, N.; Golkowski, M.; Bristow, W. A.; Bernhardt, P. A.; Briczinski, S. J., Jr.
2014-12-01
The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts
Experimental study on the incident-angle-dependent laser coupling features of polystyrene targets
Dong, Yunsong; Huang, Chengwu; Zhu, Tuo; Song, Tianming; Yang, Jiamin; Wei, Huiyue; Du, Huabing; Che, Xingsen; Mei, Yu
2016-11-01
Laser-produced plasmas have attracted great interest due to their potential utility in wide-ranging applications, especially in the field of inertial confinement fusion (ICF). For direct-driven ICF, laser coupling with polystyrene targets is a crucial and fundamental problem. In addition, oblique incidence is also a common phenomenon for laser facilities with multiple beams. It is necessary to evaluate the effects of oblique incidence on the laser coupling features relevant to the direct-driven ICF. Experiments using an intense nanosecond flat-top laser at around 4× {10}14 W cm-2 to irradiate polystyrene planar targets from three different incidence angles have been performed on the Shenguang-III prototype laser facility. The time-integrated absolute values of the full aperture backscatter (FABS), near backscatter scattering (NBS), and the x-ray conversion efficiency (CE) have been measured quantitatively. According to the experimental results, with the increase of the incidence angle, the percentage of the stimulated Brillouin backscatter and the overall x-ray CE decreased while the stimulated Raman backscatter fraction rose. Theoretical analyses based on hydrodynamic simulations and linear theory were qualitatively consistent with the experimental results. In addition, the specularly reflected light was also observed at 30° laser oblique incidence.
Azeredo, Bruno P.; Yeratapally, Saikumar R.; Kacher, Josh; Ferreira, Placid M.; Sangid, Michael D.
2016-11-01
Decorating 1D nanostructures (e.g., wires and tubes) with metal nanoparticles serves as a hierarchical approach to integrate the functionalities of metal oxides, semiconductors, and metals. This paper examines a simple and low-temperature approach to self-assembling gold nanoparticles (Au-np)—a common catalytic material—onto silicon nanowires (SiNWs). A conformal ultra-thin film (i.e., contact angle. Using transmission electron microscopy imaging, it is found that annealing temperature profile has a strong effect on the particle size. Additionally, the contact angle is found to be dependent on particle size and temperature even below the eutectic temperature of the Au-Si alloy. Molecular dynamics simulations were performed to investigate potential explanations for such experimental observation. In this temperature regime, the simulations reveal the formation of an amorphous phase at the interface between the catalyst and SiNW that is sensitive to temperature. This amorphous layer increases the adhesion energy at the interface and explains the contact angle dependence on temperature.
Calibration and Testing of Digital Zenith Camera System Components
Ulug, Rasit; Halicioglu, Kerem; Tevfik Ozludemir, M.; Albayrak, Muge; Basoglu, Burak; Deniz, Rasim
2017-04-01
Starting from the beginning of the new millennium, thanks to the Charged-Coupled Device (CCD) technology, fully or partly automatic zenith camera systems are designed and used in order to determine astro-geodetic deflections of the vertical components in several countries, including Germany, Switzerland, Serbia, Latvia, Poland, Austria, China and Turkey. The Digital Zenith Camera System (DZCS) of Turkey performed successful observations yet it needs to be improved in terms of automating the system and increasing observation accuracy. In order to optimize the observation time and improve the system, some modifications have been implemented. Through the modification process that started at the beginning of 2016, some DZCS components have been replaced with the new ones and some new additional components have been installed. In this presentation, the ongoing calibration and testing process of the DZCS are summarized in general. In particular, one of the tested system components is the High Resolution Tiltmeter (HRTM), which enable orthogonal orientation of DZCS to the direction of plump line, is discussed. For the calibration of these components, two tiltmeters with different accuracies (1 nrad and 0.001 mrad) were observed nearly 30 days. The data recorded under different environmental conditions were divided into hourly, daily, and weekly subsets. In addition to the effects of temperature and humidity, interoperability of two tiltmeters were also investigated. Results show that with the integration of HRTM and the other implementations, the modified DZCS provides higher accuracy for the determination of vertical deflections.
CIMEL Measurements of Zenith Radiances at the ARM Site
Marshak, Alexander; Wiscombe, Warren; Lau, William K. M. (Technical Monitor)
2002-01-01
Starting from October 1, 2001, Cimel at the ARM Central Facility in Oklahoma has been switched to a new "cloud mode." This mode allows taking measurements of zenith radiance when the Sun in blocked by clouds. In this case, every 13 min. Cimel points straight up and takes 10 measurements with 9 sec. time interval. The new Cimel's mode has four filters at 440, 670, 870 and 1020 nm. For cloudy conditions, the spectral contrast in surface albedo dominates over Rayleigh and aerosol effects; this makes normalized zenith radiances at 440 and 670 as well as for 870 and 1020 almost indistinguishable. We compare Cimel measurements with other ARM cart site instruments: Multi-Filter Rotating Shadowband Radiometer (MFRSR), Narrow Field of View (NFOV) sensor, and MicroWave Radiometer(MWR). Based on Cimel and MFRSR 670 and 870 nm channels, we build a normalized difference cloud index (NDCI) for radiances and fluxes, respectively. Radiance NDCI from Cimel and flux NDCI from MFRSR are compared between themselves as well as with cloud Liquid Water Path (LWP) retrieved from MWR. Based on our theoretical calculations and preliminary data analysis,there is a good correlation between NDCIs and LWP for cloudy sky above green vegetation. Based on this correlation, an algorithm to retrieve cloud optical depth from NDCI is proposed.
Shortwave Array Spectroradiometer–Zenith (SASZe) Instrument Handbook
Flynn, Connor J [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-04-01
The Shortwave Array Spectroradiometer – Zenith (SASZe) provides measurements of zenith spectral shortwave radiance at 1Hz over a continuous spectral range from approximately 300 nm to 1700 nm. The SASZe design connects an optical collector located outdoors to a pair of spectrometers and data collections system located indoors within a climate-controlled building via an umbilical cable of fiber optic and electrical cables. The light collector incorporates a collimator yielding a 1-degree Full Width at Half Maximum (FWHM) field of view. The data-acquisition electronics and spectrometers include an in-line fiber optic shutter and two Avantes fiber-coupled grating spectroradiometers within a temperature-controlled container. The Avantes Avaspec ULS 2048 charge-coupled device (CCD) spectrometer covers the wavelength range from about 300-1100 nm with a pixel spacing of less than 0.6 nm and a spectral resolution of about 2.4 nm FWHM. The Avantes Avaspec NIR256-1.7 spectrometer covers the wavelength range from about 950 nm to 1700 nm with a pixel spacing of less than 4 nm and a spectral resolution of about 6 nm FWHM.
Benniston, Andrew C; Harriman, Anthony; Li, Peiyi; Patel, Pritesh V; Sams, Craig A
2008-01-01
The rate constant for triplet energy transfer (k(TET)) has been measured in fluid solution for a series of mixed-metal Ru-Os bis(2,2':6',2''-terpyridine) complexes built around a tethered biphenyl-based spacer group. The length of the tether controls the central torsion angle for the spacer, which can be varied systematically from 37 to 130 degrees . At low temperature, but still in fluid solution, the spacer adopts the lowest-energy conformation and k(TET) shows a clear correlation with the torsion angle. A similar relationship holds for the inverse quantum yield for emission from the Ru-terpy donor. Triplet energy transfer is more strongly activated at higher temperature and the kinetic data require analysis in terms of two separate processes. The more weakly activated step involves electron exchange from the first-excited triplet state on the Ru-terpy donor and the size of the activation barrier matches well with that calculated from spectroscopic properties. The pre-exponential factor derived for this process correlates remarkably well with the torsion angle and there is a large disparity in electronic coupling through pi and sigma orbitals on the spacer. The more strongly activated step is attributed to electron exchange from an upper-lying triplet state localized on the Ru-terpy donor. Here, the pre-exponential factor is larger but shows the same dependence on the geometry of the spacer. Strangely, the difference in coupling through pi and sigma orbitals is much less pronounced. Despite internal flexibility around the spacer, k(TET) shows a marked dependence on the torsion angle computed for the lowest-energy conformation.
Dependence of elbow joint stiffness measurements on speed, angle, and muscle contraction level.
Kuxhaus, Laurel; Zeng, Sisi; Robinson, Charles J
2014-03-21
Elbow joint stiffness is critical to positioning the hand. Abnormal elbow joint stiffness may affect a person's ability to participate in activities of daily living. In this work, elbow joint stiffness was measured in ten healthy young adults with a device adapted from one previously used to measure stiffness in other joints. Measurements of elbow stiffness involved applying a constant-velocity rotational movement to the elbow and measuring the resultant displacement, torque, and acceleration. Elbow stiffness was then computed using a previously-established model for joint stiffness. Measurements were made at two unique elbow joint angles, two speeds, and two forearm muscle contraction levels. The results indicate that the elbow joint stiffness is significantly affected by both rotational speed and forearm muscle contraction level.
Retrieval of stratospheric O3 and NO2 vertical profiles using zenith scattered light observations
G S Meena; C S Bhosale; D B Jadhav
2006-06-01
Daily zenith scattered light intensity observations were carried out in the morning twilight hours using home-made UV-visible spectrometer over the tropical station Pune (18° 31′, 73° 51′)for the years 2000-2003.These observations are obtained in the spectral range 462-498 nm for the solar zenith angles (SZAs)varying from 87° to 91.5°. An algorithm has been developed to retrieve vertical proﬁles of ozone (O3) and nitrogen dioxide (NO2) from ground-based measurements using the Chahine iteration method.This retrieval method has been checked using measured and recalculated slant column densities (SCDs)and they are found to be well matching. O3 and NO2 vertical proﬁles have been retrieved using a set of their air mass factors (AMFs)and SCDs measured over a range of 87-91.5° SZA during the morning.The vertical proﬁles obtained by this method are compared with Umkehr proﬁles and ozonesondes and they are found to be in good agreement.The bulk of the column density is found near layer 20-25 km.Daily total column densities (TCDs)of O3 and NO2 along with their stratospheric and tropospheric counterparts are derived using their vertical proﬁles for the period 2000-2003.The total column,stratospheric column and tropospheric column amounts of both trace gases are found to be maximum in summer and minimum in the winter season.Increasing trend is found in column density of NO2 in stratospheric,tropospheric and surface layers,but no trend is observed in O3 columns for above layers during the period 2000-2003.
Field-angle and DC-bias dependence of spin-torque diode in giant magnetoresistive microstripe
Li, X.; Zhou, Y.; Zheng, C.; Chan, P. H.; Chan, M.; Pong, Philip W. T.
2016-11-01
The spin torque diode effect in all metal spintronic devices has been proposed as a microwave detector with a high power limit and resistivity to breakdown. The previous works have revealed the field-angle dependence of the rectified DC voltage (VDC) in the ferromagnetic stripe. The giant magnetoresistive (GMR) microstripe exhibits higher sensitivity compared with the ferromagnetic stripe. However, the influence of the magnetic field direction and bias current in the spin rectification of GMR microstripe is not yet reported. In this work, the angular dependence and bias dependence of resonant frequency (fR) and VDC are investigated. A macrospin model concerning the contribution of magnetic field, shape anisotropy, and unidirectional anisotropy is engaged to interpret the experimental data. fR exhibits a |sin δH| dependence on the in-plane field angle (δH). VDC presents either |sin δH| or |sin2 δH cos δH | relation, depending on the magnitude of Hext. Optimized VDC of 24 μV is achieved under 4 mT magnetic field applied at δH = 170°. Under out-of-plane magnetic field, fR shows a cos 2θH reliance on the polar angle (θH), whereas VDC is sin θH dependent. The Oersted field of the DC bias current (IDC) modifies the effective field, resulting in shifted fR. Enhanced VDC with increasing IDC is attributed to the elevated contribution of spin-transfer torque. Maximum VDC of 35.2 μV is achieved, corresponding to 47% increase compared with the optimized value under zero bias. Higher IDC also results in enlarged damping parameter in the free layer, resulting in increased linewidth in the spin torque diode spectra. This work experimentally and analytically reveals the angular dependence of fR and VDC in the GMR microstripe. The results further demonstrate a highly tunable fR and optimized VDC by bias current without the external magnetic field. GMR microstripe holds promise for application as a high-power, frequency-tunable microwave detector that works under small
Jyh Jian Chen
2014-03-01
Full Text Available Filling of liquid samples is realized in a microfluidic device with applications including analytical systems, biomedical devices, and systems for fundamental research. The filling of a disk-shaped polydimethylsiloxane (PDMS microchamber by liquid is analyzed with reference to microstructures with inlets and outlets. The microstructures are fabricated using a PDMS molding process with an SU-8 mold. During the filling, the motion of the gas-liquid interface is determined by the competition among inertia, adhesion, and surface tension. A single ramp model with velocity-dependent contact angles is implemented for the accurate calculation of surface tension forces in a three-dimensional volume-of-fluid based model. The effects of the parameters of this functional form are investigated. The influences of non-dimensional parameters, such as the Reynolds number and the Weber number, both determined by the inlet velocity, on the flow characteristics are also examined. An oxygen-plasma-treated PDMS substrate is utilized, and the microstructure is modified to be hydrophilic. Flow experiments are conducted into both hydrophilic and hydrophobic PDMS microstructures. Under a hydrophobic wall condition, numerical simulations with imposed boundary conditions of static and dynamic contact angles can successfully predict the moving of the meniscus compared with experimental measurements. However, for a hydrophilic wall, accurate agreement between numerical and experimental results is obvious as the dynamic contact angles were implemented.
A time dependent kinetic small angle neutron scattering study of a novel YFe phase.
Simmons, L M; Bentley, P M; Al-Jawad, M; Kilcoyne, S H
2013-06-26
Crystallization of amorphous Y67Fe33 into the YFe2 C15 Laves phase via a novel 'YFe' intermediate phase has been observed through to completion using time-resolved small angle neutron scattering (SANS). The nucleation and growth kinetics of the phase transformations have been studied at annealing temperatures below the crystallization temperatures for both the 'YFe' phase and the YFe2 phase. The SANS results agree with previously reported neutron diffraction and SANS data. At the annealing temperatures of 360, 370 and 380 °C, changes in the scattering intensity I(Q) occur as a result of the contrast between the amorphous matrix and the nucleating and growing Y and 'YFe' phases. Critical scattering occurs during each of the isotherms, relating to the full crystallization of Y67Fe33, and extrapolation gives a crystallization temperature of 382 °C. Beyond critical scattering, isotherms at 435, 450, and 465 °C reveal the details of the continuing transformation of the 'YFe' intermediate phase into the YFe2 C15 Laves phase.
Higher-order Bessel like beams with z-dependent cone angles
Ismail, Y
2010-08-01
Full Text Available -field are easily reproducible. Conclusively this new design for generating long range z-dependent Bessel-like beams can be an advantage for many applications especially in optical trapping. REFERENCES [1] Durnin J., ?Exact solution for nondiffracting beams: I...
Spin-Spin Interactions in Organic Magnetoresistance Probed by Angle-Dependent Measurements
Wagemans, W.; Schellekens, A. J.; Kemper, M.; Bloom, F. L.; Bobbert, P. A.; Koopmans, B.
2011-05-01
The dependence of organic magnetoresistance (OMAR) on the orientation of the magnetic field has been investigated. In contrast with previous claims, a finite and systematic change in magnitude is observed when the orientation of the field is changed with respect to the sample. It is demonstrated that, to explain these effects, spin-spin interactions have to be included in the models previously suggested for OMAR. Dipole coupling and exchange coupling are introduced in combination with either an anisotropy of the orientation of the spin pairs or an anisotropy in the hyperfine fields.
Djebbi, Ramzi
2013-08-19
Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.
Thickness dependence of surface energy and contact angle of water droplets on ultrathin MoS2 films.
Guo, Yanhua; Wang, Zhengfei; Zhang, Lizhi; Shen, Xiaodong; Liu, Feng
2016-06-01
We have performed a systematic density functional study of surface energy of MoS2 films as a function of thickness from one to twelve layers with the consideration of van der Waals (vdW) interactions using the vdW-DF and DFT-D2 methods. Both vdW schemes show that the surface energy will increase with the increase of the number of atomic layers and converge to a constant value at about six layers. Based on the calculated surface energies, we further analyze the surface contact angle of water droplets on the MoS2 film surface using Young's equation as a function of thickness in comparison with experiments, from which the water-MoS2 interfacial energy is derived to be independent of MoS2 thickness. Our calculations indicate that the vdW interactions between the MoS2 layers play an important role in determining surface energy, and results in the thickness dependence of the contact angle of water droplets on the MoS2 film surface. Our results explain well the recent wetting experiment [Nano Lett., 2014, 14(8), 4314], and will be useful for future studies of physical and chemical properties of ultrathin MoS2 films.
Boese, Christoph Kolja; Frink, Michael; Jostmeier, Janine; Haneder, Stefan; Dargel, Jens; Eysel, Peer; Lechler, Philipp
2016-01-01
Background. The femoral neck-shaft angle (NSA) is of high importance for the diagnostics and treatment of various conditions of the hip. However, rotational effects limit its precision and applicability using plain radiographs. This study introduces a novel method to measure the femoral NSA: the modified NSA (mNSA), possibly being less susceptible against rotational effects compared to the conventional NSA. Patients and Methods. The method of measurement is described and its applicability was tested in 400 pelvis computed tomography scans (800 hips). Age- and gender-dependent reference values are given and intra- and interrater reliability are analyzed. Results. The mean age of all 400 patients (800 hips) was 54.32 years (18-100, SD 22.05 years). The mean mNSA was 147.0° and the 95% confidence interval was 146.7°-147.4°. Differences of the mNSA between sexes, age groups, and sides were nonsignificant. The absolute difference between NSA and mNSA was 16.3° (range 3-31°; SD 4.4°); the correlation was high (0.738; p < 0.001). Overall, the intra- and interrater reliability were excellent for the mNSA. Interpretation. We introduced a novel concept for the analysis of the neck-shaft angle. The high reliability of the measurement has been proven and its robustness to hip rotation was demonstrated.
Mondal, Aniruddha, E-mail: aniruddhamo@gmail.com; Das, Amit Kumar [Department of Physics, National Institute of technology Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal, India-713209 (India); Dey, Anubhab [Indian Institute of Science Education and Research, Thiruvananthapuram, Computer Science Building, College of Engineering Trivandrum Campus, Thiruvananthapuram, Kerala 695016 (India); Choudhuri, Bijit [Department of Electronics & Communication Engineering, National Institute of Technology Agartala, Jirania, Tripura, India - 799046 (India)
2016-05-06
The 1D perpendicular In{sub 2-x}O{sub 3-y} nanostructure arrays have been synthesized by using glancing angle deposition (GLAD) technique. A low deposition rate of 0.5 A°/S produced highly porous structure. The current - voltage characteristics for the In{sub 2-x}O{sub 3-y}nanocolumnar array based were measured through a gold Schottky contact at different temperatures. The temperature dependent ideality factor was calculated from the observed current – voltage characteristics. The ideality factor was found to vary from 4.19 to 2.75 with a variation in temperature from 313 K to 473 K.
Uchida, K., E-mail: uchida@issp.u-tokyo.ac.j [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 (Japan); Konoike, T.; Osada, T. [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 (Japan)
2010-06-01
We present results of stereographic measurements of interlayer magnetoresistance in the quasi-two-dimensional (Q2D) organic conductor, {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4}, at around charge density wave (CDW) transition temperature T{sub c{approx}}8K. At 2 K in the CDW phase, there exists the anomalous Lebed resonance pattern, the amplitude of which is modulated by Danner-Chaikin oscillations in case of applied magnetic field close to the Q2D conducting plane. On the contrary, at 7 K just below T{sub c}, we have found that the Kajita oscillation of the cylindrical Fermi surfaces appears superposed on the anomalous Lebed resonance. A quantum model of interlayer tunneling demonstrates these behaviors qualitatively. These results suggest that magnetic breakdown plays a key role in anomalous angle-dependent magnetoresistance oscillations.
Angle-dependent magnetoresistance oscillations and magnetic breakdown in α-(BEDT-TTF)2KHg(SCN)4
Uchida, K.; Konoike, T.; Osada, T.
2010-06-01
We present results of stereographic measurements of interlayer magnetoresistance in the quasi-two-dimensional (Q2D) organic conductor, α-(BEDT-TTF)2KHg(SCN)4, at around charge density wave (CDW) transition temperature Tc˜8K. At 2 K in the CDW phase, there exists the anomalous Lebed resonance pattern, the amplitude of which is modulated by Danner-Chaikin oscillations in case of applied magnetic field close to the Q2D conducting plane. On the contrary, at 7 K just below Tc, we have found that the Kajita oscillation of the cylindrical Fermi surfaces appears superposed on the anomalous Lebed resonance. A quantum model of interlayer tunneling demonstrates these behaviors qualitatively. These results suggest that magnetic breakdown plays a key role in anomalous angle-dependent magnetoresistance oscillations.
Urlings, T. A. J., E-mail: t-urlings@hotmail.com [Medical Center Westeinde, Department of Radiology (Netherlands); Vries, A. C. de, E-mail: a.de.vries@mchaaglanden.nl; Mol van Otterloo, J. C. A. de, E-mail: a.de.molvanotterloo@mchaaglanden.nl; Eefting, D., E-mail: d.eefting@mchaaglanden.nl [Medical Center Westeinde, Department of Vascular Surgery (Netherlands); Linden, E. van der, E-mail: e.van.der.linden@mchaaglanden.nl [Medical Center Westeinde, Department of Radiology (Netherlands)
2015-06-15
PurposeThe purpose of this study was to objectify and evaluate risk factors for thromboembolic complications after treatment with a Zenith{sup ®} Low Profile Endovascular Graft (Zenith LP). Results were compared with those in the recent literature on endovascular aortic repair (EVAR) and with the thromboembolic complications in the patient group treated with a Zenith Flex Endovascular Graft in our institute in the period before the use of the Zenith LP.Materials and MethodsAll consecutive patients who were suitable for treatment with a Zenith LP endograft between October 2010 and December 2011 were included. The preprocedural computed tomography scan (CT), procedural angiographic images, and the postprocedural CT scans were evaluated for risk factors for and signs of thromboembolic complications. All patients treated between December 2007 and November 2012 with a Zenith Flex endograft were retrospectively evaluated for thromboembolic complications.ResultsIn the study period 17 patients were treated with a LP Zenith endograft. Limb occlusion occurred in 35 % of the patients. Limb occlusions occurred in 24 % of the limbs at risk (one limb occluded twice). In one patient two risk factors for limb occlusion were identified. Between December 2007 and November 2012, a total of 43 patients were treated with a Zenith Flex endograft. No limb occlusion or distal embolization occurred.ConclusionDespite that this was a small retrospective study, the Zenith LP endograft seems to be associated with more frequent thromboembolic complications compared with the known limb occlusion rates in the literature and those of the patients treated with a Zenith Flex endograft in our institute.
Zervantonakis, I K; Fung-Kee-Fung, S D; Lee, W-N; Konofagou, E E [Department of Biomedical Engineering, Columbia University, New York, NY (United States)
2007-07-21
Robust indices of regional and global cardiac function are a key factor in detection and treatment of heart disease as well as understanding of the fundamental mechanisms of a healthy heart. Myocardial elastography provides a noninvasive method for imaging and measuring displacement and strain of the myocardium for the early detection of cardiovascular disease. However, two-dimensional in-plane axial and lateral strains measured depend on the sonographic view used. This becomes especially critical in a clinical setting and may induce large variations in the measured strains, potentially leading to false diagnoses. A novel method in myocardial elastography is proposed for eliminating this view dependence by deriving the polar, principal and classified principal strains. The performance of the proposed methodology is assessed by employing 3D finite-element left-ventricular models of a control and an ischemic canine heart. Although polar strains are angle-independent, they are sensitive to the selected reference coordinate system, which requires the definition of a centroid of the left ventricle (LV). In contrast, principal strains derived through eigenvalue decomposition exhibit the inherent characteristic of coordinate system independence, offering view (i.e., angle and centroid)-independent strain measurements. Classified principal strains are obtained by assigning the principal components in the physical ventricular coordinate system. An extensive strain analysis illustrates the improvement in interpretation and visualization of the full-field myocardial deformation by using the classified principal strains, clearly depicting the ischemic and non-ischemic regions. Strain maps, independent of sonographic views and imaging planes, that can be used to accurately detect regional contractile dysfunction are demonstrated.
Zervantonakis, I. K.; Fung-Kee-Fung, S. D.; Lee, W.-N.; Konofagou, E. E.
2007-07-01
Robust indices of regional and global cardiac function are a key factor in detection and treatment of heart disease as well as understanding of the fundamental mechanisms of a healthy heart. Myocardial elastography provides a noninvasive method for imaging and measuring displacement and strain of the myocardium for the early detection of cardiovascular disease. However, two-dimensional in-plane axial and lateral strains measured depend on the sonographic view used. This becomes especially critical in a clinical setting and may induce large variations in the measured strains, potentially leading to false diagnoses. A novel method in myocardial elastography is proposed for eliminating this view dependence by deriving the polar, principal and classified principal strains. The performance of the proposed methodology is assessed by employing 3D finite-element left-ventricular models of a control and an ischemic canine heart. Although polar strains are angle-independent, they are sensitive to the selected reference coordinate system, which requires the definition of a centroid of the left ventricle (LV). In contrast, principal strains derived through eigenvalue decomposition exhibit the inherent characteristic of coordinate system independence, offering view (i.e., angle and centroid)-independent strain measurements. Classified principal strains are obtained by assigning the principal components in the physical ventricular coordinate system. An extensive strain analysis illustrates the improvement in interpretation and visualization of the full-field myocardial deformation by using the classified principal strains, clearly depicting the ischemic and non-ischemic regions. Strain maps, independent of sonographic views and imaging planes, that can be used to accurately detect regional contractile dysfunction are demonstrated.
Foran, Philip S; Boxall, Colin; Denison, Kieth R
2012-12-21
Transparent TiO(2) thin films were prepared on quartz substrates via a reverse micelle, sol-gel, spin-coating technique. The time dependence of the TiO(2) film photoinduced superhydrophilicity (PISH) was measured by goniometric observation of the contact angle, θ, of sessile water drops at the film surfaces. In these measurements, the TiO(2) substrate was illuminated by 315 nm light and drops were sequentially applied at a range of illumination times. Using a model for the wetting of heterogeneous surfaces derived by Israelachvili and Gee, these measurements were used to calculate the time dependence of f(2), the fractional surface coverage of the TiO(2) surface by adventitious contaminating organics (Israelachvili, J. N.; Gee, M. L. Contact angles on chemically heterogeneous surfaces. Langmuir 1989, 5, 288). Extending this model to include a Langmuir-Hinshelwood based kinetic analysis of f(2) as a function of time allowed for calculation of an expected value for θ immediately prior to illumination, that is, at illumination time t = 0. Such expected values of θ at t = 0 were calculated using two possible values of θ(1), the contact angle on a pristine unilluminated homogeneous TiO(2) surface: (i) θ(1) = 4° as suggested by, inter alia, Zubkov et al. (Zubkov, T.; Stahl, D.; Thompson, T. L.; Panayotov, D.; Diwald, O.; Yates, J. T. Ultraviolet Light-Induced Hydrophilicity Effect on TiO(2)(110)(1 × 1). Dominant Role of the Photooxidation of Adsorbed Hydrocarbons Causing Wetting by Water Droplets. J. Phys. Chem. B2005, 109, 15454); and (ii) where θ(1) = 25°, as suggested by Fujishima et al., representative of a more hydrophobic homogeneous TiO(2) surface that reconstructs upon exposure to ultraband gap illumination into a hydrophilic surface where θ(1) → 0° (Fujishima, A.; Zhang, X.; Tryk, D. A. TiO(2) photocatalysis and related surface phenomena Surf. Sci. Rep.2008, 63, 515). Analysis of data from our experiments and from selected literature sources
Quantitative assessment of meteorological and tropospheric Zenith Hydrostatic Delay models
Zhang, Di; Guo, Jiming; Chen, Ming; Shi, Junbo; Zhou, Lv
2016-09-01
Tropospheric delay has always been an important issue in GNSS/DORIS/VLBI/InSAR processing. Most commonly used empirical models for the determination of tropospheric Zenith Hydrostatic Delay (ZHD), including three meteorological models and two empirical ZHD models, are carefully analyzed in this paper. Meteorological models refer to UNB3m, GPT2 and GPT2w, while ZHD models include Hopfield and Saastamoinen. By reference to in-situ meteorological measurements and ray-traced ZHD values of 91 globally distributed radiosonde sites, over a four-years period from 2010 to 2013, it is found that there is strong correlation between errors of model-derived values and latitudes. Specifically, the Saastamoinen model shows a systematic error of about -3 mm. Therefore a modified Saastamoinen model is developed based on the "best average" refractivity constant, and is validated by radiosonde data. Among different models, the GPT2w and the modified Saastamoinen model perform the best. ZHD values derived from their combination have a mean bias of -0.1 mm and a mean RMS of 13.9 mm. Limitations of the present models are discussed and suggestions for further improvements are given.
Performance analysis of GPS augmentation using Japanese Quasi-Zenith Satellite System
Wu, F.; Kubo, N.; Yasuda, A.
2004-01-01
The current GPS satellite constellation provides limited availability and reliability for a country like Japan where mountainous terrain and urban canyons do not allow a clear skyline to the horizon. At present, the Japanese Quasi-Zenith Satellite System (QZSS) is under investigation through a government-private sector cooperation. QZSS is considered a multi-mission satellite system, as it is able to provide communication, broadcasting and positioning services for mobile users in a specified region with high elevation angle. The performance of a Global Navigation Satellite System (GNSS) can be quantified by availability, accuracy, reliability and integrity. This paper focuses on availability, accuracy and reliability of GPS with and without augmentation using QZSS. The availability, accuracy and reliability of GPS only and augmented GPS using QZSS in the Asia-Pacific and Australian area is studied by software simulation. The simulation results are described by the number of visible satellites as a measure of availability, geometric dilution of precision as a measure of accuracy and minimal detectable bias, and bias-to-noise rate as a measure of reliability, with spatial and temporal variations. It is shown that QZSS does not only improve the availability and accuracy of GPS positioning, but also enhances the reliability of GPS positioning in Japan and its neighboring area.
Khan, M; Rehman, J; Khan, M [The Islaimia University of Bahawalpur, Bahawalpur, Punjab (Pakistan); Chow, J [Princess Margaret Cancer Center, Toronto, ON (Canada)
2014-06-01
Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT.
Seasonal Dependence in the Solar Neutrino Flux
De Holanda, P C; González-Garciá, M Concepción; Valle, José W F
1999-01-01
MSW solutions of the solar neutrino problem predict a seasonal dependence of the zenith angle distribution of the event rates, due to the non-zero latitude at the Super-Kamiokande site. We calculate this seasonal dependence and compare it with the expectations in the no-oscillation case as well as just-so scenario, in the light of the latest Super-Kamiokande 708-day data. The seasonal dependence can be sizeable in the large mixing angle MSW solution and would be correlated with the day-night effect. This may be used to discriminate between MSW and just-so scenarios and should be taken into account in refined fits of the data.
Zenith Pass Problem of Inter-satellite Linkage Antenna Based on Program Guidance Method
Zhai Kun; Yang Di
2008-01-01
While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (TDRS). This paper deals with this problem by way of,firstly, introducing movement laws of the inter-satellite linkage to predict the movement of the user satellite antenna followed by analyzing the potential pass moment and the actual one of the zenith pass in detail. A number of specific orbit altitudes for the user satellite that can remove the blindness zone are obtained. Finally, on the base of the predicted results from the movement laws of the inter-satellite linkage, the zenith pass tracing strategies for the user satellite antenna are designed under the program guidance using a trajectory preprocessor. Simulations have confirmed the reasonability and feasibility of the strategies in dealing with the zenith pass problem.
Zhou, You
2014-01-01
Anisotropic azimuthal correlations are used to probe the properties and the evolution of the system created in heavy-ion collisions. Two-particle azimuthal correlations were used in the searches of $p_{\\rm T}$ dependent fluctuations of flow angle and magnitude, measured with the ALICE detector...
Sun, Tieyu; Huang, Haitao; Peng, Biaolin; Zheng, Renkui; Lam, Chi-Hang; Tang, Tao; Wang, Yu
2016-11-01
The change of superconducting transition temperature (Tc) with bond angle in iron-pnictides was investigated by first-principles calculation based on density functional theory. A Green's function method was adopted to estimate the maximum eigenvalue of Eliashberg equation (an indicator of Tc) for NaFeAs with different bond angles. Through calculations the band structure of NaFeAs was obtained. It was found that hole pockets could form at the center of the first Brillion zone in the band structure, which confirmed the existence of superconductivity in NaFeAs. The upper limit of the Fe-As-Fe bond angle for superconductivity was found to be 121° and the highest Tc would occur at the angle of 108°.
Majdak Marek
2017-01-01
Full Text Available The objective of this paper was to determine the relationship between the efficiency of photovoltaic panels and the value of the angle of their inclination relative to the horizon. For the purpose of experimental research have been done tests on the photovoltaic modules made of monocrystalline, polycrystalline and amorphous silicon. The experiment consisted of measurement of the voltage and current generated by photovoltaic panels at a known value of solar radiation and a specified resistance value determined by using resistor with variable value of resistance and known value of the angle of their inclination relative to the horizon.
Timofeev, E. E.; Vallinkoski, M. K.; Pollari, P.; Kangas, J.; Virdi, T.; Williams, P. J. S.; Nielsen, E.
