WorldWideScience

Sample records for zebrafish pineal organ

  1. Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain

    Directory of Open Access Journals (Sweden)

    Goldstein-Kral Lauren

    2011-01-01

    Full Text Available Abstract Background The mammalian suprachiasmatic nucleus (SCN, located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. Results We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b and cryptochrome 3 (cry3, in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh and serotonin-N-acetyltransferase (aanat2, involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their

  2. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish.

    Directory of Open Access Journals (Sweden)

    Xinle Li

    Full Text Available In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.

  3. Pineal organs of deep-sea fish: photopigments and structure.

    Science.gov (United States)

    Bowmaker, James K; Wagner, Hans-Joachim

    2004-06-01

    We have examined the morphology and photopigments of the pineal organs from a number of mesopelagic fish, including representatives of the hatchet fish (Sternoptychidae), scaly dragon-fish (Chauliodontidae) and bristlemouths (Gonostomidae). Although these fish were caught at depths of between 500 and 1000 m, the morphological organisation of their pineal organs is remarkably similar to that of surface-dwelling fish. Photoreceptor inner and outer segments protrude into the lumen of the pineal vesicle, and the outer segment is composed of a stack of up to 20 curved disks that form a cap-like cover over the inner segment. In all species, the pineal photopigment was spectrally distinct from the retinal rod pigment, with lambdamax displaced to longer wavelengths, between approximately 485 and 503 nm. We also investigated the pineal organ of the deep demersal eel, Synaphobranchus kaupi, caught at depths below 2000 m, which possesses a rod visual pigment with lambdamax at 478 nm, but the pineal pigment has lambdamax at approximately 515 nm. In one species of hatchet fish, Argyropelecus affinis, two spectral classes of pinealocyte were identified, both spectrally distinct from the retinal rod photopigment.

  4. Activation of Transducin by Bistable Pigment Parapinopsin in the Pineal Organ of Lower Vertebrates.

    Science.gov (United States)

    Kawano-Yamashita, Emi; Koyanagi, Mitsumasa; Wada, Seiji; Tsukamoto, Hisao; Nagata, Takashi; Terakita, Akihisa

    2015-01-01

    Pineal organs of lower vertebrates contain several kinds of photosensitive molecules, opsins that are suggested to be involved in different light-regulated physiological functions. We previously reported that parapinopsin is an ultraviolet (UV)-sensitive opsin that underlies hyperpolarization of the pineal photoreceptor cells of lower vertebrates to achieve pineal wavelength discrimination. Although, parapinopsin is phylogenetically close to vertebrate visual opsins, it exhibits a property similar to invertebrate visual opsins and melanopsin: the photoproduct of parapinopsin is stable and reverts to the original dark states, demonstrating the nature of bistable pigments. Therefore, it is of evolutionary interest to identify a phototransduction cascade driven by parapinopsin and to compare it with that in vertebrate visual cells. Here, we showed that parapinopsin is coupled to vertebrate visual G protein transducin in the pufferfish, zebrafish, and lamprey pineal organs. Biochemical analyses demonstrated that parapinopsins activated transducin in vitro in a light-dependent manner, similar to vertebrate visual opsins. Interestingly, transducin activation by parapinopsin was provoked and terminated by UV- and subsequent orange-lights irradiations, respectively, due to the bistable nature of parapinopsin, which could contribute to a wavelength-dependent control of a second messenger level in the cell as a unique optogenetic tool. Immunohistochemical examination revealed that parapinopsin was colocalized with Gt2 in the teleost, which possesses rod and cone types of transducin, Gt1, and Gt2. On the other hand, in the lamprey, which does not possess the Gt2 gene, in situ hybridization suggested that parapinopsin-expressing photoreceptor cells contained Gt1 type transducin GtS, indicating that lamprey parapinopsin may use GtS in place of Gt2. Because it is widely accepted that vertebrate visual opsins having a bleaching nature have evolved from non-bleaching opsins

  5. The pineal organ of bats: a comparative morphological and volumetric investigation.

    Science.gov (United States)

    Bhatnagar, K P; Frahm, H D; Stephan, H

    1986-08-01

    Bats are seasonal breeders and roost under a wide range of lighting conditions, from broad daylight to the total darkness of subterranean passageways and caves. Some are true hibernators. These characteristics and the paucity of information on their pineal organ prompted this investigation, which is based upon the pineals of 191 specimens of 88 species and 12 families of bats. Comparative morphological and volumetric observations have been made on serially sectioned brains of each species. Data include brain and body weights, mean pineal dimensions and volume, a computed pineal size index for each species and salient characteristics and relations of the pineal organ of the 12 chiropteran families. Generally speaking, despite some exceptions, larger bodied bats also have larger pineals. Bats of the microchiropteran families such as the Emballonuridae, Megadermatidae, Rhinolophidae, Hipposideridae, and a few vespertilionids (for example, Myotis adversus) and molossids (for example, Tadarida mops), have very large pineal organs, of which many reach the brain surface. All of these bat families inhabit dark caves. By contrast, in megachiropterans (pteropodids) which roost in broad daylight, the pineal lies deeply recessed and covered by the cerebral hemispheres. It is postulated that in general the superficial and deep location of pineal in micro- and megachiropteran species respectively may be a consequence of several factors, such as their habitat and their neocortical and cerebellar development. A system of classifying chiropteran pineal organs has been presented; in most species they are either of Type A or of Type AB. Most species have non-uniformly distributed parenchymal cells arranged in cords or clusters. In some species (for example, Rhinolopus trifoliatus and R. luctus) morphologically distinct dorsal and ventral divisions are observed. Pineal vascularity appears to be related to its size. Intrapineal neurons are rare and, when present, are associated with

  6. The Zebrafish Model Organism Database (ZFIN)

    Data.gov (United States)

    U.S. Department of Health & Human Services — ZFIN serves as the zebrafish model organism database. It aims to: a) be the community database resource for the laboratory use of zebrafish, b) develop and support...

  7. The pineal organ of bats: a comparative morphological and volumetric investigation.

    OpenAIRE

    Bhatnagar, K P; Frahm, H D; Stephan, H

    1986-01-01

    Bats are seasonal breeders and roost under a wide range of lighting conditions, from broad daylight to the total darkness of subterranean passageways and caves. Some are true hibernators. These characteristics and the paucity of information on their pineal organ prompted this investigation, which is based upon the pineals of 191 specimens of 88 species and 12 families of bats. Comparative morphological and volumetric observations have been made on serially sectioned brains of each species. Da...

  8. Effect of noradrenaline on production of methoxyindoles by rat pineal gland in organ culture

    International Nuclear Information System (INIS)

    Morton, D.J.

    1987-01-01

    This report examined the effect of noradrenaline on production of methoxyindoles by the pineal gland in organ culture. Pineal glands were incubated in pairs in 95μl culture medium containing 5-hydroxy [2- 14 C]tryptamine creatinine sulphate (0,1 mM) and noradrenaline (NA) (0,5-100 μM). The results indicated that noradrenaline appeared to have a characteristic action on pineal metabolism. An increase in production of both N-acetylserotonin and melatonin by the pineal after noradrenaline treatment was observed. The overall production of methoxyindoles followed a very similar trend to that of N-acetylserotonin and melatonin, which suggests some degree of noradrenergic control over HIOMT levels

  9. Regulation of melatonin secretion in the pineal organ of the domestic duck--an in vitro study.

    Science.gov (United States)

    Prusik, M; Lewczuk, B; Ziółkowska, N; Przybylska-Gornowicz, B

    2015-01-01

    The aim of study was to determine the mechanisms regulating melatonin secretion in the pineal organs of 1-day-old and 9-month-old domestic ducks. The pineals were cultured in a superfusion system under different light conditions. Additionally, some explants were treated with norepinephrine. The pineal glands of 1-day-old ducks released melatonin in a well-entrained, regular rhythm during incubation under a 12 hrs light:12 hrs dark cycle and adjusted their secretory activity to a reversed 12 hrs dark:12 hrs light cycle within 2 days. In contrast, the diurnal changes in melatonin secretion from the pineals of 9-month-old ducks were largely irregular and the adaptation to a reversed cycle lasted 3 days. The pineal organs of nestling and adult ducks incubated in a continuous light or darkness secreted melatonin in a circadian rhythm. The treatment with norepinephrine during photophases of a light-dark cycle resulted in: 1) a precise adjustment of melatonin secretion rhythm to the presence of this catecholamine in the culture medium, 2) a very high amplitude of the rhythm, 3) a rapid adaptation of the pineal secretory activity to a reversed light-dark cycle. The effects of norepinephrine were similar in the pineal organs of nestlings and adults. In conclusion, melatonin secretion in the duck pineal organ is controlled by three main mechanisms: the direct photoreception, the endogenous generator and the noradrenergic transmission. The efficiency of intra-pineal, photosensitivity-based regulatory mechanism is markedly lower in adult than in nestling individuals.

  10. FMRFamide-like immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ.

    Science.gov (United States)

    Ekström, P; Honkanen, T; Ebbesson, S O

    1988-09-13

    The tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) was first isolated from molluscan ganglia. Subsequently, it has become clear that vertebrate brains also contain endogenous FMRFamide-like substances. In teleosts, the neurons of the nervus terminalis contain an FMRFamide-like substance, and provide a direct innervation to the retina (Proc. Natl. Acad. Sci. U.S.A., 81 [1984] 940-944). Here we report the presence of FMRFamide-immunoreactive axonal bundles in the pineal organ of Coho salmon and three-spined sticklebacks. The largest numbers of axons were observed proximal to the brain, in the pineal stalk, while the distal part of the pineal organ contained only few axons. No FMRFamide-like-immunoreactive (IR) cell bodies were observed in the pineal organ. In adult fish it was not possible to determine the origin of these axons, due to the large numbers of FMRFamide-like IR axons in the teleost brain. However, by following the development of FMRFamide-like IR neurons in the embryonic and larval stickleback brain, it was possible to conclude that, at least in newly hatched fish, FMRFamide-like IR axons that originate in the nucleus nervus terminalis reach the pineal organ. Thus, it seems there is a direct connection between a specialized part of the chemosensory system and both the retina and the pineal organ in teleost fish.

  11. Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities.

    Science.gov (United States)

    López-Patiño, Marcos A; Rodríguez-Illamola, Arnau; Gesto, Manuel; Soengas, José L; Míguez, Jesús M

    2011-03-15

    Melatonin has been suggested to play a role in fish osmoregulation, and in salmonids has been related to the timing of adaptive mechanisms during smolting. It has been described that acclimation to different environmental salinities alters levels of circulating melatonin in a number of fish species, including rainbow trout. However, nothing is known regarding salinity effects on melatonin synthesis in the pineal organ, which is the main source of rhythmically produced and secreted melatonin in blood. In the present study we have evaluated, in rainbow trout, the effects of acclimation to different salinities on day and night plasma melatonin values and pineal organ melatonin synthesis. Groups of freshwater (FW)-adapted rainbow trout were placed in tanks with four different levels of water salinity (FW, 6, 12, 18 p.p.t.; parts per thousand) and maintained for 6 h or 5 days. Melatonin content in plasma and pineal organs, as well as the pineal content of serotonin (5-HT) and its main oxidative metabolite (5-hydroxyindole-3-acetic acid; 5-HIAA) were measured by high performance liquid chromatography. In addition, day-night changes in pineal organ arylalkylamine N-acetyltransferase (AANAT2) activity and aanat2 gene expression were studied. Plasma osmolalities were found to be higher in rainbow trout exposed to all salinity levels compared with the control FW groups. A salinity-dependent increase in melatonin content was found in both plasma and pineal organs. This effect was observed during the night, and was related to an increase in aanat2 mRNA abundance and AANAT2 enzyme activity, both of which also occurred during the day. Also, the levels of indoles (5-HT, 5-HIAA) in the pineal organ were negatively affected by increasing water salinity, which seems to be related to the higher recruitment of 5-HT as a substrate for the increased melatonin synthesis. A stimulatory effect of salinity on pineal aanat2 mRNA expression was also identified. These results indicate that

  12. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  13. Expression of UV-Sensitive Parapinopsin in the Iguana Parietal Eyes and Its Implication in UV-Sensitivity in Vertebrate Pineal-Related Organs

    Science.gov (United States)

    Wada, Seiji; Kawano-Yamashita, Emi; Koyanagi, Mitsumasa; Terakita, Akihisa

    2012-01-01

    The pineal-related organs of lower vertebrates have the ability to discriminate different wavelengths of light. This wavelength discrimination is achieved through antagonistic light responses to UV or blue and visible light. Previously, we demonstrated that parapinopsin underlies the UV reception in the lamprey pineal organ and identified parapinopsin genes in teleosts and frogs of which the pineal-related organs were reported to discriminate light. In this study, we report the first identification of parapinopsin in the reptile lineage and show its expression in the parietal eye of the green iguana. Spectroscopic analysis revealed that iguana parapinopsin is a UV-sensitive pigment, similar to lamprey parapinopsin. Interestingly, immunohistochemical analyses using antibodies specific to parapinopsin and parietopsin, a parietal eye green-sensitive pigment, revealed that parapinopsin and parietopsin are colocalized in the outer segments of the parietal eye photoreceptor cells in iguanas. These results strongly suggest that parapinopsin underlies the wavelength discrimination involving UV reception in the iguana parietal eye. The current findings support the idea that parapinopsin is a common photopigment underlying the UV-sensitivity in wavelength discrimination of the pineal-related organs found from lampreys to reptiles. PMID:22720013

  14. Expression of UV-sensitive parapinopsin in the iguana parietal eyes and its implication in UV-sensitivity in vertebrate pineal-related organs.

    Science.gov (United States)

    Wada, Seiji; Kawano-Yamashita, Emi; Koyanagi, Mitsumasa; Terakita, Akihisa

    2012-01-01

    The pineal-related organs of lower vertebrates have the ability to discriminate different wavelengths of light. This wavelength discrimination is achieved through antagonistic light responses to UV or blue and visible light. Previously, we demonstrated that parapinopsin underlies the UV reception in the lamprey pineal organ and identified parapinopsin genes in teleosts and frogs of which the pineal-related organs were reported to discriminate light. In this study, we report the first identification of parapinopsin in the reptile lineage and show its expression in the parietal eye of the green iguana. Spectroscopic analysis revealed that iguana parapinopsin is a UV-sensitive pigment, similar to lamprey parapinopsin. Interestingly, immunohistochemical analyses using antibodies specific to parapinopsin and parietopsin, a parietal eye green-sensitive pigment, revealed that parapinopsin and parietopsin are colocalized in the outer segments of the parietal eye photoreceptor cells in iguanas. These results strongly suggest that parapinopsin underlies the wavelength discrimination involving UV reception in the iguana parietal eye. The current findings support the idea that parapinopsin is a common photopigment underlying the UV-sensitivity in wavelength discrimination of the pineal-related organs found from lampreys to reptiles.

  15. Expression of UV-sensitive parapinopsin in the iguana parietal eyes and its implication in UV-sensitivity in vertebrate pineal-related organs.

    Directory of Open Access Journals (Sweden)

    Seiji Wada

    Full Text Available The pineal-related organs of lower vertebrates have the ability to discriminate different wavelengths of light. This wavelength discrimination is achieved through antagonistic light responses to UV or blue and visible light. Previously, we demonstrated that parapinopsin underlies the UV reception in the lamprey pineal organ and identified parapinopsin genes in teleosts and frogs of which the pineal-related organs were reported to discriminate light. In this study, we report the first identification of parapinopsin in the reptile lineage and show its expression in the parietal eye of the green iguana. Spectroscopic analysis revealed that iguana parapinopsin is a UV-sensitive pigment, similar to lamprey parapinopsin. Interestingly, immunohistochemical analyses using antibodies specific to parapinopsin and parietopsin, a parietal eye green-sensitive pigment, revealed that parapinopsin and parietopsin are colocalized in the outer segments of the parietal eye photoreceptor cells in iguanas. These results strongly suggest that parapinopsin underlies the wavelength discrimination involving UV reception in the iguana parietal eye. The current findings support the idea that parapinopsin is a common photopigment underlying the UV-sensitivity in wavelength discrimination of the pineal-related organs found from lampreys to reptiles.

  16. Season-dependent effects of photoperiod and temperature on circadian rhythm of arylalkylamine N-acetyltransferase2 gene expression in pineal organ of an air-breathing catfish, Clarias gariepinus.

    Science.gov (United States)

    Singh, Kshetrimayum Manisana; Saha, Saurav; Gupta, Braj Bansh Prasad

    2017-08-01

    Arylalkylamine N-acetyltransferase (AANAT) activity, aanat gene expression and melatonin production have been reported to exhibit prominent circadian rhythm in the pineal organ of most species of fish. Three types of aanat genes are expressed in fish, but the fish pineal organ predominantly expresses aanat2 gene. Increase and decrease in daylength is invariably associated with increase and decrease in temperature, respectively. But so far no attempt has been made to delineate the role of photoperiod and temperature in regulation of the circadian rhythm of aanat2 gene expression in the pineal organ of any fish with special reference to seasons. Therefore, we studied effects of various lighting regimes (12L-12D, 16L-8D, 8L-16D, LL and DD) at a constant temperature (25°C) and effects of different temperatures (15°, 25° and 35°C) under a common photoperiod 12L-12D on circadian rhythm of aanat2 gene expression in the pineal organ of Clarias gariepinus during summer and winter seasons. Aanat2 gene expression in fish pineal organ was studied by measuring aanat2 mRNA levels using Real-Time PCR. Our findings indicate that the pineal organ of C. gariepinus exhibits a prominent circadian rhythm of aanat2 gene expression irrespective of photoperiods, temperatures and seasons, and the circadian rhythm of aanat2 gene expression responds differently to different photoperiods and temperatures in a season-dependent manner. Existence of circadian rhythm of aanat2 gene expression in pineal organs maintained in vitro under 12L-12D and DD conditions as well as a free running rhythm of the gene expression in pineal organ of the fish maintained under LL and DD conditions suggest that the fish pineal organ possesses an endogenous circadian oscillator, which is entrained by light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In vitro effects of 5-hydroxytryptophan, indoleamines and leptin on arylalkylamine N-acetyltransferase (AA-NAT) activity in pineal organ of the fish, Clarias gariepinus (Burchell, 1822) during different phases of the breeding cycle.

    Science.gov (United States)

    Gupta, B B P; Yanthan, L; Singh, Ksh Manisana

    2010-08-01

    Arylalkylamine N-acetyltransferase (AA-NAT) is the rate-limiting enzyme of melatonin biosynthetic pathway. In vitro effects of 5-hydroxytryptophan (5-HTP) and indoleamines (serotonin, N-acetylserotonin and melatonin) were studied on AA-NAT activity in the pineal organ of the fish, C. gariepinus during different phases of its annual breeding cycle. Further, in vitro effects of leptin on AA-NAT activity in the pineal organ were studied in fed and fasted fishes during summer and winter seasons. Treatments with 5-HTP and indoleamines invariably stimulated pineal AA-NAT activity in a dose-dependent manner during all the phases. However, leptin increased AA-NAT activity in a dose-dependent manner only in the pineal organ of the fed fishes, but not of the fasted fishes irrespective of the seasons.

  18. [Application of zebrafish model organism in the research of Chinese materia medica].

    Science.gov (United States)

    Chen, Lei; Liu, Yi; Liang, Sheng-Wang

    2012-04-01

    Zebrafish has become an important model organism in many fields of biomedical studies and been increasingly used in Chinese materia medica studies in recent years. This article summarized the achievements and prospect for zebrafish as a pharmacological and toxicological tool in the study and development of Chinese materia medica.

  19. Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis.

    Directory of Open Access Journals (Sweden)

    Steven E Weicksel

    Full Text Available Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors. However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development.

  20. Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions.

    Science.gov (United States)

    Koyanagi, Mitsumasa; Wada, Seiji; Kawano-Yamashita, Emi; Hara, Yuichiro; Kuraku, Shigehiro; Kosaka, Shigeaki; Kawakami, Koichi; Tamotsu, Satoshi; Tsukamoto, Hisao; Shichida, Yoshinori; Terakita, Akihisa

    2015-09-15

    Recent genome projects of various animals have uncovered an unexpectedly large number of opsin genes, which encode protein moieties of photoreceptor molecules, in most animals. In visual systems, the biological meanings of this diversification are clear; multiple types of visual opsins with different spectral sensitivities are responsible for color vision. However, the significance of the diversification of non-visual opsins remains uncertain, in spite of the importance of understanding the molecular mechanism and evolution of varied non-visual photoreceptions. Here, we investigated the diversification of the pineal photopigment parapinopsin, which serves as the UV-sensitive photopigment for the pineal wavelength discrimination in the lamprey, linking it with other pineal photoreception. Spectroscopic analyses of the recombinant pigments of the two teleost parapinopsins PP1 and PP2 revealed that PP1 is a UV-sensitive pigment, similar to lamprey parapinopsin, but PP2 is a blue-sensitive pigment, with an absorption maximum at 460-480 nm, showing the diversification of non-visual pigment with respect to spectral sensitivity. We also found that PP1 and PP2 exhibit mutually exclusive expressions in the pineal organs of three teleost species. By using transgenic zebrafish in which these parapinopsin-expressing cells are labeled, we found that PP1-expressing cells basically possess neuronal processes, which is consistent with their involvement in wavelength discrimination. Interestingly, however, PP2-expressing cells rarely possess neuronal processes, raising the possibility that PP2 could be involved in non-neural responses rather than neural responses. Furthermore, we found that PP2-expressing cells contain serotonin and aanat2, the key enzyme involved in melatonin synthesis from serotonin, whereas PP1-expressing cells do not contain either, suggesting that blue-sensitive PP2 is instead involved in light-regulation of melatonin secretion. In this paper, we have clearly

  1. Zebrafish as a potential model organism for drug test against hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Cun-Bao Ding

    Full Text Available Screening and evaluating anti- hepatitis C virus (HCV drugs in vivo is difficult worldwide, mainly because of the lack of suitable small animal models. We investigate whether zebrafish could be a model organism for HCV replication. To achieve NS5B-dependent replication an HCV sub-replicon was designed and created with two vectors, one with HCV ns5b and fluorescent rfp genes, and the other containing HCV's 5'UTR, core, 3'UTR and fluorescent gfp genes. The vectors containing sub-replicons were co-injected into zebrafish zygotes. The sub-replicon amplified in liver showing a significant expression of HCV core RNA and protein. The sub-replicon amplification caused no abnormality in development and growth of zebrafish larvae, but induced gene expression change similar to that in human hepatocytes. As the amplified core fluorescence in live zebrafish was detectable microscopically, it rendered us an advantage to select those with replicating sub-replicon for drug experiments. Ribavirin and oxymatrine, two known anti-HCV drugs, inhibited sub-replicon amplification in this model showing reduced levels of HCV core RNA and protein. Technically, this method had a good reproducibility and is easy to operate. Thus, zebrafish might be a model organism to host HCV, and this zebrafish/HCV (sub-replicon system could be an animal model for anti-HCV drug screening and evaluation.

  2. Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine

    Directory of Open Access Journals (Sweden)

    Lam Siew

    2010-06-01

    Full Text Available Abstract Background The zebrafish intestine is a simple tapered tube that is folded into three sections. However, whether the intestine is functionally similar along its length remains unknown. Thus, a systematic structural and functional characterization of the zebrafish intestine is desirable for future studies of the digestive tract and the intestinal biology and development. Results To characterize the structure and function of the adult zebrafish intestine, we divided the intestine into seven roughly equal-length segments, S1-S7, and systematically examined the morphology of the mucosal lining, histology of the epithelium, and molecular signatures from transcriptome analysis. Prominent morphological features are circumferentially-oriented villar ridges in segments S1-S6 and the absence of crypts. Molecular characterization of the transcriptome from each segment shows that segments S1-S5 are very similar while S6 and S7 unique. Gene ontology analyses reveal that S1-S5 express genes whose functions involve metabolism of carbohydrates, transport of lipids and energy generation, while the last two segments display relatively limited function. Based on comparative Gene Set Enrichment Analysis, the first five segments share strong similarity with human and mouse small intestine while S6 shows similarity with human cecum and rectum, and S7 with human rectum. The intestinal tract does not display the anatomical, morphological, and molecular signatures of a stomach and thus we conclude that this organ is absent from the zebrafish digestive system. Conclusions Our genome-wide gene expression data indicate that, despite the lack of crypts, the rostral, mid, and caudal portions of the zebrafish intestine have distinct functions analogous to the mammalian small and large intestine, respectively. Organization of ridge structures represents a unique feature of zebrafish intestine, though they produce similar cross sections to mammalian intestines

  3. Radiotherapy of pineal tumors

    International Nuclear Information System (INIS)

    Danoff, B.; Sheline, G.E.

    1984-01-01

    Radiotherapy has universally been used in the treatment of pineal tumors and suprasellar germinomas. Recently however, major technical advances related to the use of the operating microscope and development of microsurgical techniques have prompted a renewed interest in the direct surgical approach for biopsy and/or excision. This interest has resulted in a controversy regarding the role of surgery prior to radiotherapy. Because of the heterogeneity of tumors occurring in the pineal region (i.e., germ cell tumors, pineal parenchymal tumors, glial tumors, and cysts) and their differing biological behavior, controversy also surrounds aspects of radiotherapy such as: the optimal radiation dose, the volume to be irradiated, and indications for prophylactic spinal irradiation. A review of the available data is presented in an attempt to answer these questions

  4. Descartes' pineal neuropsychology.

    Science.gov (United States)

    Smith, C U

    1998-02-01

    The year 1996 marked the quattrocentenary of Descartes' birth. This paper reviews his pineal neuropsychology. It demonstrates that Descartes understood the true anatomical position of the pineal. His intraventricular pineal (or glande H) was a theoretical construct which allowed him to describe the operations of his man-like "earthen machine." In the Treatise of Man he shows how all the behaviors of such machines could then be accounted for without the presence of self-consciousness. Infrahuman animals are "conscious automata." In Passions of the Soul he adds, but only for humans, self-consciousness to the machine. In a modern formulation, only humans not only know but know that they know. Copyright 1998 Academic Press.

  5. The modulatory effect of substance P on rat pineal norepinephrine release and melatonin secretion

    DEFF Research Database (Denmark)

    Mukda, Sujira; Møller, Morten; Ebadi, Manuchair

    2009-01-01

    innervate the pineal gland. Some of these peptidergic nerve fibers contain substance P. Previously, we have characterized neurokinin 1 type substance P receptors in the pineal gland. However, the function of this receptor in the pineal gland remains unclear. Here, we examined the modulatory effect...... of substance P on rat pineal NE transmission. We show that at the presynaptic level, substance P stimulates the KCl-induced [(3)H]NE release from the pineal nerve ending. However, we found that substance P did not affect the basal levels of either arylalkylamine-N-acetyltransferase (AANAT) activity...... or melatonin secretion in rat pineal organ cultures. However, in the presence of NE, substance P inhibited the NE-induced increase in AANAT activity and melatonin secretion. This is the first time that a function for substance P in the mammalian pineal gland has been demonstrated....

  6. LHRH incorporation in normal and denervated pineal gland, and in pineal gland of rats with constant estrous-anovulatory syndrome: a preliminary study

    International Nuclear Information System (INIS)

    Trentini, G.P.; DeGaetani, C.F.; DiGregorio, C.; Botticelli, C.S.

    1980-01-01

    Pineal gland and superior sympathetic cervical ganglia accumulated intravenously injected 3 H-LHRH in an amount significantly higher than anterior and posterior hypothalamus, cerebral cortex and pituitary gland, the latter a specific target for LHRH. The prior administration of unlabelled LHRH significantly decreased the 3 H-LHRH incorporation only in pineal and pituitary gland. Autoradiography showed that the radiolabel was localized at the level of the pinealocytes, with a seemingly, prevalent distribution of grains on the cellular contours. Pineal incorporation of LHRH was not significantly modified by either acute or chronic bilateral cervical ganglionectomy, although acute ganglioectomy resulted in a slight decrease in LHRH accumulation by pineal gland. Constant estrous anovulatory syndromes induced by either frontal hypothalamic deafferentation, or continuous illumination or neonatal androgenization did not appear to modify the LHRH incorporation in either pineal gland or cervical ganglia. Basing on these results, the pineal gland is supposed to be a target organ for LHRH. (author)

  7. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation.

    Science.gov (United States)

    Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R

    2013-11-01

    Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular

  8. Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Maide Ö. Raeker

    2011-01-01

    Full Text Available During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues.

  9. Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos

    Science.gov (United States)

    Raeker, Maide Ö.; Russell, Mark W.

    2011-01-01

    During development, skeletal myoblasts differentiate into myocytes and skeletal myotubes with mature contractile structures that are precisely oriented with respect to surrounding cells and tissues. Establishment of this highly ordered structure requires reciprocal interactions between the differentiating myocytes and the surrounding extracellular matrix to form correctly positioned and well-organized attachments from the skeletal muscle to the bony skeleton. Using the developing zebrafish embryo as a model, we examined the relationship between new myofibril assembly and the organization of the membrane domains involved in cell-extracellular matrix interactions. We determined that depletion of obscurin, a giant muscle protein, resulted in irregular cell morphology and disturbed extracellular matrix organization during skeletal muscle development. The resulting impairment of myocyte organization was associated with disturbance of the internal architecture of the myocyte suggesting that obscurin participates in organizing the internal structure of the myocyte and translating those structural cues to surrounding cells and tissues. PMID:22190853

  10. The influence of sex steroids on pineal enzymes

    International Nuclear Information System (INIS)

    Daya, S.

    1982-01-01

    The influence of the gonadal sex steroids namely, estradiol, progesterone and testosterone on the two major enzymes responsible for the synthesis of melatonin in the pineal gland was investigated. These enzymes are Serotonin-N-acetyltransferase (SNAT) and Hydroxyindole-O-methyltransferase (H10MT). Testosterone was found to be the only sex steroid capable of influencing SNAT activity whereas all three of the sex steroids were found to influence H10MT activity in a biphasic dose-dependent manner. The influence of these sex steroids on radiolabelled serotonin metabolism by pineals in organ culture was also investigated. Ovariectomy, castration and the sex steroids were all found to alter the pattern of the radiolabelled serotonin metabolism by these pineal glands in organ culture

  11. Zebrafish whole-adult-organism chemogenomics for large-scale predictive and discovery chemical biology.

    Directory of Open Access Journals (Sweden)

    Siew Hong Lam

    2008-07-01

    Full Text Available The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly, is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated aromatic hydrocarbons [P(HAHs] and estrogenic compounds (ECs, we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR and estrogen receptor (ER agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology.

  12. MR imaging of pineal cysts

    International Nuclear Information System (INIS)

    Ahn, Yong Sik; Yu, Hyeon; Kim, Wan Tae; Bae, Jin Woo; Moon, Hee Jung; Shin, Hyun Ja

    1999-01-01

    To evaluate the incidence and characteristic findings of pineal cyst incidentally detected on magnetic resonance (MR) imaging. Brain MR images obtained in 2432 patients were retrospectively reviewed to determine the incidence and MR findings of pineal cysts, which were evaluated according to their size, shape, location, signal intensity, interval change, contrast enhancement and mass effect on adjacent structures. Cysts were encountered in 107(4.4 %) of 2432 patients evaluated. their size ranged from 1 X 1 X 1 to 15 X 8 X 9 (mean, 5.97 X 3.82 X 4.82)mm. All were spherical (n=53) or oval (n=54) in shape. Their margin was smooth and they were homogeneous in nature. On T1-weighted images, the cysts were seen to be hyperintense (n=57) or isointense (n=50) to cerebrospinal fluid, but less so than brain parenchyma. T2-weighted images showed them to be isointense (n=51)or hyperintense (n=56) to cerebrospinal fluid. The cysts were centrally located in 65 cases and eccentrically in 42. Compression of the superior colliculi of the tectum was demonstrated in 17 cases (15.9 %). NO patients presented clinical symptoms or signs related to either pineal or tectal lesions. Peripheral enhancement around the cyst after Gd-DTPA injection was demonstrated in 51 cases(100 %). Follow-up examinations in 19 cases demonstrated no interval change. The incidence of pineal cysts was 4.4 %. The MR characteristics of simple pineal cysts include: (1) an oval or spherical shape, (2) a smooth outer margin and homogeneous nature, (3) isosignal or slightly high signal intensity to cerebrospinal fluid on whole pulse sequences, (4) ring enhancement after contrast injection, (5) an absence of interval change, as seen during follow up MR study. These MR appearances of pineal cysts might be helpful for differentiating them from pineal tumors

  13. Cadmium accumulation in zebrafish (Danio rerio) eggs is modulated by dissolved organic matter (DOM)

    International Nuclear Information System (INIS)

    Burnison, B. Kent; Meinelt, Thomas; Playle, Richard; Pietrock, Michael; Wienke, Andreas; Steinberg, Christian E.W.

    2006-01-01

    Experiments were conducted to investigate factors influencing the accumulation of cadmium (Cd 2+ ) into zebrafish (Danio rerio) eggs. The accumulation of 109 Cd was affected by: (1) concentration, (2) time, (3) presence of dissolved organic material (DOM), (4) different origin of DOM and (5) different parts of fish eggs. Over a 5-h exposure, zebrafish eggs showed a steady increase in Cd-accumulation. DOM-concentrations over 15 ppm carbon (C) decreased Cd-uptake significantly. Both samples of DOM, brown water marsh (LM) and a eutrophic pond (SP), at 16.9 ppm C, reduced the Cd-accumulation in the chorion, perivitelline liquid and the embryo. Cd was mainly accumulated in the egg's outer shell chorion (61%) and only small amounts passed through the chorion into the perivitelline liquid (38%) and embryo (1%). In the presence of LM-DOM, the accumulation of Cd into the egg components was decreased by 43% (chorion), 52% (perivitelline liquid) and 52% (embryo), respectively, compared with the control group. Similarly, the presence of SP-DOM reduced the Cd-accumulation by 29% (chorion), 61% (perivitelline liquid) and 60% (embryo), respectively, compared with the controls. DOM-concentration should be taken into consideration when determining ecotoxicological effects of Cd on fish populations

  14. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    Energy Technology Data Exchange (ETDEWEB)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  15. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio).

    Science.gov (United States)

    Rainieri, Sandra; Conlledo, Nadia; Larsen, Bodil K; Granby, Kit; Barranco, Alejandro

    2018-04-01

    Microplastics contamination of the aquatic environment is considered a growing problem. The ingestion of microplastics has been documented for a variety of aquatic animals. Studies have shown the potential of microplastics to affect the bioavailability and uptake route of sorbed co-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected zebrafish to four different feeds: A) untreated feed; B) feed supplemented with microplastics (LD-PE 125-250µm of diameter); C) feed supplemented with 2% microplastics to which a mixture of PCBs, BFRs, PFCs and methylmercury were sorbed; and D) feed supplemented with the mixture of contaminants only. After 3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects on zebrafish in the experimental conditions tested; on the contrary, the combined effect of microplastics and sorbed contaminants altered significantly their organs homeostasis in a greater manner than the contaminants alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    Science.gov (United States)

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  17. Homeobox Genes in the Rodent Pineal Gland

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Klein, David C

    2013-01-01

    The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential...... for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental...... functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function...

  18. Lessons from "lower" organisms: what worms, flies, and zebrafish can teach us about human energy metabolism.

    Directory of Open Access Journals (Sweden)

    Amnon Schlegel

    2007-11-01

    Full Text Available A pandemic of metabolic diseases (atherosclerosis, diabetes mellitus, and obesity, unleashed by multiple social and economic factors beyond the control of most individuals, threatens to diminish human life span for the first time in the modern era. Given the redundancy and inherent complexity of processes regulating the uptake, transport, catabolism, and synthesis of nutrients, magic bullets to target these diseases will be hard to find. Recent studies using the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the zebrafish Danio rerio indicate that these "lower" metazoans possess unique attributes that should help in identifying, investigating, and even validating new pharmaceutical targets for these diseases. We summarize findings in these organisms that shed light on highly conserved pathways of energy homeostasis.

  19. The notochord breaks bilateral symmetry by controlling cell shapes in the zebrafish laterality organ.

    Science.gov (United States)

    Compagnon, Julien; Barone, Vanessa; Rajshekar, Srivarsha; Kottmeier, Rita; Pranjic-Ferscha, Kornelija; Behrndt, Martin; Heisenberg, Carl-Philipp

    2014-12-22

    Kupffer's vesicle (KV) is the zebrafish organ of laterality, patterning the embryo along its left-right (LR) axis. Regional differences in cell shape within the lumen-lining KV epithelium are essential for its LR patterning function. However, the processes by which KV cells acquire their characteristic shapes are largely unknown. Here, we show that the notochord induces regional differences in cell shape within KV by triggering extracellular matrix (ECM) accumulation adjacent to anterior-dorsal (AD) regions of KV. This localized ECM deposition restricts apical expansion of lumen-lining epithelial cells in AD regions of KV during lumen growth. Our study provides mechanistic insight into the processes by which KV translates global embryonic patterning into regional cell shape differences required for its LR symmetry-breaking function. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Pineal factors other than melatonin

    NARCIS (Netherlands)

    Ebels, I.

    Some sheep pineal factors other than melatonin are described. A “nonmelatonin” antigonadotropic activity has been detected by application of the inhibition of compensatory ovarian hypertrophy (COH) in unilaterally ovariectomized adult Charles River CD-1 mice. The factor has been extracted from

  1. Crx broadly modulates the pineal transcriptome

    DEFF Research Database (Denmark)

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. In this study, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use of micro......Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. In this study, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use......-type animals; only eight of these were also day/night expressed in the Crx-/- pineal gland. However, in the Crx-/- pineal gland 41 genes exhibited differential night/day expression that was not seen in wild-type animals. These findings indicate that Crx broadly modulates the pineal transcriptome and also...... influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 up-regulation....

  2. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  3. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    International Nuclear Information System (INIS)

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-01-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  4. Evaluation of pineal calcification in children

    International Nuclear Information System (INIS)

    Ando, Kazuo; Odagiri, Kunio; Fujiwara, Takuya; Tanohata, Kazunori; Matsui, Kengo; Okano, Shigeki.

    1987-01-01

    The study cases were 804 patients who had received either CT or plain radiographs for some reasons. Their ages ranged from newborn to 15 years old. Twenty four patients had the pineal calcification, in which one patient had the pineal region tumor and 4 patients had precocious puberty. The incidence of the pineal calcification was observed on CT as 0.2, 5.8, and 14 % in their age of 0 to 5, 6 to 10, and 11 to 15 years old, respectively. On the other hand, this finding was detected only in 0, 1.1, and 1.2 % on plain radiographs. In conclusion, pineal calcification on CT may suggest the pathological state in children. Although it is observed in a minority of normal children, such a calcification could be looked upon as not only pineal region tumor but precocious puberty and other intracranial disorders with suspicion. (author)

  5. The pineal neurohormone melatonin and its physiologic opiatergic immunoregulatory role

    Directory of Open Access Journals (Sweden)

    Georges J. M. Maestroni

    1987-01-01

    Full Text Available The pineal gland functions as a neuroendocrine transducer that coordinate the organism response to changing environmental stimuli such as light and temperature. The main and best known pineal neurohormone is melatonin that is synthesized and released in a circadian fashion with a peak during the night darkness hours. We have recently reported that melatonin exerts important immuno regulatory functions. Here we describe the astonishing property of exogenous melatonin which is able to counteract completely the depressive effect of anxiety-restraint stress and/or of corticosterone on thymus weight, andibody production and antiviral responses. This effect seems to be mediated by antigen-activated T cells via an opiatergic mechanism.

  6. Pineal thyroid relationship in psychic stress

    International Nuclear Information System (INIS)

    Singh, P.N.; Prasad, G.C.; Udupa, K.N.

    1981-01-01

    Pineal hormone and thyroid functions, were studied simultaneously in rats after the induction of acute psychic stress as well as exogenous administration of melatonin, thyroxine and also after thyroidectomy. A gradual increase in 131 I uptake, serum PBI and melatonin levels were observed in blood, reaching maximum on 8th day of psychic stress. Melatonin administration resulted in hypothyroidism whereas thyroxine increased the activity of pineal qland. Thyroidectomy revealed a gradual decrease in melatonin content of pineal gland whereas supplementation with thyroxine resulted in a melatonin content similar to that observed in sham operated (control) group. (author)

  7. History of the pineal region tumor.

    Science.gov (United States)

    Mottolese, C; Szathmari, A

    2015-01-01

    The pineal gland has interested humans from millenniums. In this paper we review back in the history and the evolution of the pineal gland surgery. Originally, this surgery used to carry a high rate of morbidity and mortality. Nowadays the development of the anesthetic, radiological, surgical and intensive care techniques have been responsible of an improvement of the surgical results and better quality of life. It is always interesting to know from where we come. Copyright © 2014. Published by Elsevier Masson SAS.

  8. [The historical background of the pineal gland: I. From a spiritual valve to the seat of the soul].

    Science.gov (United States)

    López-Muñoz, Francisco; Marín, Fernando; Alamo, Cecilio

    Throughout history, the special anatomical location of the pineal gland in the central nervous system has given rise to a number of physiological hypotheses regarding the functional role of this organ. In classical ancient times, the pineal body (conarium) was considered to be a sort of valve-like sphincter that regulated the flow of the spiritus animalis at the ventricular level. But it was not until the 17th century that the pineal gland finally reached its highest levels of physiological significance, when Rene Descartes considered it to be the anatomical structure that housed the seat of the soul. The Cartesian hypotheses regarding the pineal gland did not arouse much interest in the scientific community of the time, and attention to this organ dwindled from then until the 20th century, when its neuroendocrinological nature was finally confirmed.

  9. Labelling of the pineal gland with 99mTc-glucose-6-phosphate

    International Nuclear Information System (INIS)

    Ribeiro, M.J.; Santos, A.C.; De Lima, J.J.P.

    1998-01-01

    Lately, the pineal body has been the subject of a large variety of studies. Only recently it has been understood the role played by this endocrine gland to maintain the balance of the human body and also in animal models. Although small in dimensions, the pineal body is a very active organ, able to transmit precise temporal information. It probably participates in the synchronization of several organic functions. The present work aims to study a possible use of 99m Tc-glucose-6-P as a tracer for the pineal gland. Histoautoradiographic studies have been performed in Wistar rats. Tomoscintigraphic studies were acquired in patients and in albine rabbits (oryctolagus cuniculus hyplus). The labelling efficiency and the radiochemical purity of the labelled products have always been tested. Animal and human SPECT exams, show an activity focus projected over the area corresponding to the pineal body localization. Autoradiographic studies using [1- 14 C]-glucose-6-P did not reveal a more relevant activity at the pineal level, probably due to its hepatic conversion to 14 C-glucose. (author)

  10. Whole Adult Organism Transcriptional Profiling of Acute Metal Exposures in Male Zebrafish

    Science.gov (United States)

    2014-03-10

    gallbladder, gills, heart, gonad (ovary), gonad (testis), hematopoietic tissue, interrenal tissue, intestine, kidney, liver , mesonephric duct , nares,Table 1...gys2), lipid metabolism (fabp1), and canalicular bile acid transport (abcc2) (Figure 5B) suggest metabolic perturbations in the liver and/or gut- liver ...zebrafish were included in the analysis because of concern that RNAs encoding vitellogenin and other liver -abundant egg proteins found in breeding

  11. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system.

    Science.gov (United States)

    Hur, Matthew; Gistelinck, Charlotte A; Huber, Philippe; Lee, Jane; Thompson, Marjorie H; Monstad-Rios, Adrian T; Watson, Claire J; McMenamin, Sarah K; Willaert, Andy; Parichy, David M; Coucke, Paul; Kwon, Ronald Y

    2017-09-08

    Phenomics, which ideally involves in-depth phenotyping at the whole-organism scale, may enhance our functional understanding of genetic variation. Here, we demonstrate methods to profile hundreds of phenotypic measures comprised of morphological and densitometric traits at a large number of sites within the axial skeleton of adult zebrafish. We show the potential for vertebral patterns to confer heightened sensitivity, with similar specificity, in discriminating mutant populations compared to analyzing individual vertebrae in isolation. We identify phenotypes associated with human brittle bone disease and thyroid stimulating hormone receptor hyperactivity. Finally, we develop allometric models and show their potential to aid in the discrimination of mutant phenotypes masked by alterations in growth. Our studies demonstrate virtues of deep phenotyping in a spatially distributed organ system. Analyzing phenotypic patterns may increase productivity in genetic screens, and facilitate the study of genetic variants associated with smaller effect sizes, such as those that underlie complex diseases.

  12. The power of projectomes: genetic mosaic labeling in the larval zebrafish brain reveals organizing principles of sensory circuits.

    Science.gov (United States)

    Robles, Estuardo

    2017-09-01

    In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.

  13. Diagnostic radiology of pineal tumors

    International Nuclear Information System (INIS)

    Anderson, R.E.

    1984-01-01

    Contrast enhanced CT scan of the head and full column myelography using a water-soluble agent (after controlling increased intracranial pressure) are the screening methods of choice in evaluating patients with tumors of the pineal region. Angiography retains an important role in these patients: to document the degree of vascularity of the mass seen on CT scan; to rule out the possibility that the enhancing mass is a benign vascular lesion such as vein of Galen aneurysm, arteriovenous malformation, etc.; to provide the surgeon with a clear image of displaced normal arteries and veins prior to biopsy, and to show the position of cortical veins at the site of the planned surgical approach. Data now being accumulated regarding the use of CT-guided stereotaxic biopsy methods may demonstrate that needle biopsy of lesions of this area can be performed with much less risk to the patient than was the case with open biopsy methods. This new technique, along with microscopic surgical resection methods, may produce better treatment results than have been possible in the past

  14. Surgical approach to pineal tumours.

    Science.gov (United States)

    Pluchino, F; Broggi, G; Fornari, M; Franzini, A; Solero, C L; Allegranza, A

    1989-01-01

    During a period of 10 years (1977-1986) 40 cases of tumour of the pineal region have been treated at the Istituto Neurologico "C. Besta"-of Milan. Out of these 40 cases, 27 (67.5%) were in the paediatric (10-15 years) or juvenile (15-20 years) age at the time of operation. Since 1983 a specific diagnostic and therapeutic protocol has been adopted and thereafter direct surgical removal of the tumour was performed only when the neuroradiological investigations were highly suggestive of a benign extrinsic lesion. Sixteen cases in this series underwent direct surgical removal; in the remaining 24 cases stereotactic biopsy of the tumour was performed in the first instance. On the basis of the histological diagnosis obtained by this procedure surgical excision of the tumour (9 cases) or radiotherapy (15 cases) was then performed. 25 cases underwent surgical removal of the lesion. In all the cases the infratentorial supracerebellar approach as introduced by Krause and then modified by Stein was adopted. On analysis of the data of this series it was observed that in 25% of the cases completely benign resectable tumours were found; in 25% of the cases astrocytoma (grade I-II) which could be treated at least by partial removal were present; in 30% of the cases radiosensitive lesions were encountered. In the remaining 20% of the cases highly malignant tumours were found which should be treated only by radiotherapy and/or chemotherapy.

  15. Directional cell migration establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish.

    Science.gov (United States)

    López-Schier, Hernán; Starr, Catherine J; Kappler, James A; Kollmar, Richard; Hudspeth, A J

    2004-09-01

    The proper orientation of mechanosensory hair cells along the lateral-line organ of a fish or amphibian is essential for the animal's ability to sense directional water movements. Within the sensory epithelium, hair cells are polarized in a stereotyped manner, but the mechanisms that control their alignment relative to the body axes are unknown. We have found, however, that neuromasts can be oriented either parallel or perpendicular to the anteroposterior body axis. By characterizing the strauss mutant zebrafish line and by tracking labeled cells, we have demonstrated that neuromasts of these two orientations originate from, respectively, the first and second primordia. Furthermore, altering the migratory pathway of a primordium reorients a neuromast's axis of planar polarity. We propose that the global orientation of hair cells relative to the body axes is established through an interaction between directional movement by primordial cells and the timing of neuromast maturation.

  16. The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines

    Directory of Open Access Journals (Sweden)

    C Gutiérrez-Lovera

    2017-11-01

    Full Text Available In the last few decades, the field of nanomedicine applied to cancer has revolutionized cancer treatment: several nanoformulations have already reached the market and are routinely being used in the clinical practice. In the case of genetic nanomedicines, i.e., designed to deliver gene therapies to cancer cells for therapeutic purposes, advances have been less impressive. This is because of the many barriers that limit the access of the therapeutic nucleic acids to their target site, and the lack of models that would allow for an improvement in the understanding of how nanocarriers can be tailored to overcome them. Zebrafish has important advantages as a model species for the study of anticancer therapies, and have a lot to offer regarding the rational development of efficient delivery of genetic nanomedicines, and hence increasing the chances of their successful translation. This review aims to provide an overview of the recent advances in the development of genetic anticancer nanomedicines, and of the zebrafish models that stand as promising tools to shed light on their mechanisms of action and overall potential in oncology.

  17. Tumours of the pineal region in childhood

    International Nuclear Information System (INIS)

    Herrmann, H.D.; Schulte, F.J.; Winkler, D.; Mueller, D.

    1988-01-01

    36 patients with tumours in the pineal region were treated between 1980 and 1986, 19 of whom were under 20 years of age. Diagnosis was based on cranial CT, supplemented to by MRI as from 1986. Preoperative angiography was peformed on all patients to demonstrate tumour vascularization and type of vascular supply. Stereotactic biopsies were complemented by intraoperative ventriculography. Stereotactic biopsy only was performed in 13 patients out of the total group to verify tumour histology. 23 patients were directly operated on primarily. 3 of these died postoperative. In cases of germ-cell tumours and pineal blastomas the total brain and the vertebral canal were irradiated. (orig./MG) [de

  18. Comparison of some peptidic and proteic ovine pineal fractions with a bovine pineal E5 fraction

    Energy Technology Data Exchange (ETDEWEB)

    Noteborn, H P; Ebels, I; Salemink, C A [State Univ. of Utrecht, Utrecht (Netherlands). Department of Organic Chemistry; Pevet, P [The Netherlands Institute for Brain Research, Amsterdam (Netherlands).; Reinharz, A C [Hopital Cantonal, Geneva (Switzerland). Department of Medicine, Division of Endocrinology; Neacsu, C [Institute of Cellular Biology and Pathology, Bucharest (Romania).

    1982-01-01

    Using rather simple and mild extraction and separation methods, three ovine pineal fractions (XM 300R - PP 7.2, PP 7.2' and PP 7.2S) were obtained, which contain peptidic/proteic substances and which show fluorescence characteristics of indoles. The ovine fractions were compared with the bovine pineal E5-fraction. The ovine fractions are chemically sensitive to normal laboratory light and stable in red light (..lambda.. > 600 nm). Immunologically, these fractions and the bovine E5 fraction are stable. From the results of radioimmunological experiments it was concluded that the bovine pineal E5 fraction as well as the ovine pineal fraction XM 300R - PP 7.2 and PP 7.2S may contain (a) peptide(s) ending by the same carboxy terminal tripeptide Pro-Arg-Gly(NH/sub 2/).

  19. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency.

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-06-01

    Full Text Available Multiple Acyl-CoA Dehydrogenase Deficiency (MADD is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463 that has an inactivating mutation in the etfa gene. dxa(vu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1 with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.

  20. Global daily dynamics of the pineal transcriptome

    DEFF Research Database (Denmark)

    Bustos, Diego M; Bailey, Michael J; Sugden, David

    2011-01-01

    Transcriptome profiling of the pineal gland has revealed night/day differences in the expression of a major fraction of the genes active in this tissue, with two-thirds of these being nocturnal increases. A set of over 600 transcripts exhibit two-fold to >100-fold daily differences in abundance...

  1. Arterial vascularization of the pineal gland.

    Science.gov (United States)

    Kahilogullari, Gokmen; Ugur, Hasan Caglar; Comert, Ayhan; Brohi, Recep Ali; Ozgural, Onur; Ozdemir, Mevci; Karahan, Suleyman Tuna

    2013-10-01

    The arterial vascularization of the pineal gland (PG) remains a debatable subject. This study aims to provide detailed information about the arterial vascularization of the PG. Thirty adult human brains were obtained from routine autopsies. Cerebral arteries were separately cannulated and injected with colored latex. The dissections were carried out using a surgical microscope. The diameters of the branches supplying the PG at their origin and vascularization areas of the branches of the arteries were investigated. The main artery of the PG was the lateral pineal artery, and it originated from the posterior circulation. The other arteries included the medial pineal artery from the posterior circulation and the rostral pineal artery mainly from the anterior circulation. Posteromedial choroidal artery was an important artery that branched to the PG. The arterial supply to the PG was studied comprehensively considering the debate and inadequacy of previously published studies on this issue available in the literature. This anatomical knowledge may be helpful for surgical treatment of pathologies of the PG, especially in children who develop more pathology in this region than adults.

