WorldWideScience

Sample records for zeeman graphite furnace

  1. Determination of total selenium in nutritional supplements and selenised yeast by Zeeman-effect graphite furnace atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Ekelund, J.

    1989-01-01

    A method for the determination of total selenium in nutritional supplements and selenised yeast is described. The samples were ashed in nitric acid. Hydrochloric acid was used to prevent precipitation of, in particular, iron salts. After appropriate dilutions, the selenium was determined by Zeeman......-effect background corrected graphite furnace atomic absorption spectrometry. A furnace ashing step at 1100 °C was necessary in order to obtain a total recovery of selenium when present in the organic form. Palladium nitrate-magnesium nitrate was used as a matrix modifier. Independent methods were used to determine...... the content of selenium in a selenised yeast check sample. Accuracy was assured using this sample and by recovery experiments. Between-day random error showed a coefficient of variation of 4.2%. Results from the analysis of eight different commercial supplements were in good agreement with declared contents....

  2. Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq–INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; Dessuy, Morgana B. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq–INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq–INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2014-02-01

    In this work, chemical modifiers in solution (Pd/Mg, NH{sub 4}H{sub 2}PO{sub 4} and NH{sub 4}NO{sub 3}/Pd) were compared with permanent modifiers (Ir and Ru) for the determination of lead in fertilizer and limestone samples using slurry sampling and graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. The analytical line at 283.3 nm was used due to some spectral interference observed at 217.0 nm. The NH{sub 4}H{sub 2}PO{sub 4} was abandoned due to severe spectral interference even at the 283.3-nm line. For Pd/Mg and NH{sub 4}NO{sub 3}/Pd the optimum pyrolysis and atomization temperatures were 900 °C and 1900 °C, respectively. For Ru and Ir, the integrated absorbance signal was stable up to pyrolysis temperatures of 700 °C and 900 °C, respectively, and up to atomization temperature of 1700 °C. The limit of detection (LOD) was 17 ng g{sup −1} using Pd/Mg and 29 ng g{sup −1} using NH{sub 4}NO{sub 3}/Pd. Among the permanent modifiers investigated, the LOD was 22 ng g{sup −1} Pb for Ir and 10 ng g{sup −1} Pb for Ru. The accuracy of the method was evaluated using the certified reference material NIST SRM 695. Although Ru provided lower LOD, which can be attributed to a lower blank signal, only the modifiers in solution showed concordant values of Pb concentration for the NIST SRM 695 and the most of analyzed samples. Moreover, the Pd/Mg modifier provided the highest sensitivity and for this reason it is more suitable for the determination of Pb in fertilizers samples in slurry; besides this it presented a better signal-to-noise ratio than NH{sub 4}NO{sub 3}/Pd. - Highlights: • Lead has been determined in fertilizers using slurry sampling GF AAS. • The mixture of palladium and magnesium nitrates was found to be the ideal chemical modifier. • Calibration could be carried out against aqueous standard solutions. • The proposed method is much faster than the EPA method, which includes sample digestion.

  3. Investigation of the feasibility to use Zeeman-effect background correction for the graphite furnace determination of phosphorus using high-resolution continuum source atomic absorption spectrometry as a diagnostic tool

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Fabio G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.b [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Dessuy, Morgana B.; Vale, Maria Goreti R. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre-RS (Brazil); Bohrer, Denise [Departamento de Quimica, Universidade Federal de Santa Maria, 97110-905 Santa Maria, RS (Brazil); Loos-Vollebregt, Margaretha T.C. de [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 137, 2628 BL Delft (Netherlands); Department of Analytical Chemistry, Ghent University, Krijgslaan 281 - S12, B-9000 Ghent (Belgium); Mao Donghuang; Becker-Ross, Helmut [ISAS, Institute for Analytical Sciences, Department of Interface Spectroscopy, Albert-Einstein Str. 9, 12489 Berlin (Germany)

    2010-01-15

    The determination of phosphorus by graphite furnace atomic absorption spectrometry at the non-resonance line at 213.6 nm, and the capability of Zeeman-effect background correction (Z-BC) to deal with the fine-structured background absorption due to the PO molecule have been investigated in the presence of selected chemical modifiers. Two line source atomic absorption spectrometers, one with a longitudinally heated and the other with a transversely heated graphite tube atomizer have been used in this study, as well as two prototype high-resolution continuum source atomic absorption spectrometers, one of which had a longitudinally arranged magnet at the furnace. It has been found that Z-BC is capable correcting very well the background caused by the PO molecule, and also that of the NO molecule, which has been encountered when the Pd + Ca mixed modifier was used. Both spectra exhibited some Zeeman splitting, which, however, did not cause any artifacts or correction errors. The practical significance of this study is to confirm that accurate results can be obtained for the determination of phosphorus using Z-BC. The best sensitivity with a characteristic mass of m{sub 0} = 11 ng P has been obtained with the pure Pd modifier, which also caused the lowest background level. The characteristic mass obtained with the mixed Pd+Ca modifier depended on the equipment used and was between m{sub 0} = 9 ng P and m{sub 0} = 15 ng P, and the background signal was higher. The major problem of Z-BC remains the relatively restricted linear working range.

  4. Preconcentration of trace elements from high-purity thorium and uranium on Chelex-100 and determination by graphite furnace atomic absorption spectrometry with Zeeman-effect background correction

    International Nuclear Information System (INIS)

    Raje, Naina; Kayasth, Satish; Asari, T.P.S.; Gangadharan, S.

    1994-01-01

    Preconcentration of trace impurities from large-sized samples of uranium metal and thorium oxide using a small column of Chelex-100 followed by their determination using graphite furnace atomic absorption spectrometry (GFAAS) is reported. A 0.5-10-g amount of the sample (uranium metal or thorium oxide) was dissolved, complexed with ammonium carbonate and subjected to the ion-exchange procedure. The retained analytes were eluted with 2-4 M nitric acid and brought to a small volume for a final dilution to 10-25 ml for their determination using GFAAS. The validity of the separation procedure and recoveries at μg kg -1 levels was checked by standard addition; the recoveries were >95%

  5. Chromium, lead and cadmium in Danish milk products and cheese determined by Zeeman graphite furnace atomic absorption spectrometry after direct injection or pressurised ashing

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Rasmussen, L.

    1991-01-01

    -degrees-C and then further ashed at 1 100-degrees-C with argon as the purge gas. Zeeman background correction was used in the atomisation step at 2 300-degrees-C. The detection limit was 0.7 ng/g. Direct detection of chromium in milk, using only argon as purge gas, was inferior. Non-homogeneous and solid...

  6. Application of Zeeman graphite furnace atomic absorption spectrometry with high-frequency modulation polarization for the direct determination of aluminum, beryllium, cadmium, chromium, mercury, manganese, nickel, lead, and thallium in human blood.

    Science.gov (United States)

    Ivanenko, Natalya B; Solovyev, Nikolay D; Ivanenko, Anatoly A; Ganeev, Alexander A

    2012-10-01

    Determination of aluminum (Al), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and thallium (Tl) concentrations in human blood using high-frequency modulation polarization Zeeman graphite furnace atomic absorption spectrometry (GFAAS) was performed. No sample digestion was used in the current study. Blood samples were diluted with deionized water or 0.1 % (m/v) Triton X-100 solution for Tl. Dilution factors ranged from 1/5 per volume for Be and Tl to 1/20 per volume for Cd and Pb. For Tl, Cd, and Hg, noble metals (gold, platinum, rhodium, etc.) were applied as surface modifiers. To mitigate chloride interference, 2 % (m/v) solution of NH(4)NO(3) was used as matrix modifier for Tl and Ni assessment. The use of Pd(NO(3))(2) as oxidative modifier was necessary for blood Hg and Tl measurement. Validation of the methods was performed by analyzing two-level reference material Seronorm. The precision of the designed methods as relative SD was between 4 and 12 % (middle of a dynamic range) depending on the element. For additional validation, spiked blood samples were analyzed. Limits of detection (LoDs, 3σ, n = 10) for undiluted blood samples were 2.0 μg L(-1) for Al, 0.08 μg L(-1) for Be, 0.10 μg L(-1) for Cd, 2.2 μg L(-1) for Cr, 7 μg L(-1) for Hg, 0.4 μg L(-1) for Mn, 2.3 μg L(-1) for Ni, 3.4 μg L(-1) for Pb, and 0.5 μg L(-1) for Tl. The LoDs achieved allowed determination of Al, Cd, Cr, Mn, Ni, and Pb at both toxic and background levels. Be, Hg, and Tl could be reliably measured at toxic levels only. The methods developed are used for clinical diagnostics and biological monitoring of work-related exposure.

  7. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    spectrometry as alternative method for trace analysis of ... Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry .... Methods comparison and validation .... plasma-optical emission spectrometry.

  8. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  9. Development of synthetic graphite resistive elements for sintering furnace

    International Nuclear Information System (INIS)

    Otani, C.; Rezende, Mirabel C.; Polidoro, H.A.; Otani, S.

    1987-01-01

    The synthetic graphites have been produced using lignin coke, natural graphite and phenolic resin. The bulk density, porosity, flexural strength and eletrical resistivity measurements have been performed on specimens at about 2400 0 C. The performance of these materials, as heating elements, was evaluated in a sintering furnace prototype. This paper reports the fabrication process and the experimental results. (Author) [pt

  10. Development of mixed-waste analysis capability for graphite furnace atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Bass, D.A.; TenKate, L.B.; Wroblewski, A.

    1995-03-01

    Graphite furnace atomic absorption spectrophotometer (GFAAS) are typically configured with ventilation to capture potentially toxic and corrosive gases emitted from the vaporization of sample aliquots. When radioactive elements are present, additional concerns (such as meeting safety guidelines and ALARA principles) must be addressed. This report describes a modification to a GFAAS that provides additional containment of vaporized sample aliquots. The modification was found to increase containment by a factor of 80, given expected operating conditions. The use of the modification allows more mixed-waste samples to be analyzed, permits higher levels of radioactive samples to be analyzed, or exposes the analyst to less airborne radioactivity. The containment apparatus was attached to a Perkin-Elmer Zeeman 5000 spectrophotometer for analysis of mixed-waste samples; however, it could also be used on other systems and in other applications where greater containment of vaporized material is desired

  11. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry (GFAAS) and hydride generation atomic absorption spectrometry (HGAAS) for trace analysis of arsenic (As) in natural herbal products (NHPs). Method: Arsenic analysis in natural herbal products and standard reference ...

  12. Graphite Furnace Atomic Absorption Elemental Analysis of Ecstasy Tablets

    OpenAIRE

    French, Holly E.; Went, Michael J.; Gibson, Stuart J.

    2013-01-01

    Abstract: Six metals (Cu, Mg, Ba, Ni, Cr, Pb) were determined in two separate batches of seized ecstasy\\ud tablets by graphite furnace atomic absorption spectroscopy (GFAAS) following digestion with nitric\\ud acid and hydrogen peroxide. Large intra-batch variations were found as expected for tablets produced\\ud in clandestine laboratories. For example, nickel in batch 1 was present in the range 0.47-13.1 ppm and\\ud in batch 2 in the range 0.35-9.06 ppm. Although batch 1 had significantly high...

  13. Determination of technetium by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kaye, J.H.; Ballou, N.E.

    1978-01-01

    A detection limit of 6 x 10 -11 g has been achieved for measurement of technetium by graphite furnace atomic absorption spectrometry. A commercially available, demountable, hollow cathode lamp was used and both argon and neon were used as fill gases for the lamp. The range of applicability of the method, when the unresolved 2614.23 to 2615.87 A doublet is used for analysis, is from 60 pg to at least 3 ng of technetium per aliquot analyzed. 3 figures, 1 table

  14. Graphite furnace atomic absorption elemental analysis of ecstasy tablets.

    Science.gov (United States)

    French, Holly E; Went, Michael J; Gibson, Stuart J

    2013-09-10

    Six metals (copper, magnesium, barium, nickel, chromium and lead) were determined in two separate batches of seized ecstasy tablets by graphite furnace atomic absorption spectroscopy (GFAAS) following digestion with nitric acid and hydrogen peroxide. Large intra-batch variations were found as expected for tablets produced in clandestine laboratories. For example, nickel in batch 1 was present in the range 0.47-13.1 parts per million (ppm) and in batch 2 in the range 0.35-9.06 ppm. Although batch 1 had significantly higher 3,4-methylenedioxy-N-methamphetamine (MDMA) content than batch 2, barium was the only element which discriminated between the two ecstasy seizures (batch 1: 0.19-0.66 ppm, batch 2: 3.77-5.47 ppm). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Graphite electrode DC arc furnace. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  16. Sub-parts-per-quadrillion-level graphite furnace atomic absorption spectrophotometry based on laser wave mixing.

    Science.gov (United States)

    Mickadeit, Fritz K; Berniolles, Sandrine; Kemp, Helen R; Tong, William G

    2004-03-15

    Nonlinear laser wave mixing in a common graphite furnace atomizer is presented as a zeptomole-level, sub-Doppler, high-resolution atomic absorption spectrophotometric method. A nonplanar three-dimensional wave-mixing optical setup is used to generate the signal beam in its own space. Signal collection is efficient and convenient using a template-based optical alignment. The graphite furnace atomizer offers advantages including fast and convenient introduction of solid, liquid, or gas analytes, clean atomization environment, and minimum background noise. Taking advantage of the unique features of the wave-mixing optical method and those of the graphite furnace atomizer, one can obtain both excellent spectral resolution and detection sensitivity. A preliminary concentration detection limit of 0.07 parts-per-quadrillion and a preliminary mass detection limit of 0.7 ag or 8 zmol are determined for rubidium using a compact laser diode as the excitation source.

  17. [Determination of trace cobalt in human urine by graphite furnace atomic absorption spectrometr].

    Science.gov (United States)

    Zhong, L X; Ding, B M; Jiang, D; Liu, D Y; Yu, B; Zhu, B L; Ding, L

    2016-05-20

    To establish a method to determine cobalt in human urine by graphite furnace atomic absorption spectrometry. Urine with 2% nitric acid diluted two-fold, to quantify the curve, graphite furnace atomic absorption spectrometric detection. Co was linear within 2.5~40.0 ng/ml with r>0.999. Spike experiment showed that Co received good recovery rate, which was 90.8%~94.8%. Intra-assay precisions were 3.2%~5.1% for Co, inter-assay precisions were 4.4%~5.2% for Co. The method by using graphite furnace atomic absorption spectrometr to determine urine Co was fast, accurate and with low matrix effect. It could meet the requirement in GBZ/T 210.5-2008.

  18. Graphite electrode DC arc furnace system for treatment of environmentally undesirable solid waste

    International Nuclear Information System (INIS)

    Titus, C.H.

    1993-01-01

    A gas tight DC arc furnace system using graphite electrodes is ideally suited for destruction of organic materials, compaction of metallic materials, and vitrification of inorganic waste materials. A graphite electrode DC arc furnace system which was developed by Electro-Pyrolysis, Inc. has been used to demonstrate that iron basalt soil containing various surrogate nonradioactive materials found on Department of Energy's Atomic Energy Sites and hospital waste can be reduced to a compact, vitrified, solid material which is environmentally acceptable and will pass TCLP leachate tests. A second graphite electrode DC arc furnace system is presently under construction and will be in operation at MIT during the second quarter of 1993. This furnace system is designed for demonstration of waste treatment and stabilization at a rate of 500 pounds per hour and will also be used for development and performance evaluation of diagnostic techniques and equipment for measuring and understanding internal furnace temperature profiles, gas entrained particulate composition, and particulate size distribution in various locations in the furnace during operation

  19. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    Science.gov (United States)

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun

    2016-04-01

    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  20. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    Carvalho Vidal, M. de F. de.

    1984-01-01

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author) [pt

  1. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  2. Surface studies on graphite furnace platforms covered with Pd, Rh and Ir as modifiers in graphite furnace atomic absorption spectrometry of tellurium

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, Juana [Area de Química Analítica, Departamento de Química, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829 (S3000GL.N), Santa Fe (Argentina); Stripekis, Jorge [Laboratorio de Análisis de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires (Argentina); Departamento de Ingeniería Química, Instituto Tecnológico de Buenos Aires, Av. Eduardo Madero 399 (1106), Buenos Aires (Argentina); Bonivardi, Adrian [Area de Química Analítica, Departamento de Química, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829 (S3000GL.N), Santa Fe (Argentina); Tudino, Mabel, E-mail: tudino@qi.fcen.uba.ar [Laboratorio de Análisis de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires (Argentina)

    2015-05-01

    The main objective of this work is the study of correlations between the efficiency of the distribution of the permanent platinum group modifiers Pd, Rh and Ir over the graphite surface with the aim of improving analytical signal of tellurium. Modifier solution was deposited onto the platform and pyrolysed after drying. In the case of Pd, the physical vaporization/deposition technique was also tested. In order to analyze the differences amongst coverings (morphology, topology and distribution), the graphite surfaces were studied with scanning electron microscopy and energy dispersive X-ray microscopy. Micrographs for physical vaporization and pyrolytic deposition of Pd were also analyzed in order to explain the lack of signal obtained for tellurium with the first alternative. Similar micrographs were obtained for pyrolytic deposition of Ir and Rh and then, compared to those of Pd. Ir showed the most homogeneous distribution on the graphite surface and the tallest and sharpest transient. With the aim of improving the analytical signal of tellurium, the correlation between the surface studies and the tellurium transient signal (height, area and shape) is discussed. - Highlights: • Distribution of Rh, Pd and Ir onto graphite furnaces is evaluated by SEM and EDX • Micrographs and spectra showed that surface distribution could influence Te signal. • Ir showed the best signal together with the most homogeneous surface distribution. • Pd-PVD micrographs revealed the absence of graphite and no signal for Te.

  3. Treatment of simulated INEL buried wastes using a graphite electrode DC arc furnace

    International Nuclear Information System (INIS)

    Surma, J.E.; Lawrence, W.E.; Titus, C.H.; Wittle, J.K.; Hamilton, R.A.; Cohn, D.R.; Rhea, D.; Thomas, P.; Woskov, P.P.

    1994-08-01

    A program has been established under the auspices of the Department of Energy (DOE), Office of Technology Development (OTD), to develop the graphite electrode DC arc technology for the application of treating buried heterogenous solid wastes. A three way open-quotes National Laboratory-University-Industryclose quotes partnership was formed to develop this technology in the most timely and cost effective manner. This program is presently testing a newly fabricated pilot-scale DC arc furnace with associated diagnostics at the Plasma Fusion Center at the Massachusetts Institute of Technology. Initial testing in a smaller engineering scale furnace has established the viability of this technology for the treatment of solid heterogeneous wastes. Two diagnostic tools were developed under this program which support the evaluation of the DC arc technology. The diagnostics provide for both spatially resolved temperature measurements within the furnace and real time monitoring of the furnace metal emissions

  4. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  5. Development of a manufacturing technology of compacted graphite iron castings from a cupola furnace

    Directory of Open Access Journals (Sweden)

    O. Bouska

    2012-01-01

    Full Text Available Compacted graphite iron, also known as vermicular cast iron or semiductile cast iron is a modern material, the production of which is increasing globaly. Recently this material has been very often used in automotive industry. This paper reviews some findigs gained during the development of the manufacturing technology of compacted graphite iron under the conditions in Slévárna Heunisch Brno, Ltd. The new technology assumes usage of cupola furnace for melting and is beeing developed for production of castings weighing up to 300 kilograms poured into bentonite sand moulds.

  6. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  7. Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes

    International Nuclear Information System (INIS)

    Surma, J.E.; Freeman, C.J.; Powell, T.D.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.

    1993-06-01

    The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600 degrees C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation

  8. High temperature vacuum furnace for the preparation of graphite targets for 14C dating by tandem accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Lowe, D.C.; Bristow, P.; Judd, W.J.

    1985-02-01

    A simple and reliable furnace design capable of producing temperatures of up to 2800 deg. C is presented. The furnace has been specifically designed for the rapid and reliable production of graphite targets for 14 C dating purposes but may be used in a variety of applications requiring high temperatures under vacuum conditions

  9. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  10. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  11. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bentlin, Fabrina R.S.; Pozebon, Dirce; Mello, Paola A.; Flores, Erico M.M.

    2007-01-01

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO 3 ) 2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 μg g -1 of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  12. Feasibility of using in situ fusion for the determination of Co, Cr and Mn in Portland cement by direct solid sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Intima, Danielle Polidorio; de Oliveira, Elisabeth; Oliveira, Pedro Vitoriano

    2009-01-01

    In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 μg of sample. The in situ fusion was accomplished using 10 μL of a flux mixture 4.0% m/v Na 2 CO 3 + 4.0% m/v ZnO + 0.1% m/v Triton (registered) X-100 added over the cement sample and heated at 800 deg. C for 20 s. The resulting mould was completely dissolved with 10 μL of 0.1% m/v HNO 3 . Limits of detection were 0.11 μg g - 1 for Co, 1.1 μg g - 1 for Cr and 1.9 μg g - 1 for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student's t-test, p < 0.05). In general, the relative standard deviation was lower than 12% (n = 5).

  13. DC graphite arc furnace, a simple system to reduce mixed waste volume

    Energy Technology Data Exchange (ETDEWEB)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J. [and others

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.

  14. DC graphite arc furnace, a simple system to reduce mixed waste volume

    International Nuclear Information System (INIS)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-01-01

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials

  15. Atomization in a graphite furnace with ballast - a method of improvement of reliability of atomic absorption analysis

    International Nuclear Information System (INIS)

    Katskov, D.A.; Grinshtejn, I.L.

    1978-01-01

    For the purpose of improving the reliability with which elements are determined in atomic absorption analysis with atomization in a graphite furnace, a method is proposed based on the use of a furnace with an extra ballast body. A small cylinder of graphite or refractory metal (Ta) placed in the central part of the furnace, is used as ballast. When in poor heat contact with the wall the ballast is heated by ray emission at a somewhat slower rate than the furnace. It is shown that the kinetics of evaporation of the substance being analysed in the ballast furnace is determined by the rate of change of temperature of the ballast body. As a result of the lag in evaporation, vapour from the analysed substance reaches a zone of a much higher temperature than with evaporation in the usual type furnace, leading to an increase in the degree of atomization. Theoretical analysis establishes the temperature of the ballast, and conditions for the determination of elements (Cd) are optimized. The experiments conducted indicate a considerable decrease in the effect of the composition of the sample on the results of the analysis and a lower molecular interference in the ballast furnace. With high evaporation lag the vapours of the sample reach the zone of practically constant temperature, thus making it possible to use the integral method of absorption registration with absolute accuracy. With fractionated distillation of volatile components of the sample, fractionation is considerably more accurate in a ballast furnace than in the usual type furnace

  16. Determination of trace amounts of cadmium in zirconium and its alloys by graphite furnace AAS

    International Nuclear Information System (INIS)

    Takashima, Kyoichiro; Toida, Yukio

    1994-01-01

    Trace amount of cadmium in zirconium and its alloys was determined by graphite furnace atomic absorption spectrometry (GF-AAS) after ion exchange separation. A 2g chip sample was decomposed with 20ml of hydrofluoric acid (1+9) and a few drops of nitric acid. A trace amount of cadmium was separated from zirconium by strongly acidic cation-exchange resin (MCI GEL CK 08P) using 50ml of hydrochloric acid as an eluent. The solution was gently evaporated to dryness on an electric hot plate heater and under an infrared lamp. The residue was dissolved in 1ml of nitric acid (1+14) and diluted to 10ml in a volumetric glass flask with distilled water. Ten microliters of this solution was injected into a graphite furnace and then atomized at 2200degC for 4s in argon at a flow rate of 3.0l/min. Acids used in the analytical procedure were purified by azeotropic distillation and cation-exchange resin. The limit of determination (3σ BK ) for cadmium was 0.5ngCd/g and the relative standard deviation (RSD) at 1ngCd/g level was less than 20% for the GF-AAS. The accuracy of this technique was confirmed by NIST SRM 1643b (trace elements in water). (author)

  17. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; François, Luciane L.; Jesus, Alexandre de [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH{sub 4}H{sub 2}PO{sub 4} at 217.001 nm, and a mixture of H{sub 2}SO{sub 4} + Ca and HNO{sub 3} + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part. - Highlights: • Spectral interferences on the determination of lead in fertilizers and limestone. • The analytical lines at 217.001 nm and 283.306 nm using HR-CS GF AAS. • Various combinations of compounds were used to create reference spectra. • LSBC

  18. [Graphite furnace atomic absorption spectrometry for determination of thallium in blood].

    Science.gov (United States)

    Zhang, Q L; Gao, G

    2016-04-20

    Colloidal palladium was used as chemical modifier in the determination of blood thallium by graphite furnace atomic absorption spectrometry. Blood samples were precipitated with 5% (V/V)nitric acid, and then determined by GFAAS with colloidal palladium used as a chemical modifier. 0.2% (W/V)sodium chloride was added in the standard series to improve the matrix matching between standard solution and sample. The detection limit was 0.2 μg/L. The correlation coefficient was 0.9991. The recoveries were between 93.9% to 101.5%.The relative standard deviations were between 1.8% to 2.7%.The certified reference material of whole blood thallium was determined and the result was within the reference range Conclusion: The method is accurate, simple and sensitive, and it can meet the needs of detection thallium in blood entirely.

  19. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    Science.gov (United States)

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  1. Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Osintsev, V V; Khidiyatov, A M

    1981-01-01

    The purpose of the invention is to improve the operating efficiency of the furnace device containing prefurnaces connected to the main combustion chamber. For this purpose in the proposed furnace device is equipped with prefurnaces with burners, rectangular vertical chamber of combustion is equipped with central hearth projection. As indicated by studies, the hearth projection of the indicated projections promotes the development of transverse streams which guarantee effective mixing of the combustion products in the upper part of the combustion chamber 3. This reduces the nonuniformity of temperature at the outlet from the latter, decreases the probability of slagging and hot spots on the heating surface.

  2. The method of the atomic-absorption analysis in a graphite furnace with the metallic collector-ballast

    International Nuclear Information System (INIS)

    Katskov, D.A.; Vasil'eva, L.A.; Grinshtejn, I.L.; Savel'eva, G.O.

    1987-01-01

    New method of atomic-absorption analysis in a graphite furnace with the metallic collector-ballast (tungsten were) is suggested. It enables to widen the number of analyzed objects of liquid products wetting readily graphite and metals. It is shown that application of metallic collector-ballast enables to improve sensitivity and reproducibility of analysis, increase the volume of dosed samples as well as to suppress effectively the influence of excess of mineral and organic substrate on results of atomic-absorption analysis of several elements, including Cd, Sr, In, Te

  3. A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    A. A. Asweisi

    2010-01-01

    Full Text Available A new crossed graphite furnace for atomic absorption spectrometry (GFAAS was designed and installed in heated graphite atomizer (HGA500 combined with Perkin-Elmer spectrometer (AAS1100. The Tungsten ballast body was inserted inside one part of the crossed furnace in a way perpendicular to light path. The analyzed sample was injected manually on the ballast body inside the cross and pushed into the measuring zone using the original inner and additional purge gas. The sample was adsorbed strongly on the ballast and evaporated and transferred with different rates at different temperatures during the temperature program allowing the separation of analyte and matrix signals. Analysis of middle volatile element such as copper and manganese in standard urine sample (seronorm 2525 showed complete separation of analyte and background signals with good sensitivity and repeatability.

  4. ZEEMAN ELLIPSOMETER

    NARCIS (Netherlands)

    Hemmes, K.; WIND, M.M.; Lepoole, R.; Habing, P.E.

    1994-01-01

    Abstract of WO 9416310 (A1) Ellipsometer comprising at least a Zeeman laser (Z) to generate two beams (g1, g2) which are slightly shifted in frequency and (after transmission through a birefringent crystal (quarter-wave plate)) are both polarized linearly but perpendicular to one another, a

  5. Determination of copper and iron in the human aqueous humor by atomic absorption spectrometer with graphite furnace

    International Nuclear Information System (INIS)

    Iqbal, Z.; Mohammad, Z.; Shah, M.T.; Saeed, M.; Imdadullah

    1999-01-01

    The concentration of copper and iron was determined in human aqueous humor using atomic absorption spectrophotometer equipped with graphite furnace. The mean (+- SEM) concentrations of copper (n=16) and iron (n=14) were 0.0234 -+ 0.0045 mu g.ml/sup -1/ and 0.045 -+ 0.0092 mu.ml/sup -1/ respectively. In male and female, the concentrations of copper (p< 0.82) and iron (p<0.38) were not significantly different. (author)

  6. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration.

  7. Determination of lithium in sodium by vacuum distillation-graphite furnace atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Xie Chun; Sun Shiping; Jia Yunteng; Wen Ximeng

    1996-12-01

    When sodium is used as a coolant in China Experimental Fast Reactor, the lithium content in sodium has an effect on the nuclear property of reactor. A method has been developed to determine the trace lithium in sodium metal at the level of less than ten parts per million. About 0.4 g sodium is placed into a high-purity tantalum crucible, then it is placed in a stainless-steel still to distill at 360 degree C under vacuum (0.01 Pa). After the sodium has been removed, the residue is dissolved by nitric acid (1:2) and analyzed with Graphite Furnace Atomic Absorption Spectroscopy at 671.0 nm wavelength. The distillation conditions, working conditions of the instrument and interferences from matrix sodium, acid and concomitant elements have been studied. Standard addition experiments are carried out with lithium chloride and lithium nitrate. The percentage recoveries are 96.8% and 97.4% respectively. The relative standard deviation is less than +- 5%. The method has been used to determine lithium content in high pure sodium and industrial grade sodium. (11 refs., 5 figs., 5 tabs.)

  8. Determination of cadmium in human urine by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Shijo, Yoshio; Sakai, Kaoru

    1981-01-01

    A trace amount of cadmium in human urine was determined by graphite furnace atomic absorption spectrometry. A urine sample (25 ml) was digested with 5 ml of HNO 3 and 30 ml of H 2 O 2 in a long-neck flask on a hot-plate (200 0 C), then diluted to 50 ml. The standard addition method was carried out before digesting. Ten μl of the resulted solution was injected into a tube treated with tungsten carbide, and the cadmium signal was measured with the ramp mode atomization. Interference induced by organic materials in urine was avoided by HNO 3 -H 2 O 2 digestion. Interference induced by inorganic salts could be reduced by 2-fold dilution and tungsten carbide treatment. The cadmium signal was separated sufficiently from the molecular absorption due to NaCl etc. by the ramp mode atomization. Since the blank level of H 2 O 2 was relatively high, the determination was limited to about 0.1 μg/l. The coefficient of variation was 1.76% at 0.36 μg/l in 24 h human urine (n = 4). The time required was (8 -- 10)h. The precision of this method was higher than those of direct methods, and the reasonable values of urine levels of cadmium were obtained. (author)

  9. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    Science.gov (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  10. The determination of magnesium in simulated PWR coolant by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gatford, C.; Torrance, K.

    1988-06-01

    The determination of magnesium in simulated PWR coolant has been investigated by graphite furnace atomic absorption spectrometry with atomization from a L'vov platform. The presence of boric acid in the coolant suppresses the magnesium absorption to such an extent that removal of the boron is necessary and three variations of a methyl borate volatilization technique for the in situ removal of boron from the sample platform were investigated. This work has shown that dilution of the sample with an equal volume of acidified methanol and volatilization of the methyl borate was adequate for the determination of magnesium in coolant samples containing up to 2000 mg 1 -1 of boron. In simulated coolant samples containing 25 and 4 μg 1 -1 of magnesium, positive biases of about 2 and 0.5 μg 1 -1 were measured and these errors were considered to be due to contamination. The limit of detection in the presence of 100 and 2000 mg 1 -1 boron were 0.14 and 0.93 μg 1 -1 respectively. These performance characteristics suggest the method is completely acceptable for monitoring the chemical purity of PWR coolant and associated waters containing boric acid. If, however, more precise analyses were to be required for research purposes then any significant improvement in the above figures would require increased purity of reagents, clean-room conditions to reduce contamination and a more versatile atomic absorption spectrophotometer. (author)

  11. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Calle, Inmaculada de la; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. - Highlights: • We review the LPME-GFAAS combination in a comprehensive way. • A brief description of main LPME modes is included. • Effect of experimental parameters in the performance of LPME-GFAAS is discussed. • Main applications for trace element analysis and speciation are reviewed.