2002-10-01
Coordinated STARE-EISCAT data from the E-region Rocket and Radar Instability Study (ERRRIS) campaign are used to study the flow angle distributions of threshold (signal-to-noise ratio [SNR] ≤ 1 dB) ionospheric parameters controlling the STARE radar echo appearance for either radar above Tromsø. Altogether, there are 64 measurements for the Finnish radar and 128 for the Norwegian radar. For the Finnish radar, the threshold E-field strength is drift-aligned with minimum-to-maximum ratio of the electron drift velocities of about 3. The strengths tend to decrease when going from positive to negative flow angles. For the Norwegian radar, the threshold electric fields are practically independent of flow angle. For the Finnish radar, the STARE line-of-sight Doppler velocities are exclusively positive, large, and well correlated with the corresponding EISCAT plasma velocity components. The Norwegian radar Doppler velocities are randomly distributed around zero and are practically uncorrelated. For either radar, the N(h) profiles have permanent upward vertical density gradients within the echo layers. The jet averaged threshold E-fields are lower in the westjet than within the eastjet, but the averaged threshold electron densities are higher in the westjet than in the eastjet. For the Norwegian radar, the jet averaged turbulence level is about two times higher within the eastjet. The flow angle distributions of the plasma wave turbulence level are different. The westjet distribution is of the equilibrium type with a maximum at small flow angles and a minimum at large angles. The eastjet distribution is consistent with a flat one and can be kept stationary only if there is a damping of the turbulence for small flow angles and an enhancement for large angles. It is then conjectured that Finnish radar threshold echoes are generated by the Farley-Buneman instability, but the Norwegian echoes by a nonlinear gradient drift or/and wind-driven mechanism. The gradient drift
Examining view angle effects on leaf N estimation in wheat using field reflectance spectroscopy
Song, Xiao; Feng, Wei; He, Li; Xu, Duanyang; Zhang, Hai-Yan; Li, Xiao; Wang, Zhi-Jie; Coburn, Craig A.; Wang, Chen-Yang; Guo, Tian-Cai
2016-12-01
Real-time, nondestructive monitoring of crop nitrogen (N) status is a critical factor for precision N management during wheat production. Over a 3-year period, we analyzed different wheat cultivars grown under different experimental conditions in China and Canada and studied the effects of viewing angle on the relationships between various vegetation indices (VIs) and leaf nitrogen concentration (LNC) using hyperspectral data from 11 field experiments. The objective was to improve the prediction accuracy by minimizing the effects of viewing angle on LNC estimation to construct a novel vegetation index (VI) for use under different experimental conditions. We examined the stability of previously reported optimum VIs obtained from 13 traditional indices for estimating LNC at 13 viewing zenith angles (VZAs) in the solar principal plane (SPP). Backscattering direction showed better index performance than forward scattering direction. Red-edge VIs including modified normalized difference vegetation index (mND705), ratio index within the red edge region (RI-1dB) and normalized difference red edge index (NDRE) were highly correlated with LNC, as confirmed by high R2 determination coefficients. However, these common VIs tended to saturation, as the relationships strongly depended on experimental conditions. To overcome the influence of VZA on VIs, the chlorophyll- and LNC-sensitive NDRE index was divided by the floating-position water band index (FWBI) to generate the integrated narrow-band vegetation index. The highest correlation between the novel NDRE/FWBI parameter and LNC (R2 = 0.852) occurred at -10°, while the lowest correlation (R2 = 0.745) occurred at 60°. NDRE/FWBI was more highly correlated with LNC than existing commonly used VIs at an identical viewing zenith angle. Upon further analysis of angle combinations, our novel VI exhibited the best performance, with the best prediction accuracy at 0° to -20° (R2 = 0.838, RMSE = 0.360) and relatively good accuracy
Kovalev, A. E.; Hill, S.; Qualls, J. S.
2002-10-01
We report on detailed angle-dependent studies of the microwave (ν=50-90 GHz) interlayer magnetoelectrodynamics of a single crystal sample of the organic charge-density-wave (CDW) conductor α-(BEDT-TTF)2KHg(SCN)4. Recently developed instrumentation enables both magnetic-field (B) sweeps for a fixed sample orientation and angle sweeps at fixed ν/B. We observe series' of resonant absorptions, which we attribute to periodic orbit resonances (POR)-a phenomenon closely related to cyclotron resonance. The angle dependence of the POR indicates that they are associated with the low-temperature quasi-one-dimensional (Q1D) Fermi surface (FS) of the title compound; indeed, all of the resonance peaks collapse onto a single set of ν/B versus angle curves, generated using a semiclassical magnetotransport theory for a single Q1D FS. We show that Q1D POR measurements provide one of the most direct methods for determining the Fermi velocity, without any detailed assumptions concerning the band structure; our analysis yields an average value of vF=6.5×104 m/s. Quantitative analysis of the POR harmonic content indicates that the Q1D FS is strongly corrugated. This is consistent with the assumption that the low-temperature FS derives from a reconstruction of the high-temperature quasi-two-dimensional FS, caused by the CDW instability. Detailed analysis of the angle dependence of the POR yields parameters associated with the CDW superstructure, which are consistent with published results. Finally, we address the issue as to whether or not the interlayer electrodynamics are coherent in the title compound. We obtain a relaxation time from the POR linewidths, which is considerably longer than the interlayer hopping time, indicating that the transport in this direction is coherent.
LI De-Min; YU Hong; SHEN Qi-Xing
2001-01-01
By incorporating the flavour-dependent quark-antiquark annihilation amplitude into the mass-squared matrix describing the mixing of the isoscalar states of a meson nonet, the new version of Schwinger's nonet mass formula,N which holds with a high accuracy for the 0-+, 1--, 2++, 2-+ and 3-- nonets, is derived and the mixing angle of theisoscalar octet-singlet for these honets is obtained. In particular, the mixing angle of the isoscalar octet singlet for the pseudoscalar nonet is determined to take the value of-12.92°, which is in agreement with the value range fiom -13° to -17° deduced fiom a rather exhaustive and up-to-date analysis of data. It is also pointed out that the omission of the flavour-dependent qq annihilation effect might be a factor resulting in the invalidity of Schwinger's original honet mass formula for the pseudoscalar nonet.
Iwamatsu, Masao
2016-10-01
The size-dependent contact angle and the drying and wetting morphological transition are studied with respect to the volume change for a spherical cap-shaped droplet placed on a spherical substrate. The line-tension effect is included using the rigorous formula for the Helmholtz free energy in the droplet capillary model. A morphological drying transition from a cap-shaped to a spherical droplet occurs when the substrate is hydrophobic and the droplet volume is small, similar to the transition predicted on a flat substrate. In addition, a morphological wetting transition from a cap-shaped to a wrapped spherical droplet occurs for a hydrophilic substrate and a large droplet volume. The contact angle depends on the droplet size: it decreases as the droplet volume increases when the line tension is positive, whereas it increases when the line tension is negative. The spherical droplets and wrapped droplets are stable when the line tension is positive and large.
Hayashi, Nobuhiko, E-mail: n-hayashi@21c.osakafu-u.ac.j [Nanoscience and Nanotechnology Research Center (N2RC), Osaka Prefecture University, 1-2 Gakuen-cho, Sakai 599-8570 (Japan) and CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nagai, Yuki [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); JST, TRIP, Chiyoda, Tokyo 102-0075 (Japan); Higashi, Yoichi [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531 (Japan)
2010-12-15
We theoretically discuss the magnetic-field-angle dependence of the zero-energy density of states (ZEDOS) in superconductors. Point-node and line-node superconducting gaps on spherical and cylindrical Fermi surfaces are considered. The Doppler-shift (DS) method and the Kramer-Pesch approximation (KPA) are used to calculate the ZEDOS. Numerical results show that consequences of the DS method are corrected by the KPA.
Hayashi, Nobuhiko; Nagai, Yuki; Higashi, Yoichi
2010-12-01
We theoretically discuss the magnetic-field-angle dependence of the zero-energy density of states (ZEDOS) in superconductors. Point-node and line-node superconducting gaps on spherical and cylindrical Fermi surfaces are considered. The Doppler-shift (DS) method and the Kramer-Pesch approximation (KPA) are used to calculate the ZEDOS. Numerical results show that consequences of the DS method are corrected by the KPA.
Kanatsu, Youhei; Sato, Masahide
2015-01-01
Large grains of a close-packed colloidal crystal have been experimentally shown to form in an inverted pyramidal pit by sedimentation [S. Matsuo et al., Appl. Phys. Lett. 82, 4285 (2003)]. Keeping this experiment in mind, we study the crystallization of Brownian particles. We carry out Brownian dynamics simulations in an inverted pyramidal-shaped container. The Brownian particles settle out toward the apex of the container by a uniform external force. If the apex angle is suitable, large grai...
Hybrid Endograft Solution for Complex Iliac Anatomy : Zenith Body and Excluder Limbs
Bos, Wendy T.; Tielliu, Ignace F.; Sondakh, Arthur O.; Vourliotakis, Georgios; Bracale, Umberto M.; Verhoeven, Eric L.
2010-01-01
The purpose of this study was to evaluate single-center results with selective use of Gore Excluder limbs (W.L. Gore & Associates, Flagstaff, AZ) in a Cook Zenith body (Cook Inc, Bloomington, IN) for elective endovascular abdominal aortic aneurysm (AAA) repair. A prospectively held database for
Cucurull, I.; Vilà-Guerau de Arellano, J.; Rius, A.
2002-01-01
Zenith Total Delay (ZTD) observations and model calculations are used to analyze a mesoscale convective system which yielded a large amount of precipitation over a short period of time in the north-western Mediterranean. ZTD observations are derived from the GPS signal delay whereas the ZTD model re
Wacker, F.K.; Bolze, X.; Felsenberg, D.; Wolf, K.J. [Department of Radiology, Benjamin Franklin University Hospital, Free University Berlin, D-12200 Berlin (Germany)
1998-06-01
Objective: To study magnetic resonance (MR) imaging pattern of normal hyaline articular cartilage in the knee joint with regard to the contribution of the ``magic angle`` effect to the MR signal. Design. Thirty-two healthy volunteers were imaged in a standard supine position in a 1.5-T unit using spin echo and gradient echo sequences. Nine volunteers were reimaged with the knee flexed. The signal behavior of the hyaline cartilage of the femoral condyles was evaluated qualitatively and quantitatively. The extended and flexed positions of the nine volunteers were compared. Results. A superficial and a deep hyperintense layer and a hypointense middle cartilage layer were observed. Segments of increased signal intensity were visible along the condyles; a magic angle effect on signal intensity was evident in the hypointense middle layer with both gradient echo and spin echo images. Conclusion. The MR signal behavior of hyaline cartilage is influenced by the alignment of the collagen fibers within the cartilage in relation to the magnetic field. Failure to recognize this effect may lead to inaccurate diagnosis. (orig.) With 4 figs., 17 refs.
Sheerin, J. P.; Rayyan, N.; Watanabe, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.
2013-10-01
The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.
Multi-angle Spectra Evolution of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP
Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Watanabe, N.; Golkowski, M.; Bernhardt, P. A.
2013-12-01
The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.
Nagai, Yuki; Kato, Yusuke [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Hayashi, Nobuhiko [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Tokyo 110-0015 (Japan); Yamauchi, Kunihiko [CNR-INFM, CASTI Regional Lab, I-67010 Coppito (L' Aqulia) (Italy); Harima, Hisatomo, E-mail: ynagai@Vortex.c.u-tokyo.ac.j [Department of Physics, Kobe University, Nada, Kobe 657-8501 (Japan)
2009-03-01
We investigate the field-angle-dependent zero-energy density of states for YNi{sub 2}B{sub 2}C with using realistic Fermi surfaces obtained by band calculations. Both the 17th and 18th bands are taken into account. For calculating the oscillating density of states, we adopt the Kramer-Pesch approximation, which is found to improve accuracy in the oscillation amplitude. We show that superconducting gap structure determined by analyzing STM experiments is consistent with thermal transport and heat capacity measurements.
Nagai, Yuki; Hayashi, Nobuhiko; Kato, Yusuke; Yamauchi, Kunihiko; Harima, Hisatomo
2009-03-01
We investigate the field-angle-dependent zero-energy density of states for YNi2B2C with using realistic Fermi surfaces obtained by band calculations. Both the 17th and 18th bands are taken into account. For calculating the oscillating density of states, we adopt the Kramer-Pesch approximation, which is found to improve accuracy in the oscillation amplitude. We show that superconducting gap structure determined by analyzing STM experiments is consistent with thermal transport and heat capacity measurements.
Liu, Yunfeng; Xie, Jianliang; Luo, Mei; Peng, Bo; Deng, Longjiang
2017-04-01
Traditional low infrared emissivity coatings based on aluminum flakes cannot own low IR emissivity and low lightness simultaneously. Herein, a new simple efficient method for the synthesis of brown Al/MnO2 composite pigments with low IR emissivity and low lightness is reported, through forming MnO2 layer on aluminum flakes by thermal cracking, then altering the shape and forming nanoshell by stirring in hot flowing liquid. The results indicate that the MnO2 particles, which have tetragonal structure with high crystallinity, are needlelike and forming a complete shell on the aluminum flakes. The optical properties of composite pigments can be tuned by mass of KMnO4 added in precursor and time of hot flowing. Strong angle-dependent optical effects are observed in five different angles through multi-angle reflectance spectrum, while low lightness and low IR emissivity are preserved. This work is expected to provide a new route for the preparation of colored aluminum effect pigments in low infrared emissivity coatings.
Berman, A. L.
1976-01-01
In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.
Mönig, H.; Lauermann, I.; Grimm, A.; Camus, C.; Kaufmann, C. A.; Pistor, P.; Jung, Ch.; Kropp, T.; Lux-Steiner, M. C.; Fischer, Ch.-H.
2008-12-01
Angle dependent X-ray emission spectroscopy (AXES) is introduced as a tool for depth dependent composition analysis. A controlled variation of the information depth is demonstrated by changing the geometry from grazing exit to grazing incidence geometry. First results are presented from Cu(In,Ga)Se 2 (CIGSe)-based polycrystalline thin film solar cell bi-layer components. A mathematical model explains changes in relative intensity due to the absorption and emission behavior of thin CdS and Zn(S,O) cover layers. The fact that the presented data can be modelled by ideal bi-layer structures, provides both, proof of concept in general and the proof of applicability to the relatively rough layered structures based on CIGSe. In bare CIGSe a homogeneous distribution of Cu and Ga is found in a depth range between 22 and 470 nm.
Neumann, L.; Meier, D.; Schmalhorst, J.; Rott, K.; Reiss, G.; Meinert, M.
2016-10-01
We investigated the temperature dependence of the switching current for a perpendicularly magnetized CoFeB film deposited on a nanocrystalline tungsten film with large oxygen content: nc-W(O). The effective spin Hall angle | ΘSH eff | ≈ 0.22 is independent of temperature, whereas the switching current increases strongly at low temperature. The increase indicates that the current induced switching itself is thermally activated, in agreement with a recent theoretical prediction. The dependence of the switching current on the in-plane assist field suggests the presence of an interfacial Dzyaloshinskii-Moriya interaction with D ≈ 0.23 mJ/m2, intermediate between the Pt/CoFe and Ta/CoFe systems. We show that the nc-W(O) is insensitive to annealing, which makes this system a good choice for the integration into magnetic memory or logic devices that require a high-temperature annealing process during fabrication.
Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector
ANTARES Collaboration; Aguilar, J. A.; Albert, A.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A. M.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration
2010-10-01
The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.
Reactivity and reaction rate studies on the fourth loading of ZENITH
Cameron, I.R.; Freemantle, R.G.; Reed, D.L.; Wilson, D.J. [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)] (and others)
1963-08-15
The determination of the excess reactivity, control rod worths, prompt neutron lifetime, flux fine structure, and reaction rates of various nuclides for the fourth loading of the heated zero energy reactor ZENITH is described. The core contains 7.76 kg of U235, giving a carbon/U235 atom ratio of 7578, and forms the most dilute of the range studied. Comparisons of the experimental results with calculations using multigroup diffusion codes are presented. (author)
Kobayashi, K.; Saito, M.; Ohmichi, E.; Osada, T.
2006-03-01
We report a novel electric field effect on angular dependent magnetotransport in quasi-one-dimensional layered conductors with a pair of sheetlike Fermi surfaces. Under tilted magnetic fields and additional interlayer electric fields, semiclassical electron orbits on two Fermi sheets become periodic at different magnetic field orientations. This causes double splitting of the Lebed’s commensurability resonance in interlayer transport, and the amount of splitting allows us to estimate the Fermi velocity directly. We have successfully demonstrated this effect in the organic conductor α-(BEDT-TTF)2KHg(SCN)4.
Wright, GY
2015-09-01
Full Text Available Solar ultraviolet radiation (UVR) data for matching time periods between November 2014 and February 2015 were recorded by two instruments, namely a UVR biometer and a Davis UVR sensor, and their data were compared. Several checks and challenges were...
ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight
O. Sumińska-Ebersoldt
2011-07-01
Full Text Available The photolysis frequency of dichlorine peroxide (ClOOCl J_{ClOOCl} is a critical parameter in catalytic cycles destroying ozone in the polar stratosphere. In the atmospherically relevant wavelength region, published laboratory measurements of ClOOCl absorption cross sections and spectra are not in good agreement, resulting in significant discrepancies in J_{ClOOCl}. Previous investigations of the consistency with atmospheric observations of ClO and ClOOCl have focused on the photochemical equilibrium between ClOOCl formation and photolysis, and thus could only constrain the ratio of J_{ClOOCl} over the rate constant of the ClO recombination reaction k_{rec}. Here, we constrain the atmospherically effective J_{ClOOCl} independent of k_{rec} using ClO data sampled in the same air masses before and directly after sunrise. Over sunrise, when the ClO/ClOOCl system comes out of thermal equilibrium and the influence of the ClO recombination reaction is negligible, the rise in ClO concentration is significantly faster than expected from J_{ClOOCl} based on the absorption spectrum proposed by Pope et al. (2007, but does not warrant cross sections larger than recently published values by Papanastasiou et al. (2009. In particular, the existence of a significant ClOOCl absorption band longwards of 420 nm, is effectively ruled out by our observations. Additionally, the night-time ClO observations show that the ClO/ClOOCl thermal equilibrium constant can not be significantly higher than the one proposed by Plenge et al. (2005.
ClOOCl photolysis at high solar zenith angles: analysis of the RECONCILE self-match flight
O. Sumińska-Ebersoldt
2012-02-01
Full Text Available The photolysis rate constant of dichlorine peroxide (ClOOCl, ClO dimer J_{ClOOCl} is a critical parameter in catalytic cycles destroying ozone (O_{3} in the polar stratosphere. In the atmospherically relevant wavelength region (λ > 310 nm, significant discrepancies between laboratory measurements of ClOOCl absorption cross sections and spectra cause a large uncertainty in J_{ClOOCl}. Previous investigations of the consistency of published J_{ClOOCl} with atmospheric observations of chlorine monoxide (ClO and ClOOCl have focused on the photochemical equilibrium between ClOOCl formation and photolysis, and thus could only constrain the ratio of J_{ClOOCl} over the ClOOCl formation rate constant k_{rec}. Here, we constrain the atmospherically effective J_{ClOOCl} independent of k_{rec}, using ClO measured in the same air masses before and directly after sunrise during an aircraft flight that was part of the RECONCILE field campaign in the winter 2010 from Kiruna, Sweden. Over sunrise, when the ClO/ClOOCl system comes out of thermal equilibrium and the influence of the ClO recombination reaction is negligible, the increase in ClO concentrations is significantly faster than expected from J_{ClOOCl} based on the absorption spectrum proposed by Pope et al. (2007, but does not warrant cross sections larger than recently published values by Papanastasiou et al. (2009. In particular, the existence of a significant ClOOCl absorption band longwards of 420 nm is not supported by our observations. The observed night-time ClO would not be consistent with a ClO/ClOOCl thermal equilibrium constant significantly higher than the one proposed by Plenge et al. (2005.
D. P. Grosvenor
2014-07-01
better predictor of τ biases at high θ0 than σCTT. For a given θ0, large decreases in re were observed as the cloud top heterogeneity changed from low to high values, although it is possible that physical changes to the clouds associated with cloud heterogeneity variation may account for some of this. However, for a given cloud top heterogeneity we find that the value of θ0 affects the sign and magnitude of the relative differences between re1.6, re2.1 and re3.7, which has implications for attempts to retrieve vertical cloud information using the different MODIS bands. The relatively larger decrease in re3.7 and the lack of change of re1.6 with both θ0 and cloud top heterogeneity suggest that re3.7 is more prone to retrieval biases due to high θ0 than the other bands. We discuss some possible reasons for this. Our results have important implications for individual MODIS swaths at high θ0, which may be used for case studies for example. θ0 values > 65° can occur at latitudes as low as 28° in mid-winter and for higher latitudes the problem will be more acute. Also, Level-3 daily averaged MODIS cloud property data consist of the averages of several overpasses for the high latitudes, which will occur at a range of θ0 values. Thus, some biased data are likely to be included. It is also likely that some of the θ0 effects described here would apply to τ and re retrievals from satellite instruments that use visible light at similar wavelengths along with forward retrieval models that assume plane parallel clouds, such as the GOES imagers, SEVIRI, etc.
Roode, S.R. de; Duynkerke, P.G.; Boot, Wim; Hage, Jeroen C.H. van der
2000-01-01
As part of the FIRE III (First ISCCP Regional Experiment) Arctic Cloud Experiment actinic flux measurements were made above the Arctic Sea ice during May 1998. FIRE III was designed to address questions concerning clouds, radiation and chemistry in the Arctic sea ice region. The actinic flux,
Zgarbová, Marie; Luque, F Javier; Šponer, Jiří; Otyepka, Michal; Jurečka, Petr
2012-09-11
A procedure for deriving force field torsion parameters including certain previously neglected solvation effects is suggested. In contrast to the conventional in vacuo approaches, the dihedral parameters are obtained from the difference between the quantum-mechanical self-consistent reaction field and Poisson-Boltzmann continuum solvation models. An analysis of the solvation contributions shows that two major effects neglected when torsion parameters are derived in vacuo are (i) conformation-dependent solute polarization and (ii) solvation of conformation-dependent charge distribution. Using the glycosidic torsion as an example, we demonstrate that the corresponding correction for the torsion potential is substantial and important. Our approach avoids double counting of solvation effects and provides parameters that may be used in combination with any of the widely used nonpolarizable discrete solvent models, such as TIPnP or SPC/E, or with continuum solvent models. Differences between our model and the previously suggested solvation models are discussed. Improvements were demonstrated for the latest AMBER RNA χOL3 parameters derived with inclusion of solvent effects in a previous publication (Zgarbova et al. J. Chem. Theory Comput.2011, 7, 2886). The described procedure may help to provide consistently better force field parameters than the currently used parametrization approaches.
Guan, Dongshi; Wang, Yong Jian; Charlaix, Elisabeth; Tong, Penger
We report direct atomic-force-microscope measurements of capillary force hysteresis and relaxation of a circular moving contact line (CL) formed on a long micron-sized hydrophobic fiber intersecting a water-air interface. The measured capillary force hysteresis and CL relaxation show a strong asymmetric speed dependence in the advancing and receding directions. A unified model based on force-assisted barrier-crossing is utilized to find the underlying energy barrier Eb and size λ associated with the defects on the fiber surface. The experiment demonstrates that the pinning (relaxation) and depinning dynamics of the CL can be described by a common microscopic frame-work, and the advancing and receding CLs are influenced by two different sets of relatively wetting and non-wetting defects on the fiber surface. Work supported in part by the Research Grants Council of Hong Kong SAR.
Kirchmann, P.S. [Department of Applied Physics, Stanford University, Stanford, CA (United States); Fachbereich Physik, Freie Universitaet Berlin (Germany); Schmitt, F.T.; Moore, R.G.; Chu, J.H.; Ru, N.; Fisher, I.R.; Shen, Z.X. [Department of Applied Physics, Stanford University, Stanford, CA (United States); Bovensiepen, U. [Fachbereich Physik, Freie Universitaet Berlin (Germany); Universitaet Duisburg-Essen, Institut fuer Experimentelle Physik, Duisburg (Germany); Rettig, L.; Krenz, M. [Fachbereich Physik, Freie Universitaet Berlin (Germany); Perfetti, L. [Fachbereich Physik, Freie Universitaet Berlin (Germany); Ecole Polytechnique, Palaiseau (France); Wolf, M. [Fachbereich Physik, Freie Universitaet Berlin (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany)
2010-07-01
Charge density wave (CDW) systems such as TbTe{sub 3} offer fascinating options for studying the correlation of electrons and the lattice. We investigate the ultrafast response of the charge density wave (CDW) phase in TbTe{sub 3} after femtosecond IR excitation using time- and angle-resolved photoemission. The time-dependent photoemission intensity at the Fermi level yields a characteristic time for the closing of the CDW bandgap. With increasing laser fluence the bandgap closes faster, pointing to an increasing slope of the excited potential energy surface. As function of electron momentum the amplitude of the response increases strongly at the position of the Fermi wave vector k{sub F}. These results vividly demonstrate that the CDW system is most susceptible to electronic excitations near k{sub F} and that these electronic perturbations drive collective excitations of the coupled electron-lattice system.
Shen, Z. X.
2011-08-15
The ({pi},{pi}) shadow band (SB) in La-based cuprate family (La214) was studied by angle-resolved photoemission spectroscopy (ARPES) over a wide doping range from x = 0.01 to x = 0.25. Unlike the well-studied case of the Bi-based cuprate family, an overall strong, monotonic doping dependence of the SB intensity at the Fermi level (E{sub F}) was observed. In contrast to a previous report for the presence of the SB only close to x = 1/8, we found it exists in a wide doping range, associated with a doping-independent ({pi},{pi}) wave vector but strongly doping-dependent intensity: It is the strongest at x {approx} 0.03 and systematically diminishes as the doping increases until it becomes negligible in the overdoped regime. This SB with the observed doping dependence of intensity can in principle be caused by the antiferromagnetic fluctuations or a particular form of low-temperature orthorhombic lattice distortion known to persist up to x {approx} 0.21 in the system, with both being weakened with increasing doping. However, a detailed binding energy dependent analysis of the SB at x = 0.07 does not appear to support the former interpretation, leaving the latter as a more plausible candidate, despite a challenge in quantitatively linking the doping dependences of the SB intensity and the magnitude of the lattice distortion. Our finding highlights the necessity of a careful and global consideration of the inherent structural complications for correctly understanding the cuprate Fermiology and its microscopic implication.
Technology for zenithal bistable display%顶点双稳显示技术
李耐和
2004-01-01
顶点双稳显示(Zenithal Bistable Display，简称ZBD)技术的最大特点是零功耗显示，它是唯一能够同有源阵列LCD竞争的无源寻址技术。ZBD技术能提供与有源阵列LcD同样的性能及图像质量，但功耗更低，且成本节约一半。
Ward, C A; Sefiane, K
2010-12-15
We review the thermodynamic approach to determining the surface tension of solid-fluid interfaces. If the pressure is in the narrow range where the contact angle, θ, can exist, then for isothermal systems, adsorption at the solid-liquid interface affects γ(SL) or θ, but γ(SV) is very nearly equal γ(LV), the surface tension of the adsorbing fluid. For a liquid partially filling a cylinder, the pressure in the liquid phase at the three-phase line, x(3)(L), depends on the curvature of the three-phase line, C(cl), but the line tension can play no role, since it acts perpendicular to the cylinder wall. C(cl) is decreased as the cylinder diameter is increased; x(3)(L) is increased; and θ increases. For a given value of C(cl), x(3)(L) can be changed by rotating the cylinder or by changing the height of the three-phase line in a gravitational field. In all cases, for water in borosilicate glass cylinders, the value of θ is shown to increase as x(3)(L) is increased. This behaviour requires the Gibbsian adsorption at the solid-liquid interface to be negative, indicating the liquid concentration in the interphase is less than that in the bulk liquid. For sessile droplets, the value of θ depends on both x(3)(L) and C(cl). If the value of θ for spherical sessile droplets is measured as a function of C(cl), the adsorption at the solid-liquid interface that would give that dependence can be determined. It is unnecessary to introduce the line tension hypothesis to explain the dependence of θ on C(cl). Adsorption at the solid-liquid interface gives a full explanation.
Dootz, Rolf; Pfohl, Thomas
2011-01-01
DNA interactions with polycations are not only important for our understanding of chromatin compaction but also for characterizing DNA-binding proteins involved in transcription, replication and repair. DNA is known to form several types of liquid-crystalline phases depending, among other factors, on polycation structure and charge density. Theoretical studies and simulations have predicted the wrapping of DNA around spherical positively charged polycations. As a potential mimic of the histone octamer or other DNA wrapping proteins, poly(amido amine) generation 6 (PAMAM6) dendrimers have been chosen for our study. The self-assembly of DNA induced by PAMAM6 has been investigated using small angle X-ray scattering (SAXS) in order to reveal the assemblies' structure dependence on the pH of the environment and on dendrimers concentration. We demonstrate that at pH 8.5 dense phases are formed and characterized by a 2D-columnar hexagonal lattice which is transformed into a 3D hexagonal lattice with increasing dendr...
Livne, E; Walder, R; Lichtenstadt, I; Thompson, T A; Livne, Eli; Burrows, Adam; Walder, Rolf; Lichtenstadt, Itamar; Thompson, Todd A.
2004-01-01
We have developed a time-dependent, multi-energy-group, and multi-angle (S$_n$) Boltzmann transport scheme for radiation hydrodynamics simulations, in one and two spatial dimensions. The implicit transport is coupled to both 1D (spherically-symmetric) and 2D (axially-symmetric) versions of the explicit Newtonian hydrodynamics code VULCAN. The 2D variant, VULCAN/2D, can be operated in general structured or unstructured grids and though the code can address many problems in astrophysics it was constructed specifically to study the core-collapse supernova problem. Furthermore, VULCAN/2D can simulate the radiation/hydrodynamic evolution of differentially rotating bodies. We summarize the equations solved and methods incorporated into the algorithm and present results of a time-dependent 2D test calculation. A more complete description of the algorithm is postponed to another paper. We highlight a 2D test run that follows for 22 milliseconds the immediate post-bounce evolution of a collapsed core. We present the r...
Kotte, R. [Forschungszentrum Rossendorf, IKH, PF 510119, Dresden (Germany); Alard, P.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P. [IN2P3/CNRS and Universite Blaise Pascal, Laboratoire de Physique Corpusculaire, Clermont-Ferrand (France); Andronic, A.A. [Institute for Nuclear Physics and Engineering, Bucharest (Romania); Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Basrak, Z.; Caplar, R.; Dzelalija, M.; Gasparic, I. [Rudjer Boskovic Institute Zagreb, Zagreb (Croatia); Benabderrahmane, M.L.; Cordier, E.; Herrmann, N. [Physikalisches Institut der Universitaet Heidelberg, Heidelberg (Germany); Fodor, Z. [Central Research Institute for Physics, Budapest (Hungary); Gobbi, A.; Hartmann, O.N.; Hildenbrand, K.D. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Grishkin, Y. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Hong, B. [Korea University, Seoul (Korea); Kecskemeti, J.; Kim, Y.J.; Kirejczyk, M.; Koczon, P.; Korolija, M.; Kress, T.; Lebedev, A.; Leifels, Y.; Lopez, X.; Merschmeyer, M.; Moesner, J.; Neubert, W.; Pelte, P.; Petrovici, M.; Rami, F.; Reisdorf, W.; De Schauenburg, B.; Schuettauf, A.; Seres, Z.; Sikora, B.; Sim, K.S.; Simion, V.; Siwek-Wilczynska, K.; Smolyankin, V.; Stoicea, G.; Tyminski, Z.; Wagner, P.; Wisniewski, K.; Wohlfarth, D.; Xiao, Z.G.; Yushmanov, Y.; Zhilin, A.
2005-02-01
Small-angle correlations of pairs of protons emitted in central collisions of Ca+Ca, Ru+Ru and Au+Au at beam energies from 400 to 1500 MeV per nucleon are investigated with the FOPI detector system at SIS/GSI Darmstadt. Dependences on system size and beam energy are presented which extend the experimental data basis of pp correlations in the SIS energy range substantially. The size of the proton-emitting source is estimated by comparing the experimental data with the output of a final-state interaction model which utilizes either static Gaussian sources or the one-body phase-space distribution of protons provided by the BUU transport approach. The trends in the experimental data, i.e.system size and beam energy dependences, are well reproduced by this hybrid model. However, the pp correlation function is found rather insensitive to the stiffness of the equation of state entering the transport model calculations. (orig.)
Malik, Vikash [Physics Department, University of Wisconsin Milwaukee, 1900 E. Kenwood Blvd., Milwaukee, WI 53211 (United States); Suthar, Kamleshkumar J. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States); Mancini, Derrick C. [Physical Sciences and Engineering, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States); Ilavsky, Jan, E-mail: ilavsky@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)
2014-03-15
Colloidal suspension of the silica coated magnetic nanoclusters (MNCs) was used to study the magnetic field mediated assembly of magnetic nanoparticles. The spatial arrangement of these MNCs in colloidal suspension was studied using the ultra-small-angle X-ray scattering (USAXS) technique with magnetic field applied in directions orthogonal and parallel to the scattering vector. In situ magnetic field analysis of the USAXS scattering measurement showed anisotropic behavior that can be attributed to the formation of colloidal crystals. During magnetization, the clustered magnetic core induces a large dipole moment, and the thickness of the silica shell helps keep distance between the neighboring particles. The assembly of these hybrid nanostructured particles was found to be dependent on the strength and orientation of this external magnetic field. The dipolar chains formed of MNCs arranged themselves into colloidal crystals formed by two-dimensional magnetic sheets. The structure factor calculations suggested that the lattice parameters of these colloidal crystals can be tuned by changing the strength of the external magnetic field. These experiments shed light on the stimuli-responsive assembly of magnetic colloidal nanoparticles that leads to the creation of tunable photonic crystals. - Highlights: • In situ analysis of Magnetically tunable colloidal nanocluster using Ultra Small Angle X-ray Scattering (USAXS) under uniform magnetic field. • The colloidal super-lattice structure was analyzed in magnetic field along the direction parallel and perpendicular to scattering vector. • Structure factors were extracted by subtracting form factor from the USAXS data using Irena software tool. • The observed super-lattice structural spacing can be tuned by extent of the strength of external magnetic field. • The structure factor calculations showed that the colloidal crystal has the hexagonal packing.
Kalita, J. Z.; Rzepecka, Z.
2017-04-01
Tropospheric delay is one of the key factors that influence the convergence time of the precise point positioning (PPP) method. Current models do not allow for the fixing of the zenith path delay tropospheric parameter, leaving the difference between nominal and final value to the estimation process. Here, we present an analysis of several PPP result-sets using the tropospheric parameter’s nominal value adopted from models: VMF1, GPT2w, MOPS, and ZERO-WET. The last variant assumes a zero value for the initial wet part of the zenith delay. The PPP results are subtracted from a solution based on the final tropospheric product from the International GNSS Service (IGS). Several days exhibiting the most active tropospheric conditions were selected for each of the 7 stations located in the mid-latitude Central European region. During the active days, application of the VMF1 model increases the resulting height component’s quality by about 33–36% when compared to the GPT2w and MOPS. The respective improvement in VMF1 latitude and longitude components is 27% and 15%. The average relative deterioration in the result standard deviations between active and calm tropospheric conditions reaches about 20–30% of the former. We discuss the impact of the initial tropospheric parameter’s variance and bias on positioning. In addition, we compare the results with those of other studies over the impact of active tropospheric conditions on the PPP method.
Podzharenko, Volodymyr A.; Kulakov, Pavlo I.
2001-06-01
The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.