  2. Mutations in zebrafish pitx2 model congenital malformations in Axenfeld-Rieger syndrome but do not disrupt left-right placement of visceral organs.

    Science.gov (United States)

    Ji, Yongchang; Buel, Sharleen M; Amack, Jeffrey D

    2016-08-01

    Pitx2 is a conserved homeodomain transcription factor that has multiple functions during embryonic development. Mutations in human PITX2 cause autosomal dominant Axenfeld-Rieger syndrome (ARS), characterized by congenital eye and tooth malformations. Pitx2(-/-) knockout mouse models recapitulate aspects of ARS, but are embryonic lethal. To date, ARS treatments remain limited to managing individual symptoms due to an incomplete understanding of PITX2 function. In addition to regulating eye and tooth development, Pitx2 is a target of a conserved Nodal (TGFβ) signaling pathway that mediates left-right (LR) asymmetry of visceral organs. Based on its highly conserved asymmetric expression domain, the Nodal-Pitx2 axis has long been considered a common denominator of LR development in vertebrate embryos. However, functions of Pitx2 during asymmetric organ morphogenesis are not well understood. To gain new insight into Pitx2 function we used genome editing to create mutations in the zebrafish pitx2 gene. Mutations in the pitx2 homeodomain caused phenotypes reminiscent of ARS, including aberrant development of the cornea and anterior chamber of the eye and reduced or absent teeth. Intriguingly, LR asymmetric looping of the heart and gut was normal in pitx2 mutants. These results suggest conserved roles for Pitx2 in eye and tooth development and indicate Pitx2 is not required for asymmetric looping of zebrafish visceral organs. This work establishes zebrafish pitx2 mutants as a new animal model for investigating mechanisms underlying congenital malformations in ARS and high-throughput drug screening for ARS therapeutics. Additionally, pitx2 mutants present a unique opportunity to identify new genes involved in vertebrate LR patterning. We show Nodal signaling-independent of Pitx2-controls asymmetric expression of the fatty acid elongase elovl6 in zebrafish, pointing to a potential novel pathway during LR organogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pineal gliosarcoma in a 5-year-old girl

    Directory of Open Access Journals (Sweden)

    Ana María Granados, PhD

    2018-02-01

    Full Text Available The purpose of this paper is to report a rare case of a pediatric pineal gliosarcoma. Gliomas on the pineal region are uncommon, representing 0.4%-1% of all brain tumors. Furthermore, pediatric gliosarcomas are a very rare entity. We present a case of a 5-year-old girl, with a history of headache, vomiting, diplopia, and gait disturbances. A pineal tumor was found with pathology results consistent with a gliosarcoma. A total of 25 cases of pediatric gliosarcomas have been reported, none of them in pineal topography. Only 3 gliosarcomas were found in the pineal region, but these were found in adults. To our knowledge, this is the first pediatric pineal gliosarcoma reported in the literature.

  4. Wnt/β-Catenin Signaling Defines Organizing Centers that Orchestrate Growth and Differentiation of the Regenerating Zebrafish Caudal Fin

    Directory of Open Access Journals (Sweden)

    Daniel Wehner

    2014-02-01

    Full Text Available Zebrafish regenerate their fins via the formation of a population of progenitor cells, the blastema. Wnt/β-catenin signaling is essential for blastemal cell proliferation and patterning of the overlying epidermis. Yet, we find that β-catenin signaling is neither active in the epidermis nor the majority of the proliferative blastemal cells. Rather, tissue-specific pathway interference indicates that Wnt signaling in the nonproliferative distal blastema is required for cell proliferation in the proximal blastema, and signaling in cells lining the osteoblasts directs osteoblast differentiation. Thus, Wnt signaling regulates epidermal patterning, blastemal cell proliferation, and osteoblast maturation indirectly via secondary signals. Gene expression profiling, chromatin immunoprecipitation, and functional rescue experiments suggest that Wnt/β-catenin signaling acts through Fgf and Bmp signaling to control epidermal patterning, whereas retinoic acid and Hedgehog signals mediate its effects on blastemal cell proliferation. We propose that Wnt signaling orchestrates fin regeneration by defining organizing centers that instruct cellular behaviors of adjacent tissues.

  5. Clinicopathological characteristics of papillary tumor of the pineal region

    Directory of Open Access Journals (Sweden)

    Guang-yu JIANG

    2014-07-01

    Full Text Available Background Papillary tumor of the pineal region (PTPR is a newly recognized distinct entity in the 2007 WHO nomenclature. This tumor is characterized by epithelial-appearing areas with papillary features and more densely cellular areas that often display ependymal-like differentiation, which is likely to originate from the specialized ependymocytes of subcommissural organ near the Sylvian cerebral aqueduct. Due to its rarity and non-specific appearance in radiological exanimation, it is a diagnostic challenge for radiologists and histopathologists to differentiate PTPR from other primary or metastatic lesions located in the pineal region because of their similarities in radiological and histological findings. The aim of this study is to summarize the clinicopathological features of PTPR and discuss the differential diagnosis of histologically similar papillary tumors in pineal region.  Methods The clinical manifestations of a patient with PTPR occurring in supratentorial pineal region were presented retrospectively. Resected mass was routinely paraffin-embedded and stained with hematoxylin and eosin. Dako EnVision immunohistochemical staining system was used to detect the tumor antigen expressions, including vimentin (Vim, glial fibrillary acidic protein (GFAP, S-100 protein (S-100, pan cytokeratin (PCK, cytokeratin 7 (CK7, CK20, epithelial membrane antigen (EMA, neuronal nuclear antigen (NeuN, synaptophysin (Syn, neuron-specific enolase (NSE, and Ki-67 labeling index (MIB-1.  Results A 57-year-old male patient presented with 6-month history of mild headache, and became severe in last one month. MRI revealed a solid well-circumscribed lesion in supratentorial midline near the pineal region and the posterior third ventricle with mild heterogeneous enhancement. Craniotomy was performed and the tumor was removed totally. Histological examination revealed that the lesion contained papillary areas lined by columnar epithelioid tumor cells with

  6. Tumors of the pineal region: radiological findings

    International Nuclear Information System (INIS)

    Roman, G.; Delgado, F.; Cano, A.; Vicente, J.; Ramos, M.

    1997-01-01

    To consider the different radiological findings that, together with age, sex, clinical picture and serum markers, indicate a presumed or even definitive diagnosis in tumors of the pineal region. We reviewed retrospectively 18 patients diagnosed as having pineal region tumors. The lesions in this series consisted of seven germinoma, three meningiomas, one pineoblastoma. two ependymomas, one teratoma, two glial cysts, and arachnoid cyst and a lipoma. All but the arachnoid cysts and the lipoma were confirmed histologically. We took into account mainly the epidemiological data, tumor markers and CT and MR features. The germinoma was the most common lesions, representing 38.8% of the tumors in our series. All developed in men (mean age: 21 years). Small non tumoral calcifications were present in pineal gland in six of these cases. This tumor usually invades adjacent structures and produces metastatic seeding in CSF. The pineoblastoma contained prominent tumor calcifications. Meningiomas were detected only in middle-aged women. In addition to the fact that the behavior of these lesions was typical of that meningiomas in other locations, meningeal enhancement in the vicinity of the extraaxial tumor aided in the diagnosis. The teratoma showed variable attenuation, ranging from a fatty substance to calcium, and elevated fetoprotein levels. The glial cyst is a cyst lesion that does not be-have exactly like the CSF, while the arachnoid cyst was isointense with respect to the CSF in all sequences. Enhancement was observed in the glial cysts, one peripheral and the other nodular. The assessment of age, sex, clinical picture and tumor markers, together with the features observed in CT an MR images are suggestive of the histological diagnosis of pineal region tumors. We recommend the use of CT because of its availability and its ability detect calcifications, thus indicating a specific histological type, and of MR because of its greater anatomical definition and its, ability to

  7. The sixth sense in mammalian forerunners: Variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic eutheriodont therapsids

    Directory of Open Access Journals (Sweden)

    Julien Benoit

    2016-12-01

    Full Text Available In some extant ectotherms, the third eye (or pineal eye is a photosensitive organ located in the parietal foramen on the midline of the skull roof. The pineal eye sends information regarding exposure to sunlight to the pineal complex, a region of the brain devoted to the regulation of body temperature, reproductive synchrony, and biological rhythms. The parietal foramen is absent in mammals but present in most of the closest extinct relatives of mammals, the Therapsida. A broad ranging survey of the occurrence and size of the parietal foramen in different South African therapsid taxa demonstrates that through time the parietal foramen tends, in a convergent manner, to become smaller and is absent more frequently in eutherocephalians (Akidnognathiidae, Whaitsiidae, and Baurioidea and non-mammaliaform eucynodonts. Among the latter, the Probainognathia, the lineage leading to mammaliaforms, are the only one to achieve the complete loss of the parietal foramen. These results suggest a gradual and convergent loss of the photoreceptive function of the pineal organ and degeneration of the third eye. Given the role of the pineal organ to achieve fine-tuned thermoregulation in ectotherms (i.e., “cold-blooded” vertebrates, the gradual loss of the parietal foramen through time in the Karoo stratigraphic succession may be correlated with the transition from a mesothermic metabolism to a high metabolic rate (endothermy in mammalian ancestry. The appearance in the eye of melanopsin-containing retinal ganglion cells replacing the photoreceptive role of the pineal eye could also have accompanied its loss.

  8. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research.

    Science.gov (United States)

    Kalueff, Allan V; Echevarria, David J; Homechaudhuri, Sumit; Stewart, Adam Michael; Collier, Adam D; Kaluyeva, Aleksandra A; Li, Shaomin; Liu, Yingcong; Chen, Peirong; Wang, JiaJia; Yang, Lei; Mitra, Anisa; Pal, Subharthi; Chaudhuri, Adwitiya; Roy, Anwesha; Biswas, Missidona; Roy, Dola; Podder, Anupam; Poudel, Manoj K; Katare, Deepshikha P; Mani, Ruchi J; Kyzar, Evan J; Gaikwad, Siddharth; Nguyen, Michael; Song, Cai

    2016-01-01

    Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effects of Pineal Proteins on Biochemical, Enzyme Profile and Non ...

    African Journals Online (AJOL)

    Effects of Pineal Proteins on Biochemical, Enzyme Profile and Non-Specific Immune Response of Indian Goats under Thermal Stress. ... Total precipitated pineal proteins successfully and significantly relieved the animals from adverse effects of heat stress and metyrapone treatment. There is evidence that most of the ...

  10. Conservative management of pineal tumors - Mayo clinic experience

    International Nuclear Information System (INIS)

    Laws, E.R.; Abay, E.O.; Forbes, G.S.; Grado, G.L.; Bruckman, J.E.; Scott, M.

    1984-01-01

    The typical pineal tumor occurs in an adolescent boy with subacute increased intracranial pressure and Parinaud's syndrome. Diagnosis is confirmed by CT scanning, and long-term survival usually following shunting and radiation therapy. Direct surgical methods for successful treatment of suitable pineal tumors have evolved and may be utilized with relatively low risk in appropriate cases

  11. Melatonin and cortisol secretion profile in patients with pineal cyst before and after pineal cyst resection

    Czech Academy of Sciences Publication Activity Database

    Májovský, M.; Řezáčová, Lenka; Sumová, Alena; Pospíšilová, L.; Netuka, D.; Bradáč, O.; Beneš, V.

    2017-01-01

    Roč. 39, May 2017 (2017), s. 155-163 ISSN 0967-5868 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : melatonin * circadian rhythm * pineal cyst * neurosurgery * neuroendocrinology * pinealectomy Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 1.557, year: 2016

  12. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish ( Danio rerio )

    DEFF Research Database (Denmark)

    Rainieri, Sandra; Conlledo, Nadia; Larsen, Bodil Katrine

    2018-01-01

    3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated...... compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects......-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected...

  13. Biosynthesis of taurine by rat pineals in vitro

    International Nuclear Information System (INIS)

    Ebels, I.; Benson, B.; Larssen, B.R.

    1980-01-01

    Pineal glands from adult, male rats were incubated in oxygenated Krebs-Ringer buffer containing 14 C-cystine. After three hours the incubation media and pineal gland extracts were placed separately on Dowex AG W50-X-4 columns. In the elution volume where 14 C-labeled taurine is found a labeled peak was recovered. However, when subjected to one or two dimensional paper chromatography especially the eluants from pineal gland extracts yielded two 14 C-labeled substances one located in the region where unlabeled taurine is detected by ortho-phthalaldehyde reagent. These results were confirmed utilizing a method developed in our laboratory based on high performance liquid chromatography (HPLC). The pineals, as well as their respective incubation medium, were shown to contain radioactive taurine. These results demonstrate that rat pineal glands are capable of taurine synthesis. Also a high degree of labeling was associated with an area on paper chromatograms, migrating more rapidly than the standards, using acidic solvent systems. If represented by a single pineal compound, the substance must be rapidly synthesized from 14 C-cystine to account for the radioactivity observed. Future studies of sulfur metabolism within the pineal gland could be of significant interest. (author)

  14. Beyond the pineal gland assumption: a neuroanatomical appraisal of dualism in Descartes' philosophy.

    Science.gov (United States)

    Berhouma, Moncef

    2013-09-01

    The problem of the substantial union of the soul and the body and therefore the mechanisms of interaction between them represents the core of the Cartesian dualistic philosophy. This philosophy is based upon a neuroanatomical obvious misconception, consisting mainly on a wrong intraventricular position of the pineal gland and its capacity of movement to act as a valve regulating the flow of animal spirits. Should we consider the Cartesian neurophysiology as a purely anatomical descriptive work and therefore totally incorrect, or rather as a theoretical conception supporting his dualistic philosophy? From the various pre-Cartesian theories on the pineal organ, we try to explain how Descartes used his original conception of neuroanatomy to serve his dualistic philosophy. Moreover, we present an appraisal of the Cartesian neuroanatomical corpus from an anatomical but also metaphysical and theological perspectives. A new interpretation of Descartes' writings and an analysis of the secondary related literature shed the light on the voluntary anatomical approximations aiming to build an ad hoc neurophysiology that allows Descartes' soul-body theory. By its central position within the brain mass and its particular shape, the pineal gland raised diverse metaphysical theories regarding its function, but the most original theory remains certainly its role as the seat of soul in René Descartes' philosophy and more precisely the organ where soul and body interact. The author emphasizes on the critics raised by Descartes' theories on the soul-body interaction through the role of the pineal gland. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Zinc oxide nanoparticle toxicity in embryonic zebrafish: Mitigation with different natural organic matter.

    Science.gov (United States)

    Kteeba, Shimaa M; El-Adawi, Hala I; El-Rayis, Osman A; El-Ghobashy, Ahmed E; Schuld, Jessica L; Svoboda, Kurt R; Guo, Laodong

    2017-11-01

    Exposure experiments were conducted to evaluate the influence of dissolved organic matter (DOM) on the toxicity of ZnO-NPs (10-30 nm) and dissolved Zn at sub-lethal doses (50 and 5 ppm, respectively) to zebrafish (Danio rerio). Humic acid, alginic acid, bovine serum albumin and various natural DOM isolated from rivers as the Milwaukee River-WI (NOMW), Yukon River-AK (NOMA) and Suwannee River-GA DOM (NOMS) were used to represent humic substances (HA), carbohydrates (CHO), proteins (PTN), and natural organic matter (NOM), respectively. Initial experiments were carried out to confirm the toxic effect of ZnO-NPs at 50 ppm, followed by mitigation experiments with different types and concentrations of DOM (0.4-40 mg-C/L). Compared to 0% hatch of 50 ppm ZnO-NPs exposed embryos at 72 h post fertilization (hpf), NOMS, NOMW and HA had the best mitigative effects on hatching (53-65%), followed by NOMA, CHO and PTN (19-35%); demonstrating that the mitigation effects on ZnO-NPs toxicity were related to DOM's quantity and composition. At 96 hpf, 20% of embryos exposed to 50 ppm ZnO-NPs hatched, 100% of embryos reared in embryo medium hatched, and close to 100% of the embryos hatched upon mitigation, except for those mitigated with PTN which had less effect. Dissolved Zn (5 ppm) also exhibited the same toxicity on embryos as ZnO-NPs (50 ppm). However, in the presence of HA, NOM and CHO, the hatching rates at 72 and 96 hpf increased significantly compared to 5% hatch without DOM. The overall mitigation effects produced by DOM followed the order of HA ≥ NOMS > NOM (A&W) > CHO > PTN, although specific mitigation effects varied with DOM concentration and functionalities. Our results also indicate that the toxicity of ZnO-NPs to embryos was mostly derived from NPs although dissolved Zn released from ZnO-NPs also interacted with embryos, affecting hatching, but to a less extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biological Uptake, Distribution, and Depuration of Radio-Labeled Graphene in Adult Zebrafish: Effects of Graphene Size and Natural Organic Matter.

    Science.gov (United States)

    Lu, Kun; Dong, Shipeng; Petersen, Elijah J; Niu, Junfeng; Chang, Xiaofeng; Wang, Peng; Lin, Sijie; Gao, Shixiang; Mao, Liang

    2017-03-28

    The exciting commercial application potential of graphene materials may inevitably lead to their increasing release into the environment where they may pose ecological risks. This study focused on using carbon-14-labeled few-layer graphene (FLG) to determine whether the size of graphene plays a role in its uptake, depuration, and biodistribution in adult zebrafish. After 48 h exposure to larger FLG (L-FLG) at 250 μg/L, the amount of graphene in the organism was close to 48 mg/kg fish dry mass, which was more than 170-fold greater than the body burden of those exposed to the same concentration of smaller FLG (S-FLG). The amount of uptake for both L-FLG and S-FLG increased by a factor of 2.5 and 16, respectively, when natural organic matter (NOM) was added in the exposure suspension. While the L-FLG mainly accumulated in the gut of adult zebrafish, the S-FLG was found in both the gut and liver after exposure with or without NOM. Strikingly, the S-FLG was able to pass through the intestinal wall and enter the intestinal epithelial cells and blood. The presence of NOM increased the quantity of S-FLG in these cells. Exposure to L-FLG or S-FLG also had a significantly different impact on the intestinal microbial community structure.

  17. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells.

    Science.gov (United States)

    Sánchez, Mario; Ceci, Maria Laura; Gutiérrez, Daniela; Anguita-Salinas, Consuelo; Allende, Miguel L

    2016-04-07

    Regenerating damaged tissue is a complex process, requiring progenitor cells that must be stimulated to undergo proliferation, differentiation and, often, migratory behaviors and morphological changes. Multiple cell types, both resident within the damaged tissue and recruited to the lesion site, have been shown to participate. However, the cellular and molecular mechanisms involved in the activation of progenitor cell proliferation and differentiation after injury, and their regulation by different cells types, are not fully understood. The zebrafish lateral line is a suitable system to study regeneration because most of its components are fully restored after damage. The posterior lateral line (PLL) is a mechanosensory system that develops embryonically and is initially composed of seven to eight neuromasts distributed along the trunk and tail, connected by a continuous stripe of interneuromastic cells (INCs). The INCs remain in a quiescent state owing to the presence of underlying Schwann cells. They become activated during development to form intercalary neuromasts. However, no studies have described if INCs can participate in a regenerative event, for example, after the total loss of a neuromast. We used electroablation in transgenic larvae expressing fluorescent proteins in PLL components to completely ablate single neuromasts in larvae and adult fish. This injury results in discontinuity of the INCs, Schwann cells, and the PLL nerve. In vivo imaging showed that the INCs fill the gap left after the injury and can regenerate a new neuromast in the injury zone. Further, a single INC is able to divide and form all cell types in a regenerated neuromast and, during this process, it transiently expresses the sox2 gene, a neural progenitor cell marker. We demonstrate a critical role for Schwann cells as negative regulators of INC proliferation and neuromast regeneration, and that this inhibitory property is completely dependent on active ErbB signaling. The potential

  18. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Kraugerud, Marianne, E-mail: Marianne.Kraugerud@nvh.no [Dept. of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Doughty, Richard William, E-mail: vetrwdoughty@yahoo.co.uk [Sundveien 22, 2015 Leirsund (Norway); Lyche, Jan L., E-mail: Jan.Lyche@nvh.no [Dept. of Food Safety and Infection Biology, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Berg, Vidar, E-mail: Vidar.Berg@nvh.no [Dept. of Food Safety and Infection Biology, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Tremoen, Nina H., E-mail: Nina.Hardnes@nvh.no [Dept. of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Alestrom, Peter, E-mail: Peter.Alestrom@nvh.no [Dept. of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Aleksandersen, Mona, E-mail: Mona.Aleksandersen@nvh.no [Dept. of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway); Ropstad, Erik, E-mail: Erik.Ropstad@nvh.no [Dept. of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, POB 8146 Dep., 0033 Oslo (Norway)

    2012-07-15

    Persistent organic pollutants such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and dichlorodiphenyltrichloroethane (DDT) are present in high concentrations in livers of burbot (Lota lota) in Lake Mjosa, Norway. In order to assess effects of such pollutants on fish gonadal morphology, female zebrafish were exposed in two generations by food to mixtures of pollutants extracted from livers of burbot from Lake Mjosa (high and low dose) and Lake Losna, which represents background pollution, and compared to a control group. Ovarian follicle counts detected a significant decrease in late vitellogenic follicle stages in fish exposed to the Losna and the high concentrations of Mjosa mixtures in fish from the first generation. In addition, proliferation of granulosa cells, visualized by immunohistochemistry against proliferating cell nuclear antigen (PCNA), was decreased in all exposure groups in either early or late vitellogenic follicle stages compared to control. This was accompanied by increased apoptosis of granulosa cells. There was a decrease in proliferation of liver hepatocytes with exposure to both Mjosa mixtures. In addition, immunopositivity for vitellogenin in the liver was significantly lower in the Mjosa high group than in the control group. When analysing effects of parental exposure, fish with parents exposed to Mjosa high mixture had significantly higher numbers of perinucleolar follicles than fish with control parents. We conclude that long-term exposure of a real-life mixture of pollutants containing high- and background levels of chemicals supress ovarian follicle development, liver vitellogenin immunostaining intensity and hepatocyte proliferation in the zebrafish model.

  19. Conservatively managed pineal apoplexy in an anticoagulated patient

    International Nuclear Information System (INIS)

    Werder, Gabriel M.; Razdan, Rahul S.; Gagliardi, Joseph A.; Chaddha, Shashi K.B.

    2008-01-01

    We present a case of pineal apoplexy in an anticoagulated and hypertensive 56-year-old Hispanic male. At presentation, the patient's international normalized ratio (INR) was 10.51 and his blood pressure was 200/130 mmHg. His presenting symptoms included acute onset of headache, chest pain, nausea, vomiting, vertigo, and visual disturbance. Neuroimaging demonstrated hemorrhage into a morphologically normal pineal gland. Under conservative management, the patient experienced gradual resolution of all symptoms excluding the disturbance of upward gaze

  20. Incidental pineal cysts in children who undergo 3-T MRI

    International Nuclear Information System (INIS)

    Whitehead, Matthew T.; Oh, Christopher C.; Choudhri, Asim F.

    2013-01-01

    Pineal cysts, both simple and complex, are commonly encountered in children. More cysts are being detected with MR technology; however, nearly all pineal cysts are benign and require no follow-up. To discover the prevalence of pineal cysts in children at our institution who have undergone high-resolution 3-T MRI. We retrospectively reviewed 100 consecutive 3-T brain MRIs in children ages 1 month to 17 years (mean 6.8 ± 5.1 years). We evaluated 3-D volumetric T1-W imaging, axial T2-W imaging, axial T2-W FLAIR (fluid attenuated inversion recovery) and coronal STIR (short tau inversion recovery) sequences. Pineal parenchymal and cyst volumes were measured in three planes. Cysts were analyzed for the presence and degree of complexity. Pineal cysts were present in 57% of children, with a mean maximum linear dimension of 4.2 mm (range 1.5-16 mm). Of these cysts, 24.6% showed thin septations or fluid levels reflecting complexity. None of the cysts demonstrated complete T2/FLAIR signal suppression. No cyst wall thickening or nodularity was present. There was no significant difference between the ages of children with and without cysts. Cysts were more commonly encountered in girls than boys (67% vs. 52%; P = 0.043). There was a slight trend toward increasing pineal gland volume with age. Pineal cysts are often present in children and can be incidentally detected by 3-T MRI. Characteristic-appearing pineal cysts in children are benign, incidental findings, for which follow-up is not required if there are no referable symptoms or excessive size. (orig.)

  1. The originality of Descartes' theory about the pineal gland.

    Science.gov (United States)

    Lokhorst, G J; Kaitaro, T T

    2001-03-01

    René Descartes thought that the pineal gland is the part of the body with which the soul is most immediately associated. Several prominent historians (such as Soury, Thorndike and Sherrington) have claimed that this idea was not very original. We re-examine the evidence and conclude that their assessment was wrong. We pay special attention to the thesis about the pineal gland which Jean Cousin defended in January, 1641.

  2. [Pineal anlage tumor in a 8-month-old boy. The first case reported in Spanish language].

    Science.gov (United States)

    Rodríguez-Velasco, Alicia; Ramírez-Reyes, Alma Griselda

    2014-01-01

    The pineal anlage tumor is a very infrequent malign neoplasm. Even though it has been documented in literature, it is not listed yet in the World Health Organization's last nervous system classification (2007). It is a primitive pineal tumor with neuroepithelial and ectomesenchyme differentiation. Due to its low frequency, the understanding of its biological behavior and a suitable treatment are incomplete. In a search performed in PubMed with the term pineal anlage tumor, only seven informed cases were identified between 1989 and 2011. An 8-month-old infant was brought to medical attention because he had a progressive enlargement of the cephalic perimeter, and convergent strabismus of two months of evolution. A pineal tumor was identified. The histology showed glial tissue, ganglia cells, pigmented neuroepithelium and striate muscle cells. A ventriculoperitoneal derivation was done to diminish hydrocephalic pressure and also to led the complete surgical resection. The patient was treated with two courses of chemotherapy with carboplatine, ifosfamide and mesna. One year after the treatment, the patient is asymptomatic. This is the first case reported in Spanish language. Given that it is a really infrequent tumor, it could be misdiagnosed as teratome, melanotic or mesoblastic medulloblastoma, or a melanotic neuroectodermal tumor of childhood (melanotic prognoma).

  3. Stages in the development of a model organism as a platform for mechanistic models in developmental biology: Zebrafish, 1970-2000.

    Science.gov (United States)

    Meunier, Robert

    2012-06-01

    Model organisms became an indispensable part of experimental systems in molecular developmental and cell biology, constructed to investigate physiological and pathological processes. They are thought to play a crucial role for the elucidation of gene function, complementing the sequencing of the genomes of humans and other organisms. Accordingly, historians and philosophers paid considerable attention to various issues concerning this aspect of experimental biology. With respect to the representational features of model organisms, that is, their status as models, the main focus was on generalization of phenomena investigated in such experimental systems. Model organisms have been said to be models for other organisms or a higher taxon. This, however, presupposes a representation of the phenomenon in question. I will argue that prior to generalization, model organisms allow researchers to built generative material models of phenomena - structures, processes or the mechanisms that explain them - through their integration in experimental set-ups that carve out the phenomena from the whole organism and thus represent them. I will use the history of zebrafish biology to show how model organism systems, from around 1970 on, were developed to construct material models of molecular mechanisms explaining developmental or physiological processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop.

    Science.gov (United States)

    Okuda, Kazuhide Shaun; Tan, Pei Jean; Patel, Vyomesh

    2016-04-01

    Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.

  5. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard; Samaras, Theodoros; Tschabitscher, Manfred; Mazal, Peter R

    2007-01-01

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 μW, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely

  6. New tides: using zebrafish to study renal regeneration.

    Science.gov (United States)

    McCampbell, Kristen K; Wingert, Rebecca A

    2014-02-01

    Over the past several decades, the zebrafish has become one of the major vertebrate model organisms used in biomedical research. In this arena, the zebrafish has emerged as an applicable system for the study of kidney diseases and renal regeneration. The relevance of the zebrafish model for nephrology research has been increasingly appreciated as the understanding of zebrafish kidney structure, ontogeny, and the response to damage has steadily expanded. Recent studies have documented the amazing regenerative characteristics of the zebrafish kidney, which include the ability to replace epithelial populations after acute injury and to grow new renal functional units, termed nephrons. Here we discuss how nephron composition is conserved between zebrafish and mammals, and highlight how recent findings from zebrafish studies utilizing transgenic technologies and chemical genetics can complement traditional murine approaches in the effort to dissect how the kidney responds to acute damage and identify therapeutics that enhance human renal regeneration. Copyright © 2014 Mosby, Inc. All rights reserved.

  7. Loss of Smyhc1 or Hsp90alpha1 function results in different effects on myofibril organization in skeletal muscles of zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Marta Codina

    Full Text Available BACKGROUND: Myofibrillogenesis requires the correct folding and assembly of sarcomeric proteins into highly organized sarcomeres. Heat shock protein 90alpha1 (Hsp90alpha1 has been implicated as a myosin chaperone that plays a key role in myofibrillogenesis. Knockdown or mutation of hsp90alpha1 resulted in complete disorganization of thick and thin filaments and M- and Z-line structures. It is not clear whether the disorganization of these sarcomeric structures is due to a direct effect from loss of Hsp90alpha1 function or indirectly through the disorganization of myosin thick filaments. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we carried out a loss-of-function analysis of myosin thick filaments via gene-specific knockdown or using a myosin ATPase inhibitor BTS (N-benzyl-p-toluene sulphonamide in zebrafish embryos. We demonstrated that knockdown of myosin heavy chain 1 (myhc1 resulted in sarcomeric defects in the thick and thin filaments and defective alignment of Z-lines. Similarly, treating zebrafish embryos with BTS disrupted thick and thin filament organization, with little effect on the M- and Z-lines. In contrast, loss of Hsp90alpha1 function completely disrupted all sarcomeric structures including both thick and thin filaments as well as the M- and Z-lines. CONCLUSION/SIGNIFICANCE: Together, these studies indicate that the hsp90alpha1 mutant phenotype is not simply due to disruption of myosin folding and assembly, suggesting that Hsp90alpha1 may play a role in the assembly and organization of other sarcomeric structures.

  8. Arsenic transport by zebrafish aquaglyceroporins

    Directory of Open Access Journals (Sweden)

    Landfear Scott M

    2009-11-01

    Full Text Available Abstract Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII. However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII and antimonite (SbIII was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were named aqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye

  9. The importance of Zebrafish in biomedical research.

    Science.gov (United States)

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  10. Object recognition memory in zebrafish.

    Science.gov (United States)

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Isodense epidermoid cyst in the pineal region

    International Nuclear Information System (INIS)

    Yamanouchi, Yasuo; Takahara, Nobuhiko; Kawamura, Yasuo; Matsumura, Hiroshi

    1985-01-01

    A 69-year-old male was admitted complaining of gait disturbances and diplopia, 2.5 years after an episode of serous meningitis. Neurological examination on admission disclosed Parinaud's sign, unsteady gait and dysdiadochokinesis on the left side. A striking finding on the computerized tomography (CT) was the left to right shift of the posterior portion of the third ventricle without visualization of the quadrigeminal and ambient cisterns, which were almost completely occupied by an isodense mass accompanied by high dense flecks and a low dense part. Enhanced CT showed positive enhancement in the vicinity of the pineal calcification. By the suboccipital supracerebellar approach, an encapsulated mass containing brownish yellow fluid was subtotally removed and a histological examination of it revealed epidermoid tissue and hemosiderin deposits in the solid portion. Few reports of isodense epidermoid cysts have so far been found in the literature giving a full explanation for this unusual CT attenuation value. Based on the clinical course and histology of this case, the pathogenesis of the unusual density is discussed along the following lines: The mixture of the low dense factor due to cholesterin and the high dense factor due to prior bleeding is believed to result in the isodense attenuation value in the liquid portion. Also, in the solid part, a microscopically mixed texture of deposited hemosiderin and cholesterin clefts in the inflammatory granulomatous tissue could explain its density on the CT scan. (author)

  12. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Kraugerud, Marianne; Doughty, Richard William; Lyche, Jan L.; Berg, Vidar; Tremoen, Nina H.; Alestrøm, Peter; Aleksandersen, Mona; Ropstad, Erik

    2012-01-01

    Persistent organic pollutants such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and dichlorodiphenyltrichloroethane (DDT) are present in high concentrations in livers of burbot (Lota lota) in Lake Mjøsa, Norway. In order to assess effects of such pollutants on fish gonadal morphology, female zebrafish were exposed in two generations by food to mixtures of pollutants extracted from livers of burbot from Lake Mjøsa (high and low dose) and Lake Losna, which represents background pollution, and compared to a control group. Ovarian follicle counts detected a significant decrease in late vitellogenic follicle stages in fish exposed to the Losna and the high concentrations of Mjøsa mixtures in fish from the first generation. In addition, proliferation of granulosa cells, visualized by immunohistochemistry against proliferating cell nuclear antigen (PCNA), was decreased in all exposure groups in either early or late vitellogenic follicle stages compared to control. This was accompanied by increased apoptosis of granulosa cells. There was a decrease in proliferation of liver hepatocytes with exposure to both Mjøsa mixtures. In addition, immunopositivity for vitellogenin in the liver was significantly lower in the Mjøsa high group than in the control group. When analysing effects of parental exposure, fish with parents exposed to Mjøsa high mixture had significantly higher numbers of perinucleolar follicles than fish with control parents. We conclude that long-term exposure of a real-life mixture of pollutants containing high- and background levels of chemicals supress ovarian follicle development, liver vitellogenin immunostaining intensity and hepatocyte proliferation in the zebrafish model.

  13. Conservatively managed pineal apoplexy in an anticoagulated patient

    Energy Technology Data Exchange (ETDEWEB)

    Werder, Gabriel M. [William Beaumont Hospital, Department of Radiology, 3600 West Thirteen Mile Road, Royal Oak, MI 48073 (United States); St Christopher Iba Mar Diop College of Medicine, Luton (United Kingdom)], E-mail: gabriel_werder@yahoo.com; Razdan, Rahul S.; Gagliardi, Joseph A.; Chaddha, Shashi K.B. [St Vincent' s Medical Center, Bridgeport, CT (United States)

    2008-02-15

    We present a case of pineal apoplexy in an anticoagulated and hypertensive 56-year-old Hispanic male. At presentation, the patient's international normalized ratio (INR) was 10.51 and his blood pressure was 200/130 mmHg. His presenting symptoms included acute onset of headache, chest pain, nausea, vomiting, vertigo, and visual disturbance. Neuroimaging demonstrated hemorrhage into a morphologically normal pineal gland. Under conservative management, the patient experienced gradual resolution of all symptoms excluding the disturbance of upward gaze.

  14. Episodic-like memory in zebrafish.

    Science.gov (United States)

    Hamilton, Trevor J; Myggland, Allison; Duperreault, Erika; May, Zacnicte; Gallup, Joshua; Powell, Russell A; Schalomon, Melike; Digweed, Shannon M

    2016-11-01

    Episodic-like memory tests often aid in determining an animal's ability to recall the what, where, and which (context) of an event. To date, this type of memory has been demonstrated in humans, wild chacma baboons, corvids (Scrub jays), humming birds, mice, rats, Yucatan minipigs, and cuttlefish. The potential for this type of memory in zebrafish remains unexplored even though they are quickly becoming an essential model organism for the study of a variety of human cognitive and mental disorders. Here we explore the episodic-like capabilities of zebrafish (Danio rerio) in a previously established mammalian memory paradigm. We demonstrate that when zebrafish were presented with a familiar object in a familiar context but a novel location within that context, they spend more time in the novel quadrant. Thus, zebrafish display episodic-like memory as they remember what object they saw, where they saw it (quadrant location), and on which occasion (yellow or blue walls) it was presented.

  15. Analysis of Lethality and Malformations During Zebrafish (Danio rerio) Development.

    Science.gov (United States)

    Raghunath, Azhwar; Perumal, Ekambaram

    2018-01-01

    The versatility offered by zebrafish (Danio rerio) makes it a powerful and an attractive vertebrate model in developmental toxicity and teratogenicity assays. Apart from the newly introduced chemicals as drugs, xenobiotics also induce abnormal developmental abnormalities and congenital malformations in living organisms. Over the recent decades, zebrafish embryo/larva has emerged as a potential tool to test teratogenicity potential of these chemicals. Zebrafish responds to compounds as mammals do as they share similarities in their development, metabolism, physiology, and signaling pathways with that of mammals. The methodology used by the different scientists varies enormously in the zebrafish embryotoxicity test. In this chapter, we present methods to assess lethality and malformations during zebrafish development. We propose two major malformations scoring systems: binomial and relative morphological scoring systems to assess the malformations in zebrafish embryos/larvae. Based on the scoring of the malformations, the test compound can be classified as a teratogen or a nonteratogen and its teratogenic potential is evaluated.

  16. Meningiomas of pineal region in children Meningiomas da região da pineal em crianças

    Directory of Open Access Journals (Sweden)

    Hamilton Matushita

    2007-12-01

    Full Text Available Meningiomas are uncommon tumors in children and either more rarely encountered in the pineal region. We report two cases of meningioma of the pineal region in children. One of these cases was a five years-old girl and the other a one year-old boy. No specific clinical presentation or tomographic examinations findings was identified before treatment, suggestive of a diagnosis of menigioma. The clinical and laboratory features were very similar to the most common tumors of the pineal region. Prior to the surgery, the histology of these tumors was not suspected. Both patients underwent direct surgery and complete removal was achieved by a suboccipital transtentorial approach. The tumors originated from velum interpositum in both cases. At the follow up, one case presented with recurrence six years later, and she underwent a reoperation with total resection without morbidity. Long-term follow up presented no other recurrences.Meningiomas são tumores poucos frequentes em crianças, e mais raramente encontrados na região da pineal. Relatamos dois casos de meningioma da região da pineal em crianças, uma menina de cinco anos e um menino de um ano de idade. Não foi identificada nenhuma forma de apresentação clinica ou caracteristica tomográfica, antes do tratamento, que sugerisse o diagnóstico de meningioma. As características clinicas e laboratoriais encontradas foram similares às de tumores mais frequentes da região da pineal. Ambos os pacientes foram submetidos ao tratamento cirúrgico e a remoção completa foi obtida por abordagem suboccipital transtentorial. Durante o seguimento, um dos pacientes foi reoperado por recorrencia do tumor seis anos após o tratamento inicial. Atualmente, os pacientes encontram-se livres de recorrência tumoral.

  17. Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned.

    Science.gov (United States)

    Knogler, Laura D; Markov, Daniil A; Dragomir, Elena I; Štih, Vilim; Portugues, Ruben

    2017-05-08

    A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants.

    Science.gov (United States)

    Batel, Annika; Linti, Frederic; Scherer, Martina; Erdinger, Lothar; Braunbeck, Thomas

    2016-07-01

    The uptake of microplastic particles and the transfer of potential harmful substances along with microplastics has been studied in a variety of organisms, especially invertebrates. However, the potential accumulation of very small microplastic particles along food webs ending with vertebrate models has not been investigated so far. Therefore, a simple artificial food chain with Artemia sp. nauplii and zebrafish (Danio rerio) was established to analyze the transfer of microplastic particles and associated persistent organic pollutants (POPs) between different trophic levels. Very small (1-20 μm) microplastic particles accumulated in Artemia nauplii and were subsequently transferred to fish. Virgin particles not loaded with POPs did not cause any observable physical harm in the intestinal tracts of zebrafish, although parts of the particles were retained within the mucus of intestinal villi and might even have been taken up by epithelial cells. The transfer of associated POPs was tested with the polycyclic aromatic hydrocarbon benzo[a]pyrene and an ethoxyresorufin-O-deethylase (EROD) assay for CYP1A induction in zebrafish liver as well as via fluorescence analyses. Whereas a significant induction in the EROD assay could not be shown, because of high individual variation and low sensitivity regarding substance concentration, the fluorescence tracking of benzo[a]pyrene indicates that food-borne microplastic-associated POPs may actually desorb in the intestine of fish and are thus transferred to the intestinal epithelium and liver. Environ Toxicol Chem 2016;35:1656-1666. © 2016 SETAC. © 2016 SETAC.

  19. Glioblastoma multiforme of the pineal region: case report Glioblastoma multiforme de região pineal: relato de caso

    Directory of Open Access Journals (Sweden)

    Emerson Leandro Gasparetto

    2003-06-01

    Full Text Available PURPOSE: pineal region tumors are uncommon, and comprise more frequently three categories: germ cell, parenchymal cell and glial tumors. Most pineal gliomas are low-grade astrocytomas. Glioblastoma multiforme, the most aggressive and common brain tumor, is extremely rare at this location with only few cases reported. CASE DESCRIPTION: a 29-year-old woman with a two month history of headache, nuchal pain, fever, nausea and seizures and physical examination showing nuchal rigidity, generalized hypotony, hypotrophy and hyper-reflexia, Babinski sign and left VI cranial par palsy. CT scan examination revealed a ill-defined hypodense lesion at the pineal region with heterogeneous contrast enhancement. MRI showed a lesion at the pineal region infiltrating the right thalamic region. The patient underwent a right craniotomy with partial resection of the mass. The histological examination of paraffin-embedded material defined the diagnosis of glioblastoma multiforme. Post-operative radiotherapy was indicated but the patient refused the treatment and died two months afterwards. CONCLUSION: in spite of its rarity at this location, glioblastoma multiforme should be considered in the differential diagnosis of aggressive lesions at the pineal region.OBJETIVO: Os tumores da região pineal são incomuns e podem ser divididos em três categorias de acordo com a sua origem: células germinativas, células do parênquima e células gliais. Em sua maioria, os gliomas de pineal são astrocitomas de baixo grau, sendo que o seu correspondente maligno, glioblastoma multiforme, é o mais comum e agressivo tumor encefálico e é extremamente raro nesta localização, com apenas alguns casos relatados na literatura. CASO: Mulher com 29 anos apresentando há 2 meses cefaléia, nucalgia, febre, náuseas e crises convulsivas. O exame físico mostrou rigidez de nuca, hipotonia, hipotrofia e hiperreflexia generalizadas, sinal de Babinski e paralisia do VI nervo craniano. A

  20. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut.

    Science.gov (United States)

    Essner, Jeffrey J; Amack, Jeffrey D; Nyholm, Molly K; Harris, Erin B; Yost, H Joseph

    2005-03-01

    Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.

  1. Modeling Myeloid Malignancies Using Zebrafish

    Directory of Open Access Journals (Sweden)

    Kathryn S. Potts

    2017-12-01

    Full Text Available Human myeloid malignancies represent a substantial disease burden to individuals, with significant morbidity and death. The genetic underpinnings of disease formation and progression remain incompletely understood. Large-scale human population studies have identified a high frequency of potential driver mutations in spliceosomal and epigenetic regulators that contribute to malignancies, such as myelodysplastic syndromes (MDS and leukemias. The high conservation of cell types and genes between humans and model organisms permits the investigation of the underlying mechanisms of leukemic development and potential therapeutic testing in genetically pliable pre-clinical systems. Due to the many technical advantages, such as large-scale screening, lineage-tracing studies, tumor transplantation, and high-throughput drug screening approaches, zebrafish is emerging as a model system for myeloid malignancies. In this review, we discuss recent advances in MDS and leukemia using the zebrafish model.

  2. The CI findings of 6 cases of the pineal cyst. Consideration on neuroradiological images and the mechanism of occurrence of pineal cysts in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Nakajou, Takahito; Kurisaka, Masahiro; Mori, Koreaki [Kochi Medical School, Nankoku (Japan)

    1995-03-01

    In comparison to adult individuals over the age of 50, pineal cysts do rarely occur in children and adolescents. Here we report on four young patients who had pineal cysts in combination with hypophyseal dwarfism. We studied an 8-year-old girl with chiasmal germinoma, an 8-year-old boy with epilepsy, a 17-year-old male with spontaneous hypophyseal dwarfism and a 11-year-old female with craniopharyngioma. We also investigated a 29-year-old man with pontine glioma and a 48-year-old women with prolactinoma. The comparison of neuroimaging the pineal cysts in children and adults revealed the characteristics of their location in the pineal gland and the presence of residual normal gland. The etiology of pineal cysts in combination with pituitary dwarfism is unclear. However, our cases would suggest that they may be related to endocrinological disorders of the hypothalamus and the pituitary gland. (author).

  3. The CI findings of 6 cases of the pineal cyst. Consideration on neuroradiological images and the mechanism of occurrence of pineal cysts in childhood

    International Nuclear Information System (INIS)

    Nakajou, Takahito; Kurisaka, Masahiro; Mori, Koreaki

    1995-01-01

    In comparison to adult individuals over the age of 50, pineal cysts do rarely occur in children and adolescents. Here we report on four young patients who had pineal cysts in combination with hypophyseal dwarfism. We studied an 8-year-old girl with chiasmal germinoma, an 8-year-old boy with epilepsy, a 17-year-old male with spontaneous hypophyseal dwarfism and a 11-year-old female with craniopharyngioma. We also investigated a 29-year-old man with pontine glioma and a 48-year-old women with prolactinoma. The comparison of neuroimaging the pineal cysts in children and adults revealed the characteristics of their location in the pineal gland and the presence of residual normal gland. The etiology of pineal cysts in combination with pituitary dwarfism is unclear. However, our cases would suggest that they may be related to endocrinological disorders of the hypothalamus and the pituitary gland. (author)

  4. Developmental and Diurnal Expression of the Synaptosomal-Associated Protein 25 (Snap25) in the Rat Pineal Gland

    DEFF Research Database (Denmark)

    Karlsen, Anna S; Rath, Martin Fredensborg; Rohde, Kristian

    2013-01-01

    pineal gland but the biological importance of this is unknown. In this study, we demonstrate a high expression of mRNA encoding Snap25 in all parts of the rat pineal complex, the superficial-, and deep-pineal gland, as well as in the pineal stalk. Snap25 showed a low pineal expression during embryonic...... stages with a strong increase in expression levels just after birth. The expression showed no day/night variations. Neither removal of the sympathetic input to the pineal gland by superior cervical ganglionectomy nor bilateral decentralization of the superior cervical ganglia significantly affected...

  5. FishNet: an online database of zebrafish anatomy

    Directory of Open Access Journals (Sweden)

    Gibson Abigail J

    2007-08-01

    Full Text Available Abstract Background Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish. Results To overcome this deficit we have utilized the technique of optical projection tomography to produce three-dimensional (3D models of larval fish. In order to view and display these models we have created FishNet http://www.fishnet.org.au, an interactive reference of zebrafish anatomy spanning the range of zebrafish development from 24 h until adulthood. Conclusion FishNet contains more than 36 000 images of larval zebrafish, with more than 1 500 of these being annotated. The 3D models can be manipulated on screen or virtually sectioned. This resource represents the first complete embryo to adult atlas for any species in 3D.

  6. Depression of nocturnal pineal serotonin N-acetyltransferase activity in castrate male rats

    International Nuclear Information System (INIS)

    Rudeen, P.K.; Reiter, R.J.; Texas Univ., San Antonio

    1980-01-01

    Pineal serotonin N-acetyltransferase (NAT) activity was examined in intact rats, castrated rats, and in rats that had been castrated and had received testosterone proprionate. Castration resulted in significantly depressing nocturnal levels of pineal NAT (p<0.05) when compared to enzyme activity in intact rats. Testosterone proprionate administration restored plasma LH levels to normal values in castrate rats but did not induce nocturnal pineal enzyme activity to levels seen in the pineal glands of intact rats. The data substantiate the existence of a feedback control of pineal biosynthetic activity by the hypophyseal-gonadal system, but the identity of the hormone(s) responsible for regulation of pineal NAT activity is not known. (author)

  7. A modulatory role of the Rax homeobox gene in mature pineal gland function

    DEFF Research Database (Denmark)

    Rohde, Kristian; Bering, Tenna; Furukawa, Takahisa

    2017-01-01

    The retinal and anterior neural fold homeobox gene (Rax) controls development of the eye and the forebrain. Postnatal expression of Rax in the brain is restricted to the pineal gland, a forebrain structure devoted to melatonin synthesis. The role of Rax in pineal function is unknown. In order...... to investigate the role of Rax in pineal function while circumventing forebrain abnormalities of the global Rax knockout, we generated an eye and pineal-specific Rax conditional knockout mouse. Deletion of Rax in the pineal gland did not affect morphology of the gland, suggesting that Rax is not essential...... for the nucleus to develop. Telemetric analyses confirmed the lack of a functional circadian clock. Arylalkylamine N-acetyltransferase (Aanat) transcripts, encoding the melatonin rhythm-generating enzyme, were undetectable in the pineal gland of the Rax conditional knockout under normal conditions, whereas...

  8. Tributyltin and Zebrafish: Swimming in Dangerous Water

    Directory of Open Access Journals (Sweden)

    Clemilson Berto-Júnior

    2018-04-01

    Full Text Available Zebrafish has been established as a reliable biological model with important insertion in academy (morphologic, biochemical, and pathophysiological studies and pharmaceutical industry (toxicology and drug development due to its molecular complexity and similar systems biology that recapitulate those from other organisms. Considering the toxicological aspects, many efforts using zebrafish models are being done in order to elucidate the effects of endocrine disruptors, and some of them are focused on tributyltin (TBT and its mechanism of action. TBT is an antifouling agent applied in ship’s hull that is constantly released into the water and absorbed by marine organisms, leading to bioaccumulation and biomagnification effects. Thus, several findings of malformations and changes in the normal biochemical and physiologic aspects of these marine animals have been related to TBT contamination. In the present review, we have compiled the most significant studies related to TBT effects in zebrafish, also taking into consideration the effects found in other study models.

  9. Tributyltin and Zebrafish: Swimming in Dangerous Water

    Science.gov (United States)

    Berto-Júnior, Clemilson; de Carvalho, Denise Pires; Soares, Paula; Miranda-Alves, Leandro

    2018-01-01

    Zebrafish has been established as a reliable biological model with important insertion in academy (morphologic, biochemical, and pathophysiological studies) and pharmaceutical industry (toxicology and drug development) due to its molecular complexity and similar systems biology that recapitulate those from other organisms. Considering the toxicological aspects, many efforts using zebrafish models are being done in order to elucidate the effects of endocrine disruptors, and some of them are focused on tributyltin (TBT) and its mechanism of action. TBT is an antifouling agent applied in ship’s hull that is constantly released into the water and absorbed by marine organisms, leading to bioaccumulation and biomagnification effects. Thus, several findings of malformations and changes in the normal biochemical and physiologic aspects of these marine animals have been related to TBT contamination. In the present review, we have compiled the most significant studies related to TBT effects in zebrafish, also taking into consideration the effects found in other study models. PMID:29692757

  10. Neuroendoscopy and pineal tumors: A review of the literature and our considerations regarding its utility.

    Science.gov (United States)

    Mottolese, C; Szathamari, A; Beuriat, P A; Grassiot, B; Simon, E

    2015-01-01

    Endoscopy has entered into the armamentarium of pineal and pineal region tumor treatment. The technique permits not only to control hydrocephalus but also to obtain tissue samples for histological diagnosis. In this paper, we explain the utility of endoscopy for the treatment of pineal tumors and as well as report some personal considerations regarding this topic. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. The perivascular phagocyte of the mouse pineal gland: An antigen-presenting cell

    DEFF Research Database (Denmark)

    Møller, Morten; Rath, Martin F; Klein, David C

    2006-01-01

    The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal g...... for MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen-presenting properties are present in the mouse pineal gland....

  12. Demonstration of an orexinergic central innervation of the pineal gland of the pig

    DEFF Research Database (Denmark)

    Fabris, Chiara; Cozzi, Bruno; Hay-Schmidt, Anders

    2004-01-01

    into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using primers specific...... for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs....