  12. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review

    International Nuclear Information System (INIS)

    Calle, Inmaculada de la; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-01-01

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. - Highlights: • We review the LPME-GFAAS combination in a comprehensive way. • A brief description of main LPME modes is included. • Effect of experimental parameters in the performance of LPME-GFAAS is discussed. • Main applications for trace element analysis and speciation are reviewed.

  13. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  14. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  15. ZEEMAN ELLIPSOMETER

    OpenAIRE

    Hemmes, K.; WIND, M.M.; Lepoole, R.; Habing, P.E.

    1994-01-01

    Abstract of WO 9416310 (A1) Ellipsometer comprising at least a Zeeman laser (Z) to generate two beams (g1, g2) which are slightly shifted in frequency and (after transmission through a birefringent crystal (quarter-wave plate)) are both polarized linearly but perpendicular to one another, a non-polarizing beam splitter (N) downstream of which a working beam (g'm2) mofidied by a sample (S) interferes with a reference beam (g1), a unit (W) for separating two orthogonal (p- and s-) components of...

  16. Computer programs in BASIC language for graphite furnace atomic absorption using the method of additions. Part 2. Documentation

    International Nuclear Information System (INIS)

    Boyle, W.G. Jr.; Ryan, D.P.

    1979-08-01

    There are four computer programs, written in the BASIC language, used for taking and processing data from an atomic absorption spectrophotometer using the graphite furnace and the method of additions for calibration. The programs chain to each other and are divided into logical sections that have been flow-charted. The chaining sequences, general features, structure, order of subroutines and functions, and the storage of data are discussed. In addition, variables are listed and defined, and a complete listing of each program with a symbol occurrence table is provided

  17. Computer programs in BASIC language for graphite furnace atomic absorption using the method of additions. Part 1. Operating instructions

    International Nuclear Information System (INIS)

    Boyle, W.G. Jr.; Ryan, D.P.

    1979-01-01

    These instructions describe how to use BASIC language programs to process data from atomic absorption spectrophotometers using the graphite furnace and the method of additions calibration technique. The instructions cover loading the programs, responding to computer prompts, choosing among various options for processing the data, performing operations with an automatic sampler, and producing reports. How the programs interact with each other is also explained. Examples of computer/operator dialogue are presented for typical cases. In addition, a concise set of operating instructions is included as an appendix

  18. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zeini Jahromi, Elham; Bidari, Araz; Assadi, Yaghoub; Milani Hosseini, Mohammad Reza; Jamali, Mohammad Reza

    2007-01-01

    Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L -1 with detection limit of 0.6 ng L -1 . The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L -1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L -1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with

  19. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  20. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    International Nuclear Information System (INIS)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da; Melo, Jessica V. de

    2013-01-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  1. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Ieggli, C. V. S.; Bohrer, D.; Noremberg, S.; do Nascimento, P. C.; de Carvalho, L. M.; Vieira, S. L.; Reis, R. N.

    2009-06-01

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 µg L - 1 . The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  2. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ieggli, C.V.S. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Bohrer, D. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil)], E-mail: ndenise@quimica.ufsm.br; Noremberg, S.; Nascimento, P.C. do; Carvalho, L.M. de [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Vieira, S.L.; Reis, R.N. [Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 7712, CEP 90540-000, Porto Alegre (Brazil)

    2009-06-15

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 {mu}g L{sup - 1}. The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  3. Graphite furnace analysis of a series of metals (Cu, Mn, Pb, Zn and Cd) in ox kidney

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Nascimento, Rizia K. do; Paiva, Ana Claudia de; Silva, Josenilda M. da, E-mail: vlsouza@cnen.gov.br, E-mail: riziakelia@hotmail.com, E-mail: acpaiva@cnen.gov.br, E-mail: jmnilda@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Jessica V. de, E-mail: Jessica_clorofila@hotmail.com [Universidade de Pernambuco, Recife, PE (Brazil)

    2013-07-01

    The aim of this study was to create a methodology for animal tissue analysis, with the use of flame atomic absorption spectrophotometry techniques and graphite furnace analysis to determining metal concentrations in ox kidney. The organ of this animal can be considered a great nutritional food, due to the high protein and micronutrient content beyond the ability to absorb and concentrate important metals such as Zn, Fe, Mn and Se. On the other hand, there is a risk when eating this food owing to the capacity to accumulate toxic metals such as Pb and Cd. In accordance with the laboratory analysis, Zn can be analyzed by flame atomic absorption spectrophotometry, but other metals such as Cu, Mn, Pb and Cd, could only be detected by graphite furnace analysis. The results showed that there is more Zn and Cu than other metals. Such metals follows an order reported by the literature (Zn > Cu > Cd > Pb > Mn). The results showed that kidney is actually a rich source of Zn and Cu. The Cd levels in the ox kidney did not exceed the values which cause toxic effects. The adequacy of the results indicates that the proposed methodology can be used for animal tissue analysis.(author)

  4. The behavior of various chemical forms of nickel in graphite furnace atomic absorption spectrometry under different chemical modification approaches

    International Nuclear Information System (INIS)

    Kowalewska, Zofia

    2012-01-01

    Various organic and inorganic Ni forms were investigated using graphite furnace atomic absorption spectrometry. Experiments without chemical modification showed a wide range of characteristic mass values for Ni (from 6.7 to 29 pg) and the importance of interaction with graphite. With the aim of achieving signal unification of organic Ni forms, different ways of chemical modification were tested. Some rules that govern the behavior of Ni were found and confirmed a significant role of the organic component of the analyte molecule in the analytical process. The application of air as an internal furnace gas in the pyrolysis phase and the Pd modifier injected with the sample solution improved the signal of porphyrins, while the application of iodine and methyltrioctylammonium chloride was required for organic compounds containing oxygen-bound Ni atoms. The Ni signal was strongly diminished when an aqueous solution containing hydrochloric acid was measured with the Pd modifier injected over the sample. Using the developed analytical methods, the range of characteristic mass values for various Ni forms totally dissolved in organic or aqueous solution was 6.5–7.9 pg. - Highlights: ► Some rules that govern behavior of organic Ni forms during GFAAS analysis were found. ► Interaction with graphite can significantly influence evaporation of porphyrins. ► Determination of Ni in form of porphyrins needs Pd organic modifier and air ashing. ► Determination of Ni in O-bound organic compounds needs pretreatment with I2+MTOACl. ► Chemical modification for GFAAS determination of Ni in HCl-containing solution.

  5. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  6. 'Intelligent' triggering methodology for improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces

    International Nuclear Information System (INIS)

    Gustafsson, Joergen; Axner, Ove

    2003-01-01

    The wavelength modulation-diode laser absorption spectrometry (WM-DLAS) technique experiences a limited detectability when window-equipped sample compartments are used because of multiple reflections between components in the optical system (so-called etalon effects). The problem is particularly severe when the technique is used with a window-equipped graphite furnace (GF) as atomizer since the heating of the furnace induces drifts of the thickness of the windows and thereby also of the background signals. This paper presents a new detection methodology for WM-DLAS applied to a window-equipped GF in which the influence of the background signals from the windows is significantly reduced. The new technique, which is based upon a finding that the WM-DLAS background signals from a window-equipped GF are reproducible over a considerable period of time, consists of a novel 'intelligent' triggering procedure in which the GF is triggered at a user-chosen 'position' in the reproducible drift-cycle of the WM-DLAS background signal. The new methodology makes also use of 'higher-than-normal' detection harmonics, i.e. 4f or 6f, since these previously have shown to have a higher signal-to-background ratio than 2f-detection when the background signals originates from thin etalons. The results show that this new combined background-drift-reducing methodology improves the limit of detection of the WM-DLAS technique used with a window-equipped GF by several orders of magnitude as compared to ordinary 2f-detection, resulting in a limit of detection for a window-equipped GF that is similar to that of an open GF

  7. Determination of arsenic and cadmium in shellfish samples by graphite furnace atomic absorption spectrometry using matrix modifier

    International Nuclear Information System (INIS)

    Cortez Diaz, Mirella del Carmen

    2002-01-01

    Heavy metals are a big source of environmental contamination and are also highly toxic to humans. Since shellfish are bio-accumulators of these metals, proper techniques for quantifying them should be available. This work aims to develop an analytical method for the quantitative determination of heavy metals in biological materials (shellfish), specifically arsenic and cadmium at the trace level, using graphite furnace atomic absorption spectrometry, for which nickel and phosphate solutions were used to modify the modifiers. Prior to the analysis, the sample was diluted with nitric acid in a DAB II pressure digestion system order to destroy the organic matter. The instrument conditions were initially set (wavelength, slit, integration peaks, graphite tube, etc.), then the work range was defined for each element and the most appropriate operational parameters were studied, such as: temperature, ramp times, hold times and internal gas flow, in the different stage of the electrothermal treatment (drying, calcination, atomization) for the furnace program. Once the above mentioned conditions were set and since this was a biological sample, a matrix chemical modifier had to be used, in order to make the elements that accompany the element being studied more volatile. In this way the chemical and spectral interferences decrease together with the high background absorption of the matrix. Therefore, different matrix modifiers were studied for the definition of each analyte. The method validation was done using Certified Oyster Tissue Reference Material N o 1566a from the National Institute of Standards and Technology applying different tests in order to eliminate outliers. Repeatability, uncertainty, sensitivity, lineal range, working range, detection limit and quantification limit were evaluated for each element, and the results were compared with the values for the certified material. The Fisher and Student tests were the statistical tools used. The experimental values

  8. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  10. ESTIMATION OF MEASUREMENT UNCERTAINTY IN THE DETERMINATION OF Fe CONTENT IN POWDERED TONIC FOOD DRINK USING GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The evaluation of uncertainty measurement in the determination of Fe content in powdered tonic food drink using graphite furnace atomic absorption spectrometry was carried out. The specification of measurand, source of uncertainty, standard uncertainty, combined uncertainty and expanded uncertainty from this measurement were evaluated and accounted. The measurement result showed that the Fe content in powdered tonic food drink sample was 569.32 µg/5g, with the expanded uncertainty measurement ± 178.20 µg/5g (coverage factor, k = 2, at confidende level 95%. The calibration curve gave the major contribution to the uncertainty of the final results.   Keywords: uncertainty, powdered tonic food drink, iron (Fe, graphite furnace AAS

  11. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  12. Determination of Arsenic in Soil Alkali by Graphite Furnace Atomic Absorption Spectrophotometery Using Modified Corn Silk Fiber as Adsorbent

    International Nuclear Information System (INIS)

    Zhou, X.; Ju, S.; Liu, M.; Zhao, Y.

    2015-01-01

    A safe, rapid, simple and environmentally friendly method based modified corn silk fiber (MC), chemical modified with succinic anhydride (C/sub 4/H/sub 4/O/sub 3/), was developed for the extraction and preconcentration of As(III) in food additives soil alkali sample prior to graphite furnace atomic absorption spectrometry (GFAAS) analysis. The structure and properties of VC (unmodified corn silk fiber) and MC were analyzed and discussed by means of FTIR, SEM and TG, and the effect of adsorbent amount, pH, soil alkali solution concentration, adsorption time and adsorption temperature were carefully optimized. Under the optimum conditions, the relative standard deviations (RSD, n=6) were 1.27-3.05%, the calibration graph was linear in the range of 0-100 meu g/ L and the limits of detection (LOD) was 0.13 meu g/L. The surface of MC became loose and porous which increased the adsorption area. Comparing with VC, carboxy groups were measured in MC and the increase of negative electron group in fiber molecular made its coordination combining ability with As(III) enhanced; In comparison with the removal arsenic rate of VC, MC's significantly increased by 2.86 fold. The recovery rate of soil alkali, treated by VC and MC, reached to 96.85% and 94.32%, and it did not affected the function of soil alkali. (author)

  13. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  14. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  15. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  16. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sun Mei; Wu Qianghua

    2010-01-01

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL -1 . The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  17. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mei, E-mail: sunmei@ustc.edu.cn [Hefei National Laboratory for Physical Sciences on Microscale, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026 (China); Wu Qianghua [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL{sup -1}. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  18. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Sun, Mei; Wu, Qianghua

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL(-1). The relative standard deviation (n=7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin. 2009 Elsevier B.V. All rights reserved.

  19. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  20. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  1. Determinação direta de selênio em água de coco e em leite de coco utilizando espectrometria de absorção atômica com atomização eletrotérmica em forno de grafite Direct determination of selenium in coconut water and coconut milk using graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Poliana C. Aleixo

    2000-06-01

    Full Text Available Selenium is both essential and toxic to man and animals, depending on the concentration and the ingested form. Most fruits and vegetables are poor sources of selenium, but coconut can be a good selenium source. Samples were suspended (1 + 4 v/v in a mixture of tertiary amines soluble in water (10% v/v CFA-C. This simple sample treatment avoided contamination and decreased the analysis time. The standard additions method was adopted for quantification. The action of the autosampler was improved by the presence of the amines mixture in the suspension. A Varian model AA-800 atomic absorption spectrometer equipped with a graphite furnace and a GTA 100 autosampler was used for selenium determination in coconut water and coconut milk. Background correction was performed by means of the Zeeman effect. Pyrolytically coated graphite tubes were employed. Using Pd as chemical modifier, the pyrolysis and the atomization temperatures were set at 1400 and 2200ºC, respectively. For six samples, the selenium concentration in coconut water varied from 6.5 to 21.0 mug L-1 and in coconut milk from 24.2 to 25.1 mug L-1. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values are in the 99.5-102.3% range. The main advantage of the proposed method is that it can be directly applied without sample decomposition.

  2. Investigation of trace level binding of PtCl6 and PtCl4 to alfalfa biomass (Medicago sativa) using Zeeman graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Parsons, J.G.; Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.

    2002-01-01

    Batch laboratory experiments were performed to investigate the effects of pH, chemical modification, time dependency, and interference studies on the binding of trace concentrations of hexachloroplatinate(IV) and tetrachloroplatinate(II) to alfalfa biomass. The pH profiles were measured between pH 2.0 and 6.0. It was found that the binding of trace concentrations of platinum(IV and II) to alfalfa biomass was dependent on pH with a maximum binding occurring at pH 3.0 and a minimum at pH 6.0. When the alfalfa biomass was chemically modified (esterified), maximum binding occurred at pH 6.0 for both oxidation states of platinum. From the batch time dependency experiments, it was found that binding took at least 20 min to level off for both platinum oxidation states. Batch experiments were performed with various concentrations of calcium, magnesium, and sodium (0.1, 1.0, 10, 100 and 1000 ppm) and it was found that calcium affected the binding of platinum(II and IV) to the alfalfa biomass. It was determined that magnesium and sodium did not interfere appreciably with the binding of platinum in either of the oxidation states studied. Finally, batch experiments were performed with Mg 2+ , Ca 2+ and Na + in solutions at various concentrations, and it was observed that the binding was affected similarly to that by calcium alone

  3. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues

    International Nuclear Information System (INIS)

    Resano, M.; Briceno, J.; Aramendia, M.; Belarra, M.A.

    2007-01-01

    In this work, the potential of graphite furnace atomic absorption spectrometry for the direct determination of B in plant tissues has been investigated. Three certified reference materials (NIST SRM 1570a spinach leaves, NIST SRM 1573a tomato leaves and BCR CRM 679 white cabbage) were selected for this study, the goal always being to develop a fast procedure that could be robust enough to provide a satisfactory performance for all of them, without any modifications in the conditions applied. The use of a suitable chemical modifier was found to be essential for obtaining a reproducible and sufficiently sensitive signal for boron solutions. In this regard, the performance of the combination of citric acid plus W (added as a permanent modifier) was noteworthy, resulting in well-defined signal profiles, a remarkable analyte stabilization during the pyrolysis step (up to 2100 deg. C) and minimal memory effects. This mixture of modifiers provided a good performance for the direct analysis of solid samples as well, but only if a suitable temperature program, favoring the interaction between the analyte and the modifiers, was used. Thus, such a temperature program, with two pyrolysis steps and the addition of NH 4 NO 3 in order to carry out the in situ sample microdigestion, was optimized. Under these conditions, the peak areas obtained for both solid samples and aqueous standards were comparable. Finally, the analysis of the samples was carried out. In all cases, a good agreement with the certified values was obtained, while R.S.D. values ranged between 6 and 10%. It can be concluded that the method proposed shows significant advantages for the determination of this complicated element in solid samples such as the use of aqueous standards for calibration, a high sample throughput (20 min per sample), a suitable limit of detection (0.3 μg g -1 ) and reduced risk of analyte losses and contamination

  4. Determination of arsenic and cadmium in shellfish samples by graphite furnace atomic absorption spectrometry using matrix modifier

    International Nuclear Information System (INIS)

    Villalobos Aranda, Juan; Cortez Diaz, Mirella

    2003-01-01

    Serious problems of environmental contamination due to the activity of the man exist at the present time. Where the greater impact is the produced one by heavy metals that go to the sea. Where the shellfish can collect some of them, the highly toxic ones, since these are bioaccumulation of these metals. Therefore one becomes necessary to count with the reliable analytical procedures to determine these elements. The purpose of this work is to present the determination of arsenic and cadmium in shellfish, by spectroscopy of atomic absorption with graphite furnace. For each determined element, solutions of nickel and phosphate like matrix modifiers were used respectively The validation was made using a Reference Certified Material, Oyster ' Tissue 156 (National Institute of Standards and Technology). The sample previously was digested in triplicate by two consecutive days, with nitric acid in a pressure digestion system DAB 11. For each element it was evaluated: limit of detection and quantification, sensitivity, repeatability, linear, slope rank and uncertainty. In addition, the obtained results were compared with the certified values of the certified material of reference using like statistical tools the tests of Student and Fisher. In both tests the calculated values were smaller to the shown ones in table, for degrees of freedom with 95% of confidence. Thus it was verified that it does not exist significant differences between the precision and the average values of the results obtained with respect to the values of the certified material. In addition, the obtained parameters are appropriate for the determination of these trace elements in this type of environmental sample (author)

  5. Zeeman spectrum of scandium

    International Nuclear Information System (INIS)

    Lulu, B.A.

    1980-09-01

    The spectra of Sc I, Sc II, Sc III, and Sc IV are analyzed through the use of the Zeeman effect. A sliding spark of the author's design is used in conjunction with a 27 kilogauss electromagnet. The spectra have (reciprocal) dispersions of 0.2 to 0.5 A/mm. 10 Sc I levels, 16 Sc II levels and 5 Sc III levels show Zeeman splitting. No Sc IV Zeeman patterns were observed. 2 Sc I, 4 Sc II, and all of the Sc III level data are new

  6. Solid sampling graphite furnace atomic absorption spectrometry for the direct analysis of microextraction solvent bars used for metal ultra-trace pre-concentration

    Science.gov (United States)

    González-Álvarez, Rafael Jesús; Pinto, Juan J.; Bellido-Milla, Dolores; Moreno, Carlos

    2017-09-01

    The potential applicability of the continuum source solid sampling graphite furnace atomic absorption spectroscopy (CS SS-GF AAS) technique has been studied to carry out the direct analysis of microextraction solvent bars used for metal ultra-trace pre-concentration in natural waters. An optimisation of the temperature program was developed for this purpose. Preliminary chamber furnace studies were performed in order to understand the behaviour of the bars with the increasing temperature. Solvent bars were filled with an acceptor solution, impregnated with an organic extractant and placed into the chamber furnace to carry out several temperature programs. Results led to perform a correct optimisation of the drying and pyrolysis steps of the furnace temperature program, which was tested with silver once completed. Blank solvent bars as well as standards containing silver were measured, obtaining a calibration curve with a correlation coefficient of 0.991. The results exhibited good repeatability and reproducibility, with relative standard deviations below 10% in both cases, indicating a promising applicability of the CS SS-GF AAS technique to directly determine metallic species in microextraction solvent bars.

  7. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  8. Comparison of different sample preparation methods for platinum determination in cultured cells by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Man Xiao

    2017-01-01

    Full Text Available Background Platinum-based agents are widely used in chemotherapy against solid tumors and insufficient intracellular drug accumulation is one of the leading causes of platinum resistance which is associated with poor survival of tumor patients. Thus, the detection of intracellular platinum is pivotal for studies aiming to overcome platinum resistance. In the present study, we aimed to establish a reliable graphite furnace atomic absorption spectrometry (GFAAS-based assay to quantify the intracellular platinum content for cultured cells. Methods Several most commonly applied cell preparation methods, including 0.2% HNO3, 0.2% Triton X-100, concentrated nitric acid, RIPA combined with concentrated nitric acid and hydroxide, followed by GFAAS for platinum detection were compared in ovarian, cervical and liver cancer cell lines to obtain the optimal one, and parameters regarding linearity, accuracy, precision and sensitivity were evaluated. Influence of other metals on platinum detection and the storage conditions of samples were also determined. Results The treatment of cells with 0.2% HNO3 was superior to other approaches with fewer platinum loss and better repeatability. The recovery rate and precision of this method were 97.3%–103.0% and 1.4%–3.8%, respectively. The average recoveries in the presence of other metals were 95.1%–103.1%. The detection limit was 13.23 ug/L. The recovery rate of platinum remained acceptable even in cell samples stored in −20 °C or −80 °C for two months. Discussion After comparison, we found that 0.2% HNO3 was optimal for intracellular platinum quantification based on GFAAS, which presented values compatible with that of inductively-coupled plasma mass-spectrometry (ICP-MS, and this is partially attributed to the simplicity of this method. Moreover, the assay was proved to be accurate, sensitive, cost-effective and suitable for the research of platinum-based antitumor therapy.

  9. Determination of bromide in aqueous solutions via the TlBr molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest

    2018-06-01

    The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.

  10. Graphite furnace atomic absorption spectrometry with a tantalum boat for the determination of yttrium, samarium, and dysprosium in a mish metal

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro; Tamura, Shohei

    1982-01-01

    The determination of yttrium, samarium, and dysprodium by means of graphite-furnace atomic absorption spectrometry (AAS) was studied by a tantalum boat inserted into a graphite tube atomizer. These elements could not be determined by the use of a commercial graphite tube, In the atomization from a tantalum boat, better analytical sensitivities and negligible memory effects for these rare earths are obtained. The analytical sensitivities of yttrium, samarium, and dysprodium with the tantalum boat were 0.60 ng, 0.86 ng, and 0.17 ng respectively. This method was applied for the determination of yttrium, samarium, and dysprosium in a mish metal. The measurements were performed with slightly acidified solutions (0.01 mol dm 3 HCI or HNO 3 ). The sensitivities and the precisions for these elements decreased with increasing acid concentration. An enhancement in the sensitivities of yttrium and dysprosium upon the addition of a large excess of lanthanum, neodymium, and praseodymium salts were observed. The yttrium, samarium, and dysprosium in a mish metal were determined with both analytical curves of standard solutions containing an excess of lanthanum, cerium, and neodymium ions and of the standard addition. The precisions for this work were in the 3 - 9.3% range. (author)

  11. Determinação de fósforo em aços por espectrometria de absorção atômica no forno de grafite Determination of phosphorus in steel samples by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Adilson José Curtius

    1998-06-01

    Full Text Available A method for the determination of phosphorus in steel samples by graphite furnace atomic absorption spectrometry, using the Zeeman effect background correction and the STPF conditions is proposed. The effect of iron (III on the phosphorus signal was studied. It was verified, through the pyrolysis temperature curves, that iron (III is an efficient chemical modifier, thermically stabilizing phosphorus up to 1400ºC. The phosphorus signal increases with the iron (III concentration, but in the range, which corresponds to the usual concentrations of iron in the sample solutions, the increase is small. Phosphorus was determined in three standard reference materials, after its dissolution in a mixture of hydrochloric and perchloric acids in a PTFE bomb. The agreement with the certified concentration values was excellent. Iron (III was added to the reference analytical solutions prepared in the blank of the dissolution, while the sample solutions were measured directly, since they already contained the modifier. The detection limit (k = 2 was 0.0042% of phosphorus in the steel sample.

  12. Application of Factorial Designs and Simplex Optimisation in the Development of Flow Injection-Hydride Generation-Graphite Furnace Atomic Absorption Spectrometry Procedures as Demonstrated for the Determination of Trace Levels of Germanium

    DEFF Research Database (Denmark)

    Hilligsøe, Bo; Hansen, Elo Harald

    1997-01-01

    The optimisation of a volume-based FI-HG-GFAAS procedure is described for the trace determination of Ge, comprising in situ collection of the generated germane in the graphite furnace. The response function is the peak area readout (A*s). Based on a preliminary study, where factorial designs were...

  13. Identification of molecules in graphite furnace by laser ionization time-of-flight mass spectrometry: sulfur and chlorine containing compounds

    CSIR Research Space (South Africa)

    Raseleka, RM

    2004-01-01

    Full Text Available An electro thermal vaporizer (ETV) coupled to a time-of-flight mass spectrometer (TOF-MS) with laser ionization (LI) was applied to the identification of molecules from sulphur and chlorine matrices in the furnace. An interface was developed...

  14. Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jeremy T. [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States); Fitzgerald, Neil [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States)], E-mail: neil.fitzgerald@marist.edu

    2009-09-15

    Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 {mu}g L{sup - 1} (compared to 2.1 {mu}g L{sup - 1} for a previously reported system in the absence of trapping) with a precision of 11% for a 10 {mu}g L{sup - 1} mercury standard (RSD, N = 5)

  15. Study for the determination of samarium, europium,terbium, dysprosium and yttrium in gadolinium oxide matrix by means of atomic absorption spectrophotometry using a graphite furnace

    International Nuclear Information System (INIS)

    Caires, A.C.F.

    1985-01-01

    A study for determination of samarium, europium, terbium, dysprosium and yttrium in a gadolinium oxide matrix by atomic absorption spectrophotometry using a graphite furnace is presented. The best charrring and atomization conditions were estabilished for each element, the most convenient ressonance lines being selected as well. The study was carried out for the mentioned lanthanides both when pure and when in binary mixtures with gadolinium, besides those where all for them were together with gadolinium. The determination limits for pure lanthanides were found to be between 1.3 and 9.6 ng assuming a 20% relative standard deviation as acceptable. The detection limits were in the range 0.51 and 7.5 ng, assuming as positive any answer higher than twofold the standard deviation. (author) [pt

  16. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  17. Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS for determination of trace Cu and Zn in water Samples

    Directory of Open Access Journals (Sweden)

    Ghorbani A.

    2014-07-01

    Full Text Available Dispersive liquid-liquid microextraction (DLLME combined with graphite furnace atomic absorption spectrometry (GFAAS was proposed for the determination of trace amounts of Copper and Zinc ions using 8-hydroxyquinoline (8-HQ as chelating agent. Several factors influencing the microextraction efficiency of Cu and Zn and their subsequent determinations, such as pH, extraction and disperser solvent type and their volume, concentration of the chelating agent and extraction time were studied, and the optimized experimental conditions were established. After extraction, the enrichment factors were 25 and 26 for Cu and Zn, respectively. The detection limits of the method were 0.025 and 0.0033 μg/L for Cu and Zn, and the relative standard deviations (R.S.D for five determinations of 1 ng/ml Cu and Zn were 8.51% and 7.41%, respectively.

  18. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    International Nuclear Information System (INIS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; Furtado da Silva, Alessandra; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson Jose

    2005-01-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 deg. C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 deg. C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1

  19. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Blecker, Carlo R.; Hermann, Gerd M.

    2009-01-01

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  20. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries.

    Science.gov (United States)

    de Oliveira, Tatiane Milão; Augusto Peres, Jayme; Lurdes Felsner, Maria; Cristiane Justi, Karin

    2017-08-15

    Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl -1 , respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box-Behnken design

    International Nuclear Information System (INIS)

    Maranhao, Tatiane de A; Martendal, Edmar; Borges, Daniel L.G.; Carasek, Eduardo; Welz, Bernhard; Curtius, Adilson J.

    2007-01-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 deg. C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 deg. C for Pb and 800 deg. C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box-Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L -1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%

  2. Preliminary study for the determination of heavy metal in ground samples by GF-ASS Zeeman; Studio preliminare per la determinazione di metalli pesanti in campioni di suolo mediante analisi GF-AAS Zeeman

    Energy Technology Data Exchange (ETDEWEB)

    Casabianca, T.; Bitonte, R.; Epifani, M.; Ubaldi, C. [ENEA, Divisione Tecnologie Ingegneria e Servizi Ambientali, Centro Ricerche Trisaia, MT (Italy)

    2001-07-01

    In the framework of SIMOA project have been investigated methods to evaluate the level of soil contamination due to heavy metals. In this wok, it is discussed a procedure to measure topsoil bioavailable fraction of seven heavy metals (Cd, Cu, Pb, Ni, Cr, Hg). The adopted procedure is based on acid digestion followed by instrumental detection by means of graphite furnace atomic-absorption spectrophotometry (GFAAS) using Zeeman effect to reduce background contribution. Details of samples preparation and analysis, experimental setup optimization and statistical data analysis are presented, together with a discussion on method accuracy and data interpretation. [Italian] Nell'ambito del progetto SIMOA (Sistema Integrato di Monitoraggio Ambientale) per il monitoraggio ambientale nel bacino del Basento (Regione Basilicata, Italia), vengono investigati i metodi per il controllo dei livelli di inquinamento del suolo da parte di metalli pesanti. Nel presente lavoro viene proposta una procedura per determinare il livello di concentrazione della frazione biodisponibile di sette metalli pesanti (Cadmio, Rame, Piombo, Nickel, Cromo, Mercurio) in campion di suolo superficiale. Il metodo e' basato su di un trattamento di digestione acida in forno a microonde cui segue la rivelazione strumentale mediante spettrofotometria di assorbimento atomico in fornetto di grafite (GFAAS) con effetto Zeeman per la correzione del fondo. Si descrivono in dettaglio le fasi di preparazione dei campioni, la metodologia di misura e l'analisi statistica dei dati, oltre ad una discussione sull'attendibilita' del metodo e sui futuri sviluppi.

  3. Strontium mono-chloride — A new molecule for the determination of chlorine using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Lopez, Alfredo H.D.; Gois, Jefferson S. de; Caramori, Giovanni F. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Borges, Daniel L.G.; Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2014-12-01

    A new method has been developed for the determination of chlorine in biological reference materials using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) of the strontium mono-chloride (SrCl) molecule and direct solid sample analysis. The use of the SrCl molecule for high-temperature MAS was not described up to now in the literature. Preliminary time-dependent density functional theory calculations of the SrCl structure were carried out in order to obtain reasonable estimates of the absorption spectrum of the target molecule. The calculations, which were carried out at BHandHLyp/def2-QZVP level of theory, proved a very accurate and inexpensive way to get information about the spectrum of the SrCl molecule, which enabled us to perform the Cl determination with good sensitivity and specificity. The molecular absorption of the SrCl molecule has been measured using the wavelength at 635.862 nm, and zirconium and palladium have been evaluated as the chemical modifiers in order to increase the sensitivity of the gaseous SrCl molecule generated in the graphite furnace. The pyrolysis and vaporization temperatures were 600 °C and 2300 °C, respectively. Accuracy and precision of the method have been evaluated using biological certified reference materials of both animal and plant origins, showing good agreement with the informed and certified values. Limit of detection and characteristic mass were 1.0 and 2.2 ng, respectively. The results found using HR-CS GF MAS were in agreement (95% confidence level) compared to those obtained by electrothermal vaporization-inductively coupled plasma mass spectrometry. - Highlights: • The spectrum of the SrCl molecule was calculated on a theoretical basis and found very close to the predicted wavelength. • It is the first time that the spectrum of the SrCl molecule is described and used analytically for the determination of Cl. • No spectral interferences were observed as the

  4. Feasibility of internal standardization in the direct and simultaneous determination of As, Cu and Pb in sugar-cane spirits by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Caldas, Naise Mary; Ruella Oliveira, Silvana; Anchieta Gomes Neto, Jose

    2009-01-01

    Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaca by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO 3 ) 2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L -1 As, 100-1000 μg L -1 Cu and 0.5-30 μg L -1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaca samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaca samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L -1 As, 22 μg L -1 Cu and 0.05 μg L -1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L -1 As, Pb and 500 μg L -1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS

  5. Graphite furnace atomic absorption spectrometric determination of vanadium after cloud point extraction in the presence of graphene oxide

    Science.gov (United States)

    López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel

    2018-05-01

    Vanadium (V) and vanadium (IV) in the presence of a small concentration of graphene oxide (0.05 mg mL-1) are quantitatively transferred to the coacervate obtained with Triton X-114 in a cloud point microextraction process. The surfactant-rich phase is directly injected into the graphite atomizer of an atomic absorption spectrometer. Using a 10-mL aliquot sample and 150 μL of a 15% Triton X-114 solution, the enrichment factor for the analyte is 103, which results in a detection limit of 0.02 μg L-1 vanadium. The separation of V(V) and V(IV) using an ion-exchanger allows speciation of the element at low concentrations. Data for seven reference water samples with certified vanadium contents confirm the reliability of the procedure. Several beer samples are also analyzed, those supplied as canned drinks showing low levels of tetravalent vanadium.