Malik, Vikash; Suthar, Kamleshkumar J.; Mancini, Derrick C.; Ilavsky, Jan
2014-03-01
Colloidal suspension of the silica coated magnetic nanoclusters (MNCs) was used to study the magnetic field mediated assembly of magnetic nanoparticles. The spatial arrangement of these MNCs in colloidal suspension was studied using the ultra-small-angle X-ray scattering (USAXS) technique with magnetic field applied in directions orthogonal and parallel to the scattering vector. In situ magnetic field analysis of the USAXS scattering measurement showed anisotropic behavior that can be attributed to the formation of colloidal crystals. During magnetization, the clustered magnetic core induces a large dipole moment, and the thickness of the silica shell helps keep distance between the neighboring particles. The assembly of these hybrid nanostructured particles was found to be dependent on the strength and orientation of this external magnetic field. The dipolar chains formed of MNCs arranged themselves into colloidal crystals formed by two-dimensional magnetic sheets. The structure factor calculations suggested that the lattice parameters of these colloidal crystals can be tuned by changing the strength of the external magnetic field. These experiments shed light on the stimuli-responsive assembly of magnetic colloidal nanoparticles that leads to the creation of tunable photonic crystals.
Mottley, Jack Grigsby
Quantitative measurements of the interactions of ultrasound with inhomogeneous media serve the dual purposes of elucidating the physics of such interactions and making possible the noninvasive assessment of the state or quality of those materials. One objective of the research presented in this thesis was to provide a physical basis for the application of quantitative techniques to measurements of interactions of ultrasound with an intrinsically interesting inhomogeneous material, soft tissue. A survey of theoretical techniques relevant to the investigation of ultrasonic propagation in inhomogeneous media with both symmetric and non-symmetric inhomogeneities is presented, and the results of calculations based on these theories are compared to experimental measurements. Interactions of ultrasound with several types of soft tissues were investigated under a variety of conditions. Canine myocardium was studied in the normal state, during ischemic insult, after prolonged ischemia, and during reperfusion following transient ischemia. In addition, isolated bullfrog gastrocnemius muscle was studied during relaxation and tetany. The ultrasonic attenuation and backscatter of soft tissues were found to be dependent upon several physiologic and morphologic parameters. In tissues which exhibit regular organization into longitudinal fibers, such as muscles, the attenuation and backscatter were found to be dependent on the direction of propagation relative to the direction of the dominant orientation of the fibers. Specifically, the attenuation was greatest for propagation parallel to the dominant fiber direction, while backscatter was maximum for propagation perpendicular to the fibers. In contrast, these parameters were found to be independent of the angle of insonification in liver, a soft tissue that does not contain regularly oriented fibers. The attenuation and backscatter were affected by the state of contraction of skeletal muscle, with both attenuation and backscatter
王学滨; 姚再兴; 潘一山
2004-01-01
The inclination angle of shear band is analyzed considering heterogeneity of rock material when a single shear band is formed in the center of specimen under triaxial compression. The analytical solution of post-peak axial stress-axial strain curve is deduced using the assumption that the total post-peak deformation is composed of entire uniform elastic deformation and localized shear plastic deformation dependent on the thickness of shear band. The obtained solution shows that the post-peak stiffness is related to the inclination angle of shear band,confining pressure,thickness of shear band and elastic modulus,etc. Using the solution,the expression for the inclination angle of shear band can be presented easily and it is dependent on constitutive parameters of rock material and geometry parameters of rock specimen. Larger dilation angle or loading rate leads to increment of the inclination angle. In addition,the inclination angle increases with the thickness of the shear band,which cannot be explained or forecasted by other existing solutions,such as Coulomb inclination,Roscoe inclination and Arthur inclination,etc.
Inferring spatial clouds statistics from limited field-of-view, zenith observations
Sun, C.H.; Thorne, L.R. [Sandia National Labs., Livermore, CA (United States)
1996-04-01
Many of the Cloud and Radiation Testbed (CART) measurements produce a time series of zenith observations, but spatial averages are often the desired data product. One possible approach to deriving spatial averages from temporal averages is to invoke Taylor`s hypothesis where and when it is valid. Taylor`s hypothesis states that when the turbulence is small compared with the mean flow, the covariance in time is related to the covariance in space by the speed of the mean flow. For clouds fields, Taylor`s hypothesis would apply when the {open_quotes}local{close_quotes} turbulence is small compared with advective flow (mean wind). The objective of this study is to determine under what conditions Taylor`s hypothesis holds or does not hold true for broken cloud fields.
Can liquid water profiles be retrieved from passive microwave zenith observations?
Crewell, Susanne; Ebell, Kerstin; Löhnert, Ulrich; Turner, D. D.
2009-03-01
The ability to determine the cloud boundaries and vertical distribution of cloud liquid water for single-layer liquid clouds using zenith-pointing microwave radiometers is investigated. Simulations are used to demonstrate that there is little skill in determining either cloud base or cloud thickness, especially when the cloud thickness is less than 500 m. It is also shown that the different distributions of liquid water content within a cloud with known cloud boundaries results in a maximum change in the brightness temperature of less than 1 K at the surface from 20 to 150 GHz, which is on the order of the instrument noise level. Furthermore, it is demonstrated using the averaging kernel that the number of degrees of freedom for signal (i.e., independent pieces of information) is approximately 1, which implies there is no information on vertical distribution of liquid water in the microwave observations.
Zenith skylight intensity and color during the total solar eclipse of 20 July 1963.
Sharp, W E; Lloyd, J W; Silverman, S M
1966-05-01
The zenith skylight intensity was measured, with a resolution of 10 A, over the wavelength range from 5200 A to 6400 A during a total solar eclipse at Hermon, Maine. The intensity was found to change by about two orders of magnitude in the 2-min period before totality and reached a minimum during totality of 19.5 kR/A at 5200 A. The spectral distribution remained that of the day sky until the sun was more than 99.8% obscured. During totality, the shorter wavelengths were enhanced, indicating a shift to the blue in sky color. Comparisons with an independent measurement from an aircraft show that the intensity scale height of the secondary scattered component, predominating at totality, is significantly less than that of the day sky. The measurements are compared with the day and twilight sky.
Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device
Raisch, A.
2014-07-01
We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.
ZHU Qinglin; ZHAO Zhenwei; LIN Leke; WU Zhensen
2010-01-01
In the precise point positioning (PPP), some impossible accurately simulated systematic errors still remained in the GPS observations and will inevitably degrade the precision of zenith tropospheric delay (ZTD) estimation. The stochastic models used in the GPS PPP mode are compared. In this paper, the research results show that the precision of PPP-derived ZTD can be obviously improved through selecting a suitable stochastic model for GPS measurements. Low-elevation observations can cover more troposphere information that can improve the estimation of ZTD. A new stochastic model based on satellite low elevation cosine square is presented. The results show that the stochastic model using satellite elevation-based cosine square function is better than previous stochastic models.
Delgadillo, Rodrigo
Clouds impact Earth's climate through cloud transmission and reflection properties. Clouds reflect approximately 15 percent of the incoming solar radiation at the top of the atmosphere. A key cloud radiative variable is cloud optical depth, which gives information about how much light is transmitted through a cloud. Historically, remote measurements of cloud optical depth have been limited to uniform overcast conditions and had low temporal and spatial resolution. We present a novel method to measure cloud optical depth for coastal regions from spectral zenith radiance measurements for optically thin clouds, which removes some of these limitations. Our measurement site is part of South Florida's Cloud-Aerosol-Rain Observatory (CAROb), located on Virginia Key, FL (6 km from Miami). This work is based on Marshak et al.'s method for finding cloud optical depth from vegetative sites that provide a strong spectral contrast between red and near infrared surface albedo. However, given the unique nature of our site, which contains water, vegetation, beach, and urban surface types, we found no such spectral contrast at those wavelength pairs. We measured albedo, with hyperspectral resolution, for different surface types around our measurement site to estimate the effective spectral albedo for the area centered on the site with a 5km radius. From this analysis, we found the best possible albedo contrast (573.9 and 673.1 nm) for our site. We tested the derived cloud optical depth from zenith radiance at these two wavelengths against a concurrently running polarized micro pulse LIDAR (MPL) and found good agreement.
New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop
Li, Wei; Yuan, Yunbin; Ou, Jikun; Chai, Yanju; Li, Zishen; Liou, Yuei-An; Wang, Ningbo
2015-01-01
The initial IGGtrop model proposed for Chinese BDS (BeiDou System) is not very suitable for BDS/GNSS research and application due to its large data volume while it shows a global mean accuracy of 4 cm. New versions of the global zenith tropospheric delay (ZTD) model IGGtrop are developed through further investigation on the spatial and temporal characteristics of global ZTD. From global GNSS ZTD observations and weather reanalysis data, new ZTD characteristics are found and discussed in this study including: small and inconsistent seasonal variation in ZTD between and stable seasonal variation outside; weak zonal variation in ZTD at higher latitudes (north of and south of ) and at heights above 6 km, etc. Based on these analyses, new versions of IGGtrop, named , are established through employing corresponding strategies: using a simple algorithm for equatorial ZTD; generating an adaptive spatial grid with lower resolutions in regions where ZTD varies little; and creating a method for optimized storage of model parameters. Thus, the models require much less parameters than the IGGtrop model, nearly 3.1-21.2 % of that for the IGGtrop model. The three new versions are validated by five years of GNSS-derived ZTDs at 125 IGS sites, and it shows that: demonstrates the highest ZTD correction performance, similar to IGGtrop; requires the least model parameters; is moderate in both zenith delay prediction performance and number of model parameters. For the model, the biases at those IGS sites are between and 4.3 cm with a mean value of cm and RMS errors are between 2.1 and 8.5 cm with a mean value of 4.0 cm. Different BDS and other GNSS users can choose a suitable model according to their application and research requirements.
Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China
Peng Jiang
2016-05-01
Full Text Available GPS has become a very effective tool to remotely sense precipitable water vapor (PWV information, which is important for weather forecasting and nowcasting. The number of geodetic GNSS stations set up in China has substantially increased over the last few decades. However, GPS PWV derivation requires surface pressure to calculate the precise zenith hydrostatic delay and weighted mean temperature to map the zenith wet delay to precipitable water vapor. GPS stations without collocated meteorological sensors can retrieve water vapor using standard atmosphere parameters, which lead to a decrease in accuracy. In this paper, a method of interpolating NWP reanalysis data to site locations for generating corresponding meteorological elements is explored over China. The NCEP FNL dataset provided by the NCEP (National Centers for Environmental Prediction and over 600 observed stations from different sources was selected to assess the quality of the results. A one-year experiment was performed in our study. The types of stations selected include meteorological sites, GPS stations, radio sounding stations, and a sun photometer station. Compared with real surface measurements, the accuracy of the interpolated surface pressure and air temperature both meet the requirements of GPS PWV derivation in most areas; however, the interpolated surface air temperature exhibits lower precision than the interpolated surface pressure. At more than 96% of selected stations, PWV differences caused by the differences between the interpolation results and real measurements were less than 1.0 mm. Our study also indicates that relief amplitude exerts great influence on the accuracy of the interpolation approach. Unsatisfactory interpolation results always occurred in areas of strong relief. GPS PWV data generated from interpolated meteorological parameters are consistent with other PWV products (radio soundings, the NWP reanalysis dataset, and sun photometer PWV data. The
On the angular dependence and scattering model of polar mesospheric summer echoes at VHF
Sommer, Svenja; Stober, Gunter; Chau, Jorge L.
2016-01-01
We present measurements of the angular dependence of polar mesospheric summer echoes (PMSE) with the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). Our results are based on multireceiver and multibeam observations using beam pointing directions with off-zenith angles up to 25° as well as on spatial correlation analysis (SCA) from vertical beam observations. We consider a beam filling effect at the upper and lower boundaries of PMSE in tilted beams, which determines the effective mean angle of arrival. Comparing the average power of the vertical beam to the oblique beams suggests that PMSE are mainly not as aspect sensitive as in contrast to previous studies. However, from SCA, times of enhanced correlation are found, indicating aspect sensitivity or a localized scattering mechanism. Our results suggest that PMSE consist of nonhomogeneous isotropic scattering and previously reported aspect sensitivity values might have been influenced by the inhomogeneous nature of PMSE.
Liu, Jiye; Chen, Xihong; Sun, Jizhe; Liu, Qiang
2017-02-01
The tropospheric delay is a systematic error source in the Global Navigation Satellite System (GNSS) positioning. However, without accuracy meteorological information, the quality of the Zenith Tropospheric Delay (ZTD) derived from empirical tropospheric models like Saastamoinen model will degrade, leading to inaccurate estimates of positions. To solve the above problem, on the basis of Global Pressure and Temperature 2/2w (GPT2/GPT2w) model, this paper conducted GPT2/GPT2w+Saastamoinen models for estimating ZTD over Asian area. As GPT2w model has two resolutions of 1 and 5 degrees, the effects of two models (GPT2_5w+S refers to GPT2w+Saastamoinen model with the resolution of 5 degree; GPT2_1w+S refers to GPT2w+Saastamoinen model with the resolution of 1 degree) were analyzed respectively. The model's validation was carried out using the International GNSS Service (IGS) ZTD values derived from the observed data in the year 2012 at 27 IGS stations. The results show that the GPT2_1w+S model can provide tropospheric delay corrections with bias of 0.66 cm and Root Mean Square (RMS) of 4.93 cm, which is superior to GPT2+S model. The annual bias and RMS for the GPT2_5w+S model are slightly worse than that for the GPT2_1w+S model. For most stations, the bias and RMS show seasonal characteristics. The relation between the annual bias and RMS with latitude for the models is not obvious, and a latitude dependency between the models could not be detected.
Erbil, H. Yildirim
2014-12-01
A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, wetting has been studied using contact angles of drops on solids for more than 200 years, the question remains unanswered: Is wetting of a rough and chemically heterogeneous surface controlled by the interactions within the solid/liquid contact area beneath the droplet or only at the three-phase contact line? After the publications of Pease in 1945, Extrand in 1997, 2003 and Gao and McCarthy in 2007 and 2009, it was proposed that advancing, receding contact angles, and contact angle hysteresis of rough and chemically heterogeneous surfaces are determined by interactions of the liquid and the solid at the three-phase contact line alone and the interfacial area within the contact perimeter is irrelevant. As a consequence of this statement, the well-known Wenzel (1934) and Cassie (1945) equations which were derived using the contact area approach are proposed to be invalid and should be abandoned. A hot debate started in the field of surface science after 2007, between the three-phase contact line and interfacial contact area approach defenders. This paper presents a review of the published articles on contact angles and summarizes the views of the both sides. After presenting a brief history of the contact angles and their measurement methods, we discussed the basic contact angle theory and applications of contact angles on the characterization of flat, rough and micropatterned superhydrophobic surfaces. The weak and strong sides of both three-phase contact line and contact area approaches were discussed in detail and some practical conclusions were drawn.
Mukesh Singhal
2012-01-01
Conclusion: Digital imaging provides an immediate treatment option for the patients. Software also provides an interim aid, for the clinician as well as technician, in the form of two-dimensional photographs. CAD-CAM is entirely a helping instrument against the conservative prosthetic options and gingival zenith position for a rotated central incisor. It helps in patient education and in motivation.
Toshiaki Iwata
2011-01-01
Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX is a remote control method that permits synchronization between a ground station atomic clock and Japanese quasi-zenith satellite system (QZSS crystal oscillators. To realize the RESSOX of the QZSS, the utilization of navigation signals of QZSS for feedback control is an important issue. Since QZSS transmits seven navigation signals (L1C/A, L1CP, L1CD, L2CM, L2CL, L5Q, and L5I, all combinations of these signals should be evaluated. First, the RESSOX algorithm will be introduced. Next, experimental performance will be demonstrated. If only a single signal is available, ionospheric delay should be input from external measurements. If multiple frequency signals are available, any combination, except for L2 and L5, gives good performance with synchronization error being within two nanoseconds that of RESSOX. The combination of L1CD and L5Q gives the best synchronization performance (synchronization error within 1.14 ns. Finally, in the discussion, comparisons of long-duration performance, computer simulation, and sampling number used in feedback control are considered. Although experimental results do not correspond to the simulation results, the tendencies are similar. For the overlapping Allan deviation of long duration, the stability of 1.23×10−14 at 100,160 s is obtained.
Estimating Zenith Tropospheric Delays from BeiDou Navigation Satellite System Observations
Xin Sui
2013-04-01
Full Text Available The GNSS derived Zenith Tropospheric Delay (ZTD plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS. The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages.
Automated rain rate estimates using the Ka-band ARM Zenith Radar (KAZR
A. Chandra
2014-02-01
Full Text Available The use of millimeter wavelength radars for probing precipitation has recently gained interest. However, estimation of precipitation variables is not straightforward due to strong attenuation, radar receiver saturation, antenna wet radome effects and natural microphysical variability. Here, an automated algorithm is developed for routinely retrieving rain rates from profiling Ka-band (35-GHz ARM zenith radars (KAZR. A 1-D simple, steady state microphysical model is used to estimate the impact of microphysical processes and attenuation on the profiles of the radar observables at 35-GHz and thus provide criteria for identifying when attenuation or microphysical processes dominate KAZR observations. KAZR observations are also screened for saturation and wet radome effects. The proposed algorithm is implemented in two steps: high rain rates are retrieved by using the amount of attenuation in rain layers, while lower rain rates by the Ze–R (reflectivity-rain rate relation is implemented. Observations collected by the KAZR, disdrometer and scanning weather radars during the DYNAMO/AMIE field campaign at Gan Island of the tropical Indian Ocean are used to validate the proposed approach. The results indicate that the proposed algorithm can be used to derive robust statistics of rain rates in the tropics from KAZR observations.
Automated rain rate estimates using the Ka-band ARM zenith radar (KAZR)
Chandra, A.; Zhang, C.; Kollias, P.; Matrosov, S.; Szyrmer, W.
2015-09-01
The use of millimeter wavelength radars for probing precipitation has recently gained interest. However, estimation of precipitation variables is not straightforward due to strong signal attenuation, radar receiver saturation, antenna wet radome effects and natural microphysical variability. Here, an automated algorithm is developed for routinely retrieving rain rates from the profiling Ka-band (35-GHz) ARM (Atmospheric Radiation Measurement) zenith radars (KAZR). A 1-dimensional, simple, steady state microphysical model is used to estimate impacts of microphysical processes and attenuation on the profiles of radar observables at 35-GHz and thus provide criteria for identifying situations when attenuation or microphysical processes dominate KAZR observations. KAZR observations are also screened for signal saturation and wet radome effects. The algorithm is implemented in two steps: high rain rates are retrieved by using the amount of attenuation in rain layers, while low rain rates are retrieved from the reflectivity-rain rate (Ze-R) relation. Observations collected by the KAZR, rain gauge, disdrometer and scanning precipitating radars during the DYNAMO/AMIE field campaign at the Gan Island of the tropical Indian Ocean are used to validate the proposed approach. The differences in the rain accumulation from the proposed algorithm are quantified. The results indicate that the proposed algorithm has a potential for deriving continuous rain rate statistics in the tropics.
Gouveia, T. A. F.; Galera Monico, J. F.; Alves, D. B. M.; Sapucci, L.
2016-12-01
The effect that the GNSS (Global Navigation Satellite System) satellites signals suffer when passing through the electrically neutral Earth's atmosphere (neutrosphere) is due to the presence of gases and water vapor with heterogeneous distribution. This effect is the neutrospheric (or tropospheric) delay. In order to minimize such delay, which is normally mapped to the zenith (ZND), models can be used: theoretical models (blinds models; Hopfield; Saastamoinen); Numerical Weather Prediction (NWP) models; or estimated during the GNSS data processing. ZND obtained from the regional NWP models present better accuracy when assessed against the estimated ZND (reference), because the influence of regional climatic characteristics is better described when using NWP. Such models include continentality, dry and wet (like Amazon region) regions, seasonality with stronger variation (summer and winter), as well as a better spatial resolution. In Brazil, CPTEC/INPE (Center for Weather Forecasting and Climate Studies/Brazilian Institute for Space Research) is operating a NWP model for South America. ZND/CPTEC predictions are produced as an operational product from regional NWP. In this work our main aim is to assess the quality of PPP (Precision Point Positioning) considering the temporal resolution of the new CPTEC/INPE NWP regional model. For doing that, the impact of different neutrosphere models in the context of PPP, considering blind models for the neutrosphere delay in the PPP are also assessed by comparison to the ZND/CPTEC model. The analysis is accomplished in different Brazilian regions considering the ZND seasonal variations.
Estimating zenith tropospheric delays from BeiDou navigation satellite system observations.
Xu, Aigong; Xu, Zongqiu; Ge, Maorong; Xu, Xinchao; Zhu, Huizhong; Sui, Xin
2013-04-03
The GNSS derived Zenith Tropospheric Delay (ZTD) plays today a very critical role in meteorological study and weather forecasts, as ZTDs of thousands of GNSS stations are operationally assimilated into numerical weather prediction models. Recently, the Chinese BeiDou Navigation Satellite System (BDS) was officially announced to provide operational services around China and its neighborhood and it was demonstrated to be very promising for precise navigation and positioning. In this contribution, we concentrate on estimating ZTD using BDS observations to assess its capacity for troposphere remote sensing. A local network which is about 250 km from Beijing and comprised of six stations equipped with GPS- and BDS-capable receivers is utilized. Data from 5 to 8 November 2012 collected on the network is processed in network mode using precise orbits and in Precise Point Positioning mode using precise orbits and clocks. The precise orbits and clocks are generated from a tracking network with most of the stations in China and several stations around the world. The derived ZTDs are compared with that estimated from GPS data using the final products of the International GNSS Service (IGS). The comparison shows that the bias and the standard deviation of the ZTD differences are about 2 mm and 5 mm, respectively, which are very close to the differences of GPS ZTD estimated using different software packages.
Anomalies of zenith tropospheric delay following the Mw 7.8 Haida Gwaii earthquake
Yao, Y. B.; Lei, X. X.; Liu, Q.; He, C. Y.; Zhang, B.; Zhang, L.
2014-05-01
The 2012 Haida Gwaii earthquake was a massive Mw 7.8 earthquake that struck the Queen Carlotte Islands Region on 28 October 2012 (UTC). This study analyzed the variations in zenith tropospheric delay (ZTD) following the Mw 7.8 Haida Gwaii earthquake using near real-time ZTD data collected from eleven stations in the seismic region and the forecast ZTD of ECMWF. A new differential method was used to detect anomalies of ZTD time series. Result showed that obvious ZTD anomalies occurred on the day of the earthquake (day-of-year, doy 302). There were anomalous ZTD variations at eight stations in the post-earthquake period on doy 302, possibly due to the processes of earthquake-generated acoustic waves. Propagation of acoustic waves caused variations of tropospheric parameters (e.g., atmospheric pressure, temperate, and atmosphere density), thus influencing ZTD. Absence of anomalous ZTD variations at the remaining three stations was attributed to the special topographic conditions, i.e., the long epicentral distance and the presence of huge mountains as a natural protective screen. Our work provides new insights to the relationship between of earthquake event and ZTD variation. The proposed differential method is superior to conventional method for detecting specific ZTD anomalies caused by earthquake events.
J. A. Pyle
2007-09-01
Full Text Available A profiling algorithm based on the optimal estimation method is applied to ground-based zenith-sky UV-visible measurements from Harestua, Southern Norway (60° N, 11° E in order to retrieve BrO vertical profiles. The sensitivity of the zenith-sky observations to the tropospheric BrO detection is increased by using for the spectral analysis a fixed reference spectrum corresponding to clear-sky noon summer conditions. The information content and retrieval errors are characterized and it is shown that the retrieved stratospheric profiles and total columns are consistent with correlative balloon and satellite observations, respectively. Tropospheric BrO columns are derived from profiles retrieved at 80° solar zenith angle during sunrise and sunset for the 2000–2006 period. They show a marked seasonality with mean column value ranging from 1.52±0.62×1013 molec/cm² in late winter/early spring to 0.92±0.38×1013 molec/cm² in summer, which corresponds to 1.0±0.4 and 0.6±0.2 pptv, respectively, if we assume that BrO is uniformly mixed in the troposphere. These column values are also consistent with previous estimates made from balloon, satellite, and other ground-based observations. Daytime (10:30 LT tropospheric BrO columns are compared to the p-TOMCAT 3-D tropospheric chemical transport model (CTM for the 2002–2003 period. p-TOMCAT shows a good agreement with the retrieved columns except in late winter/early spring where an underestimation by the model is obtained. This finding could be explained by the non-inclusion of sea-ice bromine sources in the current version of p-TOMCAT. Therefore the model cannot reproduce the possible transport of air-masses with enhanced BrO concentration due to bromine explosion events from the polar region to Harestua. The daytime stratospheric BrO columns are compared to the SLIMCAT stratospheric 3-D-CTM. The model run used in this study, which assumes 21.2 pptv for the Bry loading (15 pptv for long
Salivary cortisol, stress and mood in healthy older adults: the Zenith study.
Simpson, Ellen E A; McConville, Chris; Rae, Gordon; O'Connor, Jacqueline M; Stewart-Knox, Barbara J; Coudray, Charles; Strain, J J
2008-04-01
The aims of this study were to investigate the relationship between salivary cortisol, stress and mood and to look at the circadian rhythms of positive (PA) and negative (NA) mood in older adults. The participants were 41 healthy adults aged 55-69 years, recruited in Northern Ireland as part of the European Commission-funded Zenith project. Salivary cortisol samples were obtained twice a day (2.30 p.m. and 10.30 p.m.) for 7 consecutive days in conjunction with momentary measures of positive (PA) and negative mood (NA), using PANAS and a trait measure of perceived stress (Perceived Stress Scale). Salivary cortisol levels were measured using an enzyme-linked immunoassay kit. Higher perceived stress levels were associated with lower afternoon PA (r=-0.46, p=0.003) and higher afternoon (r=0.43, p=0.007) and evening (r=0.45, p=0.004) NA. Lower afternoon PA was correlated with higher evening cortisol concentrations (r=-0.47, p=0.002). Greater afternoon PA variability was associated with higher evening cortisol concentrations (r=0.38, p=0.015). A high intra-class correlation between cortisol and positive mood was found (r=0.67, p=0.009). Previously established rhythms for positive and negative mood were confirmed. Interestingly, there was no association between salivary cortisol levels and perceived stress in these healthy older adults. Further, more extensive research is required to better understand the apparent interplay between these variables and ageing.
K. Boniface
2009-07-01
Full Text Available Impact of GPS (Global Positioning System data assimilation is assessed here using a high-resolution numerical weather prediction system at 2.5 km horizontal resolution. The Zenithal Tropospheric Delay (ZTD GPS data from mesoscale networks are assimilated with the 3DVAR AROME data assimilation scheme. Data from more than 280 stations over the model domain have been assimilated during 15-day long assimilation cycles prior each of the two studied events. The results of these assimilation cycles show that the assimilation of GPS ZTD with the AROME system performs well in producing analyses closer to the ZTD observations in average.
Then the impacts of assimilating GPS data on the precipitation forecast have been evaluated. For the first case, only the AROME runs starting a few hours prior the triggering of the convective system are able to simulate the convective precipitation. The assimilation of GPS ZTD observations improves the simulation of the spatial extent of the precipitation, but slightly underestimates the heaviest precipitation in that case compared with the experiment without GPS. The accuracy of the precipitation forecast for the second case is much better. The analyses from the control assimilation cycle provide already a good description of the atmosphere state that cannot be further improved by the assimilation of GPS observations. Only for the latest day (22 November 2007, significant differences have been found between the two parallel cycles. In that case, the assimilation of GPS ZTD allows to improve the first 6 to 12 h of the precipitation forecast.
Determining precipitable water in the atmosphere of Iran based on GPS zenith tropospheric delays
Elaheh Sadeghi
2014-08-01
Full Text Available Precipitable water (PW is considered as one of the most important weather parameters in meteorology. Moreover, moisture affects the propagation of the Global Positioning System’s (GPS signals. Using four different models, the current paper tries to identify the best relationship between the atmospheric error known as zenith wet delay (ZWD and PW. For that matter, based on 54,330 radiosonde profiles from 11 stations, two different models i.e. linear and quadratic have been derived for Iran. For analyzing the accuracy of these models, ZWDs of three permanent GPS stations located in the cities of Tehran, Ahvaz and Tabriz have been used. Applying the aforementioned models as well as those already developed for Europe and the U.S., PWs are derived at the position of these stations in Iran. Further, in this research, root mean square error (RMSE and bias are the measures for selecting the optimal model. Here, the bias and the RMSE (between GPS and radiosonde derived PWs for the proposed linear model for Iran is 1.44 mm and 4.42 mm, and for quadratic model 2.18 mm and 4.74 mm respectively while, the bias and the RMSE for Bevis’ linear model is 2.63 mm and 4.98 mm and for Emardson and Derk’s quadratic models are 2.80 mm and 5.08 mm respectively. As such, it is observed that the bias of the proposed linear model for Iran is 1.19 mm and 1.36 mm less than the Bevis’ and Emardson and Derk’s models. In addition, the RMSE of the proposed linear model is 0.56 and 0.66 mm less than the RMSE of the later ones. This emphasizes that the estimation of the model coefficients must be based on regional meteorological measurements.
Wilgan, Karina; Hurter, Fabian; Geiger, Alain; Rohm, Witold; Bosy, Jarosław
2016-08-01
Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations.
Tian, L.; Wang, B.; Wang, Z.; Yin, Z.; Hu, H.; Wang, H.; Han, Y.
2015-12-01
Classical optical astrometry can be used to measure and study variations of plumb line. For the earth gravity filed related researches, it is irreplaceable by technologies like GNSS、VLBI、SLR, etc. However, classical astrometric instruments have some major drawback, such as low efficiency, low automation, more operating observers, and individual error in some visual instruments. In 2011, The National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) successfully developed the new digital zenith telescope prototype (DZT-1), which has the ability of highly automatic observation and data processing, even allowing unattended observation by remote control. By utilizing CCD camera as imaging terminal and high-accuracy tiltmeter to replace mercurial plate, observation efficiency of DZT is improved greatly. According to the results of data obtained from test observations, single-observation accuracy of DZT-1 is 0.15-0.3″ and one night observation accuracy up to 0.07-0.08″, which is better than the observation accuracy of classical astrometric instruments. The observations of DZT can be used to obtain the plumb line variations and the vertical deflections, which can be used for carrying out seismic, geodetic and other related geo-scientific researches. Especially the collocated observations with gravimeters and the conjoint analysis of the observation data will be helpful to recognize the anomalous motion and variation of underground mass over time, and maybe provide significant information for estimating the scale of underground anomalous mass. The information is valuable for determining the three key factors of earthquake possibly. Moreover, the project team is carrying out the development of new DZT with better performance and studying the key techniques for new instrument to make DZT play a more significant role in the astronomy and geoscience fields.
Global model of zenith tropospheric delay proposed based on EOF analysis
Sun, Langlang; Chen, Peng; Wei, Erhu; Li, Qinzheng
2017-07-01
Tropospheric delay is one of the main error budgets in Global Navigation Satellite System (GNSS) measurements. Many empirical correction models have been developed to compensate this delay, and models which do not require meteorological parameters have received the most attention. This study established a global troposphere zenith total delay (ZTD) model, called Global Empirical Orthogonal Function Troposphere (GEOFT), based on the empirical orthogonal function (EOF, also known as geographically weighted PCAs) analysis method and the Global Geodetic Observing System (GGOS) Atmosphere data from 2012 to 2015. The results showed that ZTD variation could be well represented by the characteristics of the EOF base function Ek and associated coefficients Pk. Here, E1 mainly signifies the equatorial anomaly; E2 represents north-south asymmetry, and E3 and E4 reflects regional variation. Moreover, P1 mainly reflects annual and semiannual variation components; P2 and P3 mainly contains annual variation components, and P4 displays semiannual variation components. We validated the proposed GEOFT model using tropospheric delay data of GGOS ZTD grid data and the tropospheric product of the International GNSS Service (IGS) over the year 2016. The results showed that GEOFT model has high accuracy with bias and RMS of -0.3 and 3.9 cm, respectively, with respect to the GGOS ZTD data, and of -0.8 and 4.1 cm, respectively, with respect to the global IGS tropospheric product. The accuracy of GEOFT demonstrating that the use of the EOF analysis method to characterize ZTD variation is reasonable.
Luiz Augusto Toledo Machado
2006-12-01
Full Text Available The Zenithal Tropospheric Delay (Z TD is an important error source in the observable involved in the positioning methods using artificial satellite. Frequently, the Z TD influence in the positioning is minimized by applying empirical models. However, such models are not able to supply the precision required to some real time applications, such as navigation and steak out. In 2010 it will be implanted the new navigation and administration system of the air traffic, denominated CNS-ATM (Communication Navigation Surveillance - Air Traffic Management. In this new system the application of positioning techniques by satellites in the air traffic will be quite explored because they provide good precision in real time. The predictions of Z TD values from Numeric Weather Prediction (NWP, denominated dynamic modeling, is an alternative to model the atmospheric gases effects in the radio-frequency signals in real time. The Center for Weather Forecasting and Climate Studies (CPTEC has generated operationally prediction of Z TD values to South American Continent since March, 2004. The aims of the present paper are to investigate the Z TD seasonal variability and evaluate the quality of predicted Z TD values. One year of GPS data from Brazilian Continuous GPS Network (RBMC was used in this evaluation. The RMS values resulting from this evaluation were in the range of 4 to 11 cm. Considering the Z TDtemporal variability, the advantages provide by this modeling, the results obtained in this evaluation and the future improvements, this work shows that the dynamic modeling has great potential to become the most appropriate alternative to model Z TD in real time.
Wilgan, Karina; Hurter, Fabian; Geiger, Alain; Rohm, Witold; Bosy, Jarosław
2017-02-01
Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations.
Sim, Adelene Y.L.; Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian
2012-07-06
Short single-stranded nucleic acids are ubiquitous in biological processes and understanding their physical properties provides insights to nucleic acid folding and dynamics. We used small angle x-ray scattering to study 8-100 residue homopolymeric single-stranded DNAs in solution, without external forces or labeling probes. Poly-T's structural ensemble changes with increasing ionic strength in a manner consistent with a polyelectrolyte persistence length theory that accounts for molecular flexibility. For any number of residues, poly-A is consistently more elongated than poly-T, likely due to the tendency of A residues to form stronger base-stacking interactions than T residues.