  13. Morphology and function: MR pineal volume and melatonin level in human saliva are correlated.

    Science.gov (United States)

    Liebrich, Luisa-Sophie; Schredl, Michael; Findeisen, Peter; Groden, Christoph; Bumb, Jan Malte; Nölte, Ingo S

    2014-10-01

    To investigate the relation between circadian saliva melatonin levels and pineal volume as determined by MRI. Plasma melatonin levels follow a circadian rhythm with a high interindividual variability. In 103 healthy individuals saliva melatonin levels were determined at four time points within 24 h and MRI was performed once (3.0 Tesla, including three-dimensional T2 turbo spin echo [3D-T2-TSE], susceptibility-weighted imaging [SWI]). Pineal volume as well as cyst volume were assessed from multiplanar reconstructed 3D-T2-TSE images. Pineal calcification volume tissue was determined on SWI. To correct for hormonal inactive pineal tissue, cystic and calcified areas were excluded. Sleep quality was assessed with the Landeck Inventory for sleep quality disturbance. Solid and uncalcified pineal volume correlated to melatonin maximum (r = 0.28; P < 0.05) and area under the curve (r = 0.29; P < 0.05). Of interest, solid and uncalcified pineal volume correlated negatively with the sleep rhythm disturbances subscore (r = -0.17; P < 0.05) despite a very homogenous population. Uncalcified solid pineal tissue measured by 3D-T2-TSE and SWI is related to human saliva melatonin levels. The analysis of the sleep quality and pineal volume suggests a linkage between better sleep quality and hormonal active pineal tissue. © 2013 Wiley Periodicals, Inc.

  14. Macrophage–Microbe Interactions: Lessons from the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Nagisa Yoshida

    2017-12-01

    Full Text Available Macrophages provide front line defense against infections. The study of macrophage–microbe interplay is thus crucial for understanding pathogenesis and infection control. Zebrafish (Danio rerio larvae provide a unique platform to study macrophage–microbe interactions in vivo, from the level of the single cell to the whole organism. Studies using zebrafish allow non-invasive, real-time visualization of macrophage recruitment and phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been central to decipher the complex role of macrophages during infection. Here, we discuss the latest developments using zebrafish models of bacterial and fungal infection. We also review novel aspects of macrophage biology revealed by zebrafish, which can potentiate development of new therapeutic strategies for humans.

  15. The presence of opioidergic pinealocytes in the pineal gland of the European hamster (Cricetus cricetus): an immunocytochemical study

    DEFF Research Database (Denmark)

    Coto-Montes, A.; Masson-Pévet, M.; Pévet, P.

    1994-01-01

    Neurobiologi, pineal gland, leu-enkephalin, Met-enkephalin, synaptic contacts, paracrine regulation, European hamster, cricetus cricetus (rodents)......Neurobiologi, pineal gland, leu-enkephalin, Met-enkephalin, synaptic contacts, paracrine regulation, European hamster, cricetus cricetus (rodents)...

  16. A Zebrafish Loss-of-Function Model for Human CFAP53 Mutations Reveals Its Specific Role in Laterality Organ Function

    NARCIS (Netherlands)

    Noël, Emily S; Momenah, Tarek S; Al-Dagriri, Khalid; Al-Suwaid, Abdulrahman; Al-Shahrani, Safar; Jiang, Hui; Willekers, Sven; Oostveen, Yara Y; Chocron, Sonja; Postma, Alex V; Bhuiyan, Zahurul A; Bakkers, Jeroen

    Establishing correct left-right asymmetry during embryonic development is crucial for proper asymmetric positioning of the organs. Congenital heart defects, such as dextrocardia, transposition of the arteries, and inflow or outflow tract malformations, comprise some of the most common birth defects

  17. A zebrafish Loss-of-Function Model for Human CFAP53 Mutations Reveals its Specific Role in Laterality Organ Function

    NARCIS (Netherlands)

    Noël, Emily S; Momenah, Tarek S; Al-Dagriri, Khalid; Al-Suwaid, Abdulrahman; Al-Shahrani, Safar; Jiang, Hui; Willekers, Sven; Oostveen, Yara Y; Chocron, Sonja; Postma, Alex V; Bhuiyan, Zahurul A; Bakkers, Jeroen

    Establishing correct left-right asymmetry during embryonic development is crucial for proper asymmetric positioning of the organs. Congenital heart defects such as dextrocardia, transposition of the arteries, and inflow or outflow tract malformations, comprise some of the most common birth defects

  18. A Zebrafish Loss-of-Function Model for Human CFAP53 Mutations Reveals Its Specific Role in Laterality Organ Function

    NARCIS (Netherlands)

    Noël, Emily S.; Momenah, Tarek S.; Al-Dagriri, Khalid; Al-Suwaid, Abdulrahman; Al-Shahrani, Safar; Jiang, Hui; Willekers, Sven; Oostveen, Yara Y.; Chocron, Sonja; Postma, Alex V.; Bhuiyan, Zahurul A.; Bakkers, Jeroen

    2016-01-01

    Establishing correct left-right asymmetry during embryonic development is crucial for proper asymmetric positioning of the organs. Congenital heart defects, such as dextrocardia, transposition of the arteries, and inflow or outflow tract malformations, comprise some of the most common birth defects

  19. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2007-06-01

    Full Text Available Abstract Background The zebrafish (Danio rerio is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. Results Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. Conclusion The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.

  20. The human pineal gland and melatonin in aging and Alzheimer's disease.

    NARCIS (Netherlands)

    Wu, Y.-H.; Swaab, D.F.

    2005-01-01

    The pineal gland is a central structure in the circadian system which produces melatonin under the control of the central clock, the suprachiasmatic nucleus (SCN). The SCN and the output of the pineal gland, i.e. melatonin, are synchronized to the 24-hr day by environmental light, received by the

  1. The human pineal gland and melatonin in aging and Alzheimer's disease

    NARCIS (Netherlands)

    Wu, Ying-Hui; Swaab, Dick F.

    2005-01-01

    The pineal gland is a central structure in the circadian system which produces melatonin under the control of the central clock, the suprachiasmatic nucleus (SCN). The SCN and the output of the pineal gland, i.e. melatonin, are synchronized to the 24-hr day by environmental light, received by the

  2. Frequency and position of pineal gland calcification in a Japanese population

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Fumio; Ishimaru, Toranosuke; Russell, W J; Kogure, Takashi

    1964-04-23

    A review of all skull roentgenograms of 525 normal patients was conducted to determine the incidence of pineal gland and habenular nucleus calcification, and to compile normal values for pineal gland calcification in a Japanese population. These data are presented as tables and graphs for use in roentgenological interpretation. 17 references, 2 figures, 5 tables.

  3. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus

    DEFF Research Database (Denmark)

    Yamazaki, Fumiyoshi; Møller, Morten; Fu, Cong

    2015-01-01

    Lhx9 is a member of the LIM homeobox gene family. It is expressed during mammalian embryogenesis in the brain including the pineal gland. Deletion of Lhx9 results in sterility due to failure of gonadal development. The current study was initiated to investigate Lhx9 biology in the pineal gland. Lhx...

  4. 2017 Midwest Zebrafish Meeting Report.

    Science.gov (United States)

    Sandquist, Elizabeth; Petersen, Sarah C; Smith, Cody J

    2017-12-01

    The 2017 Midwest Zebrafish meeting was held from June 16 to 18 at the University of Cincinnati, sponsored by the Cincinnati Children's Hospital Divisions of Developmental Biology, Molecular Cardiovascular Biology, and Gastroenterology, Hepatology, and Nutrition. The meeting, organized by Saulius Sumanas, Joshua Waxman, and Chunyue Yin, hosted >130 attendees from 16 different states. Scientific sessions were focused on morphogenesis, neural development, novel technologies, and disease models, with Steve Ekker, Stephen Potter, and Lila Solnica-Krezel presenting keynote talks. In this article, we highlight the results and emerging themes from the meeting.

  5. Postsynaptic alpha-adrenergic receptors potentiate the beta-adrenergic stimulation of pineal serotonin N-acetyltransferase.

    OpenAIRE

    Klein, D C; Sugden, D; Weller, J L

    1983-01-01

    The role played by postsynaptic alpha-adrenergic receptors in the stimulation of pineal N-acetyltransferase (EC 2.3.1.5) and [3H]melatonin production was investigated in the rat. In vivo studies indicated that phenylephrine, an alpha-adrenergic agonist, potentiated and prolonged the effects of isoproterenol, a beta-adrenergic agonist. Similar observations were made in organ culture with glands devoid of functional nerve endings. In addition, a combination of 1 microM prazosin, an alpha 1-adre...

  6. β-arrestin functionally regulates the non-bleaching pigment parapinopsin in lamprey pineal.

    Directory of Open Access Journals (Sweden)

    Emi Kawano-Yamashita

    2011-01-01

    Full Text Available The light response of vertebrate visual cells is achieved by light-sensing proteins such as opsin-based pigments as well as signal transduction proteins, including visual arrestin. Previous studies have indicated that the pineal pigment parapinopsin has evolutionally and physiologically important characteristics. Parapinopsin is phylogenetically related to vertebrate visual pigments. However, unlike the photoproduct of the visual pigment rhodopsin, which is unstable, dissociating from its chromophore and bleaching, the parapinopsin photoproduct is stable and does not release its chromophore. Here, we investigated arrestin, which regulates parapinopsin signaling, in the lamprey pineal organ, where parapinopsin and rhodopsin are localized to distinct photoreceptor cells. We found that beta-arrestin, which binds to stimulated G protein-coupled receptors (GPCRs other than opsin-based pigments, was localized to parapinopsin-containing cells. This result stands in contrast to the localization of visual arrestin in rhodopsin-containing cells. Beta-arrestin bound to cultured cell membranes containing parapinopsin light-dependently and translocated to the outer segments of pineal parapinopsin-containing cells, suggesting that beta-arrestin binds to parapinopsin to arrest parapinopsin signaling. Interestingly, beta-arrestin colocalized with parapinopsin in the granules of the parapinopsin-expressing cell bodies under light illumination. Because beta-arrestin, which is a mediator of clathrin-mediated GPCR internalization, also served as a mediator of parapinopsin internalization in cultured cells, these results suggest that the granules were generated light-dependently by beta-arrestin-mediated internalization of parapinopsins from the outer segments. Therefore, our findings imply that beta-arrestin-mediated internalization is responsible for eliminating the stable photoproduct and restoring cell conditions to the original dark state. Taken together with a

  7. Zebrafish: an animal model for research in veterinary medicine.

    Science.gov (United States)

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  8. Evaluation of pineal calcification in children. Using both CT and plain radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Kazuo; Odagiri, Kunio; Fujiwara, Takuya; Tanohata, Kazunori; Matsui, Kengo; Okano, Shigeki

    1987-07-01

    The study cases were 804 patients who had received either CT or plain radiographs for some reasons. Their ages ranged from newborn to 15 years old. Twenty four patients had the pineal calcification, in which one patient had the pineal region tumor and 4 patients had precocious puberty. The incidence of the pineal calcification was observed on CT as 0.2, 5.8, and 14 % in their age of 0 to 5, 6 to 10, and 11 to 15 years old, respectively. On the other hand, this finding was detected only in 0, 1.1, and 1.2 % on plain radiographs. In conclusion, pineal calcification on CT may suggest the pathological state in children. Although it is observed in a minority of normal children, such a calcification could be looked upon as not only pineal region tumor but precocious puberty and other intracranial disorders with suspicion.

  9. NeuroD1: developmental expression and regulated genes in the rodent pineal gland

    DEFF Research Database (Denmark)

    Muñoz, Estela M; Bailey, Michael J; Rath, Martin F

    2007-01-01

    NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which...... time it is also detectable in other brain regions. Expression in the pineal gland increases during the embryonic period and is maintained thereafter at levels equivalent to those found in the cerebellum and retina. In contrast, NeuroD1 mRNA decreases markedly in non-cerebellar brain regions during...... development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p

  10. Swimming Effects on Developing Zebrafish

    NARCIS (Netherlands)

    Kranenbarg, S.; Pelster, B.

    2013-01-01

    Zebrafish represent an important vertebrate model species in developmental biology. This chapter reviews the effects of exercise on the development of the musculoskeletal system, the cardiovascular system, metabolic capacities of developing zebrafish, and regulation of these processes on the gene

  11. Whole-body and multispectral photoacoustic imaging of adult zebrafish

    Science.gov (United States)

    Huang, Na; Xi, Lei

    2016-10-01

    Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.

  12. A case of hemorrhagic pineal cyst: MR/CT correlation

    International Nuclear Information System (INIS)

    Osborn, R.E.

    1989-01-01

    A 30-year-old male had headache pain for one month and was evaluated with both computed tomography (CT) and magnetic resonance (MR). These scans demonstrated an obstructing pineal cyst containing layered acute and subacute blood products by MR criteria. The concurrent scans allowed correlation between CT and MR findings in this rare complication of an unusual entity, explained his headache (and the development of later upward gaze paresis), provided a precise surgical/anatomic approach, and gave a good final clinical result. The report illustrates appropriate CT and MR images and pathological specimen. (orig.)

  13. Zebrafish: A Versatile Animal Model for Fertility Research

    Directory of Open Access Journals (Sweden)

    Jing Ying Hoo

    2016-01-01

    Full Text Available The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  14. Zebrafish Health Conditions in the China Zebrafish Resource Center and 20 Major Chinese Zebrafish Laboratories.

    Science.gov (United States)

    Liu, Liyue; Pan, Luyuan; Li, Kuoyu; Zhang, Yun; Zhu, Zuoyan; Sun, Yonghua

    2016-07-01

    In China, the use of zebrafish as an experimental animal in the past 15 years has widely expanded. The China Zebrafish Resource Center (CZRC), which was established in 2012, is becoming one of the major resource centers in the global zebrafish community. Large-scale use and regular exchange of zebrafish resources have put forward higher requirements on zebrafish health issues in China. This article reports the current aquatic infrastructure design, animal husbandry, and health-monitoring programs in the CZRC. Meanwhile, through a survey of 20 Chinese zebrafish laboratories, we also describe the current health status of major zebrafish facilities in China. We conclude that it is of great importance to establish a widely accepted health standard and health-monitoring strategy in the Chinese zebrafish research community.

  15. Two-Photon-Based Photoactivation in Live Zebrafish Embryos

    OpenAIRE

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-01-01

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a...

  16. A radiologic study by CT scan of pineal size in cancer patients

    International Nuclear Information System (INIS)

    Tagliabue, M.; Macchi, I.; Salvini, E.; Lissoni, P.; Tancini, G.; Barni, S.; Crispino, S.

    1989-01-01

    Alterations in size of the pineal body and melatonin secretion have been observed in cancer patients. The present study was carried out to evaluate pineal dimension in a group of cancer patients and their relation to melatonin blood levels. The study included 70 oncologic patients. As controls, 41 patients with acute or chronic disease other than cancer entered the study. Melatonin serum levels were measured by radioimmunoassay on venous blood samples collected at 9:00 a.m. Pineal size was determined by brain CT scan, by considering the product of the two longest perpendicular diameters, multiplied by the thickness of the stratum. The volume of the pineal body was found to be enlarged in 12/70 (17%) cancer patients, and its mean value was significantly higher than that observed in controls. Melatonin levels were also significantly higher in oncologic patients than in controls. However, there was no correlation between melatonin levels and pineal size in cancer patients. Finally, cancer patients did not show a higher degree of pineal calcifications than controls. The clinical significance of pineal enlargement in cancer patients remains to be understood

  17. Stereotactic gamma radiosurgery of pineal and related tumors

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuya; Mori, Yoshimasa; Yamada, Yasushi; Kida, Yoshihisa

    2001-01-01

    The role of gamma radiosurgery as an additional therapy after conventional treatments for pineal and related tumors was studied in 30 out of 33 cases with a mean follow-up of 23.3 months. Overall results showed that complete response (CR) was obtained in 8 cases (26.7%) and response rate was 73.3%. However, enlargement of the tumors was noted in 8 cases, of which 7 (23.3%) died of tumor progression (PG). Germinomas and pineocytomas showed higher response and control rates of 100%, and no tumor enlargement or death occurred after gamma knife treatment. In germinoma with STGC (syncytiotrophoblastic giant cell) which has been thought to have intermediate prognosis, two cases showed partial response (PR), but another died from progression of the disease. Malignant germ cell tumors and pineoblastomas showed unfavorable response and prognosis; the response and progression rates were 50%. However, complete response was obtained in 3 cases (25%) after gamma radiosurgery. Gamma knife was the initial treatment in three cases without pathological diagnosis in which one obtained CR and two showed partial response (PR). Stereotactic gamma radiosurgery is expected to be an effective and novel treatment for pineal and related tumors not only as an adjuvant, but also as an initial therapy. (author)

  18. Autoradiographic demonstration of target cells for the mineralocorticoid aldosterone in the rat pineal gland

    International Nuclear Information System (INIS)

    Ruehle, H.J.; Ermisch, A.

    1987-01-01

    Male rats received [ 3 H]aldosterone 30 min before sacrifice. Autoradiograms were prepared from brain and pineal gland by a thaw-mount technique. Grain counting revealed that the pineal retained 4 times as much radioactivity as brain regions with tight capillaries. Using an appropriate method of quantitative autoradiogram evaluation, it was shown that in adrenalectomized animals, but not after shamoperiation, 28% of the pinealocytes concentrated the steroid in their nuclei. This is the first demonstration of saturable mineralocorticoid binding in the pineal gland. (author)

  19. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    Science.gov (United States)

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  20. Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension.

    Science.gov (United States)

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-07-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. Copyright © 2011 Wiley-Liss, Inc.

  1. Pertussis toxin-sensitive G-protein mediates the alpha 2-adrenergic receptor inhibition of melatonin release in photoreceptive chick pineal cell cultures

    International Nuclear Information System (INIS)

    Pratt, B.L.; Takahashi, J.S.

    1988-01-01

    The avian pineal gland is a photoreceptive organ that has been shown to contain postjunctional alpha 2-adrenoceptors that inhibit melatonin synthesis and/or release upon receptor activation. Physiological response and [32P]ADP ribosylation experiments were performed to investigate whether pertussis toxin-sensitive guanine nucleotide-binding proteins (G-proteins) were involved in the transduction of the alpha 2-adrenergic signal. For physiological response studies, the effects of pertussis toxin on melatonin release in dissociated cell cultures exposed to norepinephrine were assessed. Pertussis toxin blocked alpha 2-adrenergic receptor-mediated inhibition in a dose-dependent manner. Pertussis toxin-induced blockade appeared to be noncompetitive. One and 10 ng/ml doses of pertussis toxin partially blocked and a 100 ng/ml dose completely blocked norepinephrine-induced inhibition. Pertussis toxin-catalyzed [32P]ADP ribosylation of G-proteins in chick pineal cell membranes was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Membranes were prepared from cells that had been pretreated with 0, 1, 10, or 100 ng/ml pertussis toxin. In the absence of pertussis toxin pretreatment, two major proteins of 40K and 41K mol wt (Mr) were labeled by [32P]NAD. Pertussis toxin pretreatment of pineal cells abolished [32P] radiolabeling of the 40K Mr G-protein in a dose-dependent manner. The norepinephrine-induced inhibition of both cAMP efflux and melatonin release, as assessed by RIA of medium samples collected before membrane preparation, was also blocked in a dose-dependent manner by pertussis toxin. Collectively, these results suggest that a pertussis toxin-sensitive 40K Mr G-protein labeled by [32P]NAD may be functionally associated with alpha 2-adrenergic signal transduction in chick pineal cells

  2. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri

    DEFF Research Database (Denmark)

    Korbut, Rozalia; Mehrdana, Foojan; Kania, Per Walter

    2016-01-01

    Immersion-vaccines (bacterins) are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr). During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms...... the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species....

  3. An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    DEFF Research Database (Denmark)

    Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model...

  4. The zebrafish reference genome sequence and its relationship to the human genome.

    NARCIS (Netherlands)

    Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assuncao, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Threadgold, G.; Harden, G.; Ware, D.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Urun, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberlander, M.; Rudolph-Geiger, S.; Teucke, M.; Osoegawa, K.; Zhu, B.; rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.; Enright, A.; Geisler, R.; Plasterk, R.H.A.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nusslein-Volhard, C.; Hubbard, T.J.; Roest Crollius, H.; Rogers, J.; Stemple, D.L.; Begum, S.; Lloyd, C.; Lanz, C.; Raddatz, G.; Schuster, S.C.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of

  5. Follow-up of pineal cysts in children. Is it necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Jussila, Miro-Pekka [Oulu University Hospital and University of Oulu, Department of Diagnostic Radiology, Oulu (Finland); Oulu University Hospital and University of Oulu, Department of Children and Adolescents, Oulu (Finland); Olsen, Paeivi [Oulu University Hospital and University of Oulu, Department of Children and Adolescents, Oulu (Finland); University of Oulu, PEDEGO Research Group, Medical Research Center, Oulu (Finland); Salokorpi, Niina [Oulu University Hospital and University of Oulu, Department of Neurosurgery, Oulu (Finland); University of Oulu, Medical Research Center, Oulu (Finland); Suo-Palosaari, Maria [Oulu University Hospital and University of Oulu, Department of Diagnostic Radiology, Oulu (Finland); University of Oulu, Medical Research Center, Oulu (Finland)

    2017-12-15

    Pineal cysts are common incidental findings in children undergoing magnetic resonance imaging (MRI). Several studies have suggested MRI follow-up if the cyst is larger than 10 mm. However, cysts do not usually change during follow-up. Prevalence, growth, and structure of the pineal cysts were analyzed to decide if follow-up MRI is necessary. A retrospective review between 2010 and 2015 was performed using 3851 MRI examinations of children aged 0-16 years to detect pineal cysts having a maximum diameter ≥ 10 mm. Eighty-one children with pineal cysts were identified and 79 of them had been controlled by MRI. Cysts were analyzed for the size, growth, and structure. A total of 1.8% of the children had a pineal cyst with a diameter ≥ 10 mm. Cysts were present in 48 girls (59.3%) and 33 boys (40.7%). Most pineal cysts (70/79) did not significantly grow during the follow-up (median 10 months, range 3-145 months). A total of 11.4% (9/79) of the cysts grew with the biggest change measured from the outer cyst wall sagittal anteroposterior dimension (mean 3.4 mm ± 1.7 mm). Only one cyst grew more than 5 mm. We found no factors correlating with the cyst growth among 9 cysts that grew > 2 mm. A majority of pineal cysts remained unchanged during the MRI follow-up. Results of this study suggest that routine MRI follow-up of pineal cysts is not necessary in the absence of unusual radiological characteristics or related clinical symptoms. (orig.)

  6. Patofysiologiske mekanismer bag øjensymptomer ved primaere tumorer i corpus pineale

    DEFF Research Database (Denmark)

    Illum, N O; Møller, M; Garde, E

    1993-01-01

    Primary tumors of the pineal body can produce dyscoordinative movements of the eye, pupillary dilatation, paralysis of adduction during convergence and nystagmus. Obstruction of the aqueduct can cause hydrocephalus, increased intracranial pressure and papilledema. Diabetes insipidus may be a pres......Primary tumors of the pineal body can produce dyscoordinative movements of the eye, pupillary dilatation, paralysis of adduction during convergence and nystagmus. Obstruction of the aqueduct can cause hydrocephalus, increased intracranial pressure and papilledema. Diabetes insipidus may...

  7. Circadian rhythm of pineal uptake of 32P in domestic fowl

    International Nuclear Information System (INIS)

    Sackman, J.W.

    1977-01-01

    The uptake of radioactive phosphorus by the pineal gland in White Leghorn cockerels (Gallus domesticus) showed a diurnal variation with maxima in the light phase and minima in the dark phase of the light: dark cycle. Constant light caused the rhythm to disappear while constant dark had no effect other than lowering the amplitude of the variations. These data indicate that the rhythm in pineal uptake of 32 P is circadian. (author)

  8. Axelrod, the pineal and the melatonin hypothesis: lessons of 50 years to shape chronodisruption research.

    Science.gov (United States)

    Erren, Thomas C; Reiter, Russel J

    2010-01-01

    With key work in the 1950s and 1960s, the 1970 Nobel laureate Julius Axelrod made major contributions to the development of pineal science. Looking back at some of his accomplishments in and for the field, we feel that lessons can be derived for future work regarding impairments of the pineal gland's and melatonin's many functions for promoting health and preventing disease in man.

  9. Diagnostic radiation and its prognosis of pineal region tumor

    International Nuclear Information System (INIS)

    Momose, Toshimitsu; Aoki, Yukimasa; Akanuma, Atsuo; Machida, Tohru; Iio, Masahiro; Takakura, Kimitomo

    1984-01-01

    20 Gy of local irradiation was performed for the patients with pineal region tumor. We evaluated the tumor volume on X-CT in the pre-radiation and 20 Gy of post-radiation state. If tumor is sensitive enough to radiation therapy, we add 40 Gy of whole brain and 30 to 40 Gy of whole spine irradiation. If not, we transfer patients to neurosurgeons for the purpose of tumor ressection. We call this procedure ''Diagnostic Radiation.'' We proposed the concept of TRR (Tumor Regression Ratio) in order to evaluate our protocol more objctively. TRR is as follows: TRR (%) = [1-Total Tumor Volume (at each dose) / Total Tumor Volume (at o Gy)] x 100 (%) Total Tumor Volume(mm 3 ) = slice thickness(mm) x siguma HDA (mm 2 ) on each slice: where HDA is high density area on enhanced CT. Eleven patients were studied and TRR of each patients was calculated. The relations between TRR, tumor markers, CSF seeding and prognoiss was discussed. From our study, (1) TRR at 20Gy was important and might predict approximate prognosis of each cae case. A) TRR = 100 → very good B) TRR < 20 → poor C) 20 <= TRR < 100 → high possibility (2) Majority of TRR < 100 cases have turned out to be histologically in teratoma category. (3) Good correlation between the level of tumor markers and prognosis was observed. Cases with elevated level of AFP and/or HCG were radio- resistant and had poor prognosis. (4) Distant metastasis must also be kept in mind in the treatment of pineal region tumor. (author)

  10. Neuroimaging diagnosis of pineal region tumors - quest for pathognomonic finding of germinoma

    Energy Technology Data Exchange (ETDEWEB)

    Awa, Ryuji; Campos, Francia; Arita, Kazunori; Karki, Prasanna; Tokimura, Hiroshi; Hanaya, Ryosuke; Oyoshi, Tatsuki; Hirano, Hirofumi [Kagoshima University, Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima-shi, Kagoshima (Japan); Sugiyama, Kazuhiko [Hiroshima University, Department of Clinical Oncology and Neuro-oncology Program, Hiroshima (Japan); Tominaga, Atsushi; Kurisu, Kaoru; Yamasaki, Fumiyuki [Hiroshima University, Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima (Japan); Fukukura, Yoshihiko [Kagoshima University, Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Fujii, Yukihiko [Niigata University, Department of Neurosurgery, Brain Research Institute, Niigata (Japan)

    2014-07-15

    Our study aimed to elucidate the imaging features for the differentiation of pineal germinoma and other pineal region tumors. Image data sets of computed tomographic (CT) scan and magnetic resonance imaging (MRI) data of 93 pineal region tumors including 33 germinomas, 30 nongerminomatous germ cell tumors (NGGCTs), 20 pineal parenchymal tumors (PPTs), and 10 miscellaneous tumors of pineal region were reviewed. Imaging features on CT and MRI were qualitatively assessed by three readers. To know the reasons for morphological differences between germinomas and NGGCTs, histological investigation was done. Localized calcification was seen in more than 70 % of germ cells tumors (GCTs: germinomas and NGGCTs) while it was scattered in more than half of PPTs. Cystic components in tumors were most frequent in NGGCTs (62 %). Multiplicity of lesion was restricted to GCTs: 39.4 % in germinoma and 10.0 % in NGGCTs. Thick peritumoral edema was more frequent in germinoma than in NGGCT: 40.6 vs. 14.8 % (p = 0.0433, Fisher's test). Bithalamic extension of tumor was seen in 78.8 % of germinomas. It was significantly rare in other groups of tumors (p < 0.0001, Fisher's test). The relative collagen amount per unit area was significantly lower in germinoma than in NGGCTs. By paying attention to characteristic features as bithalamic extension, thick peritumoral edema, calcification pattern, multiplicity, and their combination, the preoperative differential diagnosis of pineal germinoma will become more accurate. (orig.)

  11. CRX is a diagnostic marker of retinal and pineal lineage tumors.

    Directory of Open Access Journals (Sweden)

    Sandro Santagata

    2009-11-01

    Full Text Available CRX is a homeobox transcription factor whose expression and function is critical to maintain retinal and pineal lineage cells and their progenitors. To determine the biologic and diagnostic potential of CRX in human tumors of the retina and pineal, we examined its expression in multiple settings.Using situ hybridization and immunohistochemistry we show that Crx RNA and protein expression are exquisitely lineage restricted to retinal and pineal cells during normal mouse and human development. Gene expression profiling analysis of a wide range of human cancers and cancer cell lines also supports that CRX RNA is highly lineage restricted in cancer. Immunohistochemical analysis of 22 retinoblastomas and 13 pineal parenchymal tumors demonstrated strong expression of CRX in over 95% of these tumors. Importantly, CRX was not detected in the majority of tumors considered in the differential diagnosis of pineal region tumors (n = 78. The notable exception was medulloblastoma, 40% of which exhibited CRX expression in a heterogeneous pattern readily distinguished from that seen in retino-pineal tumors.These findings describe new potential roles for CRX in human cancers and highlight the general utility of lineage restricted transcription factors in cancer biology. They also identify CRX as a sensitive and specific clinical marker and a potential lineage dependent therapeutic target in retinoblastoma and pineoblastoma.

  12. Zebrafish Lacking Circadian Gene per2 Exhibit Visual Function Deficiency

    Directory of Open Access Journals (Sweden)

    Deng-feng Huang

    2018-03-01

    Full Text Available The retina has an intrinsic circadian clock, but the importance of this clock for vision is unknown. Zebrafish offer many advantages for studying vertebrate vision and circadian rhythm. Here, we explored the role of zebrafish per2, a light-regulated gene, in visual behavior and the underlying mechanisms. We observed that per2 mutant zebrafish larvae showed decreased contrast sensitivity and visual acuity using optokinetic response (OKR assays. Using a visual motor response (VMR assay, we observed normal OFF responses but abnormal ON responses in mutant zebrafish larvae. Immunofluorescence showed that mutants had a normal morphology of cone photoreceptor cells and retinal organization. However, electron microscopy showed that per2 mutants displayed abnormal and decreased photoreceptor ribbon synapses with arciform density, which resulted in retinal ON pathway defect. We also examined the expression of three cone opsins by quantitative real-time PCR (qRT-PCR, and the expression of long-wave-sensitive opsin (opn1lw and short-wave-sensitive opsin (opn1sw was reduced in mutant zebrafish larvae. qRT-PCR analyses also showed a down-regulation of the clock genes cry1ba and bmal1b in the adult eye of per2 mutant zebrafish. This study identified a mechanism by which a clock gene affects visual function and defined important roles of per2 in retinal information processing.

  13. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    Science.gov (United States)

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  14. Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights.

    Science.gov (United States)

    Harrison, Nicholas R; Laroche, Fabrice J F; Gutierrez, Alejandro; Feng, Hui

    2016-01-01

    Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.

  15. Normal anatomy and histology of the adult zebrafish.

    Science.gov (United States)

    Menke, Aswin L; Spitsbergen, Jan M; Wolterbeek, Andre P M; Woutersen, Ruud A

    2011-08-01

    The zebrafish has been shown to be an excellent vertebrate model for studying the roles of specific genes and signaling pathways. The sequencing of its genome and the relative ease with which gene modifications can be performed have led to the creation of numerous human disease models that can be used for testing the potential and the toxicity of new pharmaceutical compounds. Many pharmaceutical companies already use the zebrafish for prescreening purposes. So far, the focus has been on ecotoxicity and the effects on embryonic development, but there is a trend to expand the use of the zebrafish with acute, subchronic, and chronic toxicity studies that are currently still carried out with the more conventional test animals such as rodents. However, before we can fully realize the potential of the zebrafish as an animal model for understanding human development, disease, and toxicology, we must first greatly advance our knowledge of normal zebrafish physiology, anatomy, and histology. To further this knowledge, we describe, in the present article, location and histology of the major zebrafish organ systems with a brief description of their function.

  16. Zebrafish models for the functional genomics of neurogenetic disorders.

    Science.gov (United States)

    Kabashi, Edor; Brustein, Edna; Champagne, Nathalie; Drapeau, Pierre

    2011-03-01

    In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Triclosan Lacks (Anti-Estrogenic Effects in Zebrafish Cells but Modulates Estrogen Response in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Hélène Serra

    2018-04-01

    Full Text Available Triclosan (TCS, an antimicrobial agent widely found in the aquatic environment, is suspected to act as an endocrine disrupting compound, however mechanistic information is lacking in regards to aquatic species. This study assessed the ability of TCS to interfere with estrogen receptor (ER transcriptional activity, in zebrafish-specific in vitro and in vivo reporter gene assays. We report that TCS exhibits a lack of either agonistic or antagonistic effects on a panel of ER-expressing zebrafish (ZELH-zfERα and -zfERβ and human (MELN cell lines. At the organism level, TCS at concentrations of up to 0.3 µM had no effect on ER-regulated brain aromatase gene expression in transgenic cyp19a1b-GFP zebrafish embryos. At a concentration of 1 µM, TCS interfered with the E2 response in an ambivalent manner by potentializing a low E2 response (0.625 nM, but decreasing a high E2 response (10 nM. Altogether, our study suggests that while modulation of ER-regulated genes by TCS may occur in zebrafish, it does so irrespective of a direct binding and activation of zfERs.

  18. Feature Binding in Zebrafish

    Directory of Open Access Journals (Sweden)

    P Neri

    2012-07-01

    Full Text Available Binding operations are primarily ascribed to cortex or similarly complex avian structures. My experiments show that the zebrafish, a lower vertebrate lacking cortex, supports visual feature binding of form and motion for the purpose of social behavior. These results challenge the notion that feature binding may require highly evolved neural structures and demonstrate that the nervous system of lower vertebrates can afford unexpectedly complex computations.

  19. Fine structure of the free-living parakeet pineal in relation to the breeding cycle.

    Science.gov (United States)

    Prasadan, T N; Kotak, V C

    1993-10-01

    Seasonal changes in the ultrastructure of the free-living Rose-Ringed Parakeet Psittacula krameri pineal were examined in relation to the sub-tropical environment and seasonal reproduction. Dark and light pinealocytes of the presumptive neuroendocrine cell line predominated, while supporting cells, ependymal cells, myelinated and non-myelinated nerve fibers with nerve endings, and regressed photoreceptor elements were also observed. Unlike in pineals of many animals, particularly mammals, the presence of dense-core vesicles (DCVs) with varying core density, and absence of clear vesicles and vacuoles with flocullent material, indicate the involvement of DCVs in the synthesis and secretion of pineals principle/s. In November (pre-breeding) when the day length registered a drop to LD 10:14, pinealocytes showed significantly decreased and smaller DCVs and mitochondria, nuclei with heterochromatin, and greater distribution of glycogen and lipid droplets, all indicating low pineal metabolic activity. During the shortest day regime from December to March, when the birds peaked breeding, the number and size of DCVs and mitochondria increased, and Golgi body-endoplasmic reticulum-lysosome complex (GERL) was very well defined. Images of DCVs suggested possible secretion of pineal principle/s by dissolution, and exocytosis. Coincidence of these features with peak gonadotrophic (circulating LH) and spermatogenic and testicular endocrine activity described previously suggested an active turnover of pineal products during this short day length regime when parakeets breed. In contrast, during the post-breeding season (April onwards), when the day-length increased to LD 13:11 and hypophyseal-gonadal function was down, nuclei and RER continued to show active profile, the Golgi body and associated complex were moderately seen, and the DCVs and mitochondria were significantly smaller and lesser. It is therefore probable that the pineal is an important relay to translate cues related

  20. Relationship between pineal cyst size and aqueductal CSF flow measured by phase contrast MRI.

    Science.gov (United States)

    Bezuidenhout, Abraham F; Kasper, Ekkehard M; Baledent, Olivier; Rojas, Rafael; Bhadelia, Rafeeque A

    2018-02-23

    Most patients with pineal cysts referred for neurosurgical consultation have no specific symptoms or objective findings except for pineal cyst size to help in management decisions. Our purpose was to assess the relationship between pineal cyst size and aqueductal CSF flow using PC-MRI. Eleven adult patients with pineal cysts (> 1-cm in size) referred for neurosurgical consultations were included. Cyst volume was calculated using 3D T1 images. PC-MRI in axial plane with velocity encoding of 5 cm/sec was used to quantitatively assess CSF flow through the cerebral aqueduct to determine the aqueductal stroke volume, which was then correlated to cyst size using Pearson's correlation. Pineal cysts were grouped by size into small (6/11) and large (5/11) using the median value to compare aqueductal stroke volume using Mann-Whitney test. Patients were 39 ± 13 years (mean ± SD) of age, and 10/11 (91%) were female. There was significant negative correlation between cyst volume and aqueductal stroke volume (r=0.74; p=0.009). Volume of small cysts (4954±2157 mm3) was significantly different compared to large cysts (13752±3738 mm3; p= 0.008). The aqueductal stroke volume of patients harboring large cysts 33±8 μL/cardiac cycle was significantly lower than that of patients with small cysts 96±29 μL/cardiac cycle (p=0.008). Aqueductal CSF flow appears to decrease with increasing pineal cyst size. Our preliminary results provide first evidence that even in the absence of objective neurological findings or hydrocephalus; larger pineal cysts already display decreased CSF flow through the cerebral aqueduct.

  1. Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.

    Science.gov (United States)

    Halgamuge, Malka N

    2013-08-01

    Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.

  2. Two-photon-based photoactivation in live zebrafish embryos.

    Science.gov (United States)

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-12-24

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell's destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

  3. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish

    International Nuclear Information System (INIS)

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang; Huang, Changjiang; Yang, Dongren

    2016-01-01

    Highlights: • PFOS chronic exposure induces sex-dependent hepatic steotosis in zebrafish. • PFOS interferes with β-oxidation, lipid synthesis, and lipid hepatic export process. • Zebrafish could be used as an alternative model for PFOS chronic toxicity screening. - Abstract: Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5 μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening.

  4. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Yang, Dongren, E-mail: yangdongren@yahoo.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China)

    2016-07-15

    Highlights: • PFOS chronic exposure induces sex-dependent hepatic steotosis in zebrafish. • PFOS interferes with β-oxidation, lipid synthesis, and lipid hepatic export process. • Zebrafish could be used as an alternative model for PFOS chronic toxicity screening. - Abstract: Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5 μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening.

  5. Social dominance modulates eavesdropping in zebrafish

    Science.gov (United States)

    Abril-de-Abreu, Rodrigo; Cruz, Ana S.; Oliveira, Rui F.

    2015-01-01

    Group living animals may eavesdrop on signalling interactions between conspecifics and integrate it with their own past social experience in order to optimize the use of relevant information from others. However, little is known about this interplay between public (eavesdropped) and private social information. To investigate it, we first manipulated the dominance status of bystander zebrafish. Next, we either allowed or prevented bystanders from observing a fight. Finally, we assessed their behaviour towards the winners and losers of the interaction, using a custom-made video-tracking system and directional analysis. We found that only dominant bystanders who had seen the fight revealed a significant increase in directional focus (a measure of attention) towards the losers of the fights. Furthermore, our results indicate that information about the fighters' acquired status was collected from the signalling interaction itself and not from post-interaction status cues, which implies the existence of individual recognition in zebrafish. Thus, we show for the first time that zebrafish, a highly social model organism, eavesdrop on conspecific agonistic interactions and that this process is modulated by the eavesdroppers' dominance status. We suggest that this type of integration of public and private information may be ubiquitous in social learning processes. PMID:26361550

  6. Comparison of calcification of pineal, habenular commissure and choroid plexus on plain films and computed tomography

    International Nuclear Information System (INIS)

    Macpherson, P.; Matheson, M.S.

    1979-01-01

    Skull radiographs and CT scans of 1,000 consecutive patients were examined for evidence of calcification in the pineal gland, habenular commissure and choroid plexuses. Plain film results were in agreement with previous surveys suggesting that the CT scan results may be accepted as general findings. Pineal calcification was seen on films in 61% and on CT scans in 83% of those over 30. On both films and CT scans calcification was 10% higher in males. Only 1% had a pineal 12 mm or larger on films. In at least 5% it was impossible to separate the habenula from the pineal by CT: including these, 5% had pineals larger than the accepted upper limit of normal. Measurements from males were 0.4 mm larger than for females on films and 0.2 mm larger on CT scans. Habenular commissure calcification was seen on films in 13% and on CT in 15% of those over 30, being 10% higher in males. Bilateral choroid plexus calcification was seen on frontal films in 15% and on CT in 77% of those over 30. On skull films the frequency of calcification was 2%-3% higher for adult males than females and on CT 7% higher. Calcification was seen on the lateral but not the frontal film in 128 patients. One choroid plexus only was seen on 14/ frontal films and on 49 CT scans. (orig.) 891 AJ/orig. 892 MKO [de

  7. Integrated Genomic Characterization of a Pineal Parenchymal Tumor of Intermediate Differentiation.

    Science.gov (United States)

    Kang, Yun Jee; Bi, Wenya Linda; Dubuc, Adrian M; Martineau, Louine; Ligon, Azra H; Berkowitz, Aaron L; Aizer, Ayal A; Lee, Eudocia Q; Ligon, Keith L; Ramkissoon, Shakti H; Dunn, Ian F

    2016-01-01

    Pineal parenchymal tumors of intermediate differentiation (PPTIDs) are rare lesions. The differential diagnosis and management strategy for PPTIDs can be challenging because of the variable prognostic and pathologic characteristics of these tumors. A 24-year-old man presented with progressive headaches, gait abnormalities, and abulia. Magnetic resonance imaging revealed a large T1-hypointense, T2-isointense, contrast-enhancing, partially cystic mass of the pineal and tectal region. Near-total resection was achieved in a 2-stage operation followed by focal and craniospinal irradiation and adjuvant chemotherapy. Immunohistochemical analysis including use of pineal lineage marker confirmed a diagnosis of PPTID. Targeted exome sequencing showed mutations in TSC1(L388P) and IKZF3(F206C), whereas high-resolution array cytogenetics revealed losses in chromosomes 2, 3, 4, 8, 10, 11, 17, and 20, leading to single-copy loss of PTEN and TP53. Pineal parenchymal tumors reflect a broad spectrum of malignancy potential and prognoses, which mandate better understanding of the disease mechanism for rational therapeutic strategies. We present a case of PPTID and report several mutations and chromosomal abnormalities previously unrecognized in this tumor subtype. Review of the literature highlights a need for surgical resection followed by adjuvant chemoradiation. Further investigation of these novel variants may improve understanding of the pathogenesis underlying pineal parenchymal tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling

    DEFF Research Database (Denmark)

    Bailey, Michael J; Coon, Steven L; Carter, John David

    2009-01-01

    The pineal gland plays an essential role in vertebrate chronobiology by converting time into a hormonal signal, melatonin, which is always elevated at night. Here we have analyzed the rodent pineal transcriptome using Affymetrix GeneChip(R) technology to obtain a more complete description of pine...

  9. Cross-Modal Learning between Visual and Vibration Signals in Zebrafish Danio Rerio

    Directory of Open Access Journals (Sweden)

    Mu-Yun Wang

    2011-10-01

    Full Text Available Animals are always integrating environmental information from multiple sensory modalities, but the mechanisms underneath are highly underexploited. Crossmodal interactions in animal perception have been found in several species including human, mice and flies. Here we subjected zebrafish as model because its genetic effects on brain and sense organ development are well studied, but the attentional processes are mainly unexplored. Zebrafish show impressive behaviour capabilities with relatively small or “simple” brains which make their nervous system relatively more accessible to experimentation than large-brained mammals. When conditioned with both vision and vibration signals, zebrafish were able to make higher correct choices than only one sensation. After multimodal training, zebrafish were also able to transfer the memory to unimodal conditioning when only given vision or vibration signals. This study provided basic findings for how animals process multimodal sensory from the environment, and showed crossmodal interactions in zebrafish for the first time.

  10. Acquired Encephalocele With Hydrocephalus and Pineal Region Epidermoid Cyst.

    Science.gov (United States)

    Toktaş, Zafer Orkun; Yilmaz, Baran; Ekşi, Murat Şakir; Bayoumi, Ahmed B; Akakin, Akin; Yener, Yasin; Demir, Mustafa Kemal; Kiliç, Türker

    2016-07-01

    A combination of trauma and a missed inflammatory response (nasal operation) concomitant with hydrocephalus and tumor in secondary encephalocele has not been described in the English literature yet. A 38-year-old man was admitted to the clinic with rhinorrhea that started 3 months ago. In his medical history, nothing abnormal was present except a nasal operation performed 1 year ago. Brain magnetic resonance imaging depicted left frontal encephalocele concomitant with obstructive hydrocephalus caused by an epidermoid cyst originated from the pineal region. A 2-staged surgery was planned. In the first stage, a ventriculoperitoneal shunt insertion was conveyed successfully. In the second-stage surgery, the herniated brain tissue was excised, and the frontal sinus was cleansed with serum saline combined with antibiotic. The bony defect and the dura defect were repaired. The patient's presenting complaint recovered fully, and he was discharged to home in a well condition. Acquired encephalocele is a rare entity. In case of rhinorrhea and encephalocele, even in the presence of prior history of nasal surgery, intracranial evaluation should be conveyed to exclude the presence of hydrocephalus and/or tumor. The cranial defect should be repaired to prevent future infections and brain tissue damage.

  11. Isodense epidermoid cyst in the pineal region. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Yamanouchi, Yasuo; Takahara, Nobuhiko; Kawamura, Yasuo; Matsumura, Hiroshi

    1985-02-01

    A 69-year-old male was admitted complaining of gait disturbances and diplopia, 2.5 years after an episode of serous meningitis. Neurological examination on admission disclosed Parinaud's sign, unsteady gait and dysdiadochokinesis on the left side. A striking finding on the computerized tomography (CT) was the left to right shift of the posterior portion of the third ventricle without visualization of the quadrigeminal and ambient cisterns, which were almost completely occupied by an isodense mass accompanied by high dense flecks and a low dense part. Enhanced CT showed positive enhancement in the vicinity of the pineal calcification. By the suboccipital supracerebellar approach, an encapsulated mass containing brownish yellow fluid was subtotally removed and a histological examination of it revealed epidermoid tissue and hemosiderin deposits in the solid portion. Few reports of isodense epidermoid cysts have so far been found in the literature giving a full explanation for this unusual CT attenuation value. Based on the clinical course and histology of this case, the pathogenesis of the unusual density is discussed along the following lines: The mixture of the low dense factor due to cholesterin and the high dense factor due to prior bleeding is believed to result in the isodense attenuation value in the liquid portion. Also, in the solid part, a microscopically mixed texture of deposited hemosiderin and cholesterin clefts in the inflammatory granulomatous tissue could explain its density on the CT scan.

  12. Germinomas cerebrais (teratomas atípicos da pineal Cerebral germinomas (atipical teratomas of the pineal region

    Directory of Open Access Journals (Sweden)

    Alexandre Alencar

    1981-12-01

    Full Text Available São estudados três casos de germinomas cerebrais, sendo um tópico, da região pineal, e dois ectópicos, chamados germinomas supra-selares ou quiasmáticos. Estes últimos parecem ser mais agressivos que os seus congeneres tópicos, pois alem de se disseminarem pelas cisternas basais, costumam infiltrar as paredes do III ventrículo, fórnix, hipotálamo, nervos e quiasma ópticos. Caracteristicamente produzem um enorme aumento das proteínas liquóricas, desacompanhado de uma pleocitose proporcional. As proteínas liquóricas aumentadas sao globulinas cujas reações mostram-se fortemente positivas, possivelmente produzidas pelas celulas de aspecto linfocitario que constituem parte desta neoplasia. O aumento das proteinas liquoricas e tao acentuado que em presenca de uma crianca ou adolescente com sindrome de hipertensão intracraniana, hiperproteinoraquia sem pleocitose e sinais clínicos ou radiológicos sugestivos de localização na base do crânio a possibilidade de um germinoma quiasmático deve ser seriamente considerada, pois o quadro e muito sugestivo.Three cases of Cerebral Germinomas, one of them situated in the pineal region (topical and two ectopical of the so called suprasellar or chiasmal Germinomas are studied. These last ones may be more aggressive than the congeneral topical ones, since besides it's dissemination throughout the basal cisternas they usually infilstrate into de walls of the III Ventricle, Fornix, Hypothalamus, Chiasma and Optic nervs. A high level of proteins in the spinal fluid without proportional increase of the cells is characteristic. Globulins are the predominant fraction of the increased spinal fluid proteins, as indicated by the highly positive laboratory test. These globulins are possibly produced by the lymphocytes which are part of this neoplasm. The high level of protein in the spinal fluid without proportional increase of the cells, in the presence of intracranial syndrome in a child or

  13. Repairing quite swimmingly: advances in regenerative medicine using zebrafish.

    Science.gov (United States)

    Goessling, Wolfram; North, Trista E

    2014-07-01

    Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future. © 2014. Published by The Company of Biologists Ltd.

  14. Radiation therapy for pineal tumors: 30-year experience at Thomas Jefferson University Hospital

    International Nuclear Information System (INIS)

    Dickerson, G.A.; Tupchong, L.; Moylan, D.J.; Kramer, S.

    1987-01-01

    Eighteen tumors of the pineal region were treated at Thomas Jefferson University Hospital since 1957. Preoperative evaluation included CT scan in 11 patients and cerebrospinal fluid cytology in four. Histologic diagnosis was obtained in nine patients. Diagnosis in two other patients was based on CT scan response at 2,000 cGY. Fifteen patients received whole-brain irradiation with a boost, one each with limited-field and whole-brain irradiation only. One patient with melanoma received craniospinal irradiation. Median pineal dose was 55 Gy; range, 50-60 Gy. Five treatment failures occurred, four local and one distant. Actuarial survival was 80%, 70%, and 65% at 5, 10, and 20 years. Median follow-up was 8.8 years. Cranial radiotherapy alone appears to control the majority of pineal tumors

  15. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.

    Science.gov (United States)

    Chen, Yunru; Zeng, Shiyang; Hu, Ruikun; Wang, Xiangxiu; Huang, Weilai; Liu, Jiangfang; Wang, Luying; Liu, Guifen; Cao, Ying; Zhang, Yong

    2017-01-01

    Although the CRISPR/Cas9 has been successfully applied in zebrafish, considerable variations in efficiency have been observed for different gRNAs. The workload and cost of zebrafish mutant screening is largely dependent on the mutation rate of injected embryos; therefore, selecting more effective gRNAs is especially important for zebrafish mutant construction. Besides the sequence features, local chromatin structures may have effects on CRISPR/Cas9 efficiency, which remain largely unexplored. In the only related study in zebrafish, nucleosome organization was not found to have an effect on CRISPR/Cas9 efficiency, which is inconsistent with recent studies in vitro and in mammalian cell lines. To understand the effects of local chromatin structure on CRISPR/Cas9 efficiency in zebrafish, we first determined that CRISPR/Cas9 introduced genome editing mainly before the dome stage. Based on this observation, we reanalyzed our published nucleosome organization profiles and generated chromatin accessibility profiles in the 256-cell and dome stages using ATAC-seq technology. Our study demonstrated that chromatin accessibility showed positive correlation with CRISPR/Cas9 efficiency, but we did not observe a clear correlation between nucleosome organization and CRISPR/Cas9 efficiency. We constructed an online database for zebrafish gRNA selection based on local chromatin structure features that could prove beneficial to zebrafish homozygous mutant construction via CRISPR/Cas9.

  16. TOXICITY EVALUATION OF NEW ENGINEERED NANOMATERIALS IN ZEBRAFISH

    Directory of Open Access Journals (Sweden)

    Maria Violetta Brundo

    2016-04-01

    Full Text Available The effect of the nanoparticles on the marine organisms, depends on their size, chemical composition, surface structure, solubility and shape.In order to take advantage from their activity, preserving the surrounding environment from a possible pollution, we are trying to trap the nanoparticles into new nanomaterials. The nanomaterials tested were synthesized proposing a ground-breaking approach by an upside-down vision of the Au/TiO2nano-system to avoid the release of nanoparticles. The system was synthesized by wrapping Au nanoparticles with a thin layer of TiO2. The non-toxicity of the nano-system was established by testing the effect of the material on zebrafish larvae. Danio rerio o zebrafish was considered a excellent model for the environmental biomonitoring of aquatic environments and the Zebrafish Embryo Toxicity Test is considered an alternative method of animal test. For this reason zebrafish larvae were exposed to different concentrations of nanoparticles of TiO2 and Au and new nanomaterials. As biomarkers of exposure, we evaluated the expression of metallothioneins by immunohistochemistry analysis and western blotting analysis also. The results obtained by toxicity test showed that neither mortality as well as sublethal effects were induced by the different nanomaterials and nanoparticles tested. Only zebrafish larvae exposed to free Au nanoparticles showed a different response to anti-MT antibody. In fact, the immunolocalization analysis highlighted an increase of the metallothioneins synthesis.