  6. The formation of boron, silicon and calcium containing molecular species in a graphite furnace in Ar/O2 mixtures

    Directory of Open Access Journals (Sweden)

    MILAN MARKICEVIC

    2000-03-01

    Full Text Available The composition of the Ar/O2/C gas system in the presence of traces of either B, Si or Ca was calculated under the assumption of thermal equilibrium in the temperature range 500-5500 K. The mole concentration of oxygen was taken to be 1-4 %. Two sets of calculations were carried out. In the first one the presence of solid phase (graphite was ignored and the calculations were performed for a single-phase (gas system, at variable ratios C/O (0.5, 0.96, 1 and 2. In the second set of calculations the presence of solid carbon (graphite was taken into account and the composition of the gas system in equilibrium with solid carbon, at p = 1 atm, was determined. The results presented show that the equilibrium composition, particularly the concentration of different compounds involving the trace elements , is very sensitive to the amounts, and the ratio of the amounts of oxygen and carbon. Increasing the O/C ratio results in increasing partial pressures of molecular and atomic oxygen, which favours the formation of oxides of the trace elements and moves their atomization temperatures to higher values. On the other hand, increasing the C/O ratio (C/O >>1 favours atomization, but also carbide formation in the lower-temperature region. It was found that, over a relatively wide temperature interval (1000 << T << 3500 K, the composition of the Ar/O2/C/X (X = B, Si, Ca system, with comparable amounts of oxygen and carbon (C/O = 1, does not significantly depend on the presence of the solid phase. The results of calculations enable a reasonable interpretation of numerous experiments carried out on similar systems.

  7. Graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples stabilized as microemulsion using conventional and permanent modifiers

    International Nuclear Information System (INIS)

    Matos Reyes, Mariela N.; Campos, Reinaldo C.

    2005-01-01

    A procedure for the graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples was developed. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization was observed by mixing different organic solvents with propan-1-ol and 50% vol/vol HNO 3 at a 3.3:6.5:1 volume ratio. For Pb, efficient thermal stabilization was obtained using aqueous Pd-Mg modifier as well as for Ir as permanent modifier. The drying temperature and ramp rate influenced the sensitivity obtained for Ni, and had to be carefully optimized. Taking this into account, the same sensitivity was attained in all investigated organic media stabilized as microemulsion. Thus, calibration with microemulsions prepared with a single organic solvent was possible, using aqueous or organic stock solutions. Commercial gasoline and diesel samples were directly analyzed after stabilization as microemulsion and by comparative UOP procedures. n-Hexane microemulsions were used for calibration, and good agreement was obtained between the results using the proposed and comparative procedures. Typical coefficients of variation (n = 6) ranged from 1% to 4%, and from 1% to 3% for Ni and Pb, respectively. Detection limits (k = 3) in the original gasoline or diesel samples, derived from 10 blank measurements, were 4.5 and 3.6 μg l -1 for Ni and Pb, respectively, comfortably below the values found in the analyzed samples

  8. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    Science.gov (United States)

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, Masoud Rohani [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Dadfarnia, Shayessteh, E-mail: sdadfarnia@yazduni.ac.ir [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of); Haji Shabani, Ali Mohammad [Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741 (Iran, Islamic Republic of)

    2011-02-15

    Solidified floating organic drop microextraction (SFODME) method in combination with graphite furnace atomic absorption spectrometry (GFAAS) has been used for the determination of chromium species in water and urine samples. 1-undecanol containing 2-thenoyltrifluoroacetone (TTA) was used as a selective chelating agent for the extraction of Cr(III). The total Cr was determined after the reduction of Cr(VI) to Cr(III) with hydroxylamine. The concentration of Cr(VI) was determined from the difference between the concentration of total chromium and the Cr(III). Several variables such as the sample pH, concentration of TTA, salt concentration, extraction time and the sample volume were investigated in detail. Under the optimum conditions, the limit of detection of the proposed method was 0.006 {mu}g l{sup -1} for Cr(III) and the relative standard deviation for six replicate determinations at 0.1 {mu}g l{sup -1} Cr(III) was 5.1%. The proposed method was successfully applied for the determination of chromium species in tap water, well water, mineral water, and urine samples.

  10. Determination of trace aluminum concentration and homogeneity in biological material TORT-1 by instrumental neutron activation and graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kratochvil, B.; Motkosky, N.; Duke, M.J.M.; Ng, D.

    1987-01-01

    The biological reference material TORT-1, lobster hepatopancreas, was analyzed for aluminum by instrumental neutron activation analysis (INAA) and graphite furnace atomic absorption spectroscopy (GFAAS). After correction of the INAA results for interferences from 28 Al produced by 31 P(n,α) 28 Al and 28 (n,p) 28 Al reactions, and use of HNO 3 plus HF for sample dissolution for the GFAAS analyses, the methods gave similar results of 43 ± 3 and 42 ± 2 μg/g respectively for 200 to 300-mg test portions. Analysis of six portions from each of six bottles of TORT-1 showed no statistical difference at the 95% confidence level for the between and within bottle variances. Therefore, The material can be considered homogeneous for aluminum if 200- to 300-mg test portions are taken. The variance was greater and the average lower when 30-mg test portions were analyzed for aluminum by GFAAS. The pattern of the results, together with the need for HF in the dissolution procedure, suggests the presence of aluminum-containing microparticulate mineral matter, perhaps silicate material, in the material

  11. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.

  12. Determination of trace amounts of rare earth elements in samarium, terbium and disprosium oxides by graphite furnace atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Dantas, E.S.K.

    1990-01-01

    A graphite furnace atomic-absorption spectrometry method for the determination of neodymium, europium, terbium, dysprosium and yttrium at trace level in samarium oxide; of samarium, europium, dysprosium, holmium, erbium and yttrium in terbium oxide and of europium, terbium, holmium, erbium and yttrium in dysprosium oxide was established. The best pyrolysis and atomization temperatures were determined for each lanthanide considered. Calibration curves were obtained for the pure elements, for binary mixtures formed by the matrix and each of the lanthanides studied and, finally, for the complex mixtures constituted by the matrix and all the other lanthanide of the group under scrutiny. This study has been carried out to examine the interference of the presence of one lanthanide on the behaviour of the other, since a lack of linearity on the calibration curves has been observed in some cases. Detection and determination limits have been determined as well. The detection limits encountered were within the range 0.002 to 0.3% for different elements. The precision of the method expressed as the relative standard deviation was calculated for each element present in each of the matrices studied. The conclusion arrived at is that the method can be applied for determining the above mentioned lanthanides present in the matrices studied with purity up to 99.50%. (author)

  13. CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application.

    Science.gov (United States)

    Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva

    2018-03-01

    A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    Science.gov (United States)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  15. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    International Nuclear Information System (INIS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-01-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50–750 pg Cr, R 2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3–17.7 μg g −1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g −1 Cr. The limit of detection was 3.3 ng g −1 Cr. - Highlights: ► Direct solid sampling is first time employed for Cr in plant materials. ► Calibration curves with liquids and solids are coincident. ► Microanalysis of plants for Cr is validated by reference materials. ► The proposed HR-CS GF AAS method is environmental friendly.

  16. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Virgilio, Alex; Nobrega, Joaquim A. [Department of Chemistry, Federal University of Sao Carlos, Post Office Box 676, 13560-970, Sao Carlos-SP (Brazil); Rego, Jardes F. [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil); Neto, Jose A. Gomes, E-mail: anchieta@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil)

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 Degree-Sign C and 2400 Degree-Sign C, respectively. Slopes of calibration curves (50-750 pg Cr, R{sup 2} > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 {mu}g g{sup -1} Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 {+-} 2.1 {mu}g g{sup -1} Cr. The limit of detection was 3.3 ng g{sup -1} Cr. - Highlights: Black-Right-Pointing-Pointer Direct solid sampling is first time employed for Cr in plant materials. Black-Right-Pointing-Pointer Calibration curves with liquids and solids are coincident. Black-Right-Pointing-Pointer Microanalysis of plants for Cr is validated by reference materials. Black-Right-Pointing-Pointer The proposed HR-CS GF AAS method is environmental friendly.

  17. Modified carbon nanotubes as a sorbent for solid-phase extraction of gold, and its determination by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Moghaddam, Firouzeh Hassani; Behzadi, Mansoureh; Naghizadeh, Matin; Taher, Mohammad Ali

    2015-01-01

    A simple, sensitive and accurate method was developed for solid-phase extraction and preconcentration of trace levels of gold in various samples. It is based on the adsorption of gold on modified oxidized multi-walled carbon nanotubes prior to its determination by graphite furnace atomic absorption spectrometry. The type and volume of eluent solution, sample pH value, flow rates of sample and eluent, sorption capacity and breakthrough volume were optimized. Under these conditions, the method showed linearity in the range of 0.2–6.0 ng L −1 with coefficients of determination of >0.99 in the sample. The relative standard deviation for seven replicate determinations of gold (at a level of 0.6 ng L −1 ) is ±3.8 %, the detection limit is 31 pg L −1 (in the initial solution and at an S/N ratio of 3; for n = 8), and the enrichment factor is 200. The sorption capacity of the modified MWCNTs for gold(III) is 4.15 mg g −1 . The procedure was successfully applied to the determination of gold in (spiked) water samples, human hair, human urine and standard reference material with recoveries ranging from 97.0 to 104.2 %. (author)

  18. RAPID AND SENSITIVE DETERMINATION OF PALLADIUM USING HOMOGENEOUS LIQUID-LIQUID MICROEXTRACTION VIA FLOTATION ASSISTANCE FOLLOWED BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaee

    2015-05-01

    Full Text Available A method for the determination of trace amounts of palladium was developed using homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA followed by graphite furnace atomic absorption spectrometry (GFAAS. Ammonium pyrrolidine dithiocarbamate (APDC was used as a complexing agent. This was applied to determine palladium in three types of water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added to the extraction cell which contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Parameters affecting extraction efficiency were investigated and optimized. Under the optimum conditions, the calibration graph was linear in the range of 1.0-200 µg L-1 with a limit of detection of 0.3 µg L-1. The performance of the method was evaluated for the extraction and determination of palladium in water samples and satisfactory results were obtained. In order to verify the accuracy of the approach, the standard addition method was applied for the determination of palladium in spiked synthetic samples and satisfactory results were obtained.

  19. Determination of trace aluminum concentration and homogeneity in biological material TORT-1 by instrumental neutron activation and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kratochvil, B; Motkosky, N; Duke, M J.M.; Ng, D

    1987-05-01

    The biological reference material TORT-1, lobster hepatopancreas, was analyzed for aluminum by instrumental neutron activation analysis (INAA) and graphite furnace atomic absorption spectroscopy (GFAAS). After correction of the INAA results for interferences from /sup 28/Al produced by /sup 31/P(n,..cap alpha..)/sup 28/Al and /sup 28/(n,p)/sup 28/Al reactions, and use of HNO/sub 3/ plus HF for sample dissolution for the GFAAS analyses, the methods gave similar results of 43 +- 3 and 42 +- 2 ..mu..g/g respectively for 200 to 300-mg test portions. Analysis of six portions from each of six bottles of TORT-1 showed no statistical difference at the 95% confidence level for the between and within bottle variances. Therefore, The material can be considered homogeneous for aluminum if 200- to 300-mg test portions are taken. The variance was greater and the average lower when 30-mg test portions were analyzed for aluminum by GFAAS. The pattern of the results, together with the need for HF in the dissolution procedure, suggests the presence of aluminum-containing microparticulate mineral matter, perhaps silicate material, in the material.

  20. On-line preconcentration of ultra-trace thallium(I in water samples with titanium dioxide nanoparticles and determination by graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Saeid Asadpour

    2016-11-01

    Full Text Available A new method has been developed for the determination of Tl(I based on simultaneous sorption and preconcentration with a microcolumn packed with TiO2 nanoparticle with a high specific surface area prepared by Sonochemical synthesis prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS. The optimum experimental parameters for preconcentration of thallium, such as elution condition, pH, and sample volume and flow rate have been investigated. Tl(I can be quantitatively retained by TiO2 nanoparticles at pH 9.0, then eluted completely with 1.0 mol L−1 HCl. The adsorption capacity of TiO2 nanoparticles for Tl(I was found to be 25 mg g−1. Also detection limit, precision (RSD, n = 8 and enrichment factor for Tl(I were 87 ng L−1, 6.4% and 100, respectively. The method has been applied for the determination of trace amounts of Tl(I in some environmental water samples with satisfactory results.

  1. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    Science.gov (United States)

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    Science.gov (United States)

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Multielement preconcentration of trace heavy metals in seawater with an emulsion containing 8-quinolinol for graphite-furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Matsumiya, Hiroaki; Kageyama, Tomohiro; Hiraide, Masataka

    2004-01-01

    A water-in-oil type emulsion containing 8-quinolinol has been used for the concentration of traces of heavy metals from seawater prior to their determinations by graphite-furnace atomic absorption spectrometry. The emulsion used was prepared by dissolving 40 mg of 8-quinolinol and 60 mg of sorbitan monooleate (Span-80) in 3.0 ml of toluene and vigorously mixing with 0.70 ml of aqueous hydrochloric acid solution (1.5 mol l -1 ) by ultrasonic irradiation. The resulting emulsion was gradually injected into 100 ml of sample solution (pH 8.5) and dispersed by stirring as numerous tiny globules. Four heavy metals (Co, Ni, Cu, and Cd) in the sample solution were quantitatively transported through the organic layer into the acidic aqueous droplets encapsulated in the emulsion. After collecting the dispersed emulsion globules, they were demulsified by heating and the heavy metals in the segregated aqueous phase were determined by atomic absorption spectrometry. Owing to the highly efficient concentration (100-fold), these heavy metals at sub-ng ml -1 levels in seawater were determined with satisfactory accuracy and precision, being confirmed with certified reference samples

  7. [Determination of trace lead and cadmium in transgenic rice by crosslinked carboxymethyl konjac glucomannan microcolumn preconcentration combined with graphite furnace atomic absorption spectrometry].

    Science.gov (United States)

    Liu, Hua-qing; Li, Sheng-qing; Qu, Yang; Chen, Hao

    2012-02-01

    A novel method was developed for the determination of trace lead and cadmium in transgenic brown rice based on separation and preconcentration with a micro column packed with crosslinked carboxymethyl konjac glucomannan (CCMKGM) prior to its determination by graphite furnace atomic absorption spectrometry. Variables affecting the separation and preconcentration of lead and cadmium, such as the acidity of the aqueous solution, sample flow rate and volume, and eluent concentration and volume, were optimized. Under optimized condition, detection limits of the method for the determination of trace lead and cadmium in transgenic brown rice were 0.11 and 0.002 microg x L(-1), respectively. The obtained results of lead and cadmium in the certified reference material (GBW10010, GBS1-1) were in good agreement with the certified values. The recoveries were in the range of 90%-103% and 93%-105% for detection of Pb and Cd in transgenic brown rice and the wild-type brown rice samples respectively. This study could provide technical support for determination of trace Pb and Cd in transgenic rice.

  8. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene; Rampazzo, Roger T.; Dessuy, Morgana B. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Silva, Marcia M. da [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Katskov, Dmitri A. [Tshwane University of Technology (TUT), Faculty of Science, Chemistry Department, Pretoria 0001 (South Africa)

    2011-05-15

    In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd + 0.03% (m/v) Mg + 0.05% (v/v) Triton X-100 was used as the chemical modifier for both atomizers. The samples (naphtha, gasoline and petroleum condensate) were stabilized in the form of a three-component solution (detergentless microemulsion) with the sample, propan-1-ol and 0.1% (v/v) HNO{sub 3} in a ratio of 3.0:6.4:0.6. The characteristic mass of 13 pg found in the THFA was about a factor of two better than that of 28 pg obtained with the THPA; however, the limits of detection (LOD) and quantification (LOQ) were essentially the same for both atomizers (1.9 and 6.2 {mu}g L{sup -1}, respectively, for THPA, and 1.8 and 5.9 {mu}g L{sup -1}, respectively, for THFA) due to the increased noise observed with the THFA. A possible explanation for that is a partial blockage of the radiation from the hollow cathode lamp by the narrow inner diameter of this tube and the associated loss of radiation energy. Due to the lack of an appropriate certified reference material, recovery tests were carried out with inorganic and organic arsenic standards and the results were between 89% and 111%. The only advantage of the THFA found in this work was a reduction of the total analysis time by about 20% due to the 'hot injection' that could be realized with this furnace. The arsenic concentrations varied from < LOQ to 43.3 {mu}g L{sup -1} in the samples analyzed in this work.

  9. On the possibilities of high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple atomic lines

    International Nuclear Information System (INIS)

    Resano, M.; Rello, L.; Florez, M.; Belarra, M.A.

    2011-01-01

    This paper explores the potential of commercially available high-resolution continuum source graphite furnace atomic absorption spectrometry instrumentation for the simultaneous or sequential monitoring of various atomic lines, in an attempt to highlight the analytical advantages that can be derived from this strategy. In particular, it is demonstrated how i) the monitoring of multiplets may allow for the simple expansion of the linear range, as shown for the measurement of Ni using the triplet located in the vicinity of 234.6 nm; ii) the use of a suitable internal standard may permit improving the precision and help in correcting for matrix-effects, as proved for the monitoring of Ni in different biological samples; iii) direct and multi-element analysis of solid samples may be feasible on some occasions, either by monitoring various atomic lines that are sufficiently close (truly simultaneous monitoring, as demonstrated in the determination of Co, Fe and Ni in NIST 1566a Oyster tissue) or, alternatively, by opting for a selective and sequential atomization of the elements of interest during every single replicate. Determination of Cd and Ni in BCR 679 White cabbage is attempted using both approaches, which permits confirming that both methods can offer very similar and satisfactory results. However, it is important to stress that the second approach provides more flexibility, since analysis is no longer limited to those elements that show very close atomic lines (closer than 0.3 nm in the ultraviolet region) with a sensitivity ratio similar to the concentration ratio of the analytes in the samples investigated.

  10. Influence of citric acid as chemical modifier for lead determination in dietary calcium supplement samples by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Cezar Paz de Mattos, Julio; Medeiros Nunes, Adriane; Figueiredo Martins, Ayrton; Luiz Dressler, Valderi; Marlon de Moraes Flores, Erico

    2005-01-01

    Citric acid was used as a chemical modifier for Pb determination by graphite furnace atomic absorption spectrometry in dietary supplement samples (calcium carbonate, dolomite and oyster shell samples) and its efficiency was compared to the use of palladium. Pyrolysis and atomization curves were established without use of chemical modifier, with the addition of 20, 100 and 200 μg of citric acid, and with 3 μg of palladium. The citric acid modifier made possible the interference-free Pb determination in the presence of high concentrations of Ca and Mg nitrates. Acid sample digestion involving closed vessels (microwave-assisted and conventional heating) and acid attack using polypropylene vessels at room temperature were compared. All digestion procedures presented similar results for calcium carbonate and dolomite samples. However, for oyster shell samples accurate results were obtained only with the use of closed vessel systems. Analyte addition and matrix-matched standards were used for calibration. The characteristic mass for Pb using citric acid and palladium were 16 and 25 pg, respectively. The relative standard deviation (RSD) was always less than 5% when citric acid was used. The relative and absolute limits of detection were 0.02 μg g -1 and 8 pg with citric acid and 0.1 μg g -1 and 44 pg with the Pd modifier, respectively (n = 10, 3σ). The recovery of Pb in spiked calcium supplement samples (10 μg l -1 ) was between 98% and 105%. With the use of 100 μg of citric acid as chemical modifier, problems such as high background absorption and high RSD values were minimized in comparison to the addition of 3 μg of palladium

  11. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  12. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    International Nuclear Information System (INIS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-01-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3 , the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  13. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  14. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Daniel M.; Lima, Claudio F. [Departamento de Quimica, Universidade Federal de Vicosa, A. Peter Henry Rolfs s/n, Vicosa/MG, 36570-000 (Brazil); Robaina, Nicolle F. [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil); Fonseca, Teresa Cristina O. [Petrobras, Cenpes/PDEDS/QM, Av. Horacio Macedo 950, Ilha do Fundao, Rio de Janeiro/RJ, 21941-915 (Brazil); Cassella, Ricardo J., E-mail: cassella@vm.uff.br [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil)

    2011-05-15

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO{sub 3}, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO{sub 3} medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  15. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin, E-mail: binhu@whu.edu.cn

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L{sup −1} for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L{sup −1}, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009–88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3–116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix. - Highlights: • Novel Cd(II)-II-MMS was prepared by surface imprinting combined with a sol–gel process. • Cd(II)-II-MMS has a high selectivity and adsorption capacity for Cd(II). • A sensitive and selective method of Cd(II)-IIMSPE-GFAAS was developed for trace cadmium analysis. • The method can be applied to determine trace Cd in various samples with complicated matrix.

  16. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    Science.gov (United States)

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  17. Determination of tellurium at ultra-trace levels in drinking water by on-line solid phase extraction coupled to graphite furnace atomic absorption spectrometer

    International Nuclear Information System (INIS)

    Pedro, Juana; Stripekis, Jorge; Bonivardi, Adrian; Tudino, Mabel

    2008-01-01

    In this paper, two time-based flow injection (FI) separation pre-concentration systems coupled to graphite furnace atomic absorption spectrometry (GFAAS) for tellurium determination are studied and compared. The first alternative involves the pre-concentration of the analyte onto Dowex 1X8 employed as packaging material of a micro-column inserted in the flow system. The second set-up is based on the co-precipitation of tellurium with La(OH) 3 followed by retention onto XAD resins. Both systems are compared in terms of limit of detection, linear range, RSD%, sample throughput, micro-columns lifetime and aptitude for fully automatic operation. The features of the Dowex system are: 37% efficiency of retention and an enhancement factor of 42 for a pre-concentration time of 180 seconds (sample flow rate = 3 ml min -1 ) with acetic acid elution volumes of 80 μl. The detection limit (3 s) is 7 ng l -1 and the relative standard deviation (n = 7200 ng l -1 ) is 5.8%. The analytical performance of the XAD system is: 72% efficiency of retention and an enhancement factor of 25 for a pre-concentration time of 180 s (sample flow rate = 3 ml min -1 ) with nitric acid elution volumes of 300 μl. The detection limit is 66 ng l -1 and the relative standard deviation (n = 7200 ng l -1 ) is 8.3%. Applications to the determination of tellurium in tap water and the validation of the analytical methodology employing SRM 1643e as certified reference material are shown

  18. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  19. Determination of tellurium in coal samples by means of graphite furnace atomic absorption spectrometry after coprecipitation with iron(III) hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Oda, S.; Arikawa, Y. [Japan Womens University, Tokyo (Japan)

    2005-11-01

    A simple and accurate method for the determination of tellurium in coal samples was investigated by the combustion of samples under a high pressure of oxygen and coprecipitation with Fe(OH){sub 3}, followed by a measurement by graphite furnace atomic absorption spectrometry (GF-AAS). About 0.5 g of an accurately weighed ground coal sample and 0.5 g of starch were combusted in an oxygen combustion bomb filled with oxygen to 3 MPa and added with 3 ml of water as an absorbing solution. The formed tellurium trioxide TeOs dissolved in water as TeO{sub 4}{sup 2-}, which was in turn reduced to TeO{sub 3}{sup 2-} by heating. After diluting the above-mentioned solution up to about 50 ml with water, Fe(OH){sub 3} is formed upon adding Fe(NO{sub 3}){sub 3} and sodium hydroxide solutions at pH 8-9 and left standing overnight. After dissolving the precipitate by HCl, the solution was diluted to 10 ml with water and the concentration of tellurium was measured by GF-AAS at a wavelength of 214.3 nm. The standard addition method was employed for the determination of tellurium in real coal samples, because those processes for the formation of tellurium(VI) oxide and coprecipitation with Fe(OH)3 were interfered by matrices. For NIST SRM 1632c, the standard coal sample tellurium content of 0.057 {+-} 0.004 mg kg{sup -1} was in good agreement with the information value of 0.05 mg kg{sup -1} with 7% of RSD in five replicate analyses. The tellurium contents in 20 real coal samples given by Center for Coal Utilization, Japan were also determined. The tellurium contents in these samples were scattered over the narrow range between 0.032 and 0.100 mg kg{sup -1}.

  20. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    International Nuclear Information System (INIS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-01-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L −1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L −1 , n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009–88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3–116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix. - Highlights: • Novel Cd(II)-II-MMS was prepared by surface imprinting combined with a sol–gel process. • Cd(II)-II-MMS has a high selectivity and adsorption capacity for Cd(II). • A sensitive and selective method of Cd(II)-IIMSPE-GFAAS was developed for trace cadmium analysis. • The method can be applied to determine trace Cd in various samples with complicated matrix

  1. Simultaneous determination of cadmium, iron and tin in canned foods using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Leao, Danilo J; Junior, Mario M S; Brandao, Geovani C; Ferreira, Sergio L C

    2016-06-01

    A method was established to simultaneously determine cadmium, iron and tin in canned-food samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). The quantification step has been performed using the primary line (228.802nm) for cadmium and the adjacent secondary lines (228.725nm and 228.668nm) for iron and tin, respectively. The selected chemical modifier was an acid solution that contained a mixture of 0.1% (w/v) Pd and 0.05% (w/v) Mg. The absorbance signals were measured based on the peak area using 3 pixels for cadmium and 5 pixels for iron and tin. Under these conditions, cadmium, iron and tin have been determined in canned-food samples using the external calibration technique based on aqueous standards, where the limits of quantification were 2.10ngg(-1) for cadmium, 1.95mgkg(-1) for iron and 3.00mgkg(-1) for tin, and the characteristic masses were 1.0pg for cadmium, 0.9ng for iron and 1.1ng for tin. The precision was evaluated using two solutions of each metal ion, and the results, which were expressed as the relative standard deviation (RSD%), were 3.4-6.8%. The method accuracy for cadmium and iron was confirmed by analyzing a certified reference material of apple leaves (NIST 1515), which was supplied by NIST. However, for tin, the accuracy was confirmed by comparing the results of the proposed method and another analytical technique (inductively coupled plasma optical emission spectrometry). The proposed procedure was applied to determine cadmium, iron and tin in canned samples of peeled tomato and sardine. Eleven samples were analyzed, and the analyte concentrations were 3.57-62.9ngg(-1), 2.68-31.48mgkg(-1) and 4.06-122.0mgkg(-1) for cadmium, iron and tin, respectively. In all analyzed samples, the cadmium and tin contents were lower than the permissible maximum levels for these metals in canned foods in the Brazilian legislation. Copyright © 2016. Published by Elsevier B.V.

  2. Hollow fiber liquid phase microextraction combined with graphite furnace atomic absorption spectrometry for the determination of methylmercury in human hair and sludge samples

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hongmei [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan 430072 (China)], E-mail: binhu@whu.edu.cn; Chen Beibei; Zu Wanqing [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2008-07-15

    Two methods, based on hollow fiber liquid-liquid-liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L{sup -1} HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 {mu}g L{sup -1} and 0.4 {mu}g L{sup -1} (as Hg) with precisions (RSDs (%), c = 5 {mu}g L{sup -1} (as Hg), n = 5) of 13% and 11% for HF-LLLPME-GFAAS and HF-LPME-GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L{sup -} {sup 1} was obtained. Finally, HF-LLLME-GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99-113%. In order to validate the method, HF-LLLME-GFAAS was also applied to the analysis of a certified reference

  3. Determination of chlorine in food samples via the AlCl molecule using high-resolution continuum source molecular absorption spectrometry in a graphite furnace

    Energy Technology Data Exchange (ETDEWEB)

    Fechetia, Miriam; Tognon, Andre Luiz; Veiga, Marcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2012-05-15

    Determination of chlorine using the molecular absorption of aluminum mono-chloride (AlCl) at the 261.418 nm wavelength was accomplished by high-resolution continuum source molecular absorption spectrometry using a transversely heated graphite tube furnace with an integrated platform. For the analysis, 10 {mu}L of the sample followed by 10 {mu}L of a solution containing Al-Ag-Sr modifier, (1 g L{sup -1} each), were directly injected onto the platform. A spectral interference due to the use of Al-Ag-Sr as mixed modifier was easily corrected by the least-squares algorithm present in the spectrometer software. The pyrolysis and vaporization temperatures were 500 Degree-Sign C and 2200 Degree-Sign C, respectively. To evaluate the feasibility of a simple procedure for the determination of chlorine in food samples present in our daily lives, two different digestion methods were applied, namely (A) an acid digestion method using HNO{sub 3} only at room temperature, and (B) a digestion method with Ag, HNO{sub 3} and H{sub 2}O{sub 2}, where chlorine is precipitated as a low-solubility salt (AgCl), which is then dissolved with ammonia solution. The experimental results obtained with method B were in good agreement with the certified values and demonstrated that the proposed method is more accurate than method A. This is because the formation of silver chloride prevented analyte losses by volatilization. The limit of detection (LOD, 3{sigma}/s) for Cl in methods A and B was 18 {mu}g g{sup -1} and 9 {mu}g g{sup -1}, respectively, 1.7 and 3.3 times lower compared to published work using inductively coupled plasma optical emission spectrometry, and absolute LODs were 2.4 and 1.2 ng, respectively. - Highlights: Black-Right-Pointing-Pointer HR-CS MAS as technique for Cl determination via AlCl molecule Black-Right-Pointing-Pointer Spectral interference was corrected by the least-squares algorithm. Black-Right-Pointing-Pointer Chorine precipitation as AgCl prevents Cl losses during

  4. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong, E-mail: huang@isas.de; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV–VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions. - Highlights: • Echelle spectrometer with a full frame CCD array detector • High and variable spectral resolution from λ/Δλ of 55,000 to 95,000 • Laser-driven continuum light source

  5. Determination of fluorine in copper concentrate via high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis - Comparison of three target molecules.

    Science.gov (United States)

    Cadorim, Heloisa R; de Gois, Jefferson S; Borges, Aline R; Vale, Maria Goreti R; Welz, Bernhard; Gleisner, Heike; Ott, Christina

    2018-01-01

    The chemical composition of complex inorganic materials, such as copper concentrate, may influence the economics of their further processing because most smelters, and particularly the producers of high-purity electrolyte copper, have strict limitations for the permissible concentration of impurities. These components might be harmful to the quality of the products, impair the production process and be hazardous to the environment. The goal of the present work is the development of a method for the determination of fluorine in copper concentrate using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. The molecular absorption of the diatomic molecule CaF was measured at 606.440nm. The molecule CaF was generated by the addition of 200µg Ca as the molecule-forming reagent; the optimized pyrolysis and vaporization temperatures were 900°C and 2400°C, respectively. The characteristic mass and limit of detection were 0.5ng and 3ng, respectively. Calibration curves were established using aqueous standard solutions containing the major components Cu, Fe, S and the minor component Ag in optimized concentrations. The accuracy of the method was verified using certified reference materials. Fourteen copper concentrate samples from Chile and Australia were analyzed to confirm the applicability of the method to real samples; the concentration of fluorine ranged from 34 to 5676mgkg -1 . The samples were also analyzed independently at Analytik Jena by different operators, using the same equipment, but different target molecules, InF and GaF, and different operating conditions; but with a few exceptions, the results agreed quite well. The results obtained at Analytik Jena using the GaF molecule and our results obtained with CaF, with one exception, were also in agreement with the values informed by the supplier of the samples, which were obtained using ion selective electrode potentiometry after alkaline fusion. A comparison will

  6. Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters.