Kurudirek, Murat
2016-11-01
The objective of this work was to study water- and tissue-equivalent properties of some gel dosimeters, human tissues and water, for scattering of photons using the effective atomic number (Z eff). The Rayleigh to Compton scattering ratio (R/C) was used to obtain Z eff and electron density (N e ) of gel dosimeters, human tissues and water considering a 10(-2)-10(9) momentum transfer, q (Å(-1)). In the present work, a logarithmic interpolation procedure was used to estimate R/C as well as Z eff of the chosen materials in a wide scattering angle (1°-180°) and energy range (0.001-100 MeV). The Z eff of the chosen materials was found to increase as momentum transfer increases, for q > ~1 Å(-1). At fixed scattering angle and energy, Z eff of the material first increases and then becomes constant for high momentum transfers (q ≥ 3 Å(-1)), which indicates that Z eff is almost independent of energy and scattering angle for the chosen materials. Based on the Z eff data and the continuous momentum transfer range (10(-2)-10(9) Å(-1)), MAGIC, PAGAT and soft tissue were found to be water-equivalent materials, since their differences (%) relative to water are significantly low (≤3.2 % for MAGIC up to 10(3) Å(-1), ≤2.9 % for PAGAT up to 10(9) Å(-1), and ≤3.8 % for soft tissue up to 10(9) Å(-1)), while the Fricke gel was not found to be water equivalent. PAGAT was found to be a soft tissue-equivalent material in the entire momentum transfer range (<4.3 %), while MAGAT has shown to be tissue equivalent for brain (≤8.1 % up to 10 Å(-1)) and lung (<8.2 % up to 10 Å(-1)) tissues. The Fricke gel dosimeter has shown to be adipose tissue equivalent for most of the momentum range considered (<10 %).
Klein, Kristopher G.; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States); Podesta, John J., E-mail: kristopher-klein@uiowa.edu [Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 (United States)
2014-04-20
Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.
Klein, Kristopher G; TenBarge, Jason M; Podesta, John J
2014-01-01
Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of \\emph{Ulysses} data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of \\Alfvenic fluctuations and a local, non-turbulent population of ion cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to \\emph{in situ} data, it is found that, on average, $ \\sim 95\\%$ of the power near dissipative scales is contained in a perpendicular \\Alfvenic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significa...
Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E-J; Kim, S H; Kim, Y-J; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Li, X; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niida, T; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L
2014-06-01
Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au+Au collisions at sqrt[s_{NN}]=200 GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results. In contrast, the results for the third-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from triangular flow.
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Aoki, K.; Aramaki, Y.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hartouni, E. P.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Ikeda, Y.; Imai, K.; Inaba, M.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Jacak, B. V.; Jia, J.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, S. H.; Kim, Y.-J.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Leitch, M. J.; Leite, M. A. L.; Leitner, E.; Lenzi, B.; Li, X.; Liebing, P.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; Means, N.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, M.; Mitchell, J. T.; Mohanty, A. K.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Niida, T.; Nouicer, R.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, S. K.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Samsonov, V.; Sano, S.; Sato, T.; Sawada, S.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, T. L.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zhang, C.; Zhou, S.; Zolin, L.; Phenix Collaboration
2014-06-01
Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au +Au collisions at √sNN =200 GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results. In contrast, the results for the third-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from triangular flow.
Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Gustafsson, H -Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Hartouni, E P; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, E -J; Kim, S H; Kim, Y -J; Kinney, E; Kiriluk, K; Kiss, Á; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Leitner, E; Lenzi, B; Li, X; Liebing, P; Levy, L A Linden; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mignerey, A C; Mikeš, P; Miki, K; Milov, A; Mishra, M; Mitchell, J T; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niida, T; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J -C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Seto, R; Sharma, D; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Sparks, N A; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Todoroki, T; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L
2014-01-01
Charged-pion-interferometry measurements were made with respect to the 2$^{\\rm nd}$- and 3$^{\\rm rd}$-order event plane for Au$+$Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the 2$^{\\rm nd}$- and 3$^{\\rm rd}$-order event planes. The results for the 2$^{\\rm nd}$-order dependence indicate that the initial eccentricity is reduced during the medium evolution, but not reversed in the final state, which is consistent with previous results. In contrast, the results for the 3$^{\\rm rd}$-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the 3$^{\\rm rd}$-order oscillations are largely dominated by the dynamical effects from triangular flow.
M. Kvicera
2012-12-01
Full Text Available Building penetration loss models presented in our previous paper [1] were valid for various scenarios, propagation conditions, frequency bands and hemispherical receiving antenna pointing towards zenith. These models had a significantly rising trend of penetration loss with increasing elevation angle of the link in common. In this paper we show that when working with non-isotropic terminal antennas, this trend relates primarily to the elevation trend of the corresponding reference level dependent on the receiving antenna radiation pattern. This is demonstrated by the results of single-input multiple-output (SIMO measurement trials performed at L-band in an office building and a brick building in the city of Prague. Further, based on the detailed analysis, a method to modify the elevation trend of a particular penetration loss model for different receiving antenna radiation patterns is derived and experimentally validated.
Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.
2015-12-01
The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (αirrad) leading to, after electrodeposition, embedded Ni NWs of different orientations.
Fissel, Laura M; Angilè, Francesco E; Ashton, Peter; Benton, Steven; Devlin, Mark J; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N; Klein, J R; Li, Zhi-Yun; Korotkov, Andrei L; Martin, Peter G; Matthews, Tristan G; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, C Barth; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan D; Thomas, Nicholas E; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek
2015-01-01
We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol). We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 {\\mu}m. In this initial paper, we show our 500 {\\mu}m data smoothed to a resolution of 2.5 arcminutes (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p = p_0 N^(-0.4) S^(-0.6), where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high colum...
Budke, Michael; Wittkowski, Alexander; Correa, Juliet; Donath, Markus [Physikalisches Institut, WWU Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany)
2008-07-01
A widely accepted picture for the surface electronic structure of Gd(0001) comprises a spin-split surface state (SS) with its majority part 0.2 eV below E{sub F} and its minority part 0.5 eV above E{sub F} with a finite exchange splitting of 0.4 eV at T{sub C}. The discussion about this SS remains controversially because spin-resolved inverse photoemission identified a SS with both minority and majority components above E{sub F}. The reason for these conflicting results might be found in different sample conditions since the Gd films are usually grown on W(110), a material with considerably different lattice constant than Gd. To overcome this suspicion, we performed both, spin- and angle-resolved direct (PE) and inverse photoemission (IPE) on the same sample preparation of a 30 ML Gd film grown on Y(0001). We were able to identify two SSs with their minority and majority components well separated from E{sub F}. While the occupied SS shows spin-mixing behaviour as observed in other PE experiments, the unoccupied SS exhibits an exchange splitting of 250 meV that vanishes at T{sub C}. To identify the nature of the unexpected SS, we performed angular-resolved IPE measurements that support the interpretation as d-like SS above E{sub F} and reveal a variety of additional spectral features.
Shepelevich, V. V.; Makarevich, A. V.; Shandarov, S. M.
2017-06-01
Experimental studies of the dependence of object wave gain at two-wave interaction on the effective thickness of cubic photorefractive optically active crystal Bi12GeO20 were performed using only one (\\bar 1\\bar 10) -cut crystal sample. It is shown that the obtained experimental results can be satisfactorily theoretically interpreted taking into account the inverse piezoelectric and the photo-elastic effects in addition to the traditionally considered electro-optical one.
Kang, W.; Osada, T.; Konoike, T.; Uchida, K.
2013-11-01
The stereoscopic angle-dependent magnetoresistance oscillations (AMRO) in an organic conductor α-(BEDT-TTF)2KHg(SCN)4 were measured across the temperature-pressure boundary that separates the charge-density-wave state from the metallic state. The gnomonic projections of the data clearly resolved the contributions from different parts of the Fermi surfaces. The temperature and pressure dependencies of the AMRO results revealed the progressive formation of a quasi-one-dimensional orbit in the charge-density-wave state. The AMRO measurements at ambient pressures and at low temperatures revealed the presence of two sets of quasi-one-dimensional Fermi surfaces. Additional evidence for multiple quasi-one-dimensional orbits was obtained from the data collected in conjunction with the in-plane field rotations.
Voet, P; Rossi, L; Breedveld, S; Aluwini, S; Heijmen, B
2012-06-01
To investigate the relationship between plan quality and the extent of the beam direction search space in computerized beam angle selection for generating optimal (non-coplanar) IMRT plans for prostate SBRT with dose distributions simulating HDR brachytherapy. iCycle (1) was used to investigate the relationship between plan quality and the extent of the set of beam directions available for plan generation. For a group of 10 prostate patients, optimal plans were generated for 5 direction search spaces. For coplanar treatments (CP set), 72 orientations were available for selection (separation 5°). The fully non-coplanar set (F-NCP) included the CP directions plus 430 directions spread over the sphere. The CK set contained the directions available at the robotic Cyberknife unit. CK+ and CK++ were extensions of CK to investigate some of its characteristics. Generated plans were in accordance with our clinical SBRT protocol for Cyberknife treatment, delivering 4 fractions of 9.5 Gy. Adequate PTV coverage had the highest priority. Reduction of rectum dose was the highest OAR priority. The mean PTV coverage (V95) of all SBRT plans was 99% ï,± 0.9% (1 SD). F-NCP plans had most favorable OAR dose parameters, while for coplanar plans OAR doses were highest. Compared to coplanar treatment, rectum Dmean/V60 were 25% / 37% and 19% / 21% lower in F-NCP and CK plans. Higher rectum dose for the Cyberknife set compared to F-NCP was not caused by a lack of posterior beams for Cyberknife. For all search spaces, reduction in OAR dose only leveled off with > 20 beams in the plans (for CP, rectum V60 in 25 beam plans was reduced by 64% compared to 11 beams). In the non-coplanar set-ups, there was a preference for beams with a (large) lateral component. Plan quality clearly improved with the extent of the beam direction search space (coplanar worst), and the number of beam directions in the plan (25 clearly better than 11).(1) Breedveld S, Storchi P, Voet P, Heijmen B, Med Phys 2012
A new angle on the Euler angles
Markley, F. Landis; Shuster, Malcolm D.
1995-01-01
We present a generalization of the Euler angles to axes beyond the twelve conventional sets. The generalized Euler axes must satisfy the constraint that the first and the third are orthogonal to the second; but the angle between the first and third is arbitrary, rather than being restricted to the values 0 and pi/2, as in the conventional sets. This is the broadest generalization of the Euler angles that provides a representation of an arbitrary rotation matrix. The kinematics of the generalized Euler angles and their relation to the attitude matrix are presented. As a side benefit, the equations for the generalized Euler angles are universal in that they incorporate the equations for the twelve conventional sets of Euler angles in a natural way.
... Programs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...
Harrison, N; McDonald, R D
2009-05-13
We propose a quantum oscillation experiment by which the rotation of an underdoped YBa(2)Cu(3)O(6+x) sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2ΔF between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds |B|.
Nagai, Yuki
2014-06-01
We study the quasiparticle excitations around a single vortex in the superconducting topological insulator CuxBi2Se3, focusing on a superconducting state with point nodes. Inspired by the recent Knight shift measurements, we propose two ways to detect the positions of point nodes, using an explicit formula of the density of states with Kramer-Pesch approximation in the quasiclassical treatment. The zero-energy local density of states around a vortex parallel to the c-axis has a twofold shape and splits along the nodal direction with increasing energy; these behaviors can be detected by the scanning tunneling microscopy. An angular dependence of the density of states with a rotating magnetic field on the a-b plane has deep minima when the magnetic field is parallel to the directions of point nodes, which can be detected by angular-resolved heat capacity and thermal conductivity measurements. All the theoretical predictions are detectable via standard experimental techniques in magnetic fields.
Apparent contact angle and contact angle hysteresis on liquid infused surfaces
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2017-01-01
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small b...
Ning, T.; Lidberg, M.; Johansson, J. M.; Ridal, M.; Jivall, L.; Kempe, C.
2016-12-01
Due to the fact that there is a big lack of humidity observations in the meteorological observing system, usage of ground-based GNSS data to provide the near real-time (NRT) zenith total delay (ZTD) is important for operational meteorology. The accuracy of the NRT GNSS ZTD is highly dependent on the quality of the real-time satellite orbits and clock products used for the data processing. Therefore, the effect of real-time satellite orbits and clock errors on the NRT GNSS ZTD estimates is necessary to investigate. Since March, 2016, Lantmäteriet (Swedish Mapping, Cadastre and Land Registration Authority) became one of the analysis centres contributing NRT GNSS ZTDs to the E-GVAP program. Currently we are processing the GNSS data obtained from around 680 stations in Sweden, Finland, Denmark, and Norway. The NRT GNSS ZTDs are estimated using two different solutions: network and precise point positioning (PPP). The network solution is running by Bernese (V5.2) using the CODE ultra-rapid orbits product. The PPP solutions are running by the GIPSY-OASIS (V6.2) using two different satellite orbits and clock products. One is using the IGS provided real-time products. The other is using the JPL ultra-rapid products which however has a longer latency (over one hour). The NTR ZTDs from all three solutions will be assessed with respect to the ones estimated using the IGS final satellite orbits and clock product in terms of accuracy and precision.
Gu, Myojeong; Enell, Carl-Fredrik; Pukite, Janis; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas
2017-04-01
After to the Montreal protocol and amendments, the production of CFCs was strongly reduced. Since then scientists have steadily made efforts to monitor the amount of chlorine compounds which are responsible for the destruction of ozone in the stratosphere. Although very recent research of stratospheric ozone indicates an ozone recovery, ozone depletion is still observed in the polar spring and is expected to last for about another 70 years according to the WMO. Therefore, continuous observation and analysis of the stratospheric ozone as well as other stratospheric trace gases are highly demanded. Several previous studies have investigated OClO which is an indicator for stratospheric chlorine activation using satellite, ground-based, and balloon remote sensing measurements. In this work, we investigate long-term time series of OClO DSCDs (Differential Slant Column densities) above Kiruna, Sweden (67.84°N, 20.41°E) which is located inside the Arctic Circle by using the ground-based zenith sky DOAS measurements. Since our measurements are performed at the fixed site, for the interpretation also the relative position of the polar vortex has to be considered. Our long-term data obtained during about 15 years allows us to classify the dependence of the OClO amount on the various meteorological conditions. Our data show a large variability with high OClO SCDs in cold, and low OClO SCDs in warm winters. Our measurements also allow to investigate the effect of the chlorine activation and its duration on the strength of the ozone destruction.
Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...
Spectral invariant behavior of zenith radiance around cloud edges simulated by radiative transfer
J. C. Chiu
2010-06-01
Full Text Available A previous paper discovered a surprising spectral-invariant relationship in shortwave spectrometer observations taken by the Atmospheric Radiation Measurement (ARM program. Here, using radiative transfer simulations, we study the sensitivity of this relationship to the properties of aerosols and clouds, to the underlying surface type, and to the finite field-of-view (FOV of the spectrometer. Overall, the relationship is mostly sensitive to cloud properties and has little sensitivity to the other factors. At visible wavelengths, the relationship primarily depends on cloud optical depth regardless of cloud thermodynamic phase and drop size. At water-absorbing wavelengths, the slope of the spectral-invariant relationship depends primarily on cloud optical depth; the intercept, by contrast, depends primarily on cloud absorption properties, suggesting a new retrieval method for cloud drop effective radius. These results suggest that the spectral-invariant relationship can be used to infer cloud properties even with insufficient or no knowledge about spectral surface albedo and aerosol properties.
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin
2013-01-01
Measurements of the variation of inclusive jet suppression as a function of relative azimuthal angle, $\\Delta\\phi$, with respect to the elliptic event plane provide insight into the path-length dependence of jet quenching. ATLAS has measured the $\\Delta\\phi$ dependence of jet yields in 0.14 nb$^{-1}$ of $\\sqrt{s_{NN}}$= 2.76 TeV Pb+Pb collisions at the LHC for jet transverse momenta $p_T$ > 45 GeV in different collision centrality bins using an underlying event subtraction procedure that accounts for elliptic flow. The variation of the jet yield with Delta phi was characterized by the parameter, $v_2^{jet}$, and the ratio of out-of-plane ($\\Delta\\phi ~ \\pi/2$) to in-plane ($\\Delta\\phi ~ 0$) yields. Non-zero $v_2^{jet}$ values were measured in all centrality bins for $p_T$ < 160 GeV. The jet yields are observed to vary by as much as 20% between in-plane and out-of-plane directions.
Apparent contact angle and contact angle hysteresis on liquid infused surfaces
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a strong dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as `weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.
Apparent contact angle and contact angle hysteresis on liquid infused surfaces.
Semprebon, Ciro; McHale, Glen; Kusumaatmaja, Halim
2016-12-21
We theoretically investigate the apparent contact angle and contact angle hysteresis of a droplet placed on a liquid infused surface. We show that the apparent contact angle is not uniquely defined by material parameters, but also has a dependence on the relative size between the droplet and its surrounding wetting ridge formed by the infusing liquid. We derive a closed form expression for the contact angle in the limit of vanishing wetting ridge, and compute the correction for small but finite ridge, which corresponds to an effective line tension term. We also predict contact angle hysteresis on liquid infused surfaces generated by the pinning of the contact lines by the surface corrugations. Our analytical expressions for both the apparent contact angle and contact angle hysteresis can be interpreted as 'weighted sums' between the contact angles of the infusing liquid relative to the droplet and surrounding gas phases, where the weighting coefficients are given by ratios of the fluid surface tensions.
Almansa, A. Fernando; Cuevas, Emilio; Torres, Benjamín; Barreto, África; García, Rosa D.; Cachorro, Victoria E.; de Frutos, Ángel M.; López, César; Ramos, Ramón
2017-02-01
A new zenith-looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring, is presented in this paper. The ZEN system comprises a new radiometer (ZEN-R41) and a methodology for AOD retrieval (ZEN-LUT). ZEN-R41 has been designed to be stand alone and without moving parts, making it a low-cost and robust instrument with low maintenance, appropriate for deployment in remote and unpopulated desert areas. The ZEN-LUT method is based on the comparison of the measured zenith sky radiance (ZSR) with a look-up table (LUT) of computed ZSRs. The LUT is generated with the LibRadtran radiative transfer code. The sensitivity study proved that the ZEN-LUT method is appropriate for inferring AOD from ZSR measurements with an AOD standard uncertainty up to 0.06 for AOD500 nm ˜ 0.5 and up to 0.15 for AOD500 nm ˜ 1.0, considering instrumental errors of 5 %. The validation of the ZEN-LUT technique was performed using data from AErosol RObotic NETwork (AERONET) Cimel Electronique 318 photometers (CE318). A comparison between AOD obtained by applying the ZEN-LUT method on ZSRs (inferred from CE318 diffuse-sky measurements) and AOD provided by AERONET (derived from CE318 direct-sun measurements) was carried out at three sites characterized by a regular presence of desert mineral dust aerosols: Izaña and Santa Cruz in the Canary Islands and Tamanrasset in Algeria. The results show a coefficient of determination (R2) ranging from 0.99 to 0.97, and root mean square errors (RMSE) ranging from 0.010 at Izaña to 0.032 at Tamanrasset. The comparison of ZSR values from ZEN-R41 and the CE318 showed absolute relative mean bias (RMB) < 10 %. ZEN-R41 AOD values inferred from ZEN-LUT methodology were compared with AOD provided by AERONET, showing a fairly good agreement in all wavelengths, with mean absolute AOD differences < 0.030 and R2 higher than 0.97.
S. Corradini
2002-06-01
Full Text Available Continuous meteorological examination of the Pre-Alpine zones in Northern Italy (Po Valleyis important for determination of atmospheric water cycles connected with floods and rainfalls.During a special meteorological observing period (MAP-SOP,radiosounding and other measurements were made in the site of Verona (Italy. This paper deals with Zenith Total Delay (ZTDand Precipitable Water (PWcomparisons obtained by GPS, radiosounding and other meteorological measurements.PW and ZTD from ground-based GPS data in comparisonwith classical techniques (e.g.,WVR,radiosoundingfrom recent literature present an accurate tool for use in meteorology applications (e.g.,assimilation in Numerical Weather Prediction (NWPmodels on short-range precipitation forecasts.Comparison of such ZTD for MAP-SOP showed a standard deviation of 16.1 mm and PW comparison showed a standard deviation of 2.7 mm,confirming the accuracy of GPS measurements for meteorology applications.In addition,PW data and its time variation are also matched with time series of meteorological situations.Those results indicate that changes in PW values could be connected to changes in air masses,i.e.to passages of both cold and warm fronts.There is also a correlation between precipitation, forthcoming increase and the following decrease of PW.A good agreement between oscillation of PW and precipitation and strong cyclonic activities is found.
Dynamic contact angle measurements on superhydrophobic surfaces
Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.
2015-03-01
In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, θD3 ∝ Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at θA = 160∘, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.
Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.
2014-01-01
Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…
对流层延迟修正的实证模型%Empirical model of correction for zenith tropospheric delay
V F Kravchenko; V I Lutsenko; I V Lutsenko; D O Popov; A G Laush3; V N Gudkov3
2014-01-01
针对对流层延迟问题，考虑测量时对流层的折射率，采用标准模型计算对流层修正概率。经大量实验研究得到对流层延迟修正模型，它可以减少坐标测量误差约30％，海拔测量误差约40％。%The paper considers the possibility of correction of zenith tropospheric delays ,and calculates it with the standard model ,which takes into account the values of the refractive index of the troposphere at the time of measurement .Based on the experimental research ,this empirical model of correction for zenith tropospheric delays can reduce the measurement er -ror of coordinates to about 30% and altitude to about 40% .
Contact angle hysteresis on fluoropolymer surfaces.
Tavana, H; Jehnichen, D; Grundke, K; Hair, M L; Neumann, A W
2007-10-31
Contact angle hysteresis of liquids with different molecular and geometrical properties on high quality films of four fluoropolymers was studied. A number of different causes are identified for hysteresis. With n-alkanes as probe liquids, contact angle hysteresis is found to be strongly related to the configuration of polymer chains. The largest hysteresis is obtained with amorphous polymers whereas the smallest hysteresis occurs for polymers with ordered molecular chains. This is explained in terms of sorption of liquid by the solid and penetration of liquid into the polymer film. Correlation of contact angle hysteresis with the size of n-alkane molecules supports this conclusion. On the films of two amorphous fluoropolymers with different molecular configurations, contact angle hysteresis of one and the same liquid with "bulky" molecules is shown to be quite different. On the surfaces of Teflon AF 1600, with stiff molecular chains, the receding angles of the probe liquids are independent of contact time between solid and liquid and similar hysteresis is obtained for all the liquids. Retention of liquid molecules on the solid surface is proposed as the most likely cause of hysteresis in these systems. On the other hand, with EGC-1700 films that consist of flexible chains, the receding angles are strongly time-dependent and the hysteresis is large. Contact angle hysteresis increases even further when liquids with strong dipolar intermolecular forces are used. In this case, major reorganization of EGC-1700 chains due to contact with the test liquids is suggested as the cause. The effect of rate of motion of the three-phase line on the advancing and receding contact angles, and therefore contact angle hysteresis, is investigated. For low viscous liquids, contact angles are independent of the drop front velocity up to approximately 10 mm/min. This agrees with the results of an earlier study that showed that the rate-dependence of the contact angles is an issue only
Globographic visualisation of three dimensional joint angles.
Baker, Richard
2011-07-07
Three different methods for describing three dimensional joint angles are commonly used in biomechanics. The joint coordinate system and Cardan/Euler angles are conceptually quite different but are known to represent the same underlying mathematics. More recently the globographic method has been suggested as an alternative and this has proved particularly attractive for the shoulder joint. All three methods can be implemented in a number of ways leading to a choice of angle definitions. Very recently Rab has demonstrated that the globographic method is equivalent to one implementation of the joint coordinate system. This paper presents a rigorous analysis of the three different methods and proves their mathematical equivalence. The well known sequence dependence of Cardan/Euler is presented as equivalent to configuration dependence of the joint coordinate system and orientation dependence of globographic angles. The precise definition of different angle sets can be easily visualised using the globographic method using analogues of longitude, latitude and surface bearings with which most users will already be familiar. The method implicitly requires one axis of the moving segment to be identified as its principal axis and this can be extremely useful in helping define the most appropriate angle set to describe the orientation of any particular joint. Using this technique different angle sets are considered to be most appropriate for different joints and examples of this for the hip, knee, ankle, pelvis and axial skeleton are outlined.
Yao, Yibin; Peng, Wenjie; Xu, Chaoqian; Cheng, Shuyang
2017-02-01
By introducing two types of zenith troposphere delay (ZTD) products in precise point positioning (PPP), we developed the ZTD-corrected PPP and the ZTD-constrained PPP, both of them reduced the PPP convergence time. Both enhanced PPP methods are examined by global empirical ZTD models and regional ZTD corrections. For global ZTD models, we verified that ZTD-corrected PPP will deviate the positioning results, while ZTD-constrained PPP could produce unbiased estimations. Therefore, the latter is utilized to study the performance of global ZTD models (ITG, GPT2w, GZTD and UNB3m). After numerous experiments, we found that the performance of ZTD models was positively related to the real ZTD accuracy, and we proposed a universal tropospheric stochastic model 2SQR(9rms) which denotes double the square of nine times ZTD rms, to constrain ZTD in PPP. The proposed model subsequently was validated by real-time static and kinematic ZTD-constrained PPP on the premise that the ZTD rms on every station was known. Compared with traditional PPP, in static PPP, the number of improved stations is increased by 15.5 per cent (ITG), 14.4 per cent (GPT2w), 11.1 per cent (GZTD) and 8.3 per cent (UNB3m). For kinematic PPP, PPP constrained by ITG model still had the best performance, the number of improved stations is increased by 14.4 per cent, after 30 min of initialization time, 13.4 cm east, 13.4 cm north and 11.7 cm up positioning accuracy was obtained, compared with 15.3 cm east, 15.3 cm north and 14.3 cm up accuracy by traditional PPP. In addition, experiments using regional ZTD corrections to enhance real-time PPP showed that both ZTD-corrected PPP and ZTD-constrained PPP can notably reduce the convergence time on the vertical component (within 15 cm).
Krzywiecki, Maciej, E-mail: Maciej.Krzywiecki@polsl.pl [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Institute of Physics–CSE, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice (Poland); Sarfraz, Adnan; Erbe, Andreas [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)
2015-12-07
The application of a non-destructive method for characterization of electronic structure of an ultra-thin SnO{sub 1
J. Chowdhary
2011-09-01
Full Text Available In this study, we focus on the polarization angle of light scattered by terrestrial atmosphere-surface systems. The polarization angle describes the orientation of the plane in which the linearly polarized portion of light propagates. We show for skylight how this angle varies with the solar zenith angle and that, for skylight reflected by natural surfaces, these variations remain the same for wide ranges of atmospheric conditions and surface properties. This provides a tool for extracting scattering properties of the atmosphere from remote sensing observations of the Earth without any knowledge of the underlying surface. We demonstrate this principle for simulated data, and apply it to observations obtained by an airborne polarimeter over open oceans.
Quantitative Relationship Between Multi-Angle Polarized Reflectance and BRDF of Rock
无
2005-01-01
The traditional remote sensing mainly detects the ground vertically to obtain the 2D information, but it is hard to get adequate parameters for the quantitative remote sensing to invert land features. The multi-angle observation can get more detailed and reliable 3D structural parameters of targets, so it makes the quantitative remote sensing applicable. During the process of reflecting, scattering and transmitting the electromagnetic wave, minerals and rocks could reveal the polarized features related to the nature of themselves. Therefore, it has become a new approach of quantitative remote sensing to detect multi-angle polarized information of minerals and rocks. In respect that the polarized reflectance always goes with the bidirectional one, we can obtain the 3D spatial distribution of targets by a polarized means together with detecting its bi-directional reflectance. From the perspective of multi-angle polarized remote sensing mechanism, the quantitative relationship between multi-angle polarized reflectance and the BRDF is studied in this paper. And it is testified that the bi-directional reflectance, polarized reflectance of 45° and the mean value of polarized reflectance are equal to that of the corresponding azimuth angle, zenith angle, detection angle and detection channels in 2π space by experiment.
Reliable measurement of the receding contact angle.
Korhonen, Juuso T; Huhtamäki, Tommi; Ikkala, Olli; Ras, Robin H A
2013-03-26
Surface wettability is usually evaluated by the contact angle between the perimeter of a water drop and the surface. However, this single measurement is not enough for proper characterization, and the so-called advancing and receding contact angles also need to be measured. Measuring the receding contact angle can be challenging, especially for extremely hydrophobic surfaces. We demonstrate a reliable procedure by using the common needle-in-the-sessile-drop method. Generally, the contact line movement needs to be followed, and true receding movement has to be distinguished from "pseudo-movement" occurring before the receding angle is reached. Depending on the contact angle hysteresis, the initial size of the drop may need to be surprisingly large to achieve a reliable result. Although our motivation for this work was the characterization of superhydrophobic surfaces, we also show that this method works universally ranging from hydrophilic to superhydrophobic surfaces.
Nanodrop contact angles from molecular dynamics simulations
Ravipati, Srikanth; Aymard, Benjamin; Yatsyshin, Petr; Galindo, Amparo; Kalliadasis, Serafim
2016-11-01
The contact angle between three phases being in thermodynamic equilibrium is highly sensitive to the nature of the intermolecular forces as well as to various fluctuation effects. Determining the Young contact angle of a sessile drop sitting on a substrate from molecular dynamics (MD) simulations is a highly non-trivial task. Most commonly employed methods for finding droplet contact angles from MD simulation data either require large numbers of particles or are system-dependent. We propose a systematic geometry based methodology for extracting the contact angle from simulated sessile droplets by analysing an appropriately coarse-grained density field. To demonstrate the method, we consider Lennard-Jones (LJ) and SPC/E water nanodroplets of different sizes sitting on planar LJ walls. Our results are in good agreement with Young contact angle values computed employing test-area perturbation method.
Farley, Gary L.
1990-01-01
Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.
Khatri, Pradeep; Hayasaka, Tadahiro; Iwabuchi, Hironobu; Takamura, Tamio; Irie, Hitoshi; Nakajima, Takashi Y.; Letu, Husi; Kai, Qin
2017-04-01
data of a narrow field of view radiometer of collocated observation in one SKYNET site. Though the method is developed for the sky radiometer of SKYNET, it can be still used for the sky radiometer of AERONET and other instruments observing spectral zenith transmittances. The proposed retrieval method is then applied to retrieve cloud parameters at key sites of SKYNET within Japan, which are then used to validate cloud products obtained from space observations by MODIS sensors onboard TERRA/AQUA satellites and Himawari 8, a Japanese geostationary satellite. Our analyses suggest the underestimation (overestimation) of COD (Re) from space observations.
A Hydrodynamic Model of Dynamic Contact Angle Hysteresis.
contact angle hysteresis is developed in terms of the interaction of capillary, viscous, and...used to obtain the equations which describe the contact angle region and thereby to define the dynamic contact angle . The analysis is limited to...velocity dependence of the receding contact angle and of the thickness of the deposited film of the receding interface of a wetting liquid are determined as functions of the capillary, viscous, and disjoining forces.
Atmospheric gamma ray angle and energy distributions from 2 to 25 MeV
Ryan, J. M.; Moon, S. H.; Wilson, R. B.; Zych, A. D.; White, R. S.; Dayton, B.
1977-01-01
Results are given for gamma ray fluxes in six energy intervals from 2-25 MeV and five zenith angle intervals from 0-50 deg (downward moving) and five from 130-180 deg (upward moving). Observations were obtained with the University of California, Riverside double Compton scatter gamma ray telescope flown on a balloon to a 3.0 g/sq cm residual atmosphere at a geomagnetic cuttoff of 4.5 GV. It was found that the angular distribution of downward moving gamma rays is relatively flat, increasing slowly from 10-40 deg. The angular distribution of the upward moving gamma rays at 4.2 g/sq cm increases with angle from the vertical. Energy distributions of upward and downward moving gamma rays are in good agreement with the results of previous studies.
Kim, Ho Kyung; Cho, Min Kook; Kim, Seong Sik [Pusan National University, Busan (Korea, Republic of)
2007-07-01
In computed tomography (CT), many situations are restricted to obtain enough number of projections or views to avoid artifacts such as streaking and geometrical distortion in the reconstructed images. Speed of motion of an object to be imaged can limit the number of views. Cardiovascular imaging is a representative example. Size of an object can also limit the complete traverse motion or geometrical complexity can obscure to be imaged at certain range of angles. These situations are frequently met in industrial nondestructive testing and evaluation. Dental CT also suffers from similar situation because cervical spine causes less x-ray penetration from some directions such that the available information is not sufficient for standard reconstruction algorithms. The limited angle tomography is now greatly paid attention as a new genre in medical and industrial imaging, popularly known as digital tomosynthesis. In this study, we introduce a modified filtered backprojection method in limited angle tomography and demonstrate its application for the dental imaging.
Maeda, Kei-ichi; Uzawa, Kunihito
2016-12-01
We discuss the dynamical D p -brane solutions describing any number of D p branes whose relative orientations are given by certain SU(2) rotations. These are the generalization of the static angled D p -brane solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show that the particular orientation of the smeared D3-brane configuration can provide an example of colliding branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.
Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona
2012-01-01
: Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...
陈英英; 杨凡; 徐桂荣; 李德俊; 袁正腾; 熊洁
2015-01-01
In order to test the improvement of results in the off-zenith directions under rain and snow weather, the retrieved temperature, hu-midity, vapor density and liquid water density profiles from MP-3000A microwave radiometer (MWR) of the zenith and off-zenith observa-tions from 17 to 18 February 2014 are studied by comparing them with the Thies Clima laser precipitation monitor,L-band sounding data and precipitable water retrieved from GPS-MET from Wuhan station. Results are as follows. (1) If observed at off-zenith, the brightness tempera-ture signal saturation phenomenon at K and V bands can be eliminated effectively. Brightness temperature varies with rainfall intensity. (2) The correlation coefficient between the MWR product retrieved in off-zenith observation and sounding is better. (3) Although precipitable wa-ter vapor (PWV) retrieved in off-zenith observation is larger than the GPS/PWV, their trends are consistent. In contrast, there is a clear jump for the result in zenith observation after precipitation occurs. (4) There is a good corresponding relationship between the accumulation of cloud liquid water retrieved in off-zenith observation and the enhancement precipitation intensity.%为检验斜路径观测反演方法对雨雪天气背景下微波辐射计反演结果的改进,以2014年2月17-18日发生在武汉的一次雨雪过程为例,利用武汉观象台MP-3000A型微波辐射计天顶方向和斜路径观测反演的温度、相对湿度、水汽密度、液态水含量等廓线产品,分别与武汉观象台L波段探空资料,以及GPS-MET和Thies Clima激光雨滴谱仪的观测资料进行了对比检验.结果表明:(1)微波辐射计以斜路径方向观测,可以较好地消除K、V波段亮温信号饱和现象,亮温随降水强度的变化出现起伏波动的特征;(2)微波辐射计斜路径方向的反演产品与探空观测的相关性较好;(3)与GPS-MET观测的大气整层可降水量(PWV)比较,斜路径观测反演的PWV虽然
Wren, Tishya A L; Mitiguy, Paul C
2007-08-01
Clinical gait analysis usually describes joint kinematics using Euler angles, which depend on the sequence of rotation. Studies have shown that pelvic obliquity angles from the traditional tilt-obliquity-rotation (TOR) Euler angle sequence can deviate considerably from clinical expectations and have suggested that a rotation-obliquity-tilt (ROT) Euler angle sequence be used instead. We propose a simple alternate approach in which clinical joint angles are defined and exactly calculated in terms of Euler angles from any rotation sequence. Equations were derived to calculate clinical pelvic elevation, progression, and lean angles from TOR and ROT Euler angles. For the ROT Euler angles, obliquity was exactly the same as the clinical elevation angle, rotation was similar to the clinical progression angle, and tilt was similar to the clinical lean angle. Greater differences were observed for TOR. These results support previous findings that ROT is preferable to TOR for calculating pelvic Euler angles for clinical interpretation. However, we suggest that exact clinical angles can and should be obtained through a few extra calculations as demonstrated in this technical note.