  17. Evaluation of MWNT toxic effects on daphnia and zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Olasagasti, Maider; Rainieri, Sandra [AZTI-TECNALIA, Parque Tecnologico de Bizkaia 609, 48160 Derio (Spain)], E-mail: srainieri@azti.es; Alvarez, Noelia; Vera, Carolina [INASMET-TECNALIA, Mikeletegi pasealekua, 2, Parque Tecnologico, 20009 San Sebastian (Spain)

    2009-05-01

    Organisms of daphnia (Daphnia magna) and zebrafish (Danio rerio) embryos were exposed to a range of different concentrations of COOH-functionalized MWCNT suspended in an aqueous solution of Tween 20. Immobilization of daphnia and growth retardation, inhibition and malformation of zebrafish embryos were the endpoints tested after 24 and 48 hours. Immobilization of daphnia could be observed from 3 to 16 ppm and an increasing mortality of zebrafish embryo was detected at all the concentration tested. To identify more subtle toxic effects, we took advantage of the extensive information available on the zebrafish genome and monitored by RT-PCR the expression patterns of different zebrafish genes that could act as toxicity bio-markers. At some of the concentrations tested, changes in the expression profiles of the genes examined were detected. Our results suggest that MWCNT could potentially represent a risk to human health and environment, therefore a wider range of concentrations and further testing of this molecules should be carried out to define possible limitations in their use.

  18. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  19. Update on the management of pineal cysts: Case series and a review of the literature.

    Science.gov (United States)

    Berhouma, M; Ni, H; Delabar, V; Tahhan, N; Memou Salem, S; Mottolese, C; Vallee, B

    2015-01-01

    The natural history of pineal cysts still remains unclear. Incidental pineal cysts have become more common which raises the question of their management. Symptomatic pineal cysts may require a surgical solution but therapeutic indications have not yet been clearly established. From 1986 to 2012, 26 patients with pineal cysts were identified. Their medical records were retrospectively assessed focusing on the initial symptoms, imaging characteristics of the cyst, management strategy, operative technique and their complications, as well as the latest follow-up. A systematic review of the literature is also presented. Twenty-six patients with pineal cysts were identified. The mean age was 23.5 years ranging from 7 to 49 years. Symptoms included intracranial hypertension with obstructive hydrocephalus in 18 cases and oculomotor anomalies in 12 cases. Two adult cases presented with non-specific headaches and did not require surgery. Twenty patients were operated via a suboccipital transtentorial approach with total removal of the cyst in 70% of the cases, while the remaining 4 cases were treated with an intraventricular endoscopic marsupialization associating a third ventriculostomy. Four patients required a preoperative ventriculo-peritoneal shunt due to life-threatening obstructive hydrocephalus. Overall, peri-operative mortality was nil. In the two non-operated patients, the cyst remained stable and no recurrences were observed in all operated patients with a mean follow-up of 144 months. In the majority of incidental pineal cysts, a clinical and imaging follow-up is sufficient but occasionally not required especially in adults as very rare cases of increase in size have been reported. Copyright © 2014. Published by Elsevier Masson SAS.

  20. Prevalence of pineal gland calcification as an incidental finding in patients referred for implant dental therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mutalik, Sunil; Tadinade, Aditya [Section of Oral and Maxillofacial Radiology, School of Dental Medicine, University of Connecticut Health Center, Farmington (United States)

    2017-09-15

    Pineal gland calcification has been proposed to play a role in the pathogenesis of Alzheimer disease. This study evaluated the prevalence and extent of pineal gland calcification in cone-beam computed tomography (CBCT) scans of patients referred for dental implant therapy who could possibly be a vulnerable group for this condition. A retrospective evaluation of 500 CBCT scans was conducted. Scans that showed the area where the pineal gland was located were included. The scans were initially screened by a single observer to record the prevalence and extent of calcification. Six weeks following the completion of the study, another investigator randomly reviewed and selected 50 scans to investigate inter-observer variation, which was evaluated using reliability analysis statistics. The prevalence and measurements of the calcifications were reported using descriptive statistics. The chi-square test was used to compare the prevalence between males and females. The prevalence of pineal gland calcification was 58.8%. There was no statistically significant correlation between age and the extent of the calcification. The prevalence of calcification was 58.6% in females and 59.0% in males. The average anteroposterior measurement was 3.73±1.63 mm, while the average mediolateral measurement was 3.47±1.31 mm. The average total calcified area was 9.79±7.59 mm{sup 2}. The prevalence of pineal gland calcification was high in patients undergoing implant therapy. While not all pineal gland calcifications lead to neurodegenerative disorders, they should be strongly considered in the presence of any symptoms as a reason to initiate further investigations.

  1. The neurogenetic frontier—lessons from misbehaving zebrafish

    Science.gov (United States)

    Granato, Michael

    2008-01-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206

  2. The neurogenetic frontier--lessons from misbehaving zebrafish.

    Science.gov (United States)

    Burgess, Harold A; Granato, Michael

    2008-11-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.

  3. Automated visual tracking for studying the ontogeny of zebrafish swimming

    NARCIS (Netherlands)

    Fontaine, E.; Lentink, D.; Kranenbarg, S.; Müller, U.K.; Leeuwen, van J.L.; Barr, A.H.; Burdick, J.W.

    2008-01-01

    The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently, biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking system that estimates the posture of fish. Our current

  4. Analysis of clinical features and treatment in mature teratomas at pineal region

    Directory of Open Access Journals (Sweden)

    QI Gui-jun

    2012-04-01

    Full Text Available Surgical treatment through occipital tentorium of cerebellum approach was performed in nine cases of mature teratoma at the pineal region. Diagnosis was confirmed by postoperative pathological examination. No perioperative death occurred. Surgery-related complications (visual difficulties, visual field defects, seizures were seen in 4 cases. All cases were followed for 3 months-7 years (mean 3.70 years. The mature teratoma at the pineal region are more common in male children. The main clinical manifestations are intracranial hypertension and ataxia. Neurosurgical treatment may provide satisfactory outcome.

  5. Papillary tumor of the pineal region: two case studies and a review of the literature.

    Science.gov (United States)

    Rickard, Kyle A; Parker, John R; Vitaz, Todd W; Plaga, Alexis R; Wagner, Stephanie; Parker, Joseph C

    2011-01-01

    Papillary tumor of the pineal region (PTPR) is a newly recognized distinct entity in the 2007 World Health Organization nomenclature. This tumor is characterized by epithelial-appearing areas with papillary features and more densely cellular areas that often display ependymal-like differentiation. Ultrastructurally, this rare neuroepithelial tumor possesses neuroendocrine, secretory, and ependymal organelles that likely originate from the subcommissural organ (SCO) near the aqueduct of Sylvius. To date, approximately fifty-seven described cases worldwide have been recognized, with ages ranging from 5 years to 66 years (mean age=32 years). Clinical presentation most often includes headache and obstructive hydrocephalus. The tumor, which is well circumscribed, may be cystic and radiographically is often considered to be consistent with the findings of a pineocytoma. Microscopic evaluation often demonstrates a lesion with papillary areas lined by epithelioid tumor cells with eosinophilic cytoplasm and more cellular areas with cells exhibiting clear or vacuolated cytoplasm. Perivascular and true rosettes may be identified. Distinctive immunohistochemical features including reactivity for keratins (AE1/AE3, CAM 5.2, CK18) and only focal GFAP staining help distinguish this neoplasm from an ependymoma. The relative paucity of data compiled for this tumor makes giving an accurate diagnosis and prognosis a daunting task. We discuss two additional cases of PTPR that presented to us within a three-month span in order to more fully elucidate the possible presentations of this rare entity. Furthermore, we examine now 59 reported cases of PTPR in order to review the current diagnostic and treatment modalities in addition to exploring emerging research encompassing this unusual neoplasm.

  6. Diving into the world of alcohol teratogenesis: a review of zebrafish models of fetal alcohol spectrum disorder.

    Science.gov (United States)

    Fernandes, Yohaan; Buckley, Desire M; Eberhart, Johann K

    2018-04-01

    The term fetal alcohol spectrum disorder (FASD) refers to the entire suite of deleterious outcomes resulting from embryonic exposure to alcohol. Along with other reviews in this special issue, we provide insight into how animal models, specifically the zebrafish, have informed our understanding of FASD. We first provide a brief introduction to FASD. We discuss the zebrafish as a model organism and its strengths for alcohol research. We detail how zebrafish has been used to model some of the major defects present in FASD. These include behavioral defects, such as social behavior as well as learning and memory, and structural defects, disrupting organs such as the brain, sensory organs, heart, and craniofacial skeleton. We provide insights into how zebrafish research has aided in our understanding of the mechanisms of ethanol teratogenesis. We end by providing some relatively recent advances that zebrafish has provided in characterizing gene-ethanol interactions that may underlie FASD.

  7. Learning and memory in zebrafish (Danio rerio).

    Science.gov (United States)

    Gerlai, R

    2016-01-01

    Learning and memory are defining features of our own species inherently important to our daily lives and to who we are. Without our memories we cease to exist as a person. Without our ability to learn individuals and collectively our society would cease to function. Diseases of the mind still remain incurable. The interest in understanding of the mechanisms of learning and memory is thus well founded. Given the complexity of such mechanisms, concerted efforts have been made to study them under controlled laboratory conditions, ie, with laboratory model organisms. The zebrafish, although new in this field, is one such model organism. The rapidly developing forward- and reverse genetic methods designed for the zebrafish and the increasing use of pharmacological tools along with numerous neurobiology techniques make this species perhaps the best model for the analysis of the mechanisms of complex central nervous system characteristics. The fact that it is an evolutionarily ancient and simpler vertebrate, but at the same time it possesses numerous conserved features across multiple levels of biological organization makes this species an excellent tool for the analysis of the mechanisms of learning and memory. The bottleneck lies in our understanding of its cognitive and mnemonic features, the topic of this chapter. The current paper builds on a chapter published in the previous edition and continues to focus on associative learning, but now it extends the discussion to other forms of learning and to recent discoveries on memory-related features and findings obtained both in adults and larval zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  9. Zebrafish Expression Ontology of Gene Sets (ZEOGS): A Tool to Analyze Enrichment of Zebrafish Anatomical Terms in Large Gene Sets

    Science.gov (United States)

    Marsico, Annalisa

    2013-01-01

    Abstract The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene

  10. Sex specific response in cholesterol level in zebrafish (Danio rerio) after long-term exposure of difenoconazole

    International Nuclear Information System (INIS)

    Mu, Xiyan; Wang, Kai; Chai, Tingting; Zhu, Lizhen; Yang, Yang; Zhang, Jie; Pang, Sen; Wang, Chengju; Li, Xuefeng

    2015-01-01

    Difenoconazole is a widely used triazole fungicide, its extensive application may potentially cause toxic effects on non-target organisms. To investigate the effect of difenoconazole on cholesterol content and related mechanism, adult zebrafish were exposed to environmental related dosage (0.1, 10 and 500 μg/L) difenoconazole. The body weight and hepatic total cholesterol (TCHO) level was tested at 7, 15 and 30 days post exposure (dpe). The expressions of eight cholesterol synthesis genes and one cholesterol metabolism gene were assessed via Quantitative PCR method. The significant decrease of TCHO level in male zebrafish liver was observed at 15 and 30 dpe, which was accompanied by apparent hepatic cholesterol-genesis genes expression decline. In comparison with males, female zebrafish showed different transcription modification of tested genes, and the cholesterol content maintain normal level during the whole exposure. - Highlights: • Difenoconazle could reduce TCHO level in male zebrafish liver. • Difenoconazole could inhibit sterol-genesis genes expression in male zebrafish. • Female zebrafish didn't show obvious change of TCHO level after exposure. • Difenoconazole could inhibit body weight of both male and female zebrafish. - Difenoconazle could reduce cholesterol level and sterol-genesis genes expression in male zebrafish. While female zebrafish showed no obvious cholesterol content change during exposure

  11. MICRODIALYSIS OF MELATONIN IN THE RAT PINEAL-GLAND - METHODOLOGY AND PHARMACOLOGICAL APPLICATIONS

    NARCIS (Netherlands)

    DRIJFHOUT, WJ; GROL, CJ; WESTERINK, BHC

    The present study describes the development of a new technique to measure melatonin contents in the pineal gland of freely moving rats, by means of on-line microdialysis. The transcerebral cannula was modified, and a sensitive assay of melatonin, using HPLC with fluorimetric detection, was set up.

  12. Subarachnoid dissemination of pineal germinoma 9 years after radiation therapy without local relapse; Case report

    Energy Technology Data Exchange (ETDEWEB)

    Tokoro, Kazuhiko; Chiba, Yasuhiro; Murase, Shizuo; Yagishita, Saburo [Kanagawa Rehabilitation Center, Atsugi (Japan); Kyuma, Yoshikazu

    1991-11-01

    A 22-year-old female developed intracranial and spinal subarachnoid metastases 9 years after radiation therapy for a pineal germinoma. Computed tomographic scans showed no evidence of local recurrence. Cerebrospinal axis irradiation achieved total remission. Delayed subarachnoid dissemination may be caused by germinoma cells remaining dormant in the subarachnoid space, outside the radiation field. (author).

  13. MRI of pineal region tumours: relationship between tumours and adjacent structures

    International Nuclear Information System (INIS)

    Satoh, H.; Kurisu, K.

    1995-01-01

    A variety of tumours may arise in the pineal region; accurate diagnosis is important in the selection of treatment and prognosis. A retrospective analysis of the MRI studies of 25 patients with pathologically proven pineal region tumours was performed, focused on the relationship between the tumour and neighbouring structures. Compression of the tectal plate was classified as expansive or invasive, and compression of the corpus callosum as inferior, anterior or posterior. In 10 of the 14 patients (71 %) with germ cell tumours tectal compression was of the invasive type; 8 patients (57 %) had multiple tumours and in 13 (93 %) the tumour margins were irregular. Teratomas were readily diagnosed because of characteristic heterogeneous signal intensity. Pineal cell tumours were differentiated from germ cell tumours by their rounded shape, solid nature, sharp margins, and expansive type of tectal compression. Meningiomas were characterised by their falcotentorial attachments, posterior callosal compression, and a low-intensity rim on T2-weighted images. Gd-DTPA injection enabled clear demonstration of the site and extent of tumour spread and was useful in differentiating cystic and solid components. The appearances described, while not pathognomonic, are helpful in the differential diagnosis of pineal region tumours, and valuable in planning appropriate treatment. (orig.). With 4 figs., 6 tabs

  14. Pineal physiology in microgravity - Relation to rat gonadal function aboard Cosmos 1887

    Science.gov (United States)

    Holley, Daniel C.; Markley, Carol L.; Soliman, Magdi R. I.; Kaddis, Farida; Krasnov, Igor'

    1991-01-01

    Results are reported from an analysis of pineal glands obtained for five male rats flown aboard an orbiting satellite for their melatonin, serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIA), and calcium content. Plasma 5-HT and 5-HIAA were measured. These parameters were compared to indicators of gonadal function: plasma testosterone concentration and spermatogonia development. Plasma melotonin was found to be low at the time of euthanasia and was not different among the experimental groups. Pineal calcium of flight animals was not different from ground controls. Pineal 5-HT and 5-HIAA in the flight group were significantly higher than those in ground controls. These findings suggest a possible increase in pineal 5-HT turnover in flight animals which may result in increased melatonin secretion. It is argued that the alteration of pinal 5-HT turnover and its expected effects on melatonin secretion may partially explain the lower plasma testosterone levels and 4-11 percent fewer spermatogonia cells observed in flight animals.

  15. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Science.gov (United States)

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  16. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael Stobb

    Full Text Available Mapping the detailed connectivity patterns (connectomes of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  17. Characterization of lymphocyte subsets over a 24-hour period in Pineal-Associated Lymphoid Tissue (PALT in the chicken

    Directory of Open Access Journals (Sweden)

    McNulty John A

    2006-01-01

    Full Text Available Abstract Background Homeostatic trafficking of lymphocytes in the brain has important relevance to the understanding of CNS disease processes. The pineal gland of the chicken contains large accumulations of lymphocytes that suggest an important role related to homeostatic circadian neuro-immune interactions. The purpose of this initial study was to characterize the lymphocyte subsets in the pineal gland and quantitate the distribution and frequency of lymphocyte phenotypes at two time points over the 24-hour light:dark cycle. Results PALT comprised approximately 10% of the total pineal area. Image analysis of immunocytochemically stained sections showed that the majority of lymphocytes were CD3+ (80% with the remaining 20% comprising B-cells and monocytes (Bu-1+, which tended to distribute along the periphery of the PALT. T-cell subsets in PALT included CD4+ (75–80%, CD8+ (20–25%, TCRαβ/Vβ1+ (60%, and TCRγδ+ (15%. All of the T-cell phenotypes were commonly found within the interfollicular septa and follicles of the pineal gland. However, the ratios of CD8+/CD4+ and TCRγδ+/TCRαβ/Vβ1+ within the pineal tissue were each 1:1, in contrast to the PALT where the ratios of CD8+/CD4+ and TCRγδ+/TCRαβ/Vβ1+ each approximated 1:4. Bu-1+ cells were only rarely seen in the pineal interstitial spaces, but ramified Bu-1+ microglia/macrophages were common in the pineal follicles. Effects of the 24-h light:dark cycle on these lymphocyte-pineal interactions were suggested by an increase in the area of PALT, a decline in the density of TCRαβ/Vβ1+ cells, and a decline in the area density of Bu-1+ microglia at the light:dark interphase (1900 h compared to the dark:light interphase (0700 h. Conclusion The degree of lymphocyte infiltration in the pineal suggests novel mechanisms of neuro-immune interactions in this part of the brain. Our results further suggest that these interactions have a temporal component related to the 24-hour light

  18. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.

    Science.gov (United States)

    Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B

    2018-06-01

    A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Zebrafish as a Model for the Study of Microvascular Complications of Diabetes and Their Mechanisms

    Directory of Open Access Journals (Sweden)

    Karl Heckler

    2017-09-01

    Full Text Available Diabetes mellitus (DM is a crucial metabolic disease that leads to severe disorders. These include macrovascular complications such as myocardial infarction, stroke, and peripheral artery disease and microvascular complications including diabetic nephropathy, neuropathy, and retinopathy. Diabetes mellitus, along with its associated organ pathologies, is one of the key problems in today’s medicine. Zebrafish is an upcoming disease model organism in diabetes research. Its glucose metabolism and the pathways of reactive metabolite formation are very similar to those of humans. Moreover, several physiological and pathophysiological pathways that also exist in humans and other mammals have been identified in this species or are currently under intense investigation. Zebrafish offer sophisticated imaging techniques and allow simple and fast genetic and pharmacological approaches with a high throughput. In this review, we highlight achievements and mechanisms concerning microvascular complications discovered in zebrafish, and we discuss the advantages and disadvantages of zebrafish as a model for studying diabetic complications.

  20. Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway.

    Science.gov (United States)

    Sharan, Kunal; Lewis, Kirsty; Furukawa, Takahisa; Yadav, Vijay K

    2017-09-01

    Tryptophan, an essential amino acid through a series of enzymatic reactions gives rise to various metabolites, viz. serotonin and melatonin, that regulate distinct biological functions. We show here that tryptophan metabolism in the pineal gland favors bone mass accrual through production of melatonin, a pineal-derived neurohormone. Pineal gland-specific deletion of Tph1, the enzyme that catalyzes the first step in the melatonin biosynthesis lead to a decrease in melatonin levels and a low bone mass due to an isolated decrease in bone formation while bone resorption parameters remained unaffected. Skeletal analysis of the mice deficient in MT1 or MT2 melatonin receptors showed a low bone mass in MT2-/- mice while MT1-/- mice had a normal bone mass compared to the WT mice. This low bone mass in the MT2-/- mice was due to an isolated decrease in osteoblast numbers and bone formation. In vitro assays of the osteoblast cultures derived from the MT1-/- and MT2-/- mice showed a cell intrinsic defect in the proliferation, differentiation and mineralization abilities of MT2-/- osteoblasts compared to WT counterparts, and the mutant cells did not respond to melatonin addition. Finally, we demonstrate that daily oral administration of melatonin can increase bone accrual during growth and can cure ovariectomy-induced structural and functional degeneration of bone by specifically increasing bone formation. By identifying pineal-derived melatonin as a regulator of bone mass through MT2 receptors, this study expands the role played by tryptophan derivatives in the regulation of bone mass and underscores its therapeutic relevance in postmenopausal osteoporosis. © 2017 The Authors. Journal of Pineal Research Published by John Wiley & Sons Ltd.

  1. Acute toxicity and gene responses induced by endosulfan in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Young-Sun Moon

    2016-10-01

    Full Text Available Endosulfan has been listed as a persistent organic pollutant, and is frequently found in agricultural environments during monitoring processes owing to its heavy use and persistent characteristics. This study was conducted to understand the effects of endosulfan on the development of zebrafish (Danio rerio embryos by exposing them to a specific range of endosulfan concentrations. Exposing zebrafish embryos to endosulfan for 96 h yielded no acute toxicity until the concentration reached 1500 μg L−1, whereas malformed zebrafish larvae developed severely curved spines and shortened tails. About 50% of zebrafish larvae were malformed when exposed to 600 μg L−1 of endosulfan. Comparative gene expression using real-time quantitative polymerase chain reaction was assessed using endosulfan-exposed zebrafish embryos. CYP1A and CYP3A were significantly enhanced in response to endosulfan treatment. Two genes, acacb and fasn, encoding acetyl-CoA carboxylase b and fatty acid synthase proteins, respectively, were also up-regulated after treating zebrafish embryos with endosulfan. These genes are also involved in fatty acid biosynthesis. The genes encoding vitellogenin and Hsp70 increased in a concentration-dependent manner in embryos. Finally, biochemical studies showed that acetylcholinesterase activity was reduced, whereas glutathione S-transferase and carboxylesterase activities were enhanced in zebrafish embryos after endosulfan treatment. These biochemical and molecular biological differences might be used for tools to determine contamination of endosulfan in the aquatic environment.

  2. Evaluation of 5 Cleaning and Disinfection Methods for Nets Used to Collect Zebrafish (Danio rerio)

    OpenAIRE

    Collymore, Chereen; Porelli, Gina; Lieggi, Christine; Lipman, Neil S

    2014-01-01

    Few standardized methods of cleaning and disinfecting equipment in zebrafish facilities have been published, even though the effectiveness of these procedures is vital to preventing the transmission of pathogenic organisms. Four chemical disinfectants and rinsing with municipal tap water were evaluated for their ability to disinfect nets used to capture zebrafish. The disinfectants included benzalkonium chloride+methylene blue, sodium hypochlorite, chlorine dioxide, and potassium peroxymonosu...

  3. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing

    OpenAIRE

    Wittbrodt, Jonas N.; Liebel, Urban; Gehrig, Jochen

    2014-01-01

    Background The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. ...

  4. Characterization of brn1.2 and corticotropin-releasing hormone genes in zebrafish

    OpenAIRE

    Chandrasekar, Gayathri

    2007-01-01

    The zebrafish (Danio rerio), a tropical fresh water fish originally found in the rivers of India and Bangladesh has become a popular vertebrate model system over the last decade. The rapid sequencing of the zebrafish genome together with the latest advances in forward and reverse genetics has made this model organism more fascinating as it can be used to decipher the genetic mechanisms involved in the vertebrate development. Corticotropin-releasing hormone (CRH) regulates t...

  5. Immunostaining of dissected zebrafish embryonic heart.

    Science.gov (United States)

    Yang, Jingchun; Xu, Xiaolei

    2012-01-10

    Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals. Copyright © 2012 Journal of Visualized Experiments

  6. Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a.

    Directory of Open Access Journals (Sweden)

    Keith A Hultman

    2007-01-01

    Full Text Available The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla and kit ligand b (kitlb, and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb. In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that

  7. Redundant roles of PRDM family members in zebrafish craniofacial development.

    Science.gov (United States)

    Ding, Hai-Lei; Clouthier, David E; Artinger, Kristin B

    2013-01-01

    PRDM proteins are evolutionary conserved Zn-Finger transcription factors that share a characteristic protein domain organization. Previous studies have shown that prdm1a is required for the specification and differentiation of neural crest cells in the zebrafish. Here we examine other members of this family, specifically prdm3, 5, and 16, in the differentiation of the zebrafish craniofacial skeleton. prdm3 and prdm16 are strongly expressed in the pharyngeal arches, while prdm5 is expressed specifically in the area of the forming neurocranium. Knockdown of prdm3 and prdm16 results in a reduction in the neural crest markers dlx2a and barx1 and defects in both the viscerocranium and the neurocranium. The knockdown of prdm3 and prdm16 in combination is additive in the neurocranium, but not in the viscerocranium. Injection of sub-optimal doses of prdm1a with prdm3 or prdm16 Morpholinos together leads to more severe phenotypes in the viscerocranium and neurocranium. prdm5 mutants have defects in the neurocranium and prdm1a and prdm5 double mutants also show more severe phenotypes. Overall, our data reveal that prdm3, 5, and 16 are involved in the zebrafish craniofacial development and that prdm1a may interact with prdm3, 5, and 16 in the formation of the craniofacial skeleton in zebrafish. Copyright © 2012 Wiley Periodicals, Inc.

  8. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    Science.gov (United States)

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-04-02

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

  9. Automated processing of zebrafish imaging data: a survey.

    Science.gov (United States)

    Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-09-01

    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

  10. Automated Processing of Zebrafish Imaging Data: A Survey

    Science.gov (United States)

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  11. The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio).

    Science.gov (United States)

    Usui, Takuji; Noble, Daniel W A; O'Dea, Rose E; Fangmeier, Melissa L; Lagisz, Malgorzata; Hesselson, Daniel; Nakagawa, Shinichi

    2018-01-01

    Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34-0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes.

  12. Relationships among msx gene structure and function in zebrafish and other vertebrates.

    Science.gov (United States)

    Ekker, M; Akimenko, M A; Allende, M L; Smith, R; Drouin, G; Langille, R M; Weinberg, E S; Westerfield, M

    1997-10-01

    The zebrafish genome contains at least five msx homeobox genes, msxA, msxB, msxC, msxD, and the newly isolated msxE. Although these genes share structural features common to all Msx genes, phylogenetic analyses of protein sequences indicate that the msx genes from zebrafish are not orthologous to the Msx1 and Msx2 genes of mammals, birds, and amphibians. The zebrafish msxB and msxC are more closely related to each other and to the mouse Msx3. Similarly, although the combinatorial expression of the zebrafish msx genes in the embryonic dorsal neuroectoderm, visceral arches, fins, and sensory organs suggests functional similarities with the Msx genes of other vertebrates, differences in the expression patterns preclude precise assignment of orthological relationships. Distinct duplication events may have given rise to the msx genes of modern fish and other vertebrate lineages whereas many aspects of msx gene functions during embryonic development have been preserved.

  13. Zebrafish as a Model for the Study of Human Myeloid Malignancies

    Directory of Open Access Journals (Sweden)

    Jeng-Wei Lu

    2015-01-01

    Full Text Available Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies.

  14. Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation.

    Science.gov (United States)

    Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing; Yi, Meisheng; Hong, Yunhan

    2012-08-10

    Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos.

  15. Intracranial germinomas with simultaneous lesions at pineal and suprasellar regions: diagnostics and therapeutics considerations

    International Nuclear Information System (INIS)

    Cardenas, Bolivar; Cardenas, Nancy; Vasconez, Jose; Mena, Ivan

    1998-01-01

    Germinomas are the most common intracranial germ cell tumor. Germinomas comprise 65% of this type of tumor and represent a less malignant form. This neoplasm constitutes approximately 0.1% to 3.4% of all intracranial tumors. The embryologic origin remains a mystery. Ninety-five percent of germinomas arise in the region of the third ventricle, along an axis from the suprasellar cistern (48%) to the pineal region (37%, involvement of both sites, either sequentially or simultaneously, ocurred rarely (6%). Clinical presentation depends on tumor location and may involve endocrine, hypothalamic, visual and cognitive dysfunction. We report two cases of patients with germinomas with simultaneous lesions in both the suprasellar and pineal regions and review on the clinical presentation, means of diagnosis, treatment using radiotherapy and outcome of this rate treatable neoplasm. (The author)

  16. HCV IRES-mediated core expression in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ye Zhao

    Full Text Available The lack of small animal models for hepatitis C virus has impeded the discovery and development of anti-HCV drugs. HCV-IRES plays an important role in HCV gene expression, and is an attractive target for antiviral therapy. In this study, we report a zebrafish model with a biscistron expression construct that can co-transcribe GFP and HCV-core genes by human hepatic lipase promoter and zebrafish liver fatty acid binding protein enhancer. HCV core translation was designed mediated by HCV-IRES sequence and gfp was by a canonical cap-dependent mechanism. Results of fluorescence image and in situ hybridization indicate that expression of HCV core and GFP is liver-specific; RT-PCR and Western blotting show that both core and gfp expression are elevated in a time-dependent manner for both transcription and translation. It means that the HCV-IRES exerted its role in this zebrafish model. Furthermore, the liver-pathological impact associated with HCV-infection was detected by examination of gene markers and some of them were elevated, such as adiponectin receptor, heparanase, TGF-β, PDGF-α, etc. The model was used to evaluate three clinical drugs, ribavirin, IFNα-2b and vitamin B12. The results show that vitamin B12 inhibited core expression in mRNA and protein levels in dose-dependent manner, but failed to impact gfp expression. Also VB12 down-regulated some gene transcriptions involved in fat liver, liver fibrosis and HCV-associated pathological process in the larvae. It reveals that HCV-IRES responds to vitamin B12 sensitively in the zebrafish model. Ribavirin did not disturb core expression, hinting that HCV-IRES is not a target site of ribavirin. IFNα-2b was not active, which maybe resulted from its degradation in vivo for the long time. These findings demonstrate the feasibility of the zebrafish model for screening of anti-HCV drugs targeting to HCV-IRES. The zebrafish system provides a novel evidence of using zebrafish as a HCV model organism.

  17. Neurotranscriptomics: The Effects of Neonatal Stimulus Deprivation on the Rat Pineal Transcriptome.

    Directory of Open Access Journals (Sweden)

    Stephen W Hartley

    Full Text Available The term neurotranscriptomics is used here to describe genome-wide analysis of neural control of transcriptomes. In this report, next-generation RNA sequencing was using to analyze the effects of neonatal (5-days-of-age surgical stimulus deprivation on the adult rat pineal transcriptome. In intact animals, more than 3000 coding genes were found to exhibit differential expression (adjusted-p < 0.001 on a night/day basis in the pineal gland (70% of these increased at night, 376 genes changed more than 4-fold in either direction. Of these, more than two thousand genes were not previously known to be differentially expressed on a night/day basis. The night/day changes in expression were almost completely eliminated by neonatal removal (SCGX or decentralization (DCN of the superior cervical ganglia (SCG, which innervate the pineal gland. Other than the loss of rhythmic variation, surgical stimulus deprivation had little impact on the abundance of most genes; of particular interest, expression levels of the melatonin-synthesis-related genes Tph1, Gch1, and Asmt displayed little change (less than 35% following DCN or SCGX. However, strong and consistent changes were observed in the expression of a small number of genes including the gene encoding Serpina1, a secreted protease inhibitor that might influence extracellular architecture. Many of the genes that exhibited night/day differential expression in intact animals also exhibited similar changes following in vitro treatment with norepinephrine, a superior cervical ganglia transmitter, or with an analog of cyclic AMP, a norepinephrine second messenger in this tissue. These findings are of significance in that they establish that the pineal-defining transcriptome is established prior to the neonatal period. Further, this work expands our knowledge of the biological process under neural control in this tissue and underlines the value of RNA sequencing in revealing how neurotransmission influences cell

  18. The Role of Pineal Gland and Exogenous Melatonin on the Irradiation Stress Response of Suprarenal Gland

    Directory of Open Access Journals (Sweden)

    Selma Aličelebić

    2006-11-01

    Full Text Available Pineal gland has and antistressogenic role. Its main hormone, melatonin, has radio protective effect on endocrine and other dynamic tissues. In our previous study, we have shown that pinealectomy changes the behavior of suprarenal gland in totally irradiated rats. The aim of this study is to evaluate the effect of exogenous melatonin on suprarenal gland of rats with or without pineal gland. Four months after pinealectomy (experimental group or shampinealectomy (control group, adult Wistar male rats were daily treated with 0,2 mg of melatoninintraperitoneally, during two weeks. Thereafter, all animals were totally irradiated with 8 Gy of Gamma rays produced from Cobalt 60. Animals who survived were sacrificed on the 17(th post irradiation day. Qualitative and quantitative characteristics of the suprarenal gland were studied using histological methods. The results show that exogenous melatonin had protective role on suprarenal gland in totally irradiated rats and that those effects were more pronounced in the presence of pineal gland.

  19. Morphological study of the pineal gland of (crab eater raccoon Procyon cancrivorus (Cuvier, 1798

    Directory of Open Access Journals (Sweden)

    Leandro de Oliveira Marques

    2010-06-01

    Full Text Available The Procyon cancrivorus is a wild carnivore that is widely distributed and relatively common, but it remains little studied, and few works report on the biology of this species. The aim of this work was to characterize morphologically the pineal gland of Procyon cancrivorus through macro, microscopic and radiographic studies, and to compare them with those from other animals. In this work, four adult animals of both sexes were used, originating from the Scientific Herd of CECRIMPAS IBAMA (Process nº 02027.003731/04-76. Macroscopically, the pineal gland of Procyon cancrivorus was located between the occipital lobes of the cerebral hemispheres, cranially to the vermis cerebelar. It was positioned rostrally to the rostral colliculus and caudally to the habenular comissure. Microscopically, the gland was covered externally by a capsule deriving from the meningeal pia mater. The presence of three types of cells was noted in the glandular parenchyma: pinealocytes, glial cells and mast cells. No calcareous concretions in the pineal gland were found in the radiographic and microscopic studies.

  20. Extending the Neuroanatomic Territory of Diffuse Midline Glioma, K27M Mutant: Pineal Region Origin.

    Science.gov (United States)

    Gilbert, Andrea R; Zaky, Wafik; Gokden, Murat; Fuller, Christine E; Ocal, Eylem; Leeds, Norman E; Fuller, Gregory N

    2018-01-01

    Diffuse midline glioma, H3-K27M mutant (DMG-K27M) is a newly described, molecularly distinct infiltrative glioma that almost exclusively arises in midline CNS structures, including the brain stem, especially the pons, as well as the thalamus and spinal cord with rare examples seen in the cerebellum, third ventricle, and hypothalamus. To our knowledge, only 1 case of a molecularly confirmed DMG-K27M arising in the pineal region has been previously reported. We present the second occurrence of a tissue-confirmed DMG-K27M of the pineal region, which, to our knowledge, is the first case reported in a child and the first case with documented preoperative MRI. This case, in addition to a prior report described in an adult, defines the lower end of a broad age range of DMG-K27M onset (12-65 years) and establishes the pineal gland as a bona fide site of origin for this newly codified midline glioma. © 2017 S. Karger AG, Basel.

  1. TERATOLOGIC EFFECTS OF BISPHENOL A ON ZEBRAFISH (Danio rerio

    Directory of Open Access Journals (Sweden)

    Cansu Akbulut

    2013-01-01

    Full Text Available Zebrafish (Danio rerio has easy reproductive capacity and transparent embryos and therefore generally preffered for scientific studies as a vertebrate model. Because of bisphenol A is produced too much and used for making plastics, many organisms including human are exposed to this substance. Bisphenol A has estrogenic activity and thus it effects fertility. So, in our study, effects of low doses of bisphenol A (4mg/L and 8 mg/L on embryo and larva development was investigated.

  2. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Eva Yi Kong

    2016-12-01

    Full Text Available Exposure to ionizing radiations (IRs is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review.

  3. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  4. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model

    International Nuclear Information System (INIS)

    Marques, Ines J; Bagowski, Christoph P; Weiss, Frank Ulrich; Vlecken, Danielle H; Nitsche, Claudia; Bakkers, Jeroen; Lagendijk, Anne K; Partecke, Lars Ivo; Heidecke, Claus-Dieter; Lerch, Markus M

    2009-01-01

    Aberrant regulation of cell migration drives progression of many diseases, including cancer cell invasion and metastasis formation. Analysis of tumour invasion and metastasis in living organisms to date is cumbersome and involves difficult and time consuming investigative techniques. For primary human tumours we establish here a simple, fast, sensitive and cost-effective in vivo model to analyse tumour invasion and metastatic behaviour. We fluorescently labelled small explants from gastrointestinal human tumours and investigated their metastatic behaviour after transplantation into zebrafish embryos and larvae. The transparency of the zebrafish embryos allows to follow invasion, migration and micrometastasis formation in real-time. High resolution imaging was achieved through laser scanning confocal microscopy of live zebrafish. In the transparent zebrafish embryos invasion, circulation of tumour cells in blood vessels, migration and micrometastasis formation can be followed in real-time. Xenografts of primary human tumours showed invasiveness and micrometastasis formation within 24 hours after transplantation, which was absent when non-tumour tissue was implanted. Furthermore, primary human tumour cells, when organotopically implanted in the zebrafish liver, demonstrated invasiveness and metastatic behaviour, whereas primary control cells remained in the liver. Pancreatic tumour cells showed no metastatic behaviour when injected into cloche mutant embryos, which lack a functional vasculature. Our results show that the zebrafish is a useful in vivo animal model for rapid analysis of invasion and metastatic behaviour of primary human tumour specimen

  5. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  6. Comparison of the Exomes of Common Carp (Cyprinus carpio) and Zebrafish (Danio rerio)

    Science.gov (United States)

    Henkel, Christiaan V.; Dirks, Ron P.; Jansen, Hans J.; Forlenza, Maria; Wiegertjes, Geert F.; Howe, Kerstin; van den Thillart, Guido E.E.J.M.

    2012-01-01

    Abstract Research on common carp, Cyprinus carpio, is beneficial for zebrafish research because of resources available owing to its large body size, such as the availability of sufficient organ material for transcriptomics, proteomics, and metabolomics. Here we describe the shot gun sequencing of a clonal double-haploid common carp line. The assembly consists of 511891 scaffolds with an N50 of 17 kb, predicting a total genome size of 1.4–1.5 Gb. A detailed analysis of the ten largest scaffolds indicates that the carp genome has a considerably lower repeat coverage than zebrafish, whilst the average intron size is significantly smaller, making it comparable to the fugu genome. The quality of the scaffolding was confirmed by comparisons with RNA deep sequencing data sets and a manual analysis for synteny with the zebrafish, especially the Hox gene clusters. In the ten largest scaffolds analyzed, the synteny of genes is almost complete. Comparisons of predicted exons of common carp with those of the zebrafish revealed only few genes specific for either zebrafish or carp, most of these being of unknown function. This supports the hypothesis of an additional genome duplication event in the carp evolutionary history, which—due to a higher degree of compactness—did not result in a genome larger than that of zebrafish. PMID:22715948

  7. Toxicity assessment of zebrafish following exposure to CdTe QDs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: wzhang@ecust.edu.cn [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Lin, Kuangfei, E-mail: kflin@ecust.edu.cn [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Miao, Youna [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Dong, Qiaoxiang; Huang, Changjiang; Wang, Huili [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Wenzhou Medical College, Wenzhou 325035 (China); Guo, Meijin [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Cui, Xinhong [Shanghai Institute of Landscape Gardening, Shanghai 200233 (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer The LC{sub 50} of TGA-CdTe for zebrafish at 120 hpf was 185.9 nM. Black-Right-Pointing-Pointer Zebrafish exposed to TGA-CdTe resulted in lower hatch rate and more malformation. Black-Right-Pointing-Pointer Body length and heart beat of zebrafish declined after exposure to TGA-CdTe. Black-Right-Pointing-Pointer Larvae exposure to TGA-CdTe elicited a higher basal swimming rate. Black-Right-Pointing-Pointer Abnormal vascular of FLI-1 transgenic zebrafish larvae exposed to TGA-CdTe occurred. - Abstract: CdTe quantum dots (QDs) are nanocrystals of unique composition and properties that have found many new commercial applications; therefore, their potential toxicity to aquatic organisms has become a hot research topic. The lab study was performed to determine the developmental and behavioral toxicities to zebrafish under continuous exposure to low concentrations of CdTe QDs (1-400 nM) coated with thioglycolic acid (TGA). The results show: (1) the 120 h LC{sub 50} of 185.9 nM, (2) the lower hatch rate and body length, more malformations, and less heart beat and swimming speed of the exposed zebrafish, (3) the brief burst and a higher basal swimming rate of the exposed zebrafish larvae during a rapid transition from light-to-dark, and (4) the vascular hyperplasia, vascular bifurcation, vascular crossing and turbulence of the exposed FLI-1 transgenic zebrafish larvae.

  8. Exposure to tributyltin induces endoplasmic reticulum stress and the unfolded protein response in zebrafish.

    Science.gov (United States)

    Komoike, Yuta; Matsuoka, Masato

    2013-10-15

    Tributyltin (TBT) is a major marine contaminant and causes endocrine disruption, hepatotoxicity, immunotoxicity, and neurotoxicity. However, the molecular mechanisms underlying the toxicity of TBT have not been fully elucidated. We examined whether exposure to TBT induces the endoplasmic reticulum (ER) stress response in zebrafish, a model organism. Zebrafish-derived BRF41 fibroblast cells were exposed to 0.5 or 1 μM TBT for 0.5-16 h and subsequently lysed and immunoblotted to detect ER stress-related proteins. Zebrafish embryos, grown until 32 h post fertilization (hpf), were exposed to 1 μM TBT for 16 h and used in whole mount in situ hybridization and immunohistochemistry to visualize the expression of ER chaperones and an ER stress-related apoptosis factor. Exposure of the BRF41 cells to TBT caused phosphorylation of the zebrafish homolog of protein kinase RNA-activated-like ER kinase (PERK), eukaryotic translation initiation factor 2 alpha (eIF2α), and inositol-requiring enzyme 1 (IRE1), characteristic splicing of X-box binding protein 1 (XBP1) mRNA, and enhanced expression of activating transcription factor 4 (ATF4) protein. In TBT-exposed zebrafish embryos, ectopic expression of the gene encoding zebrafish homolog of the 78 kDa glucose-regulating protein (GRP78) and gene encoding CCAAT/enhancer-binding protein homologous protein (CHOP) was detected in the precursors of the neuromast, which is a sensory organ for detecting water flow and vibration. Our in vitro and in vivo studies revealed that exposure of zebrafish to TBT induces the ER stress response via activation of both the PERK-eIF2α and IRE1-XBP1 pathways of the unfolded protein response (UPR) in an organ-specific manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Merrifield, Daniel L.; Shaw, Benjamin J.; Harper, Glenn M.; Saoud, Imad P.; Davies, Simon J.; Handy, Richard D.; Henry, Theodore B.

    2013-01-01

    Nanoparticles (NPs) can be ingested by organisms, and NPs with antimicrobial properties may disrupt beneficial endogenous microbial communities and affect organism health. Zebrafish were fed diets containing Cu-NPs or Ag-NPs (500 mg kg −1 food), or an appropriate control for 14 d. Intestinal epithelium integrity was examined by transmission electron microscopy, and microbial community structure within the intestine was assessed by denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA. No lesions were observed in intestinal epithelia; however, presence of NPs in diets changed intestinal microbial community structure. In particular, some beneficial bacterial strains (e.g., Cetobacterium somerae) were suppressed to non-detectable levels by Cu-NP exposure, and two unidentified bacterial clones from the Firmicutes phylum were sensitive (not detected) to Cu, but were present in Ag and control fish. Unique changes in zebrafish microbiome caused by exposure to Ag-NP and Cu-NP indicate that NP ingestion could affect digestive system function and organism health. -- Highlights: ► Zebrafish ingest Cu- and Ag-nanoparticles (NPs) in diet. ► No effect of Cu-NPs or Ag-NPs on intestinal epithelial integrity. ► Cu-NPs and Ag-NPs alter endogenous microbiota of zebrafish. -- Dietary exposure to manufactured Cu- and Ag-nanoparticles caused unique changes in endogenous gut microbiota in zebrafish Danio rerio

  10. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Merrifield, Daniel L.; Shaw, Benjamin J.; Harper, Glenn M. [School of Biomedical and Biological Sciences, Plymouth University, 401 Davy Building, Drake Circus, Plymouth PL4 8AA, Devon (United Kingdom); Saoud, Imad P. [American University of Beirut, Beirut (Lebanon); Davies, Simon J.; Handy, Richard D. [School of Biomedical and Biological Sciences, Plymouth University, 401 Davy Building, Drake Circus, Plymouth PL4 8AA, Devon (United Kingdom); Henry, Theodore B., E-mail: ted.henry@plymouth.ac.uk [School of Biomedical and Biological Sciences, Plymouth University, 401 Davy Building, Drake Circus, Plymouth PL4 8AA, Devon (United Kingdom); Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN (United States); Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN (United States)

    2013-03-15

    Nanoparticles (NPs) can be ingested by organisms, and NPs with antimicrobial properties may disrupt beneficial endogenous microbial communities and affect organism health. Zebrafish were fed diets containing Cu-NPs or Ag-NPs (500 mg kg{sup −1} food), or an appropriate control for 14 d. Intestinal epithelium integrity was examined by transmission electron microscopy, and microbial community structure within the intestine was assessed by denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA. No lesions were observed in intestinal epithelia; however, presence of NPs in diets changed intestinal microbial community structure. In particular, some beneficial bacterial strains (e.g., Cetobacterium somerae) were suppressed to non-detectable levels by Cu-NP exposure, and two unidentified bacterial clones from the Firmicutes phylum were sensitive (not detected) to Cu, but were present in Ag and control fish. Unique changes in zebrafish microbiome caused by exposure to Ag-NP and Cu-NP indicate that NP ingestion could affect digestive system function and organism health. -- Highlights: ► Zebrafish ingest Cu- and Ag-nanoparticles (NPs) in diet. ► No effect of Cu-NPs or Ag-NPs on intestinal epithelial integrity. ► Cu-NPs and Ag-NPs alter endogenous microbiota of zebrafish. -- Dietary exposure to manufactured Cu- and Ag-nanoparticles caused unique changes in endogenous gut microbiota in zebrafish Danio rerio.

  11. Heritable and lineage-specific gene knockdown in zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Mei Dong

    Full Text Available BACKGROUND: Reduced expression of developmentally important genes and tumor suppressors due to haploinsufficiency or epigenetic suppression has been shown to contribute to the pathogenesis of various malignancies. However, methodology that allows spatio-temporally knockdown of gene expression in various model organisms such as zebrafish has not been well established, which largely limits the potential of zebrafish as a vertebrate model of human malignant disorders. PRINCIPAL FINDING: Here, we report that multiple copies of small hairpin RNA (shRNA are expressed from a single transcript that mimics the natural microRNA-30e precursor (mir-shRNA. The mir-shRNA, when microinjected into zebrafish embryos, induced an efficient knockdown of two developmentally essential genes chordin and alpha-catenin in a dose-controllable fashion. Furthermore, we designed a novel cassette vector to simultaneously express an intronic mir-shRNA and a chimeric red fluorescent protein driven by lineage-specific promoter, which efficiently reduced the expression of a chromosomally integrated reporter gene and an endogenously expressed gata-1 gene in the developing erythroid progenitors and hemangioblasts, respectively. SIGNIFICANCE: This methodology provides an invaluable tool to knockdown developmental important genes in a tissue-specific manner or to establish animal models, in which the gene dosage is critically important in the pathogenesis of human disorders. The strategy should be also applicable to other model organisms.

  12. Triclosan is a Mitochondrial Uncoupler in Live Zebrafish

    Science.gov (United States)

    Shim, Juyoung; Weatherly, Lisa M.; Luc, Richard H.; Dorman, Maxwell T.; Neilson, Andy; Ng, Ryan; Kim, Carol H.; Millard, Paul J.; Gosse, Julie A.

    2016-01-01

    Triclosan (TCS) is a synthetic antimicrobial agent used in many consumer goods at millimolar concentrations. As a result of exposure, TCS has been detected widely in humans. We have recently discovered that TCS is a proton ionophore mitochondrial uncoupler in multiple types of living cells. Here we present novel data indicating that TCS is also a mitochondrial uncoupler in a living organism: 24 hour post fertilization zebrafish embryos. These experiments were conducted using a Seahorse Bioscience XFe 96 Extracellular Flux Analyzer modified for bidirectional temperature control, using the XF96 spheroid plate to position and measure one zebrafish embryo per well. Using this method, following acute exposure to TCS, basal oxygen consumption rate (OCR) increases, without a decrease in survival or heartbeat rate. TCS also decreases ATP-linked respiration and spare respiratory capacity and increases proton leak: all indicators of mitochondrial uncoupling. Our data indicate, that TCS is a mitochondrial uncoupler in vivo, which should be taken into consideration when assessing the toxicity and/or pharmaceutical uses of TCS. This is the first example of usage of a Seahorse Extracellular Flux Analyzer to measure bioenergetic flux of a single zebrafish embryo per well in a 96 well assay format. The method developed in this study provides a high-throughput tool to identify previously-unknown mitochondrial uncouplers in a living organism. PMID:27111768

  13. Skin too thin? The developing utility of zebrafish skin (neuro)pharmacology for CNS drug discovery research.

    Science.gov (United States)

    Nguyen, Michael; Poudel, Manoj K; Stewart, Adam Michael; Kalueff, Allan V

    2013-09-01

    Skin coloration can be affected by many genetic, environmental and pharmacological factors. Zebrafish (Danio rerio) are a useful and versatile model organism in biomedical research due to their genetic tractability, physiological homology to mammals, low cost, reproducibility and high throughput. Zebrafish coloration is mediated by chromatophores - the skin color pigment cells largely controlled by endocrine and neural mechanisms. The characteristic darkening of zebrafish skin is caused by the dispersion (and paling - by aggregation) of melanosomes (pigment-containing organelles), which show high homology to mammalian structures. Various pharmacological agents potently affect zebrafish coloration - the phenotype that often accompanies behavioral effects of the drugs, and may be used for drug discovery. Although zebrafish behavior and skin responses are usually not directly related, they share common regulatory (neural, endocrine) mechanisms, and therefore may be assessed in parallel during psychotropic drug screening. For example, some psychoactive drugs can potently affect zebrafish skin coloration. Can we use this knowledge to refine phenotype-driven psychotropic drug discovery? Here, we present current models using zebrafish skin coloration assays, and discuss how these models may be applied to enhance in vivo CNS drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Pharmacologic modeling of primary mitochondrial respiratory chain dysfunction in zebrafish.

    Science.gov (United States)

    Byrnes, James; Ganetzky, Rebecca; Lightfoot, Richard; Tzeng, Michael; Nakamaru-Ogiso, Eiko; Seiler, Christoph; Falk, Marni J

    2017-07-18

    Mitochondrial respiratory chain (RC) disease is a heterogeneous and highly morbid group of energy deficiency disorders for which no proven effective therapies exist. Robust vertebrate animal models of primary RC dysfunction are needed to explore the effects of variation in RC disease subtypes, tissue-specific manifestations, and major pathogenic factors contributing to each disorder, as well as their pre-clinical response to therapeutic candidates. We have developed a series of zebrafish (Danio rerio) models that inhibit, to variable degrees, distinct aspects of RC function, and enable quantification of animal development, survival, behaviors, and organ-level treatment effects as well as effects on mitochondrial biochemistry and physiology. Here, we characterize four pharmacologic inhibitor models of mitochondrial RC dysfunction in early larval zebrafish, including rotenone (complex I inhibitor), azide (complex IV inhibitor), oligomycin (complex V inhibitor), and chloramphenicol (mitochondrial translation inhibitor that leads to multiple RC complex dysfunction). A range of concentrations and exposure times of each RC inhibitor were systematically evaluated on early larval development, animal survival, integrated behaviors (touch and startle responses), organ physiology (brain death, neurologic tone, heart rate), and fluorescence-based analyses of mitochondrial physiology in zebrafish skeletal muscle. Pharmacologic RC inhibitor effects were validated by spectrophotometric analysis of Complex I, II and IV enzyme activities, or relative quantitation of ATP levels in larvae. Outcomes were prioritized that utilize in vivo animal imaging and quantitative behavioral assessments, as may optimally inform the translational potential of pre-clinical drug screens for future clinical study in human mitochondrial disease subjects. The RC complex inhibitors each delayed early embryo development, with short-term exposures of these three agents or chloramphenicol from 5 to 7 days

  15. Developmental toxicity of cartap on zebrafish embryos.

    Science.gov (United States)

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian

    2009-12-13

    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis.