    Science.gov (United States)

    Jiang, Hong-mei; Yang, Ting; Wang, Yan-hong; Lian, Hong-zhen; Hu, Xin

    2013-11-15

    A new approach of magnetic solid phase extraction (MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) has been developed for the speciation of Cr(III) and Cr(VI) using zincon-immobilized silica-coated magnetic Fe3O4 nanoparticles (Zincon-Si-MNPs) as the MSPE absorbent. Cr(III) was quantitatively reserved on the absorbent at pH 9.1 while total Cr was reserved at pH 6.5. The absorbed Cr species were eluted by using 2 mol/L HCl and detected by GFAAS. The concentration of Cr(VI) could be calculated by subtracting Cr(III) from total Cr. All the parameters affecting the separation and extraction efficiency of Cr species such as pH, extraction time, concentration and volume of eluent, sample volume and influence of co-existing ions were systematically examined and the optimized conditions were established accordingly. The detection limit (LOD) of the method was 0.016 and 0.011 ng mL(-1) for Cr(III) and Cr(VI), respectively, with the enrichment factor of 100 and 150. The precisions of this method (Relative standard deviation, RSD, n=7) for Cr(III) and Cr(VI) at 0.1 ng mL(-1) were 6.0% and 6.2%, respectively. In order to validate the proposed method, a certified reference material of environmental water was analyzed, and the result of Cr speciation was in good agreement with the certified value. This MSPE-GFAAS method has been successfully applied for the speciation of Cr(III) and Cr(VI) in lake and tap waters with the recoveries of 88-109% for the spiked samples. Moreover, the MSPE separation mechanism of Cr(III) and Cr(VI) based on their adsorption-desorption on Zincon-Si-MNPs has been explained through various spectroscopic characterization. © 2013 Elsevier B.V. All rights reserved.

  7. Graphene oxide-TiO2 composite solid phase extraction combined with graphite furnace atomic absorption spectrometry for the speciation of inorganic selenium in water samples.

    Science.gov (United States)

    Zhang, Yanan; Chen, Beibei; Wu, Shaowei; He, Man; Hu, Bin

    2016-07-01

    In this paper, a method of graphene oxide (GO)-TiO2 composite solid phase extraction followed by graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the speciation of inorganic selenium in environmental waters. The adsorption behavior of inorganic Se(IV) and Se(VI) on the GO-TiO2(1:1) composite was investigated. It was found that Se(IV) was quantitatively retained on the GO-TiO2 composites within a wide pH range of 0.5-10, while Se(VI) was quantitatively adsorbed on GO-TiO2(1:1) composite at pH 0.5-2, and no obvious adsorption of Se(VI) within the pH range of 4-10 was found. By selecting pH 6.0, Se(IV) could be easily determined. After reduction of Se(VI), total Se was determined by the proposed method, and Se(VI) was calculated as the difference between the total Se and Se(IV). The factors affecting the separation/preconcentration of Se(IV) and Se(VI) were studied. Under the optimum conditions, the isothermal adsorption of Se(IV) on the GO-TiO2(1:1) composite fitted Langmuir model; a linear range over 0.1-12ngmL(-1) was obtained. The limit of detection (LOD) and precision of the method for Se(IV) was 0.04ngmL(-1) and 9.4% (cSe(IV)=0.5ngmL(-1), n=7), respectively. In order to verify the accuracy of the method, a standard water sample (GSBZ50031-94) was analyzed, and the determined value was in a good agreement to the certified value. The established method was applied to inorganic Se speciation in environmental water samples and the recovery of 87.4-102% was obtained for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Zeeman en Einstein. Meeslepende metingen

    Directory of Open Access Journals (Sweden)

    Ad Maas

    2016-10-01

    Full Text Available Zeeman and EinsteinThis article discusses an early example of interferometric, experimental research related to Einstein’s Special Theory of Relativity. This research concerned two series of experiments on the velocity of light in moving media, conducted between 1914 and 1921 by the Amsterdam physicist Pieter Zeeman. With the first of these series, on the velocity of light in moving water, Zeeman obtained an important result that validated the so called ‘dispersion term’ of the formula for the velocity of light in moving media. Less clear is the scientific objective of the second series, in which Zeeman measured the velocity of light in moving solid media. It seems that Zeeman’s interest in this second series was triggered mainly by the technical challenges posed by these experiments. In this way, they reveal the increasing tendency of Zeeman’s later research to be led by technical and experimental challenges, rather than by the actual scientific developments.

  9. Análise direta de sólidos por espectrometria de absorção atômica com atomização em forno de grafite: uma revisão Solid sampling graphite furnace atomic absorption spectrometry: a review

    Directory of Open Access Journals (Sweden)

    Cassiana Seimi Nomura

    2008-01-01

    Full Text Available This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.

  10. Simultaneous determination of Cd and Fe in beans and soil of different regions of Brazil using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling.

    Science.gov (United States)

    dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut

    2009-11-11

    A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.

  11. Nickel and strontium nitrates as modifiers for the determination of selenium in wine by Zeeman electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, J. [Inst. of Agriculture, Skopje (Yugoslavia); Stafilov, T. [Inst. of Chemistry, Faculty of Science Sts. Cyril and Methodius Univ., Skopje (Yugoslavia); Mihajlovic, D. [RZ Tehnicka Kontrola, Skopje (Yugoslavia)

    2001-08-01

    A mixed matrix modifier of nickel and strontium nitrates was used as a chemical modifier for the determination of selenium in wines by Zeeman electrothermal atomic absorption spectrometry. Wine samples were heated on a boiling water bath with small amounts of nitric acid and hydrogen peroxide. For complete elimination of interference, especially from sulfates and phosphates, selenium is complexed with ammonium pyrolidinedithiocarbamate (APDTC), extracted into methyl isobutyl ketone (MIBK), and measured by ETAAS. The graphite furnace temperature program was optimized for both aqueous and organic solutions. Pyrolysis temperatures of 1300 C and 800 C were chosen for aqueous and organic solutions, respectively; 2700 C and 2100 C were used as optimum atomization temperatures for aqueous and organic solutions, respectively. The optimum modifier mass established is markedly lower than those presented in the literature. The platform atomization ensures pretreatment stabilization up to 1100 C and 1600 C, respectively, for organic and aqueous selenium solutions. The procedure was verified by the method of standard addition. The investigated wine samples originated from the different regions of the Republic of Macedonia. The selenium concentration varied from not detectable to 0.93 {mu}g L{sup -1}. (orig.)

  12. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent

    International Nuclear Information System (INIS)

    Yang Guangyu; Fen Weibo; Lei Chun; Xiao Weilie; Sun Handong

    2009-01-01

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0 mol L -1 HNO 3 was used as eluent. The metal ions in 300 mL solution can be concentrated to 1.0 mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0 g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4 ng L -1 for Cr(III), 1.0 ng L -1 for Ni(II), 0.85 ng L -1 for Ag(I), 1.2 ng L -1 for Co(II), 1.0 ng L -1 for Cu(II), 1.2 ng L -1 for Cd(II) and 1.3 ng L -1 for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method)

  13. Zeeman effect in NO2

    International Nuclear Information System (INIS)

    Bonilla, I.R.

    1984-01-01

    The gyromagnetic factors of the molecule NO 2 , in the Zeeman Effect, is measured under high resolution spectroscopy. The values 0.103 + - 0.007; 0.060 + - 0.005 and 0.045 + - 0.004 are found for the components α, β and γ respectively, by applying a magnetic field of 40 Gauss. For fields greater than 1 kilogauss decoupling of the electronic spin to the rotational angular momentum of the molecule is observed. Under this condition the value 1.86 + - 0.25 is obtained for the gyromagnetic factor. (Author) [pt

  14. Parity nonconservation in Zeeman atomic transitions

    International Nuclear Information System (INIS)

    Kraftmakher, A.Ya.

    1990-01-01

    The abilities to observe the parity violation at the radiofrequency transitions between the hyperfine and Zeeman terms of the atomic levels are considered. The E-1 amplitudes fo the Zeeman transitions of heavy atoms in weak magnetic fields are larger, than for the light atoms hyperfine transitions at the same wavelength. 9 refs

  15. Determination of molybdenum, ruthenium, rhodium, and palladium in radioinactive simulated waste of the nuclear fuel cycle by solid sampling graphite furnace atomic absorption spectrometry (GFAAS)

    International Nuclear Information System (INIS)

    Schmiedel, G.; Mainka, E.; Ache, H.J.

    1989-01-01

    In relation with insoluble particles in the nuclear fuel cycle waste, the solid sampling GFAAS was used to determine molybdenum, ruthenium, rhodium, and palladium in such waste. Two methods for the direct determination of these elements are described. The samples must be handled in glove boxes or moreover in hot cells with a robot. The determination of the elements by the cup-in-tube technique needs a very sensitive balance (microbalance) for weighing in μg-range and the handling of this method is not practical in glove boxes and hot cells. An alternative technique of solid sampling GFAAS, which can be used without great problems in glove boxes and hot cells is the slurry technique. In this case two methods have been used. One method uses graphite powder as a diluter, the other is the direct suspension of the sample in a matrix modifier solution. In the case of slurry technique with predilution of the sample with graphite powder, recoveries between 91 and 102% and RSD between 4 and 8% were obtained, whereas in the case of slurry technique with direct suspension of the waste sample recoveries between 91 and 103% and RSD between 14 and 20% for the above mentioned elements were obtained. (orig.)

  16. Persistent sample circulation microextraction combined with graphite furnace atomic absorption spectroscopy for trace determination of heavy metals in fish species marketed in Kermanshah, Iran, and human health risk assessment.

    Science.gov (United States)

    Safari, Yahya; Karimaei, Mostafa; Sharafi, Kiomars; Arfaeinia, Hossein; Moradi, Masoud; Fattahi, Nazir

    2018-06-01

    Persistent sample circulation microextraction (PSCME) combined with graphite furnace atomic absorption spectrometry (GFAAS) was developed as a high pre-concentration technique for the determination of heavy metals in fish species. In this method, a few microliters of organic solvent (40.0 µL carbon tetrachloride) was transferred to the bottom of a conical sample cup. Then 10.0 mL of aqueous solution was transformed to fine droplets while passing through the organic solvent. At this stage, metal-ligand hydrophobic complex was extracted into the organic solvent. After extraction, 20 µL of extraction solvent was injected into the graphite tube using an auto-sampler. Under optimal conditions, enrichment factors and enhancement factor were in the range of 180-240 and 155-214, respectively. The calibration curves were linear in the range of 0.03-200 µg kg -1 and the limits of detection (LODs) were in the range of 0.01-0.05 µg kg -1 . Repeatability (intra-day) and reproducibility (inter-day) for 0.50 µg L -1 Hg and 0.10 µg L -1 Cd and Pb were in the range of 3.1-4.2% (n = 7) and 4.3-6.1% (n = 7), respectively. Potential human health risk assessment was conducted by calculating estimated weekly intake (EWI) of the metals from eating fish and comparison of these values with provisional tolerable weekly intake (PTWI) values. EWI data for the studied metals through fish consumption were lower than the PTWI values. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Brazing graphite to graphite

    International Nuclear Information System (INIS)

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  18. Poly(1-vinylimidazole) functionalized magnetic ion imprinted polymer for fast and selective extraction of trace gold in geological, environmental and biological samples followed by graphite furnace atomic absorption spectrometry detection

    Science.gov (United States)

    Zhao, Bingshan; He, Man; Chen, Beibei; Xu, Hongrun; Hu, Bin

    2018-05-01

    In this study, poly(1-vinylimidazole) functionalized gold ion imprinted polymer coated magnetic nanoparticles (MNPs@PVIM-Au-IIP) were prepared and characterized. The adsorption behaviors of the prepared MNPs@PVIM-Au-IIP toward gold ions (Au(III)) were studied, it was found that MNPs@PVIM-Au-IIP has good selectivity, high adsorption capacity (185.4 mg g-1) and fast adsorption kinetic for Au(III). Based on it, a new method of ion imprinted magnetic solid phase extraction (II-MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the analysis of trace Au(III) in real samples with complicated matrix. Factors affecting MSPE including sample pH, desorption reagent, elution concentration and volume, elution time, sample volume and adsorption time were optimized. With high enrichment factor of 100-fold, the detection limit of the proposed method is 7.9 ng L-1 for Au(III) with the relative standard deviation of 7.4% (c = 50 ng L-1, n = 7). In order to validate the accuracy of the proposed method, the Certified Reference Material of GBW07293 geological sample (platinpalladium ore) was analyzed, and the determined value was in good agreement with the certified value. The proposed II-MSPE-GFAAS method is simple, fast, selective, sensitive and has been successfully applied in the determination of trace Au in ore, sediment, environmental water and human urine samples with satisfactory results.

  19. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  20. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    Science.gov (United States)

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Determination of Ultra-trace Rhodium in Water Samples by Graphite Furnace Atomic Absorption Spectrometry after Cloud Point Extraction Using 2-(5-Iodo-2-Pyridylazo)-5-Dimethylaminoaniline as a Chelating Agent.

    Science.gov (United States)

    Han, Quan; Huo, Yanyan; Wu, Jiangyan; He, Yaping; Yang, Xiaohui; Yang, Longhu

    2017-03-24

    A highly sensitive method based on cloud point extraction (CPE) separation/preconcentration and graphite furnace atomic absorption spectrometry (GFAAS) detection has been developed for the determination of ultra-trace amounts of rhodium in water samples. A new reagent, 2-(5-iodo-2-pyridylazo)-5-dimethylaminoaniline (5-I-PADMA), was used as the chelating agent and the nonionic surfactant TritonX-114 was chosen as extractant. In a HAc-NaAc buffer solution at pH 5.5, Rh(III) reacts with 5-I-PADMA to form a stable chelate by heating in a boiling water bath for 10 min. Subsequently, the chelate is extracted into the surfactant phase and separated from bulk water. The factors affecting CPE were investigated. Under the optimized conditions, the calibration graph was linear in the range of 0.1-6.0 ng/mL, the detection limit was 0.023 ng/mL for rhodium and relative standard deviation was 3.67% ( c = 1.0 ng/mL, n = 11).The method has been applied to the determination of trace rhodium in water samples with satisfactory results.

  2. Air-assisted Liquid Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry for Preconcentration and Determination of Trace Amount of Co(II and Ni(II Ions in Water Samples

    Directory of Open Access Journals (Sweden)

    Saeed Mohammad Sorouraddin

    2017-12-01

    Full Text Available A simple, rapid and efficient method has been developed for the extraction, preconcentration and determination of cobalt (II and nickel (II ions in water samples by air-assisted liquid-liquid microextraction (AALLME coupled with graphite furnace atomic absorption spectrometry (GFAAS. In the proposed method, much less volume of an organic solvent was used as the extraction solvent in the absence of disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by GFAAS. Several variables that could affect the extraction efficiency were investigated and optimized. Calibration graphs were linear in the range of 6.5-100 ng L-1. Detection limits for Co and Ni were 2.3 ng L-1 and 3 ng L-1, respectively. The accuracy of the developed procedure was checked by analyzing NRCC-SLRS4 Riverine water as a certified reference material. Finally, the proposed method has been successfully applied for the determination of cobalt (II and nickel (II ions in tap, surface and river water samples.

  3. Special graphites; Graphites speciaux

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [French] Ameliorer les proprietes du graphite nucleaire pour empilements et ouvrir de nouveaux domaines d'application au graphite constituent une part importante de l'effort entrepris en commun par le Commissariat a l'Energie Atomique (CEA) et la compagnie PECHINEY. Des procedes nouveaux de fabrication de carbones et graphites speciaux ont ete mis au point: graphite forge, pyrocarbone, graphite de haute densite, agglomeration de poudres de graphite par craquage de gaz naturel, graphites impermeables. Les proprietes physiques de ces produits ainsi que leur reaction avec differents gaz oxydants sont decrites. Les premiers resultats d'irradiation sont aussi donnes. (auteurs)

  4. Trace elements determination in high salinity petroleum produced formation water by high-resolution continuum source graphite furnace atomic absorption spectrometry after matrix separation using Chelex-100 Registered-Sign resin

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Aline Soares [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil); Santelli, Ricardo Erthal, E-mail: santelli@iq.ufrj.br [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil)

    2012-05-15

    This study describes a procedure used for the determination of trace metals (Co, Cu, Mn, Ni and Pb) in high salinity petroleum produced formation water (PFW) employing high-resolution continuum source graphite furnace atomic absorption spectrometry for detection and Chelex-100 Registered-Sign resin for matrix elimination and analytes preconcentration. Using 15.0 mL of PFW for the separation/preconcentration, detection limits of 0.006, 0.07, 0.03, 0.08 and 0.02 {mu}g L{sup -1} were obtained for Co, Cu, Mn, Ni and Pb, respectively. The accuracy of the proposed method was evaluated by analyzing three seawater certified reference materials and by recovery tests, and the data indicate that the methodology can be successfully applied to this kind of samples. The precision values, expressed as relative standard deviation (% RSD, n = 10) for 2.0 {mu}g L{sup -1}, were found to be 3.5, 4.0, 9.0, 5.3 and 5.9 for Co, Cu, Mn, Ni and Pb, respectively. The proposed procedure was applied for the determination of these metals in medium and high salinity PFW samples obtained from Brazilian offshore petroleum exploration platforms. - Highlights: Black-Right-Pointing-Pointer Petroleum-produced formation water were analyzed for Co, Cu, Mn, Ni and Pb determination. Black-Right-Pointing-Pointer In batch analyte preconcentration/matrix separation using Chelex-100 Registered-Sign was used. Black-Right-Pointing-Pointer Detection limits between 0.006 and 0.08 {mu}g L{sup -1} were found by using HR-CS-GFAAS. Black-Right-Pointing-Pointer Trace elements characterization is possible using the developed method. Black-Right-Pointing-Pointer Maximum trace element concentrations found could support future Brazilian directives.

  5. Determination of diphenylarsinic acid, phenylarsonic acid and inorganic arsenic in drinking water by graphite-furnace atomic-absorption spectrometry after simultaneous separation and preconcentration with solid-phase extraction disks.

    Science.gov (United States)

    Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Nakamura, Toshihiro

    2013-01-01

    A simple method of graphite-furnace atomic-absorption spectrometry (GFAAS) after solid-phase extraction (SPE) was developed for the determination of diphenylarsinic acid (DPAA), phenylarsonic acid (PAA), and inorganic arsenic (iAs) in drinking water. This method involves the simultaneous collection of DPAA, PAA, and iAs using three stacked SPE disks, i.e., an Empore SDB-XD disk (the upper layer), an activated carbon disk (the middle layer), and a Cation-SR disk loaded with Zr and Ca (ZrCa-CED; the lower layer). A 200-mL aqueous sample was adjusted to pH 3 with nitric acid and passed through the SPE disks at a flow rate of 15 mL min(-1), to concentrate DPAA on the SDB-XD disk, PAA on the activated carbon disk, and iAs on the ZrCa-CED. The As compounds were eluted from the disks with 10 mL of ethanol containing 0.5 mol L(-1) ammonia solution for DPAA, 20 mL of 1 mol L(-1) ammonia solution for PAA, and 20 mL of 6 mol L(-1) hydrochloric acid for iAs. The eluates of DPAA, PAA, and iAs were diluted to 20, 25, and 25 mL, respectively, with deionized water, and then analyzed by GFAAS. The detection limits of As (three-times the standard deviation (n = 3) of the blank values) were 0.13 and 0.16 μg L(-1) at enrichment factors of 10 and 8, respectively, using a 200-mL water sample. Spike tests with 2 μg (10 μg L(-1)) of DPAA, PAA, and iAs in 200 mL of tap water and bottled drinking water showed good recoveries (96.1-103.8%).

  6. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Naeemullah, E-mail: naeemullah433@yahoo.com [Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul [National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Tuzen, Mustafa [Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Shah, Faheem; Afridi, Hassan Imran [National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Citak, Demirhan [Gaziosmanpaşa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey)

    2014-02-17

    Graphical abstract: -- Highlights: •A novel and rapid non-dispersive ionic liquid based microextractions. •We used a long narrow glass column to provide more contact area between two media (aqueous and extractive). •APDC using as complexing agent and analyzed by GFAAS. •Introduced a novel approach that reduced solvent consumption, effort, time. •It was applied for determination of understudy analytes in real water sample. -- Abstract: Easy and innovative non-dispersive ionic liquid based microextraction (NDILME) has been developed for preconcentration of trace level of cadmium (Cd) in aqueous real surface water samples prior to couple with graphite furnace atomic absorption spectrometry (GFAAS). A 200 cm long narrow glass column containing aqueous solution of standard/sample was used to increase phase transfer ratio by providing more contact area between two medium (aqueous and extractive), which drastically improve the recoveries of labile hydrophobic chelate of Cd ammonium pyrrolidinedithiocarbamate (APDC), into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [C{sub 4}mim][PF{sub 6}]. Different aspect of the desire method have been investigated and optimized. Under the optimized key experimental variables, limit of detection (LOD) and enhancement factor (EF) were achieved to be 0.5 ng L{sup −1} and 150, respectively. Reliability of the model method was checked by relative standard deviation (%RSD), which was found to be < 5%. Validity and accuracy of the developed method was checked by analysis of certified reference water samples (SLRS-4 Riverine water) using standard addition method. Application of the model method was productively performed by analysis of Cd in real surface water samples (tap and sea)

  7. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    Science.gov (United States)

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent

  9. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Resano, Martín, E-mail: mresano@unizar.es [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Flórez, María del Rosario [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Queralt, Ignasi [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Sole Sabarís s/n, 08028 Barcelona (Spain); Marguí, Eva [Department of Chemistry, Faculty of Sciences, Universitat de Girona, Campus Montilivi s/n, 17071 Girona (Spain)

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH{sub 4}F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g{sup −1} (Pd), 8.3 μg g{sup −1} (Pt) and 9.3 μg g{sup −1} (Rh) for catalysts, which decreased to 0.08 μg g{sup −1} (Pd), 0.15 μg g{sup −1} (Pt) and 0.10 μg g{sup −1} (Rh) for pharmaceuticals. - Highlights: • Solid sampling HR CS GFAAS permits the fast and direct determination of Pd, Pt and Rh. • 2 determinations suffice for the 3 elements (2 of them can be measured simultaneously). • Samples as different as car catalysts and pharmaceuticals can be accurately analyzed. • Aqueous standards (pharmaceuticals) or a solid CRM (catalysts) is used for calibration.

  10. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The

  11. Design and Development of Tilting Rotary Furnace

    Science.gov (United States)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  12. Electronic properties of graphite

    International Nuclear Information System (INIS)

    Schneider, J.

    2010-10-01

    In this thesis, low-temperature magneto-transport (T ∼ 10 mK) and the de Haas-van Alphen effect of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the first part, low field magneto-transport up to B = 11 T is discussed. A Fourier analysis of the background removed signal shows that the electric transport in graphite is governed by two types of charge carriers, electrons and holes. Their phase and frequency values are in agreement with the predictions of the SWM-model. The SWM-model is confirmed by detailed band structure calculations using the magnetic field Hamiltonian of graphite. The movement of the Fermi at B > 2 T is calculated self-consistently assuming that the sum of the electron and hole concentrations is constant. The second part of the thesis deals with high field magneto-transport of natural graphite in the magnetic field range 0 ≤ B ≤ 28 T. Both spin splitting of magneto-transport features in tilted field configuration and the onset of the charge density wave (CDW) phase for different temperatures with the magnetic field applied normal to the sample plane are discussed. Concerning the Zeeman effect, the SWM calculations including the Fermi energy movement require a g-factor of g* equal to 2.5 ± 0.1 to reproduce the spin spilt features. The measurements of the charge density wave state confirm that its onset magnetic field can be described by a Bardeen-Cooper-Schrieffer (BCS)-type formula. The measurements of the de Haas-van Alphen effect are in agreement with the results of the magneto-transport measurements at low field. (author)

  13. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  14. Zeeman splitting of surface-scattered neutrons

    International Nuclear Information System (INIS)

    Felcher, G.P.; Adenwalla, S.; De Haan, V.O.; Van Well, A.A.

    1995-01-01

    If a beam of slow neutrons impinges on a solid at grazing incidence, the neutrons reflected can be used to probe the composition and magnetization of the solid near its surface. In this process, the incident and reflected neutrons generally have identical kinetic energies. Here we report the results of an experiment in which subtle inelastic scattering processes are revealed as relatively large deviations in scattering angle. The neutrons are scattered from a ferromagnetic surface in the presence of a strong ambient magnetic field, and exhibit a small but significant variation in kinetic energy as a function of the reflection angle. This effect is attributable to the Zeeman splitting of the energies of the neutron spin states due to the ambient magnetic field: some neutrons flip their spins upon reflection from the magnetized surface, thereby exchanging kinetic energy for magnetic potential energy. The subtle effects of Zeeman splitting are amplified by the extreme sensitivity of grazing-angle neutron scattering, and might also provide a useful spectroscopic tool if significant practical obstacles (such as low interaction cross-sections) can be overcome. (author)

  15. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  16. A Zeeman slower for diatomic molecules

    Science.gov (United States)

    Petzold, M.; Kaebert, P.; Gersema, P.; Siercke, M.; Ospelkaus, S.

    2018-04-01

    We present a novel slowing scheme for beams of laser-coolable diatomic molecules reminiscent of Zeeman slowing of atomic beams. The scheme results in efficient compression of the one-dimensional velocity distribution to velocities trappable by magnetic or magneto-optical traps. We experimentally demonstrate our method in an atomic testbed and show an enhancement of flux below v = 35 m s‑1 by a factor of ≈20 compared to white light slowing. 3D Monte Carlo simulations performed to model the experiment show excellent agreement. We apply the same simulations to the prototype molecule 88Sr19F and expect 15% of the initial flux to be continuously compressed in a narrow velocity window at around 10 m s‑1. This is the first experimentally shown continuous and dissipative slowing technique in molecule-like level structures, promising to provide the missing link for the preparation of large ultracold molecular ensembles.

  17. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  18. Zeeman catastrophe machines as a toolkit for teaching chaos

    International Nuclear Information System (INIS)

    Nagy, Péter; Tasnádi, Péter

    2014-01-01

    The investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics in the basic course of mechanics taught to engineering students. In this paper, it will be demonstrated that the Zeeman machine can be a versatile and motivating tool for students to acquire introductory knowledge about chaotic motion via interactive simulations. The Zeeman catastrophe machine is a typical example of a quasi-static system with hysteresis. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple, the experimental investigation and the theoretical description can be connected intuitively. Although the Zeeman machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman machine, a wide range of chaotic properties of the simple systems can be demonstrated, such as bifurcation diagrams, chaotic attractors, transient chaos, Lyapunov exponents and so on. This paper is organically linked to our website (http://csodafizika.hu/zeeman) where the discussed simulation programs can be downloaded. In a second paper, the novel construction of a network of Zeeman machines will be presented to study the properties of cooperative systems. (paper)

  19. ZEEMAN DOPPLER MAPS: ALWAYS UNIQUE, NEVER SPURIOUS?

    Energy Technology Data Exchange (ETDEWEB)

    Stift, Martin J.; Leone, Francesco [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom)

    2017-01-01

    Numerical models of atomic diffusion in magnetic atmospheres of ApBp stars predict abundance structures that differ from the empirical maps derived with (Zeeman) Doppler mapping (ZDM). An in-depth analysis of this apparent disagreement investigates the detectability by means of ZDM of a variety of abundance structures, including (warped) rings predicted by theory, but also complex spot-like structures. Even when spectra of high signal-to-noise ratio are available, it can prove difficult or altogether impossible to correctly recover shapes, positions, and abundances of a mere handful of spots, notwithstanding the use of all four Stokes parameters and an exactly known field geometry; the recovery of (warped) rings can be equally challenging. Inversions of complex abundance maps that are based on just one or two spectral lines usually permit multiple solutions. It turns out that it can by no means be guaranteed that any of the regularization functions in general use for ZDM (maximum entropy or Tikhonov) will lead to a true abundance map instead of some spurious one. Attention is drawn to the need for a study that would elucidate the relation between the stratified, field-dependent abundance structures predicted by diffusion theory on the one hand, and empirical maps obtained by means of “canonical” ZDM, i.e., with mean atmospheres and unstratified abundances, on the other hand. Finally, we point out difficulties arising from the three-dimensional nature of the atomic diffusion process in magnetic ApBp star atmospheres.

  20. Threshold nonlinear absorption in Zeeman transitions

    International Nuclear Information System (INIS)

    Narayanan, Andal; Hazra, Abheera; Sandhya, S N

    2010-01-01

    We experimentally study the absorption spectroscopy from a collection of gaseous 87 Rb atoms at room temperature irradiated with three fields. Two of these fields are in a pump-probe saturation absorption configuration. The third field co-propagates with the pump field. The three fields address Zeeman degenerate transitions between hyperfine levels 5S 1/2 , F = 1 and 5P 3/2 , F = 0, F = 1 around the D2 line. We find a sub-natural absorption resonance in the counter-propagating probe field for equal detunings of all three fields. This absorption arises in conjunction with the appearance of increased transmission due to electro-magnetically induced transparency in the co-propagating fields. The novel feature of this absorption is its onset only for the blue of 5P 3/2 , F = 0, as the laser frequency is scanned through the excited states 5P 3/2 , F = 0, F = 1 and F = 2. The absorption rapidly rises to near maximum values within a narrow band of frequency near 5P 3/2 , F = 0. Our experimental results are compared with a dressed atom model. We find the threshold absorption to be a result of coherent interaction between the dressed states of our system.

  1. Isotope separation utilizing Zeeman compensated magnetic extraction

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1978-01-01

    A vapor flow of elemental uranium is directed into a region where narrow band, tuned laser radiation is repeatedly applied to provide at least two energy step selective ionization of the U 235 isotope in the vapor flow. A magnetic field is applied in the region of the ionized U 235 which creates a Lorentz force on the moving ions directing them toward one of a plurality of collection plates placed generally parallel to the vapor flow to permit collection of the U 235 particles in substantially enriched proportions as compared to the concentration in the vapor flow generally. To prevent a broadening of the absorption lines for both the U 235 and U 238 isotopes in the vapor flow from the applied magnetic field and thus prevent substantial reduction in the selectivity of the excitation and ionization, the magnetic field is preferably applied in a time varying magnitude which is phased with respect to the repetitive application of laser radiation to provide a relatively low field strength and corresponding small Zeeman splitting during selective excitation and ionization of the U 235 particles

  2. Advanced steel reheat furnace

    Energy Technology Data Exchange (ETDEWEB)

    Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  3. Effect of electropolishing on vacuum furnace design

    Directory of Open Access Journals (Sweden)

    Sutanwi Lahiri

    2015-03-01

    Full Text Available The use of thermal shields of materials having low emissivity in vacuum furnaces is well-known. However, the surface condition of the heat shields is one of the most important factors governing their efficiency as radiation resistances. The emissivity of the thermal shields dictates the power rating of the heaters in furnace design. The unpolished materials used in the heater tests showed poor performance leading to loss of a signi­ficant percentage of the input power. The present work deals with the refur­bishment of the radiation heat shields used in a furnace for heating graphite structure. The effect of refurbishment of the heat shields by the buffing and subsequently electro­polishing was found to improve the performance of the shields as heat reflectors. The com­position of the electrolyte was chosen in such a way that the large shields of Mo, Inconel and SS can be polished using the same reagents in different ratios. The present work deals with the development of a standard electropolishing procedure for large metallic sheets and subsequently qualifying them by roughness and emissivity measure­ments. The improvement noted in the shielding efficiency of the furnace in the subsequent runs is also discussed here.