Contact angle hysteresis on superhydrophobic stripes.
Dubov, Alexander L; Mourran, Ahmed; Möller, Martin; Vinogradova, Olga I
2014-08-21
We study experimentally and discuss quantitatively the contact angle hysteresis on striped superhydrophobic surfaces as a function of a solid fraction, ϕS. It is shown that the receding regime is determined by a longitudinal sliding motion of the deformed contact line. Despite an anisotropy of the texture the receding contact angle remains isotropic, i.e., is practically the same in the longitudinal and transverse directions. The cosine of the receding angle grows nonlinearly with ϕS. To interpret this we develop a theoretical model, which shows that the value of the receding angle depends both on weak defects at smooth solid areas and on the strong defects due to the elastic energy of the deformed contact line, which scales as ϕS(2)lnϕS. The advancing contact angle was found to be anisotropic, except in a dilute regime, and its value is shown to be determined by the rolling motion of the drop. The cosine of the longitudinal advancing angle depends linearly on ϕS, but a satisfactory fit to the data can only be provided if we generalize the Cassie equation to account for weak defects. The cosine of the transverse advancing angle is much smaller and is maximized at ϕS ≃ 0.5. An explanation of its value can be obtained if we invoke an additional energy due to strong defects in this direction, which is shown to be caused by the adhesion of the drop on solid sectors and is proportional to ϕS(2). Finally, the contact angle hysteresis is found to be quite large and generally anisotropic, but it becomes isotropic when ϕS ≤ 0.2.
Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu
2011-05-24
We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: â¢ Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. â¢ Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. â¢ Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.
Three paths toward the quantum angle operator
Gazeau, Jean Pierre; Szafraniec, Franciszek Hugon
2016-12-01
We examine mathematical questions around angle (or phase) operator associated with a number operator through a short list of basic requirements. We implement three methods of construction of quantum angle. The first one is based on operator theory and parallels the definition of angle for the upper half-circle through its cosine and completed by a sign inversion. The two other methods are integral quantization generalizing in a certain sense the Berezin-Klauder approaches. One method pertains to Weyl-Heisenberg integral quantization of the plane viewed as the phase space of the motion on the line. It depends on a family of "weight" functions on the plane. The third method rests upon coherent state quantization of the cylinder viewed as the phase space of the motion on the circle. The construction of these coherent states depends on a family of probability distributions on the line.
Investigation of drop dynamic contact angle on copper surface
Orlova, Evgenija; Feoktistov, Dmitriy; Kuznetsov, Geniy
2015-01-01
This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.
Investigation of drop dynamic contact angle on copper surface
Orlova Evgenija
2015-01-01
Full Text Available This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.
Contact angle hysteresis explained.
Gao, Lichao; McCarthy, Thomas J
2006-07-04
A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.
Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.
2013-01-01
measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology. © 2013 American Academy of Forensic Sciences....
Thilak, Vimal; Voelz, David G; Creusere, Charles D
2007-10-20
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
Winding angles of long lattice walks
Hammer, Yosi; Kantor, Yacov
2016-07-01
We study the winding angles of random and self-avoiding walks (SAWs) on square and cubic lattices with number of steps N ranging up to 107. We show that the mean square winding angle of random walks converges to the theoretical form when N → ∞. For self-avoiding walks on the square lattice, we show that the ratio /2 converges slowly to the Gaussian value 3. For self-avoiding walks on the cubic lattice, we find that the ratio /2 exhibits non-monotonic dependence on N and reaches a maximum of 3.73(1) for N ≈ 104. We show that to a good approximation, the square winding angle of a self-avoiding walk on the cubic lattice can be obtained from the summation of the square change in the winding angles of lnN independent segments of the walk, where the ith segment contains 2i steps. We find that the square winding angle of the ith segment increases approximately as i0.5, which leads to an increase of the total square winding angle proportional to (lnN)1.5.
Relationship between the Angle of Repose and Angle of Internal ...
Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression ... such a granular material is sharp, making a steep .... study. Therefore, grains had to be condi- tioned to the respective moisture contents by adding ...
Variable angle correlation spectroscopy
Lee, Y K [Univ. of California, Berkeley, CA (United States)
1994-05-01
In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.
Das, G S; Goswami, U D
2016-01-01
We have studied the lateral density, arrival time and angular distributions of Cherenkov photons in Extensive Air Showers (EASs) initiated by $\\gamma$-ray, proton and iron primaries incident with different energies and at different zenith angles. This study is the extension of our earlier work \\cite{Hazarika} to cover almost the whole energy range of ground based $\\gamma$-ray astronomy and to cover a wide range of zenith angles ($\\le 40^\\circ$), as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the $\\gamma$-ray initiated showers from the hadronic showers in the ground based $\\gamma$-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is used. Importantly, such study gives an insight on the nature of $\\gamma$-ray and hadronic showers in general. In this work, we used the CORSIKA 6.990 simulation package for the generation of EASs. Similar to the case of Ref.\\cite{Hazarika}, this study also revealed that, t...
1989-01-19
Zenith Z-248 Model 50 under MS/DOS, Version 3.2 (host) to Intel isBC 286/12 single board computer (target), ACVC 1.10 g0 01 03 004 DD tŘ 1473 1DITION...Intel isBC 286/12 single board computer Completion of On-Site Testing: 19 January 1989 AcCesion For DTIC Tii prepared BY: . AFNOR .,ltir...Number: 890119A1.10032 Host: Zenith Z-248 Model 50 under MS/DOS, Version 3.2 Target: Intel isBC 286/12 single board computer Testing Completed 19 January
Shape, gravity, and the perception of the right angle.
Maniatis, Lydia M
2010-01-01
Past efforts to determine whether orientation-dependent sensitivity to right angles is due to retinal or environmental/gravitational frames of reference have produced conflicting conclusions. I attempt to show that the chief factor underlying this phenomenon is, rather, the shape of the object containing the angle. This shape mediates the typical orientation of the object in a ground- gravity context and the consequent force-structure of the incorporated angle-a force structure that is reflected in the percept.
Investigation of drop dynamic contact angle on copper surface
Orlova Evgenija; Feoktistov Dmitriy; Kuznetsov Geniy
2015-01-01
This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It...
Angle-deviation optical profilometer
Chen-Tai Tan; Yuan-Sheng Chan; Zhen-Chin Lin; Ming-Hung Chiu
2011-01-01
@@ We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the reflectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The reflectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the reflectivity profile and obtain the 3D surface profile directly.%We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the refiectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The refiectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the refiectivity profile and obtain the 3D surface profile directly.
Wang, Y.Y.; Zhang, F.C.; Dravid, V.P.; Ng, K.K.; Klein, M.V.; Schnatterly, S.E.; Miller, L.L. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)]|[Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208 (United States)]|[Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States)]|[Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)]|[Department of Physics, Science and Technology Center for Superconductivity, University of Illinois, Urbana, Illinois 61801 (United States)]|[Department of Physics, University of Virginia, Charlottesville, Virginia 22901 (United States)]|[Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)
1996-08-01
Electron-hole pair excitations in the insulating cuprates Sr{sub 2}CuO{sub 2}Cl{sub 2} were investigated by angle-resolved electron energy loss spectroscopy. The optically allowed and optically forbidden transitions were observed to be strongly anisotropic in Cu-O{sub 2} plane. The former show a large energy dispersion {approximately}1.5 eV along [110], and the latter appear at a higher energy position ({approximately}4.5 eV) only along [100], but not along [110]. We interpret these results as transitions involving excitons. A small exciton model is examined to explain both the observed features. {copyright} {ital 1996 The American Physical Society.}
Kostadinov, I.; Petritoli, A.; Werner, R.; Valev, D.; Atanasov, At.; Bortoli, D.; Markova, T.; Ravegnani, F.; Palazzi, E.; Giovanelli, G.
2004-08-01
Ground-based zenith sky Differential Optical Absorption Spectroscopy (DOAS) measurements performed by means of GASCOD instruments at Mt. Cimone (44N 11E), Italy and Stara Zagora (42N, 25E), Bulgaria are used for validation of SCIAMACHY NO2 vertical column density (vcd) of ESA SCI_NL product retrieved with 5.01 processor version. The results presented in this work regard satellite data for the JulyDecember 2002 period. On this base it is concluded that during summer-autumn period the overall NO2 vcd above both stations is fairly well reproduced by the SCIAMACHY data, while towards the winter period they deviate from the seasonal behaviour of NO2 vcd derived at both stations
Lam, C N C; Wu, R; Li, D; Hair, M L; Neumann, A W
2002-02-25
Two types of experiments were used to study the behavior of both advancing and receding contact angles, namely the dynamic one-cycle contact angle (DOCA) and the dynamic cycling contact angle (DCCA) experiments. For the preliminary study, DOCA measurements of different liquids on different solids were performed using an automated axisymmetric drop shape analysis-profile (ADSA-P). From these experimental results, four patterns of receding contact angle were observed: (1) time-dependent receding contact angle; (2) constant receding contact angle; (3) 'stick/slip'; (4) no receding contact angle. For the purpose of illustration, results from four different solid surfaces are shown. These solids are: FC-732-coated surface; poly(methyl methacrylate/n-butyl methacrylate) [P(MMA/nBMA)]; poly(lactic acid) (DL-PLA); and poly(lactic/glycolic acid) 50/50 (DL-PLGA 50/50). Since most of the surfaces in our studies exhibit time dependence in the receding contact angle, a more extended study was conducted using only FC-732-coated surfaces to better understand the possible causes of decreasing receding contact angle and contact angle hysteresis. Contact angle measurements of 21 liquids from two homologous series (i.e. n-alkanes and 1-alcohols) and octamethylcyclotetrasiloxane (OCMTS) on FC-732-coated surfaces were performed. It is apparent that the contact angle hysteresis decreases with the chain length of the liquid. It was found that the receding contact angle equals the advancing angle when the alkane molecules are infinitely large. These results strongly suggest that the chain length and size of the liquid molecule could contribute to contact angle hysteresis phenomena. Furthermore, DCCA measurements of six liquids from the two homologous series on FC-732-coated surfaces were performed. With these experimental results, one can construe that the time dependence of contact angle hysteresis on relatively smooth and homogeneous surfaces is mainly caused by liquid retention
Tunable contact angle hysteresis on micropatterned surfaces
Debuisson, Damien; Arscott, Steve
2011-01-01
Micropatterned surfaces composed of concentric circular defects having a smooth trench-like profile are formed using a photoresist (SU-8). When an evaporating droplet encounters the micropatterned surface an evaporation phase is observed consisting of distinct discontinuities and steps in the droplet wetting contact angle and base radius respectively. The addition of gaps into the circular defects enables tuning of the contact angle hysteresis; the receding contact angle of fluorocarbon coated SU-8 can be tuned between 34.6{\\deg} and 89.1{\\deg} and that of SU-8 surfaces from 5.6{\\deg} to 43.3{\\deg} depending on the gap length. In addition, a model is developed which accurately predicts the observed behavior.
Magic-angle thermal desorption mass spectroscopy
Pauls, Steven W.; Campbell, Charles T.
1990-02-01
Accurate quantitative measurements of desorption rates or adsorbate coverages in thermal desorption mass spectroscopy (TDS) using line-of-sight mass spectrometers are hindered by the fact that the angular distributions of desorption flux can vary widely from desorbate to desorbate, ranging from cos 1ø to cos 9 ø for most species studied to date (ø = polar angle from surface normal). These differences can easily lead to errors exceeding 400% in measuring the relative desorption rates of different species. We show here that, by placing the mass spectrometer's ion source or entrance aperture at a "magic-angle" ø mthese errors can be reduced to less than 26% maximum deviation (or ± 7% standard deviation). Depending upon the sample-to-detector distance, ø m varies from ~ 42° to 34°. It is recommended that TDS experiments be performed at this "magic-angle" for improvement in the quantitative accuracy of coverage or rate measurements.
Visual estimation of pro-supination angle is superior to wrist or elbow angles.
Luria, Shai; Apt, Elad; Kandel, Leonid; Bdolah-Abram, Tali; Zinger, Gershon
2015-05-01
To examine our hypothesis that the accuracy of visual estimation, while measuring the angles of forearm, wrist and elbow, may vary between the different angles, and that this may depend on the experience of the observer. A slide show comprising of clinical photos and radiographs of different elbow, forearm and wrist angles was presented to 164 attending orthopedic surgeons, orthopedic residents and medical students who made a visual estimation of the different joints' angles. Forearm pronation was found to be estimated most accurately (mean 6.1°) while radiographs of wrist flexion (mean 12°) and photos of wrist extension (mean 16°) were estimated the least accurately. Specialists estimated angles more accurately than residents and both were more accurate than students, regardless of the estimated joint. The accuracy of visual estimation of a joint's angle depends on the specific joint viewed. Experience in the practice of orthopedic surgery (and not only upper extremity surgery) will improve the accuracy of estimation in general. Regarding the elbow, forearm and wrist, the results of our study suggest that a goniometer should be used whenever an accuracy of up to 10° is important, and for measuring wrist flexion and extension.
Heterodyne Interferometer Angle Metrology
Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud
2010-01-01
A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.
Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation
Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.
2014-01-01
The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.
Dynamic aspects of contact angle measurements on adsorbed protein layers
Scheer, van der At; Smolders, Cees A.
1978-01-01
Contact angle measurements using drops of paraffin oil have been performed on polystyrene (PS) substrates, coated with human serum albumin (HSA) or human fibrinogen (HFb), immersed in buffer solution. The contact angle appeared to be time dependent. The final value for HSA-coated substrates was 50°
Investigation of Polarimetric SAR Data Acquired at Multiple Incidence Angles
Svendsen, Morten Thougaard; Skriver, Henning; Thomsen, A.
1998-01-01
The dependence of different polarimetric parameters on the incidence angles in the range of 30° to 60° is investigated for a number of different crops using airborne SAR data. The purpose of the investigation is to determine the effect of the variation of incidence angle within a SAR image when...
Equilibrium contact angle or the most-stable contact angle?
Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A
2014-04-01
It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.
Souza, Roberta Vieira Goncalves de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Arquitetura. Dept. de Tecnologia da Arquitetura e do Urbanismo]. E-mail: roberta@arq.ufmg.br; Pereira, Fernando Oscar Ruttkay [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Arquitetura. Lab. de Conforto Ambiental]. E-mail: feco@arq.ufsc.br
2002-07-01
This paper describes the assembly of a standard station for measuring the day lighting for evaluation of the natural light availability. The mounting and data obtention form will also be described from a standard IDMP day lighting station for measuring the data from measuring zenith, horizontal, and vertical illuminance of the sky and vertical irradiance for the cardinal points.
de Sousa, Gerimario F; Deflon, Victor M; Gambardella, Maria T do P; Francisco, Regina H P; Ardisson, José D; Niquet, Elke
2006-05-29
The synthesis and the IR, NMR (1H, 13C, and 119Sn), and Mössbauer spectroscopies and single-crystal X-ray diffraction studies of seven-coordinated diorganotin(IV) complexes, namely, [Ph2Sn(Hdapsc)]Cl.H2O.DMF [7; H(2)dapsc = 2,6-diacetylpyridine bis(semicarbazone)], [Me(2)Sn(H2,6Achexim)]Br.H2O [8; H(2)2,6Achexim = 2,6-diacetylpyridine bis(3-hexamethyleneiminylthiosemicarbazone)], [Me(2)Sn(dapmts)] [9; H(2)dapmts = 2,6-diacetylpyridine bis(4-methythiosemicarbazone)], and [nBu2Sn(dapmdtc)] [10; H(2)dapmdtc = 2,6-diacetylpyridine bis(S-methydithiocarbazate)], were done. The determination of the structures of [Ph(2)Sn(Hdapsc)]+, [Me2Sn(H2,6Achexim)]+ and [Me2Sn(dapmts)], [nBu2Sn(dapmdtc)] revealed the presence of monocationic and neutral complexes, respectively. The structures consist of monomeric units in which the Sn(IV) ions exhibit distorted pentagonal-bipyramidal geometries, with the X,N,N,N,X-donor (X = O, S) systems of the ligands lying in the equatorial plane and the organic groups in the apical positions. The C-Sn-C angle in the seven-coordinated diorganotin(IV) complexes was estimated using a correlation between Mössbauer and X-ray data based on the point-charge model and using new values obtained in this work for [alkyl] = -1.00 mm s(-1) and [aryl] = -0.80 mm s(-1) for complexes containing O,N,N,N,O-pentadentate ligands and new values for [alkyl] = -0.87 mm s(-1) and [aryl] = -0.75 mm s(-1) for complexes containing S,N,N,N,S-pentadentate ligands.
Generalization of the Euler Angles
Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis
2002-01-01
It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.
Mapping of low flip angles in magnetic resonance
Balezeau, Fabien; Saint-Jalmes, Herve [LTSI, INSERM U642, Universite Rennes 1 (France); Eliat, Pierre-Antoine [PRISM, IFR 140, Universite Rennes 1 (France); Cayamo, Alejandro Bordelois, E-mail: fabien.balezeau@gmail.com [Centro De BiofIsika Medica, Universidad de Oriente, Santiago de Cuba (Cuba)
2011-10-21
Errors in the flip angle have to be corrected in many magnetic resonance imaging applications, especially for T1 quantification. However, the existing methods of B1 mapping fail to measure lower values of the flip angle despite the fact that these are extensively used in dynamic acquisition and 3D imaging. In this study, the nonlinearity of the radiofrequency (RF) transmit chain, especially for very low flip angles, is investigated and a simple method is proposed to accurately determine both the gain of the RF transmitter and the B1 field map for low flip angles. The method makes use of the spoiled gradient echo sequence with long repetition time (TR), such as applied in the double-angle method. It uses an image acquired with a flip angle of 90{sup 0} as a reference image that is robust to B1 inhomogeneity. The ratio of the image at flip angle alpha to the image at a flip angle of 90{sup 0} enables us to calculate the actual value of alpha. This study was carried out at 1.5 and 4.7 T, showing that the linearity of the RF supply system is highly dependent on the hardware. The method proposed here allows us to measure the flip angle from 1{sup 0} to 60{sup 0} with a maximal uncertainty of 10% and to correct T1 maps based on the variable flip angle method.
Small angle neutron scattering
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
Meningiomas of the cerebellopontine angle.
Matthies, C; Carvalho, G; Tatagiba, M; Lima, M; Samii, M
1996-01-01
Meningiomas of the cerebellopontine angle (CPA) represent a clinically and surgically interesting entity. The opportunity of complete surgical excision and the incidence of impairment of nerval structures largely depend on the tumour biology that either leads to displacement of surrounding structures by an expansive type of growth or to an enveloping of nerval and vascular structures by an en plaque type of growth. As the origin and the direction of growth are very variable, the exact tumour extension in relation to the nerval structures and the tumour origin can be identified sometimes only at the time of surgery. Out of a series of 230 meningiomas of the posterior skull base operated between 1978 and 1993, data of 134 meningiomas involving the cerebellopontine angle are presented. There were 20% male and 80% female patients, age at the time of surgery ranging from 18 to 76 years, on the average 51 years. The clinical presentation was characterized by a predominant disturbance of the cranial nerves V (19%), VII (11%), VIII (67%) and the caudal cranial nerves (6%) and signs of ataxia (28%). 80% of the meningiomas were larger than 30 mm in diameter, 53% led to evident brainstem compression or dislocation and 85% extended anteriorly to the internal auditory canal. Using the lateral suboccipital approach in the majority of cases and a combined presigmoidal or combined suboccipital and subtemporal approaches in either sequence in 5%, complete tumour removal (Simpson I and II) was accomplished in 95% and subtotal tumour removal in 5%. Histologically the meningiotheliomatous type was most common (49%) followed by the mixed type (19%), fibroblastic (16%), psammomatous (7%), hemangioblastic (7%) and anaplastic (2%) types. Major post-operative complications were CSF leakage (8%) requiring surgical revision in 2% and hemorrhage (3%) requiring revision in 2%. While the majority of neurological disturbances showed signs of recovery, facial nerve paresis or paralysis was
Kaskaoutis, D. G.; Kambezidis, H. D.; Dumka, U. C.; Psiloglou, B. E.
2016-09-01
This study investigates the modification of the clear-sky spectral diffuse-direct irradiance ratio (DDR) as a function of solar zenith angle (SZA), spectral aerosol optical depth (AOD) and single scattering albedo (SSA). The solar spectrum under various atmospheric conditions is derived with Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) radiative transfer code, using the urban and continental aerosol models as inputs. The spectral DDR can be simulated with great accuracy by an exponentially decreasing curve, while the aerosol optical properties strongly affect the scattering processes in the atmosphere, thus modifying the DDR especially in the ultraviolet (UV) spectrum. Furthermore, the correlation between spectral DDR and spectral AOD can be represented precisely by an exponential function and can give valuable information about the dominance of specific aerosol types. The influence of aerosols on spectral DDR increases with increasing SZA, while the simulations using the urban aerosol model as input in SMARTS are closer to the measurements taken in the Athens urban environment. The SMARTS simulations are interrelated with spectral measurements and can be used for indirect estimations of SSA. Overall, the current work provides some theoretical approximations and functions that help in understanding the dependence of DDR on astronomical and atmospheric parameters.
Vorobyev, V; Aihara, H; Asner, D M; Aushev, T; Ayad, R; Badhrees, I; Bahinipati, S; Bakich, A M; Behera, P; Bhardwaj, V; Bhuyan, B; Biswal, J; Bobrov, A; Bondar, A; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Danilov, M; Dash, N; Di Carlo, S; Doležal, Z; Drásal, Z; Drutskoy, A; Dutta, D; Eidelman, S; Epifanov, D; Farhat, H; Fast, J E; Ferber, T; Fulsom, B G; Gaur, V; Gabyshev, N; Garmash, A; Goldenzweig, P; Greenwald, D; Haba, J; Hayasaka, K; Hayashii, H; Hou, W -S; Inami, K; Inguglia, G; Ishikawa, A; Itoh, R; Iwasaki, Y; Jacobs, W W; Jaegle, I; Joffe, D; Joo, K K; Julius, T; Kang, K H; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, K T; Kim, S H; Kinoshita, K; Kodyš, P; Kotchetkov, D; Križan, P; Krokovny, P; Kumar, R; Kumita, T; Kwon, Y -J; Lange, J S; Li, C H; Li, H; Li, L; Li, Y; Libby, J; Liventsev, D; Lubej, M; Masuda, M; Matsuda, T; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Moon, H K; Mussa, R; Nakao, M; Nanut, T; Nath, K J; Nayak, M; Negishi, K; Nishida, S; Ogawa, S; Okuno, S; Pakhlov, P; Pakhlova, G; Pal, B; Park, C -S; Park, C W; Park, H; Paul, S; Pedlar, T K; Pestotnik, R; Petrič, M; Piilonen, L E; Rauch, J; Ritter, M; Sakai, Y; Sandilya, S; Sanuki, T; Savinov, V; Schlüter, T; Schneider, O; Schnell, G; Schwanda, C; Schwartz, A J; Seino, Y; Senyo, K; Sevior, M E; Shebalin, V; Shen, C P; Shibata, T -A; Shiu, J -G; Shwartz, B; Simon, F; Sokolov, A; Solovieva, E; Starič, M; Strube, J F; Sumiyoshi, T; Takizawa, M; Tenchini, F; Trabelsi, K; Uchida, M; Uglov, T; Uno, S; Urquijo, P; Usov, Y; Van Hulse, C; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Wang, C H; Wang, M -Z; Wang, P; Watanabe, Y; Williams, K M; Won, E; Yamaoka, J; Yamashita, Y; Yashchenko, S; Yelton, J; Zhang, Z P; Zhilich, V; Zhukova, V; Zhulanov, V; Zupanc, A
2016-01-01
We report a measurement of the CP violation parameter $\\varphi_1$ obtained in a time-dependent analysis of $B^0\\to\\overline{D}{}^{(*)0}h^0$ decays followed by $\\overline{D}{}^0\\to K_S^0\\pi^+\\pi^-$ decay. A model-independent measurement is performed using the binned Dalitz plot technique. The measured value is $\\varphi_1 = 11.7^{\\circ}\\pm7.8^{\\circ}({\\rm stat.})\\pm 2.1^{\\circ}({\\rm syst.})$. Treating $\\sin{2\\varphi_1}$ and $\\cos{2\\varphi_1}$ as independent parameters, we obtain $\\sin{2\\varphi_1} = 0.43\\pm 0.27({\\rm stat.})\\pm 0.08({\\rm syst.})$ and $\\cos{2\\varphi_1} = 1.06\\pm 0.33({\\rm stat.})^{+0.21}_{-0.15}({\\rm syst.})$. The results are obtained with a full data sample of $772 \\times 10^6 B\\overline{B}$ pairs collected near the $\\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider.
Hysteresis during contact angles measurement.
Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D
2010-03-15
A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.
Dancing droplets: Contact angle, drag, and confinement
Benusiglio, Adrien; Cira, Nate; Prakash, Manu
2015-11-01
When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.
Abraham, Raymond J; Leonard, Paul; Tormena, Cláudio F
2012-04-01
The (1) H chemical shifts of selected three-membered ring compounds in CDCl(3) solvent were obtained. This allowed the determination of the substituent chemical shifts of the substituents in the three-membered rings and the long-range effect of these rings on the distant protons. The substituent chemical shifts of common substituents in the cyclopropane ring differ considerably from the same substituents in acyclic fragments and in cyclohexane and were modelled in terms of a three-bond (γ)-effect. For long-range protons (more than three bonds removed), the substituent effects of the cyclopropane ring were analysed in terms of the cyclopropane magnetic anisotropy and steric effect. The cyclopropane magnetic anisotropy (ring current) shift was modelled by (a) a single equivalent dipole perpendicular to and at the centre of the cyclopropane ring and (b) by three identical equivalent dipoles perpendicular to the ring placed at each carbon atom. Model (b) gave a more accurate description of the (1) H chemical shifts and was the selected model. After parameterization, the overall root mean square error for the dataset of 289 entries was 0.068 ppm. The anisotropic effects are significant for the cyclopropane protons (ca 1 ppm) but decrease rapidly with distance. The heterocyclic rings of oxirane, thiirane and aziridine do not possess a ring current. (3) J(HH) couplings of the epoxy ring proton with side-chain protons were obtained and shown to be dependent on both the H-C-C-H and H-C-C-O orientations. Both density functional theory calculations and a simple Karplus-type equation gave general agreement with the observed couplings (root mean square error 0.5 Hz over a 10-Hz range).
Gold, S.
2005-07-01
The aim of this work was to examine, by use of XMCD-effect and additional measurements with SQUID-magnetometer, spin moments and hysteresis loops, but also to clarify the intrinsic properties like magnetocrystalline anisotropy, magnetic dipole term, and the nearly quenched orbital moment. The XMCD-measurements were done at the Cr L{sub 2,3}- and the O K-edge. The results for CrO{sub 2} show a strong dependence of the orbital, the sum of spin moment and magnetic dipole term, and the magnetocrystalline anisotropy energy from the angle between rutile a- and c-axis. Even more than the complete orbital moment, two separable and different spectral features show strong alterations of the different orbital moments. In a second part of this work the temperature dependence was investigated. The aim was to clarify the origin of the orbital moment, dipole term, and MAE in dependence of the spin moment and compare the results to different theoretical models. The extracted orbital moments and the magnetic dipole term show the same temperature dependence as the spin moment. In the following a dependence of the squared measured spin moment could be found for the MAE. For the first time the magnetic dipole term could be identified as the reason of the magnetocrystalline anisotropy energy. A strong Cr-O hybridisation was found, which shows in a similar structure and temperature dependence of the orbital moments for Cr L{sub 2,3} and the XMCD effect at O-K edge. (orig.)
Glaister, P.
1997-09-01
Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).
Large optical field enhancement for nanotips with large opening angles
Thomas, Sebastian; Lemell, Christoph; Burgdörfer, Joachim; Hommelhoff, Peter
2014-01-01
We theoretically investigate optical near-fields at nanometric tips. We systematically study the dependence of field enhancement on the shape, size, and material of the tip. We confirm a strong dependence of the field enhancement factor on the radius of curvature. In addition, we find a remarkably strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature $\\geq 5\\,$nm at 800 nm laser wavelength), we obtain field enhancement factors of up to ${\\sim}35$ (Au) and ${\\sim}12$ (W) for wide opening angles. We confirm this strong dependence on the opening angle for many other materials studying the dependence of the field enhancement at nanotips on the dielectric response function. For dielectrics, the increase in field enhancement is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement ...
Oriented angles in affine space
Włodzimierz Waliszewski
2004-05-01
Full Text Available The concept of a smooth oriented angle in an arbitrary affine space is introduced. This concept is based on a kinematics concept of a run. Also, a concept of an oriented angle in such a space is considered. Next, it is shown that the adequacy of these concepts holds if and only if the affine space, in question, is of dimension 2 or 1.
Control of Angular Intervals for Angle-Multiplexed Holographic Memory
Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki
2009-03-01
In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.
A new global zenith tropospheric delay model GZTD%一种新的全球对流层天顶延迟模型GZTD
姚宜斌; 何畅勇; 张豹; 许超钤
2013-01-01
Troposphere delay is one of the main error sources in global navigation satellite systems (GNSS).Its obvious randomness is mainly attributed to meteorological parameters (total pressure,temperature and water vapor pressure,etc.).In this paper,the temporal and spatial variations of global Zenith Troposphere Delay (ZTD) is analyzed using the time series of global 4D-grid ZTD from 2002 to 2009,provided by Global Geodetic Observing System (GGOS)Atmosphere.According to the analysis,a new global ZTD correction model without requiring meteorological parameters,called GZTD,is developed based on spherical harmonics.Experimental results show that the precision of inner coincidence of GZTD model (bias:0.2 cm,RMS:3.7 cm) considering the longitudinal and latitudinal variations of ZTD performs better than other latitude-only models,such as UNB3m (bias:3.4 cm,RMS:6.0 cm),UNB4 (bias:4.7 cm,RMS:7.4 cm),UNB3 (bias:4.0 cm,RMS:7.0 cm) and EGNOS (bias:4.5 cm,RMS:6.9 cm).Compared to ZTD time series from 385 global International GNSS Service (IGS) sites,GZTD model (bias:-0.02 cm,RMS:4.24 cm) is still clearly superior to other similar models.The GZTD model owns such advantages as well-performance,simplicity in computation and less parameters-requirement.%对流层延迟是GNSS导航定位主要误差源之一,主要受气象参数(如总气压、温度和水汽压等)的影响,具有变化随机性强的特点.本文利用GGOS Atmosphere提供的2002 2009年全球天顶对流层延迟格网时间序列研究了全球对流层天顶延迟的时空变化特征.并以此为基础对全球天顶对流层延迟(Zenith Troposphere Delay,ZTD)进行建模,提出了一种基于球谐函数的全球非气象参数对流层天顶延迟改正模型——GZTD模型.实验对比结果表明考虑ZTD经纬向变化的GZTD模型内符合精度全球统计结果(bias:0.2 cm,RMS:3.7 cm)优于只考虑ZTD纬向变化的UNB3m(bias:3.4 cm,RMS:6.0 cm)、UNB4 (bias:4.7 cm,RMS:7.4 cm)、UNB3 (bias:4.0 cm,RMS:7
Angle-resolved neutralization-reionization mass spectrometry.
Fura, A; Turecek, F; McLafferty, F W
1991-12-01
Neutralization -reionization mass spectra of 2-propenal, isomeric butenes, and isomeric n-hexenes have been found to depend significantly on the z-axis scattering angle of the neutralization event. As shown by Cooks for ion dissociations, increasing scattering angles generally favor products of higher activation-energy reactions. For isomeric butenes and n-hexenes, these reactions provide more definitive information for isomeric characterization.
Measurement of the angle of superficial tension by images
Yanez M., Javier; Alonso R., Sergio
2006-02-01
When a liquid is deposited on a surface, this one form a certain angle with respect to the surface, where depending on its value, it will conclude that so hard it is his adhesion with the surface. By means of the analysis of images we looked for to measure this angle of superficial tension. In order to make this measurement, we propose a technique by means of projective transformations and one method of regression to estimation parameters to conic fitting.
F. Hendrick
2004-01-01
Full Text Available A retrieval algorithm based on the Optimal Estimation Method (OEM has been developed in order to provide vertical distributions of NO2 in the stratosphere from ground-based (GB zenith-sky UV-visible observations. It has been applied to observational data sets from the NDSC (Network for Detection of Stratospheric Change stations of Harestua (60° N, 10° E and Andøya (69° N, 16° E in Norway. The information content and retrieval errors have been analyzed following a formalism used for characterizing ozone profiles retrieved from solar infrared absorption spectra. In order to validate the technique, the retrieved NO2 vertical profiles and columns have been compared to correlative balloon and satellite observations. Such extensive validation of the profile and column retrievals was not reported in previously published work on the profiling from GB UV-visible measurements. A good agreement - generally better than 25% - has been found with the SAOZ (Système d'Analyse par Observations Zénithales and DOAS (Differential Optical Absorption Spectroscopy balloons. A similar agreement has been reached with correlative satellite data from the HALogen Occultation Experiment (HALOE and Polar Ozone and Aerosol Measurement (POAM III instruments above 25km of altitude. Below 25km, a systematic underestimation - by up to 40% in some cases - of both HALOE and POAM III profiles by our GB profile retrievals has been observed, pointing out more likely a limitation of both satellite instruments at these altitudes. We have concluded that our study strengthens our confidence in the reliability of the retrieval of vertical distribution information from GB UV-visible observations and offers new perspectives in the use of GB UV-visible network data for validation purposes.
N. F. Blagoveshchenskaya
2009-01-01
Full Text Available Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency f_{H} was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ. The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland, the European Incoherent Scatter (EISCAT UHF radar at Tromsø and the Tromsø ionosonde (dynasonde. The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization.
Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.