  16. Pre- and postoperative management of pineal region tumors and the occipital transtentorial approach

    International Nuclear Information System (INIS)

    Neuwelt, E.A.; Batjer, H.H.

    1984-01-01

    With the use of the operating microscope, a variety of malignant as well as benign lesions of the pineal region can be excised safely. In cases in which complete excision is impossible, obtaining tissue for a histological diagnosis has been extremely helpful in planning appropriate postoperative radiotherapy and chemotherapy. Reducing tumor bulk may also be beneficial, as has been shown to be the case in medulloblastoma. As adjunctive modes of therapy for malignant pineal tumors become available, such as chemotherapy and possibly immunotherapy, the authors believe that the burden will be on the neurosurgeon to provide a tissue diagnosis. Complete myelography should be considered preoperatively or postoperatively to detect asymptomatic meningeal implants. The presence of such metastases makes postoperative craniospinal irradiation essential. The authors advocate liberal dosages of corticosteroids (i.e. 10-20 mg dexamethasone/day) for 24-48 hr prior to surgery. The authors recommend postoperative radiotherapy in all patients with malignant pineal region lesions regardless of whether or not complete excision was possible. The lowest incidence of recurrence in the literature seems to occur following 5,000-5,500 rads. In the face of negative myelography and CSF cytology, there is controversy regarding prophylactic spinal axis irradiation. The use of chemotherapy and/or radiotherapy is probably the initial therapy of choice in such a patient. Following this, if a small, localized tumor burden remains, it can be removed surgically, as is done with localized residual tumor in testicular cancer. Failure to adequately assess the presence of meningeal seeding by cytology and melography may make certain patients vulnerable to spinal recurrence of disease in the face of complete local remission

  17. The clinicopathological features of intermediate trophoblastic tumor in the pineal region

    Directory of Open Access Journals (Sweden)

    ZHANG Yun-xiang

    2012-08-01

    Full Text Available Objective To evaluate the clinicopathological features of intermediate trophoblastic tumor (ITT in the pineal region. Methods A retrospective study was performed to analyse the diagnostic and therapeutic process of 1 case with ITT in the pineal region. The specimen obtained from the surgery was dealt with common tissue processing mode and cut into slices. HE staining was performed to observe histophathological features. Immunohistochemical staining (SP two-step method was performed to analyse the expression of tumor markers. Related literatures were reviewed. Results A 6-year old boy with clinical manifestations of penis enlargement and rapid growth for more than one year, presented a mass in his pineal region through MRI. The tumor was surgically excised after it is refractory to 10 times experimental radiotherapy as germinoma. The level of β-human chorionic gonadotropin ( β-hCG in his postoperative blood was decreased to normal, but gradually increased, once again followed to normal after three times chemotherapy. Patient was normal almost postoperative 6 months later by follow -up. Pathological examination showed sheets necrosis with multiple calcification and scattered fresh blood cells, epithelioid tumor cells with solid growth pattern. The tumor cells were atypical mononuclear cells with relative uniform (between heterotypic cells and partially surrounding and invasing the vascular walls. The cytoplasm of tumor cells was eosinophilic or clear, the nucleus was round or irregular in shape and some with intranuclear pseudoinclusions, and its mitotic figures were rarely seen under light microscopy. The tumor cells showed strong positive for AE1/AE3, cell adhesion molecules 5.2 (CAM5.2, human placental lactogen (hPL, octamer-binding transcription factor 3/4 (Oct3/4, epidermal growth factor receptor (EGFR and E-cadherin. P53 was also expressed. The positive rate of Ki-67 was about 10%, and β-hCG was expressed in the extremely tumor cells. The

  18. Mutations in LRRC50 predispose zebrafish and humans to seminomas.

    Directory of Open Access Journals (Sweden)

    Sander G Basten

    2013-04-01

    Full Text Available Seminoma is a subclass of human testicular germ cell tumors (TGCT, the most frequently observed cancer in young men with a rising incidence. Here we describe the identification of a novel gene predisposing specifically to seminoma formation in a vertebrate model organism. Zebrafish carrying a heterozygous nonsense mutation in Leucine-Rich Repeat Containing protein 50 (lrrc50 also called dnaaf1, associated previously with ciliary function, are found to be highly susceptible to the formation of seminomas. Genotyping of these zebrafish tumors shows loss of heterozygosity (LOH of the wild-type lrrc50 allele in 44.4% of tumor samples, correlating with tumor progression. In humans we identified heterozygous germline LRRC50 mutations in two different pedigrees with a family history of seminomas, resulting in a nonsense Arg488* change and a missense Thr590Met change, which show reduced expression of the wild-type allele in seminomas. Zebrafish in vivo complementation studies indicate the Thr590Met to be a loss-of-function mutation. Moreover, we show that a pathogenic Gln307Glu change is significantly enriched in individuals with seminoma tumors (13% of our cohort. Together, our study introduces an animal model for seminoma and suggests LRRC50 to be a novel tumor suppressor implicated in human seminoma pathogenesis.

  19. Quantification of vestibular-induced eye movements in zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Mo Weike

    2010-09-01

    Full Text Available Abstract Background Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR, a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity. Results We have determined herein the basis of sensitivity of the larval eye movements with respect to vestibular stimulus, developmental stage, and sensory receptors of the inner ear. For our experiments, video recordings of larvae rotated sinusoidally at 0.25 Hz were analyzed to quantitate eye movements under infrared illumination. We observed a robust response that appeared as early as 72 hours post fertilization (hpf, which increased in amplitude over time. Unlike rotation about an earth horizontal axis, rotation about an earth vertical axis at 0.25 Hz did not evoke eye movements. Moreover, vestibular-induced responses were absent in mutant cdh23 larvae and larvae lacking anterior otoliths. Conclusions Our results provide evidence for a functional vestibulo-oculomotor circuit in 72 hpf zebrafish larvae that relies upon sensory input from anterior/utricular otolith organs.

  20. Analyzing the structure and function of neuronal circuits in zebrafish

    Directory of Open Access Journals (Sweden)

    Rainer eFriedrich

    2013-04-01

    Full Text Available The clever choice of animal models has been instrumental for many breakthrough discoveries in life sciences. One of the outstanding challenges in neuroscience is the in-depth analysis of neuronal circuits to understand how interactions between large numbers of neurons give rise to the computational power of the brain. A promising model organism to address this challenge is the zebrafish, not only because it is cheap, transparent and accessible to sophisticated genetic manipulations but also because it offers unique advantages for quantitative analyses of circuit structure and function. One of the most important advantages of zebrafish is its small brain size, both at larval and adult stages. Small brains enable exhaustive measurements of neuronal activity patterns by optical imaging and facilitate large-scale reconstructions of wiring diagrams by electron microscopic approaches. Such information is important, and probably essential, to obtain mechanistic insights into neuronal computations underlying higher brain functions and dysfunctions. This review provides a brief overview over current methods and motivations for dense reconstructions of neuronal activity and connectivity patterns. It then discusses selective advantages of zebrafish and provides examples how these advantages are exploited to study neuronal computations in the olfactory bulb.

  1. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  2. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  3. In Vivo Cardiotoxicity Induced by Sodium Aescinate in Zebrafish Larvae

    Directory of Open Access Journals (Sweden)

    Jinfeng Liang

    2016-02-01

    Full Text Available Sodium aescinate (SA is a widely-applied triterpene saponin product derived from horse chestnut seeds, possessing vasoactive and organ-protective activities with oral or injection administration in the clinic. To date, no toxicity or adverse events in SA have been reported, by using routine models (in vivo or in vitro, which are insufficient to predict all aspects of its pharmacological and toxicological actions. In this study, taking advantage of transparent zebrafish larvae (Danio rerio, we evaluated cardiovascular toxicity of SA at doses of 1/10 MNLC, 1/3 MNLC, MNLC and LC10 by yolk sac microinjection. The qualitative and quantitative cardiotoxicity in zebrafish was assessed at 48 h post-SA treatment, using specific phenotypic endpoints: heart rate, heart rhythm, heart malformation, pericardial edema, circulation abnormalities, thrombosis and hemorrhage. The results showed that SA at 1/10 MNLC and above doses could induce obvious cardiac and pericardial malformations, whilst 1/3 MNLC and above doses could induce significant cardiac malfunctions (heart rate and circulation decrease/absence, as compared to untreated or vehicle-treated control groups. Such cardiotoxic manifestations occurred in more than 50% to 100% of all zebrafish treated with SA at MNLC and LC10. Our findings have uncovered the potential cardiotoxicity of SA for the first time, suggesting more attention to the risk of its clinical application. Such a time- and cost-saving zebrafish cardiotoxicity assay is very valid and reliable for rapid prediction of compound toxicity during drug research and development.

  4. Toxicological effects of graphene oxide on adult zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jaqueline P., E-mail: souza.jaqueline@gmail.com; Baretta, Jéssica F.; Santos, Fabrício; Paino, Ieda M.M.; Zucolotto, Valtencir

    2017-05-15

    Highlights: • Graphene oxide exposure caused apoptotic and necrotic stages in zebrafish gill cells. • Graphene oxide induced reactive oxygen generation in zebrafish gill cells. • Gill and liver tissues suffered injuries after graphene oxide chronic exposure. • Zebrafish blood cells did not present DNA damages after graphene oxide exposure. - Abstract: Graphene exhibits unique physical and chemical properties that facilitate its application in many fields, including electronics and biomedical areas. However, the use of graphene and its derivatives could result in accumulation in aquatic environments, and the risks posed by these compounds for organisms are not completely understood. In this study, we investigated the effects of graphene oxide (GO) on adult zebrafish (Danio rerio). Experimental fish were exposed to 2, 10 or 20 mg L{sup −1} GO, and the cytotoxicity, genotoxicity and oxidative stress were assessed. The morphology of the gills and liver tissues was also analyzed. Graphene oxide exposure led to an increase in the number of gill cells that were in early apoptotic and necrotic stages, but genotoxicity was not observed in blood cells. We also observed the generation of Reactive Oxygen Species (ROS) in gill cells. Structural analysis revealed injuries to gill tissues, including a dilated marginal channel, lamellar fusion, clubbed tips, swollen mucocytes, epithelial lifting, aneurysms, and necrosis. Liver tissues also presented lesions such as peripherally located nuclei. Furthermore, hepatocytes exhibited a non-uniform shape, picnotic nuclei, vacuole formation, cell rupture, and necrosis. Our results showed that sub-lethal doses of graphene oxide could be harmful to fish species and thus represent risks for the aquatic food chain.

  5. Zebrafish in Brazilian Science: Scientific Production, Impact, and Collaboration.

    Science.gov (United States)

    Gheno, Ediane Maria; Rosemberg, Denis Broock; Souza, Diogo Onofre; Calabró, Luciana

    2016-06-01

    By means of scientometric indicators, this study investigated the characteristics of scientific production and research collaboration involving zebrafish (Danio rerio) in Brazilian Science indexed by the Web of Science (WoS). Citation data were collected from the WoS and data regarding Impact Factor (IF) were gathered from journals in the Journal Citation Reports. Collaboration was evaluated according to coauthorship data, creating representative nets with VOSviewer. Zebrafish has attained remarkable importance as an experimental model organism in recent years and an increase in scientific production with zebrafish is observed in Brazil and around the world. The citation impact of the worldwide scientific production is superior when compared to the Brazilian scientific production. However, the citation impact of the Brazilian scientific production is consistently increasing. Brazil does not follow the international trends with regard to publication research fields. The state of Rio Grande do Sul has the greatest number of articles and the institution with the largest number of publications is Pontifícia Universidade Católica do Rio Grande do Sul. Journals' average IF is higher in Brazilian publications with international coauthorship, and around 90% of articles are collaborative. The Brazilian institutions presenting the greatest number of collaborations are Pontifícia Universidade Católica do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Fundação Universidade Federal de Rio Grande, and Universidade de São Paulo. These data indicate that Brazilian research using zebrafish presents a growth in terms of number of publications, citation impact, and collaborative work.

  6. Simple, economical heat-shock devices for zebrafish housing racks.

    Science.gov (United States)

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.

  7. Data Integration for Spatio-Temporal Patterns of Gene Expression of Zebrafish development: the GEMS database

    Directory of Open Access Journals (Sweden)

    Belmamoune Mounia

    2008-06-01

    Full Text Available The Gene Expression Management System (GEMS is a database system for patterns of gene expression. These patterns result from systematic whole-mount fluorescent in situ hybridization studies on zebrafish embryos. GEMS is an integrative platform that addresses one of the important challenges of developmental biology: how to integrate genetic data that underpin morphological changes during embryogenesis. Our motivation to build this system was by the need to be able to organize and compare multiple patterns of gene expression at tissue level. Integration with other developmental and biomolecular databases will further support our understanding of development. The GEMS operates in concert with a database containing a digital atlas of zebrafish embryo; this digital atlas of zebrafish development has been conceived prior to the expansion of the GEMS. The atlas contains 3D volume models of canonical stages of zebrafish development in which in each volume model element is annotated with an anatomical term. These terms are extracted from a formal anatomical ontology, i.e. the Developmental Anatomy Ontology of Zebrafish (DAOZ. In the GEMS, anatomical terms from this ontology together with terms from the Gene Ontology (GO are also used to annotate patterns of gene expression and in this manner providing mechanisms for integration and retrieval . The annotations are the glue for integration of patterns of gene expression in GEMS as well as in other biomolecular databases. At the one hand, zebrafish anatomy terminology allows gene expression data within GEMS to be integrated with phenotypical data in the 3D atlas of zebrafish development. At the other hand, GO terms extend GEMS expression patterns integration to a wide range of bioinformatics resources.

  8. The functions Of LysM Proteins And Chitin Tetra-Saccarides Signaling Pathway in Zebrafish Embryos

    DEFF Research Database (Denmark)

    Laroche, Fabrice Jean Francois

    Chitin is an ancient organic bio-polymer, found in abundance on land and at sea. However, knowledge on chitin functions in animals is lacking. In his research project, Fabrice Laroche studied responses to chitin in zebrafish embryos, and he described chitin signalling pathways. Proteins related...... to chitin responses are increasingly being associated with human diseases. Recently, several lysin motif (LysM)-containing proteins were highlighted for their molecular affinity to chitin-like compounds. Addressing these matters, Fabrice Laroche identified zebrafish and human lysin motif-encoding genes...... and studied their roles – at the cellular level and during zebrafish development. To improve the experimental methods, he developed nanotechnological strategies to genetically modify human embryonic kidney cells and zebrafish. The PhD degree was completed at the Department of Molecular Biology and Genetics...

  9. Zebrafish have an ethanol-inducible hepatic 4-nitrophenol hydroxylase that is not CYP2E1-like.

    Science.gov (United States)

    Hartman, Jessica H; Kozal, Jordan S; Di Giulio, Richard T; Meyer, Joel N

    2017-09-01

    Zebrafish are an attractive model organism for toxicology; however, an important consideration in translating between species is xenobiotic metabolism/bioactivation. CYP2E1 metabolizes small hydrophobic molecules, e.g. ethanol, cigarette smoke, and diesel exhaust components. CYP2E1 is thought to only be conserved in mammals, but recent reports identified homologous zebrafish cytochrome P450s. Herein, ex vivo biochemical measurements show that unlike mammals, zebrafish possess a low-affinity 4-nitrophenol hydroxylase (K m ∼0.6 mM) in hepatic microsomes and mitochondria that is inducible only 1.5- to 2-fold by ethanol and is insensitive to 4-methylpyrazole inhibition. In closing, we suggest creating improved models to study CYP2E1 in zebrafish. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity.

    Directory of Open Access Journals (Sweden)

    Yinbao Li

    Full Text Available Pharmaceutical safety testing requires a cheap, fast and highly efficient platform for real-time evaluation of drug toxicity and secondary effects. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic and teratogenic effects of drugs using zebrafish (Danio rerio embryos and larvae as the model organism. The microfluidic chip is composed of two independent functional units, enabling the assessment of zebrafish embryos and larvae. Each unit consists of a fluidic concentration gradient generator and a row of seven culture chambers to accommodate zebrafish. To test the accuracy of this new chip platform, we examined the toxicity and teratogenicity of an anti-asthmatic agent-aminophylline (Apl on 210 embryos and 210 larvae (10 individuals per chamber. The effect of Apl on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators such as heart rate, survival rate, body length and hatch rate. Most importantly, a new index called clonic convulsion rate, combined with mortality was used to evaluate the toxicities of Apl on zebrafish larvae. We found that Apl can induce deformity and cardiovascular toxicity in both zebrafish embryos and larvae. This microdevice is a multiplexed testing apparatus that allows for the examination of indexes beyond toxicity and teratogenicity at the sub-organ and cellular levels and provides a potentially cost-effective and rapid pharmaceutical safety assessment tool.

  11. A case of pineal teratoma with intraventricular free fat on CT scan

    International Nuclear Information System (INIS)

    Uede, Teiji; Takaya, Satoru; Shinya, Toshiyuki; Tanabe, Sumiyoshi; Hashi, Kazuo; Sohma, Tsutomu.

    1986-01-01

    Detection of an intraventricular or intratumoral fat-fluid level on the plain craniograms has been known as a characteristic sign indicating the presence of intracranial teratomatous tumors. On CT scans, however, only thirteen cases have been previously reported to be found an intraventricular and/or subarachnoid free fat associated with spontaneous ruptures of these tumors. We reported a case of pineal teratoma with intraventricular free-fat seen on CT scans. A nine-year-old male with precocious puberty was admitted to our hospital complaining a moderate nonpulsatile headache. Neurological examinations were normal without signs of meningeal irritation. The serum and CSF titer of HCG were raised markedly. The laboratory data of the CSF were normal and there were no pathological cells in the CSF. The CT scans revealed a large heterogeneous mass containing multiple areas of negative density in the pineal region. There were negative density droplets in the bilateral frontal horn on the same CT scans indicating a presence of free fats. At surgery, an yellowish oily material was drained from the tumor, but there was no sign of meningitis over the cortical surface of the occipital lobe. An intraventricular free fat on CT scan have been reported in fourteen cases including ours following the first case described by Fawcitt in 1976. Although most of the cases presented headache, only two cases was diagnosed clinically as chemical meningitis. Pathological changes indicating granulomatous meningitis, however, were noted in five cases, all of them presenting seizure attacks. (author)

  12. Pineal Gland Calcification in Kurdistan: A Cross-Sectional Study of 480 Roentgenograms.

    Science.gov (United States)

    Mohammed, Kahee A; Adjei Boakye, Eric; Ismail, Honer A; Geneus, Christian J; Tobo, Betelihem B; Buchanan, Paula M; Zelicoff, Alan P

    2016-01-01

    The goal of this study was to compare the incidence of Pineal Gland Calcification (PGC) by age group and gender among the populations living in the Kurdistan Region-Iraq. This prospective study examined skull X-rays of 480 patients between the ages of 3 and 89 years who sought care at a large teaching public hospital in Duhok, Iraq from June 2014 to November 2014. Descriptive statistics and a binary logistic regression were used for analysis. The overall incidence rate of PGC among the study population was 26.9% with the 51-60 age group and males having the highest incidence. PGC incidence increased after the first decade and remained steady until the age of 60. Thereafter the incidence began to decrease. Logistic regression analysis revealed that both age and gender significantly affected the risk of PGC. After adjusting for age, males were 1.94 (95% CI, 1.26-2.99) times more likely to have PGC compared to females. In addition, a one year increase in age increases the odds of developing PGC by 1.02 (95% CI, 1.01-1.03) units after controlling for the effects of gender. Our analysis demonstrated a close relationship between PGC and age and gender, supporting a link between the development of PGC and these factors. This study provides a basis for future researchers to further investigate the nature and mechanisms underlying pineal gland calcification.

  13. Treatment of cancer chemotherapy-induced toxicity with the pineal hormone melatonin.

    Science.gov (United States)

    Lissoni, P; Tancini, G; Barni, S; Paolorossi, F; Ardizzoia, A; Conti, A; Maestroni, G

    1997-03-01

    Experimental data have suggested that the pineal hormone melatonin (MLT) may counteract chemotherapy-induced myelosuppression and immunosuppression. In addition, MLT has been shown to inhibit the production of free radicals, which play a part in mediating the toxicity of chemotherapy. A study was therefore performed in an attempt to evaluate the influence of MLT on chemotherapy toxicity. The study involved 80 patients with metastatic solid tumors who were in poor clinical condition (lung cancer: 35; breast cancer: 31; gastrointestinal tract tumors: 14). Lung cancer patients were treated with cisplatin and etoposide, breast cancer patients with mitoxantrone, and gastrointestinal tract tumor patients with 5-fluorouracil plus folates. Patients were randomised to receive chemotherapy alone or chemotherapy plus MLT (20 mg/day p.o. in the evening). Thrombocytopenia was significantly less frequent in patients concomitantly treated with MLT. Malaise and asthenia were also significantly less frequent in patients receiving MLT. Finally, stomatitis and neuropathy were less frequent in the MLT group, albeit without statistically significant differences. Alopecia and vomiting were not influenced by MLT. This pilot study seems to suggest that the concomitant administration of the pineal hormone MLT during chemotherapy may prevent some chemotherapy-induced side-effects, particularly myelosuppression and neuropathy. Evaluation of the impact of MLT on chemotherapy efficacy will be the aim of future clinical investigations.

  14. Characterization of Zebrafish von Willebrand Factor Reveals Conservation of Domain Structure, Multimerization, and Intracellular Storage

    Directory of Open Access Journals (Sweden)

    Arunima Ghosh

    2012-01-01

    Full Text Available von Willebrand disease (VWD is the most common inherited human bleeding disorder and is caused by quantitative or qualitative defects in von Willebrand factor (VWF. VWF is a secreted glycoprotein that circulates as large multimers. While reduced VWF is associated with bleeding, elevations in overall level or multimer size are implicated in thrombosis. The zebrafish is a powerful genetic model in which the hemostatic system is well conserved with mammals. The ability of this organism to generate thousands of offspring and its optical transparency make it unique and complementary to mammalian models of hemostasis. Previously, partial clones of zebrafish vwf have been identified, and some functional conservation has been demonstrated. In this paper we clone the complete zebrafish vwf cDNA and show that there is conservation of domain structure. Recombinant zebrafish Vwf forms large multimers and pseudo-Weibel-Palade bodies (WPBs in cell culture. Larval expression is in the pharyngeal arches, yolk sac, and intestinal epithelium. These results provide a foundation for continued study of zebrafish Vwf that may further our understanding of the mechanisms of VWD.

  15. Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments.

    Science.gov (United States)

    Felker, A; Mosimann, C

    2016-01-01

    Spatiotemporal transgene regulation by transgenic DNA recombinases is a central tool for reverse genetics in multicellular organisms, with excellent applications for misexpression and lineage tracing experiments. One of the most widespread technologies for this purpose is Cre recombinase-controlled lox site recombination that is attracting increasing interest in the zebrafish field. Tol2-mediated zebrafish transgenesis provides a stable platform to integrate lox cassette transgenes, while the amenability of the zebrafish embryo to drug treatments makes the model an ideal candidate for tamoxifen-inducible CreERT2 experiments. In addition, advanced transgenesis technologies such as phiC31 or CRISPR-Cas9-based knock-ins are even further promoting zebrafish transgenesis for Cre/lox applications. In this chapter, we will first introduce the basics of Cre/lox methodology, CreERT2 regulation by tamoxifen, as well as the utility of Tol2 and other contemporary transgenesis techniques for Cre/lox experiments. We will then outline in detail practical experimental steps for efficient transgenesis toward the creation of single-insertion transgenes and will introduce protocols for 4-hydroxytamoxifen-mediated CreERT2 induction to perform spatiotemporal lox transgene regulation experiments in zebrafish embryos. Last, we will discuss advanced experimental applications of Cre/lox beyond traditional lineage tracing approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.

    Science.gov (United States)

    Guggiana-Nilo, Drago A; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish.

  17. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  18. Screening in larval zebrafish reveals tissue-specific distribution of fifteen fluorescent compounds

    Directory of Open Access Journals (Sweden)

    Yuxiao Yao

    2017-09-01

    Full Text Available The zebrafish is a prominent vertebrate model for low-cost in vivo whole organism screening. In our recent screening of the distribution patterns of fluorescent compounds in live zebrafish larvae, fifteen compounds with tissue-specific distributions were identified. Several compounds were observed to accumulate in tissues where they were reported to induce side-effects, and compounds with similar structures tended to be enriched in the same tissues, with minor differences. In particular, we found three novel red fluorescent bone-staining dyes: purpurin, lucidin and 3-hydroxy-morindone; purpurin can effectively label bones in both larval and adult zebrafish, as well as in postnatal mice, without significantly affecting bone mass and density. Moreover, two structurally similar chemotherapeutic compounds, doxorubicin and epirubicin, were observed to have distinct distribution preferences in zebrafish. Epirubicin maintained a relatively higher concentration in the liver, and performed better in inhibiting hepatic hyperplasia caused by the over-expression of krasG12V. In total, our study suggests that the transparent zebrafish larvae serve as valuable tools for identifying tissue-specific distributions of fluorescent compounds.

  19. Impact of CdSe/ZnS quantum dots on the development of zebrafish embryos

    Science.gov (United States)

    Lei, Yong; Xiao, Qi; Huang, Shan; Xu, Wansu; Zhang, Zhe; He, Zhike; Liu, Yi; Deng, Fengjiao

    2011-12-01

    Due to their unique fluorescent characteristics, quantum dots (QDs) have been successfully applied in the fields of biotechnology and medicine, but there is very limited information regarding their biodistribution and chronic toxicity in vivo. In this article, the biological behavior and toxic effects of mercaptoacetic acid-CdSe/ZnS QDs (MAA-QDs) in developing zebrafish embryos were investigated by in vivo tests. The MAA-QDs were introduced into zebrafish through microinjection at early stage. The results showed that the MAA-QDs at certain concentrations influenced the survival of zebrafish embryos, but treated embryos without developmental defects were also observed. MAA-QDs injected into the cytoplasm at the one-cell stage were allocated to progeny blastoderm cells during proliferation and almost never entered the yolk. The formation of notochord and primordial germ cells with normal morphologies was detected in the treated embryos by whole-mount in situ hybridization. Furthermore, traces of the element cadmium were mainly discovered in the tissue of liver and kidney of 3-month-old-treated zebrafish by quantitative assessment with inductively coupled plasma mass spectrometry. Thus, we hypothesized that low concentration MAA-QDs have chronic toxicities when they were delivered into zebrafish organs.

  20. Non-invasive imaging of zebrafish with spinal deformities using optical coherence tomography: a preliminary study

    Science.gov (United States)

    Bernstein, Liane; Beaudette, Kathy; Patten, Kessen; Beaulieu-Ouellet, Émilie; Strupler, Mathias; Moldovan, Florina; Boudoux, Caroline

    2013-03-01

    A zebrafish model has recently been introduced to study various genetic mutations that could lead to spinal deformities such as scoliosis. However, current imaging techniques make it difficult to perform longitudinal studies of this condition in zebrafish, especially in the early stages of development. The goal of this project is to determine whether optical coherence tomography (OCT) is a viable non-invasive method to image zebrafish exhibiting spinal deformities. Images of both live and fixed malformed zebrafish (5 to 21 days postfertilization) as well as wild-type fish (5 to 29 days postfertilization) were acquired non-invasively using a commercial SD-OCT system, with a laser source centered at 930nm (λ=100nm), permitting axial and lateral resolutions of 7 and 8μm respectively. Using two-dimensional images and three-dimensional reconstructions, it was possible to identify the malformed notochord as well as deformities in other major organs at different stages of formation. Visualization of the notochord was facilitated with the development of a segmentation algorithm. OCT images were compared to HE histological sections and images obtained by calcein staining. Because of the possibility of performing longitudinal studies on a same fish and reducing image processing time as compared with staining techniques and histology, the use of OCT could facilitate phenotypic characterization in studying genetic factors leading to spinal deformities in zebrafish and could eventually contribute to the identification of the genetic causes of spinal deformities such as scoliosis.

  1. Impact of CdSe/ZnS quantum dots on the development of zebrafish embryos

    International Nuclear Information System (INIS)

    Lei Yong; Xiao Qi; Huang Shan; Xu Wansu; Zhang Zhe; He Zhike; Liu Yi; Den, Fengjiao

    2011-01-01

    Due to their unique fluorescent characteristics, quantum dots (QDs) have been successfully applied in the fields of biotechnology and medicine, but there is very limited information regarding their biodistribution and chronic toxicity in vivo. In this article, the biological behavior and toxic effects of mercaptoacetic acid-CdSe/ZnS QDs (MAA-QDs) in developing zebrafish embryos were investigated by in vivo tests. The MAA-QDs were introduced into zebrafish through microinjection at early stage. The results showed that the MAA-QDs at certain concentrations influenced the survival of zebrafish embryos, but treated embryos without developmental defects were also observed. MAA-QDs injected into the cytoplasm at the one-cell stage were allocated to progeny blastoderm cells during proliferation and almost never entered the yolk. The formation of notochord and primordial germ cells with normal morphologies was detected in the treated embryos by whole-mount in situ hybridization. Furthermore, traces of the element cadmium were mainly discovered in the tissue of liver and kidney of 3-month-old-treated zebrafish by quantitative assessment with inductively coupled plasma mass spectrometry. Thus, we hypothesized that low concentration MAA-QDs have chronic toxicities when they were delivered into zebrafish organs.

  2. Metabolite Profiling of Four Major Flavonoids of Herba Epimdii in Zebrafish

    Directory of Open Access Journals (Sweden)

    Xiaobin Jia

    2012-01-01

    Full Text Available The zebrafish model organism was applied first in a metabolic study of icariin, baohuoside I, epimedin A and epimedin C, which are flavonoids in Herba Epimedii. Metabolites of these compounds in zebrafish after exposure for 24 h were identified by HPLC-ESI-MS, whereby the separation was performed with a Zorbax C-18 column using a gradient elution of 0.05% formic acid acetonitrile-0.05% formic acid water. The quasi-molecular ions of compounds were detected in simultaneous negative and positive ionization modes. Metabolic products of icariin and epimedin C via cleavage of glucose residue instead of rhamnose residues were found, which coincided with the results using regular metabolic analysis methods. In addition, the zebrafish model was used to predict the metabolism of the trace component epimedin A, whose metabolic mechanisms haven’t been clearly elucidated with the current metabolism model. The metabolic pathway of epimedin A in zebrafish was similar to those of its homologue icariin and epimedin C. Our study demonstrated that the zebrafish model can successfully imitate the current models in elucidating metabolic pathways of model flavonoids, which has advantages of lower cost, far less amount of compound needed, easy set up and high performance. This novel model can also be applied in quickly predicting the metabolism of Chinese herb components, especially trace compounds.

  3. Optogenetics in a transparent animal: circuit function in the larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Severi, Kristen E; Wyart, Claire; Ahrens, Misha B

    2013-02-01

    Optogenetic tools can be used to manipulate neuronal activity in a reversible and specific manner. In recent years, such methods have been applied to uncover causal relationships between activity in specified neuronal circuits and behavior in the larval zebrafish. In this small, transparent, genetic model organism, noninvasive manipulation and monitoring of neuronal activity with light is possible throughout the nervous system. Here we review recent work in which these new tools have been applied to zebrafish, and discuss some of the existing challenges of these approaches. Copyright © 2012. Published by Elsevier Ltd.

  4. Zebrafish: swimming towards a role for fanconi genes in DNA repair.

    Science.gov (United States)

    Scata, Kimberly A; El-Deiry, Wafik S

    2004-06-01

    The zebrafish, Danio rerio, has become a favorite model organism for geneticists and developmental biologists. Recently cancer biologists have turned to this tiny fish to help them unravel the mysteries of conserved pathways such as the Fanconi Anemia (FA) pathway. Although a relatively rare disease, the genes involved in FA are part of a large network of DNA damage response/repair genes. Liu and colleagues have recapitulated some of the clinical manifestations of human FA by knocking down the zebrafish FANC-D2 gene thereby providing a new model for probing the underlying causes of these phenotypes.

  5. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4)

    DEFF Research Database (Denmark)

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L

    2009-01-01

    is circadian in nature and under photoneural control. Whereas most rhythmically expressed genes in the pineal are controlled by adrenergic/cAMP signaling, Drd4 expression also requires thyroid hormone. This advance raises the questions of whether Drd4 expression is regulated by this mechanism in other systems...

  6. The early response of pineal N-acetyltransferase activity, melatonin and catecholamine levels in rats irradiated with gamma rays

    International Nuclear Information System (INIS)

    Kassayova, M.; Ahlersova, E.; Ahlers, I.; Pastorova, B.

    1995-01-01

    Male Wistar rats adapted to an artificial light-dark regimen were whole-body gamma-irradiated with a dose of 14.35 Gy. Irradiation, sham-irradiation and decapitation 30, 60 and 120 min after the exposure were performed between 2000 h and 0100 h in the darkness. The serotonin N-acetyltransferase activity (NAT), the concentration of melatonin and corticosterone were also determined. Ionizing radiation did not change the activity of NAT, the key enzyme of melatonin synthesis; however, it decreased the concentration of pineal melatonin. The concentration of pineal dopamine and norepinephrine decreased 30 and 120 min after exposure, while the concentration of epinephrine was elevated 30 min after irradiation, though later it was markedly decreased. The serum melatonin level was not changed but an increase in corticosterone level was observed. In the early period after exposure a decrease in pineal melatonin occurred, accompanied by a decrease in pineal catecholamines. On the contrary, in the phase of developed radiation injury the signs of increased melatonin synthesis were observed on days 3 and 4 after the exposure. (author) 6 figs., 25 refs

  7. A review of monoaminergic neuropsychopharmacology in zebrafish.

    Science.gov (United States)

    Maximino, Caio; Herculano, Anderson Manoel

    2010-12-01

    Monoamine neurotransmitters are the major regulatory mechanisms in the vertebrate brain, involved in the adjustment of motivation, emotion, and cognition. The chemical anatomy of these systems is thought to be highly conserved in the brain of all vertebrates, including zebrafish. Recently, the development of behavioral assays in zebrafish allowed the neuropsychopharmacological investigation of these circuits and its functions. Here we review neuroanatomical, genetic, neurochemical, and psychopharmacological evidence regarding the roles of histaminergic, dopaminergic, noradrenergic, serotonergic, and melatonergic systems in this species. We conclude that, in spite of species differences, zebrafish are suitable for the investigation of neuropsychopharmacology of drugs that affect theses systems; nonetheless, more thorough validation of behavioral methods is still needed.

  8. Learning and memory in zebrafish larvae

    Science.gov (United States)

    Roberts, Adam C.; Bill, Brent R.; Glanzman, David L.

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory. PMID:23935566

  9. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity

    NARCIS (Netherlands)

    Aceto, J.; Nourizadeh-Lillabadi, R.; Maree, R.; Dardenne, N.; Jeanray, N.; Wehenkel, L.; Alestrom, P.; van Loon, J.J.W.A.; Muller, M.

    2015-01-01

    Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to

  10. Not All Bones are Created Equal - Using Zebrafish and Other Teleost Species in Osteogenesis Research

    NARCIS (Netherlands)

    Apschner, A.; Schulte-Merker, S.; Witten, P.E.

    2011-01-01

    Developmental osteogenesis and pathologies of mineralized tissues are areas of intense investigations in the mammalian field, but different from other areas of organ formation and developmental biology, zebrafish have been somewhat slow in joining the area of bone research. In recent years, however,

  11. Reproductive impairment in the zebrafish, Danio rerio, upon chronic exposure to 1,2,3-trichlorobenzene.

    NARCIS (Netherlands)

    Roex, E.W.M.; Giovannangelo, M.E.C.A.; van Gestel, C.A.M.

    2001-01-01

    Most organic pollutants are supposed to act via the mechanism of nonpolar narcosis upon acute exposure. Because the chronic effects of these compounds are still relatively unknown, in this study a chronic toxicity experiment was performed with zebrafish, Danio rerio, exposed to 1, 2,

  12. Assay for the developmental toxicity of safflower (Carthamus tinctorius L. to zebrafish embryos/larvae

    Directory of Open Access Journals (Sweden)

    Qing Xia

    2017-01-01

    Conclusion: Safflower exhibits developmental toxicity for zebrafish embryos/larvae. The developing heart was speculated as the target organ of toxicity. Oxidative stress and increased apoptosis have roles in the developmental toxicity of safflower. This article provides a novel method to research the teratogenicity and possible mechanisms of toxicity of traditional Chinese medicines that are prohibited or contraindicated in pregnant women.

  13. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish

    NARCIS (Netherlands)

    Ward, AC; McPhee, DO; Condron, MM; Varma, S; Cody, SH; Onnebo, SMN; Paw, BH; Zon, LI; Lieschke, GJ

    2003-01-01

    The spi1 (pu.1) gene has recently been identified as a useful marker of early myeloid cells in zebrafish. To enhance the versatility of this organism as a model for studying myeloid development, the promoter of this gene has been isolated and characterized. Transient transgenesis revealed that a 5.3

  14. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers.

    Science.gov (United States)

    Li, Ye; Miao, Xiaoqing; Chen, Tongkai; Yi, Xiang; Wang, Ruibing; Zhao, Haitao; Lee, Simon Ming-Yuen; Wang, Xueqing; Zheng, Ying

    2017-08-01

    With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening. Copyright © 2017 Elsevier B

  15. Dynamic neuroanatomy at subcellular resolution in the zebrafish.

    Science.gov (United States)

    Faucherre, Adèle; López-Schier, Hernán

    2014-01-01

    Genetic means to visualize and manipulate neuronal circuits in the intact animal have revolutionized neurobiology. "Dynamic neuroanatomy" defines a range of approaches aimed at quantifying the architecture or subcellular organization of neurons over time during their development, regeneration, or degeneration. A general feature of these approaches is their reliance on the optical isolation of defined neurons in toto by genetically expressing markers in one or few cells. Here we use the afferent neurons of the lateral line as an example to describe a simple method for the dynamic neuroanatomical study of axon terminals in the zebrafish by laser-scanning confocal microscopy.

  16. Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits

    International Nuclear Information System (INIS)

    Halgamuge, Malka N.

    2013-01-01

    The International Agency for Research on Cancer (IARC) classifies electromagnetic fields (EMFs) as 'possibly carcinogenic' to humans that might transform normal cells into cancer cells. Owing to high utilisation of electricity in day-to-day life, exposure to power-frequency (50 or 60 Hz) EMFs is unavoidable. Melatonin is a natural hormone produced by pineal gland activity in the brain that regulates the body's sleep-wake cycle. How man-made EMFs may influence the pineal gland is still unsolved. The pineal gland is likely to sense EMFs as light but, as a consequence, may decrease the melatonin production. In this study, more than one hundred experimental data of human and animal studies of changes in melatonin levels due to power-frequency electric and magnetic fields exposure were analysed. Then, the results of this study were compared with the International Committee of Non-Ionizing Radiation Protection (ICNIRP) limit and also with the existing experimental results in the literature for the biological effect of magnetic fields, in order to quantify the effects. The results show that this comparison does not seem to be consistent despite the fact that it offers an advantage of drawing attention to the importance of the exposure limits to weak EMFs. In addition to those inconsistent results, the following were also observed from this work: (i) the ICNIRP recommendations are meant for the well-known acute effects, because effects of the exposure duration cannot be considered and (ii) the significance of not replicating the existing experimental studies is another limitation in the power-frequency EMFs. Regardless of these issues, the above observation agrees with our earlier study in which it was confirmed that it is not a reliable method to characterise biological effects by observing only the ratio of AC magnetic field strength to frequency. This is because exposure duration does not include the ICNIRP limit. Furthermore, the results show the significance of

  17. Relationship between nocturnal serotonin surge and melatonin onset in rodent pineal gland

    Directory of Open Access Journals (Sweden)

    Borjigin Jimo

    2006-09-01

    Full Text Available Abstract Background We have recently reported dynamic circadian rhythms of serotonin (5-HT, 5-hydroxytryptamine output in the pineal gland of rat, which precedes the onset of N-acetylserotonin (NAS and melatonin secretion at night. The present study was aimed at investigating in detail the relationship between 5-HT onset (5HT-on and melatonin onset (MT-on in multiple strains of rats and comparing them with those of hamsters. Methods Animals were maintained in chambers equipped with light (250 lux at cage levels and ventilation in a temperature-controlled room. Following surgical implantation of a microdialysis probe in the pineal gland, animals were individually housed for on-line pineal microdialysis and for automated HPLC analysis of 5-HT and melatonin. Animals were under a light-dark cycle of 12:12 h for the duration of the experiments. Results All animals displayed dynamic 5-HT and melatonin rhythms at night. In all cases, 5HT-on (taken at 80% of the daily maximum levels preceded MT-on (taken at 20% of the daily maximum levels. Within the same animals, 5HT-on as well as MT-on across multiple circadian cycles exhibited minimum variations under entrained conditions. Large inter-individual variations of both 5HT-on and MT-on were found in outbred rats and hamsters under entrained conditions. In comparison, inbred rats displayed very small individual variations of 5HT-on and MT-on. Importantly, we have uncovered a species-specific relationship of 5HT-on and MT-on. 5HT-on of rats, regardless of the strain, preceded MT-on of the same rats by 50 min. In contrast, 5HT-on of hamsters led MT-on by as much as 240 min. Thus, while a constant relationship of 5HT-on and MT-on exists for animals of the same species, the relative timings of 5HT-on and MT-on differ between animals of different species. Conclusion These results suggest that both 5-HT and melatonin could serve as reliable markers of the circadian clock because of their day-to-day precision of

  18. Vitamin A is a necessary factor for sympathetic-independent rhythmic activation of mitogen-activated protein kinase in the rat pineal gland.

    Science.gov (United States)

    Guillaumond, F; Giraudet, F; Becquet, D; Sage, D; Laforge-Anglade, G; Bosler, O; François-Bellan, A M

    2005-02-01

    The circadian clock in the suprachiasmatic nucleus (SCN) controls day-to-day physiology and behavior by sending timing messages to multiple peripheral oscillators. In the pineal gland, a major SCN target, circadian events are believed to be driven exclusively by the rhythmic release of norepinephrine from superior cervical ganglia (SCG) neurons relaying clock messages through a polysynaptic pathway. Here we show in rat an SCN-driven daily rhythm of pineal MAPK activation that is not dependent on the SCG and whose maintenance requires vitamin A as a blood-borne factor. This finding challenges the dogma that SCG-released norepinephrine is an exclusive mediator of SCN-pineal communication and allows the assumption that humoral mechanisms are involved in pineal integration of temporal messages.

  19. Identification and characterization of zebrafish thrombocytes.

    Science.gov (United States)

    Jagadeeswaran, P; Sheehan, J P; Craig, F E; Troyer, D

    1999-12-01

    To analyse primary haemostasis in the zebrafish we have identified and characterized the zebrafish thrombocyte by morphologic, immunologic and functional approaches. Novel methods were developed for harvesting zebrafish blood with preservation of thrombocytes, and assaying whole blood adhesion/aggregation responses in microtitre plates. Light and electron microscopy of the thrombocyte illustrated morphological characteristics including the formation of aggregates, pseudopodia, and surface-connected vesicles analagous to the platelet canalicular system. Immunostaining with polyclonal antisera versus human platelet glycoproteins demonstrated the presence of glycoprotein Ib and IIb/IIIa-like complexes on the thrombocyte surface. Whole blood assays for adhesion/aggregation and ATP release showed ristocetin-induced adhesion without ATP release, and platelet agonist (collagen, arachidonic acid) induced aggregation with ATP release. Blood harvested from zebrafish treated with aspirin demonstrated inhibition of arachidonic acid induced aggregation and agonist induced ATP release, consistent with at least partial dependence on an intact cyclo oxygenase pathway. The combined morphologic immunologic and functional evidence suggest that the zebrafish thrombocyte is the haemostatic homologue of the mammalian platelet. Conservation of major haemostatic pathways involved in platelet function and coagulation suggests that the zebrafish is a relevant model for mammalian haemostasis and thrombosis.

  20. Temporally-controlled site-specific recombination in zebrafish.

    Directory of Open Access Journals (Sweden)

    Stefan Hans

    Full Text Available Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreER(T2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM or its active metabolite, 4-hydroxy-tamoxifen (4-OHT. Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms.

  1. Unsuspected organic disease in chronic schizophrenia demonstrated by computed tomography

    International Nuclear Information System (INIS)

    Cunningham Owens, D.G.; Johnstone, E.C.; Bydder, G.M.; Kreel, L.

    1980-01-01

    Unsuspected intracranial pathology was demonstrated in 12 of 136 chronic schizophrenic patients examined by computed tomography (CT). Seven cases of cerebral infarction were found, and one each of porencephalic cyst, meningioma, cystic enlargement of the pineal body, and two of subdural haematoma. Attention is drawn to the value of CT in demonstrating organic disease in schizophrenia. (author)

  2. Cadmium affects retinogenesis during zebrafish embryonic development

    International Nuclear Information System (INIS)

    Hen Chow, Elly Suk; Yu Hui, Michelle Nga; Cheng, Chi Wa; Cheng, Shuk Han

    2009-01-01

    Ocular malformations are commonly observed in embryos of aquatic species after exposure to toxicants. Using zebrafish embryos as the model organism, we showed that cadmium exposure from sphere stage (4 hpf) to end of segmentation stage (24 hpf) induced microphthalmia in cadmium-treated embryos. Embryos with eye defects were then assessed for visual abilities. Cadmium-exposed embryos were behaviorally blind, showing hyperpigmentation and loss of camouflage response to light. We investigated the cellular basis of the formation of the small eyes phenotype and the induction of blindness by studying retina development and retinotectal projections. Retinal progenitors were found in cadmium-treated embryos albeit in smaller numbers. The number of retinal ganglion cells (RGC), the first class of retinal cells to differentiate during retinogenesis, was reduced, while photoreceptor cells, the last batch of retinal neurons to differentiate, were absent. Cadmium also affected the propagation of neurons in neurogenic waves. The neurons remained in the ventronasal area and failed to spread across the retina. Drastically reduced RGC axons and disrupted optic stalk showed that the optic nerves did not extend from the retina beyond the chiasm into the tectum. Our data suggested that impairment in neuronal differentiation of the retina, disruption in RGC axon formation and absence of cone photoreceptors were the causes of microphthalmia and visual impairment in cadmium-treated embryos

  3. Gamma knife surgery for pineal region tumors: an alternative strategy for negative pathology

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu (China); Department of Neurosurgery, The Fifth People' s Hospital of Chengdu, Chengdu (China); Mao, Qing; Wang, Wei; Zhou, Liang-Xue; Liu, Yan-Hui, E-mail: liuyanhui9@gmail.com [Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu (China)

    2014-03-01

    Objective: pineal region tumors (PRTs) are uncommon, and treatments vary among neoplasm types. The authors report their experience with gamma knife surgery (GKS) as an initial treatment in a series of PRT patients with unclear pathological diagnoses. Method: seventeen PRT patients with negative pathology who underwent GKS were retrospectively studied. Nine patients had further whole-brain and spinal cord radiotherapy and chemotherapy 6-9 months after GKS. Results: Sixteen of 17 cases were followed up over a mean of 33.3 months. The total response rate was 75%, and the control rate was 81.3%. No obvious neurological deficits or complications were attributable to GKS. Conclusion: the findings indicate that GKS may be an alternative strategy in selected PRT patients who have negative pathological diagnoses, and that good outcomes and quality of life can be obtained with few complications. (author)

  4. Radiation-induced vasculopathy implicated by depressed blood flow and metabolism in a pineal glioma

    Energy Technology Data Exchange (ETDEWEB)

    Mineura, K; Sasajima, T; Kowada, M [Akita University Hospital (Japan). Neurosurgical Service; Saitoh, H [Oodate Municipal Hospital (Japan). Dept. of Neurosurgery; Shishido, F [Research Inst. of Brain and Blood Vessels, Akita (Japan)

    1993-08-01

    A case of radiation-induced vasculopathy of a pineal glioma was presented with haemodynamic and metabolic changes before and after radiotherapy. After radiation of 60 Gy with conventional fractionation (1.8-2.0 Gy daily, 5 days per week), regional blood flow, oxygen extraction fraction, metabolic rate of oxygen, kinetic metabolic rate of glucose and the rate constants (K2, K3) were markedly depressed (20% or greater) compared with the pre-irradiated study. 7 months after radiotherapy, the patient developed transient episodes of both right and left upper limb convulsion, terminating in generalized convulsion. When she developed status epilepticus, computed tomography showed extensive low density areas in the territory supplied by the right middle cerebral and the right posterior cerebral arteries. (author).

  5. Radiation-induced vasculopathy implicated by depressed blood flow and metabolism in a pineal glioma

    International Nuclear Information System (INIS)

    Mineura, K.; Sasajima, T.; Kowada, M.

    1993-01-01

    A case of radiation-induced vasculopathy of a pineal glioma was presented with haemodynamic and metabolic changes before and after radiotherapy. After radiation of 60 Gy with conventional fractionation (1.8-2.0 Gy daily, 5 days per week), regional blood flow, oxygen extraction fraction, metabolic rate of oxygen, kinetic metabolic rate of glucose and the rate constants (K2, K3) were markedly depressed (20% or greater) compared with the pre-irradiated study. 7 months after radiotherapy, the patient developed transient episodes of both right and left upper limb convulsion, terminating in generalized convulsion. When she developed status epilepticus, computed tomography showed extensive low density areas in the territory supplied by the right middle cerebral and the right posterior cerebral arteries. (author)

  6. Noninvasive technique for measurement of heartbeat regularity in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Cheng Shuk

    2009-02-01

    Full Text Available Abstract Background Zebrafish (Danio rerio, due to its optical accessibility and similarity to human, has emerged as model organism for cardiac research. Although various methods have been developed to assess cardiac functions in zebrafish embryos, there lacks a method to assess heartbeat regularity in blood vessels. Heartbeat regularity is an important parameter for cardiac function and is associated with cardiotoxicity in human being. Using stereomicroscope and digital video camera, we have developed a simple, noninvasive method to measure the heart rate and heartbeat regularity in peripheral blood vessels. Anesthetized embryos were mounted laterally in agarose on a slide and the caudal blood circulation of zebrafish embryo was video-recorded under stereomicroscope and the data was analyzed by custom-made software. The heart rate was determined by digital motion analysis and power spectral analysis through extraction of frequency characteristics of the cardiac rhythm. The heartbeat regularity, defined as the rhythmicity index, was determined by short-time Fourier Transform analysis. Results The heart rate measured by this noninvasive method in zebrafish embryos at 52 hour post-fertilization was similar to that determined by direct visual counting of ventricle beating (p > 0.05. In addition, the method was validated by a known cardiotoxic drug, terfenadine, which affects heartbeat regularity in humans and induces bradycardia and atrioventricular blockage in zebrafish. A significant decrease in heart rate was found by our method in treated embryos (p p Conclusion The data support and validate this rapid, simple, noninvasive method, which includes video image analysis and frequency analysis. This method is capable of measuring the heart rate and heartbeat regularity simultaneously via the analysis of caudal blood flow in zebrafish embryos. With the advantages of rapid sample preparation procedures, automatic image analysis and data analysis, this

  7. Characterization of Na+ and Ca2+ channels in zebrafish dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Jin Won

    Full Text Available BACKGROUND: Dorsal root ganglia (DRG somata from rodents have provided an excellent model system to study ion channel properties and modulation using electrophysiological investigation. As in other vertebrates, zebrafish (Danio rerio DRG are organized segmentally and possess peripheral axons that bifurcate into each body segment. However, the electrical properties of zebrafish DRG sensory neurons, as compared with their mammalian counterparts, are relatively unexplored because a preparation suitable for electrophysiological studies has not been available. METHODOLOGY/PRINCIPAL FINDINGS: We show enzymatically dissociated DRG neurons from juvenile zebrafish expressing Isl2b-promoter driven EGFP were easily identified with fluorescence microscopy and amenable to conventional whole-cell patch-clamp studies. Two kinetically distinct TTX-sensitive Na(+ currents (rapidly- and slowly-inactivating were discovered. Rapidly-inactivating I(Na were preferentially expressed in relatively large neurons, while slowly-inactivating I(Na was more prevalent in smaller DRG neurons. RT-PCR analysis suggests zscn1aa/ab, zscn8aa/ab, zscn4ab and zscn5Laa are possible candidates for these I(Na components. Voltage-gated Ca(2+ currents (I(Ca were primarily (87% comprised of a high-voltage activated component arising from ω-conotoxin GVIA-sensitive Ca(V2.2 (N-type Ca(2+ channels. A few DRG neurons (8% displayed a miniscule low-voltage-activated component. I(Ca in zebrafish DRG neurons were modulated by neurotransmitters via either voltage-dependent or -independent G-protein signaling pathway with large cell-to-cell response variability. CONCLUSIONS/SIGNIFICANCE: Our present results indicate that, as in higher vertebrates, zebrafish DRG neurons are heterogeneous being composed of functionally distinct subpopulations that may correlate with different sensory modalities. These findings provide the first comparison of zebrafish and rodent DRG neuron electrical properties and

  8. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Akagi

    Full Text Available Zebrafish (Danio rerio has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP. The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale.