  4. Cloud point extraction of iron(III) and vanadium(V) using 8-quinolinol derivatives and Triton X-100 and determination of 10(-7)moldm(-3) level iron(III) in riverine water reference by a graphite furnace atomic absorption spectroscopy.

    Science.gov (United States)

    Ohashi, Akira; Ito, Hiromi; Kanai, Chikako; Imura, Hisanori; Ohashi, Kousaburo

    2005-01-30

    The cloud point extraction behavior of iron(III) and vanadium(V) using 8-quinolinol derivatives (HA) such as 8-quinolinol (HQ), 2-methyl-8-quinolinol (HMQ), 5-butyloxymethyl-8-quinolinol (HO(4)Q), 5-hexyloxymethyl-8-quinolinol (HO(6)Q), and 2-methyl-5-octyloxymethyl-8-quinolinol (HMO(8)Q) and Triton X-100 solution was investigated. Iron(III) was extracted with HA and 4% (v/v) Triton X-100 in the pH range of 1.70-5.44. Above pH 4.0, more than 95% of iron(III) was extracted with HQ, HMQ, and HMO(8)Q. Vanadium(V) was also extracted with HA and 4% (v/v) Triton X-100 in the pH range of 2.07-5.00, and the extractability increased in the following order of HMQ HQ cloud point extraction was applied to the determination of iron(III) in the riverine water reference by a graphite furnace atomic absorption spectroscopy. When 1.25 x 10(-3)M HMQ and 1% (v/v) Triton X-100 were used, the found values showed a good agreement with the certified ones within the 2% of the R.S.D. Moreover, the effect of an alkyl group on the solubility of 5-alkyloxymethyl-8-quinolinol and 2-methyl-5-alkyloxymethyl-8-quinolinol in 4% (v/v) Triton X-100 at 25 degrees C was also investigated.

  5. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  6. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  7. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  8. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  9. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    Science.gov (United States)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  10. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    International Nuclear Information System (INIS)

    Nagy, P.; Tasnádi, P.

    2015-01-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine. 1. –

  11. Characterization of a magnetic trap by polarization dependent Zeeman spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Carsten Vandel; Lyngsøe, Jens Kristian; Thorseth, Anders

    2008-01-01

    This paper demonstrates a detailed experimental study of our cloverleaf magnetic trap for sodium atoms. By using polarization dependent Zeeman spectroscopy of our atomic beam, passing the magnetic trap region, we have determined important trap parameters such as gradients, their curvatures...

  12. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  13. Detection of the OH Zeeman effect toward Orion A

    International Nuclear Information System (INIS)

    Troland, T.H.; Crutcher, R.M.; Kazes, I.; Paris Observatoire, Meudon, France; Kentucky Univ., Lexington)

    1986-01-01

    The Zeeman effect in the 18 cm OH absorption spectrum of Orion A is detected. From this effect, a line-of-sight magnetic field strength of - 125 + or - 20 is derived. At the same position, an H I Zeeman effect equivalent to a magnetic field of - 49 + or - 4 micro-G is found. Thus, the magnetic field in the molecular gas toward Orion A is significantly stronger than that in the atomic gas, contrary to the recent determination for the Cas A line of sight. Densities in the atomic and molecular regions toward Orion A are estimated and it is found that for this region the data are consistent with B proportional to n exp kappa, kappa = 0.3. 23 references

  14. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  15. Steam generators and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, E

    1978-04-01

    The documents published in 1977 in the field of steam generators for conventional thermal power plants are classified according to the following subjects: power industry and number of power plants, planning and operation, design and construction, furnaces, environmental effects, dirt accumulation and corrosion, conservation and scouring, control and automation, fundamental research, and materials.

  16. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Pamela C. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Parsons, Patrick J. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Lead Poisoning/Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: patrick.parsons@wadsworth.org

    2007-03-15

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m{sub 0}), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 {+-} 0.6 pg, compared to 16.1 {+-} 0.7 pg for the Z5100, and 23.3 {+-} 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection

  17. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  18. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  19. Collision assisted Zeeman cooling with multiple types of atoms

    Science.gov (United States)

    Hamilton, Mathew S.; Wilson, Rebekah F.; Roberts, Jacob L.

    2014-01-01

    Through a combination of spin-exchange collisions in a magnetic field and optical pumping, it is possible to cool a gas of atoms without requiring the loss of atoms from the gas. This technique, collision assisted Zeeman cooling (CAZ), was developed theoretically assuming a single atomic species [G. Ferrari, Eur. Phys. J. D 13, 67 (2001)]. We have extended this cooling technique to a system of two atomic species rather than just one and have developed a simple analytic model describing the cooling rate. We find that the two-isotope CAZ cooling scheme has a clear theoretical advantage in systems that are reabsorption limited.

  20. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  1. The Zeeman-split superconductivity with Rashba and Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Zhao, Jingxiang; Yan, Xu; Gu, Qiang

    2017-10-01

    The superconductivity with Rashba and Dressehlaus spin-orbit coupling and Zeeman effect is investigated. The energy gaps of quasi-particles are carefully calculated. It is shown that the coexistence of two spin-orbit coupling might suppress superconductivity. Moreover, the Zeeman effect favors spin-triplet Cooper pairs.

  2. Application of Zeeman spatial beam-splitting in polarized neutron reflectometry

    OpenAIRE

    Kozhevnikov, S. V.; Ignatovich, V. K.; Radu, F.

    2017-01-01

    Neutron Zeeman spatial beam-splitting is considered at reflection from magnetically noncollinear films. Two applications of Zeeman beam-splitting phenomenon in polarized neutron reflectometry are discussed. One is the construction of polarizing devices with high polarizing efficiency. Another one is the investigations of magnetically noncollinear films with low spin-flip probability. Experimental results are presented for illustration.

  3. Networks of Zeeman catastrophe machines for the investigation of complex systems

    International Nuclear Information System (INIS)

    Nagy, Péter; Tasnádi, Péter

    2014-01-01

    The investigation of chaotic motion and cooperative systems presents a great opportunity to involve modern physics into the basic course of mechanics taught to BSc-level students. In our previous paper (2014 Eur. J. Phys. 35 015018), it was demonstrated that a Zeeman machine can be a versatile and motivating tool for students to gain introductory knowledge about chaotic motion via interactive simulations. Although the Zeeman machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also very interesting and show typical chaotic features. In this paper, we present a novel construction consisting of Zeeman machines linked into a network. Although Zeeman networks can be built with almost arbitrary topology, our discussion is restricted to a system where Zeeman machines are arranged in a two-dimensional periodical lattice and the angular variables of the machines are limited to discrete values only. It will be shown that the Zeeman-crystal is appropriate for studying the properties of a broad range of complex systems. Using NetLogo simulations (second- and first-order) phase transitions, its ferromagnetic- and anti-ferromagnetic-type behaviour is demonstrated. A limiting case of the theoretical model of Zeeman-crystal leads to a model that is analogous to the Potts clock model used frequently in statistical physics. The present paper is organically linked to our website (http://csodafizika.hu/zeeman) where downloadable simulations, which are discussed in the paper, can be found. (paper)

  4. Zeeman effect in sulfur monoxide: a tool to probe magnetic fields in star forming regions

    DEFF Research Database (Denmark)

    Cazzoli, Gabriele; Lattanzi, Valerio; Coriani, Sonia

    2017-01-01

    Context. Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challengi...

  5. AN ARECIBO SURVEY FOR ZEEMAN SPLITTING IN OH MEGAMASER GALAXIES

    International Nuclear Information System (INIS)

    McBride, James; Heiles, Carl

    2013-01-01

    We present the results of a comprehensive survey using the Arecibo Observatory for Zeeman splitting of OH lines in OH megamasers (OHMs). A total of 77 sources were observed with the Arecibo telescope. Of these, maser emission could not be detected for eight sources, and two sources were only ambiguously detected. Another 27 sources were detected at low signal-to-noise ratios or with interference that prevented placing any useful limits on the presence of magnetic fields. In 26 sources, it was possible to place upper limits on the magnitude of magnetic fields, typically between 10 and 30 mG. For 14 sources, the Stokes V spectra exhibit features consistent with Zeeman splitting. Eleven of these 14 are new detections, and the remaining three are re-detections of Stokes V detections in Robishaw et al. Among confident new detections, we derive magnetic fields associated with maser regions with magnitudes ranging from 6.1 to 27.6 mG. The distribution of magnetic field strengths suggests the magnetic fields in OH masing clouds in OHMs are larger than those in Galactic OH masers. The results are consistent with magnetic fields playing a dynamically important role in OH masing clouds in OHMs.

  6. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  7. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  8. Mercury pollution surveys in Riga by Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Gavare, Z.; Bogans, E.; Svagere, A.

    2008-01-01

    Practical sessions of mercury pollution measurements in Riga (Latvia) have been performed in several districts using an RA-915+ Zeeman atomic absorption spectrometer coupled with a global positioning system (GPS). The measurements were taken from a driving car and in different days at one particular location (the Institute of Atomic Physics and Spectroscopy) for monitoring the changes in atmospheric mercury concentration. GPS was used to relate the measurement results to particular places, which made it possible to create a digitalized database of pollution for different geographic coordinates in different time spans. The measurements have shown that the background level of mercury concentration in Riga does not exceed 5 ng/m 3 , although there are several areas of elevated mercury pollution that need particular attention. (Authors)

  9. Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-04-01

    Full Text Available Two-dimensional (2D superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity in 4-monolayer (ML to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111 substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.

  10. Ground state magnetization of conduction electrons in graphene with Zeeman effect

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, F., E-mail: federico.escudero@uns.edu.ar [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Ardenghi, J.S., E-mail: jsardenhi@gmail.com [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Sourrouille, L., E-mail: lsourrouille@yahoo.es [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Jasen, P., E-mail: pvjasen@uns.edu.ar [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina)

    2017-05-01

    In this work we address the ground state magnetization in graphene, considering the Zeeman effect and taking into account the conduction electrons in the long wavelength approximation. We obtain analytical expressions for the magnetization at T=0 K, where the oscillations given by the de Haas van Alphen (dHvA) effect are present. We find that the Zeeman effect modifies the magnetization by introducing new peaks associated with the spin splitting of the Landau levels. These peaks are very small for typical carrier densities in graphene, but become more important for higher densities. The obtained results provide insight of the way in which the Zeeman effect modifies the magnetization, which can be useful to control and manipulate the spin degrees of freedom. - Highlights: • The magnetization has peaks whenever the last energy level changes discontinuously. • The peaks amplitude depends on the electron density. • The Zeeman effect introduces new peaks in the magnetization.

  11. Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films

    Science.gov (United States)

    Liu, Yi; Wang, Ziqiao; Zhang, Xuefeng; Liu, Chaofei; Liu, Yongjie; Zhou, Zhimou; Wang, Junfeng; Wang, Qingyan; Liu, Yanzhao; Xi, Chuanying; Tian, Mingliang; Liu, Haiwen; Feng, Ji; Xie, X. C.; Wang, Jian

    2018-04-01

    Two-dimensional (2D) superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4-monolayer (ML) to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111) substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.

  12. A quantum mechanical approach to establishing the magnetic field orientation from a maser Zeeman profile

    Science.gov (United States)

    Green, J. A.; Gray, M. D.; Robishaw, T.; Caswell, J. L.; McClure-Griffiths, N. M.

    2014-06-01

    Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).

  13. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  14. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  15. Furnace for treating bituminous material

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1922-04-28

    A furnace with saw-teeth-like profiled hearth, which by means of a kind of shaking slide executes a backward and forward motion, for carrying out the process according to Patent 422,391. It is characterized in that the stroke of the hearth moving in the furnace is smaller than the length of the profile tooth and the height of the feed is held less than the tooth height.

  16. Reviewing the analysis of silicons produced in Iran; design and construction of furnaces to produce lead glass by sintering and analyzing the end products

    International Nuclear Information System (INIS)

    Shariatmadar Qoochan, Sharam.

    1995-01-01

    In this project there was always the need of a furnace and cast; therefore, the work was concentrated on construction the furnace and designing the cast. Many numbers of graphites were prepared and by altering their dimensions it was tried to obtain the best conditions from point of view of material and dimensions. Because in this type of furnace having the proper graphite in fact prepared to work with the furnace, because graphite was the heat transfer to the body and also was the cast of the body. The advantage of using graphite furnaces was the heating up of graphite soon, and there was not the problem of sticking to the cast. The disadvantage was the restriction of dimensions. Therefore, the glass size was also limited. another disadvantage was the temperature range to melt the sample. By varying the glass formulation the melting point of the sample also varied. So that by reducing the lead percentage the melting point increased, and restricted to fabricate glass with low percentage of lead

  17. Entanglement and Zeeman interaction in diluted magnetic semiconductor quantum dot

    International Nuclear Information System (INIS)

    Hichri, A.; Jaziri, S.

    2004-01-01

    We present theoretically the Zeeman coupling and exchange-induced swap action in spin-based quantum dot quantum computer models in the presence of magnetic field. We study the valence and conduction band states in a double quantum dots made in diluted magnetic semiconductor. The latter have been proven to be very useful in building an all-semiconductor platform for spintronics. Due to a strong p-d exchange interaction in diluted magnetic semiconductor (Cd 0.57 Mn 0.43 Te), the relative contribution of this component is strongly affected by an external magnetic field, a feature that is absent in nonmagnetic double quantum dots. We determine the energy spectrum as a function of magnetic field within the Hund-Mulliken molecular-orbit approach and by including the Coulomb interaction. Since we show that the ground state of the two carriers confined in a vertically coupled quantum dots provide a possible realization for a gate of a quantum computer, the crossing between the lowest states, caused by the giant spin splitting, can be observed as a pronounced jump in the magnetization of small magnetic field amplitude. Finally, we determine the swap time as a function of magnetic field and the inter dot distance. We estimate quantitatively swap errors caused by the field, establishing that error correction would, in principle, be possible in the presence of nonuniform magnetic field in realistic structures

  18. Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting

    Science.gov (United States)

    Liao, Bingjin; Li, Shoubo; Huang, Chunqing; Luo, Zhihuan; Pang, Wei; Tan, Haishu; Malomed, Boris A.; Li, Yongyao

    2017-10-01

    Spatially anisotropic solitary vortices, i.e., bright anisotropic vortex solitons (AVSs), supported by anisotropic dipole-dipole interactions, were recently predicted in spin-orbit-coupled binary Bose-Einstein condensates (BECs), in the form of two-dimensional semivortices (complexes built of zero-vorticity and vortical components). We demonstrate that the shape of the AVSs—horizontal or vertical, with respect to the in-plane polarization of the atomic dipole moments in the underlying BEC—may be effectively controlled by the strength Ω of the Zeeman splitting (ZS). A transition from the horizontal to vertical shape with the increase of Ω is found numerically and explained analytically. At the transition point, the AVS assumes the shape of an elliptical ring. The mobility of horizontal AVSs is studied, too, with the conclusion that, with the increase of Ω , their negative effective mass changes the sign to positive via a point at which the effective mass diverges. Lastly, we report a new species of inverted AVSs, with the zero-vorticity and vortex component placed in lower- and higher-energy components, as defined by the ZS. They are excited states, with respect to the ground states provided by the usual AVSs. Quite surprisingly, inverted AVSs are stable in a large parameter region.

  19. Zeeman spectroscopy of Zn-H complex in germanium

    International Nuclear Information System (INIS)

    Prabakar, J.P.C.; Vickers, R.E.M.; Fisher, P.

    1998-01-01

    Full text: A divalent substitutional zinc atom in germanium complexed with an interstitial hydrogen atom gives rise to a monovalent acceptor of trigonal symmetry. The axial nature of this complex splits the four-fold degenerate states associated with substitutional point defects into two two-fold degenerate states. Zeeman spectra of the Zn-H complex have been observed for B along and crystallographic directions in the Voigt configuration using linearly polarised radiation. Spectra of the C and D lines for B ≤ 2 Tesla are essentially identical to those of these lines of group III impurities; here B is the field strength. At all fields, splitting of the excited state of the D lines is identical to that for group III acceptors in germanium. The magnetic field dependence of the D components for both E parallel B and E perpendicular B and the selection rules demand that only one of the two two-fold 1s-like energy levels is occupied at the temperatures used instead of both. The results confirm piezospectroscopic studies which demonstrated that the axes of the complexes are along the four covalent bond directions of the host

  20. Molecular absorption spectrometry in flames and furnaces: A review

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, David J., E-mail: butcher@email.wcu.edu

    2013-12-04

    Graphical abstract: -- Highlights: •Theory and analytical considerations for molecular absorption spectrometry (MAS). •Critical review of low resolution MAS. •Critical review of the analytical performance of high-resolution continuum source (HR-CS) flame MAS. •Critical review of the analytical performance of HR-CS graphite furnace MAS. •Current status of HR-CS MAS and its future prospects for elemental analysis. -- Abstract: Molecular absorption spectrometry (MAS), originally developed in the 1970s, is a technique to determine non-metals in flames and graphite furnaces by monitoring the absorbance of diatomic molecules. Early studies employed low resolution instruments designed for line source atomic absorption, which provided a limited choice of analytical wavelengths, insufficient spectral resolution, and spectral interferences. However, the development of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) instrumentation has allowed the analysis of challenging samples for non-metals as well as some difficult elements to determine by AAS, such as aluminum and phosphorus. In this review, theory and analytical considerations for MAS are discussed. The principles and limitations of low resolution MAS are described, along with its applications. HR-CS AAS instrumentation is reviewed, emphasizing performance characteristics most relevant for MAS. Applications of flame and HR-CS GFMAS are reviewed, highlighting the most significant work to date. The paper concludes with an evaluation of the enhanced analytical capabilities provided by HR-CS MAS.

  1. Stark--Zeeman effect of metastable hydrogen molecules

    International Nuclear Information System (INIS)

    Kagann, R.H.

    1975-01-01

    The Stark effect of the N = 1 rotational level of orthohydrogen and the N = 2 rotational level of parahydrogen in the metastable c 3 PI/sub u/ electronic state has been measured using the molecular beam magnetic resonance method. The Stark effect of the metastable state is 10,000 times larger than that of the ground electronic state. The Stark effect of parahydrogen was found to be weakly dependent on static magnetic field strength, whereas the Stark effect of orthohydrogen was found to be more strongly dependent on the magnetic field strength. The Stark effect of orthohydrogen has been calculated using second-order perturbation theory with a pure Stark effect perturbation. The magnetic field dependence of the Stark effect was calculated using third-order perturbation theory with a mixed Stark--Zeeman effect double perturbation. A comparison of the experimental and theoretical values of α/sub perpendicular/ provides information on the electronic transition moment connecting the c 3 PI/sub u/ state to the a 3 Σ + /sub g/ state. The transition moment is needed to calculate the radiative lifetimes of the various vibrational levels of the c 3 PI/sub u/ state. The transition moment also enters the calculation of the quenching of this metastable state by an external electric field. There is a disagreement between theoretical predictions and the results of an experiment on the electric field quenching of the metastables. A test of the electronic transition moment may help shed light on this question. The experimental determination of the values of the transition moments allows one to test theory by comparing these values to those obtained by calculations employing ab initio wavefunctions

  2. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  3. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Science.gov (United States)

    Kowalewska, Zofia

    2011-07-01

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence

  4. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewska, Zofia, E-mail: zofia.kowalewska@obr.pl

    2011-07-15

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the {Delta}{nu} = 0 vibrational sequence within the electronic transition X{sup 1}{Sigma}{sup +} {yields} A{sup 1}{Pi}, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd{sub x}S{sub y} molecules. At the 258.056 nm line, with the wavelength range covering central pixel {+-} 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg{sup -1} in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg{sup -1} in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with

  5. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  6. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  7. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment

  8. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany, F.R.)

    1979-10-01

    Presented in two parts, this paper is intended to provide an outline of the theoretical fundamentals for the design of rotating-hearth furnaces for heating round stock and deals with the characteristic design features of such furnaces.

  9. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  10. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  11. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...

  12. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  13. Zeeman effect in sulfur monoxide. A tool to probe magnetic fields in star forming regions

    Science.gov (United States)

    Cazzoli, Gabriele; Lattanzi, Valerio; Coriani, Sonia; Gauss, Jürgen; Codella, Claudio; Ramos, Andrés Asensio; Cernicharo, José; Puzzarini, Cristina

    2017-09-01

    Context. Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN. Aims: We decided to investigate the suitability of sulfur monoxide (SO), which is one of the most abundant species in star forming regions, for probing the intensity of magnetic fields via the Zeeman effect. Methods: We investigated the Zeeman effect for several rotational transitions of SO in the (sub-)mm spectral regions by using a frequency-modulated, computer-controlled spectrometer, and by applying a magnetic field parallel to the radiation propagation (I.e., perpendicular to the oscillating magnetic field of the radiation). To support the experimental determination of the g factors of SO, a systematic quantum-chemical investigation of these parameters for both SO and O2 has been carried out. Results: An effective experimental-computational strategy for providing accurate g factors as well as for identifying the rotational transitions showing the strongest Zeeman effect has been presented. Revised g factors have been obtained from a large number of SO rotational transitions between 86 and 389 GHz. In particular, the rotational transitions showing the largest Zeeman shifts are: N,J = 2, 2 ← 1, 1 (86.1 GHz), N,J = 4, 3 ← 3, 2 (159.0 GHz), N,J = 1, 1 ← 0, 1 (286.3 GHz), N,J = 2, 2 ← 1, 2 (309.5 GHz), and N,J = 2, 1 ← 1, 0 (329.4 GHz). Our investigation supports SO as a good candidate for probing magnetic fields in high-density star forming regions. The complete list of measured Zeeman components is only available at the CDS via anonymous ftp to http

  14. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  15. Stable Carbon Isotope Ratio (δ13C Measurement of Graphite Using EA-IRMS System

    Directory of Open Access Journals (Sweden)

    Andrius Garbaras

    2015-06-01

    Full Text Available δ13C values in non-irradiated natural graphite were measured. The measurements were carried out using an elemental analyzer combined with stable isotope ratio mass spectrometer (EA-IRMS. The samples were prepared with ground and non-ground graphite, the part of which was mixed with Mg (ClO42. The best combustion of graphite in the oxidation furnace of the elemental analyzer was achieved when the amount of pulverized graphite ranged from 200 to 490 µg and the mass ratio C:Mg(ClO42 was approximately 1:10. The method for the graphite burning avoiding the isotope fractionation is proposed.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6873

  16. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  17. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  18. Behavior of coke in large blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N

    1978-01-01

    Three blast furnaces were quenched in operation and the contents were examined; the temperature distribution was also measured, using Tempil pellets. The furnaces examined included a low productivity one, which was examined to see what was wrong. Changes in the quality of coke as it descends in the furnace, and coke behavior in the raceway and hearth are reported. The functions required of coke, and the effects of poor coke quality, are explained, together with the coke quality required in large blast furnaces. A theoretical study of the role of coke in large blast furnaces is included.

  19. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  20. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-07-07

    This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.

  1. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    OpenAIRE

    Philip, Swetha Sara; John, Deepa; John, Sheeja Susan

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  2. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  3. On the Zeeman Effect in highly excited atoms: 2. Three-dimensional case

    International Nuclear Information System (INIS)

    Baseia, B.; Medeiros e Silva Filho, J.

    1984-01-01

    A previous result, found in two-dimensional hydrogen-atoms, is extended to the three-dimensional case. A mapping of a four-dimensional space R 4 onto R 3 , that establishes an equivalence between Coulomb and harmonic potentials, is used to show that the exact solution of the Zeeman effect in highly excited atoms, cannot be reached. (Author) [pt

  4. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    Science.gov (United States)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  5. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    NARCIS (Netherlands)

    Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.; Metcalf, H.

    1997-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map

  6. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  7. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  8. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  9. A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS)

    International Nuclear Information System (INIS)

    Larsson, Richard; Buehler, Stefan A.; Eriksson, Patrick; Mendrok, Jana

    2014-01-01

    This paper presents the practical theory that was used to implement the Zeeman effect using Stokes formalism in the Atmospheric Radiative Transfer Simulator (ARTS). ARTS now treats the Zeeman effect in a general manner for several gas species for all polarizations and takes into account variations in both magnetic and atmospheric fields along a full 3D geometry. We present how Zeeman splitting affects polarization in radiative transfer simulations and find that the effect may be large in Earth settings for polarized receivers in limb observing geometry. We find that not taking a spatially varying magnetic field into account can result in absolute errors in the measurement vector of at least 10 K in Earth magnetic field settings. The paper also presents qualitative tests for O 2 lines against previous models (61.15 GHz line) and satellite data from Odin-SMR (487.25 GHz line), and the overall consistency between previous models, satellite data, and the new ARTS Zeeman module seems encouraging. -- Highlights: • We implement the Zeeman effect with Stokes formalism in ARTS. • We give a practical theory for the implementation. • Examples of how the Zeeman effect change RT are presented. • Qualitative Odin-SMR O 2 limb sounding model indicates the Zeeman effect is necessary

  10. Global analysis of the temperature and flow fields in samples heated in multizone resistance furnaces

    Science.gov (United States)

    Pérez-Grande, I.; Rivas, D.; de Pablo, V.

    The temperature field in samples heated in multizone resistance furnaces will be analyzed, using a global model where the temperature fields in the sample, the furnace and the insulation are coupled; the input thermal data is the electric power supplied to the heaters. The radiation heat exchange between the sample and the furnace is formulated analytically, taking into account specular reflections at the sample; for the solid sample the reflectance is both diffuse and specular, and for the melt it is mostly specular. This behavior is modeled through the exchange view factors, which depend on whether the sample is solid or liquid, and, therefore, they are not known a priori. The effect of this specular behavior in the temperature field will be analyzed, by comparing with the case of diffuse samples. A parameter of great importance is the thermal conductivity of the insulation material; it will be shown that the temperature field depends strongly on it. A careful characterization of the insulation is therefore necessary, here it will be done with the aid of experimental results, which will also serve to validate the model. The heating process in the floating-zone technique in microgravity conditions will be simulated; parameters like the Marangoni number or the temperature gradient at the melt-crystal interface will be estimated. Application to the case of compound samples (graphite-silicon-graphite) will be made; the temperature distribution in the silicon part will be studied, especially the temperature difference between the two graphite rods that hold the silicon, since it drives the thermocapillary flow in the melt. This flow will be studied, after coupling the previous model with the convective effects. The possibility of suppresing this flow by the controlled vibration of the graphite rods will be also analyzed. Numerical results show that the thermocapillary flow can indeed be counterbalanced quite effectively.

  11. Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies

    Science.gov (United States)

    A, K. MANDAL; R, K. DISHWAR; O, P. SINHA

    2018-03-01

    The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace (TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K (200 °C) melt temperature and noise levels decreased by ∼10 dB compared to a normal arc. Hydrogen plasma offered 100 K (100 °C) higher melt temperature with ∼5 dB higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.

  12. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    Science.gov (United States)

    Zhang, Z T; Xu, C; Dmytriieva, D; Molatta, S; Wosnitza, J; Wang, Y T; Helm, M; Zhou, Shengqiang; Kühne, H

    2017-10-20

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13 C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13 C nuclear spin-lattice relaxation rate [Formula: see text] by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of [Formula: see text] below about 10 K can well be described by a thermally activated form, [Formula: see text], yielding a singular Zeeman energy of ([Formula: see text]) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments.

  13. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  14. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  15. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  16. Recompressed exfoliated graphite articles

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  17. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram; Patole, Archana

    2017-01-01

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a

  18. ZEST: A Fast Code for Simulating Zeeman-Stark Line-Shape Functions

    Directory of Open Access Journals (Sweden)

    Franck Gilleron

    2018-03-01

    Full Text Available We present the ZEST code, dedicated to the calculation of line shapes broadened by Zeeman and Stark effects. As concerns the Stark effect, the model is based on the Standard Lineshape Theory in which ions are treated in the quasi-static approximation, whereas the effects of electrons are represented by weak collisions in the framework of a binary collision relaxation theory. A static magnetic field may be taken into account in the radiator Hamiltonian in the dipole approximation, which leads to additional Zeeman splitting patterns. Ion dynamics effects are implemented using the fast Frequency-Fluctuation Model. For fast calculations, the static ion microfield distribution in the plasma is evaluated using analytic fits of Monte-Carlo simulations, which depend only on the ion-ion coupling parameter and the electron-ion screening factor.

  19. A New Analysis of Stark and Zeeman Effects on Hydrogen Lines in Magnetized DA White Dwarfs

    Directory of Open Access Journals (Sweden)

    Ny Kieu

    2017-11-01

    Full Text Available White dwarfs with magnetic field strengths larger than 10 T are understood to represent more than 10% of the total population of white dwarfs. The presence of such strong magnetic fields is clearly indicated by the Zeeman triplet structure visible on absorption lines. In this work, we discuss the line broadening mechanisms and focus on the sensitivity of hydrogen lines on the magnetic field. We perform new calculations in conditions relevant to magnetized DA stellar atmospheres using models inspired from magnetic fusion plasma spectroscopy. A white dwarf spectrum from the Sloan Digital Sky Survey (SDSS database is analyzed. An effective temperature is provided by an adjustment of the background radiation with a Planck function, and the magnetic field is inferred from absorption lines presenting a Zeeman triplet structure. An order-of-magnitude estimate for the electron density is also performed from Stark broadening analysis.

  20. Suppression of Zeeman relaxation in cold collisions of 2P1/2 atoms

    International Nuclear Information System (INIS)

    Tscherbul, T. V.; Dalgarno, A.; Buchachenko, A. A.; Lu, M.-J.; Weinstein, J. D.

    2009-01-01

    We present a combined experimental and theoretical study of angular momentum depolarization in cold collisions of 2 P atoms in the presence of an external magnetic field. We show that collision-induced Zeeman relaxation of Ga( 2 P 1/2 ) and In( 2 P 1/2 ) atoms in cold 4 He gas is dramatically suppressed compared to atoms in 2 P 3/2 states. Using rigorous quantum-scattering calculations based on ab initio interaction potentials, we demonstrate that Zeeman transitions in collisions of atoms in 2 P 1/2 electronic states occur via couplings to the 2 P 3/2 state induced by the anisotropy of the interaction potential. Our results suggest the feasibility of sympathetic cooling and magnetic trapping of 2 P 1/2 -state atoms, such as halogens, thereby opening up exciting areas of research in precision spectroscopy and cold-controlled chemistry.

  1. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  2. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  3. Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Khaetskii, Alexander V.; Nazarov, Yuli V.

    2001-01-01

    We have studied spin-flip transitions between Zeeman sublevels in GaAs electron quantum dots. Several different mechanisms which originate from spin-orbit coupling are shown to be responsible for such processes. It is shown that spin-lattice relaxation for the electron localized in a quantum dot is much less effective than for the free electron. The spin-flip rates due to several other mechanisms not related to the spin-orbit interaction are also estimated

  4. THE HANLE AND ZEEMAN POLARIZATION SIGNALS OF THE SOLAR Ca II 8542 Å LINE

    Energy Technology Data Exchange (ETDEWEB)

    Štěpán, Jiri [Astronomical Institute ASCR, Fričova 298, 251 65 Ondřejov (Czech Republic); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2016-07-20

    We highlight the main results of a three-dimensional (3D) multilevel radiative transfer investigation about the solar disk-center polarization of the Ca ii 8542 Å line. First, through the use of a 3D model of the solar atmosphere, we investigate the linear polarization that occurs due to the atomic level polarization produced by the absorption and scattering of anisotropic radiation, taking into account the symmetry-breaking effects caused by its thermal, dynamic, and magnetic structure. Second, we study the contribution of the Zeeman effect to the linear and circular polarization. Finally, we show examples of the Stokes profiles produced by the joint action of the atomic level polarization and the Hanle and Zeeman effects. We find that the Zeeman effect tends to dominate the linear polarization signals only in the localized patches of opposite magnetic polarity, where the magnetic field is relatively strong and slightly inclined; outside such very localized patches, the linear polarization is often dominated by the contribution of atomic level polarization. We demonstrate that a correct modeling of this last contribution requires taking into account the symmetry-breaking effects caused by the thermal, dynamic, and magnetic structure of the solar atmosphere, and that in the 3D model used the Hanle effect in forward-scattering geometry (disk-center observation) mainly reduces the polarization corresponding to the zero-field case. We emphasize that, in general, a reliable modeling of the linear polarization in the Ca ii 8542 Å line requires taking into account the joint action of atomic level polarization and the Hanle and Zeeman effects.