2012-01-01
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
F. Hendrick
2004-05-01
Full Text Available A retrieval algorithm based on the Optimal Estimation Method (OEM has been developed in order to provide vertical distributions of NO_{2} in the stratosphere from ground-based (GB zenith-sky UV-visible observations. It has been applied to observational data sets from the NDSC (Network for Detection of Stratospheric Change stations of Harestua (60° N, 10° E and Andøya (69.3° N, 16.1° E in Norway. The information content and retrieval errors have been analyzed following a formalism used for characterizing ozone profiles retrieved from solar infrared absorption spectra. In order to validate the technique, the retrieved NO_{2} vertical profiles and columns have been compared to correlative balloon and satellite observations. Such extensive validation of the profile and column retrievals was not reported in previously published work on the profiling from GB UV-visible measurements. A good agreement – generally better than 25% – has been found with the SAOZ (Système d'Analyse par Observations Zénithales and DOAS (Differential Optical Absorption Spectroscopy balloon data. A similar agreement has been reached with correlative satellite data from HALogen Occultation Experiment (HALOE and Polar Ozone and Aerosol Measurement (POAM III instruments above 25 km of altitude. Below 25 km, a systematic overestimation of our retrieved profiles – by up to 50% in some cases – has been observed by both HALOE and POAM III, pointing out the limitation of the satellite solar occultation technique at these altitudes. We have concluded that our study strengthens our confidence in the reliability of the retrieval of vertical distribution information from GB UV-visible observations and offers new perspectives in the use of GB UV-visible network data for validation purposes.
The Semiotic and Conceptual Genesis of Angle
Tanguay, Denis; Venant, Fabienne
2016-01-01
In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…
Predicting bed form roughness: the influence of lee side angle
Lefebvre, Alice; Winter, Christian
2016-04-01
Flow transverse bedforms (ripples and dunes) are ubiquitous in rivers and coastal seas. Local hydrodynamics and transport conditions depend on the size and geometry of these bedforms, as they constitute roughness elements at the bed. Bedform influence on flow energy must be considered for the understanding of flow dynamics, and in the development and application of numerical models. Common estimations or predictors of form roughness (friction factors) are based mostly on data of steep bedforms (with angle-of-repose lee slopes), and described by highly simplified bedform dimensions (heights and lengths). However, natural bedforms often are not steep, and differ in form and hydraulic effect relative to idealised bedforms. Based on systematic numerical model experiments, this study shows how the hydraulic effect of bedforms depends on the flow structure behind bedforms, which is determined by the bedform lee side angle, aspect ratio and relative height. Simulations reveal that flow separation behind bedform crests and, thus, a hydraulic effect is induced at lee side angles steeper than 11 to 18° depending on relative height, and that a fully developed flow separation zone exists only over bedforms with a lee side angle steeper than 24°. Furthermore, the hydraulic effect of bedforms with varying lee side angle is evaluated and a reduction function to common friction factors is proposed. A function is also developed for the Nikuradse roughness (k s), and a new equation is proposed which directly relates k s to bedform relative height, aspect ratio and lee side angle.
Modulation of cross polarization in motionally averaged solids by Variable Angle Spinning NMR
Espinosa, Catalina A.; Thureau, Pierre; Shapiro, Rebecca A.; Litvak, Ilya M.; Martin, Rachel W.
2011-01-01
In systems where the dipolar couplings are partially averaged by molecular motion, cross-polarization is modulated by sample spinning. The cross-polariation efficiency in Variable Angle Spinning (VAS) and Switched Angle Spinning (SAS) experiments on mobile samples is therefore strongly dependent on the spinning angle. We describe simulations and experimental measurements of these effects over a range of spinning angles from 0° to 90°. PMID:21743604
The Brewster angle effect in SAR polarimetry
Chapman, B.
1993-01-01
For the double bounce case, where the radar signal is reflected twice before returning to the radar antenna, some polarization effects may be observed related to the dielectric constant of the two surfaces causing the reflections. The most noticeable effect would be that the returned signal would be preferentially H polarized. In fact, it may be possible to discern the Brewster angle for both surfaces. The locations of the Brewster angle will depend on the dielectric constant and permittivity of each surface. If it is assumed that both reflections are in the same plane of incidence, and that both surfaces are smooth and flat, there is a straightforward relationship between the degree of linear polarization m and both the dielectric constants of the two reflecting surfaces and the angle of incidence of the illuminating wave: m carat = cos 2(arccot (square root of (R(sub v) / R(sub h)))) where R(sub v,h) are the V and H polarized Fresnel reflection coefficients for two surfaces perpendicular to each other. The degree of linear polarization may be calculated from AIRSAR compressed Stokes data and compared with the given equation. The degree of linear polarization may also be calculated using tree models and compared with AIRSAR data. With further work, it may be possible to use the degree of linear polarization to determine surface parameters of certain imaged areas.
The dependence of sheet erosion velocity on slope angle
Chernyshev Sergey Nikolaevich
2014-09-01
Full Text Available The article presents a method for estimating the erosion velocity on forested natural area. As a research object for testing the methodology the authors selected Neskuchny Garden - a city Park on the Moskva river embankment, named after the cognominal Palace of Catherine's age. Here, an almost horizontal surface III of the Moskva river terrace above the flood-plain is especially remarkable, accentuated by the steep sides of the ravine parallel to St. Andrew's, but short and nameless. The crests of the ravine sides are sharp, which is the evidence of its recent formation, but the old trees on the slopes indicate that it has not been growing for at least 100 years. Earlier Russian researchers defined vertical velocity of sheet erosion for different regions and slopes with different parent (in relation to the soil rocks. The comparison of the velocities shows that climatic conditions, in the first approximation, do not have a decisive influence on the erosion velocity of silt loam soils. The velocities on the shores of Issyk-Kul lake and in Moscow proved to be the same. But the composition of the parent rocks strongly affects the sheet erosion velocity. Even low-strength rock material reduces the velocity by times. Phytoindication method gives a real, physically explainable sheet erosion velocities. The speed is rather small but it should be considered when designing long-term structures on the slopes composed of dispersive soils. On the slopes composed of rocky soils sheet erosion velocity is so insignificant that it shouldn't be taken into account when designing. However, there may be other geological processes, significantly disturbing the stability of slopes connected with cracks.
Frequency scaling for angle gathers
Zuberi, M. A H
2014-01-01
Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.
Large optical field enhancement for nanotips with large opening angles
Thomas, Sebastian; Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Hommelhoff, Peter
2015-06-01
We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm the strong dependence of the field enhancement factor on the radius of curvature. In addition, we find a surprisingly strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature ≥slant 5 nm at 800 nm laser wavelength), we obtain field enhancement factors of up to ∼ 35 for Au and ∼ 12 for W for large opening angles. We confirm this strong dependence on the opening angle for many other materials featuring a wide variety in their dielectric response. For dielectrics, the opening angle dependence is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement and shifts the maximum field enhancement to smaller opening angles.
Angle independent velocity spectrum determination
2014-01-01
An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....
Scaling of misorientation angle distributions
Hughes, D.A.; Chrzan, D.C.; Liu, Q.
1998-01-01
The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributions...... for the small to large strain regimes for aluminum, 304L stainless steel, nickel, and copper (taken from the literature )appear to be identical. Hence the distributions may be "universal." These results have significant implications for the development of dislocation based deformation models. [S0031...
Systematic variations in divergence angle
Okabe, Takuya
2012-01-01
Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance.
Determining surface wave arrival angle anomalies
Larson, Erik W. F.; Ekström, Göran
2002-06-01
A new method for measuring arrival angles of teleseismic Love and Rayleigh waves is developed. The new method utilizes estimates of surface wave dispersion to create a phase-matched filter to isolate the Love or Rayleigh wave in three-component recordings. The polarization of the filtered wave group is determined in the time domain by application of a variation of the complex polarization method of Vidale [1986]. Orientation, linearity, and ellipticity of particle motion are estimated in several frequency bands to determine the frequency-dependent polarization. The method employs an iterative scheme, by which a predicted Love wave, based on the estimated dispersion and polarization, is subtracted from the three-component data prior to the estimation of Rayleigh wave polarization, and vice versa. The method is applied to an extensive set of Global Seismographic Network data covering the years 1989-1998. Between 4244 and 15,075 measurements are collected for fundamental mode Love and Rayleigh waves at nine different periods (37 to 150 s). Measurement uncertainties are estimated using the statistics of observations for pairwise similar paths and are generally of the order of 15-50% of the total signal, depending on the period and the wave type. Large and azimuthally invariant angle anomalies are documented for several stations and are consistent with misorientation of the horizontal seismometers. Two schemes are employed to determine the misorientations: (1) an azimuthally weighted average at each station, and (2) a joint inversion for seismometer misorientation and globally heterogeneous phase velocities. The determined corrections are robust and correlate well with those reported in earlier studies. Azimuthally varying arrival angle anomalies are shown to agree qualitatively with predictions of wave refraction calculated for recent phase velocity maps, which explain up to 30% of the variance in the new measurements.
Intrinsic polarization angle ambiguity in Faraday tomography
Kumazaki, Kohei; Ideguchi, Shinsuke; Kurayama, Tomoharu; Takahashi, Keitaro
2014-01-01
Faraday tomography is a powerful method to diagnose polarizations and Faraday rotations along the line of sight. Quality of Faraday tomography is, however, limited by several conditions. Recently, it is reported that Faraday tomography indicates false signals in some specific situations. In this paper, we systematically investigate the condition of the appearance of false signals in Faraday tomography. We study the situations that we observe two sources within a beam, and change the intrinsic polarization angles, rotation measures, intensities, and frequency coverage. We find that false signals arise when rotation measure between the sources is less than 1.5 times the full width at half maximum of the rotation measure spread function. False signals also depend on the intensity ratio between the sources and are reduced for large ratio. On the other hand, the appearance of false signals does not depend on frequency coverage, meaning that the uncertainty should be correctly understood and taken into consideratio...
Measuring the Stop Mixing Angle at the LHC
Rolbiecki, Krzysztof; Moortgat-Pick, Gudrid
2009-01-01
We present a method to determine the stop mixing angle and its CP-violating phase at the LHC. As an observable we use ratios of branching ratios for different decay modes of the light stop ~t_1 to charginos and neutralinos. These observables can have a very strong dependence on the parameters of the stop sector. We discuss in detail the origin of these effects. Using various combinations of the ratios of branching ratios we show that, depending on the scenario, one can achieve accuracies in the range of a few percent for determining the light stop mass, the mixing angle and the CP phase.
Contact angle of sessile drops in Lennard-Jones systems.
Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans
2014-11-18
Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.
Limbus Impact on Off-angle Iris Degradation
Karakaya, Mahmut [ORNL; Barstow, Del R [ORNL; Santos-Villalobos, Hector J [ORNL; Thompson, Joseph W [ORNL; Bolme, David S [ORNL; Boehnen, Chris Bensing [ORNL
2013-01-01
The accuracy of iris recognition depends on the quality of data capture and is negatively affected by several factors such as angle, occlusion, and dilation. Off-angle iris recognition is a new research focus in biometrics that tries to address several issues including corneal refraction, complex 3D iris texture, and blur. In this paper, we present an additional significant challenge that degrades the performance of the off-angle iris recognition systems, called the limbus effect . The limbus is the region at the border of the cornea where the cornea joins the sclera. The limbus is a semitransparent tissue that occludes a side portion of the iris plane. The amount of occluded iris texture on the side nearest the camera increases as the image acquisition angle increases. Without considering the role of the limbus effect, it is difficult to design an accurate off-angle iris recognition system. To the best of our knowledge, this is the first work that investigates the limbus effect in detail from a biometrics perspective. Based on results from real images and simulated experiments with real iris texture, the limbus effect increases the hamming distance score between frontal and off-angle iris images ranging from 0.05 to 0.2 depending upon the limbus height.
Contactless angle detection using permalloy
Eijkel, Kees J.; Rijk, Rolf
1988-01-01
An overview is given of measurements on angle detectors. The detectors consist of a pair of planar-Hall elements opposite to a rotatable magnet. The measurements are performed on a number of planar-Hall elements of different shape and size, and show good agreement with a previously described theoret
RESEARCH OF BASIFACIAL CONTOURING SCULPTURE BY MANDIBULAR ANGLE OSTECTOMY
FANG Jian-lin; DAI Chuan-chang; ZHU Guo-xian; ZHANG Ying; JIN Yu-qing; WANG Wei; QI Chuan-liang
2006-01-01
Objective Mandibular angle ostectomy is usually applied to the facial contouring sculpture.We evaluated the various techniques in order to enhance the precision and avoid unnecessary damage. Methods Before operation the area and quantity resected bone were designed according to facial measurement, mandible pantomography and orthophoria and lateral localized radiograph of skull. The Incises of mandibular angle ostectomy included intraoral, retroauricular or intraoral associated with retroauricular. Howerer, the sagittal resection of mandible outer table was necessary in all intraoral incise. Results Single mandibular angle ostectomy was not satisfactory for the patients having mandible hypertrophy with over-width basifacial contouring. Mandibular angle ostectomy combined with the sagittal resection of outer table of mandibular angle were required. Good symmetry and ap pearance were gained in 206 cases. One case had facial paralysis. Two patients occured mandibular fracture during the operation. Three cases complicated angled deformity at mandible body. Conclusion Reduction mandibuloplasty should be selected depends on varied types of mandibular angle hypertrophy before operation.
改进的对流层天顶延迟估计方法%Improved Method of Estimate the Zenith Troposphere Delay
吴文溢; 陈西宏; 孙际哲; 刘赞
2016-01-01
Aiming at the poor performance of tradition models in the zenith tropospheric non-hydrostatic delay evaluation,a variable method based on improved Hopfield model was proposed.The meteorological parameters formula in the model of medium latitude atmosphere was used to infer the formula of the hydrostatic and non-hy-drostatic delay again in this method.In order to get the factors of temperature and water vapor pressure,the method interpolated value in the table of global tropospheric delay atmosphere parameter.By using the meteoro-logical data of eight International GPS service stations in Asia,the tropospheric delay was compared between im-proved model and tradition models,such as Hopfield model,Saastamoinen model and Black model.Computing results showed that the accuracy of improved model was better than tradition models.%针对传统对流层延迟模型在估计天顶湿延迟方面存在精度不高和稳定性差的问题,提出了基于改进Hopfield模型的对流层天顶延迟估计方法。该方法利用中纬度大气模式中的气象参数公式,重新推导了Hopfield模型中静力项和湿项延迟表达式,并利用全球对流层延迟气象参数格网值进行内插获取温度变化率和水汽压系数。选取亚洲地区不同经纬度的八个国际 GPS 服务(IGS,International GPS Service)站的气象数据,分别采用传统模型和改进模型进行对流层天顶延迟估计,计算结果表明改进模型的精度优于传统模型,尤其是湿项延迟方面,估算精度提高了一个数量级。
Kapłon, Jan; Stankunavicius, Gintautas
2016-04-01
The dense ground based augmentation networks can provide the important information for monitoring the state of neutral atmosphere. The GNSS&METEO research group at Wroclaw University of Environmental and Life Sciences (WUELS) is operating the self-developed near real-time service estimating the troposphere parameters from GNSS data for the area of Poland. The service is operational since December 2012 and it's results calculated from ASG-EUPOS GBAS network (120 stations) data are supporting the EGVAP (http://egvap.dmi.dk) project. At first the zenith troposphere delays (ZTD) were calculated in hourly intervals, but since September 2015 the service was upgraded to include SmartNet GBAS network (Leica Geosystems Polska - 150 stations). The upgrade included as well: increasing the result interval to 30 minutes, upgrade from Bernese GPS Software v. 5.0 to Bernese GNSS Software v. 5.2 and estimation of the ZTD and it's horizontal gradients. Processing includes nowadays 270 stations. The densification of network from 70 km of mean distance between stations to 40 km created the opportunity to investigate on it's impact on resolution of estimated ZTD and integrated water vapour content (IWV) fields during the weather events of high intensity. Increase in density of ZTD measurements allows to define better the meso-scale features within different synoptic systems (e.g. frontal waves, meso-scale convective systems, squall lines etc). These meso-scale structures, as a rule are short living but fast developing and hardly predictable by numerical models. Even so, such limited size systems can produce very hazardous phenomena - like widespread squalls and thunderstorms, tornadoes, heavy rains, snowfalls, hail etc. because of prevalence of Cb clouds with high concentration of IWV. Study deals with two meteorological events: 2015-09-01 with the devastating squalls and rainfall bringing 2M Euro loss of property in northern Poland and 2015-10-12 with the very active front bringing
Determination of the position angle of stellar spin axes
Lesage, Anna-Lea
2014-01-01
Measuring the stellar position angle provides valuable information on binary stellar formation or stellar spin axis evolution. We aim to develop a method for determining the absolute stellar position angle using spectro-astrometric analysis of high resolution long-slit spectra. The method has been designed in particular for slowly rotating stars. We investigate its applicability to existing dispersive long-slit spectrographs, identified here by their plate scale, and the size of the resulting stellar sample. The stellar rotation induces a tilt in the stellar lines whose angle depends on the stellar position angle and the orientation of the slit. We developed a rotation model to calculate and reproduce the effects of stellar rotation on unreduced high resolution stellar spectra. Then we retrieved the tilt amplitude using a spectro-astrometric extraction of the position of the photocentre of the spectrum. Finally we present two methods for analysing the position spectrum using either direct measurement of the t...
Bistatic MIMO Radar Clutter Suppression by Exploiting the Transmit Angle
Li Jun
2014-04-01
Full Text Available The transmit angle of bistatic radars can be obtained by introducing Multiple-Input Multiple-Output (MIMO radar techniques. The Three-Dimensional (3D clutter spectra, that is, the transmit angle, receive angle, and Doppler frequency, are introduced using the additional angle information to Space-Time Adaptive Processing (STAP. This study reviews the researches on bistatic MIMO-STAP. 3D space-time adaptive processing methods for airborne bistatic side-looking MIMO radars, such as 3D-LCMV, 3D-ACR, 3D-JDL, and 3D projection-based reduced dimensional STAP methods, are discussed. Simulation results show that the proposed methods can improve the small-sample support performance of range-dependent clutter suppression in bistatic side-looking MIMO radar. Finally, the results are summarized and the prospects of bistatic MIMO-STAP are discussed.
Wake angle for surface gravity waves on a finite depth fluid
Pethiyagoda, Ravindra; Moroney, Timothy J
2015-01-01
Linear water wave theory suggests that wave patterns caused by a steadily moving disturbance are contained within a wedge whose half-angle depends on the depth-based Froude number $F_H$. For the problem of flow past an axisymmetric pressure distribution in a finite-depth channel, we report on the apparent angle of the wake, which is the angle of maximum peaks. For moderately deep channels, the dependence of the apparent wake angle on the Froude number is very different to the wedge angle, and varies smoothly as $F_H$ passes through the critical value $F_H=1$. For shallow water, the two angles tend to follow each other more closely, which leads to very large apparent wake angles for certain regimes.
Effects of slant angle and illumination angle on MTF estimations
Vhengani, LM
2012-07-01
Full Text Available .085 0.09 0.095 K:\\Working Folder\\Project_On_orbit MTF\\edgetargets\\MTF_Lab_Measurements _20120302_Edge Slant Angle (degrees) Ny qu ist MT F (c yc le/p ixe l) Data Regression -18 -16 -14 -12 -10 -8 -6 -4 -2 0.05 0.055 0.06 0....065 0.07 0.075 0.08 0.085 0.09 K:\\Working Folder\\Project_On_orbit MTF\\edgetargets\\MTF_Lab_Measurements_20120303_Edge Slant Angle (degrees) Ny qu ist MT F (c yc le/p ixe l) Data Regression Figure 6. Regression of positive slant...
Contact angle of a nanodrop on a nanorough solid surface.
Berim, Gersh O; Ruckenstein, Eli
2015-02-21
The contact angle of a cylindrical nanodrop on a nanorough solid surface is calculated, for both hydrophobic and hydrophilic surfaces, using the density functional theory. The emphasis of the paper is on the dependence of the contact angle on roughness. The roughness is modeled by rectangular pillars of infinite length located on the smooth surface of a substrate, with fluid-pillar interactions different in strength from the fluid-substrate ones. It is shown that for hydrophobic substrates the trend of the contact angle to increase with increasing roughness, which was noted in all previous studies, is not universally valid, but depends on the fluid-pillar interactions, pillar height, interpillar distance, as well as on the size of the drop. For hydrophilic substrate, an unusual kink-like dependence of the contact angle on the nanodrop size is found which is caused by the change in the location of the leading edges of the nanodrop on the surface. It is also shown that the Wenzel and Cassie-Baxter equations can not explain all the peculiarities of the contact angle of a nanodrop on a nanorough surface.
An Angle Criterion for Riesz Bases
Lindner, Alexander M; Bittner, B.
1999-01-01
We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived.......We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived....
Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb
Wang, Yazhen; Regel, Liya L.; Wilcox, William R.
2000-01-01
We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.
Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik
1998-01-01
to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...
Optimisation of Fan Blade Angle
Swaroop M P
2017-01-01
Full Text Available This report represents the optimization of fan blade angle in accordance with the various room temperatures that can be in the tropical area like India. We took this work mainly because cooling is an important factor now a days in every area where construction and rooms are there and ceiling fans are the most common device that is commonly used. So it is of utmost importance to tweak the performance of this ceiling fan so that it can function in its most optimal condition. We have modeled the fan in a modeling software (SOLIDWORKS and imported that into an analyzing software (ANSYS and a result is generated on the various blade angles (0, 4, 8 and 12.5 degrees in accordance to room conditions. A trend line curve with the obtained data is expected as the result which can be crucial for designing of future fans
Nucleation of small angle boundaries
Nabarro, FRN
1996-12-01
Full Text Available -ANGLE BOUNDARIES F.R.N. Nabarro Condensed Matter Physics Research Unit, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, and Division of Materials Science and Technology, CSIR, P.O. Box 395, Pretoria, South... with eq. 11. Acknowledgment F.R.N. Nabarro is grateful to the University of Virginia for hospitality during the course of this work. D. Kuhlmann-Wilsdorf thanks the National Science Foundation, (Surface Engineering...
Hanasaki, N.; Kagoshima, S.; Miura, N.; Saito, G.
2001-06-01
We studied the difference between the ground states of α-(BEDT-TTF)2NH4Hg(SCN)4 and its isostructural compound α-(BEDT-TTF)2KHg(SCN)4 by measuring angle-dependent magnetoresistance. In the NH4 compound, we found resistance minima due to the Lebed resonances. These findings suggest the presence of the one-dimensional Fermi surface parallel to the b*c* plane. Detailed analyses of these resistance minima suggest a large warp in the planarlike Fermi surface along the c* axis. Second and higher harmonic components are necessary to describe the warping of the Fermi surface. We also analyzed the small closed-orbit effect, that is, the peak structure in the resistance for the magnetic field nearly parallel to the conducting plane. It was found that the corrugation in the Fermi surface perpendicular to the a*c* plane was also large in the NH4 compound compared to the K compound. We conclude that such large warps in the Fermi surface suppressed the nesting of the quasi-one-dimensional Fermi surface in the NH4 compound.
LHC Report: playing with angles
Mike Lamont for the LHC team
2016-01-01
Ready (after a machine development period), steady (running), go (for a special run)! The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...
Contact angle hysteresis on regular pillar-like hydrophobic surfaces.
Yeh, Kuan-Yu; Chen, Li-Jen; Chang, Jeng-Yang
2008-01-01
A series of pillar-like patterned silicon wafers with different pillar sizes and spacing are fabricated by photolithography and further modified by a self-assembled fluorosilanated monolayer. The dynamic contact angles of water on these surfaces are carefully measured and found to be consistent with the theoretical predictions of the Cassie model and the Wenzel model. When a water drop is at the Wenzel state, its contact angle hysteresis increases along with an increase in the surface roughness. While the surface roughness is further raised beyond its transition roughness (from the Wenzel state to the Cassie state), the contact angle hysteresis (or receding contact angle) discontinuously drops (or jumps) to a lower (or higher) value. When a water drop is at the Cassie state, its contact angle hysteresis strongly depends on the solid fraction and has nothing to do with the surface roughness. Even for a superhydrophobic surface, the contact angle hysteresis may still exhibit a value as high as 41 degrees for the solid fraction of 0.563.
Angle-Resolved Plasmonic Properties of Single Gold Nanorod Dimers
Jian Wu; Xuxing Lu; Qiannan Zhu; Junwei Zhao; Qishun Shen; Li Zhan; Weihai Ni
2014-01-01
Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance*1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together to produce hybridized bonding and antibonding resonance modes. Previous studies using a condenser for illumination result in averaged signals over all excitation angles. By exciting an individual dimer obliquely at different angles, we demonstrate that these two new resonance modes are highly tunable and sensitive to the angle between the excitation polarization and the dimer orientation, which follows cos2u dependence. Moreover, for dimer structures with various structure angles, the resonance wavelengths as well as the refractive index sensitivities were found independent of the structure angle. Cal-culated angle-resolved plasmonic properties are in good agreement with the measurements. The assembled nanostructures investigated here are important for fundamental researches as well as potential applications when they are used as building blocks in plasmon-based optical and optoelectronic devices.
Contact angle and local wetting at contact line.
Li, Ri; Shan, Yanguang
2012-11-06
This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.
Determination of the Contact Angle Based on the Casimir Effect
Mazuruk, K.; Volz, M. P.
2015-01-01
In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.
MODIS/Aqua Geolocation Fields 5-Min L1A Swath 1km V005
National Aeronautics and Space Administration — Geolocation collection contains geodetic latitude and longitude, surface height above geoid, solar zenith and azimuth angles, satellite zenith and azimuth angles,...
Determination of the Contact Angle Based on the Casimir Effect
Mazuruk, Konstantin; Volz, Martin P.
2015-01-01
On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.
Flow angle from intermediate mass fragment measurements
Rami, F.; Crochet, P.; Dona, R.; De Schauenburg, B.; Wagner, P.; Alard, J.P.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Bendarag, A.; Berek, G.; Best, D.; Caplar, R.; Devismes, A.; Dupieux, P.; Dzelalija, M.; Eskef, M.; Fodor, Z.; Gobbi, A.; Grishkin, Y.; Herrmann, N.; Hildenbrand, K.D.; Hong, B.; Kecskemeti, J.; Kirejczyk, M.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Merlitz, H.; Mohren, S.; Moisa, D.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Plettner, C.; Reisdorf, W.; Schuell, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczynska, K.; Stoicea, G.; Stockmeir, M.; Vasiliev, M.; Wisniewski, K.; Wohlfarth, D.; Yushmanov, I.; Zhilin, A
1999-02-15
Directed sideward flow of light charged particles and intermediate mass fragments was measured in different symmetric reactions at bombarding energies from 90 to 800 A MeV. The flow parameter is found to increase with the charge of the detected fragment up to Z = 3-4 and then turns into saturation for heavier fragments. Guided by simple simulations of an anisotropic expanding thermal source, we show that the value at saturation can provide a good estimate of the flow angle, {theta}{sub flow}, in the participant region. It is found that {theta}{sub flow} depends strongly on the impact parameter. The excitation function of {theta}{sub flow} reveals striking deviations from the ideal hydrodynamical scaling. The data exhibit a steep rise of {theta}{sub flow} to a maximum at around 250 - 400 A MeV, followed by a moderate decrease as the bombarding energy increases further.
Small angle scattering and polymers
Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1996-12-31
The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.
Theta angle in holographic QCD
Jarvinen, Matti
2016-01-01
V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the theta-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, N_f/N_c, and theta, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.
Teruyama, Yuta; Watanabe, Takashi
2013-01-01
In this study, development of wearable motion measurement system using inertial sensors has been focused with the aim of rehabilitation support. For measurement of lower limb joint angles with inertial sensors, Kalman-filtering-based angle measurement method was developed. However, it was required to reduce variation of measurement errors that depended on movement speeds or subjects. In this report, variable-gain Kalman filter based on the difference between the estimated angle by the Kalman filter and the angle calculated from acceleration signals was tested. From angle measurement during treadmill walking with healthy subjects, it was shown that measurement accuracy of the foot inclination angle was significantly improved with the proposed method compared to the method of fixed parameter value.
Azimuth and angle gathers from wave equation imaging in VTI media
Alkhalifah, Tariq Ali
2009-01-01
Angles in common-image angle domain gathers refer to the scattering angle at the reflector and provide a natural access to analyzing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-space-frequency planes into angle-space planes simultaneously with applying the imaging condition in a transversely isotropic (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case anisotropic media differs from its isotropic counterpart, difference depending mainly on the strength of anisotropy.
Incoherent scatter plasma lines at angles with the magnetic field
Fredriksen, A.; Bjorna, N.; Lilensten, J. (Auroral Observatory, Tromso (Norway) Centre d' Etude des Phenomenes Aleatoires et Geophysiques, St.-Martin-d' Heres (France))
1992-11-01
The detectability and damping of photoelectron-enhanced plasma lines, as measured with the EISCAT UHF radar at off-field angles are evaluated, and the measured plasma line intensities are compared to the intensities computed from modeled photoelectron fluxes. It was found that, when allowing for a pitch angle dependence in the flux, the plasma line temperatures can be predicted to within a very good accuracy at altitudes where remnants of the N2 excitation dip are no longer present in the photoelectron distribution. 35 refs.
Angle of Arrival Detection with Fifth Order Phase Operators
Khmou, Youssef
2015-01-01
In this paper, a fifth order propagator operators are proposed for estimating the Angles Of Arrival (AOA) of narrowband electromagnetic waves impinging on antenna array when its number of sensors is larger than the number of radiating sources. The array response matrix is partitioned into five linearly dependent phases to construct the noise projector using five different propagators from non diagonal blocks of the spectral matrice of the received data; hence, five different estimators are proposed to estimate the angles of the sources. The simulation results proved the performance of the proposed estimators in the presence of white noise comparatively to high resolution eigen based spectra.
Static contact angle in lattice Boltzmann models of immiscible fluids.
Latva-Kokko, M; Rothman, Daniel H
2005-10-01
We study numerically the capillary rise between two horizontal plates and in a rectangular tube, using a lattice Boltzmann (LB) method. We derive an equation for the static fluid-solid contact angle as a function of the wetting tendency of the walls and test its validity. We show that the generalized Laplace law with two independent radii of curvature is followed in capillary rise in rectangular tubes. Our method removes the history dependence of the fluid-solid contact angle that had been present in earlier LB schemes.
Measurement of the CKM angle $\\gamma$ at LHCb
Gersabeck, M
2009-01-01
The precise measurement of the CKM unitarity triangle angle $\\gamma$ is a key goal of the LHCb physics programme. The uncertainty on $\\gamma$, the currently least-well known of the three angles, will be reduced dramatically. Complementary measurements will be made in tree-level processes, and modes where loop diagrams play an important role. The tree-level measurements will cover time-integrated as well as time- dependent measurements in both the $B^0_d$ and the $B^0_s$ sectors. The ensemble of these measurements will provide a powerful test of whether new physics phases contribute to heavy-flavour transitions.
Device for Measuring Landslide Critical Angle
Li Xueling; Xia Weisheng; Huang Daoyou; Yu Yun
2016-01-01
The mountain landslide has high destructive effects, discussion of its landslide critical angle has always been one of the major concerns, and we designed a system that can automatically measure the landslide critical angle. This equipment consists of the
Expanding the simple pendulum's rotation solution in action-angle variables
Lara, Martin; Ferrer, Sebastián
2015-09-01
Integration of Hamiltonian systems by reduction to action-angle variables has proven to be a successful approach. However, when the solution depends on elliptic functions, the transformation to action-angle variables may need to remain in implicit form. This is exactly the case of the simple pendulum, where it is shown that in order to make explicit the transformation to action-angle variables, one needs to resort to nontrivial expansions of special functions and series reversion.
The Effect of Glancing Angle Deposition Conditions on the Morphology of a Silver Nanohelix Array
Yi-Jun Jen
2017-09-01
Full Text Available Silver nanohelices were grown on smooth substrates using glancing angle deposition and substrate cooling. Various nanohelix arrays were deposited under different deposition conditions—different deposition rates, substrate spin rates, deposition angles, and substrate temperatures. The effect of deposition conditions on the morphology of each nanohelix array in terms of pitch angle, pitch length, wire diameter, and radius of curvature was investigated. The dependence of circular dichroism on the size of the nanohelix arrays was also measured and demonstrated.
Effect of moisture equilibration time and medium on contact angles of bacterial spores.
Eschlbeck, Elisabeth; Kulozik, Ulrich
2017-04-01
Contact angle measurement of microorganisms is often described in literature, either to investigate their hydrophobic characteristic or the adhesion behavior of cells. However, in some key aspects the preparation methods differ. Thus, it is difficult to compare results and to choose a procedure for repetition of measurements. The aim of this paper is to point out some critical points during microorganism film preparation that can alter the resulting contact angles. Depending on the moisturizing medium and equilibration time, contact angles differ significantly.
30 CFR 56.19037 - Fleet angles.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 56.19037 Section 56.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 56.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...
30 CFR 57.19037 - Fleet angles.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fleet angles. 57.19037 Section 57.19037 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Sheaves § 57.19037 Fleet angles. Fleet angles on hoists installed after November 15, 1979, shall not...
A liquid crystal display with consistent moving image quality regardless of viewing angles
Kim, Jong-Man; Kim, Seung-Ryul; Kim, Jongbin; Kim, Minkoo; Lee, Seung-Woo
2014-08-01
This paper proposes a new overdrive (OD) technology to precisely compensate for the viewing angle dependent characteristics of LCDs. This paper reports that optical response of liquid crystal displays (LCDs) is considerably dependent on viewing angles for the first time. The new OD technology applies different OD look-up tables (LUTs) depending on the viewing angles. In addition, we combine a new OD technology with an eye tracker that is usually adopted for autostereoscopic 3D LCD systems. The application results show that a new OD technology improves the motion image quality perfectly regardless of viewing angles. We expect that our proposed method will definitely enable the LCD products to have consistent motion image quality regardless of viewing angles.
Digital holographic metrology based on multi-angle interferometry.
Dong, Jun; Jiang, Chao; Jia, Shuhai
2016-09-15
We propose a multi-angle interferometry method for digital holographic metrology. In an application of three-dimensional (3D) reconstruction, the hologram corresponding to a different illumination angle is recorded as the illumination angle with a single wavelength tilted at regular intervals by an electronically controlled rotating stage. A Fourier-transform-based axial depth scanning algorithm formed by the reconstructed phase is used to obtain the height point by point over the whole field of view. Hence, the 3D reconstruction can be obtained effectively; even the object has large depth discontinuities resulting from the difficulty of the phase unwrapping. Due to a monochrome source only being used, the method is available for objects with wavelength-dependent reflectivity and those that are free of chromatic aberration caused by the different wavelengths.