  9. Morfologia da glândula pineal de gambás (Didelphis sp

    Directory of Open Access Journals (Sweden)

    Celina Almeida Furlanetto Mançanares

    2007-06-01

    Full Text Available A glândula pineal deve ser analisada e estudada em animais da fauna brasileira, para que dados da pesquisa básica possam ser aplicados em novas técnicas de manejo reprodutivo destes animais, inclusive em cativeiro, face à íntima relação deste órgão fotorreceptor com o ciclo reprodutivo. Para este estudo, foram utilizados 10 gambás (Didelphis sp, provenientes do Departamento de Anatomia da USP e da UNIFEOB, já mortos e fixados. Nenhum animal foi submetido a situações de dor/sofrimento e ao sacrifício de sua vida. A glândula pineal foi encontrada em todos animais estudados e apresentou-se com diminutas dimensões, não sendo possível, portanto descrever-lhe características macroscópicas. Através da análise microscópica pudemos localizar a glândula no espaço correspondente ao plano mediano, em relação ao encéfalo, rostral e dorsalmente aos colículos rostrais, ventralmente aos hemisférios cerebrais e caudalmente à comissura habenular. Consiste de uma evaginação do teto do diencéfalo e mostra-se em forma de "U" invertido. Comparativamente a características de glândulas pineais de outras espécies animais, a do Didelphis genus, que estudamos, revela peculiaridades tanto em relação ao seu tamanho, apenas perceptível microscopicamente, quanto ao fato de apresentar células semelhantes às secretoras, dispersas também em áreas vizinhas. Tais peculiaridades motivam reflexões sobre o papel funcional da glândula, na espécie considerada.

  10. Evaluating human cancer cell metastasis in zebrafish

    International Nuclear Information System (INIS)

    Teng, Yong; Xie, Xiayang; Walker, Steven; White, David T; Mumm, Jeff S; Cowell, John K

    2013-01-01

    In vivo metastasis assays have traditionally been performed in mice, but the process is inefficient and costly. However, since zebrafish do not develop an adaptive immune system until 14 days post-fertilization, human cancer cells can survive and metastasize when transplanted into zebrafish larvae. Despite isolated reports, there has been no systematic evaluation of the robustness of this system to date. Individual cell lines were stained with CM-Dil and injected into the perivitelline space of 2-day old zebrafish larvae. After 2-4 days fish were imaged using confocal microscopy and the number of metastatic cells was determined using Fiji software. To determine whether zebrafish can faithfully report metastatic potential in human cancer cells, we injected a series of cells with different metastatic potential into the perivitelline space of 2 day old embryos. Using cells from breast, prostate, colon and pancreas we demonstrated that the degree of cell metastasis in fish is proportional to their invasion potential in vitro. Highly metastatic cells such as MDA231, DU145, SW620 and ASPC-1 are seen in the vasculature and throughout the body of the fish after only 24–48 hours. Importantly, cells that are not invasive in vitro such as T47D, LNCaP and HT29 do not metastasize in fish. Inactivation of JAK1/2 in fibrosarcoma cells leads to loss of invasion in vitro and metastasis in vivo, and in zebrafish these cells show limited spread throughout the zebrafish body compared with the highly metastatic parental cells. Further, knockdown of WASF3 in DU145 cells which leads to loss of invasion in vitro and metastasis in vivo also results in suppression of metastasis in zebrafish. In a cancer progression model involving normal MCF10A breast epithelial cells, the degree of invasion/metastasis in vitro and in mice is mirrored in zebrafish. Using a modified version of Fiji software, it is possible to quantify individual metastatic cells in the transparent larvae to correlate with

  11. Biosecurity and Health Monitoring at the Zebrafish International Resource Center

    OpenAIRE

    Murray, Katrina N.; Varga, Zolt?n M.; Kent, Michael L.

    2016-01-01

    The Zebrafish International Resource Center (ZIRC) is a repository and distribution center for mutant, transgenic, and wild-type zebrafish. In recent years annual imports of new zebrafish lines to ZIRC have increased tremendously. In addition, after 15 years of research, we have identified some of the most virulent pathogens affecting zebrafish that should be avoided in large production facilities, such as ZIRC. Therefore, while importing a high volume of new lines we prioritize safeguarding ...

  12. Alternative splicing of sept9a and sept9b in zebrafish produces multiple mRNA transcripts expressed throughout development.

    Directory of Open Access Journals (Sweden)

    Megan L Landsverk

    2010-05-01

    Full Text Available Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9 levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA. Despite its important function in human health, the in vivo role of SEPT9 is unknown.Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development.Our work demonstrates that sept9 plays an important role in zebrafish development, and establishes zebrafish as a valuable model organism for the study of SEPT9.

  13. Sequential assessment via daphnia and zebrafish for systematic toxicity screening of heterogeneous substances.

    Science.gov (United States)

    Jang, Gun Hyuk; Park, Chang-Beom; Kang, Benedict J; Kim, Young Jun; Lee, Kwan Hyi

    2016-09-01

    Environment and organisms are persistently exposed by a mixture of various substances. However, the current evaluation method is mostly based on an individual substance's toxicity. A systematic toxicity evaluation of heterogeneous substances needs to be established. To demonstrate toxicity assessment of mixture, we chose a group of three typical ingredients in cosmetic sunscreen products that frequently enters ecosystems: benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), and titanium dioxide nanoparticle (TiO2 NP). We first determined a range of nominal toxic concentration of each ingredient or substance using Daphnia magna, and then for the subsequent organismal level phenotypic assessment, chose the wild-type zebrafish embryos. Any phenotype change, such as body deformation, led to further examinations on the specific organs of transgenic zebrafish embryos. Based on the systematic toxicity assessments of the heterogeneous substances, we offer a sequential environmental toxicity assessment protocol that starts off by utilizing Daphnia magna to determine a nominal concentration range of each substance and finishes by utilizing the zebrafish embryos to detect defects on the embryos caused by the heterogeneous substances. The protocol showed additive toxic effects of the mixtures. We propose a sequential environmental toxicity assessment protocol for the systematic toxicity screening of heterogeneous substances from Daphnia magna to zebrafish embryo in-vivo models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Lisa, E-mail: lisa.baumann@vetsuisse.unibe.ch [Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, PO Box 8466, CH-3001 Bern (Switzerland); Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Knörr, Susanne, E-mail: susanne.knoerr@gmx.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Keiter, Susanne, E-mail: susanne.keiter@cos.uni-heidelberg.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Rehberger, Kristina, E-mail: k.rehberger@stud.uni-heidelberg.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Volz, Sina, E-mail: s.volz@stud.uni-heidelberg.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Schiller, Viktoria, E-mail: schiller@molbiotech.rwth-aachen.de [Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, D-52074 Aachen (Germany); Fenske, Martina, E-mail: martina.fenske@ime.fraunhofer.de [Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, D-52074 Aachen (Germany); Holbech, Henrik, E-mail: hol@biology.sdu.dk [Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Segner, Helmut, E-mail: helmut.segner@vetsuisse.unibe.ch [Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, PO Box 8466, CH-3001 Bern (Switzerland); Braunbeck, Thomas, E-mail: braunbeck@uni-hd.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany)

    2014-08-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1–10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish. - Highlights: • Zebrafish were exposed to 17α-ethinylestradiol during their sexual differentiation. • Reversibility of effects was investigated after depuration of 40 days. • Morphological and physiological parameters were compared. • Zebrafish were able to recover at all different levels from mRNA to population.

  15. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol

    International Nuclear Information System (INIS)

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne; Rehberger, Kristina; Volz, Sina; Schiller, Viktoria; Fenske, Martina; Holbech, Henrik; Segner, Helmut; Braunbeck, Thomas

    2014-01-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1–10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish. - Highlights: • Zebrafish were exposed to 17α-ethinylestradiol during their sexual differentiation. • Reversibility of effects was investigated after depuration of 40 days. • Morphological and physiological parameters were compared. • Zebrafish were able to recover at all different levels from mRNA to population

  16. Pineal yolk sac tumor: correlation between neuroimaging and pathological findings Tumor do seio endodérmico da pineal: correlação entre os achados patológicos e de neuroimagem

    Directory of Open Access Journals (Sweden)

    Taísa Davaus

    2007-06-01

    Full Text Available A 17-year-old boy presented with somnolence and mental confusion. Physical examination demonstrated motor disturbances. Laboratorial investigation showed elevated levels of alpha-fetoprotein in serum and cerebrospinal fluid. The CT scan revealed a heterogeneous mass at the pineal region. At the MRI, this lesion was hypointense on T1 and hyperintense on T2-weighted images, enhancing after contrast administration. The patient underwent a surgical biopsy, which defined the diagnosis of yolk sac tumor. We emphasize the correlation of neuroimaging and pathological findings of this rare pineal region tumor.Um menino de 17 anos de idade apresentou-se com sonolência e confusão mental. O exame físico demonstrou distúrbios motores. A investigação laboratorial revelou aumento dos níveis de alfafetoproteína no soro e no líquor. A TC de crânio revelou massa heterogênea na região pineal. À RM, a lesão era hipointensa em T1 e hiperintensa em T2, com realce após a administração de contraste. O paciente foi submetido a biópsia cirúrgica, a qual definiu o diagnóstico de tumor do seio endodérmico. Enfatizamos a correlação entre os achados patológicos e de neuroimagem deste raro tumor da região pineal.

  17. Transcriptome analysis of severe hypoxic stress during development in zebrafish

    Directory of Open Access Journals (Sweden)

    I.G. Woods

    2015-12-01

    Full Text Available Hypoxia causes critical cellular injury both in early human development and in adulthood, leading to cerebral palsy, stroke, and myocardial infarction. Interestingly, a remarkable phenomenon known as hypoxic preconditioning arises when a brief hypoxia exposure protects target organs against subsequent, severe hypoxia. Although hypoxic preconditioning has been demonstrated in several model organisms and tissues including the heart and brain, its molecular mechanisms remain poorly understood. Accordingly, we used embryonic and larval zebrafish to develop a novel vertebrate model for hypoxic preconditioning, and used this model to identify conserved hypoxia-regulated transcripts for further functional study as published in Manchenkov et al. (2015 in G3: Genes|Genomes|Genetics. In this Brief article, we provide extensive annotation for the most strongly hypoxia-regulated genes in zebrafish, including their human orthologs, and describe in detail the methods used to identify, filter, and annotate hypoxia-regulated transcripts for downstream functional and bioinformatic assays using the source data provided in Gene Expression Omnibus Accession GSE68473.

  18. Inexhaustible hair-cell regeneration in young and aged zebrafish

    Directory of Open Access Journals (Sweden)

    Filipe Pinto-Teixeira

    2015-07-01

    Full Text Available Animals have evolved two general strategies to counter injury and maintain physiological function. The most prevalent is protection by isolating vital organs into body cavities. However, protection is not optimal for sensory systems because their external components need to be exposed to the environment to fulfill their receptive function. Thus, a common strategy to maintain sensory abilities against persistent environmental insult involves repair and regeneration. However, whether age or frequent injuries affect the regenerative capacity of sensory organs remains unknown. We have found that neuromasts of the zebrafish lateral line regenerate mechanosensory hair cells after recurrent severe injuries and in adulthood. Moreover, neuromasts can reverse transient imbalances of Notch signaling that result in defective organ proportions during repair. Our results reveal inextinguishable hair-cell regeneration in the lateral line, and suggest that the neuromast epithelium is formed by plastic territories that are maintained by continuous intercellular communication.

  19. Identification and functional characterization of cardiac pacemaker cells in zebrafish.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    Full Text Available In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3 and Islet-1 (Isl1. Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.

  20. The genetics of hair-cell function in zebrafish.

    Science.gov (United States)

    Nicolson, Teresa

    2017-09-01

    Our ears are remarkable sensory organs, providing the important senses of balance and hearing. The complex structure of the inner ear, or 'labyrinth', along with the assorted neuroepithelia, have evolved to detect head movements and sounds with impressive sensitivity. The rub is that the inner ear is highly vulnerable to genetic lesions and environmental insults. According to National Institute of Health estimates, hearing loss is one of the most commonly inherited or acquired sensorineural diseases. To understand the causes of deafness and balance disorders, it is imperative to understand the underlying biology of the inner ear, especially the inner workings of the sensory receptors. These receptors, which are termed hair cells, are particularly susceptible to genetic mutations - more than two dozen genes are associated with defects in this cell type in humans. Over the past decade, a substantial amount of progress has been made in working out the molecular basis of hair-cell function using vertebrate animal models. Given the transparency of the inner ear and the genetic tools that are available, zebrafish have become an increasingly popular animal model for the study of deafness and vestibular dysfunction. Mutagenesis screens for larval defects in hearing and balance have been fruitful in finding key components, many of which have been implicated in human deafness. This review will focus on the genes that are required for hair-cell function in zebrafish, with a particular emphasis on mechanotransduction. In addition, the generation of new tools available for the characterization of zebrafish hair-cell mutants will be discussed.

  1. NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy

    Science.gov (United States)

    Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin

  2. Tools for automating the imaging of zebrafish larvae.

    Science.gov (United States)

    Pulak, Rock

    2016-03-01

    The VAST BioImager system is a set of tools developed for zebrafish researchers who require the collection of images from a large number of 2-7 dpf zebrafish larvae. The VAST BioImager automates larval handling, positioning and orientation tasks. Color images at about 10 μm resolution are collected from the on-board camera of the system. If images of greater resolution and detail are required, this system is mounted on an upright microscope, such as a confocal or fluorescence microscope, to utilize their capabilities. The system loads a larvae, positions it in view of the camera, determines orientation using pattern recognition analysis, and then more precisely positions to user-defined orientation for optimal imaging of any desired tissue or organ system. Multiple images of the same larva can be collected. The specific part of each larva and the desired orientation and position is identified by the researcher and an experiment defining the settings and a series of steps can be saved and repeated for imaging of subsequent larvae. The system captures images, then ejects and loads another larva from either a bulk reservoir, a well of a 96 well plate using the LP Sampler, or individually targeted larvae from a Petri dish or other container using the VAST Pipettor. Alternative manual protocols for handling larvae for image collection are tedious and time consuming. The VAST BioImager automates these steps to allow for greater throughput of assays and screens requiring high-content image collection of zebrafish larvae such as might be used in drug discovery and toxicology studies. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  3. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  4. Skeletogenic fate of zebrafish cranial and trunk neural crest.

    Directory of Open Access Journals (Sweden)

    Erika Kague

    Full Text Available The neural crest (NC is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two-transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC-derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late-forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development.

  5. A Case of Nongerminomatous Germ Cell Tumor of the Pineal Region: Risks and Advantages of Biopsy by Endoscopic Approach.

    Science.gov (United States)

    Dobran, Mauro; Nasi, Davide; Mancini, Fabrizio; Gladi, Maurizio; Scerrati, Massimo

    2018-01-01

    A 21-year-old male was admitted to our department with headache and drowsiness. CT scan and MRI revealed acute obstructive hydrocephalus caused by a pineal region mass. The serum and CSF levels of beta-human chorionic gonadotropin (beta-hCG) were 215 IU/L and 447 IU/L, respectively, while levels of alpha-fetoprotein (AFP) were normal. A germ cell tumor (GCT) was suspected, and the patient underwent endoscopic third ventriculostomy (ETV) with biopsy. After four days from surgery, the tumor bled with mass expansion and ETV stoma occlusion; thus, a ventriculoperitoneal shunt was positioned. After ten months, the tumor metastasized to the thorax and abdomen with progression of intracerebral tumor mass. Despite the aggressive nature of this tumor, ETV remains a valid approach for a pineal region mass, but in case of GCT, the risk of bleeding should be taken into account, during and after the surgical procedure.

  6. A Case of Nongerminomatous Germ Cell Tumor of the Pineal Region: Risks and Advantages of Biopsy by Endoscopic Approach

    Directory of Open Access Journals (Sweden)

    Mauro Dobran

    2018-01-01

    Full Text Available A 21-year-old male was admitted to our department with headache and drowsiness. CT scan and MRI revealed acute obstructive hydrocephalus caused by a pineal region mass. The serum and CSF levels of beta-human chorionic gonadotropin (beta-hCG were 215 IU/L and 447 IU/L, respectively, while levels of alpha-fetoprotein (AFP were normal. A germ cell tumor (GCT was suspected, and the patient underwent endoscopic third ventriculostomy (ETV with biopsy. After four days from surgery, the tumor bled with mass expansion and ETV stoma occlusion; thus, a ventriculoperitoneal shunt was positioned. After ten months, the tumor metastasized to the thorax and abdomen with progression of intracerebral tumor mass. Despite the aggressive nature of this tumor, ETV remains a valid approach for a pineal region mass, but in case of GCT, the risk of bleeding should be taken into account, during and after the surgical procedure.

  7. Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin.

    Science.gov (United States)

    Ouadah-Boussouf, Nafia; Babin, Patrick J

    2016-03-01

    One proposed contributing factor to the rise in overweight and obesity is exposure to endocrine disrupting chemicals. Tributyltin chloride (TBT), an organotin, induces adipogenesis in cell culture models and may increases adipose mass in vivo in vertebrate model organisms. It has been hypothesized that TBT acts via the peroxisome proliferator activated receptor (PPAR)γ-dependent pathway. However, the mechanisms involved in the effects of TBT exposure on in vivo adipose tissue metabolism remain unexplored. Semitransparent zebrafish larvae, with their well-developed white adipose tissue, offer a unique opportunity for studying the effects of toxicant chemicals and pharmaceuticals on adipocyte biology and whole-organism adiposity in a vertebrate model. Within hours, zebrafish larvae, treated at environmentally-relevant nanomolar concentrations of TBT, exhibited a remarkable increase in adiposity linked to adipocyte hypertrophy. Under the experimental conditions used, we also demonstrated that zebrafish larvae adipose tissue proved to be highly responsive to selected human nuclear receptor agonists and antagonists. Retinoid X receptor (RXR) homodimers and RXR/liver X receptor heterodimers were suggested to be in vivo effectors of the obesogenic effect of TBT on zebrafish white adipose tissue. RXR/PPARγ heterodimers may be recruited to modulate adiposity in zebrafish but were not a necessary requirement for the short term in vivo TBT obesogenic effect. Together, the present results suggest that TBT may induce the promotion of triacylglycerol storage in adipocytes via RXR-dependent pathways without necessary using PPAR isoforms. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A relationship between bruxism and orofacial-dystonia? A trigeminal electrophysiological approach in a case report of pineal cavernoma

    OpenAIRE

    Frisardi, Gianni; Iani, Cesare; Sau, Gianfranco; Frisardi, Flavio; Leornadis, Carlo; Lumbau, Aurea; Enrico, Paolo; Sirca, Donatella; Staderini, Enrico Maria; Chessa, Giacomo

    2013-01-01

    Background: In some clinical cases, bruxism may be correlated to central nervous system hyperexcitability, suggesting that bruxism may represent a subclinical form of dystonia. To examine this hypothesis, we performed an electrophysiological evaluation of the excitability of the trigeminal nervous system in a patient affected by pineal cavernoma with pain symptoms in the orofacial region and pronounced bruxism. Methods: Electrophysiological studies included bilateral electrical transcrania...

  9. Pineal germinoma in a child with interferon-γ receptor 1 deficiency. case report and literature review.

    Science.gov (United States)

    Taramasso, L; Boisson-Dupuis, S; Garrè, M L; Bondi, E; Cama, A; Nozza, P; Morana, G; Casanova, J L; Marazzi, M G

    2014-11-01

    Interferon-γ receptor 1 (IFN-γR1) deficiency is one of the primary immunodeficiencies conferring Mendelian Susceptibility to Mycobacterial Disease (MSMD). Some cases of neoplasms have been recently reported in patients with MSMD, underlying the already known link between immunodeficiency and carcinogenesis. We report the first case of intracranial tumour, i.e. pineal germinoma, in a 11-year-old patient with complete IFN-γR1 deficiency. The first clinical presentation of the genetic immunodeficiency dates back to when the child was aged 2 y and 10 mo, when he presented a multi-focal osteomyelitis caused by Mycobacterium scrofulaceum. The diagnosis of IFN-γR1 deficiency (523delT/523delT in IFNGR1 gene) was subsequently made. The child responded to antibiotic therapy and remained in stable clinical condition until the age of 11 years, when he started complaining of frontal, chronic headache. MRI revealed a solid pineal region mass lesion measuring 20 × 29 × 36 mm. Histological findings revealed a diagnosis of pineal germinoma. The patient received chemotherapy followed by local whole ventricular irradiation with boost on pineal site, experiencing complete remission, and to date he is tumor-free at four years follow-up. Four other cases of tumors have been reported in patients affected by MSMD in our knowledge: a case of Kaposi sarcoma, a case of B-cell lymphoma, a case of cutaneous squamous cell carcinoma and a case of oesophageal squamous cell carcinoma. In conclusion, in patients with MSMD, not only the surveillance of infectious diseases, but also that of tumors is important.

  10. Transcriptome analysis of zebrafish embryogenesis using microarrays.

    Directory of Open Access Journals (Sweden)

    Sinnakaruppan Mathavan

    2005-08-01

    Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

  11. The zebrafish genome: a review and msx gene case study.

    Science.gov (United States)

    Postlethwait, J H

    2006-01-01

    Zebrafish is one of several important teleost models for understanding principles of vertebrate developmental, molecular, organismal, genetic, evolutionary, and genomic biology. Efficient investigation of the molecular genetic basis of induced mutations depends on knowledge of the zebrafish genome. Principles of zebrafish genomic analysis, including gene mapping, ortholog identification, conservation of syntenies, genome duplication, and evolution of duplicate gene function are discussed here using as a case study the zebrafish msxa, msxb, msxc, msxd, and msxe genes, which together constitute zebrafish orthologs of tetrapod Msx1, Msx2, and Msx3. Genomic analysis suggests orthologs for this difficult to understand group of paralogs.

  12. The zebrafish progranulin gene family and antisense transcripts

    Directory of Open Access Journals (Sweden)

    Baranowski David

    2005-11-01

    compartments of various organs. Conclusion In support of the duplication-degeneration-complementation model of duplicate gene retention, partitioning of expression between grna and grnb was observed in the intermediate cell mass and yolk syncytial layer, respectively. Taken together these expression patterns suggest that the function of an ancestral grn gene has been devolved upon four paralogues in zebrafish.

  13. Expression and knockdown of zebrafish folliculin suggests requirement for embryonic brain morphogenesis.

    Science.gov (United States)

    Kenyon, Emma J; Luijten, Monique N H; Gill, Harmeet; Li, Nan; Rawlings, Matthew; Bull, James C; Hadzhiev, Yavor; van Steensel, Maurice A M; Maher, Eamonn; Mueller, Ferenc

    2016-07-08

    Birt-Hogg-Dubé syndrome (BHD) is a dominantly inherited familial cancer syndrome characterised by the development of benign skin fibrofolliculomas, multiple lung and kidney cysts, spontaneous pneumothorax and susceptibility to renal cell carcinoma. BHD is caused by mutations in the gene encoding Folliculin (FLCN). Little is known about what FLCN does in a healthy individual and how best to treat those with BHD. As a first approach to developing a vertebrate model for BHD we aimed to identify the temporal and spatial expression of flcn transcripts in the developing zebrafish embryo. To gain insights into the function of flcn in a whole organism system we generated a loss of function model of flcn by the use of morpholino knockdown in zebrafish. flcn is expressed broadly and upregulated in the fin bud, somites, eye and proliferative regions of the brain of the Long-pec stage zebrafish embryos. Together with knockdown phenotypes, expression analysis suggest involvement of flcn in zebrafish embryonic brain development. We have utilised the zFucci system, an in vivo, whole organism cell cycle assay to study the potential role of flcn in brain development. We found that at the 18 somite stage there was a significant drop in cells in the S-M phase of the cell cycle in flcn morpholino injected embryos with a corresponding increase of cells in the G1 phase. This was particularly evident in the brain, retina and somites of the embryo. Timelapse analysis of the head region of flcn morpholino injected and mismatch control embryos shows the temporal dynamics of cell cycle misregulation during development. In conclusion we show that zebrafish flcn is expressed in a non-uniform manner and is likely required for the maintenance of correct cell cycle regulation during embryonic development. We demonstrate the utilisation of the zFucci system in testing the role of flcn in cell proliferation and suggest a function for flcn in regulating cell proliferation in vertebrate embryonic

  14. Neutrophil Reverse Migration Becomes Transparent with Zebrafish

    Directory of Open Access Journals (Sweden)

    Taylor W. Starnes

    2012-01-01

    Full Text Available The precise control of neutrophil-mediated inflammation is critical for both host defense and the prevention of immunopathology. In vivo imaging studies in zebrafish, and more recently in mice, have made the novel observation that neutrophils leave a site of inflammation through a process called neutrophil reverse migration. The application of advanced imaging techniques to the genetically tractable, optically transparent zebrafish larvae was critical for these advances. Still, the mechanisms underlying neutrophil reverse migration and its effects on the resolution or priming of immune responses remain unclear. Here, we review the current knowledge of neutrophil reverse migration, its potential roles in host immunity, and the live imaging tools that make zebrafish a valuable model for increasing our knowledge of neutrophil behavior in vivo.

  15. Report of Workshop on Euthanasia for Zebrafish-A Matter of Welfare and Science.

    Science.gov (United States)

    Köhler, Almut; Collymore, Chereen; Finger-Baier, Karin; Geisler, Robert; Kaufmann, Larissa; Pounder, Kieran C; Schulte-Merker, Stefan; Valentim, Ana; Varga, Zoltan M; Weiss, Jürgen; Strähle, Uwe

    2017-12-01

    The increasing importance of zebrafish as a biomedical model organism is reflected by the steadily growing number of publications and laboratories working with this species. Regulatory recommendations for euthanasia as issued in Directive 2010/63/EU are, however, based on experience with fish species used for food production and do not take the small size and specific physiology of zebrafish into account. Consequently, the currently recommended methods of euthanasia in the Directive 2010/63/EU are either not applicable or may interfere with research goals. An international workshop was held in Karlsruhe, Germany, March 9, 2017, to discuss and propose alternative methods for euthanasia of zebrafish. The aim was to identify methods that adequately address the physiology of zebrafish and its use as a biomedical research model, follow the principles of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation and consider animal welfare during anesthesia and euthanasia. The results of the workshop are summarized here in the form of a white paper.

  16. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish

    Directory of Open Access Journals (Sweden)

    Hyun-Sik Nam

    2016-01-01

    Full Text Available MicroRNA-122 (miRNA-122, also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM and cell death in larval liver (5 μM at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish.

  17. The Complete and Updated "Rotifer Polyculture Method" for Rearing First Feeding Zebrafish

    Science.gov (United States)

    Lawrence, Christian; Best, Jason; Cockington, Jason; Henry, Eric C.; Hurley, Shane; James, Althea; Lapointe, Christopher; Maloney, Kara; Sanders, Erik

    2016-01-01

    The zebrafish (Danio rerio) is a model organism of increasing importance in many fields of science. One of the most demanding technical aspects of culture of this species in the laboratory is rearing first-feeding larvae to the juvenile stage with high rates of growth and survival. The central management challenge of this developmental period revolves around delivering highly nutritious feed items to the fish on a nearly continuous basis without compromising water quality. Because larval zebrafish are well-adapted to feed on small zooplankton in the water column, live prey items such as brachionid rotifers, Artemia, and Paramecium are widely recognized as the feeds of choice, at least until the fish reach the juvenile stage and are able to efficiently feed on processed diets. This protocol describes a method whereby newly hatched zebrafish larvae are cultured together with live saltwater rotifers (Brachionus plicatilis) in the same system. This polyculture approach provides fish with an "on-demand", nutrient-rich live food source without producing chemical waste at levels that would otherwise limit performance. Importantly, because the system harnesses both the natural high productivity of the rotifers and the behavioral preferences of the fish, the labor involved with maintenance is low. The following protocol details an updated, step-by-step procedure that incorporates rotifer production (scalable to any desired level) for use in a polyculture of zebrafish larvae and rotifers that promotes maximal performance during the first 5 days of exogenous feeding. PMID:26863035

  18. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.

    Science.gov (United States)

    Feierstein, C E; Portugues, R; Orger, M B

    2015-06-18

    In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal. Copyright © 2014. Published by Elsevier Ltd.

  19. Acute administration of THC impairs spatial but not associative memory function in zebrafish.

    Science.gov (United States)

    Ruhl, Tim; Prinz, Nicole; Oellers, Nadine; Seidel, Nathan Ian; Jonas, Annika; Albayram, Onder; Bilkei-Gorzo, Andras; von der Emde, Gerhard

    2014-10-01

    The present study examined the effect of acute administration of endocannabinoid receptor CB1 ligand ∆-9-tetrahydrocannabinol (THC) on intracellular signalling in the brain and retrieval from two different memory systems in the zebrafish (Danio rerio). First, fish were treated with THC and changes in the phosphorylation level of mitogen-activated protein (MAP) kinases Akt and Erk in the brain were determined 1 h after drug treatment. Next, animals of a second group learned in a two-alternative choice paradigm to discriminate between two colours, whereas a third group solved a spatial cognition task in an open-field maze by use of an ego-allocentric strategy. After memory acquisition and consolidation, animals were pharmacologically treated using the treatment regime as in the first group and then tested again for memory retrieval. We found an enhanced Erk but not Akt phosphorylation suggesting that THC treatment specifically activated Erk signalling in the zebrafish telencephalon. While CB1 agonist THC did not affect behavioural performance of animals in the colour discrimination paradigm, spatial memory was significantly impaired. The effect of THC on spatial learning is probably specific, since neither motor activity nor anxiety-related behaviour was influenced by the drug treatment. That indicates a striking influence of the endocannabinoid system (ECS) on spatial cognition in zebrafish. The results are very coincident with reports on mammals, demonstrating that the ECS is functional highly conserved during vertebrate evolution. We further conclude that the zebrafish provides a promising model organism for ongoing research on the ECS.

  20. Analysis of a Gene Regulatory Cascade Mediating Circadian Rhythm in Zebrafish

    Science.gov (United States)

    Wang, Haifang; Du, Jiulin; Yan, Jun

    2013-01-01

    In the study of circadian rhythms, it has been a puzzle how a limited number of circadian clock genes can control diverse aspects of physiology. Here we investigate circadian gene expression genome-wide using larval zebrafish as a model system. We made use of a spatial gene expression atlas to investigate the expression of circadian genes in various tissues and cell types. Comparison of genome-wide circadian gene expression data between zebrafish and mouse revealed a nearly anti-phase relationship and allowed us to detect novel evolutionarily conserved circadian genes in vertebrates. We identified three groups of zebrafish genes with distinct responses to light entrainment: fast light-induced genes, slow light-induced genes, and dark-induced genes. Our computational analysis of the circadian gene regulatory network revealed several transcription factors (TFs) involved in diverse aspects of circadian physiology through transcriptional cascade. Of these, microphthalmia-associated transcription factor a (mitfa), a dark-induced TF, mediates a circadian rhythm of melanin synthesis, which may be involved in zebrafish's adaptation to daily light cycling. Our study describes a systematic method to discover previously unidentified TFs involved in circadian physiology in complex organisms. PMID:23468616

  1. High-Throughput Light Sheet Microscopy for the Automated Live Imaging of Larval Zebrafish

    Science.gov (United States)

    Baker, Ryan; Logan, Savannah; Dudley, Christopher; Parthasarathy, Raghuveer

    The zebrafish is a model organism with a variety of useful properties; it is small and optically transparent, it reproduces quickly, it is a vertebrate, and there are a large variety of transgenic animals available. Because of these properties, the zebrafish is well suited to study using a variety of optical technologies including light sheet fluorescence microscopy (LSFM), which provides high-resolution three-dimensional imaging over large fields of view. Research progress, however, is often not limited by optical techniques but instead by the number of samples one can examine over the course of an experiment, which in the case of light sheet imaging has so far been severely limited. Here we present an integrated fluidic circuit and microscope which provides rapid, automated imaging of zebrafish using several imaging modes, including LSFM, Hyperspectral Imaging, and Differential Interference Contrast Microscopy. Using this system, we show that we can increase our imaging throughput by a factor of 10 compared to previous techniques. We also show preliminary results visualizing zebrafish immune response, which is sensitive to gut microbiota composition, and which shows a strong variability between individuals that highlights the utility of high throughput imaging. National Science Foundation, Award No. DBI-1427957.

  2. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    Directory of Open Access Journals (Sweden)

    Nakkrasae La-Iad

    2008-05-01

    Full Text Available Abstract Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7 is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network.

  3. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-07-01

    Tuberous sclerosis complex (TSC is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1 kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors.

  4. Culturable gut microbiota diversity in zebrafish.

    Science.gov (United States)

    Cantas, Leon; Sørby, Jan Roger Torp; Aleström, Peter; Sørum, Henning

    2012-03-01

    The zebrafish (Danio rerio) is an increasingly used laboratory animal model in basic biology and biomedicine, novel drug development, and toxicology. The wide use has increased the demand for optimized husbandry protocols to ensure animal health care and welfare. The knowledge about the correlation between culturable zebrafish intestinal microbiota and health in relation to environmental factors and management procedures is very limited. A semi-quantitative level of growth of individual types of bacteria was determined and associated with sampling points. A total of 72 TAB line zebrafish from four laboratories (Labs A-D) in the Zebrafish Network Norway were used. Diagnostic was based on traditional bacterial culture methods and biochemical characterization using commercial kits, followed by 16S rDNA gene sequencing from pure subcultures. Also selected Gram-negative isolates were analyzed for antibiotic susceptibility to 8 different antibiotics. A total of 13 morphologically different bacterial species were the most prevalent: Aeromonas hydrophila, Aeromonas sobria, Vibrio parahaemolyticus, Photobacterium damselae, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas luteola, Comamonas testosteroni, Ochrobactrum anthropi, Staphylococcus cohnii, Staphylococcus epidermidis, Staphylococcus capitis, and Staphylococcus warneri. Only Lab B had significantly higher levels of total bacterial growth (OR=2.03), whereas numbers from Lab C (OR=1.01) and Lab D (OR=1.12) were found to be similar to the baseline Lab A. Sexually immature individuals had a significantly higher level of harvested total bacterial growth than mature fish (OR=0.82), no statistically significant differences were found between male and female fish (OR=1.01), and the posterior intestinal segment demonstrated a higher degree of culturable bacteria than the anterior segment (OR=4.1). Multiple antibiotic (>3) resistance was observed in 17% of the strains. We propose that a rapid conventional

  5. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis.

    Science.gov (United States)

    Chen, Yuming; Hu, Xiangang; Sun, Jing; Zhou, Qixing

    2016-01-01

    Graphene oxide (GO) has shown great potential for biological, medical, energy and electronic applications. As a consequence of these diverse applications, GO release into the ecosystem is inevitable; however, the corresponding risks are largely unknown, particularly with respect to the critical period of embryogenesis. This study revealed that GO adhered to and enveloped the chorion of zebrafish embryos mainly via hydroxyl group interactions, blocked the pore canals of the chorionic membrane, and caused marked hypoxia and hatching delay. Furthermore, GO spontaneously penetrated the chorion, entered the embryo via endocytosis, damaged the mitochondria and primarily translocated to the eye, heart and yolk sac regions, which are involved in the circulatory system of zebrafish. In these organs, GO induced excessive generation of reactive oxygen species and increased oxidative stress, DNA damage and apoptosis. Graphene oxide also induced developmental malformation of the eye, cardiac/yolk sac edema, tail flexure and heart rate reduction. In contrast to the common dose-effect relationships of nanoparticles, the adverse effects of GO on heart rate and tail/spinal cord flexure increased and then decreased as the GO concentration increased. These findings emphasize the specific adverse effects of GO on embryogenesis and highlight the potential ecological and health risks of GO.

  6. Effects of uranium on the metabolism of zebrafish, Danio rerio

    International Nuclear Information System (INIS)

    Augustine, Starrlight; Gagnaire, Béatrice; Adam-Guillermin, Christelle; Kooijman, Sebastiaan A.L.M.

    2012-01-01

    The increasing demand for nuclear energy results in heightened levels of uranium (U) in aquatic systems which present a potential health hazard to resident organisms. The aim of this study was to mechanistically assess how chronic exposure to environmentally relevant concentrations of U perturbs the complex interplay between feeding, growth, maintenance, maturation and reproduction throughout the life-cycle of an individual. To this end we analysed literature-based and original zebrafish toxicity data within a same mass and energy balancing conceptual framework. U was found to increase somatic maintenance leading to inhibition of spawning as well as increase hazard rate and costs for growth during the early life stages. The fish's initial conditions and elimination through reproduction greatly affected toxico-kinetics and effects. We demonstrate that growth and reproduction should be measured on specific individuals since mean values were hardly interpretable. The mean food level differed between experiments, conditions and individuals. This last ‘detail’ contributed substantially to the observed variability by its combined effect on metabolism, toxic effects and toxico-kinetics. The significance of this work is that we address exactly how these issues are related and derive conclusions which are independent of experimental protocol and coherent with a very large body of literature on zebrafish eco-physiology.

  7. Transformation of tributyltin in zebrafish eleutheroembryos (Danio rerio).

    Science.gov (United States)

    Borges, Aline Rocha; López-Serrano Oliver, Ana; Gallego-Gallegos, Mercedes; Muñoz-Olivas, Riansares; Rodrigues Vale, Maria Goreti; Cámara, Carmen

    2014-12-01

    Organotin compounds are highly versatile group of organometallic chemicals used in industrial and agricultural applications. Their endocrine-disrupting effects are well known and their extensive uses as biocide materials, e.g., in antifouling paints, for many years have led to serious environmental problems. So far, attention has mainly been given to tributyltin pollution in water, sediments, and marine organisms because of its highly toxic effects and high accumulation levels at very low concentrations. In this study, we will focus on the conversion of tributyltin after it is absorbed by zebrafish eleutheroembryos, presented here as an alternative model to adult fish for describing bioconcentration. A simplified analytical extraction procedure based on the use of an assisted ultrasonic probe and derivatization by ethylation, followed by gas chromatography with a flame photometric detector (GC-FPD) is proposed. This classical methodology for organotin determination has been validated by inductively coupled plasma mass spectrometry (ICP-MS) and Zeeman graphite furnace atomic absorption spectrometry (ZGF-AAS) in terms of total tin content. The speciation analysis results show that zebrafish eleutheroembryos absorb high amounts of tributyltin and convert it into monobutyltin and likely in inorganic tin.

  8. Effects of uranium on the metabolism of zebrafish, Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, Starrlight, E-mail: starr-light.augustine@irsn.fr [Laboratory of Radionuclide Ecotoxicology, PRP-ENV/SERIS/LECO, Institute of Radioprotection and Nuclear Safety (IRSN), Caradache, Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France); Gagnaire, Beatrice, E-mail: beatrice.gagnaire@irsn.fr [Laboratory of Radionuclide Ecotoxicology, PRP-ENV/SERIS/LECO, Institute of Radioprotection and Nuclear Safety (IRSN), Caradache, Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.fr [Laboratory of Radionuclide Ecotoxicology, PRP-ENV/SERIS/LECO, Institute of Radioprotection and Nuclear Safety (IRSN), Caradache, Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France); Kooijman, Sebastiaan A.L.M., E-mail: bas.kooijman@vu.nl [Department of Theoretical Biology, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam (Netherlands)

    2012-08-15

    The increasing demand for nuclear energy results in heightened levels of uranium (U) in aquatic systems which present a potential health hazard to resident organisms. The aim of this study was to mechanistically assess how chronic exposure to environmentally relevant concentrations of U perturbs the complex interplay between feeding, growth, maintenance, maturation and reproduction throughout the life-cycle of an individual. To this end we analysed literature-based and original zebrafish toxicity data within a same mass and energy balancing conceptual framework. U was found to increase somatic maintenance leading to inhibition of spawning as well as increase hazard rate and costs for growth during the early life stages. The fish's initial conditions and elimination through reproduction greatly affected toxico-kinetics and effects. We demonstrate that growth and reproduction should be measured on specific individuals since mean values were hardly interpretable. The mean food level differed between experiments, conditions and individuals. This last 'detail' contributed substantially to the observed variability by its combined effect on metabolism, toxic effects and toxico-kinetics. The significance of this work is that we address exactly how these issues are related and derive conclusions which are independent of experimental protocol and coherent with a very large body of literature on zebrafish eco-physiology.

  9. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  10. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons.

    Science.gov (United States)

    Weber, Thomas; Namikawa, Kazuhiko; Winter, Barbara; Müller-Brown, Karina; Kühn, Ralf; Wurst, Wolfgang; Köster, Reinhard W

    2016-11-15

    The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTAC TM ) further expands the repertoire of genetic tools for conditional interrogation of cellular functions. © 2016. Published by The Company of Biologists Ltd.

  11. Hydroxylated PBDEs induce developmental arrest in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu; Bruce, Erica D., E-mail: Erica_bruce@baylor.edu

    2012-07-01

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.

  12. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio).

    Science.gov (United States)

    Teng, Miaomiao; Zhu, Wentao; Wang, Dezhen; Qi, Suzhen; Wang, Yao; Yan, Jin; Dong, Kai; Zheng, Mingqi; Wang, Chengju

    2018-01-01

    Difenoconazole is widely used to inhibit the growth of fungi, but its residue in the water environment may threaten ecosystem and human health. Here, 1 H nuclear magnetic resonance (NMR) and LC-MS/MS based metabolomics and transcriptomics approaches were used to assess the response of zebrafish to difenoconazole exposure. Early life stages of zebrafish were exposed to difenoconazole at environmentally relevant concentrations for 168h. Their comparison with the control group suggested an adverse development and disturbance of steroid hormones and VTG. KEGG pathway analysis identified five biological processes on the basis of differentially expressed genes (DEGs), as well as altered metabolites and amino acids in zebrafish following difenoconazole exposure. These affected processes included energy metabolism, amino acids metabolism, lipid metabolism, nucleotide metabolism, and an immune-related pathway. Collectively, these results bring us closer to an incremental understanding of the toxic effects of difenoconazole on zebrafish in its early development, and lend support to the continued use of the early life stages of zebrafish as a classical model to evaluate underlying environmental risks of xenobiotics in aquatic organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos.

    Science.gov (United States)

    Zhu, Feng; Skommer, Joanna; Huang, Yushi; Akagi, Jin; Adams, Dany; Levin, Michael; Hall, Chris J; Crosier, Philip S; Wlodkowic, Donald

    2014-11-01

    Biotests performed on small vertebrate model organisms provide significant investigative advantages as compared with bioassays that employ cell lines, isolated primary cells, or tissue samples. The main advantage offered by whole-organism approaches is that the effects under study occur in the context of intact physiological milieu, with all its intercellular and multisystem interactions. The gap between the high-throughput cell-based in vitro assays and low-throughput, disproportionally expensive and ethically controversial mammal in vivo tests can be closed by small model organisms such as zebrafish or Xenopus. The optical transparency of their tissues, the ease of genetic manipulation and straightforward husbandry, explain the growing popularity of these model organisms. Nevertheless, despite the potential for miniaturization, automation and subsequent increase in throughput of experimental setups, the manipulation, dispensing and analysis of living fish and frog embryos remain labor-intensive. Recently, a new generation of miniaturized chip-based devices have been developed for zebrafish and Xenopus embryo on-chip culture and experimentation. In this work, we review the critical developments in the field of Lab-on-a-Chip devices designed to alleviate the limits of traditional platforms for studies on zebrafish and clawed frog embryo and larvae. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  14. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol

    DEFF Research Database (Denmark)

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne

    2014-01-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen...... to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarioswere compared: continuous exposure to environmentally relevant concentrations (0.1–10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water....... The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b)mRNA expression...

  15. Zebrafish swimming in the flow: a particle image velocimetry study

    Directory of Open Access Journals (Sweden)

    Violet Mwaffo

    2017-11-01

    Full Text Available Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.

  16. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.

    Science.gov (United States)

    Yin, L; Maddison, L A; Chen, W

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a powerful tool for genome editing in numerous organisms. However, the system is typically used for gene editing throughout the entire organism. Tissue and temporal specific mutagenesis is often desirable to determine gene function in a specific stage or tissue and to bypass undesired consequences of global mutations. We have developed the CRISPR/Cas system for conditional mutagenesis in transgenic zebrafish using tissue-specific and/or inducible expression of Cas9 and U6-driven expression of sgRNA. To allow mutagenesis of multiple targets, we have isolated four distinct U6 promoters and designed Golden Gate vectors to easily assemble transgenes with multiple sgRNAs. We provide experimental details on the reagents and applications for multiplex conditional mutagenesis in zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Predicting adult fish acute lethality with the zebrafish embryo: relevance of test duration, endpoints, compound properties, and exposure concentration analysis

    NARCIS (Netherlands)

    Knöbel, M.; Busser, F.J.M.; Rico-Rico, A.; Kramer, N.I.|info:eu-repo/dai/nl/304836125; Hermens, J.L.M.|info:eu-repo/dai/nl/069681384; Hafner, C.; Tanneberger, K.; Schirmer, K.; Scholz, S.

    2012-01-01

    The zebrafish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, which is required by various regulations for environmental risk assessment of chemicals. We investigated the reliability of the embryo test by probing organic industrial chemicals with a wide

  18. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    International Nuclear Information System (INIS)

    Lemaire, Benjamin; Kubota, Akira; O'Meara, Conor M.; Lamb, David C.; Tanguay, Robert L.; Goldstone, Jared V.; Stegeman, John J.

    2016-01-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. - Highlights: • The “orphan” CYP20A1 was cloned from zebrafish and its sequence analyzed. • Knockdown of CYP20A1 reduced an optomotor response and elicited bursts of activity. • Effects of

  19. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, Benjamin; Kubota, Akira; O' Meara, Conor M. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Lamb, David C. [Institute of Life Science, Medical School, Swansea University, Swansea (United Kingdom); Tanguay, Robert L. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR (United States); Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States)

    2016-04-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. - Highlights: • The “orphan” CYP20A1 was cloned from zebrafish and its sequence analyzed. • Knockdown of CYP20A1 reduced an optomotor response and elicited bursts of activity. • Effects of

  20. Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment

    Science.gov (United States)

    2013-01-01

    Background Stress and anxiety-related behaviors are seen in many organisms. Studies have shown that in humans and other animals, treatment with selective serotonin reuptake inhibitors (e.g. fluoxetine) can reduce anxiety and anxiety-related behaviors. The efficacies and side effects, however, can vary between individuals. Fluoxetine can modulate anxiety in a stereospecific manner or with equal efficacy regardless of stereoisomer depending on the mechanism of action (e.g. serotonergic or GABAergic effects). Zebrafish are an emerging and valuable translational model for understanding human health related issues such as anxiety. In this study we present data showing the behavioral and whole brain transcriptome changes with fluoxetine treatment in wild-derived zebrafish and suggest additional molecular mechanisms of this widely-prescribed drug. Results We used automated behavioral analyses to assess the effects of racemic and stereoisomeric fluoxetine on male wild-derived zebrafish. Both racemic and the individual isomers of fluoxetine reduced anxiety-related behaviors relative to controls and we did not observe stereospecific fluoxetine effects. Using RNA-sequencing of the whole brain, we identified 411 genes showing differential expression with racemic fluoxetine treatment. Several neuropeptides (neuropeptide Y, isotocin, urocortin 3, prolactin) showed consistent expression patterns with the alleviation of stress and anxiety when anxiety-related behavior was reduced with fluoxetine treatment. With gene ontology and KEGG pathway analyses, we identified lipid and amino acid metabolic processes, and steroid biosynthesis among other terms to be over-enriched. Conclusion Our results demonstrate that fluoxetine reduces anxiety-related behaviors in wild-derived zebrafish and alters their neurogenomic state. We identify two biological processes, lipid and amino acid metabolic synthesis that characterize differences in the fluoxetine treated fish. Fluoxetine may be acting on

  1. Prolonged hypoxia increases survival even in Zebrafish (Danio rerio showing cardiac arrhythmia.

    Directory of Open Access Journals (Sweden)

    Renate Kopp

    Full Text Available Tolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia. Breakdance mutants (bre are characterized by chronically reduced cardiac output. Despite an about 50% heart rate reduction, they become adults, but survival rate significantly drops to 40%. Normoxic bre animals demonstrate increased hypoxia inducible factor 1 a (Hif-1α expression, which indicates an activated hypoxic signaling pathway. Consequently, cardiovascular acclimation, like cardiac hypertrophy and increased erythrocyte concentration, occurs. Thus, it was hypothesized, that under hypoxic conditions survival might be even more reduced. When bre mutants were exposed to hypoxic conditions, they surprisingly showed higher survival rates than under normoxic conditions and even reached wildtype values. In hypoxic wildtype zebrafish, survival yet exceeded normoxic control values. To specify physiological acclimation, cardiovascular and metabolic parameters were measured before hypoxia started (3 dpf, when the first differences in survival rate occurred (7 dpf and when survival rate plateaued (15 dpf. Hypoxic animals expectedly demonstrated Hif-1α accumulation and consequently enhanced convective oxygen carrying capacity. Moreover, bre animals showed a significantly enhanced heart rate under hypoxic conditions, which reached normoxic wildtype values. This improvement in convective oxygen transport ensured a sufficient oxygen and nutrient supply and was also reflected in the significantly higher mitochondrial activity. The highly optimized energy metabolism observed in hypoxic zebrafish larvae might be decisive for periods of higher energy demand due to organ development, growth and increased activity. However, hypoxia increased survival only during a

  2. Whole plant based treatment of hypercholesterolemia with Crataegus laevigata in a zebrafish model

    Directory of Open Access Journals (Sweden)

    Littleton Robert M

    2012-07-01

    Full Text Available Abstract Background Consumers are increasingly turning to plant-based complementary and alternative medicines to treat hypercholesterolemia. Many of these treatments are untested and their efficacy is unknown. This multitude of potential remedies necessitates a model system amenable to testing large numbers of organisms that maintains similarity to humans in both mode of drug administration and overall physiology. Here we develop the larval zebrafish (4–30 days post fertilization as a vertebrate model of dietary plant-based treatment of hypercholesterolemia and test the effects of Crataegus laevigata in this model. Methods Larval zebrafish were fed high cholesterol diets infused with fluorescent sterols and phytomedicines. Plants were ground with mortar and pestle into a fine powder before addition to food. Fluorescent sterols were utilized to optically quantify relative difference in intravascular cholesterol levels between groups of fish. We utilized the Zeiss 7-Live Duo high-speed confocal platform in order to both quantify intravascular sterol fluorescence and to capture video of the heart beat for determination of cardiac output. Results In this investigation we developed and utilized a larval zebrafish model to investigate dietary plant-based intervention of the pathophysiology of hypercholesterolemia. We found BODIPY-cholesterol effectively labels diet-introduced intravascular cholesterol levels (P t-test. We also established that zebrafish cardiac output declines as cholesterol dose increases (difference between 0.1% and 8% (w/w high cholesterol diet-treated cardiac output significant at P  Conclusions The results of this study demonstrate that the larval zebrafish has the potential to become a powerful model to test plant based dietary intervention of hypercholesterolemia. Using this model we have shown that hawthorn leaves and flowers have the potential to affect cardiac output as well as intravascular cholesterol levels

  3. Genome-wide survey and developmental expression mapping of zebrafish SET domain-containing genes.

    Directory of Open Access Journals (Sweden)

    Xiao-Jian Sun

    Full Text Available SET domain-containing proteins represent an evolutionarily conserved family of epigenetic regulators, which are responsible for most histone lysine methylation. Since some of these genes have been revealed to be essential for embryonic development, we propose that the zebrafish, a vertebrate model organism possessing many advantages for developmental studies, can be utilized to study the biological functions of these genes and the related epigenetic mechanisms during early development. To this end, we have performed a genome-wide survey of zebrafish SET domain genes. 58 genes total have been identified. Although gene duplication events give rise to several lineage-specific paralogs, clear reciprocal orthologous relationship reveals high conservation between zebrafish and human SET domain genes. These data were further subject to an evolutionary analysis ranging from yeast to human, leading to the identification of putative clusters of orthologous groups (COGs of this gene family. By means of whole-mount mRNA in situ hybridization strategy, we have also carried out a developmental expression mapping of these genes. A group of maternal SET domain genes, which are implicated in the programming of histone modification states in early development, have been identified and predicted to be responsible for all known sites of SET domain-mediated histone methylation. Furthermore, some genes show specific expression patterns in certain tissues at certain stages, suggesting the involvement of epigenetic mechanisms in the development of these systems. These results provide a global view of zebrafish SET domain histone methyltransferases in evolutionary and developmental dimensions and pave the way for using zebrafish to systematically study the roles of these genes during development.