  5. Refractory of Furnaces to Reduce Environmental Impact

    Science.gov (United States)

    Hanzawa, Shigeru

    2011-10-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  6. Fluxless furnace brazing and its theoretical fundamentals

    International Nuclear Information System (INIS)

    Lison, R.

    1979-01-01

    In this paper the theoretical fundamental of fluxless furnace brazing are described. The necessary conditions for a wetting in the vacuum, under a inert-gas and with a reducing gas are discussed. Also other methods to reduce the oxygen partial pressure are described. Some applications of fluxless furnace brazing are outlined. (orig.) [de

  7. Refractory of Furnaces to Reduce Environmental Impact

    International Nuclear Information System (INIS)

    Hanzawa, Shigeru

    2011-01-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO 2 produced from this high energy load. To improve this situation, R and D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO 2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  8. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  9. THE ZEEMAN EFFECT IN THE 44 GHZ CLASS I METHANOL MASER LINE TOWARD DR21(OH)

    Energy Technology Data Exchange (ETDEWEB)

    Momjian, E. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Sarma, A. P., E-mail: emomjian@nrao.edu, E-mail: asarma@depaul.edu [Physics Department, DePaul University, 2219 N. Kenmore Avenue, Byrne Hall 211, Chicago, IL 60614 (United States)

    2017-01-10

    We report detection of the Zeeman effect in the 44 GHz Class I methanol maser line, toward the star-forming region DR21(OH). In a 219 Jy beam{sup −1} maser centered at an LSR velocity of 0.83 km s{sup −1}, we find a 20- σ detection of zB {sub los} = 53.5 ± 2.7 Hz. If 44 GHz methanol masers are excited at n ∼ 10{sup 7–8} cm{sup −3}, then the B versus n {sup 1/2} relation would imply, from comparison with Zeeman effect detections in the CN(1 − 0) line toward DR21(OH), that magnetic fields traced by 44 GHz methanol masers in DR21(OH) should be ∼10 mG. Combined with our detected zB {sub los} = 53.5 Hz, this would imply that the value of the 44 GHz methanol Zeeman splitting factor z is ∼5 Hz mG{sup −1}. Such small values of z would not be a surprise, as the methanol molecule is non-paramagnetic, like H{sub 2}O. Empirical attempts to determine z , as demonstrated, are important because there currently are no laboratory measurements or theoretically calculated values of z for the 44 GHz CH{sub 3}OH transition. Data from observations of a larger number of sources are needed to make such empirical determinations robust.

  10. Intercomparison of graphite irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Hering, H; Perio, P; Seguin, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    While fast neutrons only are effective in damaging graphite, results of irradiations are more or less universally expressed in terms of thermal neutron fluxes. This paper attempts to correlate irradiations made in different reactors, i.e., in fluxes of different spectral compositions. Those attempts are based on comparison of 1) bulk length change and volume expansion, and 2) crystalline properties (e.g., lattice parameter C, magnetic susceptibility, stored energy, etc.). The methods used by various authors for determining the lattice constants of irradiated graphite are discussed. (author)

  11. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  12. Graphite fiber/copper composites prepared by spontaneous infiltration

    Science.gov (United States)

    Wang, Hongbao; Tao, Zechao; Li, Xiangfen; Yan, Xi; Liu, Zhanjun; Guo, Quangui

    2018-05-01

    The major bottleneck in developing graphite fiber reinforced copper (GF/Cu) composites is the poor wettability of Cu/graphite system. Alloying element of chromium (Cr) is introduced to improve the wettability of liquid copper on graphite. Sessile drop method experiments illustrate that the contact angle of liquid Cu-Cr (1.0 wt.%) alloy on graphite substrate decreases to 43° at 1300 °C. The improvement of wettability is related to the formation of chromium carbide layer at interface zone. Based on the wetting experiment, a spontaneous infiltration method for preparing GF/Cu composites is proposed. Unidirectional GF preforms are infiltrated by Cu-Cr alloys without external pressure in a tubular furnace. Results reveal that the GF preform can be fully infiltrated by Cu-Cr alloy (8 wt.%) spontaneously when fiber volume fraction is 40%. The coefficient of thermal expansion (CTE) of GF/Cu-Cr (8.0 wt.%) composites is 4.68 × 10-6/K along the longitudinal direction.

  13. Comparison of Oxidation Characteristics of Selected Nuclear Graphite Grades

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Kim, Gen Chan

    2010-02-01

    The oxidation behavior of some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) were compared in view of their filler coke type and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 ∼ 960 .deg. C in air by using a three-zone vertical tube furnace at a 10 L/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600 ∼ 950 .deg. C, the differences between the grades were not significant. The oxidation rates determined for a 5∼10 % weight loss at the six temperatures were nearly the same except for 702 and 808 .deg. C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608 ∼ 808 .deg. C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control

  14. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  15. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  16. Production technique of vermicular graphite iron cylinder head of vehicle diesel engine

    Directory of Open Access Journals (Sweden)

    Zhou Gen

    2008-11-01

    Full Text Available The 25 years’production and application have proved that vermicular graphite iron cylinder heads with vermicularity ≥50% satisfy the machinability and performance demand of diesel engine. The method, in which using cupola-induction furnace duplex melting and pour-over process with rare earth-ferrosilicon or rare earthsilicon compound as vermicularizing alloy plus rare earth-magnesium-ferrosilicon as stirring alloy, is an optimal vermicularizing process for obtaining satisfi ed vermicularity. Using top kiss risers, enlarging kissing areas and expanding covering width and making ingates to freeze earlier are the effective measures to eliminate shrinkage, blowhole and oxide inclusions in the vermicular graphite iron cylinder heads.

  17. Doppler-Zeeman Mapping of the Rapidly Rotating Magnetic CP Star HD37776

    Science.gov (United States)

    Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Romanyuk, I. I.

    2000-03-01

    We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping (Vasilchenko et al. 1996), has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right- and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N > 200 (Romanyuk et al. 1999). The profile width of winged spectral lines (reaching 5 A) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, OII, AlIII, SiIII, and FeIII averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30 deg < i < 50 deg, beta = 40 deg, and a maximum surface field strength H_s = 60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum

  18. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  19. A study on the formation of uranium carbide in an induction furnace

    International Nuclear Information System (INIS)

    Song, In Young; Lee, Yoon Sang; Kim, Eung Soo; Lee, Don Bae; Kim, Chang Kyu

    2005-01-01

    Uranium is a typical carbide-forming element. Three carbides, UC, U 2 C 3 and UC 2 , are formed in the uranium-carbon system. The most important of these as fuel is uranium monocarbide UC. It is well known that Uranium carbides can be obtained by three basic methods: 1) by reaction of uranium metal with carbon; 2) by reaction of uranium metal powder with gaseous hydrocarbons; 3) by reaction of uranium oxides with carbon. The use of uranium monocarbide, or materials based on it, has great prospects as fuel for nuclear reactors. It is quite possible that uranium dicarbide UC 2 may also acquire great importance as a fuel, particularly in dispersion fuel elements with graphite matrix. In the present study, uranium carbides are obtained by direct reaction of uranium metal with graphite in a high frequency induction furnace

  20. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Lind, R.F.

    1992-01-01

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  1. Programmable temperature regulator of VAO-1 furnace

    International Nuclear Information System (INIS)

    Zahalka, F.

    1979-01-01

    A programmable temperature controller is described for a furnace for high-level waste processing. Furnace temperature is controlled by a program compiled from a combination of 3 parts with different linear increments or decrements of time dependent temperature and 2 parts with isothermal control for over a preset period. The equipment consists essentially of a programming unit, a programmed digital-to-analog converter and a power unit. The design is described in detail and its specifications are given. The maximum operating temperature of 1500 degC may be reached in the furnace charge section. (B.S.)

  2. Alternative fuels for multiple-hearth furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Bracket, B D; Lawson, T U

    1980-04-01

    Results are described of a feasibility study on the use of refuse-derived fuel, shredded paper, wood waste, coal, and waste oil in multiple-hearth furnaces at the Lower Molonglo Water Quality Control Centre in Australia. An assessment of waste fuel availability and characteristics is given, and a summary is made of the technical and economic aspects of using these alternative fuels and of minimizing furnace fuel requirements by reducing sludge moisture. The recommended method of reducing fuel oil consumption in the furnace is shown to be sludge drying, using process exhaust heat in a rotary dryer.

  3. Internal heat exchange tubes for industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-05-26

    This patent describes a method for cooling the work within an industrial furnace. It comprises providing a longitudinally extending outer tube which extends into the furnace having a closed axial end and an open axial end; providing a preformed inner tube open at both ends within the outer tube; injecting a coolant into the inner tube so that the coolant flows from one axial end of the tube out the opposite end adjacent the closed end of the outer tube, and from the closed end of the outer tube to the open end thereof; circulating a gas within the furnace against the outer tube to effect heat transfer therewith.

  4. Production technique of vermicular graphite iron cylinder head of vehicle diesel engine

    OpenAIRE

    Zhou Gen; Liu Wanhua

    2008-01-01

    The 25 years’production and application have proved that vermicular graphite iron cylinder heads with vermicularity ≥50% satisfy the machinability and performance demand of diesel engine. The method, in which using cupola-induction furnace duplex melting and pour-over process with rare earth-ferrosilicon or rare earthsilicon compound as vermicularizing alloy plus rare earth-magnesium-ferrosilicon as stirring alloy, is an optimal vermicularizing process for obtaining satisfi ed vermicularity. ...

  5. Temperature and flow fields in samples heated in monoellipsoidal mirror furnaces

    Science.gov (United States)

    Rivas, D.; Haya, R.

    The temperature field in samples heated in monoellipsoidal mirror furnaces will be analyzed. The radiation heat exchange between the sample and the mirror is formulated analytically, taking into account multiple reflections at the mirror. It will be shown that the effect of these multiple reflections in the heating process is quite important, and, as a consequence, the effect of the mirror reflectance in the temperature field is quite strong. The conduction-radiation model will be used to simulate the heating process in the floating-zone technique in microgravity conditions; important parameters like the Marangoni number (that drives the thermocapillary flow in the melt), and the temperature gradient at the melt-crystal interface will be estimated. The model will be validated comparing with experimental data. The case of samples mounted in a wall-free configuration (as in the MAXUS-4 programme) will be also considered. Application to the case of compound samples (graphite-silicon-graphite) will be made; the melting of the silicon part and the surface temperature distribution in the melt will be analyzed. Of special interest is the temperature difference between the two graphite rods that hold the silicon part, since it drives the thermocapillary flow in the melt. This thermocapillary flow will be studied, after coupling the previous model with the convective effects. The possibility of counterbalancing this flow by the controlled vibration of the graphite rods will be studied as well. Numerical results show that suppressing the thermocapillary flow can be accomplished quite effectively.

  6. Graphite electrode dc arc technology development for treatment of buried wastes

    International Nuclear Information System (INIS)

    Surma, J.E.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.

    1993-02-01

    A ''National Laboratory-University-Industrial'' three-way partnership has been established between the Pacific Northwest Laboratory (PNL), Massachusetts Institute of Technology (MIT), and Electro-Pyrolysis, Inc. (EPI) to develop graphite electrode DC arc technology for the treatment of buried wastes. This paper outlines the PNL-MIT-EPI program describing a series of engineering-scale DC arc furnace tests conducted in an EPI furnace at the Plasma Fusion Center at MIT, and a description of the second phase of this program involving the design, fabrication, and testing of a pilot-scale DC arc furnace. Included in this work is the development and implementation of diagnostics to evaluate and optimize high temperature thermal processes such as the DC arc technology

  7. Control of the Gas Flow in an Industrial Directional Solidification Furnace for Production of High Purity Multicrystalline Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Lijun Liu

    2015-01-01

    Full Text Available A crucible cover was designed as gas guidance to control the gas flow in an industrial directional solidification furnace for producing high purity multicrystalline silicon. Three cover designs were compared to investigate their effect on impurity transport in the furnace and contamination of the silicon melt. Global simulations of coupled oxygen (O and carbon (C transport were carried out to predict the SiO and CO gases in the furnace as well as the O and C distributions in the silicon melt. Cases with and without chemical reaction on the cover surfaces were investigated. It was found that the cover design has little effect on the O concentration in the silicon melt; however, it significantly influences CO gas transport in the furnace chamber and C contamination in the melt. For covers made of metal or with a coating on their surfaces, an optimal cover design can produce a silicon melt free of C contamination. Even for a graphite cover without a coating, the carbon concentration in the silicon melt can be reduced by one order of magnitude. The simulation results demonstrate a method to control the contamination of C impurities in an industrial directional solidification furnace by crucible cover design.

  8. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  9. International blast furnace hearth and raceway symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Papers presented discussed some of the physical and chemical processes occuring in the raceway and hearths of blast furnaces. The injection of coal or fuel slurries to replace some of the coke was also covered. Fourteen papers are abstracted separately.

  10. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  11. Hopewell Furnace NHS : alternative transportation study

    Science.gov (United States)

    2009-12-31

    This study assesses the potential for an alternative transportation system (ATS) at Hopewell Furnace National Historic Site (NHS). The Volpe Center investigated internal circulation and potential partnerships with local historic, cultural, and recrea...

  12. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces

    International Nuclear Information System (INIS)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-01-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  13. A furnace for firing carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Sudavskii, A M

    1979-12-05

    A furnace for firing carbon products is patented that consists of several chambers with a perforated hearth, which are interconnected by a lower and an upper reservoir with a locking fixture, and a flue. In order to intensify the firing process by increasing the specific hearth productivity, the flue is connected to the upper reservoir. A block diagram of the patented furnace is given, together with a description of its operation.

  14. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  15. Multiphase flow modelling of furnace tapholes

    OpenAIRE

    Reynolds, Quinn G.; Erwee, Markus W.

    2017-01-01

    Pyrometallurgical furnaces of many varieties make use of tapholes in order to facilitate the removal of molten process material from inside the vessel. Correct understanding and operation of the taphole is essential for optimal performance of such furnaces. The present work makes use of computational fluid dynamics models generated using the OpenFOAM® framework in order to study flow behaviour in the taphole system. Single-phase large-eddy simulation models are used to quantify the discharge ...

  16. A standard graphite block

    Energy Technology Data Exchange (ETDEWEB)

    Ivkovic, M; Zdravkovic, Z; Sotic, O [Department of Reactor Physics and Dynamics, Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1966-04-15

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 {+-}3.1 cm for the following graphite characteristics: density = 1.7 g/cm{sup 3}; boron content = 0.1 ppm; absorption cross section = 3.7 mb.

  17. A standard graphite block

    International Nuclear Information System (INIS)

    Ivkovic, M.; Zdravkovic, Z.; Sotic, O.

    1966-04-01

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 ±3.1 cm for the following graphite characteristics: density = 1.7 g/cm 3 ; boron content = 0.1 ppm; absorption cross section = 3.7 mb

  18. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  19. [The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?].

    Science.gov (United States)

    Royère, C

    1999-03-01

    The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.

  20. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  1. Investigation of different magnetic field configurations using an electrical, modular Zeeman slower

    Energy Technology Data Exchange (ETDEWEB)

    Ohayon, Ben; Ron, Guy, E-mail: gron@racah.phys.huji.ac.il [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2015-10-15

    We present a method of constructing an automatically reconfigurable, modular, electronic Zeeman slower, which is remotely controlled. This setup is used to investigate the ability of different magnetic field profiles to slow thermal atoms to the capture velocity of a magneto-optical-trap. We show that a simple numerical optimization process yields better results than the commonly used approach for deciding on the appropriate field and comes close to the optimum field, found by utilizing a fast feedback loop which uses a genetic algorithm. Our new numerical method is easily adaptable to a variety of existing slower designs and may be beneficial where feedback is unavailable.

  2. New diagnostic technique for Zeeman-compensated atomic beam slowing: technique and results

    OpenAIRE

    Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.; Metcalf, H.

    1997-01-01

    We have developed a new diagnostic tool for the study of Zeeman-compensated slowing of an alkali atomic beam. Our time-of-flight technique measures the longitudinal veloc- ity distribution of the slowed atoms with a resolution below the Doppler limit of 30 cm/s. Furthermore, it can map the position and velocity distribution of atoms in either ground hyperfine level inside the solenoid without any devices inside the solenoid. The technique reveals the optical pumping ef- fects, and shows in de...

  3. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy.

    Science.gov (United States)

    Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2013-12-13

    Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200  μs and 78.4% at 4.5 ms, respectively.

  4. Quadratic Zeeman spectra for the hydrogen atom by means of semiclassical quantization

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Adachi, Satoshi

    1988-01-01

    The elliptic cylindrical coordinates of type I adapted to the Fock hypersphere in momentum space of the Kepler motion and their canonical momenta are used to construct an analytic form of the classical action integrals which yield an adequate parametrization of the KAM (Kolmogorov-Arnold-Moser) tori of the Kepler trajectories weakly perturbed by a uniform magnetic field. The semiclassical quantization formula so provided presents a prototype of the exact EBK (Einstein-Brillouin-Keller) quantization scheme, and the resulting quantized energies vs the magnetic field strength correspond to the quadratic Zeeman spectra of each Rydberg multiplet lifted by the perturbation. (author)

  5. Optogalvanic detection of the Zeeman effect in a hollow-cathode discharge

    International Nuclear Information System (INIS)

    Langlois, E.; Gagne, J.

    1987-01-01

    Optogalvanic detection of complex Zeeman patterns in a hollow-cathode lamp is investigated. Uranium lines with J 1 = 6 and J 2 = 7 are resolved, with our best results obtained using intermodulate optogalvanic spectroscopy (but this scheme is applicable only to lines giving strong signals). This detection method has a 40-MHz resolution, so a magnetic field of 0.1 T is sufficient to resolve most patterns. Weak lines can be studied with modulated optogalvanic spectroscopy. However, the stronger field required in this case perturbs the discharge. Although they are impractical for the measurement of component relative intensities, these detection methods may find applications in the determination of Lande g factors

  6. Structural disorder of graphite and implications for graphite thermometry

    Science.gov (United States)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  7. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  8. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  9. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  10. Zeeman relaxation of MnH (X7Σ+) in collisions with 3He: Mechanism and comparison with experiment

    International Nuclear Information System (INIS)

    Turpin, F.; Stoecklin, T.; Halvick, Ph.

    2011-01-01

    We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of MnH ( 7 Σ) in collisions with 3 He. We analyze the collisional Zeeman transition mechanism as a function of the final diatomic state and its variation as a function of an applied magnetic field. We show that as a result of this mechanism the levels with ΔM j >2 give negligible contributions to the Zeemam relaxation cross section. We also compare our results to the experimental cross sections obtained from the buffer-gas cooling and magnetic trapping of this molecule and investigate the dependence of the Zeeman relaxation cross section on the accuracy of the three-body interaction at ultralow energies.

  11. Zeeman relaxation of MnH (X7Σ+) in collisions with He3: Mechanism and comparison with experiment

    Science.gov (United States)

    Turpin, F.; Stoecklin, T.; Halvick, Ph.

    2011-03-01

    We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of MnH (7Σ) in collisions with He3. We analyze the collisional Zeeman transition mechanism as a function of the final diatomic state and its variation as a function of an applied magnetic field. We show that as a result of this mechanism the levels with ΔMj>2 give negligible contributions to the Zeemam relaxation cross section. We also compare our results to the experimental cross sections obtained from the buffer-gas cooling and magnetic trapping of this molecule and investigate the dependence of the Zeeman relaxation cross section on the accuracy of the three-body interaction at ultralow energies.

  12. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    Science.gov (United States)

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-10-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 °C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 °C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 °C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 °C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed.

  13. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    International Nuclear Information System (INIS)

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-01-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 deg. C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 deg. C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 deg. C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 deg. C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed

  14. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  15. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1993-07-20

    A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.

  16. Ordinary matter, dark matter, and dark energy on normal Zeeman space-times

    Science.gov (United States)

    Imre Szabó, Zoltán

    2017-01-01

    Zeeman space-times are new, relativistic, and operator based Hamiltonian models representing multi-particle systems. They are established on Lorentzian pseudo Riemannian manifolds whose Laplacian immediately appears in the form of original quantum physical wave operators. In classical quantum theory they emerge, differently, from the Hamilton formalism and the correspondence principle. Nonetheless, this new model does not just reiterate the well known conceptions but holds the key to solving open problems of quantum theory. Most remarkably, it represents the dark matter, dark energy, and ordinary matter by the same ratios how they show up in experiments. Another remarkable agreement with reality is that the ordinary matter appears to be non-expanding and is described in consent with observations. The theory also explains gravitation, moreover, the Hamilton operators of all energy and matter formations, together with their physical properties, are solely derived from the Laplacian of the Zeeman space-time. By this reason, it is called Monistic Wave Laplacian which symbolizes an all-comprehensive unification of all matter and energy formations. This paper only outlines the normal case where the particles do not have proper spin but just angular momentum. The complete anomalous theory is detailed in [Sz2, Sz3, Sz4, Sz5, Sz6, Sz7].

  17. Doppler-Zeeman mapping of the magnetic CP star HD 215441

    Science.gov (United States)

    Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Tsymbal, V. V.

    1997-07-01

    The method of Vasilchenko et al. (1996) is used to obtain a Doppler-Zeeman map of the magnetic CP star HD 215441. The magnetic field is approximated by a magnetic dipole that is arbitrarily shifted from the star center. The solution of the inverse problem yields the dipole parameters and the maps of Si, Ti, Cr, and Fe abundance anomalies; the coordinates of local magnetic vectors on the star surface are computed. A comparison of the distribution of abundance anomalies and the magnetic-field configuration reveals that in the region where the magnetic-field lines are vertical (near the magnetic pole), Si, Ti and Cr are highly deficient, while the Fe enhancement is strongest. In the regions where the magnetic-field lines are horizontal (near the magnetic equator), Si, Ti and Cr show the greatest overabundance. In these regions, the Fe abundance is also slightly enhanced and exhibits, as it were, a secondary maximum. The factors that limit the accuracy of Doppler-Zeeman mapping are reviewed.

  18. RBS investigations of high-temperature reactions on graphite substrates

    Energy Technology Data Exchange (ETDEWEB)

    Eloi, C.C. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry]|[Center for Applied Energy Research, University of Kentucky, Lexington, KY 40506 (United States); Robertson, J.D. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry]|[Center for Applied Energy Research, University of Kentucky, Lexington, KY 40506 (United States); Majidi, V. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry

    1995-05-01

    While graphite furnace atomic absorption spectrometry (GFAAS) is one of the most powerful techniques for ultratrace analysis of Pb, it is often plagued by matrix interferences. These interferences are minimized by the addition of matrix modifiers which stabilize the analyte signal through unknown mechanisms. Using RBS, the high temperature reactions of nitrate salts of Pb were studied on pyrolytically coated graphite with and without matrix modifiers. The addition of an ammonium phosphate modifier was found to stabilize Pb through the formation of a metal oxy-phosphorus compound. Moreover, the depth profiles demonstrated that the pyrolytically coated graphite was not impervious as previously thought. Pre-treatment of the surface with O{sub 2} is also known to cause a delay in the vaporization of Pb. While a surface effect had previously been postulated, the 3.04 MeV resonance {sup 16}O({alpha}, {alpha}){sup 16}O elastic scattering measurements show that it proceeds through the formation of surface bound lead-oxygen species as the number of oxygen atoms chemisorbed and the number of lead atoms, present on the surface prior to vaporization, are nearly equal. (orig.).

  19. Product Evaluation Task Force Phase Two report for CAGR graphite

    International Nuclear Information System (INIS)

    Francis, A.J.; Davies, A.

    1991-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce an adequate data base to justify the preferred matrices. This report details the work carried out under Phase 2 of the Product Evaluation Task Force programme, on CAGR graphite. Three possible types of encapsulants for CAGR graphites:-Inorganic cements, Polymer cements and Polymers are evaluated using the Kepner Tregoe decision analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations ie Storage, Transport, handling and emplacement, Disposal and Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of three parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC) is recommended as the preferred matrix for Phase 3 studies on CAGR graphite. (author)

  20. Purification and preparation of graphite oxide from natural graphite

    Energy Technology Data Exchange (ETDEWEB)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made [Instrumentation Systems and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Padjadjaran University, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, 45363, Jawa Barat (Indonesia); Rianto, Anton [Grafindo Nusantara Ltd., Belagio Mall Lantai 2, Unit 0 L3-19, Kawasan Mega Kuningan, Kav. B4 No.3, Jakarta Selatan (Indonesia)

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphite is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.

  1. Comparison of a burning mass ceramics coating in laboratory furnace and instrustrial furnace

    International Nuclear Information System (INIS)

    Soares, R.A.L.; Castro, J.R. de S.

    2012-01-01

    This work intends to analyze the differences obtained in the technological properties of a ceramic coating after firing in two distinct environments, laboratory furnace and industrial furnace. For this, was characterized a ceramic mass used in the production of porous coating. The analyzes were performed chemical, mineralogical and thermal mass in that. The specimens were obtained by compacting and burned in the maximum temperature of 1140 deg C in two furnaces, laboratory and industrial. The technological tests were performed linear shrinkage, water absorption, bulk density and mechanical strength. The microstructure was evaluated by ray-X diffraction and scanning electron microscopy. The results showed that both furnaces provided significant differences in analyzed specimens, such as increased strength and low water absorption in the fired samples in a laboratory furnace, for example. (author)

  2. Management of UKAEA graphite liabilities

    International Nuclear Information System (INIS)

    Wise, M.

    2001-01-01

    The UK Atomic Energy Authority (UKAEA) is responsible for managing its liabilities for redundant research reactors and other active facilities concerned with the development of the UK nuclear technology programme since 1947. These liabilities include irradiated graphite from a variety of different sources including low irradiation temperature reactor graphite (the Windscale Piles 1 and 2, British Energy Pile O and Graphite Low Energy Experimental Pile at Harwell and the Material Testing Reactors at Harwell and Dounreay), advanced gas-cooled reactor graphite (from the Windscale Advanced Gas-cooled Reactor) and graphite from fast reactor systems (neutron shield graphite from the Dounreay Prototype Fast Reactor and Dounreay Fast Reactor). The decommissioning and dismantling of these facilities will give rise to over 6,000 tonnes of graphite requiring disposal. The first graphite will be retrieved from the dismantling of Windscale Pile 1 and the Windscale Advanced Gas-cooled Reactor during the next five years. UKAEA has undertaken extensive studies to consider the best practicable options for disposing of these graphite liabilities in a manner that is safe whilst minimising the associated costs and technical risks. These options include (but are not limited to), disposal as Low Level Waste, incineration, or encapsulation and disposal as Intermediate Level Waste. There are a number of technical issues associated with each of these proposed disposal options; these include Wigner energy, radionuclide inventory determination, encapsulation of graphite dust, galvanic coupling interactions enhancing the corrosion of mild steel and public acceptability. UKAEA is currently developing packaging concepts and designing packaging plants for processing these graphite wastes in consultation with other holders of graphite wastes throughout Europe. 'Letters of Comfort' have been sought from both the Low Level Waste and the Intermediate Level Waste disposal organisations to support the

  3. Graphite in Science and Nuclear Technique

    OpenAIRE

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  4. Characterization of core-drilled cokes in a working blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shanning Dong; Nigel Paterson; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Dept. of Chemical Engineering

    2007-07-01

    A batch of tuyere-level core-drilled cokes, taken from a blast furnace working with coal injection has been characterized using a battery of analytical techniques. These included size exclusion chromatography (SEC), FT-Raman Spectroscopy (FT-RS) and X-ray Powder Diffraction (XRD). SEC tests on NMP-extracts of cokes taken from zones where temperatures were ca. 1500{sup o}C, showed the presence of heavy soot-like material (ca. 107-108 u apparent mass). By contrast, cokes in higher temperature zones (ca. 2000{sup o}C), only gave small amounts of extractable material with up to ca. 105 u apparent mass. The presence of soot-like material indicated the conversion-unfavoured locations at the tuyere-level. FT-Raman spectra of NMP-extracted cokes varied: the area ratios of D (at 1288-1295cm{sup -1}) to G (at ca. 1596cm{sup -1}) bands decreased as the exposure temperature increased. The random (r) fractions decreased with increasing exposure temperature, whereas, the graphitic (G) fractions increased whilst the defect (D) fraction showed a more complex variation with temperature. The latter is a likely indicator of graphitization of tuyere-level cokes in the blast furnace. The Raman spectral results were validated by XRD analyses of the demineralised and NMP-extracted cokes. Raceway coke possessed the largest crystalline dimensions and closest inter-layer spacing because it had encountered highest temperatures as well as iron catalysis. The combination of SEC and Raman spectrometry on core-drill samples has provided information relevant for maintaining stable operation in a blast-furnace operating with coal injection. 13 refs., 7 figs., 6 tabs.

  5. Modification of structural graphite machining

    International Nuclear Information System (INIS)

    Lavrenev, M.M.

    1979-01-01

    Studied are machining procedures for structural graphites (GMZ, MG, MG-1, PPG) most widely used in industry, of the article mass being about 50 kg. Presented are dependences necessary for the calculation of cross sections of chip suction tappers and duster pipelines in machine shops for structural graphite machining

  6. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  7. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  8. Continuous austempering fluidized bed furnace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  9. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  10. Acoustic Levitator With Furnace And Laser Heating

    Science.gov (United States)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  11. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  12. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [LOI Industrieofenanlagen G.m.b.H., Essen (Germany, F.R.)

    1979-09-01

    Part I of this paper is intended to present a review of the theory of heating round stock of a length considerably exceeding the diameter. It is permissible to neglect heating from the ends of the cylinders. With short and thick ingots as used in pilgrim mills, for instance, such simplification is not possible. The method for calculating the waste gas temperature can also be used for the remaining furnace sections provided certain conditions are allowed for and computational procedures observed. Part II of the paper will deal with this and with the major design features of rotating-hearth furnaces.

  13. Process and furnace for working bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1921-06-28

    A process for working up bitumen-containing materials, such as coal, peat and shale is characterized in that the material in thin-height batches with constant shaking by means of forward and backward movement of an elongated horizontal hearth heated underneath on which the material freely lies and on which it is moved in the furnace, through a single narrow furnace space with zone-wise heating of the hearth. A drying zone, a spent-material removal zone, and a carbonization zone are provided. Under separate hoods the gases and vapors are removed from these zones.

  14. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  15. Glass Furnace Project, October 1982-March 1983

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.

    1983-01-01

    In the Glass Furnace Project currently under way at Mound, a treatment technology for low-level radioactive waste is being evaluated that will combine volume reduction and immobilization in one step. Initial work focused on demonstrating the ability of the furnace to efficiently incinerate nonradioactive, simulated power-plant waste and on determining the adequacy of immobilization in a soda-lime silica matrix. Further evaluation of the system will involve a demonstration of the combustion and containment of radioactive waste. In preparation for this next phase of the program, preliminary investigation and design work were conducted during the past six months. 5 figures, 1 table

  16. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  17. Very Large Array H I Zeeman Observations of the Cygnus X Region: DR 22 and ON 2

    Science.gov (United States)

    Mayo, E. A.; Troland, T. H.