Angle of repose and segregation in cohesive granular matter*
Kudrolli, Arshad
2002-03-01
We study the effect of fluids on the angle of repose and the segregation of granular matter in two experimental systems. In the regime where the volume fraction of the introduced fluid (liquid) is small, liquid bridges between particles are formed thus giving rise to cohesive forces between particles. In the first series of experiments, we pour the mixture of granular matter and liquid from a reservoir into a silo and imaging the resulting pile through the transparent glass side walls [1]. The angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturate at a value that depends on the size of the particles. The viscosity of the fluid is observed to have a significant effect on the angle of repose and the extent of segregation. Similar phenomena is observed in both the angle of repose and the maximum angle of stability, when the granular-fluid mixture is placed inside a horizontal cylindrical container and rotated. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. Preferential clumping of small particles causes layering to occur when the size of the clumps of small particles exceeds the size of large particles. We also report experiments in which the particles are poured into a silo filled with a fluid to understand the limit of maximum volume fraction of the fluid. In this case the angle of repose is observed to be unchanged from the dry case. However, the segregation is observed to decrease with an increase in the viscosity of the fluid. * Work in collaboration with Azadeh Samadani, and funded by NSF under Grant No. DMR-9983659. [1]: A. Samadani and A. Kudrolli, Phys. Rev. Lett. 85, 5102 (2000); Phys. Rev. E 64, 051301 (2001).
The bifurcation diagram of drops in a sphere/plane geometry: influence of contact angle hysteresis
Ruiter, de Riëlle; Gorcum, van M.; Semprebon, C.; Duits, M.H.G.; Brinkmann, M.; Mugele, F.
2014-01-01
We study liquid drops that are present in a generic geometry, namely the gap in between a sphere and a plane. For the ideal system without contact angle hysteresis, the drop position is solely dependent on the contact angle, drop volume, and sphere/ plane separation distance. Performing a geometric
Static contact angle versus volume of distilled water drop on micro patterned surfaces
Batichsheva Kseniya; Feoktistov Dmitriy; Ovchinikov Vladimir; Misyura Sergey
2017-01-01
Static contact angle was determined experimentally in the condition of wetting of polished and laser patterned surfaces of stainless steel substrates by distilled water drops with different volumes. In contrast with polished surface, the contact angle was found to depend on drop volume on micro patterned surfaces. In addition, the enhancement of both hydrophilic and hydrophobic properties was observed on laser patterned surfaces.
Hahn, Thomas; Foldspang, Anders
1997-01-01
Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations with par......Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations...... with participation in sport. Three hundred and thirty-nine athletes had their Q angle measured. The mean of right-side Q angles was higher than left side, and the mean Q angle was higher in women than in men. The Q angle was positively associated with years of jogging, and negatively with years of soccer, swimming...... and sports participation at all. It is concluded that the use of Q angle measurements is questionable....
Individualized optimal release angles in discus throwing.
Leigh, Steve; Liu, Hui; Hubbard, Mont; Yu, Bing
2010-02-10
The purpose of this study was to determine individualized optimal release angles for elite discus throwers. Three-dimensional coordinate data were obtained for at least 10 competitive trials for each subject. Regression relationships between release speed and release angle, and between aerodynamic distance and release angle were determined for each subject. These relationships were linear with subject-specific characteristics. The subject-specific relationships between release speed and release angle may be due to subjects' technical and physical characteristics. The subject-specific relationships between aerodynamic distance and release angle may be due to interactions between the release angle, the angle of attack, and the aerodynamic distance. Optimal release angles were estimated for each subject using the regression relationships and equations of projectile motion. The estimated optimal release angle was different for different subjects, and ranged from 35 degrees to 44 degrees . The results of this study demonstrate that the optimal release angle for discus throwing is thrower-specific. The release angles used by elite discus throwers in competition are not necessarily optimal for all discus throwers, or even themselves. The results of this study provide significant information for understanding the biomechanics of discus throwing techniques.
Disequilibrium dihedral angles in dolerite sills
Holness, Marian B.; Richardson, Chris; Helz, Rosalind T.
2012-01-01
The geometry of clinopyroxene-plagioclase-plagioclase junctions in mafic rocks, measured by the median dihedral angle Θcpp, is created during solidification. In the solidifying Kilauea Iki (Hawaii) lava lake, the wider junctions between plagioclase grains are the first to be filled by pyroxene, followed by the narrower junctions. The final Θcpp, attained when all clinopyroxene-plagioclase-plagioclase junctions are formed, is 78° in the upper crust of the lake, and 85° in the lower solidification front. Θcpp in the 3.5-m-thick Traigh Bhàn na Sgùrra sill (Inner Hebrides) is everywhere 78°. In the Whin Sill (northern England, 38 m thick) and the Portal Peak sill (Antarctica, 129 m thick), Θcpp varies symmetrically, with the lowest values at the margins. The 266-m-thick Basement Sill (Antarctica) has asymmetric variation of Θcpp, attributed to a complex filling history. The chilled margins of the Basement Sill are partially texturally equilibrated, with high Θcpp. The plagioclase grain size in the two widest sills varies asymmetrically, with the coarsest rocks found in the upper third. Both Θcpp and average grain size are functions of model crystallization times. Θcpp increases from 78° to a maximum of ∼100° as the crystallization time increases from 1 to 500 yr. Because the use of grain size as a measure of crystallization time is dependent on an estimate of crystal growth rates, dihedral angles provide a more direct proxy for cooling rates in dolerites.
Zhang, Qian; Chen, Jing; Zhang, Yongguang; Qiu, Feng; Fan, Weiliang; Ju, Weimin
2017-04-01
The gross primary production (GPP) of terrestrial ecosystems constitutes the largest global land carbon flux and exhibits significant spatial and temporal variations. Due to its wide spatial coverage, remote sensing technology is shown to be useful for improving the estimation of GPP in combination with light use efficiency (LUE) models. Accurate estimation of LUE is essential for calculating GPP using remote sensing data and LUE models at regional and global scales. A promising method used for estimating LUE is the photochemical reflectance index (PRI = (R531－R570)/(R531 + R570), where R531 and R570 are reflectance at wavelengths 531 and 570 nm) through remote sensing. However, it has been documented that there are certain issues with PRI at the canopy scale, which need to be considered systematically. For this purpose, an improved tower-based automatic canopy multi-angle hyperspectral observation system was established at the Qianyanzhou flux station in China since January of 2013. In each 15-minute observation cycle, PRI was observed at four view zenith angles fixed at solar zenith angle and (37°, 47°, 57°) or (42°, 52°, 62°) in the azimuth angle range from 45° to 325° (defined from geodetic north). To improve the ability of directional PRI observation to track canopy LUE, the canopy is treated as two-big leaves, i.e. sunlit and shaded leaves. On the basis of a geometrical optical model, the observed canopy reflectance for each view angle is separated to four components, i.e. sunlit and shaded leaves and sunlit and shaded backgrounds. To determine the fractions of these four components at each view angle, three models based on different theories are tested for simulating the fraction of sunlit leaves. Finally, a ratio of canopy reflectance to leaf reflectance is used to represent the fraction of sunlit leaves, and the fraction of shaded leaves is calculated with the four-scale geometrical optical model. Thus, sunlit and shaded PRI are estimated using
Wafer scale oblique angle plasma etching
Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean
2017-05-23
Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.
Transcription and the Pitch Angle of DNA
Olsen, Kasper W
2013-01-01
The question of the value of the pitch angle of DNA is visited from the perspective of a geometrical analysis of transcription. It is suggested that for transcription to be possible, the pitch angle of B-DNA must be smaller than the angle of zero-twist. At the zero-twist angle the double helix is maximally rotated and its strain-twist coupling vanishes. A numerical estimate of the pitch angle for B-DNA based on differential geometry is compared with numbers obtained from existing empirical data. The crystallographic studies shows that the pitch angle is approximately 38 deg., less than the corresponding zero-twist angle of 41.8 deg., which is consistent with the suggested principle for transcription.
Controlling Compressor Vane Flow Vectoring Angles at Transonic Speeds
Munson, Matthew; Rempfer, Dietmar; Williams, David; Acharya, Mukund
2003-11-01
The ability to control flow separation angles from compressor inlet guide vanes with a Coanda-type actuator is demonstrated using both wind tunnel experiments and finite element simulations. Vectoring angles up to 40 degrees from the uncontrolled baseline state were measured with helium schlieren visualization at transonic Mach numbers ranging from 0.1 to 0.6, and with airfoil chord Reynolds numbers ranging from 89,000 to 710,000. The magnitude of the vectoring angle is shown to depend upon the geometry of the trailing edge, and actuator slot size, and the momentum flux coefficient. Under certain conditions the blowing has no effect on the vectoring angle indicating that the Coanda effect is not present. DNS simulations with the finite element method investigated the effects of geometry changes and external flow. Continuous control of the vectoring angle is demonstrated, which has important implications for application to rotating machinery. The technique is shown to reduce the stall flow coefficient by 15 percent in an axial flow compressor.
Low frequency seabed scattering at low grazing angles.
Zhou, Ji-Xun; Zhang, Xue-Zhen
2012-04-01
Low-frequency (LF) seabed scattering at low grazing angles (LGA) is almost impossible to directly measure in shallow water (SW), except through inversion from reverberation. The energy flux method for SW reverberation is briefly introduced in this paper. The closed-form expressions of reverberation in an isovelocity waveguide, derived from this method, indicate that in the three-halves law range interval multimode/ray sea bottom scattering with different incident and scattering angles in forming the reverberation may equivalently be represented by the bottom backscattering at a single range-dependent angle. This equivalent relationship is used to derive the bottom backscattering strength (BBS) as a function of angle and frequency. The LF&LGA BBS is derived in a frequency band of 200-2500 Hz and in a grazing angle range of 1.1°-14.0° from reverberation measurements at three sites with sandy bottoms. This is based on three previous works: (1) The closed-form expressions of SW reverberation [Zhou, (Chinese) Acta Acustica 5, 86-99 (1980)]; (2) the effective geo-acoustic model of sandy bottoms that follows the Biot model [Zhou et al., J. Acoust. Soc. Am. 125, 2847-2866 (2009)] and (3) A quality database of wideband reverberation level normalized to source level [Zhou and Zhang, IEEE J. Oceanic Eng. 30, 832-842 (2005)].
Rotating Shaft Tilt Angle Measurement Using an Inclinometer
Luo Jun
2015-10-01
Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.
Rotating Shaft Tilt Angle Measurement Using an Inclinometer
Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong
2015-10-01
This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.
The Influence of Dynamic Contact Angle on Wetting Dynamics
Rame, Enrique; Garoff, Steven
2005-01-01
When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.
Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.
2016-11-01
Aims: Digital images of observations printed in the books Rosa Ursina sive solis and Prodromus pro sole mobili by Christoph Scheiner, as well as the drawings from Scheiner's letters to Marcus Welser, are analysed to obtain information on the positions and sizes of sunspots that appeared before the Maunder minimum. Methods: In most cases, the given orientation of the ecliptic is used to set up the heliographic coordinate system for the drawings. Positions and sizes are measured manually on screen. Very early drawings have no indication of their orientation. A rotational matching using common spots of adjacent days is used in some cases, while in other cases, the assumption that images were aligned with a zenith-horizon coordinate system appeared to be the most probable. Results: In total, 8167 sunspots were measured. A distribution of sunspot latitudes versus time (butterfly diagram) is obtained for Scheiner's observations. The observations of 1611 are very inaccurate, the drawings of 1612 have at least an indication of their orientation, while the remaining part of the spot positions from 1618-1631 have good to very good accuracy. We also computed 697 tilt angles of apparently bipolar sunspot groups observed in the period 1618-1631. We find that the average tilt angle of nearly 4 degrees is not significantly different from 20th-century values. Data on the sunspot position and area are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A104
Angle of repose and segregation in cohesive granular matter
Samadani, Azadeh; Kudrolli, A.
2001-11-01
We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid (liquid) is small and it forms liquid bridges between particles thus giving rise to cohesive forces, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two-dimensional silo through the transparent glass side walls and using color-coded particles. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. Preferential clumping of small particles causes layering to occur when the size of the clumps of small particles exceeds the size of large particles. We calculate the azimuthal correlation function of particle density inside the pile to characterize the extent of layering. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid. The viscosity at which segregation decreases to zero depends on the size ratio of the particles.
Materials characterisation by angle-resolved scanning transmission electron microscopy
Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F.; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel
2016-11-01
Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaNxAs1‑x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with GexSi1‑x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16–255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.
Estimation of Plaque Contents With Multi-Angle 3D Compound Imaging
Wilhjelm, Jens E.; Grønholdt, Marie Louise; Rasmussen, Steen Tofthøj
1996-01-01
varies much more with angle for fibrous tissues. An experimental multi-angle 3D pulse-echo recording system has been established with a 10 MHz focused single element transducer mounted on a high precision rotational device. The received signal was processed in order to match axial resolution size......This investigation exploits the potential of using multiple insonification angles in characterizing plaques in the carotid artery. Specifically, previous work has shown that certain plaque materials such as lipid exhibit a low degree of angle-dependence in the received echo signal while the signal...
Modification of Classical SPM for Slightly Rough Surface Scattering with Low Grazing Angle Incidence
无
2005-01-01
Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classical perturbation method at grazing angle is overcome for the vertical polarization at a rough Neumann boundary of infinite extent. The derivation of the formulae and the numerical results show that the backscattering cross section depends on the grazing angle to the fourth power for both Neumann and Dirichlet boundary conditions with low grazing angle incidence. Our results can reduce to that of the classical small perturbation method by neglecting the Neumann and Dirichlet boundary conditions.
Constraining the Jet Structure of Gamma-Ray Bursts from Viewing Angle Observations
Miller, N; Bartos, I
2015-01-01
The angular dependence of emission in gamma-ray bursts (GRB) is of fundamental importance in understanding the underlying physical mechanisms, as well as in multimessenger search efforts. We examine the prospects of using reconstructed GRB jet opening angles and off-axis observer angles in determining the jet structure. We show that the reconstructed angles by Ryan et al. (2015) are inconsistent with uniform jet structure. We further calculate the number of GRBs with accurately reconstructed opening and observer angles necessary to differentiate between some phenomenological non-uniform structures.
Frictional adhesion: A new angle on gecko attachment.
Autumn, K; Dittmore, A; Santos, D; Spenko, M; Cutkosky, M
2006-09-01
Directional arrays of branched microscopic setae constitute a dry adhesive on the toes of pad-bearing geckos, nature's supreme climbers. Geckos are easily and rapidly able to detach their toes as they climb. There are two known mechanisms of detachment: (1) on the microscale, the seta detaches when the shaft reaches a critical angle with the substrate, and (2) on the macroscale, geckos hyperextend their toes, apparently peeling like tape. This raises the question of how geckos prevent detachment while inverted on the ceiling, where body weight should cause toes to peel and setal angles to increase. Geckos use opposing feet and toes while inverted, possibly to maintain shear forces that prevent detachment of setae or peeling of toes. If detachment occurs by macroscale peeling of toes, the peel angle should monotonically decrease with applied force. In contrast, if adhesive force is limited by microscale detachment of setae at a critical angle, the toe detachment angle should be independent of applied force. We tested the hypothesis that adhesion is increased by shear force in isolated setal arrays and live gecko toes. We also tested the corollary hypotheses that (1) adhesion in toes and arrays is limited as on the microscale by a critical angle, or (2) on the macroscale by adhesive strength as predicted for adhesive tapes. We found that adhesion depended directly on shear force, and was independent of detachment angle. Therefore we reject the hypothesis that gecko toes peel like tape. The linear relation between adhesion and shear force is consistent with a critical angle of release in live gecko toes and isolated setal arrays, and also with our prior observations of single setae. We introduced a new model, frictional adhesion, for gecko pad attachment and compared it to existing models of adhesive contacts. In an analysis of clinging stability of a gecko on an inclined plane each adhesive model predicted a different force control strategy. The frictional adhesion
Towards measuring the stop mixing angle at the LHC
Rolbiecki, Krzysztof; Tattersall, Jamie; Moortgat-Pick, Gudrid [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom)
2011-01-15
We address the question of how to determine the stop mixing angle and its CP-violating phase at the LHC. As an observable we discuss ratios of branching ratios for different decay modes of the light stop t{sub 1} to charginos and neutralinos. These observables can have a very strong dependence on the parameters of the stop sector. We discuss in detail the origin of these effects. Using various combinations of the ratios of branching ratios we argue that, depending on the scenario, the observable may be promising in exposing the light stop mass, the mixing angle and the CP phase. This will, however, require a good knowledge of the supersymmetric spectrum, which is likely to be achievable only in combination with results from a linear collider. (orig.)
Angle resolved characterization of nanostructured and conventionally textured silicon solar cells
Davidsen, Rasmus Schmidt; Ormstrup, Jeppe; Ommen, Martin Lind
2015-01-01
current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell......We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit...... is characterized at 100 different angle combinations. The angle resolved photovoltaic properties are summarized in terms of the average, angle-dependent electrical power output normalized to the power output at normal incidence and differently textured cells on different silicon substrates are compared in terms...
Contact Angle Adjustment in Equation of States Based Pseudo-Potential Model
Hu, Anjie; Uddin, Rizwan
2015-01-01
Single component pseudo-potential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many research, it has been claimed that this model can be stable for density ratios larger than 1000, however, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in present work show that, by applying the contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with the new...
Angle resolved characterization of nanostructured and conventionally textured silicon solar cells
Davidsen, Rasmus Schmidt; Ormstrup, Jeppe; Ommen, Martin Lind;
2015-01-01
We report angle resolved characterization of nanostructured and conventionally textured silicon solar cells. The nanostructured solar cells are realized through a single step, mask-less, scalable reactive ion etching (RIE) texturing of the surface. Photovoltaic properties including short circuit...... current, open circuit voltage, fill factor (FF) and power conversion efficiency are each measured as function of the relative incident angle between the solar cell and the light source. The relative incident angle is varied from 0° to 90° in steps of 10° in orthogonal axes, such that each solar cell...... is characterized at 100 different angle combinations. The angle resolved photovoltaic properties are summarized in terms of the average, angle-dependent electrical power output normalized to the power output at normal incidence and differently textured cells on different silicon substrates are compared in terms...
Caustic graphene plasmons with Kelvin angle
Shi, Xihang; Gao, Fei; Xu, Hongyi; Yang, Zhaoju; Zhang, Baile
2015-01-01
A century-long argument made by Lord Kelvin that all swimming objects have an effective Mach number of 3, corresponding to the Kelvin angle of 19.5 degree for ship waves, has been recently challenged with the conclusion that the Kelvin angle should gradually transit to the Mach angle as the ship velocity increases. Here we show that a similar phenomenon can happen for graphene plasmons. By analyzing the caustic wave pattern of graphene plasmons stimulated by a swift charged particle moving uniformly above graphene, we show that at low velocities of the charged particle, the caustics of graphene plasmons form the Kelvin angle. At large velocities of the particle, the caustics disappear and the effective semi-angle of the wave pattern approaches the Mach angle. Our study introduces caustic wave theory to the field of graphene plasmonics, and reveals a novel physical picture of graphene plasmon excitation during electron energy-loss spectroscopy measurement.
A thermodynamic model of contact angle hysteresis
Makkonen, Lasse
2017-08-01
When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.
Contact angle hysteresis on randomly rough surfaces: a computational study.
David, Robert; Neumann, A Wilhelm
2013-04-09
Wetting is important in many applications, and the solid surfaces being wet invariably feature some amount of surface roughness. A free energy-based computational simulation is used to study the effect of roughness on wetting and especially contact angle hysteresis. On randomly rough, self-affine surfaces, it is found that hysteresis depends primarily on the value of the Wenzel roughness parameter r, increasing in proportion with r - 1. Micrometer-level roughness causes hysteresis of a few degrees.
Small-angle neutron scattering from micellar solutions
V K Aswal; P S Goyal
2004-07-01
Micellar solutions are the suspension of the colloidal aggregates of the surfactant molecules in aqueous solutions. The structure (shape and size) and the interaction of these aggregates, referred to as micelles, depend on the molecular architecture of the surfactant molecule, presence of additives and the solution conditions such as temperature, concentration etc. This paper gives the usefulness of small-angle neutron scattering to the study of micellar solutions with some of our recent results.
LHCb Measurement of the CKM angle $\\gamma$ at LHCb
Ali, S
2014-01-01
In this poster we present the latest result by the LHCb collaboration in determining the CKM angle $\\gamma$ ($(67.1 \\pm 12)^{\\circ}$). The result is determined by combining several $B \\to Dh$ analyses. Latest results from the decay time dependent $B_{s} \\to D_{s}K$ analysis is also reported, along with a few other decay channels interesting for determination of $\\gamma$ in the future.
Contact angle measurements under thermodynamic equilibrium conditions.
Lages, Carol; Méndez, Eduardo
2007-08-01
The precise control of the ambient humidity during contact angle measurements is needed to obtain stable and valid data. For a such purpose, a simple low-cost device was designed, and several modified surfaces relevant to biosensor design were studied. Static contact angle values for these surfaces are lower than advancing contact angles published for ambient conditions, indicating that thermodynamic equilibrium conditions are needed to avoid drop evaporation during the measurements.
Isometric torque-angle relationships of the elbow flexors and extensors in the transverse plane.
Pinter, Ilona J; Bobbert, Maarten F; van Soest, A J Knoek; Smeets, Jeroen B J
2010-10-01
Maximal voluntary isometric torque-angle relationships of elbow extensors and flexors in the transverse plane (humerus elevation angle of 90 degrees ) were measured at two different horizontal adduction angles of the humerus compared to thorax: 20 degrees and 45 degrees . For both elbow flexors and extensors, the torque-angle relationship was insensitive to this 25 degrees horizontal adduction of the humerus. The peak in torque-angle relationship of elbow extensors was found at 55 degrees (0 degrees is full extension). This is closer to full elbow extension than reported by researchers who investigated this relationship in the sagittal plane. Using actual elbow angles during contraction, as we did in this study, instead of angles set by the dynamometer, as others have done, can partly explain this difference. We also measured electromyographic activity of the biceps and triceps muscles with pairs of surface electrodes and found that electromyographic activity level of the agonistic muscles was correlated to measured net torque (elbow flexion torque: Pearson's r=0.21 and extension torque: Pearson's r=0.53). We conclude that the isometric torque-angle relationship of the elbow extensors found in this study provides a good representation of the force-length relationship and the moment arm-angle relationship of the elbow extensors, but angle dependency of neural input gives an overestimation of the steepness. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Schmitt, M; Groß, K; Grub, J; Heib, F
2015-06-01
Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (static to the "slow moving" dynamic contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer
Determination of the position angle of stellar spin axes
Lesage, A.-L.; Wiedemann, G.
2014-03-01
Context. Measuring the stellar position angle provides valuable information on binary stellar formation or stellar spin axis evolution. Aims: We aim to develop a method for determining the absolute stellar position angle using spectro-astrometric analysis of high resolution long-slit spectra. The method has been designed in particular for slowly rotating stars. We investigate its applicability to existing dispersive long-slit spectrographs, identified here by their plate scale, and the size of the resulting stellar sample. Methods: The stellar rotation induces a tilt in the stellar lines whose angle depends on the stellar position angle and the orientation of the slit. We developed a rotation model to calculate and reproduce the effects of stellar rotation on unreduced high resolution stellar spectra. Then we retrieved the tilt amplitude using a spectro-astrometric extraction of the position of the photocentre of the spectrum. Finally we present two methods for analysing the position spectrum using either direct measurement of the tilt or a cross-correlation analysis. Results: For stars with large apparent diameter and using a spectrograph with a small plate scale, we show that it is possible to determine the stellar position angle directly within 10° with a signal-to-noise ratio of the order of 6. Under less favourable conditions, i.e. larger plate scale or smaller stellar diameter, the cross-correlation method yields comparable results. Conclusions: We show that with the currently existing instruments, it is possible to determine the stellar position angle of at least 50 stars precisely, mostly K-type giants with apparent diameter down to 5 milliarcseconds. If we consider errors of around 10° still acceptable, we may include stars with apparent diameter down to 2 mas in the sample that then comprises also some main sequence stars.
Neutron elastic scattering at very small angles
2002-01-01
This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...
Magnetic resonance imaging of cerebellopontine angle lesions
Pratiksha Yadav
2015-01-01
Full Text Available Background: Cerebellopontine angle (CPA tumors are usually benign, and they are divided into extra-axial, intra-axial, extradural, and petrous axis tumors. CPA pathologies can be asymptomatic or it may present with vertigo, tinnitus, or unilateral hearing loss depending upon the site of tumor origin and displacement of the neurovascular structure. Aim and Objectives: To evaluate the role of magnetic resonance imaging (MRI aided with contrast-enhanced MRI as an imaging modality for diagnosis of CPA lesions. Materials and Methods: Analysis of 36 patients of CPA lesions over a period of 2 years was done. MRI was performed on Siemens 1.5 Tesla MAGNETOM Avanto Machine. Conclusion: There are spectrums of pathologies, which can present with these symptoms, which includes tumors, vascular malformations, and vascular loop compressing vestibulocochlear nerve or mastoid pathology so it is important to investigate the patient by MRI. Contrast-enhanced MRI is the most sensitive investigation in the evaluation of the CPA lesions, its characteristic, and its extent.
Conservative compensatory Angle Class III malocclusion treatment
Marcio Costa Sobral
2012-12-01
Full Text Available INTRODUCTION: Angle's Class III malocclusion is a dental discrepancy in a sagittal view that may appear or not with an important skeletal discrepancy. Facial esthetics may be affected by this skeletal discrepancy and it is one of the most common complaints of patients who seek orthodontic treatment. Class III treatment, in adults, may be done by compensatory tooth movement, in simple cases, or through an association between orthodontics and orthognathic surgery, in more severe cases. OBJECTIVE: This article describes a non-extraction compensatory Class III treatment case, applying the Tweed-Merrifield mechanical principles with headgear (J-Hook in the mandibular arch. This case was presented at the V Brazilian Association of Orthodontics and Dentofacial Orthopedics (ABOR Meeting, it was evaluated by members of Brazilian Board of Orthodontics and obtained third place in the general classification.INTRODUÇÃO: a má oclusão de Classe III se caracteriza por uma desarmonia dentária anteroposterior, podendo estar ou não acompanhada por discrepâncias esqueléticas. A estética facial pode se apresentar comprometida, em maior ou menor grau, a depender da magnitude da discrepância, constituindo um dos principais fatores motivadores da procura por tratamento ortodôntico. O tratamento da Classe III em pacientes adultos pode ser realizado mediante compensação dentária, nos casos mais simples, ou, em situações mais severas, mediante a associação entre Ortodontia e Cirurgia Ortognática. OBJETIVO: o presente artigo objetiva relatar um caso clínico caracterizado por uma má oclusão de Classe III de Angle, tratado de forma compensatória, com extração dos terceiros molares inferiores, mediante a utilização de aparelhagem extrabucal na arcada inferior (J-hook, aplicando-se princípios da técnica de Tweed-Merrifield. Esse caso foi apresentado no 5º Congresso da Associação Brasileira de Ortodontia e Ortopedia Facial (ABOR, na categoria
Automatic learning-based beam angle selection for thoracic IMRT
Amit, Guy; Marshall, Andrea [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Purdie, Thomas G., E-mail: tom.purdie@rmp.uhn.ca; Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Techna Institute, University Health Network, Toronto, Ontario M5G 1P5 (Canada); Levinshtein, Alex [Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4 (Canada); Hope, Andrew J.; Lindsay, Patricia [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Pekar, Vladimir [Philips Healthcare, Markham, Ontario L6C 2S3 (Canada)
2015-04-15
Purpose: The treatment of thoracic cancer using external beam radiation requires an optimal selection of the radiation beam directions to ensure effective coverage of the target volume and to avoid unnecessary treatment of normal healthy tissues. Intensity modulated radiation therapy (IMRT) planning is a lengthy process, which requires the planner to iterate between choosing beam angles, specifying dose–volume objectives and executing IMRT optimization. In thorax treatment planning, where there are no class solutions for beam placement, beam angle selection is performed manually, based on the planner’s clinical experience. The purpose of this work is to propose and study a computationally efficient framework that utilizes machine learning to automatically select treatment beam angles. Such a framework may be helpful for reducing the overall planning workload. Methods: The authors introduce an automated beam selection method, based on learning the relationships between beam angles and anatomical features. Using a large set of clinically approved IMRT plans, a random forest regression algorithm is trained to map a multitude of anatomical features into an individual beam score. An optimization scheme is then built to select and adjust the beam angles, considering the learned interbeam dependencies. The validity and quality of the automatically selected beams evaluated using the manually selected beams from the corresponding clinical plans as the ground truth. Results: The analysis included 149 clinically approved thoracic IMRT plans. For a randomly selected test subset of 27 plans, IMRT plans were generated using automatically selected beams and compared to the clinical plans. The comparison of the predicted and the clinical beam angles demonstrated a good average correspondence between the two (angular distance 16.8° ± 10°, correlation 0.75 ± 0.2). The dose distributions of the semiautomatic and clinical plans were equivalent in terms of primary target volume
Quantifying Stream Bed Gravel Mobility from Friction Angle Measurements
Meyers, M. A.; Dunne, T.
2012-12-01
A method to measure friction angles using force gauges was field tested to determine its utility at quantifying critical shear stress in a gravel bedded reach of the San Joaquin River in California. Predictions of mobility from friction angles were compared with observations of the movement of tagged particles from locations for which local shear stress was quantified with a validated 2-D flow model. The observations of movement, distance of travel, and location of the end of travel were made after extended flow releases from Friant dam. Determining the critical shear stress for gravel bed material transport currently depends upon bedload sampling or tracer studies. Often, such measurements can only be made during occasional and untimely flow events, and at limited, suboptimal locations. Yet, theoretical studies conclude that the friction angle is an important control on the critical shear stress for mobility of any grain size, and therefore of the excess shear stress which strongly influences bedload transport rate. The ability to predict bed mobility at ungauged and unmonitored locations is also an important requirement for planning of flow regimes and channel design. Therefore, a method to measure friction angles that can be performed quickly in low flow conditions would prove useful for river management and research. To investigate this promising method friction angle surveys were performed at two riffle sites where differences in bed material size and distribution, and channel slope were observed. The friction angle surveys are sensitive enough to detect differences between the sites as well as spatially and temporally within a single riffle. Low friction angles were observed along the inside of a long bend where sand content was greater (by ~20%) than other surveyed locations. Friction angles decreased slightly after a depositional event associated with transient large woody debris and bank erosion, and increased again after a 5 year return interval flow
Hausdorff dimension of biaccessible angles for quadratic polynomials
Bruin, Henk
2012-01-01
A point $z$ in the Julia set of a polynomial $p$ is called biaccessible if two dynamic rays land at $z$; a point $z$ in the Mandelbrot set is called biaccessible if two parameter rays land at $z$. In both cases, we say that the external angles of these two rays are biaccessible as well. In this paper we give upper and lower bounds for the Hausdorff dimension of biaccessible external angles of quadratic polynomials, both in the dynamical and parameter space. We explicitly describe those quadratic polynomials where this dimension equals 1 (if and only if the Julia set is an interval), and when it equals 0, namely, at finite direct bifurcations from the polynomial $z^2$, as well as limit points thereof. We also show that the Hausdorff dimension of biaccessible dynamical angles depends in a H\\"older sense on the parameter angle, and that this dimension, up to a factor $\\log 2$, equals the {\\em core entropy}, i.e. the topological entropy of the dynamics of the Hubbard tree.
Penetrator strength effect in long-rod critical ricochet angle
Daneshjou, K.; Shahravi, M. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)
2008-11-15
3D numerical simulations were performed in order to further investigate the role of penetrator strength in the interaction of long-rods and oblique targets. Three distinctive regimes resulting from oblique impact depending on the obliquity, namely simple ricochet, critical ricochet and target perforation, were investigated in detail. Critical ricochet angles were calculated with a full 3D explicit finite element method for various impact velocities and strength of target plates and projectiles. Numerical predictions were compared with existing two-dimensional analytical models and test results. It was predicted that critical ricochet angle increases with decreasing impact velocity and that higher ricochet angles were expected if higher strength target materials are employed. But there are differences between analytical models and 3D numerical simulation results or test results. The causes for these discrepancies are established by numerical simulations which explore the validity of the penetrator strength parameter in the analytical model as a physical entity. As a matter of fact, in this paper we first investigate the role of penetrator dynamic strength using two-dimensional simulation which resulted in different penetrator strengths out of different impact velocities. Next, by applying these amounts for penetrator strength in Rosenberg analytical model the critical ricochet angle is calculated. Finally, a comparison between the present analytical method with the 3D simulation and test results shows that the new analytical approach leads to modified results with respect to Rosenberg ones
Automatic cobb angle determination from radiographic images
Sardjono, Tri Arief; Wilkinson, Michael H.F.; Veldhuizen, Albert G.; Ooijen, van Peter M.A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.
2013-01-01
Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Met
Automatic Cobb Angle Determination From Radiographic Images
Sardjono, Tri Arief; Wilkinson, Michael H. F.; Veldhuizen, Albert G.; van Ooijen, Peter M. A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.
2013-01-01
Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.
Does gallbladder angle affect gallstone formation?
Sanal, Bekir; Korkmaz, Mehmet; Zeren, Sezgin; Can, Fatma; Elmali, Ferhan; Bayhan, Zulfu
2016-01-01
Morphology of gallbladder varies considerably from person to person. We believe that one of the morphological variations of gallbladder is the "gallbladder angle". Gallbladder varies also in "angle", which, to the best of our knowledge, has never been investigated before. The purpose of this study was to investigate the impact of gallbladder angle on gallstone formation. in this study, 1075 abdominal computed tomography (CT) images were retrospectively examined. Patients with completely normal gallbladders were selected. Among these patients, those with both abdominal ultrasound and blood tests were identified in the hospital records and included in the study. Based on the findings of the ultrasound scans, patients were divided into two groups as patients with gallstones and patients without gallstones. Following the measurement of gallbladder angles on the CT images, the groups were statistically evaluated. The gallbladder angle was smaller in patients with gallstones (49 ± 21 degrees and 53 ± 19 degrees) and the gallbladder with larger angle was 1.015 (1/0.985) times lower the risk of gallstone formation. However, these were not statistically significant (p>0,05). A more vertically positioned gallbladder does not affect gallstone formation. However, a smaller gallbladder angle may facilitate gallstone formation in patients with the risk factors. Gallstones perhaps more easily and earlier develop in gallbladders with a smaller angle.
Automatic cobb angle determination from radiographic images
Sardjono, Tri Arief; Wilkinson, Michael H.F.; Veldhuizen, Albert G.; van Ooijen, Peter M.A.; Purnama, Ketut E.; Verkerke, Gijsbertus Jacob
2013-01-01
Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.