  4. Zebrafish in Toxicology and Environmental Health.

    Science.gov (United States)

    Bambino, Kathryn; Chu, Jaime

    2017-01-01

    As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. © 2017 Elsevier Inc. All rights reserved.

  5. Visualizing infections and immune mechanisms in zebrafish

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Korbut, Rozalia; Mehrdana, Foojan

    , immunological reactions during e.g. transplant rejections or the spread and pathogenicity of pathogens. We have, in our laboratory, used the zebrafish as a model for aquacultured fish species and their pathogens. We have 1) visualized antigen uptake in vivo following a bath in a soup containing fluorescent...

  6. Highly Efficient ENU Mutagenesis in Zebrafish.

    NARCIS (Netherlands)

    de Bruijn, E.; Cuppen, E.; Feitsma, H.

    2009-01-01

    ENU (N-ethyl-N-nitrosourea) mutagenesis is a widely accepted and proven method to introduce random point mutations in the genome. Because there are no targeted knockout strategies available for zebrafish so far, random mutagenesis is currently the preferred method in both forward and reverse genetic

  7. Molecular genetics of pituitary development in zebrafish.

    Science.gov (United States)

    Pogoda, Hans-Martin; Hammerschmidt, Matthias

    2007-08-01

    The pituitary gland of vertebrates consists of two major parts, the neurohypophysis (NH) and the adenohypophysis (AH). As a central part of the hypothalamo-hypophyseal system (HHS), it constitutes a functional link between the nervous and the endocrine system to regulate basic body functions, such as growth, metabolism and reproduction. The development of the AH has been intensively studied in mouse, serving as a model for organogenesis and differential cell specification. However, given that the AH is a relatively recent evolutionary advance of the chordate phylum, it is also interesting to understand its development in lower chordate systems. In recent years, the zebrafish has emerged as a powerful lower vertebrate system for developmental studies, being amenable for large-scale genetic approaches, embryological manipulations, and in vivo imaging. Here, we present an overview of current knowledge of the mechanisms and genetic control of pituitary formation during zebrafish development. First, we describe the components of the zebrafish HHS, and the different pituitary cell types and hormones, followed by a description of the different steps of normal pituitary development. The central part of the review deals with the genes found to be essential for zebrafish AH development, accompanied by a description of the corresponding mutant phenotypes. Finally, we discuss future directions, with particular focus on evolutionary aspects, and some novel functional aspects with growing medical and social relevance.

  8. A zebrafish model of inflammatory lymphangiogenesis

    Directory of Open Access Journals (Sweden)

    Kazuhide S. Okuda

    2015-10-01

    Full Text Available Inflammatory bowel disease (IBD is a disabling chronic inflammatory disease of the gastrointestinal tract. IBD patients have increased intestinal lymphatic vessel density and recent studies have shown that this may contribute to the resolution of IBD. However, the molecular mechanisms involved in IBD-associated lymphangiogenesis are still unclear. In this study, we established a novel inflammatory lymphangiogenesis model in zebrafish larvae involving colitogenic challenge stimulated by exposure to 2,4,6-trinitrobenzenesulfonic acid (TNBS or dextran sodium sulphate (DSS. Treatment with either TNBS or DSS resulted in vascular endothelial growth factor receptor (Vegfr-dependent lymphangiogenesis in the zebrafish intestine. Reduction of intestinal inflammation by the administration of the IBD therapeutic, 5-aminosalicylic acid, reduced intestinal lymphatic expansion. Zebrafish macrophages express vascular growth factors vegfaa, vegfc and vegfd and chemical ablation of these cells inhibits intestinal lymphatic expansion, suggesting that the recruitment of macrophages to the intestine upon colitogenic challenge is required for intestinal inflammatory lymphangiogenesis. Importantly, this study highlights the potential of zebrafish as an inflammatory lymphangiogenesis model that can be used to investigate the role and mechanism of lymphangiogenesis in inflammatory diseases such as IBD.

  9. Axonal regeneration in zebrafish spinal cord

    Science.gov (United States)

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  10. Patterns of free calcium in zebrafish embryos

    NARCIS (Netherlands)

    Creton, R; Speksnijder, JE; Jaffe, LF

    Direct knowledge of Ca2+ patterns in vertebrate development is largely restricted to early stages, in which they control fertilization, ooplasmic segregation and cleavage. To explore new roles of Ca2+ in vertebrate development, we injected the Ca2+ indicator aequorin into zebrafish eggs and imaged

  11. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.

    2008-01-01

    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  12. Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin

    Energy Technology Data Exchange (ETDEWEB)

    Ouadah-Boussouf, Nafia; Babin, Patrick J., E-mail: p.babin@gpp.u-bordeaux1.fr

    2016-03-01

    One proposed contributing factor to the rise in overweight and obesity is exposure to endocrine disrupting chemicals. Tributyltin chloride (TBT), an organotin, induces adipogenesis in cell culture models and may increases adipose mass in vivo in vertebrate model organisms. It has been hypothesized that TBT acts via the peroxisome proliferator activated receptor (PPAR)γ-dependent pathway. However, the mechanisms involved in the effects of TBT exposure on in vivo adipose tissue metabolism remain unexplored. Semitransparent zebrafish larvae, with their well-developed white adipose tissue, offer a unique opportunity for studying the effects of toxicant chemicals and pharmaceuticals on adipocyte biology and whole-organism adiposity in a vertebrate model. Within hours, zebrafish larvae, treated at environmentally-relevant nanomolar concentrations of TBT, exhibited a remarkable increase in adiposity linked to adipocyte hypertrophy. Under the experimental conditions used, we also demonstrated that zebrafish larvae adipose tissue proved to be highly responsive to selected human nuclear receptor agonists and antagonists. Retinoid X receptor (RXR) homodimers and RXR/liver X receptor heterodimers were suggested to be in vivo effectors of the obesogenic effect of TBT on zebrafish white adipose tissue. RXR/PPARγ heterodimers may be recruited to modulate adiposity in zebrafish but were not a necessary requirement for the short term in vivo TBT obesogenic effect. Together, the present results suggest that TBT may induce the promotion of triacylglycerol storage in adipocytes via RXR-dependent pathways without necessary using PPAR isoforms. - Highlights: • The environmental contaminant tributyltin (TBT) may promote obesity development. • TBT may induce adipocyte hypertrophy through a PPARγ independent mechanism. • RXR/RXR and RXR/LXR dimers are potential in vivo effectors of TBT in zebrafish.

  13. Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin

    International Nuclear Information System (INIS)

    Ouadah-Boussouf, Nafia; Babin, Patrick J.

    2016-01-01

    One proposed contributing factor to the rise in overweight and obesity is exposure to endocrine disrupting chemicals. Tributyltin chloride (TBT), an organotin, induces adipogenesis in cell culture models and may increases adipose mass in vivo in vertebrate model organisms. It has been hypothesized that TBT acts via the peroxisome proliferator activated receptor (PPAR)γ-dependent pathway. However, the mechanisms involved in the effects of TBT exposure on in vivo adipose tissue metabolism remain unexplored. Semitransparent zebrafish larvae, with their well-developed white adipose tissue, offer a unique opportunity for studying the effects of toxicant chemicals and pharmaceuticals on adipocyte biology and whole-organism adiposity in a vertebrate model. Within hours, zebrafish larvae, treated at environmentally-relevant nanomolar concentrations of TBT, exhibited a remarkable increase in adiposity linked to adipocyte hypertrophy. Under the experimental conditions used, we also demonstrated that zebrafish larvae adipose tissue proved to be highly responsive to selected human nuclear receptor agonists and antagonists. Retinoid X receptor (RXR) homodimers and RXR/liver X receptor heterodimers were suggested to be in vivo effectors of the obesogenic effect of TBT on zebrafish white adipose tissue. RXR/PPARγ heterodimers may be recruited to modulate adiposity in zebrafish but were not a necessary requirement for the short term in vivo TBT obesogenic effect. Together, the present results suggest that TBT may induce the promotion of triacylglycerol storage in adipocytes via RXR-dependent pathways without necessary using PPAR isoforms. - Highlights: • The environmental contaminant tributyltin (TBT) may promote obesity development. • TBT may induce adipocyte hypertrophy through a PPARγ independent mechanism. • RXR/RXR and RXR/LXR dimers are potential in vivo effectors of TBT in zebrafish.

  14. The paracrine effect of exogenous growth hormone alleviates dysmorphogenesis caused by tbx5 deficiency in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Tsai Tzu-Chun

    2012-07-01

    Full Text Available Abstract Background Dysmorphogenesis and multiple organ defects are well known in zebrafish (Danio rerio embryos with T-box transcription factor 5 (tbx5 deficiencies, mimicking human Holt-Oram syndrome. Methods Using an oligonucleotide-based microarray analysis to study the expression of special genes in tbx5 morphants, we demonstrated that GH and some GH-related genes were markedly downregulated. Zebrafish embryos microinjected with tbx5-morpholino (MO antisense RNA and mismatched antisense RNA in the 1-cell stage served as controls, while zebrafish embryos co-injected with exogenous growth hormone (GH concomitant with tbx5-MO comprised the treatment group. Results The attenuating effects of GH in tbx5-MO knockdown embryos were quantified and observed at 24, 30, 48, 72, and 96 h post-fertilization. Though the understanding of mechanisms involving GH in the tbx5 functioning complex is limited, exogenous GH supplied to tbx5 knockdown zebrafish embryos is able to enhance the expression of downstream mediators in the GH and insulin-like growth factor (IGF-1 pathway, including igf1, ghra, and ghrb, and signal transductors (erk1, akt2, and eventually to correct dysmorphogenesis in various organs including the heart and pectoral fins. Supplementary GH also reduced apoptosis as determined by a TUNEL assay and decreased the expression of apoptosis-related genes and proteins (bcl2 and bad according to semiquantitative reverse-transcription polymerase chain reaction and immunohistochemical analysis, respectively, as well as improving cell cycle-related genes (p27 and cdk2 and cardiomyogenetic genes (amhc, vmhc, and cmlc2. Conclusions Based on our results, tbx5 knockdown causes a pseudo GH deficiency in zebrafish during early embryonic stages, and supplementation of exogenous GH can partially restore dysmorphogenesis, apoptosis, cell growth inhibition, and abnormal cardiomyogenesis in tbx5 knockdown zebrafish in a paracrine manner.

  15. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio Using a GFP-Tagged Yersinia ruckeri.

    Directory of Open Access Journals (Sweden)

    Rozalia Korbut

    Full Text Available Immersion-vaccines (bacterins are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr. During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC. In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species.

  16. Monitoring Toxic Ionic Liquids in Zebrafish ( Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI)

    Science.gov (United States)

    Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.

    2017-06-01

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish ( Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. [Figure not available: see fulltext.

  17. Defects of the Glycinergic Synapse in Zebrafish

    Science.gov (United States)

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish. PMID:27445686

  18. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth

    International Nuclear Information System (INIS)

    Reiter, R.J.; Anderson, L.E.; Buschbom, R.I.; Wilson, B.W.

    1988-02-01

    Rats exposed to 60-Hz electric fields of either 10, 65, or 130 kV/m from conception to 23 days of age exhibited reduced peak nighttime pineal melatonin contents compared to unexposed controls. As a group, the exposed rats also exhibited a phase delay, estimated at approximately 1.4 hours, in the occurrence of the nocturnal melatonin peak. No clear dose-response relationship was noticed over the range of electric field strengths used as treatments in these experiments. These are the first studies concerned with the effects of electric field exposure on the pineal melatonin rhythm in immature rats and the findings are generally consistent with those obtained using adult rats, where electric field exposure has been shown to abolish the nighttime rhythm in pineal melatonin concentrations. 15 refs., 1 fig., 1 tab

  19. Aryl hydrocarbon receptor 2 mediates the toxicity of Paclobutrazol on the digestive system of zebrafish embryos.

    Science.gov (United States)

    Wang, Wen-Der; Chen, Guan-Ting; Hsu, Hwei-Jan; Wu, Chang-Yi

    2015-02-01

    Paclobutrazol (PBZ), a trazole-containing fungicide and plant growth retardant, has been widely used for over 30 years to regulate plant growth and promote early fruit setting. Long-term usage of PBZ in agriculture and natural environments has resulted in residual PBZ in the soil and water. Chronic exposure to waterborne PBZ can cause various physiological effects in fish, including hepatic steatosis, antioxidant activity, and disruption of spermatogenesis. We have previously shown that PBZ also affects the rates of zebrafish embryonic survival and hatching, and causes developmental failure of the head skeleton and eyes; here, we further show that PBZ has embryonic toxic effects on digestive organs of zebrafish, and describe the underlying mechanisms. PBZ treatment of embryos resulted in dose-dependent morphological and functional abnormalities of the digestive organs. Real-time RT-PCR and in situ hybridization were used to show that PBZ strongly induces cyp1a1 expression in the digestive system, and slightly induces ahr2 expression in zebrafish embryos. Knockdown of ahr2 with morpholino oligonucleotides prevents PBZ toxicity. Thus, the toxic effect of PBZ on digestive organs is mediated by AhR2, as was previously reported for retene and TCDD. These findings have implications for understanding the potential toxicity of PBZ during embryogenesis, and thus the potential impact of fungicides on public health and the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Detection of vitellogenin incorporation into zebrafish oocytes by FITC fluorescence

    Directory of Open Access Journals (Sweden)

    Yokoi Hayato

    2011-04-01

    Full Text Available Abstract Background Large volumes of lymph can be collected from the eye-sacs of bubble-eye goldfish. We attempted to induce vitellogenin (Vtg in the eye-sac lymph of bubble-eye goldfish and develop a method for visualizing Vtg incorporation by zebrafish oocytes using FITC-labeling. Methods Estrogen efficiently induced Vtg in the eye-sac lymph of goldfish. After FITC-labeled Vtg was prepared, it was injected into mature female zebrafish. Results Incorporation of FITC-labeled Vtg by zebrafish oocytes was detected in in vivo and in vitro experiments. The embryos obtained from zebrafish females injected with FITC-labeled Vtg emitted FITC fluorescence from the yolk sac and developed normally. Conclusion This method for achieving Vtg incorporation by zebrafish oocytes could be useful in experiments related to the development and endocrinology of zebrafish oocytes.

  1. Biosecurity and Health Monitoring at the Zebrafish International Resource Center.

    Science.gov (United States)

    Murray, Katrina N; Varga, Zoltán M; Kent, Michael L

    2016-07-01

    The Zebrafish International Resource Center (ZIRC) is a repository and distribution center for mutant, transgenic, and wild-type zebrafish. In recent years annual imports of new zebrafish lines to ZIRC have increased tremendously. In addition, after 15 years of research, we have identified some of the most virulent pathogens affecting zebrafish that should be avoided in large production facilities, such as ZIRC. Therefore, while importing a high volume of new lines we prioritize safeguarding the health of our in-house fish colony. Here, we describe the biosecurity and health-monitoring program implemented at ZIRC. This strategy was designed to prevent introduction of new zebrafish pathogens, minimize pathogens already present in the facility, and ensure a healthy zebrafish colony for in-house uses and shipment to customers.

  2. Laser capture microdissection of gonads from juvenile zebrafish

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John; Morthorst, Jane Ebsen

    2009-01-01

    was adjusted and optimised to isolate juvenile zebrafish gonads. Results: The juvenile zebrafish gonad is not morphologically distinguishable when using dehydrated cryosections on membrane slides and a specific staining method is necessary to identify the gonads. The protocol setup in this study allows......Background: Investigating gonadal gene expression is important in attempting to elucidate the molecular mechanism of sex determination and differentiation in the model species zebrafish. However, the small size of juvenile zebrafish and correspondingly their gonads complicates this type...... of investigation. Furthermore, the lack of a genetic sex marker in juvenile zebrafish prevents pooling gonads from several individuals. The aim of this study was to establish a method to isolate the gonads from individual juvenile zebrafish allowing future investigations of gonadal gene expression during sex...

  3. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available The effects of endocrine disrupting chemicals (EDCs on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio transgenic lines expressing the green fluorescent protein (GFP in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA, as well as the three drugs diclofenac, trichostatin A (TSA and valproic acid (VPA induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo.

  4. Significance of the Tentorial Alignment in Protecting the Occipital Lobe with the Poppen Approach for Tentorial or Pineal Area Meningiomas.

    Science.gov (United States)

    Li, Deling; Zhang, Haoyu; Jia, Wang; Zhang, Liwei; Zhang, Junting; Liu, Weiming; Ni, Ming; Jia, Guijun

    2017-12-01

    We aimed to identify the factors that can predict the risk of occipital lobe damage preoperatively when resecting tumors located at the tentorial or pineal regions with the occipital-transtentorial approach (Poppen approach). In 27 consecutive patients who underwent tumor resection with the Poppen approach for tentorial or pineal region meningiomas, the following morphologic parameters were assessed on a preoperative magnetic resonance imaging: (1) tentorial angle, (2) tentorial length, and (3) the shortest distance from the confluence of the sinus to the tumor. These parameters, together with tumor size, texture, and resection extent, were correlated with occipital lobe damage by using the one-way analysis of variance, χ 2 , or Fisher's exact tests. The mean value was 55.3° ± 5.6° (range, 45°-66°) for the tentorial angle, which was significantly associated with the occipital lobe damage grades (P = 0.008), but this was not the case for the tentorial length (P = 0.802) and the shortest distance from the confluence of the sinus to the tumor (P = 0.695). Interestingly, age was also strongly associated with occipital lobe damage risk (P = 0.020). The patients in the subgroup with no occipital damage (grade 4) were the youngest (aged 47.3 years), compared with other grades, with age of 58.0 years for grade 1, 54.3 years for grade 2, and 58.6 years for grade 3. These 2 parameters were also significant after multivariate analysis. No correlation was observed between either tumor nature or the extent of resection and damage grades. The risk of occipital lobe damage increases in the presence of a steep tentorial angle during the Poppen approach for tentorial or pineal area tumors. Awareness of such anatomic features preoperatively is important for minimizing operative complications. Copyright © 2017. Published by Elsevier Inc.

  5. Circadian Dynamics of the Cone-Rod Homeobox (CRX) Transcription Factor in the Rat Pineal Gland and Its Role in Regulation of Arylalkylamine N-Acetyltransferase (AANAT)

    DEFF Research Database (Denmark)

    Rohde, Kristian; Rovsing, Louise; Ho, Anthony K

    2014-01-01

    that intact levels of Crx mRNA are required to obtain high levels of Aanat expression, whereas overexpression of Crx induces Aanat transcription in vitro. This regulatory function of Crx is further supported by circadian analysis of Aanat in the pineal gland of the Crx-knockout mouse. Our data indicate...... that the rhythmic nature of pineal CRX protein may directly modulate the daily profile of Aanat expression by inducing nighttime expression of this enzyme, thus facilitating nocturnal melatonin synthesis in addition to its role in ensuring a correct tissue distribution of Aanat expression....

  6. Adrenergic control of swimbladder deflation in the zebrafish (Danio rerio).

    Science.gov (United States)

    Dumbarton, Tristan C; Stoyek, Matthew; Croll, Roger P; Smith, Frank M

    2010-07-15

    Many teleosts actively regulate buoyancy by adjusting gas volume in the swimbladder. In physostomous fishes such as the zebrafish, a connection is maintained between the swimbladder and the oesophagus via the pneumatic duct for the inflation and deflation of this organ. Here we investigated the role of adrenergic stimulation of swimbladder wall musculature in deflation of the swimbladder. Noradrenaline (NA), the sympathetic neurotransmitter (dosage 10(-6) to 10(-5) mol l(-1)), doubled the force of smooth muscle contraction in isolated tissue rings from the anterior chamber, caused a doubling of pressure in this chamber in situ, and evoked gas expulsion through the pneumatic duct, deflating the swimbladder to approximately 85% of the pre-NA volume. These effects were mediated by beta-adrenergic receptors, representing a novel role for these receptors in vertebrates. No effects of adrenergic stimulation were detected in the posterior chamber. In a detailed examination of the musculature and innervation of the swimbladder to determine the anatomical substrate for these functional results, we found that the anterior chamber contained an extensive ventral band of smooth muscle with fibres organized into putative motor units, richly innervated by tyrosine hydroxylase-positive axons. Additionally, a novel arrangement of folds in the lumenal connective tissue in the wall of the anterior chamber was described that may permit small changes in muscle length to cause large changes in effective wall distensibility and hence chamber volume. Taken together, these data strongly suggest that deflation of the zebrafish swimbladder occurs primarily by beta-adrenergically mediated contraction of smooth muscle in the anterior chamber and is under the control of the sympathetic limb of the autonomic nervous system.

  7. Bio-electrosprayed multicellular zebrafish embryos are viable and develop normally

    International Nuclear Information System (INIS)

    Clarke, Jonathan D W; Jayasinghe, Suwan N

    2008-01-01

    Bio-electrosprays are rapidly emerging as a viable protocol for directly engineering living cells. This communication reports the bio-electrospraying of multicellular organisms, namely zebrafish embryos. The results demonstrate that the bio-electrospray protocol fails to induce any embryological perturbations. In addition to analysing overall embryo morphology, we use transgenic embryos that express green fluorescent protein in specific brain neurons to determine that neuronal numbers and organization are completely normal. These results demonstrate that the bio-electrospraying protocol does not interfere with the complex gene regulation and cell movements required for the development of a multicellular organism. (communication)

  8. Enzymatic activity and gene expression changes in zebrafish embryos and larvae exposed to pesticides diazinon and diuron.

    Science.gov (United States)

    Velki, Mirna; Meyer-Alert, Henriette; Seiler, Thomas-Benjamin; Hollert, Henner

    2017-12-01

    The zebrafish as a test organism enables the investigation of effects on a wide range of biological levels from molecular level to the whole-organism level. The use of fish embryos represents an attractive model for studies aimed at understanding toxic mechanisms and the environmental risk assessment of chemicals. In the present study, a zebrafish (Danio rerio) in vivo model was employed in order to assess the effects of two commonly used pesticides, the insecticide diazinon and the herbicide diuron, on zebrafish early life stages. Since it was previously established that diazinon and diuron cause effects at the whole-organism level, this study assessed the suborganismic responses to exposure to these pesticides and the enzymatic responses (biochemical level) and the gene expression changes (molecular level) were analyzed. Different exposure scenarios were employed and the following endpoints measured: acetylcholinesterase (AChE), carboxylesterase (CES), ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT) and glutathione peroxidase (GPx) activities; and gene expressions of the corresponding genes: acetylcholinesterase (ache), carboxylesterase (ces2), cytochrome P450 (cyp1a), glutathione-S-transferase (gstp1), catalase (cat), glutathione peroxidase (gpx1a) and additionally glutathione reductase (gsr). Significant changes at both the biochemical and the molecular level were detected. In addition, different sensitivities of different developmental stages of zebrafish were determined and partial recovery of the enzyme activity 48h after the end of the exposure was observed. The observed disparity between gene expression changes and alterations in enzyme activities points to the necessity of monitoring changes at different levels of biological organization. Different exposure scenarios, together with a comparison of the responses at the biochemical and molecular level, provide valuable data on the effects of diazinon and diuron on low

  9. In Vivo Quantitative Study of Sized-Dependent Transport and Toxicity of Single Silver Nanoparticles Using Zebrafish Embryos

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Desai, Tanvi; Cherukui, Pavan K.; Xu, Xiao-Hong Nancy

    2012-01-01

    Nanomaterials possess distinctive physicochemical properties (e.g., small sizes, high surface area-to-volume ratios) and promise a wide variety of applications, ranging from design of high quality consumer products to effective disease diagnosis and therapy. These properties can lead to toxic effects, potentially hindering advance in nanotechnology. In this study, we have synthesized and characterized purified and stable (non-aggregation) silver nanoparticles (Ag NPs, 41.6±9.1 nm in average diameters), and utilized early-developing (cleavage-stage) zebrafish embryos (critical aquatic and eco- species) as in vivo model organisms to probe diffusion and toxicity of Ag NPs. We found that single Ag NPs (30–72 nm diameters) passively diffused into the embryos through chorionic pores via random Brownian motion and stayed inside the embryos throughout their entire development (120 hours-post-fertilization, hpf). Dose and size dependent toxic effects of the NPs on embryonic development were observed, showing the possibility of tuning biocompatibility and toxicity of the NPs. At lower concentrations of the NPs (≤ 0.02 nM), 75–91% of embryos developed to normal zebrafish. At the higher concentrations of NPs (≥ 0.20 nM), 100% of embryos became dead. At the concentrations in between (0.02–0.2 nM), embryos developed to various deformed zebrafish. Number and sizes of individual Ag NPs embedded in tissues of normal and deformed zebrafish at 120 hpf were quantitatively analyzed, showing deformed zebrafish with higher number of larger NPs than normal zebrafish, and size-dependent nanotoxicity. By comparing with our previous studies of smaller Ag NPs (11.6±3.5 nm), the results further demonstrate striking size-dependent nanotoxicity that, at the same molar concentration, the larger Ag NPs (41.6±9.1 nm) are more toxic than the smaller Ag NPs (11.6±3.5 nm). PMID:22486336

  10. Semi-automated detection of fractional shortening in zebrafish embryo heart videos

    Directory of Open Access Journals (Sweden)

    Nasrat Sara

    2016-09-01

    Full Text Available Quantifying cardiac functions in model organisms like embryonic zebrafish is of high importance in small molecule screens for new therapeutic compounds. One relevant cardiac parameter is the fractional shortening (FS. A method for semi-automatic quantification of FS in video recordings of zebrafish embryo hearts is presented. The software provides automated visual information about the end-systolic and end-diastolic stages of the heart by displaying corresponding colored lines into a Motion-mode display. After manually marking the ventricle diameters in frames of end-systolic and end-diastolic stages, the FS is calculated. The software was evaluated by comparing the results of the determination of FS with results obtained from another established method. Correlations of 0.96 < r < 0.99 between the two methods were found indicating that the new software provides comparable results for the determination of the FS.

  11. Oral exposure of adult zebrafish (Danio rerio) to 2,4,6-tribromophenol affects reproduction

    DEFF Research Database (Denmark)

    Halden, Anna Norman; Nyholm, Jenny Rattfelt; Andersson, Patrik L

    2010-01-01

    The bromophenol 2,4,6-tribromophenol (TBP) is widely used as an industrial chemical, formed by degradation of tetrabromobisphenol-A, and it occurs naturally in marine organisms. Concentrations of TBP in fish have been related to intake via feed, but little is known about effects on fish health...... after oral exposure. In this study, we exposed adult male and female zebrafish (Danio rerio) to TBP via feed in nominal concentrations of 33, 330, and 3300 mu g/g feed (or control feed) for 6 weeks to assess the effects of TBP on reproductive output, gonad morphology, circulatory vitellogenin levels......, and early embryo development. The aim was also to investigate the extent to which TBP was metabolised to 2,4,6-tribromoanisole (IBA) in dietary exposed zebrafish, and the amounts of TBP and TBA found in offspring. After 6 weeks of exposure, we found about 3% of the daily dose of TBP in adult fish...

  12. Gene Ontology-Based Analysis of Zebrafish Omics Data Using the Web Tool Comparative Gene Ontology.

    Science.gov (United States)

    Ebrahimie, Esmaeil; Fruzangohar, Mario; Moussavi Nik, Seyyed Hani; Newman, Morgan

    2017-10-01

    Gene Ontology (GO) analysis is a powerful tool in systems biology, which uses a defined nomenclature to annotate genes/proteins within three categories: "Molecular Function," "Biological Process," and "Cellular Component." GO analysis can assist in revealing functional mechanisms underlying observed patterns in transcriptomic, genomic, and proteomic data. The already extensive and increasing use of zebrafish for modeling genetic and other diseases highlights the need to develop a GO analytical tool for this organism. The web tool Comparative GO was originally developed for GO analysis of bacterial data in 2013 ( www.comparativego.com ). We have now upgraded and elaborated this web tool for analysis of zebrafish genetic data using GOs and annotations from the Gene Ontology Consortium.

  13. Changing the Scale and Efficiency of Chemical Warfare Countermeasure Discovery Using the Zebrafish

    Science.gov (United States)

    Peterson, Randall T.; MacRae, Calum A.

    2013-01-01

    As the scope of potential chemical warfare agents grows rapidly and as the diversity of potential threat scenarios expands with non-state actors, so a need for innovative approaches to countermeasure development has emerged. In the last few years, the utility of the zebrafish as a model organism that is amenable to high-throughput screening has become apparent and this system has been applied to the unbiased discovery of chemical warfare countermeasures. This review summarizes the in vivo screening approach that has been pioneered in the countermeasure discovery arena, and highlights the successes to date as well as the potential challenges in moving the field forward. Importantly, the establishment of a zebrafish platform for countermeasure discovery would offer a rapid response system for the development of antidotes to the continuous stream of new potential chemical warfare agents. PMID:24273586

  14. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae.

    Science.gov (United States)

    Veneman, Wouter J; Spaink, Herman P; Brun, Nadja R; Bosker, Thijs; Vijver, Martina G

    2017-09-01

    Microplastics are a contaminant of emergent concern in the environment, however, to date there is a limited understanding on their movement within organisms and the response of organisms. In the current study zebrafish embryos at different development stages were exposed to 700nm fluorescent polystyrene (PS) particles and the response pathway after exposure was investigated using imaging and transcriptomics. Our results show limited spreading of particles within the larvae after injection during the blastula stage. This is in contrast to injection of PS particles in the yolk of 2-day old embryos, which resulted in redistribution of the PS particles throughout the bloodstream, and accumulation in the heart region. Although injection was local, the transcriptome profiling showed strong responses of zebrafish embryos exposed to PS particle, indicating a systemic response. We found several biological pathways activated which are related to an immune response in the PS exposed zebrafish larvae. Most notably the complement system was enriched as indicated by upregulation of genes in the alternative complement pathway (e.g. cfhl3, cfhl4, cfb and c9). The fact that complement pathway is activated indicates that plastic microparticles are integrated in immunological recognition processes. This was supported by fluorescence microscopy results, in which we observed co-localisation of neutrophils and macrophages around the PS particles. Identifying these key events can be a first building block to the development of an adverse outcome pathway (AOP). These data subsequently can be used within ecological and human risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Zebrafish (Danio rerio) androgen receptor: sequence homology and up-regulation by the fungicide vinclozolin.

    Science.gov (United States)

    Smolinsky, Amanda N; Doughman, Jennifer M; Kratzke, Liên-Thành C; Lassiter, Christopher S

    2010-03-01

    Steroid hormones regulate gene expression in organisms by binding to receptor proteins. These hormones include the androgens, which signal through androgen receptors (ARs). Endocrine disrupters (EDCs) are chemicals in the environment that adversely affect organisms by binding to nuclear receptors, including ARs. Vinclozolin, a fungicide used on fruit and vegetable crops, is a known anti-androgen, a type of EDC that blocks signals from testosterone and its derivatives. In order to better understand the effects of EDCs, further research on androgen receptors and other hormone signaling pathways is necessary. In this study, we demonstrate the evolutionary conservation between the genomic structure of the human and zebrafish ar genes and find that ar mRNA expression increases in zebrafish embryos exposed to vinclozolin, which may be evolutionarily conserved as well. At 48 and 72 h post-fertilization, vinclozolin-treated embryos express ar mRNA 8-fold higher than the control level. These findings suggest that zebrafish embryos attempt to compensate for the presence of an anti-androgen by increasing the number of androgen receptors available.

  16. Expression pattern of cdkl5 during zebrafish early development: implications for use as model for atypical Rett syndrome.

    Science.gov (United States)

    Vitorino, Marta; Cunha, Nídia; Conceição, Natércia; Cancela, M Leonor

    2018-05-11

    Atypical Rett syndrome is a child neurodevelopmental disorder induced by mutations in CDKL5 gene and characterized by a progressive regression in development with loss of purposeful use of the hands, slowed brain and head growth, problems with walking, seizures, and intellectual disability. At the moment, there is no cure for this pathology and little information is available concerning animal models capable of mimicking its phenotypes, thus the development of additional animal models should be of interest to gain more knowledge about the disease. Zebrafish has been used successfully as model organism for many human genetic diseases; however, no information is available concerning the spatial and temporal expression of cdkl5 orthologous in this organism. In the present study, we identified the developmental expression patterns of cdkl5 in zebrafish by quantitative PCR and whole-mount in situ hybridization. cdkl5 is expressed maternally at low levels during the first 24 h of development. After that the expression of the gene increases significantly and it starts to be expressed mainly in the nervous system and in several brain structures, such as telencephalon, mesencephalon and diencephalon. The expression patterns of cdkl5 in zebrafish is in accordance with the tissues known to be affected in humans and associated to symptoms and deficits observed in Rett syndrome patients thus providing the first evidence that zebrafish could be an alternative model to study the molecular pathways of this disease as well as to test possible therapeutic approaches capable of rescuing the phenotype.

  17. Evaluation of visible implant elastomer tags in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Claudia Hohn

    2013-11-01

    The use of the visible implant elastomer (VIE tagging system in zebrafish (Danio rerio was examined. Two tag orientations (horizontal and vertical at the dorsal fin base were tested for tag retention, tag fragmentation and whether VIE tags affected growth and survival of juvenile zebrafish (1–4 month post hatch. Six tag locations (abdomen, anal fin base, caudal peduncle, dorsal fin base, pectoral fin base, isthmus and 5 tag colors (yellow, red, pink, orange, blue were evaluated for ease of VIE tag application and tag visibility in adult zebrafish. Long-term retention (1 year and multiple tagging sites (right and left of dorsal fin and pectoral fin base were examined in adult zebrafish. Lastly, survival of recombination activation gene 1−/− (rag1−/− zebrafish was evaluated after VIE tagging. The best tag location was the dorsal fin base, and the most visible tag color was pink. Growth rate of juvenile zebrafish was not affected by VIE tagging. Horizontal tagging is recommended in early stages of fish growth (1–2 months post hatch. VIE tags were retained for 1 year and tagging did not interfere with long-term growth and survival. There was no mortality associated with VIE tagging in rag1−/− zebrafish. The VIE tagging system is highly suitable for small-sized zebrafish. When familiar with the procedure, 120 adult zebrafish can be tagged in one hour. It does not increase mortality in adult zebrafish or interfere with growth in juvenile or adult zebrafish.

  18. Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates.

    Directory of Open Access Journals (Sweden)

    Matthew P Harris

    2008-10-01

    Full Text Available The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda and ectodysplasin receptor (edar genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100 that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution.

  19. Zebrafish eda and edar Mutants Reveal Conserved and Ancestral Roles of Ectodysplasin Signaling in Vertebrates

    Science.gov (United States)

    Harris, Matthew P.; Rohner, Nicolas; Schwarz, Heinz; Perathoner, Simon; Konstantinidis, Peter; Nüsslein-Volhard, Christiane

    2008-01-01

    The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda) and ectodysplasin receptor (edar) genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100) that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution. PMID:18833299

  20. Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Ondřej; Stachura, D.L.; Machoňová, Olga; Pajer, Petr; Brynda, Jiří; Zon, L.I.; Traver, D.; Bartůněk, Petr

    2014-01-01

    Roč. 124, č. 2 (2014), s. 220-228 ISSN 0006-4971 R&D Projects: GA ČR GAP305/10/0953 Grant - others:NIH(US) K01-DK087814-01A1; NIH(US) R01-DK074482 Keywords : Zebrafish * hematopoiesis * progenitors * thrombopoietin * erythropoietin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.452, year: 2014

  1. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Coffey

    2018-03-01

    Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.

  2. Annual reproductive synchronization in ovary and pineal gland function of female short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Haldar, Chandana; Yadav, Rajesh; Alipreeta

    2006-08-01

    We studied the annual correlation of ovarian activity and pineal gland in relation with seasonal variation and gestation of a tropical zone short-nosed fruit bat Cynopterus sphinx. Female bats showed bimodal polyestry (February/March and September/October) in their reproductive cycle. Plasma estradiol concentration ran parallel with ovarian activity and had an inverse relation with pineal mass and peripheral melatonin concentration. Due to the delayed embryonic development in the uterus (October-March) of female bats, interestingly, the uterine activity did not show a parallel relation with ovarian activity and estradiol level. Further, compared with normal non-pregnant females, melatonin level was high during gestation and delayed embryonic development phase. This suggests that the reproductive synchrony and annual variation in ovarian activity of this nocturnal flying mammal differ from other common tropical mammals. The delayed embryonic development in bats might be an adaptive strategy for the unfavorable conditions of the seasons and might be regulated by high peripheral estradiol and melatonin concentration.

  3. Calcite microcrystals in the pineal gland of the human brain: second harmonic generators and possible piezoelectric transducers

    International Nuclear Information System (INIS)

    Lang, S.B.

    2004-01-01

    Full text: A new form of biomineralization in the pineal gland of the human brain has been studied. It consists of small crystals that are less than 20 μm in length and that are completely distinct from the often-observed mulberry-type hydroxyapatite concretions. Cubic, hexagonal and cylindrical morphologies have been identified using scanning electron microscopy. Energy dispersive spectroscopy, selected-area electron diffraction and near infrared Raman spectroscopy established that the crystals were calcite. Experiments at the European Synchrotron Radiation Facility (ESRF) to study the biomineralization showed the presence of sulfur originating from both sugars and proteins. Other studies at the ESRF furnished information on the complex texture crystallization of the calcite. With the exception of the otoconia structure of the inner ear, this is the only known non-pathological occurrence of calcite in the human body. The calcite microcrystals are believed to be responsible for the previously observed second harmonic generation (SHG) in pineal tissue sections. There is a strong possibility that the complex twinned structure of the crystals may lower their symmetry and permit the existence of a piezoelectric effect

  4. Disease modeling in genetic kidney diseases: zebrafish.

    Science.gov (United States)

    Schenk, Heiko; Müller-Deile, Janina; Kinast, Mark; Schiffer, Mario

    2017-07-01

    Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.

  5. Afferent connectivity of the zebrafish habenulae

    Directory of Open Access Journals (Sweden)

    Katherine Jane Turner

    2016-04-01

    Full Text Available The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates.Here we describe the main afferents to the habenulae in larval and adult zebrafish.We observe afferents from the subpallium, nucleus rostrolateralis,posterior tuberculum, posterior hypothalamic lobe, median raphe, olfactory bulb to the right habenula and from the parapineal to the lefthabenula.In addition,we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus(vENT,confirming and extending observations of Amo et al.(2014.Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hpf.No afferents to the habenula were observed from the dorsal entopeduncular nucleus(dENT.Consequently,we confirm that the vENT(and not the dENT should be considered as the entopeduncular nucleus proper in zebrafish.Furthermore,comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus,being homologous to the entopeduncular nucleus of mammals(internal segment of the globus pallidus of primates by both embryonic origin and projections,as previously suggested by Amo et al.(2014.Key words: habenula,connections,afferents,entopeduncular nucleus,posterior tuberculum,basal ganglia,zebrafish

  6. CERKL knockdown causes retinal degeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Marina Riera

    Full Text Available The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration.

  7. Use of zebrafish to study Shigella infection

    Science.gov (United States)

    Duggan, Gina M.

    2018-01-01

    ABSTRACT Shigella is a leading cause of dysentery worldwide, responsible for up to 165 million cases of shigellosis each year. Shigella is also recognised as an exceptional model pathogen to study key issues in cell biology and innate immunity. Several infection models have been useful to explore Shigella biology; however, we still lack information regarding the events taking place during the Shigella infection process in vivo. Here, we discuss a selection of mechanistic insights recently gained from studying Shigella infection of zebrafish (Danio rerio), with a focus on cytoskeleton rearrangements and cellular immunity. We also discuss how infection of zebrafish can be used to investigate new concepts underlying infection control, including emergency granulopoiesis and the use of predatory bacteria to combat antimicrobial resistance. Collectively, these insights illustrate how Shigella infection of zebrafish can provide fundamental advances in our understanding of bacterial pathogenesis and vertebrate host defence. This information should also provide vital clues for the discovery of new therapeutic strategies against infectious disease in humans. PMID:29590642

  8. Use of zebrafish to study Shigella infection

    Directory of Open Access Journals (Sweden)

    Gina M. Duggan

    2018-02-01

    Full Text Available Shigella is a leading cause of dysentery worldwide, responsible for up to 165 million cases of shigellosis each year. Shigella is also recognised as an exceptional model pathogen to study key issues in cell biology and innate immunity. Several infection models have been useful to explore Shigella biology; however, we still lack information regarding the events taking place during the Shigella infection process in vivo. Here, we discuss a selection of mechanistic insights recently gained from studying Shigella infection of zebrafish (Danio rerio, with a focus on cytoskeleton rearrangements and cellular immunity. We also discuss how infection of zebrafish can be used to investigate new concepts underlying infection control, including emergency granulopoiesis and the use of predatory bacteria to combat antimicrobial resistance. Collectively, these insights illustrate how Shigella infection of zebrafish can provide fundamental advances in our understanding of bacterial pathogenesis and vertebrate host defence. This information should also provide vital clues for the discovery of new therapeutic strategies against infectious disease in humans.

  9. Cell migration during heart regeneration in zebrafish.

    Science.gov (United States)

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain.

    Directory of Open Access Journals (Sweden)

    Rajini Sreenivasan

    Full Text Available BACKGROUND: Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. METHODOLOGY/PRINCIPAL FINDINGS: We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs, 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and 'rest-of-body' from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4 has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. CONCLUSIONS/SIGNIFICANCE: We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar

  11. Hardwiring of fine synaptic layers in the zebrafish visual pathway

    Directory of Open Access Journals (Sweden)

    Taylor Michael R

    2008-12-01

    Full Text Available Abstract Background Neuronal connections are often arranged in layers, which are divided into sublaminae harboring synapses with similar response properties. It is still debated how fine-grained synaptic layering is established during development. Here we investigated two stratified areas of the zebrafish visual pathway, the inner plexiform layer (IPL of the retina and the neuropil of the optic tectum, and determined if activity is required for their organization. Results The IPL of 5-day-old zebrafish larvae is composed of at least nine sublaminae, comprising the connections between different types of amacrine, bipolar, and ganglion cells (ACs, BCs, GCs. These sublaminae were distinguished by their expression of cell type-specific transgenic fluorescent reporters and immunohistochemical markers, including protein kinase Cβ (PKC, parvalbumin (Parv, zrf3, and choline acetyltransferase (ChAT. In the tectum, four retinal input layers abut a laminated array of neurites of tectal cells, which differentially express PKC and Parv. We investigated whether these patterns were affected by experimental disruptions of retinal activity in developing fish. Neither elimination of light inputs by dark rearing, nor a D, L-amino-phosphono-butyrate-induced reduction in the retinal response to light onset (but not offset altered IPL or tectal lamination. Moreover, thorough elimination of chemical synaptic transmission with Botulinum toxin B left laminar synaptic arrays intact. Conclusion Our results call into question a role for activity-dependent mechanisms – instructive light signals, balanced on and off BC activity, Hebbian plasticity, or a permissive role for synaptic transmission – in the synaptic stratification we examined. We propose that genetically encoded cues are sufficient to target groups of neurites to synaptic layers in this vertebrate visual system.

  12. Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos

    International Nuclear Information System (INIS)

    Li Dan; Lu Cailing; Wang Ju; Hu Wei; Cao Zongfu; Sun Daguang; Xia Hongfei; Ma Xu

    2009-01-01

    Arsenic usually accumulates in soil, water and airborne particles, from which it is taken up by various organisms. Exposure to arsenic through food and drinking water is a major public health problem affecting some countries. At present there are limited laboratory data on the effects of arsenic exposure on early embryonic development and the mechanisms behind its toxicity. In this study, we used zebrafish as a model system to investigate the effects of arsenite on early development. Zebrafish embryos were exposed to a range of sodium arsenite concentrations (0-10.0 mM) between 4 and 120 h post-fertilization (hpf). Survival and early development of the embryos were not obviously influenced by arsenite concentrations below 0.5 mM. However, embryos exposed to higher concentrations (0.5-10.0 mM) displayed reduced survival and abnormal development including delayed hatching, retarded growth and changed morphology. Alterations in neural development included weak tactile responses to light (2.0-5.0 mM, 30 hpf), malformation of the spinal cord and disordered motor axon projections (2.0 mM, 48 hpf). Abnormal cardiac function was observed as bradycardia (0.5-2.0 mM, 60 hpf) and altered ventricular shape (2.0 mM, 48 hpf). Furthermore, altered cell proliferation (2.0 mM, 24 hpf) and apoptosis status (2.0 mM, 24 and 48 hpf), as well as abnormal genomic DNA methylation patterning (2.0 mM, 24 and 48 hpf) were detected in the arsenite-treated embryos. All of these indicate a possible relationship between arsenic exposure and developmental failure in early embryogenesis. Our studies suggest that the negative effects of arsenic on vertebrate embryogenesis are substantial

  13. Melatonin synthesis: Acetylserotonin O-methyltransferase (ASMT) is strongly expressed in a subpopulation of pinealocytes in the male rat pineal gland

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Coon, Steven L.; Amaral, Fernanda G.

    2016-01-01

    The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzy...

  14. Characterization of behavioral and endocrine effects of LSD on zebrafish.

    Science.gov (United States)

    Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

    2010-12-25

    Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. A bioenergetic model for zebrafish Danio rerio (Hamilton)

    Science.gov (United States)

    Chizinski, C.J.; Sharma, Bibek; Pope, K.L.; Patino, R.

    2008-01-01

    A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18-32?? C) of water temperatures, and evaluated with a 50 day laboratory trial at 28?? C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass. ?? 2008 The Authors.

  16. Time for the zebrafish ENCODE

    Indian Academy of Sciences (India)

    2013-12-11

    Dec 11, 2013 ... ing the genomic and epigenomic structure and organization of humans. ... We propose that the enormous wealth of disease models and excellent tools to ..... covery, design, software development and urban cartogra- phy.

  17. Examination of a Palatogenic Gene Program in Zebrafish

    Science.gov (United States)

    Swartz, Mary E.; Sheehan-Rooney, Kelly; Dixon, Michael J.; Eberhart, Johann K.

    2011-01-01

    Human palatal clefting is debilitating and difficult to rectify surgically. Animal models enhance our understanding of palatogenesis and are essential in strategies designed to ameliorate palatal malformations in humans. Recent studies have shown that the zebrafish palate, or anterior neurocranium, is under similar genetic control to the amniote palatal skeleton. We extensively analyzed palatogenesis in zebrafish to determine the similarity of gene expression and function across vertebrates. By 36 hpf palatogenic cranial neural crest cells reside in homologous regions of the developing face compared to amniote species. Transcription factors and signaling molecules regulating mouse palatogenesis are expressed in similar domains during palatogenesis in zebrafish. Functional investigation of a subset of these genes, fgf10a, tgfb2, pax9 and smad5 revealed their necessity in zebrafish palatogenesis. Collectively, these results suggest that the gene regulatory networks regulating palatogenesis may be conserved across vertebrate species, demonstrating the utility of zebrafish as a model for palatogenesis. PMID:22016187

  18. Non-pineal supratentorial primitive neuro-ectodermal tumors (sPNET) in teenagers and young adults: Time to reconsider cisplatin based chemotherapy after cranio-spinal irradiation?

    Science.gov (United States)

    Biswas, Swethajit; Burke, Amos; Cherian, Sheen; Williams, Denise; Nicholson, James; Horan, Gail; Jefferies, Sarah; Williams, Michael; Earl, Helena M; Burnet, Neil G; Hatcher, Helen

    2009-07-01

    Supratentorial PNET (sPNET) are rare CNS tumors of embryonal origin arising in children and adults. The treatment of sPNET for all age groups at our cancer center has been based on the management of medulloblastoma (MB), involving neurosurgical debulking followed by cranio-spinal irradiation (CSI) and systemic chemotherapy. Medical records were reviewed to gather demographic and clinical data about all embryonal CNS tumors in children and adults from 2001 to 2007. Tumor pathology, clinical management and survival data were also assessed, particularly as regards those patients who received the Packer chemotherapy regimen for either sPNET or MB. Eleven patients (five children and six adults) were identified with non-pineal sPNET, three children with pineal sPNET, and 19 patients (18 children and 1 adult) with MB. There was no difference in overall survival (OS) rates between pediatric and adult sPNET. When all sPNET were compared to all MB, 5-year OS was 14% versus 73%, respectively, but was only 9% for non-pineal sPNET. When only considering those patients treated with the Packer chemotherapy regimen, the 5-year OS was 12% for sPNET versus 79% for MB. This retrospective study demonstrates that non-pineal sPNET are clinically distinct from MB and are resistant to the Packer chemotherapy regimen. We suggest that it is time to reconsider the use of this regimen in teenage and young adult non-pineal sPNET and to investigate the utility of alternative approaches. (c) 2009 Wiley-Liss, Inc.

  19. Photoperiodism as a Modifier of Effect of Extremely Low-Frequency Electromagnetic Field on Morphological Properties of Pineal Gland

    Directory of Open Access Journals (Sweden)

    Tamara Lukač

    2006-08-01

    Full Text Available The aim of our study was to determine, using histological and stereological methods, whether photoperiodism has any impact on the effects that chronic (three-month long exposure to LF-EMF (50Hz has on morphological characteristics on rat's pineal gland. The experiment was performed on 48 Mill Hill male rats (24 experimental and 24 control. Upon birth, 24 rats were exposed for 7h a day, 5 days a week for 3 months to LF-EMF (50 Hz, 50-500microT, 10V/m. In the winter (short days, long nights, the activity of the pineal gland and neuroendocrine sensitivity is increased. The study was performed both during summer and winter, following the identical protocol. After sacrifice of animals, samples of pineal gland were processed for HE staining and then were analyzed using the methods of stereology. The most significant changes in epiphysis in the first group of animals in wintertime are: altered glandular feature, hyperemia, reduced pinealocytes with pale pink, poor cytoplasm and irregular, stick-form nuclei. In the second group (II pinealocytes are enlarged, with vacuolated cytoplasm and hyper chromatic, enlarged nucleus. Morphological changes of pineal gland at rats in the summertime were not as intense as in the winter and finding of the gland in the group II is compatible with those from the control group. Stereological results show both in winter and summer in the first group the decrease of volume density of pinealocytes, their cytoplasm and nuclei and in the second group in winter increase the volume density of pinealocytes, cytoplasm and nuclei, while in the second group the results in summertime are equal to those from the control group. Photoperiodism is modifier of effect of LF-EMF on morphological structure of pineal gland, because the gland recovery is incomplete in winter and reversible in summer.

  20. Endoscopic-assisted interhemispheric parieto-occipital transtentorial approach for microsurgical resection of a pineal region tumor: operative video and technical nuances.

    Science.gov (United States)

    Liu, James K

    2016-01-01

    The angle of the straight sinus and tentorium cerebelli can often influence the choice of surgical approach to the pineal region. The supracerebellar infratentorial approach can be technically challenging and a relative contraindication in cases where the angle of the straight sinus and tentorium is very steep. Similarly, an occipital transtentorial approach, which uses a low occipital craniotomy at the junction of the superior sagittal sinus and transverse sinus, may not provide the best trajectory to the pineal region in patients with a steep tentorium. In addition, this approach often necessitates retraction on the occipital lobe to access the tentorial incisura and pineal region, which can increase the risk of visual compromise. In this operative video, the author demonstrates an alternative route using an endoscopic-assisted interhemispheric parieto-occipital transtentorial approach to a pineal region tumor in a patient with a steep straight sinus and tentorium. The approach provided a shorter route and more direct trajectory to the tumor at the tentorial incisura, and avoided direct fixed retraction on the occipital lobe when performed using the lateral position, thereby minimizing visual complications. This video atlas demonstrates the operative technique and surgical nuances, including the application of endoscopic-assisted microsurgical resection and operative pearls for preservation of the deep cerebral veins. In summary, the parieto-occipital transtentorial approach with endoscopic assistance is an important approach in the armamentarium for surgical management of pineal region tumors. The video can be found here: https://youtu.be/Ph4veG14aTk .