    2012-02-01

    We have used the Very Large Array to study the Zeeman effect in 21 cm H I absorption lines from two star-forming regions in the Cygnus X complex, DR 22 and ON 2. We measure the line-of-sight magnetic field toward these regions, finding B los = -84 ± 11 μG toward the DR 22 H II region and B los < 50 μG toward each of the two H II regions in ON 2. We interpret these results in terms of two different models. In one model, we assume that the H I Zeeman effect is a measure of magnetic fields in the associated molecular clouds. If so, then the DR 22 molecular cloud is magnetically subcritical, that is, magnetically dominated. The ON 2 molecular clouds are magnetically supercritical. In a second model, we assume that the H I Zeeman effect is a measure of magnetic fields in photon-dominated regions where the gas has been compressed (and the field amplified) by absorption of stellar radiation. We find that this second model, where the measured field strength has been affected by star formation, accounts well for the DR 22 H I Zeeman effect. This same model, however, overpredicts the magnetic field in ON 2. ON 2 may be a region where the magnetic field is energetically insignificant or where the field happens to lie nearly in the plane of the sky.

  18. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter

    Science.gov (United States)

    Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2017-09-01

    Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.

  19. 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO

    International Nuclear Information System (INIS)

    Wang Zhen; Wang Ninghui; Li Tie; Cao Yong

    2012-01-01

    A three dimensional steady-state magnetohydrodynamic model is developed for the arc plasma in a DC submerged electric arc furnace for the production of fused MgO. The arc is generated in a small semi-enclosed space formed by the graphite electrode, the molten bath and unmelted raw materials. The model is first used to solve a similar problem in a steel making furnace, and the calculated results are found to be in good agreement with the published measurements. The behavior of arcs with different arc lengths is also studied in the furnace for MgO production. From the distribution of the arc pressure on the bath surface it is shown that the arc plasma impingement is large enough to cause a crater-like depression on the surface of the MgO bath. The circulation of the high temperature air under the electrode may enhance the arc efficiency, especially for a shorter arc.

  20. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  1. Hypervelocity impacts into graphite

    International Nuclear Information System (INIS)

    Latunde-Dada, S; Cheesman, C; Day, D; Harrison, W; Price, S

    2011-01-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms -1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  2. Zeeman structure of red lines of lanthanum observed by laser spectroscopy methods

    Science.gov (United States)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence (LIF) Spectroscopy and Optogalvanic (OG) Spectroscopy were used for the investigation of the Zeeman hyperfine (hf) structures of 27 spectral lines of La I in the wavelength range between 633.86 and 667.54 nm. As a source of free La atoms a hollow cathode discharge lamp was used. Spectra were recorded in the presence of a relatively weak magnetic field (about 800G) produced by a permanent magnet, for two linear polarization directions of the exciting laser beam. As a result of the measurements, we determined for the first time the Landé gJ- factors of 18 levels of La I. The Landé gJ- factors of 12 other levels were re-investigated and determined with higher accuracy.

  3. Trends in measurement of solar vector magnetic fields using the Zeeman effect

    International Nuclear Information System (INIS)

    Harvey, J.W.

    1985-01-01

    Trends in spectropolarimetry as applied to the problem of Zeeman effect measurement are discussed. The use of detector arrays to improve observing efficiency is obtained. Which required new polarization modulation schemes that match the time required to read detector arrays. Another significant trend is narrowband filters, to improve angular and temporal coverage, and to Fourier transform spectrometers, to improve spectral coverage and precision. Low-polarization designs and improved methods for compensating instrumental polarization were developed. A requirement for high angular resolution suggests using adaptive optical devices to subdue the effects of bad seeing. The ultimate strategy to beat the seeing is to loft the telescope above the atmosphere such as is planned with a 30-cm telescope in 1985 and a 1250-cm telescope in 1990

  4. Trends in measurement of solar vector magnetic fields using the Zeeman effect

    Science.gov (United States)

    Harvey, J. W.

    1985-01-01

    Trends in spectropolarimetry as applied to the problem of Zeeman effect measurement are discussed. The use of detector arrays to improve observing efficiency is obtained. Which required new polarization modulation schemes that match the time required to read detector arrays. Another significant trend is narrowband filters, to improve angular and temporal coverage, and to Fourier transform spectrometers, to improve spectral coverage and precision. Low-polarization designs and improved methods for compensating instrumental polarization were developed. A requirement for high angular resolution suggests using adaptive optical devices to subdue the effects of bad seeing. The ultimate strategy to beat the seeing is to loft the telescope above the atmosphere such as is planned with a 30-cm telescope in 1985 and a 1250-cm telescope in 1990.

  5. Studies on atom deceleration process by using the Zeeman-tuned technique

    International Nuclear Information System (INIS)

    Bagnato, V.S.

    1990-01-01

    The Zeeman-tuned technique to slow an atomic beam of sodium atoms was detailed studied. A new technique to study the deceleration which consists in monitoring the fluorescence along the deceleration path is used. This allows a direct observation of the process and open possibilities to investigate the adiabatic following of atoms in the magnetic field, and others very important aspects of the process. With a single laser and some modification of the magnetic field profile it is possible stop atoms outside the slower solenoid, which make a lot of experiments much simpler. A systematic study of the optical pumping effects and adiabatic following conditions allow to produce a very strong slow motion atomic beam. (author)

  6. First Application of the Zeeman Technique to Remotely Measure Auroral Electrojet Intensity From Space

    Science.gov (United States)

    Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.

    2017-01-01

    Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.

  7. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Science.gov (United States)

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  8. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    International Nuclear Information System (INIS)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R

    2011-01-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr + ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  9. Theory of substrate, Zeeman, and electron-phonon interaction effects on the quantum capacitance in graphene

    KAUST Repository

    Tahir, M.; Sabeeh, K.; Schwingenschlö gl, Udo; Shaukat, A.

    2013-01-01

    Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements.

  10. Generalized Euler transformation for summing strongly divergent Rayleigh-Schroedinger perturbation series: the Zeeman effect

    International Nuclear Information System (INIS)

    Silverman, J.N.

    1983-01-01

    A generalized Euler transformation (GET) is introduced which provides a powerful alternative method of accurately summing strongly divergent Rayleigh-Schroedinger (RS) perturbation series when other summability methods fail or are difficult to apply. The GET is simple to implement and, unlike a number of other summation procedures, requires no a priori knowledge of the analytic properties of the function underlying the RS series. Application of the GET to the difficult problem of the RS weak-field ground-state eigenvalue series of the hydrogen atom in a magnetic field (quadratic Zeeman effect) yields sums of good accuracy over a very wide range of field strengths up to the most intense fields of 10 14 G. The GET results are compared with those obtained by other summing methods

  11. New hybrid non-linear transformations of divergent perturbation series for quadratic Zeeman effects

    International Nuclear Information System (INIS)

    Belkic, D.

    1989-01-01

    The problem of hydrogen atoms in an external uniform magnetic field (quadratic Zeeman effect) is studied by means of perturbation theory. The power series for the ground-state energy in terms of magnetic-field strength B is divergent. Nevertheless, it is possible to induce convergence of this divergent series by applying various non-linear transformations. These transformations of originally divergent perturbation series yield new sequences, which then converge. The induced convergence is, however, quite slow. A new hybrid Shanks-Levin non-linear transform is devised here for accelerating these slowly converging series and sequences. Significant improvement in the convergence rate is obtained. Agreement with the exact results is excellent. (author)

  12. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R, E-mail: ozeri@weizmann.ac.il [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-07-15

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped {sup 88}Sr{sup +} ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  13. Theory of substrate, Zeeman, and electron-phonon interaction effects on the quantum capacitance in graphene

    KAUST Repository

    Tahir, M.

    2013-12-10

    Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements.

  14. Ultra-narrow EIA spectra of 85Rb atom in a degenerate Zeeman multiplet system

    Science.gov (United States)

    Rehman, Hafeez Ur; Qureshi, Muhammad Mohsin; Noh, Heung-Ryoul; Kim, Jin-Tae

    2015-05-01

    Ultra-narrow EIA spectral features of thermal 85Rb atom with respect to coupling Rabi frequencies in a degenerate Zeeman multiplet system have been unraveled in the cases of same (σ+ -σ+ , π ∥ π) and orthogonal (σ+ -σ- , π ⊥ π)polarization configurations. The EIA signals with subnatural linewidth of ~ 100 kHz even in the cases of same circular and linear polarizations of coupling and probe laser have been obtained for the first time theoretically and experimentally. In weak coupling power limit of orthogonal polarization configurations, time-dependent transfer of coherence plays major role in the splitting of the EIA spectra while in strong coupling power, Mollow triplet-like mechanism due to strong power bring into broad split feature. The experimental ultra-narrow EIA features using one laser combined with an AOM match well with simulated spectra obtained by using generalized time-dependent optical Bloch equations.

  15. Theory of substrate, Zeeman, and electron-phonon interaction effects on the quantum capacitance in graphene

    International Nuclear Information System (INIS)

    Tahir, M.; Sabeeh, K.; Shaukat, A.; Schwingenschlögl, U.

    2013-01-01

    Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements

  16. Enhancement of phase-conjugate reflectivity using Zeeman coherence in highly degenerate molecular systems

    International Nuclear Information System (INIS)

    Mukherjee, Nandini

    2010-01-01

    A comprehensive theoretical analysis is developed for the vectorial phase conjugation using resonant four-wave mixing (FWM) in a highly degenerate rotational vibrational molecular system. The dynamic Stark shifts, saturation, and Doppler broadening are included for a realistic analysis. It is shown that the electromagnetically induced multilevel coherence controls the nonlinear wave mixing yielding interesting results for the phase conjugate (PC) reflectivity. It turns out that the efficiency of the PC reflectivity is decided by the relative phase of the Zeeman coherence and the population grating. When these two contributions are aligned in phase by a small detuning of the pump frequency, a large PC reflectivity (∼20%) is obtained with moderate pump intensity (∼500 mW/cm 2 ).

  17. Determination of ion temperatures from Zeeman broadened spectral lines in the edge of Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, C.C.; Isler, R.C.; Tobin, S.J.; Hogan, J.T. [Oak Ridge National Lab., TN (United States). Fusion Energy Div.; Hess, W.R. [Association EURATOM-CEA sur la Fusion Controlee, St-Paul-lez-Durance (France). Centre d`Etudes de Cadarache

    1994-09-01

    The authors have examined a {sup 3}P {yields} {sup 3}S multiplet of C III in Tore Supra in order to assess the possibility of determining the ion temperatures from transitions where the Zeeman effect cannot be neglected compared to the Doppler broadening. The preliminary studies lead them to believe that with good quality data the temperatures can be determined within about 20% in the 20--30 eV range and within about 50% in the neighborhood of 5 eV by fitting the entire multiplet rather than a semi-isolated feature, even though certain parameters important for the analysis, such as polarization effects of the optics, are not well characterized. In order to quantify these conclusions more precisely, future work will concentrate on developing numerical fitting routines and on examining the validity of the assumption that the distribution function for low ionization stages is Maxwellian.

  18. Determination of ion temperatures from Zeeman broadened spectral lines in the edge of Tore Supra

    International Nuclear Information System (INIS)

    Klepper, C.C.; Isler, R.C.; Tobin, S.J.; Hogan, J.T.; Hess, W.R.

    1994-01-01

    The authors have examined a 3 P → 3 S multiplet of C III in Tore Supra in order to assess the possibility of determining the ion temperatures from transitions where the Zeeman effect cannot be neglected compared to the Doppler broadening. The preliminary studies lead them to believe that with good quality data the temperatures can be determined within about 20% in the 20--30 eV range and within about 50% in the neighborhood of 5 eV by fitting the entire multiplet rather than a semi-isolated feature, even though certain parameters important for the analysis, such as polarization effects of the optics, are not well characterized. In order to quantify these conclusions more precisely, future work will concentrate on developing numerical fitting routines and on examining the validity of the assumption that the distribution function for low ionization stages is Maxwellian

  19. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  20. Radiolytic graphite oxidation revisited

    International Nuclear Information System (INIS)

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  1. Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es [Istituto Ricerche Solari Locarno, 6600, Locarno, Switzerland, associated to USI, Università della Svizzera Italiana (Switzerland)

    2017-07-01

    Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.

  2. Parametric optimization designs of a thermoelectric refrigeration device existing Zeeman and Coulomb effects

    International Nuclear Information System (INIS)

    Zhang, Guangping; Lin, Bihong; Wu, Guocan

    2017-01-01

    Highlights: • A new model of the quantum dot refrigeration devices is established. • The effects of the Zeeman and Coulomb effects on performance are discussed. • Maximum cooling rate and coefficient of performance are calculated. • Upper boundary of the optimal region of the device is discussed. • Optimum choice criteria of some important parameters are provided. - Abstract: A general class of quantum dot refrigeration devices, which is consisting of a single orbital interacting quantum dot and two metal leads with different temperatures and chemical potentials, is established. In the model, not only the Zeeman splitting of energy levels resulting from an external magnetic field but also the effect of a linear fade of the Coulomb energy caused by the splitting are taken into account simultaneously. Based on the quantum master equation, the occupation probabilities of quantum states for the electron are determined under the steady state condition. The general expressions of the particle fluxes, heat flows, power input, cooling rate and the coefficient of performance (COP) are derived. The influences of the energy level and external magnetic field on the performance of the refrigerator are discussed in detail. By applying numerical simulations, three-dimensional diagrams of the cooling rate and COP varying with the magnetic field and energy level are given. The maximum COP and the optimal values of corresponding parameters as well as the maximum cooling rate are obtained. The optimal regions of the magnetic field and the energy level are determined. The optimized scopes of the COP and cooling rate are provided. Some important conclusions in the previous literatures can be directly deduced from the current model under the different extreme conditions.

  3. BPM Motors in Residential Gas Furnaces: What are the Savings?

    OpenAIRE

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This p...

  4. Electric melting furnace for waste solidification

    International Nuclear Information System (INIS)

    Masaki, Toshio.

    1990-01-01

    To avoid electric troubles or reduction of waste processing performance even when platinum group elements are contained in wastes to be applied with glass solidification. For this purpose, a side electrode is disposed to the side wall of a melting vessel and a central electrode serving as a counter electrode is disposed about at the center inside the melting vessel. With such a constitution, if conductive materials are deposited at the bottom of the furnace or the bottom of the melting vessel, heating currents flow selectively between the side electrode and the central electrode. Accordingly, no electric currents flow through the conductive deposits thereby enabling to prevent abnormal heating in the bottom of the furnace. Further, heat generated by electric supply between the side electrode and the central electrode is supplied efficiently to raw material on the surface of the molten glass liquid to improve the processing performance. Further, disposition of the bottom electrode at the bottom of the furnace enables current supply between the central electrode and the bottom electrode to facilitate the temperature control for the molten glass in the furnace than in the conventional structure. (I.S.)

  5. Blast furnace hearth lining: post mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando, E-mail: bva@usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Neves; Elton Silva; Silva, Sidiney Nascimento [Companhia Siderugica Nacional (CSN), Rio de Janeiro, RJ (Brazil)

    2017-05-15

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10{sup 6} ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  6. Thermal model of the whole element furnace

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1998-01-01

    A detailed thermal analysis was performed to calculate temperatures in the whole element test furnace that is used to conduct drying studies of N-Reactor fuel. The purpose of this analysis was to establish the thermal characteristics of the test system and to provide a basis for post-test analysis

  7. Sintering furnace for remote fuel fabrication

    International Nuclear Information System (INIS)

    Bowen, W.W.

    1978-10-01

    Component testing and evaluation of a chemical vapor deposition Re/W muffle has been initiated. Hydrogen permeation testing and thermal cycling behavior will be evaluated. Fabrication of prototype 10-12 Kg furnace is scheduled for completion late in 1979, at which time testing of the system will be initiated

  8. Blast furnace hearth lining: post mortem analysis

    International Nuclear Information System (INIS)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando

    2017-01-01

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10"6 ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  9. Aerosol and particle transport in biomass furnaces

    NARCIS (Netherlands)

    Kemenade, van H.P.; Obernberger, G.

    2005-01-01

    The particulate emissions of solid fuel fired furnaces typically exhibit a bimodal distribution: a small peak in the range of 0.1 mm and a larger one above 10 mm. The particles with sizes above 10 mm are formed by a mechanical process like disintegration of the fuel after combustion, or erosion,

  10. Furnace for distillation of shales, etc

    Energy Technology Data Exchange (ETDEWEB)

    Germain-Clergault, M

    1863-07-09

    Practical experience and continuous operation of 55 retorts for 5 years of the system of vertical retorts patented in 1857 (French Patent 18,422) has shown the advantages resulting from this furnace which gives over a mean yield of 5% of Auton shale, which is /sup 1///sub 2/% more than the old systems with a fuel economy varying from 15 to 20%.

  11. Chemisputtering of interstellar graphite grains

    International Nuclear Information System (INIS)

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  12. Obtention of nuclear grade graphite

    International Nuclear Information System (INIS)

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  13. Dynamics and control of a gas-fired furnace

    NARCIS (Netherlands)

    Roffel, B.; Rijnsdorp, J.E.

    1974-01-01

    A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good

  14. Characterization of Ignalina NPP RBMK Reactors Graphite

    International Nuclear Information System (INIS)

    Hacker, P.J.; Neighbour, G.B.; Levinskas, R.; Milcius, D.

    2001-01-01

    The paper concentrates on the investigations of the initial physical properties of graphite used in production of graphite bricks of Ignalina NPP. These graphite bricks are used as nuclear moderator and major core structural components. Graphite bulk density is calculated by mensuration, pore volumes are measured by investigation of helium gas penetration in graphite pore network, the Young's modulus is determined using an ultrasonic time of flight method, the coefficient of thermal expansion is determined using a Netzsch dilatometer 402C, the fractured and machined graphite surfaces are studied using SEM, impurities are investigated qualitatively by EDAX, the degree of graphitization of the material is tested using X-ray diffraction. (author)

  15. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  16. Cadmium accumulation in the crayfish, Procambarus clarkii, using graphite furnace atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Mayans, J.; Hernandez, F.; Medina, J.; Del Ramo, J.; Torreblanca, A.

    1986-11-01

    Lake Albufera and the surrounding rice-field waters are being subject to very heavy loads of sewage and toxic industrial residues (including heavy metals and pesticides) from the many urban and wastewaters in this area. The American red crayfish Procambarus clarkii is native to the Louisiana marshes (USA). In 1978, the crayfish appeared in Lake Albufera near Valencia (Spain), and presently, without adequate sanitary controls, the crayfish is being fished commercially for human consumption. In view of this interest, it is important to have accurate information on concentrations of cadmium in natural waters and cadmium levels of tissues of freshwaters animals used as human food, as well as the accumulation rates of this metal in this animal. In the present study, the authors investigated the accumulation of cadmium in several tissues of the red crayfish, P clarkii (Girard) from Lake Albufera following cadmium exposure. Determinations of cadmium were made by flameless atomic absorption spectroscopy and the standard additions method. Digestion of samples was made by wet ashing in open flasks with concentrated HNO/sub 3/ at 80-90/sup 0/C.

  17. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  18. Thermal Analysis of an Industrial Furnace

    Directory of Open Access Journals (Sweden)

    Mirko Filipponi

    2016-10-01

    Full Text Available Industries, which are mainly responsible for high energy consumption, need to invest in research projects in order to develop new managing systems for rational energy use, and to tackle the devastating effects of climate change caused by human behavior. The study described in this paper concerns the forging industry, where the production processes generally start with the heating of steel in furnaces, and continue with other processes, such as heat treatments and different forms of machining. One of the most critical operations, in terms of energy loss, is the opening of the furnace doors for insertion and extraction operations. During this time, the temperature of the furnaces decreases by hundreds of degrees in a few minutes. Because the dispersed heat needs to be supplied again through the combustion of fuel, increasing the consumption of energy and the pollutant emissions, the evaluation of the amount of lost energy is crucial for the development of systems which can contain this loss. To perform this study, CFD simulation software was used. Results show that when the door opens, because of temperature and pressure differences between the furnace and the ambient air, turbulence is created. Results also show that the amount of energy lost for an opening of 10 min for radiation, convection and conduction is equal to 5606 MJ where convection is the main contributor, with 5020 MJ. The model created, after being validated, has been applied to perform other simulations, in order to improve the energy performance of the furnace. Results show that reducing the opening time of the door saves energy and limits pollutant emissions.

  19. Graphite in Science and Nuclear Technology

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in the science and technology. Structure and electrical properties, technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry, so author concentrates on actual problems of application and testing of graphite materials in modern science and technology. Translated from chapters 1 of monog...

  20. Mesostructure of graphite composite and its lifetime

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Generally, the review relies, on the original results and concentrates on actual problems of application and testing of graphite materials in modern nuclear p...

  1. Graphite surveillance in N Reactor

    International Nuclear Information System (INIS)

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  2. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  3. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  4. Graphite selection for the PBMR reflector

    International Nuclear Information System (INIS)

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  5. AUTOMATION OF GLASS TEMPERING FURNACE BY USING PLC

    Directory of Open Access Journals (Sweden)

    Abdullah BÜYÜKYILDIZ

    2007-02-01

    Full Text Available In this study, a furnace which is used for observation of environments under high temperature, and also used for manufacturing of glasses which are resisted to high temperature has been designed and implemented. Automation of this system has been done by using PLC. Operating parameters of furnace such as materials entering, the furnace, the local temperature control of furnace, cooling control and materials outing have been sensed with Hall Effect Sensor. Furthermore, the observation of parameters of furnace on screen has been provided with SCADA software. Obtained products have been shown the system works successfully.

  6. Monitoring device for glass melting furnace

    International Nuclear Information System (INIS)

    Endo, Noboru; Asano, Naoki; Higuchi, Tatsuo; Koyama, Mayumi; Hanado, Shinji.

    1995-01-01

    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  7. Vitrification of surrogate mixed wastes in a graphite electrode arc melter

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Ball, L.

    1995-01-01

    Demonstration tests for vitrifying mixed wastes and contaminated soils have been conducted using a small (800 kVA), industrial-scale, three-phase AC, graphite electrode furnace located at the Albany Research Center of the United States Bureau of Mines (USBM). The feed mixtures were non-radioactive surrogates of various types of mixed (radioactive and hazardous), transuranic-contaminated wastes stored and buried at the Idaho National Engineering Laboratory (INEL). The feed mixtures were processed with added soil from the INEL. Objectives being evaluated include (1) equipment capability to achieve desired process conditions and vitrification products for different feed compositions, (2) slag and metals tapping capability, (3) partitioning of transuranic elements and toxic metals among the furnace products, (4) slag, fume, and metal products characteristics, and (5) performance of the feed, furnace and air pollution control systems. The tests were successfully completed in mid-April 1995. A very comprehensive process monitoring, sampling and analysis program was included in the test program. Sample analysis, data reduction, and results evaluation are currently underway. Initial results indicate that the furnace readily processed around 20,000 lb of widely ranging feed mixtures at feedrates of up to 1,100 lb/hr. Continuous feeding and slag tapping was achieved. Molten metal was also tapped twice during the test program. Offgas emissions were efficiently controlled as expected by a modified air pollution control system

  8. Dental Porcelain Furnaces: Test and Evaluation.

    Science.gov (United States)

    1988-01-01

    D Q)L a ) a) C ) C C C C c *. . 3a)0. >4 a)->4 >4 -, Z 0 -a-’- 4-% a) ( nca )m m nU Cs C ) (3 ) 11) a) a) a3) Q) a) W) a2) C C~~ >4 L > > >1 >1 4 > 4...Fig. 1) is a computerized programmable porcelain furnace with 45 open programs. This unit has a large detachable cathode -ray tube (CRT) screen which

  9. Furnaces for the distillation of coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, F A; Deacon, M; Brady, N P.W.

    1918-08-14

    A tunnel or other furnace for the distillation of coal of the kind provided with inverted pockets in its roof to collect diverse distillates in the manner described, characterized by one or more of the pockets being provided with a sloping roof whose gradient from the higher end downwards is in the direction of the forward travel of the fuel beneath it for the purposes described.

  10. Husk energy for boilers and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Deven, M.

    1985-10-01

    In view of the technical feasibility and economic viability, industries located in rice, coconut, and cotton growing areas, can easily switch over from oil/coal fired furnace/boilers to husk fired ones and thereby effect fuel economy. The banks and financial institutions will readily agree to provide finance as per directions of the governments and in some cases they also offer subsidy for development and utilization of energy saving devices.

  11. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    Science.gov (United States)

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  12. Phase control of a Zeeman-split He-Ne gas laser by variation of the gaseous discharge voltage.

    Science.gov (United States)

    Shelton, W N; Hunt, R H

    1992-07-20

    Zeeman-split lasers are useful for precise positioning or motion control. In applications that employ such a laser to control closely the position of a moving system, phase noise in the Zeeman frequency is a serious problem. Control of low-frequency phase noise can be obtained through variation of the external magnetic field by way of a solenoid wound around the laser tube. It is the finding in this work that control of the residual higher-frequency noise of a He-Ne laser can be obtained through small variations of the high voltage that is used to effect the gaseous discharge in the laser tube. The application of the present system is to the control of the path difference in a Fourier-transform interferometric spectrometer.

  13. Performance of the Zeeman analyzer system of the McDonald Observatory 2.7 meter telescope

    Science.gov (United States)

    Vogt, S. S.; Tull, R. G.; Kelton, P. W.

    1980-01-01

    The paper describes a multichannel photoelectric Zeeman analyzer at the coude spectrograph of the McDonald 2.7 m reflector. A comparison of Lick and McDonald observations of HD 153882 reveals no significant difference in slopes or zero points of the two magnetic fields indicating that the systematic scale difference of 30-40% is probably instrumental in origin. Observations of the magnetic variable beta Cor Bor revealed a more nearly sinusoidal magnetic curve with less internal scatter than the photographically determined field measures of the Lick and Mauna Kea Zeeman systems. Investigation of periodicity in the secularly varying magnetic minima of beta Cor Bor did not yield evidence of previously noted periodicities other than that expected from the time structure of the data sampling.

  14. Electromagnetically induced transparency in a Zeeman-sublevels Λ-system of cold 87Rb atoms in free space

    International Nuclear Information System (INIS)

    Jiang Xiaojun; Zhang Haichao; Wang Yuzhu

    2016-01-01

    We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87 Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 5 2 S 1/2 , F = 2 and 5 2 P 3/2 , F′ = 2 of 87 Rb D 2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820). (paper)

  15. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    Science.gov (United States)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  16. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    Science.gov (United States)

    Zhang, Zhi Tao; Xu, C; Dmytriieva, Daryna; Molatta, Sebastian; Wosnitza, J; Wang, Y T; Helm, Manfred; Zhou, Shengqiang; Kuehne, Hannes

    2017-09-18

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by $^{13}$C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the $^{13}$C nuclear spin-lattice relaxation rate $1/T_{1}$ by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of $1/T_{1}$ below about 10 K can well be described by a thermally activated form, $1/T_{1}\\propto\\exp(-\\Delta/k_{B}T)$, yielding a singular Zeeman energy of ($0.41\\pm0.01$) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments. © 2017 IOP Publishing Ltd.

  17. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  18. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  19. Characterization of tuyere-level core-drill coke samples from blast furnace operation

    Energy Technology Data Exchange (ETDEWEB)

    S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2007-12-15

    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

  20. FIRST ZEEMAN DOPPLER IMAGING OF A COOL STAR USING ALL FOUR STOKES PARAMETERS

    International Nuclear Information System (INIS)

    Rosén, L.; Kochukhov, O.; Wade, G. A.

    2015-01-01

    Magnetic fields are ubiquitous in active cool stars, but they are in general complex and weak. Current Zeeman Doppler imaging (ZDI) studies of cool star magnetic fields chiefly employ circular polarization observations because linear polarization is difficult to detect and requires a more sophisticated radiative transfer modeling to interpret. But it has been shown in previous theoretical studies, and in the observational analyses of magnetic Ap stars, that including linear polarization in the magnetic inversion process makes it possible to correctly recover many otherwise lost or misinterpreted magnetic features. We have obtained phase-resolved observations in all four Stokes parameters of the RS CVn star II Peg at two separate epochs. Here we present temperature and magnetic field maps reconstructed for this star using all four Stokes parameters. This is the very first such ZDI study of a cool active star. Our magnetic inversions reveal a highly structured magnetic field topology for both epochs. The strength of some surface features is doubled or even quadrupled when linear polarization is taken into account. The total magnetic energy of the reconstructed field map also becomes about 2.1–3.5 times higher. The overall complexity is also increased as the field energy is shifted toward higher harmonic modes when four Stokes parameters are used. As a consequence, the potential field extrapolation of the four Stokes parameter ZDI results indicates that magnetic field becomes weaker at a distance of several stellar radii due to a decrease of the large-scale field component

  1. Aperture synthesis observations of the 21 centimeter Zeeman effect toward Orion A

    International Nuclear Information System (INIS)

    Troland, T.H.; Heiles, C.; Goss, W.M.

    1989-01-01

    The VLA has been used to map the 21 cm Zeeman effect at 40 arcsec resolution in the absorbing H I gas in front of Orion A. Two such regions exist having typical velocities of 1 and 5 km/s; both almost certainly lie close to the H II region. Field strengths exceed 100 micro G in this H I gas. The field in the higher velocity component has been reliably detected across most of the continuum source. No field reversals exist. The distribution of line-of-sight field strengths derived for this component mimics that of tau(H I) for positions where the lines are not saturated, suggesting that the mass-to-flux ratio in this gas is approximately constant. The distribution of visual extinction across Orion A using existing radio and optical data is rederived. Maxima and minima of extinction are generally coincident with maxima and minima of magnetic field. This correspondence suggests that the observed association between field strength and tau(H I) is a real column density effect, that the effect encompasses all neutral gas in front of the source, and that the mass-to-flux ratio for this neutral gas is approximately constant. Results for Orion A lend weight to the conclusion that magnetic fields play a crucial role in the dynamics of interstellar material. 48 references

  2. A study of nuclear relaxation to the electron non-Zeeman system

    International Nuclear Information System (INIS)

    Honten, J. van.

    1979-01-01

    An examination of the nuclear spin-lattice relaxation mechanism in a series of diluted copper-caesium Tutton salt crystals, containing different percentages of D 2 O in the waters of hydration, is described. Results of relaxation measurements are presented and a strong angular dependence is observed. It is proved, however, that under most experimental conditions applied, the bottleneck in the relaxation path is not the cross-relaxation but the thermal contact between the proton Zeeman system and the electron dipole-dipole interaction system. Hence the proton spin-lattice relaxation measurements have enabled determination of the time constant of this thermal contact. The microscopic coupling process which provides thermal contact, is a simultaneous transition of two electron spins and one proton spin. This so-called three-spin transition is described and calculations presented. Double resonance experiments are performed, where the resonance signal of deuterium or caesium spins is saturated and the effect on the proton resonance signal observed. (C.F.)

  3. Mass Balance Modeling for Electric Arc Furnace and Ladle Furnace System in Steelmaking Facility in Turkey

    Institute of Scientific and Technical Information of China (English)

    (I)smail Ekmek(c)i; Ya(s)ar Yetisken; (U)nal (C)amdali

    2007-01-01

    In the electric arc furnace (EAF) steel production processes, scrap steel is principally used as a raw material instead of iron ore. In the steelmaking process with EAF, scrap is first melted in the furnace and then the desired chemical composition of the steel can be obtained in a special furnace such as ladle furnace (LF). This kind of furnace process is used for the secondary refining of alloy steel. LF furnace offers strong heating fluxes and enables precise temperature control, thereby allowing for the addition of desired amounts of various alloying elements. It also provides outstanding desulfurization at high-temperature treatment by reducing molten steel fluxes and removing deoxidation products. Elemental analysis with mass balance modeling is important to know the precise amount of required alloys for the LF input with respect to scrap composition. In present study, chemical reactions with mass conservation law in EAF and LF were modeled altogether as a whole system and chemical compositions of the final steel alloy output can be obtained precisely according to different scrap compositions, alloying elements ratios, and other input amounts. Besides, it was found that the mass efficiency for iron element in the system is 95.93%. These efficiencies are calculated for all input elements as 8.45% for C, 30.31% for Si, 46.36% for Mn, 30.64% for P, 41.96% for S, and 69.79% for Cr, etc. These efficiencies provide valuable ideas about the amount of the input materials that are vanished or combusted for 100 kg of each of the input materials in the EAF and LF system.