Acute angle closure glaucoma following ileostomy surgery
Mariana Meirelles Lopes
2015-02-01
Full Text Available Angle-closure glaucoma can be induced by drugs that may cause pupillary dilatation. We report a case of a patient that developed bilateral angle closure glaucoma after an ileostomy surgery because of systemic atropine injection. This case report highlights the importance of a fast ophthalmologic evaluation in diseases with ocular involvement in order to make accurate diagnoses and appropriate treatments.
Solid angles III. The role of conformers in solid angle calculations
White, D
1995-06-14
Full Text Available The values of the solid angles Omega for a range of commonly encountered ligands in organometallic chemistry (phosphines, phosphites, amines, arsines and cyclopentadienyl rings) have been determined. The solid angles were derived from a single...
Development of Tibiofemoral Angle in Korean Children
Yoo, Jae Ho; Cho, Tae-Joon; Chung, Chin Youb; Yoo, Won Joon
2008-01-01
This study was performed to identify the chronological changes of the knee angle or the tibiofemoral angles in normal healthy Korean children. Full-length anteroposterior view standing radiographs of 818 limbs of 452 Korean children were analyzed. The overall patterns of the chronological changes in the knee angle were similar to those described previously in western or Asian children, but the knee angle development was delayed, i.e., genu varum before 1 yr, neutral at 1.5 yr, increasing genu valgum with maximum a value of 7.8° at 4 yr, followed by a gradual decrease to approximately 5-6° of genu valgum of the adult level at 7 to 8 yr of age. These normative data on chronological changes of knee angles should be taken into consideration when evaluating lower limb alignment in children. PMID:18756063
Contact angle hysteresis of microbead suspensions.
Waghmare, Prashant R; Mitra, Sushanta K
2010-11-16
Microbead suspensions are often used in microfluidic devices for transporting biomolecules. An experimental investigation on the wettability of microbead suspension is presented in this study. The variation in the surface tension and the equilibrium contact angle with the change in the volume fraction of the microbead is presented here. The surface tension of the microbead suspension is measured with the pendant drop technique, whereas the dynamic contact angle measurements, i.e., advancing and receding contact angles, are measured with the sessile drop technique. An equilibrium contact angle of a suspension with particular volume fraction is determined by computing an average over the measured advancing and receding contact angles. It is observed that the surface tension and the equilibrium contact angle determined from advancing and receding contact angles vary with the magnitude of the microbeads volume fraction in the suspension. A decrease in the surface tension with an increase in the volume fraction of the microbead suspension is observed. The advancement and the recession in contact line for dynamic contact angle measurements are achieved with the motorized dosing mechanism. For microbead suspensions, the advancement of the contact line is faster as compared to the recession of the contact line for the same flow rate. The presence of microbeads assists in the advancement and the recession of the contact line of the suspension. A decrease in the equilibrium contact angles with an increase in the microbead suspension volume fraction is observed. Inclusion of microbeads in the suspension increases the wetting capability for the considered combination of the microbead suspension and substrate. Finally, empirical correlations for the surface tension and the contact angle of the suspension as a function of microbead volume fraction are proposed. Such correlations can readily be used to develop mechanistic models for the capillary transport of microbead
Apparent and Actual Dynamic Contact Angles in Confined Two-Phase Flows
Omori, Takeshi; Kajishima, Takeo
2016-11-01
To accurately predict the fluid flow with moving contact lines, it has a crucial importance to use a model for the dynamic contact angle which gives contact angles on the length scale corresponding to the spacial resolution of the fluid solver. The angle which a moving fluid interface forms to a solid surface deviates from an actual (microscopic) dynamic contact angle depending on the distance from the contact line and should be called an apparent (macroscopic) dynamic contact angle. They were, however, often undistinguished especially in the experimental works, on which a number of empirical correlations between a contact angle and a contact line velocity have been proposed. The present study is the first attempt to measure both apparent and actual contact angles from the identical data sets to discuss the difference and the relationship between these two contact angles of difference length scales. The study is conducted by means of numerical simulation, solving the Navier-Stokes equation and the Cahn-Hilliard equation under the generalized Navier boundary condition for the immiscible two-phase flow in channels. The present study also illustrates how the system size and the physical properties of the adjoining fluid affect the apparent and the actual dynamic contact angles. JSPS KAKENHI Grant No. 15K17974.
Angle-resolved effective potentials for disk-shaped molecules
Heinemann, Thomas, E-mail: thomas.heinemann@tu-berlin.de; Klapp, Sabine H. L., E-mail: klapp@physik.tu-berlin.de [Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Palczynski, Karol, E-mail: karol.palczynski@helmholtz-berlin.de; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Helmholtz Zentrum Berlin (HZB), Institute of Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)
2014-12-07
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.
Angle-resolved effective potentials for disk-shaped molecules.
Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L
2014-12-07
We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.
Contact angle hysteresis, adhesion, and marine biofouling.
Schmidt, Donald L; Brady, Robert F; Lam, Karen; Schmidt, Dale C; Chaudhury, Manoj K
2004-03-30
Adhesive and marine biofouling release properties of coatings containing surface-oriented perfluoroalkyl groups were investigated. These coatings were prepared by cross-linking a copolymer of 1H,1H,2H,2H-heptadecafluorodecyl acrylate and acrylic acid with a copolymer of poly(2-isopropenyl-2-oxazoline) and methyl methacrylate at different molar ratios. The relationships between contact angle, contact angle hysteresis, adhesion, and marine biofouling were studied. Adhesion was determined by peel tests using pressure-sensitive adhesives. The chemical nature of the surfaces was studied by using X-ray photoelectron spectroscopy. Resistance to marine biofouling of an optimized coating was studied by immersion in seawater and compared to previous, less optimized coatings. The adhesive release properties of the coatings did not correlate well with the surface energies of the coatings estimated from the static and advancing contact angles nor with the amount of fluorine present on the surface. The adhesive properties of the surfaces, however, show a correlation with water receding contact angles and contact angle hysteresis (or wetting hysteresis) resulting from surface penetration and surface reconstruction. Coatings having the best release properties had both the highest cross-link density and the lowest contact angle hysteresis. An optimized coating exhibited unprecedented resistance to marine biofouling. Water contact angle hysteresis appears to correlate with marine biofouling resistance.
Measurement of Capillary Radius and Contact Angle within Porous Media.
Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed
2015-12-01
The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.
Flight Calibration of the LROC Narrow Angle Camera
Humm, D. C.; Tschimmel, M.; Brylow, S. M.; Mahanti, P.; Tran, T. N.; Braden, S. E.; Wiseman, S.; Danton, J.; Eliason, E. M.; Robinson, M. S.
2016-04-01
Characterization and calibration are vital for instrument commanding and image interpretation in remote sensing. The Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) takes 500 Mpixel greyscale images of lunar scenes at 0.5 meters/pixel. It uses two nominally identical line scan cameras for a larger crosstrack field of view. Stray light, spatial crosstalk, and nonlinearity were characterized using flight images of the Earth and the lunar limb. These are important for imaging shadowed craters, studying ˜1 meter size objects, and photometry respectively. Background, nonlinearity, and flatfield corrections have been implemented in the calibration pipeline. An eight-column pattern in the background is corrected. The detector is linear for DN = 600--2000 but a signal-dependent additive correction is required and applied for DNground-based images taken with the Robotic Lunar Observatory (ROLO) at much lower spatial resolution but with the same photometric angles.
Simultaneous Multi-angle Measurements of Plasma Turbulence at HAARP
Watanabe, Naomi; Golkowski, Mark; Sheerin, James; University of Colorado Denver Team
2013-10-01
We report the results from a recent series of experiments employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) located at HAARP, the Super DARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. For the first time, plasma line spectra measured simultaneously in different spots of the interaction region displayed marked but contemporaneous differences dependent on the aspect angle of the HF pump beam and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Line (OPL) spectra, rarely observed in past experiments, occurred with sufficient regularity for experimentation. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.
Refractivity estimations from an angle-of-arrival spectrum
Zhao Xiao-Feng; Huang Si-Xun
2011-01-01
This paper addresses the probability of atmospheric refractivity estimation by using field measurements at an array of radio receivers in terms of angle-of-arrival spectrum. Angle-of-arrival spectrum information is simulated by the ray optics model and refractivity is expressed in the presence of an ideal tri-linear profile. The estimation of the refractivity is organized as an optimization problem and a genetic algorithm is used to search for the optimal solution from various trial refractivity profiles. Theoretical analysis demonstrates the feasibility of this method to retrieve the refractivity parameters. Simulation results indicate that this approach has a fair anti-noise ability and its accuracy performance is mainly dependent on the antenna aperture size and its positions.
Wide-angle vision for road views
Huang, F.; Fehrs, K.-K.; Hartmann, G.; Klette, R.
2013-03-01
The field-of-view of a wide-angle image is greater than (say) 90 degrees, and so contains more information than available in a standard image. A wide field-of-view is more advantageous than standard input for understanding the geometry of 3D scenes, and for estimating the poses of panoramic sensors within such scenes. Thus, wide-angle imaging sensors and methodologies are commonly used in various road-safety, street surveillance, street virtual touring, or street 3D modelling applications. The paper reviews related wide-angle vision technologies by focusing on mathematical issues rather than on hardware.
Bite Angle Effects in Hydroformylation Catalysis
van LEEUWEN
2001-01-01
Recent advances in rhodium catalyzed hydroformylation using xanthene-based ligands will be reviewed.The calculated natural bite angles of the ligands discussed are in the range 100-123℃ While the general trend is clear-higher 1:b ratios at wider angles, small changes in the bite angle do not exhibit a regular effect on the selectivity of the reaction.The same is true for the rate of CO dissociation;the larger the rate of the CO dissociation, the larger the rate of hydroformylation, but for small changes the effects do not comply with this rule.
Rajjoub LZ
2014-07-01
Full Text Available Lamise Z Rajjoub, Nisha Chadha, David A Belyea Department of Ophthalmology, The George Washington University, Washington, DC, USA Abstract: This is a case report describing recurrent intermittent acute angle closure episodes in the setting of topiramate use in a female suffering from migraines. Despite laser peripheral iridotomy placement for the pupillary block component, and the discontinuation of topiramate, the acute angle closure did not resolve in the left eye with chronic angle closure and the patient required urgent trabeculectomy. The right eye responded to laser peripheral iridotomy immediately and further improved after the cessation of topiramate. While secondary angle closure glaucoma due to topiramate use has been widely reported, its effects in patients with underlying primary angle closure glaucoma have not been discussed. Our report highlights the importance of recognizing the often multifactorial etiology of angle closure glaucoma to help guide clinical management. Keywords: angle closure glaucoma, plateau iris, topiramate, secondary glaucoma, drug-induced glaucoma
Li Yong-Qing; Li Jian; Ma Feng-Cai
2006-01-01
Collisional quantum interference (CQI) on the intramolecular rotational energy transfer is observed in an experiment with a static cell, and the integral interference angles are measured. To obtain more accurate information, an experiment with a molecular beam is carried out, and thereby the relationship between the differential interference angle and the scattering angle is obtained. Based on the first-Born approximation of time-dependent perturbation theory,the theoretical model of CQI is developed in an atom-diatom system in the condition of the molecular beam, with the long-range interaction potential taken into account. The method of measuring correctly the differential interference angle is presented. The tendencies of the differential interference angle changing with the impact parameter and relative velocity are discussed. The theoretical model presented here is important for understanding or performing the experiment in the molecular beam.
Interhemispheric Comparison of Dipole Tilt Angle Effects on Latitude of Mid-Altitude Cusp
GUO Jian-Guang; SHI Jian-Kui; ZHANG Tie-Long; LIU Zhen-Xing
2008-01-01
A statistical study of interhemispheric comparison of dipole tilt angle effect on the latitude of the mid-altitude cusp is preformed by a data set of the Cluster cusp crossings over a 5-year period.The result shows that the dipole tilt angle has a clear control of the cusp latitudinal location.When the dipole tilts sunwards,the cusp is shifted poleward.The northern cusp moves 1° ILAT for every 15.4° increase in the dipole tilt angle,while the southern cusp moves 1° ILAT for every 20.8° increase in the dipole tilt angle. This suggests that an interhemispheric difference appears in the dependence of cusp latitudinal location on the dipole tilt angle.
Nicotine dependence Overview By Mayo Clinic Staff Nicotine dependence ― also called tobacco dependence ― is an addiction to tobacco products caused by the drug nicotine. Nicotine dependence means you can't stop using the substance, ...
EMERGENCE ANGLE OF FLOW OVER AN AERATOR
无
2007-01-01
Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.
Nanofluid surface wettability through asymptotic contact angle.
Vafaei, Saeid; Wen, Dongsheng; Borca-Tasciuc, Theodorian
2011-03-15
This investigation introduces the asymptotic contact angle as a criterion to quantify the surface wettability of nanofluids and determines the variation of solid surface tensions with nanofluid concentration and nanoparticle size. The asymptotic contact angle, which is only a function of gas-liquid-solid physical properties, is independent of droplet size for ideal surfaces and can be obtained by equating the normal component of interfacial force on an axisymmetric droplet to that of a spherical droplet. The technique is illustrated for a series of bismuth telluride nanofluids where the variation of surface wettability is measured and evaluated by asymptotic contact angles as a function of nanoparticle size, concentration, and substrate material. It is found that the variation of nanofluid concentration, nanoparticle size, and substrate modifies both the gas-liquid and solid surface tensions, which consequently affects the force balance at the triple line, the contact angle, and surface wettability.
Haematological Parameters in Open Angle Glaucoma Patients ...
GA Akinlabi, VI Iyawe. Abstract. There is potential for blood related factors to affect aqueous production or optic nerve functions. ... Here we compare hematological parameters for a group of 68 chronic open-angle glaucoma (OAG) patients and ...
A microscopic view on contact angle selection
Snoeijer, Jacco H.; Andreotti, Bruno
2008-01-01
We discuss the equilibrium condition for a liquid that partially wets a solid on the level of intermolecular forces. Using a mean field continuum description, we generalize the capillary pressure from variation of the free energy and show at what length scale the equilibrium contact angle is selected. After recovering Young's law for homogeneous substrates, it is shown how hysteresis of the contact angle can be incorporated in a self-consistent fashion. In all cases the liquid-vapor interface...
Kuchin, I; Starov, V
2015-05-19
A theory of contact angle hysteresis of liquid droplets on smooth, homogeneous solid substrates is developed in terms of the shape of the disjoining/conjoining pressure isotherm and quasi-equilibrium phenomena. It is shown that all contact angles, θ, in the range θr contact angle θ ≠ θe, correspond to the state of slow "microscopic" advancing or receding motion of the liquid if θe contact angle reaches the critical values θa or θr, correspondingly. The values of the static receding, θr, and static advancing, θa, contact angles in cylindrical capillaries were calculated earlier, based on the shape of disjoining/conjoining pressure isotherm. It is shown now that (i) both advancing and receding contact angles of a droplet on a on smooth, homogeneous solid substrate can be calculated based on shape of disjoining/conjoining pressure isotherm, and (ii) both advancing and receding contact angles depend on the drop volume and are not unique characteristics of the liquid-solid system. The latter is different from advancing/receding contact angles in thin capillaries. It is shown also that the receding contact angle is much closer to the equilibrium contact angle than the advancing contact angle. The latter conclusion is unexpected and is in a contradiction with the commonly accepted view that the advancing contact angle can be taken as the first approximation for the equilibrium contact angle. The dependency of hysteresis contact angles on the drop volume has a direct experimental confirmation.
Gokhale, Shripad J; Plawsky, Joel L; Wayner, Peter C
2003-03-15
Image-analyzing interferometry is used to measure the apparent contact angle and the curvature of a drop and a meniscus during condensation and evaporation processes in a constrained vapor bubble (CVB) cell. The apparent contact angle is found to be a function of the interfacial mass flux. The interfacial velocity for the drop during condensation and evaporation is a function of the apparent contact angle and the rate of change of radius of curvature. The dependence of velocity on the apparent contact angle is consistent with Tanner's scaling equation. The results support the hypothesis that evaporation/condensation is an important factor in contact line motion. The main purpose of this article is to present the experimental technique and the data. The equilibrium contact angle for the drop is found experimentally to be higher than that for the corner meniscus. The contact angle is a function of the stress field in the fluid. The equilibrium contact angle is related to the thickness of the thin adsorbed film in the microscopic region and depends on the characteristics of the microscopic region. The excess interfacial free energy and temperature jump were used to calculate the equilibrium thickness of the thin adsorbed film in the microscopic region.
Change of Dynamic Contact Angle of a Drop Spreading over Copper Surface
Feoktistov D.V.
2015-01-01
Full Text Available This work presents the comparison between the change of a dynamic contact angle during drop spreading over copper surfaces obtained in the experiment and calculated by using empirical correlations (Bracke et al., Jiang et al., Seebergh et al.. It is found that these correlations are applicable for the case of drop spreading over a smooth surface or over a rough surface into the low capillary number region (2.5·10−7. Dynamic contact angles obtained experimentally increase with increasing capillary number, besides it increases significantly on more rough surfaces. However the calculated values of angles do not depend on Ca.
Method for Predicting Void Ratio and Triaxial Friction Angle from Laboratory CPT at Shallow Depths
Larsen, Kim André; Ibsen, Lars Bo
In this report an investigation of the relationship between the tip resistance, qc of a laboratory CPT-probe versus the relative density, Dr and friction angle, ∏ of Aalborg University Sand No. 0 is carried out. A method for estimating the relative density and the triaxial friction angle from...... the cone resistance of the laboratory probe is proposed. The suggested method deals with the fact that the friction angle is depended of the stress level especially at low stresses. The method includes a calibration of the cone resistance from the laboratory CPT at shallow depths i.e. low values of d...
Static contact angle versus volume of distilled water drop on micro patterned surfaces
Batichsheva Kseniya
2017-01-01
Full Text Available Static contact angle was determined experimentally in the condition of wetting of polished and laser patterned surfaces of stainless steel substrates by distilled water drops with different volumes. In contrast with polished surface, the contact angle was found to depend on drop volume on micro patterned surfaces. In addition, the enhancement of both hydrophilic and hydrophobic properties was observed on laser patterned surfaces.
Note: Magnification of a polarization angle with a Littrow layout brazed grating.
Sasao, H; Arakawa, H; Kubo, H; Kawano, Y; Itami, K
2014-08-01
A new method to magnify a small polarization angle with brazed gratings has been developed. In the method, difference in diffraction efficiency for S and P polarization components is used. The magnification dependence on the incident angle can be small by arranging the grating in Littrow layout. A magnification with a factor ~2.7 has been demonstrated for a 10.6 μm CO2 laser beam as expected from a calculation. The method is applicable in many polarimetry fields.
Hennig, A; Eichhorn, K-J; Staudinger, U; Sahre, K; Rogalli, M; Stamm, M; Neumann, A W; Grundke, K
2004-08-03
The phenomenon of contact angle hysteresis was studied on smooth films of polyimide, a polymer type used in the microelectronic industry, by dynamic cycling contact angle measurements based on axisymmetric drop shape analysis-profile in combination with variable angle spectroscopic ellipsometry (VASE). It was found that both advancing and receding contact angles became smaller with increasing the number of cycles and are, therefore, not a property of the dry solid alone. The changes of the wetting behavior during these dynamic cycling contact angle measurements are attributed mainly to swelling and/or liquid retention. To reveal the water-induced changes of the polymer film, the polyimide surface was studied before and after the contact with a water droplet by VASE. Both the experimental ellipsometric spectrum for Delta and that for Psi as well as the corresponding simulations show characteristic shifts due to the contact with water. The so-called effective medium approximation was applied to recover information about the thickness and effective optical constants of the polymer layer from the ellipsometrically measured values of Delta and Psi. On the basis of these results, the swelling and retention behavior of the polyimide films in contact with water droplets were discussed.
Optimum Tilt Angle for Photovoltaic Solar Panels in Zomba District, Malawi
B. Kamanga
2014-01-01
Full Text Available A study to determine the optimum tilt angle for installing photovoltaic solar panels in Zomba district, Malawi, has been conducted. The study determined the optimum monthly tilt angles of PV solar panels and the seasonal adjustments needed for the panels in order to collect maximum solar radiation throughout the year. In this study, global solar radiation (GSR on four tilted surfaces was measured. The north-facing surfaces were titled at angles of 0°, 15°, 20°, and 25°. The GSR data was used to determine the daily and monthly optimum tilt angles for the PV panels. The optimum tilt angles were found to be 0° or 25° depending on the time of the year. From October to February, the optimum tilt angle has been determined to be 0° and, from March to September, the optimum tilt angle is observed to be 25°. There are only two seasonal adjustments that are needed for PV solar panels in Zomba district and these should be carried out at the end of February and at the end of September. For fixed solar panels with no seasonal adjustments, the optimum tilt angle for the PV solar panels that are northfacing has been determined to be 25°.
Effect of Chamfer Angle on the Calibration Curves of Five Hole Probes
Nekkanti Sitaram
2014-01-01
Full Text Available Five hole probes are extensively used for measurement of total and static pressures, flow angles, velocity and its components in turbomachinery, and other aerodynamic flows. Their operating range is usually limited to 30–40° depending on the type of the probe head. The chamfer angle of the probe is usually taken around 45°. Recent studies on three hole probes have shown that 30° chamfer angle is desirable for unsteady flow measurements. Hence the present investigation is undertaken to find the optimum chamfer angle of five-hole probes. A special five-hole probe of 9.6 mm head diameter and 3 mm diameter pressure take off tubes was designed and fabricated. The large size of the probe was chosen to minimize machining inaccuracies. The probe chamfer angle was varied from 30° to 60° in 5° steps. For each of the chamfer angles, the probe was calibrated in the range of −30° to +30° in 5° interval and the calibration curves are presented. In addition the sensitivities of the calibration coefficients are determined. It is concluded that five-hole probe with a chamfer angle 30° has large operating range, while five-hole probe with a chamfer angle of 50° has good sensitivity.
Contact angle of unset elastomeric impression materials.
Menees, Timothy S; Radhakrishnan, Rashmi; Ramp, Lance C; Burgess, John O; Lawson, Nathaniel C
2015-10-01
Some elastomeric impression materials are hydrophobic, and it is often necessary to take definitive impressions of teeth coated with some saliva. New hydrophilic materials have been developed. The purpose of this in vitro study was to compare contact angles of water and saliva on 7 unset elastomeric impression materials at 5 time points from the start of mixing. Two traditional polyvinyl siloxane (PVS) (Aquasil, Take 1), 2 modified PVS (Imprint 4, Panasil), a polyether (Impregum), and 2 hybrid (Identium, EXA'lence) materials were compared. Each material was flattened to 2 mm and a 5 μL drop of distilled water or saliva was dropped on the surface at 25 seconds (t0) after the start of mix. Contact angle measurements were made with a digital microscope at initial contact (t0), t1=2 seconds, t2=5 seconds, t3=50% working time, and t4=95% working time. Data were analyzed with a generalized linear mixed model analysis, and individual 1-way ANOVA and Tukey HSD post hoc tests (α=.05). For water, materials grouped into 3 categories at all time-points: the modified PVS and one hybrid material (Identium) produced the lowest contact angles, the polyether material was intermediate, and the traditional PVS materials and the other hybrid (EXA'lence) produced the highest contact angles. For saliva, Identium, Impregum, and Imprint 4 were in the group with the lowest contact angle at most time points. Modified PVS materials and one of the hybrid materials are more hydrophilic than traditional PVS materials when measured with water. Saliva behaves differently than water in contact angle measurement on unset impression material and produces a lower contact angle on polyether based materials. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Bioelectric impedance phase angle in breast carcinoma
Ruchi Tyagi
2014-01-01
Full Text Available Context: Worldwide breast cancer is the most frequently diagnosed life threatening cancer and the leading cause of death in women. Bioelectric impedance analysis (BIA affords an emerging opportunity to assess prognosis because of its ability to non invasively assess cell and plasma membrane structure and function by means of phase angle. Aims: To compare the phase angle between patients of breast cancer and their matched control with the help of BIA. Settings and Design: After taking clearance from ethical committee, a total of 34 female cases of histologically proven infiltrating ductal breast carcinoma were included from the surgery IPD, department of surgery. Equal numbers of the matched controls were recruited from the friends and relatives of cases. Materials and Methods: Bio Electrical Impedance Analyzer (BIA BODY STAT QUAD SCAN 4000 was used to measure resistance (R and reactance (Xc by recording a voltage drop in applied current. Phase angle is the ratio of reactance to resistance and is a measure of cell vitality. Statistical analysis used: Unpaired "t" test was applied. Results: In control group, the phase angle showed a mean of 5.479 whereas in test group, it showed a mean value of 4.726. The P value showed a significant difference (P < 0.0001. The smaller the phase angle values were higher was the tumor, nodes, metastases (TNM staging. The phase angles differed significantly from the healthy age matched control values. Conclusions: This study demonstrated that phase angle is a strong predictor of severity of breast cancer and differed significantly between the two groups.
Measurements related to CKM angle alpha in BABAR
Roos, L
2004-01-01
The BABAR collaboration measurements of the B -> pipi, B -> rhopi and B -> rhorho decays are presented. New results, from a 113 fb-1 data sample, on the time-dependent CP asymmetries of the longitudinally polarized component of the B0 -> rho+rho- channel are S_{rhorho,long}=-0.19 +/- 0.33 +/- 0.11 and C_{rhorho,long}=-0.23 +/- 0.24 +/- 0.14. Constraints on the Unitarity Triangle angle alpha from the pipi and the rhorho systems are derived.
Group sparsity based airborne wide angle SAR imaging
Wei, Zhonghao; Zhang, Bingchen; Bi, Hui; Lin, Yun; Wu, Yirong
2016-10-01
In this paper, we develop a group sparsity based wide angle synthetic aperture radar (WASAR) imaging model and propose a novel algorithm called backprojection based group complex approximate message passing (GCAMP-BP) to recover the anisotropic scene. Compare to conventional backprojection based complex approximate message passing (CAMP-BP) algorithm for the recovery of isotropic scene, the proposed method accommodates aspect dependent scattering behavior better and can produce better imagery. Simulated and experimental results are presented to demonstrate the validity of the proposed algorithm.
Toggling bistable atoms via mechanical switching of bond angle.
Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A; Kantorovich, Lev; Moriarty, Philip
2011-04-01
We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom-an important consideration for future atomic scale fabrication strategies.
Study of contact angle hysteresis using the Cellular Potts Model.
Mortazavi, Vahid; D'Souza, Roshan M; Nosonovsky, Michael
2013-02-28
We use the Cellular Potts Model (CPM) to study the contact angle (CA) hysteresis in multiphase (solid-liquid-vapour) systems. We simulate a droplet over the tilted patterned surface, and a bubble placed under the surface immersed in liquid. The difference between bubbles and droplets was discussed through their CA hysteresis. Dependency of CA hysteresis on the surface structure and other parameters was also investigated. This analysis allows decoupling of the 1D (pinning of the triple line) and 2D (adhesion hysteresis in the contact area) effects and provides new insight into the nature of CA hysteresis.
LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.
1999-10-14
Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.
Multi-aspect angle classification of human radar signatures
Karabacak, C.; Gürbüz, S. Z.; Guldogan, M. B.; Gürbüz, A. C.
2013-05-01
The human micro-Doppler signature is a unique signature caused by the time-varying motion of each point on the human body, which can be used to discriminate humans from other targets exhibiting micro-Doppler, such as vehicles, tanks, helicopters, and even other animals. Classification of targets based on micro-Doppler generally involves joint timefrequency analysis of the radar return coupled with extraction of features that may be used to identify the target. Although many techniques have been investigated, including artificial neural networks and support vector machines, almost all suffer a drastic drop in classification performance as the aspect angle of human motion relative to the radar increases. This paper focuses on the use of radar networks to obtain multi-aspect angle data and thereby ameliorate the dependence of classification performance on aspect angle. Knowledge of human walking kinematics is exploited to generate a fuse spectrogram that incorporates estimates of model parameters obtained from each radar in the network. It is shown that the fused spectrogram better approximates the truly underlying motion of the target observed as compared with spectrograms generated from individual nodes.
Eccentricity effect of micropatterned surface on contact angle.
Kashaninejad, Navid; Chan, Weng Kong; Nguyen, Nam-Trung
2012-03-13
This article experimentally shows that the wetting property of a micropatterned surface is a function of the center-to-center offset distance between successive pillars in a column, referred to here as eccentricity. Studies were conducted on square micropatterns which were fabricated on a silicon wafer with pillar eccentricity ranging from 0 to 6 μm for two different pillar diameters and spacing. Measurement results of the static as well as the dynamic contact angles on these surfaces revealed that the contact angle decreases with increasing eccentricity and increasing relative spacing between the pillars. Furthermore, quantification of the contact angle hysteresis (CAH) shows that, for the case of lower pillar spacing, CAH could increase up to 41%, whereas for the case of higher pillar spacing, this increment was up to 35%, both corresponding to the maximum eccentricity of 6 μm. In general, the maximum obtainable hydrophobicity corresponds to micropillars with zero eccentricity. As the pillar relative spacing decreases, the effect of eccentricity on hydrophobicity becomes more pronounced. The dependence of the wettability conditions of the micropatterned surface on the pillar eccentricity is attributed to the contact line deformation resulting from the changed orientation of the pillars. This finding provides additional insights in design and fabrication of efficient micropatterned surfaces with controlled wetting properties.
A novel method for multi-angle SAR image matching
Li Dapeng
2015-01-01
Multi-angle synthetic aperture radar (SAR) image matching is very challenging, because the same object may cause different backscattering patterns, heavily depending on the radar incident angle. A technique based on the relations between the invariant positions of ground targets among the reference and sensed images is proposed to accommodate the nonmatching patterns. It involves a target extraction using wavelet coefficient fusion, as well as a geometric voting matching routine for searching the matched control points (CPs) in the reference and sensed images, respec-tively. To accelerate the speed of the search, a robust, rapidly corresponding CPs determination strategy is exploited by utilizing the global spatial transformation model, as well as a procedure of outlier removal to ensure the desired accuracy. Meanwhile, the positions of the matched point pairs are relocated using mutual information. The final warping of the images according to the CPs is performed by using a polynomial function. The results show the possibility of matching multi-angle SAR images in general cases.
Eggers, Jens; Stone, Howard A.
2002-01-01
It is common to relate the dynamic contact angle $\\theta_d$ to the relative speed between the substrate and the contact line; theory suggests $\\theta_d^3 \\propto U$. In fact, available physical models show that the dynamic angle involves speed logarithmically and in a model dependent manner. Experimental data consistent with this interpretation is cited.
Lateral angle and cranial base sexual dimorphism
Duquesnel Mana, Mathilde; Adalian, Pascal; Lynnerup, Niels
2016-01-01
SUMMARY: Previous studies have yielded very different results in sex estimation based on measurements of the lateral angle (LA) of the temporal bone. The purpose of this study was to, first, investigate if the bad results obtained by the LA method could be due to the methodology and then, second......, to examine sexual dimorphism in the relationship between the lateral angle and cranial base shape. The lateral angle method was tested using a forensic sample of 102 CT scans of the head with known sex. We measured the angle using two methods: measurements directly on the CT slide, the method usually applied...... the direct measurements. The mean angle was greater in females (48.2° ± 7.2°) than in males (45.38° ±8.06°) but the difference was not significant (t-test, p = 0.063). A statistically significant difference in cranial base shape existed between the two sexes, but the results also demonstrated a major overlap...
PRIMARY OPEN ANGLE GLAUCOMA IN THYROID DISORDER
Pragati Garg
2016-07-01
Full Text Available PURPOSE To assess the association of thyroid profile with open angle glaucoma. DESIGN Cross-sectional observational study. MATERIAL AND METHOD 128 cases of diagnosed thyroid disorder were enrolled. 5 cases dropped out. Ocular examination included applanation tonometry, stereoscopic optic disc photography, and automated perimetry. Correlative association of thyroid disorder and open angle glaucoma was assessed. RESULTS Of 123 patients of thyroid disorder, 87.8% had hypothyroidism and remaining 12.2% had hyperthyroidism. 15.74% of hypothyroidism and 20% of hyperthyroidism patients had open angle glaucoma, which was statistically significant (Pearson chi-square: Value=6.548, df=2, p=0.040. On multivariate analysis with other risk factors like female sex, family history of glaucoma, myopia, hypertension, and diabetes; it was found that hypothyroidism is an independent risk factor for open angle glaucoma. CONCLUSION All patients having thyroid disorder should be investigated for early diagnosis of open angle glaucoma so that if need be antiglaucoma treatment is started at the earliest and the eye maybe saved from any further deterioration.
Michelson interferometer for precision angle measurement.
Ikram, M; Hussain, G
1999-01-01
An angle-measuring technique based on an optical interferometer is reported. The technique exploits a Michelson interferometric configuration in which a right-angle prism and a glass strip are introduced into a probe beam. Simultaneous rotation of both components along an axis results in an optical path difference between the reference and the probe beams. In a second arrangement two right-angle prisms and glass strips are introduced into two beams of a Michelson interferometer. The prisms and the strips are rotated simultaneously to introduce an optical path difference between the two beams. In our arrangement, optimization of various parameters makes the net optical path difference between the two beams approximately linear for a rotation as great as +/-20 degrees . Results are simulated that show an improvement of 2-3 orders of magnitude in error and nonlinearity compared with a previously reported technique.
Notes on large angle crossing graphs
Dujmovic, Vida; Morin, Pat; Wolle, Thomas
2009-01-01
A graph G is an a-angle crossing (aAC) graph if every pair of crossing edges in G intersect at an angle of at least a. The concept of right angle crossing (RAC) graphs (a=Pi/2) was recently introduced by Didimo et. al. It was shown that any RAC graph with n vertices has at most 4n-10 edges and that there are infinitely many values of n for which there exists a RAC graph with n vertices and 4n-10 edges. In this paper, we give upper and lower bounds for the number of edges in aAC graphs for all 0 < a < Pi/2.
Weak lensing using only galaxy position angles
Whittaker, Lee; Battye, Richard
2013-01-01
We develop a method for performing a weak lensing analysis using only measurements of galaxy position angles. By analyzing the statistical properties of the galaxy orientations given a known intrinsic ellipticity distribution, we show that it is possible to obtain estimates of the shear by minimizing a $\\chi^2$ statistic. The method is demonstrated using simulations where the components of the intrinsic ellipticity are taken to be Gaussian distributed. Uncertainties on the position angle measurements introduce a bias into the shear estimates which can be reduced to negligible levels by introducing a correction term into the formalism. We generalize our approach by developing an algorithm to obtain direct shear estimators given any azimuthally symmetric intrinsic ellipticity distribution. We demonstrate this technique by applying it to simulations where the ellipticities are taken to follow a log-normal distribution. We compare the performance of the position angle only method with the standard method based on...