  4. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  5. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler

    Science.gov (United States)

    Rovnaník, P.; Míková, M.; Kusák, I.

    2017-10-01

    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  6. Use of Different Furnaces to Study Repeatability and Reproducibility of Three Pd-C Cells

    Science.gov (United States)

    Battuello, M.; Florio, M.; Girard, F.

    2010-09-01

    Three different Pd-C eutectic fixed-point cells were prepared and investigated at INRIM. Several tens of phase transition runs were carried out and recorded with both a Si-based radiation thermometer at 950 nm and a precision InGaAs-based thermometer at 1.6 μm. Two of the cells were of the same design with an inner volume of 12 cm3. The third one was smaller with a useful inner volume of 3.6 cm3. The three cells were filled with palladium powder 4N5 or 4N8 pure and graphite powder 6N pure. The repeatability and stability of the inflection point were investigated over a period of 1 year. The noticeably different external dimensions of the two cells, namely, 110 mm and 40 mm in length, allowed the influence of the longitudinal temperature distribution to be investigated. For this purpose, two different furnaces, a single-zone with SiC heaters and a three-zone with MoSi2 heaters, were used. Different operative conditions, namely, temperature steps, melting rate, longitudinal temperature distributions, and position of cells within the furnace, were tested to investigate the reproducibility of the cells. Effects on the duration and shape of the plateaux were also studied. This article gives details of the measurement setup and analyses of the melting plateaux obtained with the different conditions.

  7. Properties and application of carbon composite brick for blast furnace hearth

    Directory of Open Access Journals (Sweden)

    Jiao K.X.

    2015-01-01

    Full Text Available A type of carbon composite brick was produced via the microporous technique using natural flack graphite, α-Al2O3 and high-quality bauxite chamotte (Al2O3≥87 mass% as raw materials with fine silicon powder as additive. The composition and microstructure of the obtained carbon composite were characterized using chemical analysis, XRD and SEM with EDS. The high temperature properties of thermal conductivity, oxidization and corrosion by molten slag and hot metal of the composite were analyzed. Based on these, the type of carbon composite brick worked in a blast furnace hearth for six years was further sampled at different positions. The protective layer was found and its chemical composition and microscopic morphology were investigated. It is found that the carbon composite brick combines the good properties of both the conventional carbon block and ceramic cup refractory. The protective layer near the hot face consists of two separated sublayers, i.e. the slag layer and the carbon layer. A certain amount of slag phase is contained in the carbon layer, which is caused by the reaction of coke ash with the refractory. No obvious change in the chemical composition of the protective layer along the depth of the sidewall is found. This work provides a useful guidance for the extension of the lifetime of blast furnace hearths.

  8. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  9. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  10. Addition of electric arc furnace dust in hot metal changing the form of addition

    International Nuclear Information System (INIS)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de; Vieira, Estefano Aparecido; Telles, Victor Bridi; Grillo, Felipe Fardin; Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano

    2014-01-01

    This research aims to study the incorporation of the mass of electric arc furnace dust (EAFD), by addition in hot metal (1.78% Si) at a temperature of 1,400 degrees Celsius. The EAFD is from a steel plant producing long steel. The addition of the EAFD was as received, in the form of briquettes without agitation of the hot metal and in the form of briquettes with agitation of the hot metal. Previously, the EAFD was characterized using the following techniques: chemical analysis, size analysis, X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) microanalysis. The achievement of fusion experiments in laboratory scale, took place in a vertical tubular furnace with temperature control. The fusion experiments to assess the incorporation of EAFD mass used graphite crucibles. After cooling, the hot metal and the slag, remaining in the crucible, were weighed to do a mass balance. A flow of inert gas (argon) was maintained inside the furnace during the experiments. Results show that the experiment with addition of EAFD as received presents the best result of incorporating the mass of the final hot metal (1.73%) combined with the lowest percentage of volatilized mass of EAFD (46.52%). The experiment addition of EAFD in the form of briquette with agitation of hot metal presents the lowest percentage of slag mass (4.58%). The zinc content of volatilized EAFD (64.30%) is higher than the zinc content of the imported ore concentrate (52%) and zinc content of the national ore concentrate (12% to 39%). The presence of lead and cadmium in the slag characterizing it as a hazardous solid waste. (author)

  11. Sealed rotary hearth furnace with central bearing support

    Science.gov (United States)

    Docherty, James P.; Johnson, Beverly E.; Beri, Joseph

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  12. Application of Carbon Composite Bricks for Blast Furnace Hearth

    Science.gov (United States)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin

    Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.

  13. Determination of lead in whole blood: Comparison of the LeadCare blood lead testing system with zeeman longitudinal electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pineau, A.; Viallefont, A.; Fauconneau, B.; Rafael, M.; Guillard, O.

    2002-01-01

    This study compares the efficiency of blood lead level analysis by graphite furnace atomic absorption spectrometry (GFAAS) and the portable LeadCare Blood lead testing system (LCS). Recoveries of two added lead concentrations of 22 and 42 μg/dL ranged from 102.4 to 105.5% for LCS and from 96.3 to 97.2% for GFAAS. Measurement of a certified sample (Certified Danish Whole Blood) at a blood lead concentration of 26.2 μg/dL gave within- and between-run coefficients of variation which were both approximately 8% by LCS and 2% by GFAAS. Comparison of the tested method (LCS) versus GFAAS from analysis of 76 samples of blood lead collected from workers in different industrial sectors showed imperfect overall correlation (r = 0.95). The LCS is quite suitable for screening purposes, but requires the use of non-frozen blood collected less than 24 h before. Conservative threshold values should be applied when using the LCS for initial screening in the field. (orig.)

  14. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  15. Fabrication of Graphene by Cleaving Graphite Chemically

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  16. Method of Joining Graphite Fibers to a Substrate

    Science.gov (United States)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  17. Assessment of selected furnace technologies for RWMC waste

    International Nuclear Information System (INIS)

    Batdorf, J.; Gillins, R.; Anderson, G.L.

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste

  18. Baking and helium glow discharge cleaning of SST-1 tokamak with graphite plasma facing components

    International Nuclear Information System (INIS)

    Semwal, Pratibha; Khan, Ziauddin; Raval, Dilip

    2015-01-01

    Graphite plasma facing components (PFCs) were installed inside SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 X 10 -5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium (He) glow discharge cleaning (GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nanometers from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.48. In this paper, the results of effect of baking and He-GDC experiments of SST-1 will be presented in detail. (author)

  19. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    International Nuclear Information System (INIS)

    Semwal, P; Khan, Z; Raval, D C; Dhanani, K R; George, S; Paravastu, Y; Prakash, A; Thankey, P; Ramesh, G; Khan, M S; Saikia, P; Pradhan, S

    2017-01-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10 -5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail. (paper)

  20. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    Science.gov (United States)

    Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.

    2017-04-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.

  1. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL; Meyer III, Harry M [ORNL; Howe, Jane Y [ORNL; Meisner, Roberta Ann [ORNL; Payzant, E Andrew [ORNL; Lance, Michael J [ORNL; Yoon, Steve [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.; Wood III, David L [ORNL

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  2. Photoemission study of K on graphite

    NARCIS (Netherlands)

    Bennich, P.; Puglia, C.; Brühwiler, P.A.; Nilsson, A.; Sandell, A.; Mårtensson, N.; Rudolf, P.

    1999-01-01

    The physical and electronic structure of the dispersed and (2×2) phases of K/graphite have been characterized by valence and core-level photoemission. Charge transfer from K to graphite is found to occur at all coverages, and includes transfer of charge to the second graphite layer. A rigid band

  3. Separation medium containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  4. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  5. Predictive control of thermal state of blast furnace

    Science.gov (United States)

    Barbasova, T. A.; Filimonova, A. A.

    2018-05-01

    The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.

  6. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  7. Nitrogen oxide emissions from a kraft recovery furnace

    International Nuclear Information System (INIS)

    Prouty, A.L.; Stuart, R.C.; Caron, A.L.

    1993-01-01

    Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation

  8. A review of temperature measurement in the steel reheat furnace

    International Nuclear Information System (INIS)

    Martocci, A.P.; Mihalow, F.A.

    1985-01-01

    The incentive for conducting research and development on reheat furnaces is substantial; the domestic steel industry spent approximately one billion dollars on fuel in reheat furnaces in 1981. Bethlehem Steel Corp. spent /145 million of that total, and neither figure includes fuel consumed in soaking pits or annealing furnaces. If the authors set a goal to save 10% of these annual fuel costs, that translates into /100 million for the domestic steel industry and /14.5 million for Bethlehem Steel. These large sums of money are significant incentives. The purpose of this paper is to review the historical heating practices and equipment at steel reheat furnaces along with current practices and instrumentation

  9. Formation mechanism of the protective layer in a blast furnace hearth

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  10. Continuous denitration device using a microwave furnace

    International Nuclear Information System (INIS)

    Sato, Hajime

    1982-04-01

    A continuous denitration device is described that enables to obtain dried U or Pu dioxide or a mixture of these from a solution of uranyl or plutonium nitrate or a mixed solution of these by irradiation with microwaves. This device allows uranyl or plutonium nitrate to crystallize and the resulting crystals to be separated from the solution. A belt conveyer carries the crystals to a microwave heating furnace for denitration. Approximately 2.4 kg dried cake of U dioxide per hour is obtained [fr

  11. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  12. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    Science.gov (United States)

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  14. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  15. Graphite oral tattoo: case report.

    Science.gov (United States)

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-16

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions.

  16. 'In situ' expanded graphite extinguishant

    International Nuclear Information System (INIS)

    Cao Qixin; Shou Yuemei; He Bangrong

    1987-01-01

    This report is concerning the development of the extinguishant for sodium fire and the investigation of its extinguishing property. The experiment result shows that 'in situ' expanded graphite developed by the authors is a kind of extinguishant which extinguishes sodium fire quickly and effectively and has no environment pollution during use and the amount of usage is little

  17. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  18. VERY LARGE ARRAY OH ZEEMAN OBSERVATIONS OF THE STAR-FORMING REGION S88B

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, A. P.; Eftimova, M. [Physics Department, DePaul University, 2219 N. Kenmore Ave., Byrne Hall 211, Chicago, IL 60614 (United States); Brogan, C. L. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Bourke, T. L. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Troland, T. H., E-mail: asarma@depaul.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2013-04-10

    We present observations of the Zeeman effect in OH thermal absorption main lines at 1665 and 1667 MHz taken with the Very Large Array toward the star-forming region S88B. The OH absorption profiles toward this source are complicated, and contain several blended components toward a number of positions. Almost all of the OH absorbing gas is located in the eastern parts of S88B, toward the compact continuum source S88B-2 and the eastern parts of the extended continuum source S88B-1. The ratio of 1665/1667 MHz OH line intensities indicates the gas is likely highly clumped, in agreement with other molecular emission line observations in the literature. S88-B appears to present a similar geometry to the well-known star-forming region M17, in that there is an edge-on eastward progression from ionized to molecular gas. The detected magnetic fields appear to mirror this eastward transition; we detected line-of-sight magnetic fields ranging from 90 to 400 {mu}G, with the lowest values of the field to the southwest of the S88B-1 continuum peak, and the highest values to its northeast. We used the detected fields to assess the importance of the magnetic field in S88B by a number of methods; we calculated the ratio of thermal to magnetic pressures, we calculated the critical field necessary to completely support the cloud against self-gravity and compared it to the observed field, and we calculated the ratio of mass to magnetic flux in terms of the critical value of this parameter. All these methods indicated that the magnetic field in S88B is dynamically significant, and should provide an important source of support against gravity. Moreover, the magnetic energy density is in approximate equipartition with the turbulent energy density, again pointing to the importance of the magnetic field in this region.

  19. VERY LARGE ARRAY OH ZEEMAN OBSERVATIONS OF THE STAR-FORMING REGION S88B

    International Nuclear Information System (INIS)

    Sarma, A. P.; Eftimova, M.; Brogan, C. L.; Bourke, T. L.; Troland, T. H.

    2013-01-01

    We present observations of the Zeeman effect in OH thermal absorption main lines at 1665 and 1667 MHz taken with the Very Large Array toward the star-forming region S88B. The OH absorption profiles toward this source are complicated, and contain several blended components toward a number of positions. Almost all of the OH absorbing gas is located in the eastern parts of S88B, toward the compact continuum source S88B-2 and the eastern parts of the extended continuum source S88B-1. The ratio of 1665/1667 MHz OH line intensities indicates the gas is likely highly clumped, in agreement with other molecular emission line observations in the literature. S88-B appears to present a similar geometry to the well-known star-forming region M17, in that there is an edge-on eastward progression from ionized to molecular gas. The detected magnetic fields appear to mirror this eastward transition; we detected line-of-sight magnetic fields ranging from 90 to 400 μG, with the lowest values of the field to the southwest of the S88B-1 continuum peak, and the highest values to its northeast. We used the detected fields to assess the importance of the magnetic field in S88B by a number of methods; we calculated the ratio of thermal to magnetic pressures, we calculated the critical field necessary to completely support the cloud against self-gravity and compared it to the observed field, and we calculated the ratio of mass to magnetic flux in terms of the critical value of this parameter. All these methods indicated that the magnetic field in S88B is dynamically significant, and should provide an important source of support against gravity. Moreover, the magnetic energy density is in approximate equipartition with the turbulent energy density, again pointing to the importance of the magnetic field in this region.

  20. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  1. Characterisation of Chlorine Behavior in French Graphite

    International Nuclear Information System (INIS)

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  2. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  3. Energy Efficiency Model for Induction Furnace

    Science.gov (United States)

    Dey, Asit Kr

    2018-01-01

    In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.

  4. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  5. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  6. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  7. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Open fireplace furnace as an adequate heating system

    Energy Technology Data Exchange (ETDEWEB)

    Terbrack, E.

    The fireplace furnace is a furnace for the open fireplace. It is connected to the existing fuel-oil or gas central heating and is used for house heating and warm water preparation when the fire in the fireplace is on. It combines the romanticism of the open fireplace with the necessity of saving fuel oil and gas, ensuring heat supply.

  9. Liquid flow in the hearth of the blast furnace

    International Nuclear Information System (INIS)

    Gauje, P.; Nicolle, R.; Steiler, J.M.; Venturini, M.J.; Libralesso, J.M.

    1992-01-01

    The hearth of a blast furnace is poorly known. Our approach to characterize the hearth involves classical methods of chemical engineering, assessing the flow conditions by means of radioactive tracer techniques. The most important feature of this study is to combine measurements on industrial blast furnaces, experiments on a small scale model and flow model. calculations. 8 refs., 16 figs

  10. Design and Construction of Oil Fired Compact Crucible Furnace ...

    African Journals Online (AJOL)

    As a prelude to necessary industrialization, foundries are springing up in various parts of Nigeria and most of these foundries rely on oil fired furnaces in their operation. This study is aimed at developing an oil fired crucible furnace from locally sourced materials for foundries in Nigeria. In our design, a new system of fuel ...

  11. Modeling and Simulation of Claus Unit Reaction Furnace

    Directory of Open Access Journals (Sweden)

    Maryam Pahlavan

    2016-01-01

    Full Text Available Reaction furnace is the most important part of the Claus sulfur recovery unit and its performance has a significant impact on the process efficiency. Too many reactions happen in the furnace and their kinetics and mechanisms are not completely understood; therefore, modeling reaction furnace is difficult and several works have been carried out on in this regard so far. Equilibrium models are commonly used to simulate the furnace, but the related literature states that the outlet of furnace is not in equilibrium and the furnace reactions are controlled by kinetic laws; therefore, in this study, the reaction furnace is simulated by a kinetic model. The predicted outlet temperature and concentrations by this model are compared with experimental data published in the literature and the data obtained by PROMAX V2.0 simulator. The results show that the accuracy of the proposed kinetic model and PROMAX simulator is almost similar, but the kinetic model used in this paper has two importance abilities. Firstly, it is a distributed model and can be used to obtain the temperature and concentration profiles along the furnace. Secondly, it is a dynamic model and can be used for analyzing the transient behavior and designing the control system.

  12. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T; Jaeaeskelaeinen, K; Oeini, J; Koskiahde, A; Jokiniemi, J; Pyykkoenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  13. Development of a cylindrical gas-fired furnace for reycling ...

    African Journals Online (AJOL)

    This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...

  14. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    Keywords: Silica sand; Blast Furnace Slag; Mould properties; Ferrous and nonferrous ... raw material for the production of cast components in foundry industries. ... applications for conserving natural resources and reduce the cost of the raw .... in an elevated temperature melting furnace with temperature values of 750 to.

  15. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 kg...

  16. Non-polluting steam generators with fluidized-bed furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H [Deutsche Babcock A.G., Oberhausen (Germany, F.R.)

    1979-07-01

    The author reports on a 35 MW steam generator with hard coal fluidized-bed furnace a planned 35 MW steam generator with flotation-dirt fluidized-bed furnace, and on planned steam generators for fluidized-bed firing of hard coal up to a steam power of about 200 MW.

  17. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  18. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  19. Accurate 3He polarimetry using the Rb Zeeman frequency shift due to the Rb-3He spin-exchange collisions

    International Nuclear Information System (INIS)

    Romalis, M.V.; Cates, G.D.

    1998-01-01

    We describe a method of 3 He polarimetry relying on the polarization-dependent frequency shift of the Rb Zeeman resonance. Our method is ideally suited for on-line measurements of the 3 He polarization produced by spin-exchange optical pumping. To calibrate the frequency shift we performed an accurate measurement of the imaginary part of the Rb- 3 He spin-exchange cross section in the temperature range typical for spin-exchange optical pumping of 3 He. We also present a detailed study of possible systematic errors in the frequency shift polarimetry. copyright 1998 The American Physical Society

  20. The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2.

    Science.gov (United States)

    Reyoung Kim, Hee

    2013-09-01

    The radioactivity of (14)C and (3)H in graphite samples from the dismantled Korea Research Reactor-2 (the KRR-2) site was analyzed by high-temperature oxidation and liquid scintillation counting, and the graphite waste was suggested to be disposed of as a low-level radioactive waste. The graphite samples were oxidized at a high temperature of 800 °C, and their counting rates were measured by using a liquid scintillation counter (LSC). The combustion ratio of the graphite was about 99% on the sample with a maximum weight of 1g. The recoveries from the combustion furnace were around 100% and 90% in (14)C and (3)H, respectively. The minimum detectable activity was 0.04-0.05 Bq/g for the (14)C and 0.13-0.15 Bq/g for the (3)H at the same background counting time. The activity of (14)C was higher than that of (3)H over all samples with the activity ratios of the (14)C to (3)H, (14)C/(3)H, being between 2.8 and 25. The dose calculation was carried out from its radioactivity analysis results. The dose estimation gave a higher annual dose than the domestic legal limit for a clearance. It was thought that the sampled graphite waste from the dismantled research reactor was not available for reuse or recycling and should be monitored as low-level radioactive waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Macario, Kita D., E-mail: kitamacario@gmail.com [Departamento de Física, Instituto deFísica, Universidade Federal Fluminense, Campus da Praia Vermelha, Av. Gal. Milton Tavares de Souza s/n°, Niterói, RJ, 24210-346 (Brazil); Oliveira, Fabiana M. [Departamento de Física, Instituto deFísica, Universidade Federal Fluminense, Campus da Praia Vermelha, Av. Gal. Milton Tavares de Souza s/n°, Niterói, RJ, 24210-346 (Brazil); Carvalho, Carla [Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista, s/n°, Niterói, RJ, 24020-150 (Brazil); Santos, Guaciara M.; Xu, Xiaomei [Department of Earth System Science, B321 Croul Hall, University of California Irvine, Irvine, CA, 92697-3100 (United States); Chanca, Ingrid S.; Alves, Eduardo Q.; Jou, Renata M.; Oliveira, Maria Isabela; Pereira, Bruna B.; Moreira, Vinicius; Muniz, Marcelo C.; Linares, Roberto; Gomes, Paulo Roberto Silveira; Meigikos dos Anjos, Roberto [Departamento de Física, Instituto deFísica, Universidade Federal Fluminense, Campus da Praia Vermelha, Av. Gal. Milton Tavares de Souza s/n°, Niterói, RJ, 24210-346 (Brazil); and others

    2015-10-15

    In this paper, we summarize the sample preparation methods currently used at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. We also report on a series of results with regards to the graphitization protocol. Tests with different temperatures and baking times were performed, and carbon stable isotope ratios of graphite were measured by an EA–IRMS (elemental analyzer coupled with an isotopic ratio mass spectrometer) to infer the completeness of the graphitization reaction. We monitored the muffle furnace temperature using an independent thermocouple and found a −60 °C offset, which may have caused the lower graphitization yields (detected from the large isotopic fractionation on several reference materials targets). At a temperature of 520 °C, the isotopic fractionation in the graphitization reaction was systematically lower (−5‰ in average) and the overall scattering was reduced. As long as isotopic fractionation corrections are made using the online stable isotopes ratios provided by the AMS system, the accuracy of the {sup 14}C results should be maintained.

  2. Method of operating a centrifugal plasma arc furnace

    International Nuclear Information System (INIS)

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe 3 O 4 . Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe 2 O 3 . Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs

  3. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  4. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  5. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  6. Graphite for high-temperature reactors

    International Nuclear Information System (INIS)

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  7. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  8. Recycling of electric arc furnace dust

    International Nuclear Information System (INIS)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de; Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano

    2010-01-01

    This research aims to study the process of incorporation of the metal iron in electric arc furnace dust (EAFD), from a steel mill producing long steel by liquid iron in addition to the changing temperature of 1400 degrees Celsius of EAFD 'as received', the percentage of EAFD to be added (5, 10 and 20% of initial weight of sample pig iron) and the time of withdrawal of the sample of pig iron and slag (30 minutes after the addition of EAFD). Previously, the EAFD will be characterized using the following techniques: chemical analysis, size analysis, specific surface area, Xray diffraction, scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) microanalysis. . After characterization, the EAFD will be added to the bath of liquid pig iron. It is expected that the results obtained at the end of the research allow the evaluation of the iron metal incorporation of EAFD in pig iron bath. (author)

  9. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  10. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    Science.gov (United States)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  11. Numerical simulation of a high-brightness lithium ion gun for a Zeeman polarimetry on JT-60U

    International Nuclear Information System (INIS)

    Kojima, Atsushi; Kamiya, Kensaku; Fujita, Takaaki; Kamada, Yutaka; Iguchi, Harukazu

    2007-01-01

    A lithium ion gun is under construction for a lithium beam Zeeman polarimetry on JT-60U. The performance of the prototype ion gun has been estimated by the numerical simulation taking the space charge effects into account. The target values of the ion gun are the beam energy of 30 keV, the beam current of 10 mA and the beam divergence angle within 0.13 degrees. The low divergence of 0.13 degrees is required for the geometry of the Zeeman polarimetry on JT-60U where the observation area is 6.5 m away from the neutralizer. The numerical simulation needs to be carried out for the design study because the requirement of the divergence angle is severe for the development of the high-brightness ion gun. The simulation results show the beam loss of 50% caused by the clash to the electrode such as the cathode and the neutralizer. Moreover, the beam transport efficiency from the neutralizer to the observation area is low due to the broadening of the divergence angle. The total beam efficiency is about 5%. Extracted beam profile affects the beam focusing and the efficiency. The peaked profile achieves better efficiency than the hollow one. As a result, beam current of 1 mA is obtained at the observation area by the simulation for the prototype ion gun. (author)

  12. The Transfer of Resonance Line Polarization with Partial Frequency Redistribution in the General Hanle–Zeeman Regime

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, E. Alsina; Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Belluzzi, L., E-mail: ealsina@iac.es [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland)

    2017-02-10

    The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.

  13. Suppression of the Nonlinear Zeeman Effect and Heading Error in Earth-Field-Range Alkali-Vapor Magnetometers.

    Science.gov (United States)

    Bao, Guzhi; Wickenbrock, Arne; Rochester, Simon; Zhang, Weiping; Budker, Dmitry

    2018-01-19

    The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in phase with the precessing magnetization. This results in the collapse of the multicomponent asymmetric magnetic-resonance line with ∼100  Hz width in the Earth-field range into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor within a range of orientation angles. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude, decreasing its width, and removing the important and limiting heading-error systematic.

  14. Suppression of the Nonlinear Zeeman Effect and Heading Error in Earth-Field-Range Alkali-Vapor Magnetometers

    Science.gov (United States)

    Bao, Guzhi; Wickenbrock, Arne; Rochester, Simon; Zhang, Weiping; Budker, Dmitry

    2018-01-01

    The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in phase with the precessing magnetization. This results in the collapse of the multicomponent asymmetric magnetic-resonance line with ˜100 Hz width in the Earth-field range into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of the sensor within a range of orientation angles. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude, decreasing its width, and removing the important and limiting heading-error systematic.

  15. Effects of a laser beam profile on Zeeman electromagnetically induced transparency in the Rb buffer gas cell

    International Nuclear Information System (INIS)

    Nikolić, S N; Radonjić, M; Krmpot, A J; Lučić, N M; Zlatković, B V; Jelenković, B M

    2013-01-01

    Electromagnetically induced transparency (EIT) due to Zeeman coherences in the Rb buffer gas cell is studied for different laser beam profiles, laser beam radii and intensities from 0.1 to 10 mW cm −2 . EIT line shapes can be approximated by the Lorentzian for wide Gaussian laser beam (6.5 mm in diameter) if laser intensity is weak and for a Π laser beam profile of the same diameter. Line shapes of EIT become non-Lorentzian for the Gaussian laser beam if it is narrow (1.3 mm in diameter) or if it has a higher intensity. EIT amplitudes and linewidths, for both laser beam profiles of the same diameter, have very similar behaviour regarding laser intensity and Rb cell temperature. EIT amplitudes are maximal at a certain laser beam intensity and this intensity is higher for narrower laser beams. The EIT linewidth estimated at zero laser intensity is about 50 nT or 0.7 kHz, which refers to 1.5 ms relaxation times of Zeeman coherences in 87 Rb atoms in our buffer gas cell. Blocking of the centre of the wide Gaussian laser beam in front of the photo detector yields Lorentzian profiles with a much better contrast to the linewidth ratio for EIT at higher intensities, above ∼2 mW cm −2 . (paper)

  16. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  17. Attenuation of thermal neutron through graphite

    International Nuclear Information System (INIS)

    Adib, M.; Ismaail, H.; Fathaallah, M.; Abbas, Y.; Habib, N.; Wahba, M.

    2004-01-01

    Calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of graphite temperature and crystalline from for neutron energies from 1 me V< E<10 eV were carried out. Computer programs have been developed which allow calculation for the graphite hexagonal closed-pack structure in its polycrystalline form and pyrolytic one. I The calculated total cross-section for polycrystalline graphite were compared with the experimental values. An overall agreement is indicated between the calculated values and experimental ones. Agreement was also obtained for neutron cross-section measured for oriented pyrolytic graphite at room and liquid nitrogen temperatures. A feasibility study for use of graphite in powdered form as a cold neutron filter is details. The calculated attenuation of thermal neutrons through large mosaic pyrolytic graphite show that such crystals can be used effectively as second order filter of thermal neutron beams and that cooling improve their effectiveness

  18. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  19. The Automation Control System Design of Walking Beam Heating Furnace

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distribution system picture of walking beam heating furnace were designed. Charge machine movement process was elaborated. Walking beam movement process was elaborated. Extractor movement process was elaborated. The hydraulic station of walking mechanism was elaborated. Relative control circuit diagram was designed. The control function of parallel shift motor, uplifted and degressive motor was elaborated. The control circuit diagram of parallel shift motor of charge machine and extractor of first heating furnace was designed. The control circuit diagram of uplifted and degressive motor of charge machine and extractor of first heating furnace was designed. The realization method of steel blank length test function was elaborated. The realization method of tracking and sequence control function of heating furnace field roller were elaborated. The design provides important reference base for enhancing walking beam heating furnace control level.

  20. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  1. Dynamics of graphite flake on a liquid

    Science.gov (United States)

    Miura, K.; Tsuda, D.; Kaneta, Y.; Harada, R.; Ishikawa, M.; Sasaki, N.

    2006-11-01

    One-directional motion, where graphite flakes are driven by a nanotip on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. A transition from quasiperiodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid.

  2. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  3. Holden gas-fired furnace baseline data. Revision 1

    International Nuclear Information System (INIS)

    Weatherspoon, K.A.

    1996-11-01

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs

  4. Nanostructured carbon films with oriented graphitic planes

    International Nuclear Information System (INIS)

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-01-01

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  5. Production of nuclear graphite in France

    International Nuclear Information System (INIS)

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  6. AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  7. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  8. Structural analysis of polycrystalline (graphitized) materials

    International Nuclear Information System (INIS)

    Efremenko, M.M.; Kravchik, A.E.; Osmakov, A.S.

    1993-01-01

    Specific features of the structure of polycrystal carbon materials (CM), characterized by high enough degree of structural perfection and different genesis are analyzed. From the viewpoint of fine and supercrystallite structure analysis of the most characteristic groups of graphitized CM: artificial graphites, and natural graphites, as well, has been carried out. It is ascertained that in paracrystal CM a monolayer of hexagonally-bound carbon atoms is the basic element of the structure, and in graphitized CM - a microlayer. The importance of the evaluation of the degree of three-dimensional ordering of the microlayer is shown

  9. Principle design and data of graphite components

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  10. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  11. The Fracture Toughness of Nuclear Graphites Grades

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erdman, III, Donald L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Rick R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunter, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hannel, Cara C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  12. The technological raw material heating furnaces operation efficiency improving issue

    Science.gov (United States)

    Paramonov, A. M.

    2017-08-01

    The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.

  13. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  14. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  15. Innovation in electric arc furnaces scientific basis for selection

    CERN Document Server

    Toulouevski, Yuri N

    2013-01-01

    This book equips a reader with knowledge necessary for critical analysis of  innovations in electric arc furnaces and helps to select the most effective ones and for their successful implementation. The book also covers general issues related to history of development, current state and prospects of steelmaking in Electric Arc Furnaces. Therefore, it can be useful for everybody who studies metallurgy, including students of colleges and universities. The modern concepts of mechanisms of Arc Furnace processes are are discussed in the book at the level sufficient to solve practical problems: To help readers lacking knowledge required in the field of heat transfer as well as hydro-gas dynamics, it contains several chapters which provide the required minimum of information in these fields of science. In order to better assess different innovations, the book describes experience of the application of similar innovations in open-hearth furnaces and oxygen converters. Some promising ideas on key issues regarding int...

  16. Evaluation of Grade 120 Granulated Ground blast Furnace Slag.

    Science.gov (United States)

    1999-06-01

    This study evaluates Grade 120 Granulated Ground Blast Furnace Slag (GGBFS) and its effect on the properties of hydraulic cement concretes used in structural and pavement construction. Several mix designs, structural and pavement, were used for this ...

  17. Elements of the electric arc furnace's environmental management

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş

    2017-12-01

    The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.

  18. CMOS Thermal Ox and Diffusion Furnace: Tystar Tytan 2000

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Names: CMOS Wet Ox, CMOS Dry Ox, Boron Doping (P-type), Phos. Doping (N-Type)This four-stack furnace bank is used for the thermal growth of silicon...

  19. SITE - DEMONSTRATION BULLETIN - MINERGY GLASS FURNACE TECHNOLOGY - MINERGY CORPORATION

    Science.gov (United States)

    The Glass Furnace Technology (GFT) was developed by Minergy Corporation (Minergy), of Waukesha, Wisconsin. Minergy originally developed vitrification technologies to process wastewater sludge into glass aggregate that could be sold as a commercial product. Minergy modified a st...

  20. MINERGY CORPORATION GLASS FURNACE TECHNOLOGY EVALUATION: INNOVATION TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report presents performance and economic data for a U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program demonstration of the Minergy Corporation (Minergy) Glass Furnace Technology (GFT). The demonstration evaluated the techno...