  1. Using zebrafish as a model to study the role of epigenetics in hearing loss.

    Science.gov (United States)

    He, Yingzi; Bao, Beier; Li, Huawei

    2017-09-01

    The rapid progress of bioinformatics and high-throughput screening techniques in recent years has led to the identification of many candidate genes and small-molecule drugs that have the potential to make significant contributions to our understanding of the developmental and pathological processes of hearing, but it remains unclear how these genes and regulatory factors are coordinated. Increasing evidence suggests that epigenetic mechanisms are essential for establishing gene expression profiles and likely play an important role in the development of inner ear and in the pathology of hearing-associated diseases. Zebrafish are a valuable and tractable in vivo model organism for monitoring changes in the epigenome and for identifying new epigenetic processes and drug molecules that can influence vertebrate development. Areas covered: In this review, the authors focus on zebrafish as a model to summarize recent findings concerning the roles of epigenetics in the development, regeneration, and protection of hair cells. Expert opinion: Using the zebrafish model in combination with high-throughput screening and genome-editing technologies to investigate the function of epigenetics in hearing is crucial to help us better understand the molecular and genetic mechanisms of auditory development and function. It will also contribute to the development of new strategies to restore hearing loss.

  2. Vitamin D receptor signaling is required for heart development in zebrafish embryo

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hye-Joo, E-mail: hjkwon@pnu.edu.sa [Biology Department, Texas A& M University, College Station, TX77843-3258 (United States); Biology Department, Princess Nourah University, Riyadh 11671 (Saudi Arabia)

    2016-02-12

    Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects. Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development. - Highlights: • VDR signaling is involved in embryonic heart development. • Knockdown of vdrb, but not vdra, causes decreased heart rate in zebrafish embryo. • Loss of vdr results in cardiac laterality defects. • Loss of vdra/b alters atrioventricular boundary formation. • Loss of vdra/b causes abnormal cardiac looping.

  3. Gene expression profiling in zebrafish embryos exposed to diclofenac, an environmental toxicant.

    Science.gov (United States)

    De Felice, Bruna; Copia, Luisa; Guida, Marco

    2012-03-01

    Pharmaceuticals are continually released in the environment and therefore pollution from drugs is a pressing problem in the environment. Diclofenac, 2-[(2,6-dichlorophenyl)amino]phenylacetic acid is a FDA approved non-steroidal anti-inflammatory drug (NSAID) for the treatment of inflammation. This pharmaceutical has been found as pollutant in superficial waters. Danio rerio (zebrafish) embryo has been used as a model organism for acute pollutant toxicity tests in order to identify morphological alterations in development and death rate. Through the combination of mRNA differential display and quantitative Real Time experiments, we analyzed the alterations of gene expression in zebrafish embryos left to develop in the presence of diclofenac and thereby assess the molecular mechanism involved in ecotoxicity of diclofenac polluted waters. This approach, in embryos exposed to 1.25 mg/l drug for 48 h, allowed identifying 36 different genes, with both known and unknown functions, whose transcription is differentially regulated. The identity and ontological classification of these genes is presented. The wide variety of functional classes of transcripts isolated in this screen reflects the diverse spectrum of influences operating across diclofenac exposure. Of these 36 genes, several have been selected for detailed quantitative Real Time analysis to validate the screen. Our results, for the first time, provide an insight into some of the varied and novel molecular networks following zebrafish exposure to diclofenac polluted waters.

  4. Use of zebrafish and knockdown technology to define proprotein convertase activity.

    Science.gov (United States)

    Chitramuthu, Babykumari P; Bennett, Hugh P J

    2011-01-01

    The Zebrafish (Danio rerio) is a powerful and well-established tool used extensively for the study of early vertebrate development and as a model of human diseases. Zebrafish genes orthologous to their mammalian counterparts generally share conserved biological function. Protein knockdown or overexpression can be effectively achieved by microinjection of morpholino antisense oligonucleotides (MOs) or mRNA, respectively, into developing embryos at the one- to two-cell stage. Correlating gene expression patterns with the characterizing of phenotypes resulting from over- or underexpression can reveal the function of a particular protein. The microinjection technique is simple and results are reproducible. We defined the expression pattern of the proprotein convertase PCSK5 within the lateral line neuromasts and various organs including the liver, gut and otic vesicle by whole-mount in situ hybridization (ISH) and immunofluorescence (IF). MO-mediated knockdown of zebrafish PCSK5 expression generated embryos that display abnormal neuromast deposition within the lateral line system resulting in uncoordinated patterns of swimming.

  5. Long-term (30 days toxicity of NiO nanoparticles for adult zebrafish Danio rerio

    Directory of Open Access Journals (Sweden)

    Kovrižnych Jevgenij A.

    2014-03-01

    Full Text Available Nickel oxide in the form of nanoparticles (NiO NPs is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality was 100.0 mg/L, and LC0 (maximum concentration causing no mortality was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems.

  6. Hesperidin Protects against Acute Alcoholic Injury through Improving Lipid Metabolism and Cell Damage in Zebrafish Larvae

    Directory of Open Access Journals (Sweden)

    Zhenting Zhou

    2017-01-01

    Full Text Available Alcoholic liver disease (ALD is a series of abnormalities of liver function, including alcoholic steatosis, steatohepatitis, and cirrhosis. Hesperidin, the major constituent of flavanone in grapefruit, is proved to play a role in antioxidation, anti-inflammation, and reducing multiple organs damage in various animal experiments. However, the underlying mechanism of resistance to alcoholic liver injury is still unclear. Thus, we aimed to investigate the protective effects of hesperidin against ALD and its molecular mechanism in this study. We established an ALD zebrafish larvae model induced by 350 mM ethanol for 32 hours, using wild-type and transgenic line with liver-specific eGFP expression Tg (lfabp10α:eGFP zebrafish larvae (4 dpf. The results revealed that hesperidin dramatically reduced the hepatic morphological damage and the expressions of alcohol and lipid metabolism related genes, including cyp2y3, cyp3a65, hmgcra, hmgcrb, fasn, and fads2 compared with ALD model. Moreover, the findings demonstrated that hesperidin alleviated hepatic damage as well, which is reflected by the expressions of endoplasmic reticulum stress and DNA damage related genes (chop, gadd45αa, and edem1. In conclusion, this study revealed that hesperidin can inhibit alcoholic damage to liver of zebrafish larvae by reducing endoplasmic reticulum stress and DNA damage, regulating alcohol and lipid metabolism.

  7. Vitamin D receptor signaling is required for heart development in zebrafish embryo

    International Nuclear Information System (INIS)

    Kwon, Hye-Joo

    2016-01-01

    Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects. Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development. - Highlights: • VDR signaling is involved in embryonic heart development. • Knockdown of vdrb, but not vdra, causes decreased heart rate in zebrafish embryo. • Loss of vdr results in cardiac laterality defects. • Loss of vdra/b alters atrioventricular boundary formation. • Loss of vdra/b causes abnormal cardiac looping.

  8. The primary role of zebrafish nanog is in extra-embryonic tissue.

    Science.gov (United States)

    Gagnon, James A; Obbad, Kamal; Schier, Alexander F

    2018-01-09

    The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZ nanog ) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZ nanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation. © 2018. Published by The Company of Biologists Ltd.

  9. Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung.

    Directory of Open Access Journals (Sweden)

    Weiling Zheng

    Full Text Available The fish swimbladder is a unique organ in vertebrate evolution and it functions for regulating buoyancy in most teleost species. It has long been postulated as a homolog of the tetrapod lung, but the molecular evidence is scarce. In order to understand the molecular function of swimbladder as well as its relationship with lungs in tetrapods, transcriptomic analyses of zebrafish swimbladder were carried out by RNA-seq. Gene ontology classification showed that genes in cytoskeleton and endoplasmic reticulum were enriched in the swimbladder. Further analyses depicted gene sets and pathways closely related to cytoskeleton constitution and regulation, cell adhesion, and extracellular matrix. Several prominent transcription factor genes in the swimbladder including hoxc4a, hoxc6a, hoxc8a and foxf1 were identified and their expressions in developing swimbladder during embryogenesis were confirmed. By comparison of enriched transcripts in the swimbladder with those in human and mouse lungs, we established the resemblance of transcriptome of the zebrafish swimbladder and mammalian lungs. Based on the transcriptomic data of zebrafish swimbladder, the predominant functions of swimbladder are in its epithelial and muscular tissues. Our comparative analyses also provide molecular evidence of the relatedness of the fish swimbladder and mammalian lung.

  10. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos

    International Nuclear Information System (INIS)

    Choi, V W Y; Ng, C Y P; Kong, M K Y; Yu, K N; Cheng, S H

    2013-01-01

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ∼4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. (paper)

  11. Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses.

    Science.gov (United States)

    Park, Jong-Su; Ryu, Jae-Ho; Choi, Tae-Ik; Bae, Young-Ki; Lee, Suman; Kang, Hae Jin; Kim, Cheol-Hee

    2016-10-01

    Although innate color preference of motile organisms may provide clues to behavioral biases, it has remained a longstanding question. In this study, we investigated innate color preference of zebrafish larvae. A cross maze with different color sleeves around each arm was used for the color preference test (R; red, G; green, B; blue, Y; yellow). The findings showed that 5 dpf zebrafish larvae preferred blue over other colors (B > R > G > Y). To study innate color recognition further, tyrosinase mutants were generated using CRISPR/Cas9 system. As a model for oculocutaneous albinism (OCA) and color vision impairment, tyrosinase mutants demonstrated diminished color sensation, indicated mainly by hypopigmentation of the retinal pigment epithelium (RPE). Due to its relative simplicity and ease, color preference screening using zebrafish larvae is suitable for high-throughput screening applications. This system may potentially be applied to the analysis of drug effects on larval behavior or the detection of sensory deficits in neurological disorder models, such as autism-related disorders, using mutant larvae generated by the CRISPR/Cas9 technique.

  12. Model-free information-theoretic approach to infer leadership in pairs of zebrafish.

    Science.gov (United States)

    Butail, Sachit; Mwaffo, Violet; Porfiri, Maurizio

    2016-04-01

    Collective behavior affords several advantages to fish in avoiding predators, foraging, mating, and swimming. Although fish schools have been traditionally considered egalitarian superorganisms, a number of empirical observations suggest the emergence of leadership in gregarious groups. Detecting and classifying leader-follower relationships is central to elucidate the behavioral and physiological causes of leadership and understand its consequences. Here, we demonstrate an information-theoretic approach to infer leadership from positional data of fish swimming. In this framework, we measure social interactions between fish pairs through the mathematical construct of transfer entropy, which quantifies the predictive power of a time series to anticipate another, possibly coupled, time series. We focus on the zebrafish model organism, which is rapidly emerging as a species of choice in preclinical research for its genetic similarity to humans and reduced neurobiological complexity with respect to mammals. To overcome experimental confounds and generate test data sets on which we can thoroughly assess our approach, we adapt and calibrate a data-driven stochastic model of zebrafish motion for the simulation of a coupled dynamical system of zebrafish pairs. In this synthetic data set, the extent and direction of the coupling between the fish are systematically varied across a wide parameter range to demonstrate the accuracy and reliability of transfer entropy in inferring leadership. Our approach is expected to aid in the analysis of collective behavior, providing a data-driven perspective to understand social interactions.

  13. Development of the zebrafish myoseptum with emphasis on the myotendinous junction.

    Science.gov (United States)

    Charvet, Benjamin; Malbouyres, Marilyne; Pagnon-Minot, Aurélie; Ruggiero, Florence; Le Guellec, Dominique

    2011-12-01

    Zebrafish myosepta connect two adjacent muscle cells and transmit muscular forces to axial structures during swimming via the myotendinous junction (MTJ). The MTJ establishes transmembrane linkages system consisting of extracellular matrix molecules (ECM) surrounding the basement membrane, cytoskeletal elements anchored to sarcolema, and all intermediate proteins that link ECM to actin filaments. Using a series of zebrafish specimens aged between 24 h post-fertilization and 2 years old, the present paper describes at the transmission electron microscope level the development of extracellular and intracellular elements of the MTJ. The transverse myoseptum development starts during the segmentation period by deposition of sparse and loosely organized collagen fibrils. During the hatching period, a link between actin filaments and sarcolemma is established. The basal lamina underlining sarcolemma is well differentiated. Later, collagen fibrils display an orthogonal orientation and fibroblast-like cells invade the myoseptal stroma. A dense network of collagen fibrils is progressively formed that both anchor myoseptal fibroblasts and sarcolemmal basement membrane. The differentiation of a functional MTJ is achieved when sarcolemma interacts with both cytoskeletal filaments and extracellular components. This solid structural link between contractile apparatus and ECM leads to sarcolemma deformations resulting in the formation of regular invaginations, and allows force transmission during muscle contraction. This paper presents the first ultrastructural atlas of the zebrafish MTJ development, which represents an useful tool to analyse the mechanisms of the myotendinous system formation and their disruption in muscle disorders.

  14. Forward Genetic Screening Using Behavioral Tests in Zebrafish: A Proof of Concept Analysis of Mutants.

    Science.gov (United States)

    Gerlai, Robert; Poshusta, Tanya L; Rampersad, Mindy; Fernandes, Yohaan; Greenwood, Tammy M; Cousin, Margot A; Klee, Eric W; Clark, Karl J

    2017-01-01

    The zebrafish enjoys several advantages over other model organisms. It is small, easy to maintain, prolific, and numerous genetic tools are available for it. For example, forward genetic screens have allowed investigators to identify important genes potentially involved in a variety of functions from embryogenesis to cancer. However, despite its sophisticated behavioral repertoire, behavioral methods have rarely been utilized in forward genetic screens. Here, we employ a two-tiered strategy, a proof of concept study, to explore the feasibility of behavioral screens. We generated mutant lines using transposon-based insertional mutagenesis, allowing us to bias mutant selection with target genes expressed within the brain. Furthermore, we employed an efficient and fast behavioral pre-selection in which we investigated the locomotory response of 5-day post-fertilization old larval fish to hyperosmotic shock. Based on this assay, we selected five lines for our lower throughput secondary adult behavioral screen. The latter screen utilized tests in which computer animated image presentation and video-tracking-based automated quantification of behavior allowed us to compare heterozygous zebrafish with their wild-type siblings on their responses to a variety of stimuli. We found significant mutation induced adult behavioral alterations in 4 out of the 5 lines analyzed, including changes in response to social or fear inducing stimuli, to handling and novelty, or in habituation to novelty. We discuss the pros and cons of behavioral phenotyping and of the use of different forward genetic methods in biomedical research with zebrafish.

  15. Life-long preservation of the regenerative capacity in the fin and heart in zebrafish

    Directory of Open Access Journals (Sweden)

    Junji Itou

    2012-06-01

    The zebrafish is a widely used model animal to study the regeneration of organs, such as the fin and heart. Their average lifetime is about 3 years, and recent studies have shown that zebrafish exhibit aging-related degeneration, suggesting the possibility that aging might affect regenerative potential. In order to investigate this possibility, we compared regeneration of the fin and heart after experimental amputation in young (6–12 month old and old (26–36 month old fish. Comparison of recovery rate of the caudal fin, measured every two or three days from one day post amputation until 13 days post amputation, show that fins in young and old fish regenerate at a similar rate. In the heart, myocardium regeneration and cardiomyocyte proliferation occurred similarly in the two groups. Moreover, neo-vascularization, as well as activation of fibroblast growth factor signaling, which is required for neo-vascularization, occurred similarly. The epicardial tissue is a thin layer tissue that covers the heart, and starts to express several genes immediately in response to injury. The expression of epicardial genes, such as wt1b and aldh1a2, in response to heart injury was comparable in two groups. Our results demonstrate that zebrafish preserve a life-long regenerative ability of the caudal fin and heart.

  16. Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD.

    Directory of Open Access Journals (Sweden)

    Xavier Joya

    Full Text Available The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS. In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines.In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification.Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s of ethanol-induced developmental toxicity at very early stages of embryonic development.

  17. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    Science.gov (United States)

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  18. A dominant negative zebrafish Ahr2 partially protects developing zebrafish from dioxin toxicity.

    Directory of Open Access Journals (Sweden)

    Kevin A Lanham

    Full Text Available The toxicity by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD is thought to be caused by activation of the aryl hydrocarbon receptor (AHR. However, our understanding of how AHR activation by TCDD leads to toxic effects is poor. Ideally we would like to manipulate AHR activity in specific tissues and at specific times. One route to this is expressing dominant negative AHRs (dnAHRs. This work describes the construction and characterization of dominant negative forms of the zebrafish Ahr2 in which the C-terminal transactivation domain was either removed, or replaced with the inhibitory domain from the Drosophila engrailed repressor protein. One of these dnAhr2s was selected for expression from the ubiquitously active e2fα promoter in transgenic zebrafish. We found that these transgenic zebrafish expressing dnAhr2 had reduced TCDD induction of the Ahr2 target gene cyp1a, as measured by 7-ethoxyresorufin-O-deethylase activity. Furthermore, the cardiotoxicity produced by TCDD, pericardial edema, heart malformation, and reduced blood flow, were all mitigated in the zebrafish expressing the dnAhr2. These results provide in vivo proof-of-principle results demonstrating the effectiveness of dnAHRs in manipulating AHR activity in vivo, and demonstrating that this approach can be a means for blocking TCDD toxicity.

  19. Cep70 and Cep131 contribute to ciliogenesis in zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Carl Matthias

    2009-03-01

    Full Text Available Abstract Background The centrosome is the cell's microtubule organising centre, an organelle with important roles in cell division, migration and polarity. However, cells can divide and flies can, for a large part of development, develop without them. Many centrosome proteins have been identified but the roles of most are still poorly understood. The centrioles of the centrosome are similar to the basal bodies of cilia, hair-like extensions of many cells that have important roles in cell signalling and development. In a number of human diseases, such Bardet-Biedl syndrome, centrosome/cilium proteins are mutated, leading to polycystic kidney disease, situs inversus, and neurological problems, amongst other symptoms. Results We describe zebrafish (Danio rerio embryos depleted for two uncharacterised, centrosome proteins, Cep70 and Cep131. The phenotype of these embryos resembles that of zebrafish mutants for intraflagellar transport proteins (IFTs, with kidney and ear development affected and left-right asymmetry randomised. These organs and processes are those affected in Bardet-Biedl syndrome and other similar diseases. Like these diseases, the root cause of the phenotype lies, in fact, in dysfunctional cilia, which are shortened but not eliminated in several tissues in the morphants. Centrosomes and basal bodies, on the other hand, are present. Both Cep70 and Cep131 possess a putative HDAC (histone deacetylase interacting domain. However, we could not detect in yeast two-hybrid assays any interaction with the deacetylase that controls cilium length, HDAC6, or any of the IFTs that we tested. Conclusion Cep70 and Cep131 contribute to ciliogenesis in many tissues in the zebrafish embryo: cilia are made in cep70 and cep131 morphant zebrafish embryos but are shortened. We propose that the role of these centrosomal/basal body proteins is in making the cilium and that they are involved in determination of the length of the axoneme.

  20. In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish.

    Science.gov (United States)

    Wang, Guowei; Chen, Hanyan; Du, Zhongkun; Li, Jianhua; Wang, Zunyao; Gao, Shixiang

    2017-07-15

    Understanding the metabolism of chemicals as well as the distribution and depuration of their main metabolites in tissues are essential for evaluating their fate and potential toxicity in vivo. Herein, we investigated the metabolism of six typical organophosphate (OP) flame retardants (tripropyl phosphate (TPRP), tri-n-butyl phosphate (TNBP), tris(2-butoxyethyl) phosphate (TBOEP), tris(2-chloroethyl) phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tri-p-cresyl phosphate (p-TCP)) in adult zebrafish in laboratory at three levels (0, 1/150 LC 50 (environmentally relevant level), and 1/30 LC 50 per OP analog). Twenty main metabolites were detected in the liver of OPs-exposed zebrafish using high resolution mass spectrometry (Q-TOF). The reaction pathways involving scission of the ester bond (hydrolysis), cleavage of the ether bond, oxidative hydroxylation, dechlorination, and coupling with glucuronic acid were proposed, and were further confirmed by the frontier electron density and point charge calculations. Tissue distribution of the twenty metabolites revealed that liver and intestine with the highest levels of metabolites were the most active organs for OPs biotransformation among the studied tissues of intestine, liver, roe, brain, muscle, and gill, which showed the importance of hepatobiliary system (liver-bile-intestine) in the metabolism and excretion of OPs in zebrafish. Fast depuration of metabolites from tissues indicated that the formed metabolites might be not persistent in fish, and easily released into water. This study provides comprehensive information on the metabolism of OPs in the tissue of zebrafish, which might give some hints for the exploration of their toxic mechanism in aquatic life. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Toxic effects of {sup 56}Fe ion radiation on the zebrafish (Danio rerio) embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jing; Zhou, Rong [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Song, Jing’e [Hospital of Stomatology, Lanzhou University, Lanzhou 730000 (China); Gan, Lu; Zhou, Xin; Di, Cuixia; Liu, Yang; Mao, Aihong; Zhao, Qiuyue; Wang, Yupei [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Zhang, Hong, E-mail: zhangh@impcas.ac.cn [Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000 (China); Gansu Wuwei Institute of Medical Sciences, Wuwei 733000 (China)

    2017-05-15

    Highlights: • Iron ion radiation induced developmental toxicity and apoptosis in zebrafish embryos. • The mRNA expression levels of apoptosis-related genes displayed more sensitivity than the developmental toxicity. • Iron ion radiation induced apoptosis in zebrafish embryos potentially due to DNA damage and mitochondrial dysfunction. - Abstract: All living organisms and ecosystems are permanently exposed to ionizing radiation. Of all the types of ionizing radiation, heavy ions such as {sup 56}Fe have the potential to cause the most severe biological effects. We therefore examined the effects and potential mechanisms of iron ion irradiation on the induction of developmental toxicity and apoptosis in zebrafish embryos. Zebrafish embryos at 4 h post-fertilization (hpf) were divided into five groups: a control group; and four groups irradiated with 0.5, 1, 2, and 4 Gy radiation, respectively. Mortality and teratogenesis were significantly increased, and spontaneous movement, heart rate, and swimming distance were decreased in the irradiated groups, accompanied by increased apoptosis. mRNA levels of genes involved in the apoptotic pathway, including p53, bax, bcl-2, and caspase-3, were significantly affected by radiation exposure. Moreover, protein expression levels of P53 and Bcl-2 changed in accordance with the corresponding mRNA expression levels. In addition, we detected the protein expression levels of γ-H2AX, which is a biomarker for radiation-induced DNA double-strand breaks, and found that γ-H2AX protein levels were significantly increased in the irradiated groups. Overall, the results of this study improve our understanding of the mechanisms of iron ion radiation-induced developmental toxicity and apoptosis, potentially involving the induction of DNA damage and mitochondrial dysfunction. The findings of this study may aid future impact assessment of environmental radioactivity in fish.

  2. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish.

    Science.gov (United States)

    Berrun, Arturo; Harris, Elena; Stachura, David L

    2018-01-01

    Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility.

  3. Establishment of infection models in zebrafish larvae (Danio rerio to study the pathogenesis of Aeromonas hydrophila.

    Directory of Open Access Journals (Sweden)

    Paolo Roberto Saraceni

    2016-08-01

    Full Text Available Aeromonas hydrophila is a Gram-negative opportunistic pathogen of fish and terrestrial animals. In humans, A. hydrophila mainly causes gastroenteritis, septicaemia and tissue infections. The mechanisms of infection, the main virulence factors and the host immune response triggered by A. hydrophila have been studied in detail using murine models and adult fish. However, the great limitation of studying adult animals is that the animal must be sacrificed and its tissues/organs extracted, which prevents the study of the infectious processes in the whole living animal.Zebrafish larvae are being used for the analysis of several infectious diseases, but their use for studying the pathogenesis of A. hydrophila has never been explored. The great advantage of zebrafish larvae is their transparency during the first week after fertilization, which allows detailed descriptions of the infectious processes using in vivo imaging techniques such as differential interferential contrast (DIC and fluorescence microscopy. Moreover, the availability of fluorescent pathogens and transgenic reporter zebrafish lines expressing fluorescent immune cells, immune marker genes or cytokines/chemokines allows the host-pathogen interactions to be characterized.The present study explores the suitability of zebrafish larvae to study the pathogenesis of A. hydrophila and the interaction mechanisms between the bacterium and the innate immune responses through an infection model using different routes for infection. We used an early-embryo infection model at 3 days post-fertilization (dpf through the microinjection of A. hydrophila into the duct of Cuvier, caudal vein, notochord or muscle and two bath infection models using 4 dpf healthy and injured larvae. The latter resembled the natural conditions under which A. hydrophila produces infectious diseases in animals. We compared the cellular processes after infection in each anatomical site by confocal fluorescence imaging and

  4. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish

    Science.gov (United States)

    Berrun, Arturo; Harris, Elena

    2018-01-01

    Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility. PMID:29758043

  5. Toxicity Evaluation of Graphene Oxide and Titania Loaded Nafion Membranes in Zebrafish

    Directory of Open Access Journals (Sweden)

    Roberta Pecoraro

    2018-01-01

    Full Text Available The use of nanomaterials in several application fields has received in the last decades a great attention due to their peculiar properties, but also raised many doubts about possible toxicity when these materials are used for some specific applications, such as water purification. Indeed a careful investigation is needed in order to exclude possible harmful side effects related to the use of nanotechnology. Nanoparticles effects on the marine organisms may depend on their chemical composition, size, surface structure, solubility, shape and how the individual nanoparticles aggregate together. In order to make the most of their potential, without polluting the environment, many researchers are trying to trap them into some kind of matrix that keeps them active but avoids their dispersion in the environment. In this study we have tested nanocomposite membranes prepared using Nafion polymer combined with various fillers, such as anatase-type TiO2 nanoparticles and graphene oxide. The non-toxicity of these nanocomposites, already shown to be effective for water purification applications in our previous studies, was recognized by testing the effect of the different materials on zebrafish embryos. Zebrafish was considered an excellent model for ecotoxicological studies and for this motivation zebrafish embryos were exposed to different concentrations of free nanoparticles and to the nanocomposite membranes. As biomarkers of exposure, we evaluated the expression of heme-oxygenase 1 and inducible Nitric Oxide Synthases by immunohistochemistry and gene expression. Embryo toxicity test showed that nor sublethal effects neither mortality were caused by the different nanoparticles and nano-systems tested. Only zebrafish larvae exposed to free nanoparticles have shown a different response to antibodies anti-heme-oxygenase 1 and anti- inducible Nitric Oxide Synthases. The immunolocalization analysis in fact has highlighted an increase in the synthesis of these

  6. microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish.

    Science.gov (United States)

    Kim, Chang Woo; Han, Ji Hyuk; Wu, Ling; Choi, Jae Young

    2018-01-01

    microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 μM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration. © Copyright: Yonsei University College of Medicine 2018

  7. Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment.

    Science.gov (United States)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-12-15

    In animal studies, robots have been recently used as a valid tool for testing a wide spectrum of hypotheses. These robots often exploit visual or auditory cues to modulate animal behavior. The propensity of zebrafish, a model organism in biological studies, toward fish with similar color patterns and shape has been leveraged to design biologically inspired robots that successfully attract zebrafish in preference tests. With an aim of extending the application of such robots to field studies, here, we investigate the response of zebrafish to multiple robotic fish swimming at different speeds and in varying arrangements. A soft real-time multi-target tracking and control system remotely steers the robots in circular trajectories during the experimental trials. Our findings indicate a complex behavioral response of zebrafish to biologically inspired robots. More robots produce a significant change in salient measures of stress, with a fast robot swimming alone causing more freezing and erratic activity than two robots swimming slowly together. In addition, fish spend more time in the proximity of a robot when they swim far apart than when the robots swim close to each other. Increase in the number of robots also significantly alters the degree of alignment of fish motion with a robot. Results from this study are expected to advance our understanding of robot perception by live animals and aid in hypothesis-driven studies in unconstrained free-swimming environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. FAS/FASL are dysregulated in chordoma and their loss-of-function impairs zebrafish notochord formation.

    Science.gov (United States)

    Ferrari, Luca; Pistocchi, Anna; Libera, Laura; Boari, Nicola; Mortini, Pietro; Bellipanni, Gianfranco; Giordano, Antonio; Cotelli, Franco; Riva, Paola

    2014-07-30

    Chordoma is a rare malignant tumor that recapitulates the notochord phenotype and is thought to derive from notochord remnants not correctly regressed during development. Apoptosis is necessary for the proper notochord development in vertebrates, and the apoptotic pathway mediated by Fas and Fasl has been demonstrated to be involved in notochord cells regression. This study was conducted to investigate the expression of FAS/FASL pathway in a cohort of skull base chordomas and to analyze the role of fas/fasl homologs in zebrafish notochord formation. FAS/FASL expression was found to be dysregulated in chordoma leading to inactivation of the downstream Caspases in the samples analyzed. Both fas and fasl were specifically expressed in zebrafish notochord sorted cells. fas and fasl loss-of-function mainly resulted in larvae with notochord multi-cell-layer jumps organization, larger vacuolated notochord cells, defects in the peri-notochordal sheath structure and in vertebral mineralization. Interestingly, we observed the persistent expression of ntla and col2a1a, the zebrafish homologs of the human T gene and COL2A1 respectively, which are specifically up-regulated in chordoma. These results demonstrate for the first time the dysregulation of FAS/FASL in chordoma and their role in notochord formation in the zebrafish model, suggesting their possible implication in chordoma onset.

  9. A comparative study of annual changes in the pineal gland morphology with reference to the influence of melatonin on testicular activity in tropical birds, Psittacula cyanocephala and Ploceus philippinus.

    Science.gov (United States)

    Chakraborty, S

    1993-10-01

    The aim of the present comparative investigation was to examine annual pineal cytological changes and the action of melatonin in relation to testicular activity in two wild tropical avian species. The findings revealed that in both blossomheaded parakeets (Psittacula cyanocephala) and Indian weaver birds (Ploceus philippinus) the pineal gland was inactive, with reduced karyometric values during the breeding season. A pinealoactive phase showing significantly increased pinealocyte nuclear diameter corresponded with the nonbreeding phase. Administration of melatonin (250 micrograms/100 g body wt) for 10 consecutive days caused significant involution of testes during the breeding phase, although it failed to alter reproductive activity during the nonbreeding phase. The results indicated that the pineal gland activity varied inversely with the seasonal testicular weight cycle and the antigonadal influence of melatonin appeared to be phase dependent, which corroborated the inverse temporal relationship of the pineal gland and male reproductive activity examined in the two tropical avian species.

  10. Adaptive locomotor behavior in larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  11. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    Science.gov (United States)

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  12. Premature aging in telomerase-deficient zebrafish

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    2013-09-01

    The study of telomere biology is crucial to the understanding of aging and cancer. In the pursuit of greater knowledge in the field of human telomere biology, the mouse has been used extensively as a model. However, there are fundamental differences between mouse and human cells. Therefore, additional models are required. In light of this, we have characterized telomerase-deficient zebrafish (Danio rerio as the second vertebrate model for human telomerase-driven diseases. We found that telomerase-deficient zebrafish show p53-dependent premature aging and reduced lifespan in the first generation, as occurs in humans but not in mice, probably reflecting the similar telomere length in fish and humans. Among these aging symptoms, spinal curvature, liver and retina degeneration, and infertility were the most remarkable. Although the second-generation embryos died in early developmental stages, restoration of telomerase activity rescued telomere length and survival, indicating that telomerase dosage is crucial. Importantly, this model also reproduces the disease anticipation observed in humans with dyskeratosis congenita (DC. Thus, telomerase haploinsufficiency leads to anticipation phenomenon in longevity, which is related to telomere shortening and, specifically, with the proportion of short telomeres. Furthermore, p53 was induced by telomere attrition, leading to growth arrest and apoptosis. Importantly, genetic inhibition of p53 rescued the adverse effects of telomere loss, indicating that the molecular mechanisms induced by telomere shortening are conserved from fish to mammals. The partial rescue of telomere length and longevity by restoration of telomerase activity, together with the feasibility of the zebrafish for high-throughput chemical screening, both point to the usefulness of this model for the discovery of new drugs able to reactivate telomerase in individuals with DC.

  13. Novel biomarkers of perchlorate exposure in zebrafish

    Science.gov (United States)

    Mukhi, S.; Carr, J.A.; Anderson, T.A.; Patino, R.

    2005-01-01

    Perchlorate inhibits iodide uptake by thyroid follicles and lowers thyroid hormone production. Although several effects of perchlorate on the thyroid system have been reported, the utility of these pathologies as markers of environmental perchlorate exposures has not been adequately assessed. The present study examined time-course and concentration-dependent effects of perchlorate on thyroid follicle hypertrophy, colloid depletion, and angiogenesis; alterations in whole-body thyroxine (T4) levels; and somatic growth and condition factor of subadult and adult zebrafish. Changes in the intensity of the colloidal T4 ring previously observed in zebrafish also were examined immunohistochemically. Three-month-old zebrafish were exposed to ammonium perchlorate at measured perchlorate concentrations of 0, 11, 90, 1,131, and 11,480 ppb for 12 weeks and allowed to recover in clean water for 12 weeks. At two weeks of exposure, the lowest-observed-effective concentrations (LOECs) of perchlorate that induced angiogenesis and depressed the intensity of colloidal T4 ring were 90 and 1,131 ppb, respectively; other parameters were not affected (whole-body T4 was not determined at this time). At 12 weeks of exposure, LOECs for colloid depletion, hypertrophy, angiogenesis, and colloidal T4 ring were 11,480, 1,131, 90, and 11 ppb, respectively. All changes were reversible, but residual effects on angiogenesis and colloidal T4 ring intensity were still present after 12 weeks of recovery (LOEC, 11,480 ppb). Whole-body T 4 concentration, body growth (length and weight), and condition factor were not affected by perchlorate. The sensitivity and longevity of changes in colloidal T4 ring intensity and angiogenesis suggest their usefulness as novel markers of perchlorate exposure. The 12-week LOEC for colloidal T4 ring is the lowest reported for any perchlorate biomarker in aquatic vertebrates. ?? 2005 SETAC.

  14. Cholinergic innervation of the zebrafish olfactory bulb.

    Science.gov (United States)

    Edwards, Jeffrey G; Greig, Ann; Sakata, Yoko; Elkin, Dimitry; Michel, William C

    2007-10-20

    A number of fish species receive forebrain cholinergic input but two recent reports failed to find evidence of cholinergic cell bodies or fibers in the olfactory bulbs (OBs) of zebrafish. In the current study we sought to confirm these findings by examining the OBs of adult zebrafish for choline acetyltransferase (ChAT) immunoreactivity. We observed a diffuse network of varicose ChAT-positive fibers associated with the nervus terminalis ganglion innervating the mitral cell/glomerular layer (MC/GL). The highest density of these fibers occurred in the anterior region of the bulb. The cellular targets of this cholinergic input were identified by exposing isolated OBs to acetylcholine receptor (AChR) agonists in the presence of agmatine (AGB), a cationic probe that permeates some active ion channels. Nicotine (50 microM) significantly increased the activity-dependent labeling of mitral cells and juxtaglomerular cells but not of tyrosine hydroxlase-positive dopaminergic neurons (TH(+) cells) compared to control preparations. The nAChR antagonist mecamylamine, an alpha7-nAChR subunit-specific antagonist, calcium-free artificial cerebrospinal fluid, or a cocktail of ionotropic glutamate receptor (iGluR) antagonists each blocked nicotine-stimulated labeling, suggesting that AGB does not enter the labeled neurons through activated nAChRs but rather through activated iGluRs following ACh-stimulated glutamate release. Deafferentation of OBs did not eliminate nicotine-stimulated labeling, suggesting that cholinergic input is primarily acting on bulbar neurons. These findings confirm the presence of a functioning cholinergic system in the zebrafish OB.

  15. Characterization of the Zebrafish Homolog of Zipper Interacting Protein Kinase

    Directory of Open Access Journals (Sweden)

    Brandon W. Carr

    2014-06-01

    Full Text Available Zipper-interacting protein kinase (ZIPK is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.

  16. A Zebrafish Heart Failure Model for Assessing Therapeutic Agents.

    Science.gov (United States)

    Zhu, Xiao-Yu; Wu, Si-Qi; Guo, Sheng-Ya; Yang, Hua; Xia, Bo; Li, Ping; Li, Chun-Qi

    2018-03-20

    Heart failure is a leading cause of death and the development of effective and safe therapeutic agents for heart failure has been proven challenging. In this study, taking advantage of larval zebrafish, we developed a zebrafish heart failure model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days postfertilization) were treated with verapamil at a concentration of 200 μM for 30 min, which were determined as optimum conditions for model development. Tested drugs were administered into zebrafish either by direct soaking or circulation microinjection. After treatment, zebrafish were randomly selected and subjected to either visual observation and image acquisition or record videos under a Zebralab Blood Flow System. The therapeutic effects of drugs on zebrafish heart failure were quantified by calculating the efficiency of heart dilatation, venous congestion, cardiac output, and blood flow dynamics. All 8 human heart failure therapeutic drugs (LCZ696, digoxin, irbesartan, metoprolol, qiliqiangxin capsule, enalapril, shenmai injection, and hydrochlorothiazide) showed significant preventive and therapeutic effects on zebrafish heart failure (p failure model developed and validated in this study could be used for in vivo heart failure studies and for rapid screening and efficacy assessment of preventive and therapeutic drugs.

  17. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    Directory of Open Access Journals (Sweden)

    Hyde David R

    2007-10-01

    Full Text Available Abstract Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO, subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.

  18. The zebrafish world of colors and shapes: preference and discrimination.

    Science.gov (United States)

    Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana

    2015-04-01

    Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies.

  19. Effects of Short-Term Exposure to Sublethal Concentrations of Silver Nanoparticles on Histopathology and Electron Microscope Ultrastructure of Zebrafish (Danio Rerio Gills

    Directory of Open Access Journals (Sweden)

    Borhan Mansouri

    2015-11-01

    Full Text Available Background: The increasing use of nanomaterials and nanoproducts has increased the possibility of contamination of the environment, which may have adverse effects on different organisms. The aim of this study was to evaluate the effects of silver nanoparticles on histopathology and gill ultrastructure of zebrafish (Danio rerio under laboratory conditions. Methods: Zebrafish were exposed to four concentrations of silver nanoparticles (0.0015, 0.00375, 0.0075, and 0.015 mg/l for a period of 4 days. Gill ultrastructure and histopathological changes were studied using scanning electron microscope and haematoxylin - eosin staining. Results: Exposure to silver nanoparticles significantly (P < 0.001 increased the diameter of gill filaments and secondary lamellae, while silver nanoparticles significantly reduced the length of the secondary gills in zebrafish. Moreover, other changes such as vacuolization, dilated and clubbed tips, hyperplasia, edema, fusion, swelling of mucocytes, hypertrophy, and necrosis were observed. The effects of silver nanoparticles in zebrafish gills were dose dependent. Conclusion: Based on the adverse effects of AgNPs on zebrafish gills, silver nanoparticle solutions can be hazardous pollutants for the environment.

  20. Waterborne fluoride exposure changed the structure and the expressions of steroidogenic-related genes in gonads of adult zebrafish (Danio rerio).

    Science.gov (United States)

    Li, MeiYan; Cao, Jinling; Chen, Jianjie; Song, Jie; Zhou, Bingrui; Feng, Cuiping; Wang, Jundong

    2016-02-01

    Excessive fluoride in natural water ecosystem has been demonstrated to have adverse effects on reproductive system in humans and mammals, while the most vulnerable aquatic organisms were ignored. In this study, the effects of waterborne fluoride on growth performance, sex steroid hormone, histological structure, and the transcriptional profiles of sex steroid related genes were examined in both female and male zebrafish exposed to different concentrations of 0.79, 18.60, 36.83 mg L(-1) of fluoride for 30 and 60 d to investigate the effects of fluoride on reproductive system and the underlying toxic mechanisms caused by fluoride. The results showed that the body weight was remarkably decreased, the structure of ovary and testis were serious injured, and the T and E2 levels were significantly reduced in male zebrafish. The transcriptional profiles of steroidogenic related genes displayed phenomenal alterations, the expressions of pgr and cyp19a1a were significantly up-regulated, while the transcriptional levels of er, ar and hsd3β were decreased both in the ovary and testis, and hsd17β8 were down-regulated just in males. Taken together, these results demonstrated that fluoride could significantly inhibit the growth of zebrafish, and notably affect the reproductive system in both sex zebrafish by impairing the structure of ovary and testis, altering steroid hormone levels and steroidogenic genes expression related to the synthesis of sex hormones in zebrafish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The effect of radioactive radiation of the neurotransmitter levels in the hypothalamus, pituitary and pineal glands of sheeps

    International Nuclear Information System (INIS)

    Pastorova, B.; Maracek, I.; Stanikova, A.; Halagan, J.; Sopkova, D.

    2006-01-01

    The effect of the exposure of the whole body to continuous radiation was studied of catecholamines (epinephrine and unepinephrine) in the hypothalamus, pineal and pituitary glands of ewes during the anestric period with synchronized oestrus. The radiation was provided at the rate 0.020 Gy per hour. Catecholamines were separated from the tissue supernatants by the absorption chromatographic method and the catecholamine contents in the eluates were determined spectrofluorometrically. Protracted exposure to gamma radiation and hormone stimulation with SG reduces the concentration of unepinephrine (P<0.001) in the whole hypothalamus of the sheep. A statistically significant decrease (P<0.001) was recorded in the medial and caudal hypothalamus of ewes. If is assumed that the decrease in catecholamine concentration after irradiation (2.4 Gy) is associated with the destroyed metabolism of catecholamines in nervous tissue and activity its degradation enzyme monoaminooxidase. (authors)

  2. On Growth and Form of the Zebrafish Gut Microbiome

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Rolig, Annah; Burns, Adam; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-03-01

    The vertebrate gut is home to a diverse microbial community whose composition has a strong influence on the development and health of the host organism. Researchers can identify the members of the microbiota, yet little is known about the spatial and temporal dynamics of these microbial communities, including the mechanisms guiding their nucleation, growth, and interactions. We address these issues using the larval zebrafish (Danio rerio) as a model organism, which are raised microbe-free and then inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging using light sheet fluorescence microscopy enables visualization of the gut's entire microbial population over the first 24 hours of colonization. Image analysis allows us to quantify microbial populations that range from a few individuals to tens of thousands of microbes, and analyze the structure and growth kinetics of gut bacterial communities. We find that genetically-identical microbes can show surprisingly different growth rates and colonization abilities depending on their order of arrival. This demonstrates that knowing only the constituents of the gut community is insufficient to determine their dynamics; rather, the history of colonization matters.

  3. Endoscopic versus stereotactic procedure for pineal tumour biopsies: Comparative review of the literature and learning from a 25-year experience.

    Science.gov (United States)

    Balossier, A; Blond, S; Touzet, G; Lefranc, M; de Saint-Denis, T; Maurage, C-A; Reyns, N

    2015-01-01

    Pineal tumours account for 1% to 4% of brain tumours in adults and for around 10% in children. Except in a few cases where germ cell markers are elevated, accurate histological samples are mandatory to initiate the treatment. Open surgery still has a high morbidity and is often needless. Biopsies can either be obtained by endoscopic or stereotactic procedures. Following an extensive review of the literature (PubMed 1970-2013; keywords pineal tumour, biopsy; English and French), 33 studies were analysed and relevant data compared regarding the type of procedure, diagnosis rate, cerebrospinal fluid diversion type and rate, perioperative mortality, morbidity. Endoscopic and stereotactic biopsies showed a diagnosis rate of 81.1% (20%-100%) and 93.7% (82%-100%), respectively. Endoscopic biopsies involved 21.0% of minor and 2.0% of major complications whereas stereotactic biopsies involved 6.4% of minor and 1.6% of major complications. The most frequently reported complication was haemorrhage for both endoscopic and stereotactic procedures, accounting for 4.8% and 4.3%, respectively. Mortality rate was low for both endoscopic and stereotactic procedures, equal to 0.4% and 1.3%, respectively. Local experience of stereotactic biopsies was also reported and corroborated the previous data. The difference between both procedures is not statistically significant (p>0.05) across large series (≥20patients). Nevertheless, tissue diagnosis appears less accurate with endoscopic procedures than with stereotactic procedures (81.1% versus 93.7%, weighted mean across all series). In our opinion, the neuroendoscopic approach is the best tool for managing hydrocephalus, whereas stereotactic biopsies remain the best way to obtain a tissue diagnosis with accuracy and low morbidity. Copyright © 2014. Published by Elsevier Masson SAS.

  4. Method for somatic cell nuclear transfer in zebrafish.

    Science.gov (United States)

    Siripattarapravat, Kannika; Cibelli, Jose B

    2011-01-01

    Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we meticulously outline each step of the published protocol as well as preparations of equipments and reagents used in zebrafish SCNT. All describable detailed-tips are elaborated in texts and figures. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Real-time whole-body visualization of Chikungunya Virus infection and host interferon response in zebrafish.

    Directory of Open Access Journals (Sweden)

    Nuno Palha

    Full Text Available Chikungunya Virus (CHIKV, a re-emerging arbovirus that may cause severe disease, constitutes an important public health problem. Herein we describe a novel CHIKV infection model in zebrafish, where viral spread was live-imaged in the whole body up to cellular resolution. Infected cells emerged in various organs in one principal wave with a median appearance time of ∼14 hours post infection. Timing of infected cell death was organ dependent, leading to a shift of CHIKV localization towards the brain. As in mammals, CHIKV infection triggered a strong type-I interferon (IFN response, critical for survival. IFN was mainly expressed by neutrophils and hepatocytes. Cell type specific ablation experiments further demonstrated that neutrophils play a crucial, unexpected role in CHIKV containment. Altogether, our results show that the zebrafish represents a novel valuable model to dynamically visualize replication, pathogenesis and host responses to a human virus.

  6. Slc39a7/zip7 plays a critical role in development and zinc homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Guang Yan

    Full Text Available BACKGROUND: Slc39a7/Zip7, also known as Ke4, is a member of solute carrier family 39 (Slc39a and plays a critical role in regulating cell growth and death. Because the function of Zip7 in vivo was unclear, the present study investigated the function of zip7 in vertebrate development and zinc metabolism using zebrafish as a model organism. PRINCIPAL FINDING: Using real-time PCR to determine the gene expression pattern of zip7 during zebrafish development, we found that zip7 mRNA is expressed throughout embryonic development and into maturity. Interestingly, whole mount in situ hybridization revealed that while zip7 mRNA is ubiquitously expressed until 12 hours post-fertilization (hpf; at 24 hpf and beyond, zip7 mRNA was specifically detected only in eyes. Morpholino-antisense (MO gene knockdown assay revealed that downregulation of zip7 expression resulted in several morphological defects in zebrafish including decreased head size, smaller eyes, shorter palates, and shorter and curved spinal cords. Analysis by synchrotron radiation X-ray fluorescence (SR-XRF showed reduced concentrations of zinc in brain, eyes, and gills of zip7-MO-injected embryos. Furthermore, incubation of the zip7 knockdown embryos in a zinc-supplemented solution was able to rescue the MO-induced morphological defects. SIGNIFICANCE: Our data suggest that zip7 is required for eye, brain, and skeleton formation during early embryonic development in zebrafish. Moreover, zinc supplementation can partially rescue defects resulting from zip7 gene knockdown. Taken together, our data provide critical insight into a novel function of zip7 in development and zinc homeostasis in vivo in zebrafish.

  7. Assessment of Jatropha curcas L. biodiesel seed cake toxicity using the zebrafish (Danio rerio) embryo toxicity (ZFET) test.

    Science.gov (United States)

    Hallare, Arnold V; Ruiz, Paulo Lorenzo S; Cariño, J C Earl D

    2014-05-01

    Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction.

  8. Longitudinal visualization of vascular occlusion, reperfusion, and remodeling in a zebrafish model of retinal vascular leakage using OCT angiography

    Science.gov (United States)

    Spitz, Kathleen; Bozic, Ivan; Desai, Vineet; Rao, Gopikrishna M.; Pollock, Lana M.; Anand-Apte, Bela; Tao, Yuankai K.

    2017-02-01

    Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two of the leading causes of blindness and visual impairment in the world. Neovascularization results in severe vision loss in DR and AMD and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a leading model organism for studying human disease pathogenesis, and the highly conserved drug activity between zebrafish and humans and their ability to readily absorb small molecules dissolved in water has benefited pharmaceutical discovery. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo retinal imaging in a zebrafish model of vascular leakage. Zebrafish were treated with diethylaminobenzaldehyde (DEAB) to induce vascular leakage and imaged with OCT and OCT-A at six time points over two weeks: baseline one day before treatment and one, three, six, eight, and ten days post treatment. Longitudinal functional imaging showed significant vascular response immediately after DEAB treatment. Observed vascular changes included partial or complete vascular occlusion immediately after treatment and reperfusion during a two-week period. Increased vascular tortuosity several days post treatment indicated remodeling, and bifurcations and collateral vessel formation were also observed. In addition, significant treatment response variabilities were observed in the contralateral eye of the same animal. Anatomical and functional normalization was observed in most animals by ten days post treatment. These preliminary results motivate potential applications of OCT-A as a tool for studying pathogenesis and therapeutic screening in zebrafish models of retinal vascular disease.

  9. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems.

    Directory of Open Access Journals (Sweden)

    Matteo A Avella

    Full Text Available Endogenous microbiota play essential roles in the host's immune system, physiology, reproduction and nutrient metabolism. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host's development. Thus, we treated zebrafish from birth to sexual maturation (2-months treatment with Lactobacillus rhamnosus, a probiotic species intended for human use. We monitored for the presence of L. rhamnosus during the entire treatment. Zebrafish at 6 days post fertilization (dpf exhibited elevated gene expression levels for Insulin-like growth factors -I and -II, Peroxisome proliferator activated receptors -α and -β, VDR-α and RAR-γ when compared to untreated-10 days old zebrafish. Using a gonadotropin-releasing hormone 3 GFP transgenic zebrafish (GnRH3-GFP, higher GnRH3 expression was found at 6, 8 and 10 dpf upon L. rhamnosus treatment. The same larvae exhibited earlier backbone calcification and gonad maturation. Noteworthy in the gonad development was the presence of first testes differentiation at 3 weeks post fertilization in the treated zebrafish population -which normally occurs at 8 weeks- and a dramatic sex ratio modulation (93% females, 7% males in control vs. 55% females, 45% males in the treated group. We infer that administration of L. rhamnosus stimulated the IGF system, leading to a faster backbone calcification. Moreover we hypothesize a role for administration of L. rhamnosus on GnRH3 modulation during early larval development, which in turn affects gonadal development and sex differentiation. These findings suggest a significant role of the microbiota composition on the host organism development profile and open new perspectives in the study of probiotics usage and application.

  10. Method for quantifying NSAIDs and clofibric acid in aqueous samples, lumpfish (Cyclopterus lumpus) roe, and zebrafish (Danio rerio) eleutheroembryos and evaluation of their bioconcentration in zebrafish eleutheroembryos.

    Science.gov (United States)

    Molina-Fernandez, N; Perez-Conde, C; Rainieri, S; Sanz-Landaluze, J

    2017-04-01

    Pharmaceuticals such as nonsteroidal anti-inflammatory drugs (NSAIDs) and lipid regulators are being repeatedly detected at low concentrations (pg · mL -1 -ng · mL -1 ) in the environment. A large fraction of these compounds are ionizable. Ionized compounds show different physico-chemical properties and environmental behavior in comparison to their neutral analogs; as a consequence, the quantification methods currently available, based on the neutral molecules, might not be suitable to detect the corresponding ionized compounds. To overcome this problem, we developed a specific analytical method to quantify NSAIDs and lipid regulators (i.e., ibuprofen, diclofenac, naproxen, and clofibric acid) and their ionized compounds. This method is based on three steps: (1) the extraction of the organic compounds with an organic solvent assisted with an ultrasonic probe, (2) the cleaning of the extracts with a dispersive SPE with C 18 , and (3) the determination of the chemical compounds by GC-MS (prior derivatization of the analytes). We demonstrated that the proposed method can successfully quantify the pharmaceuticals and their ionized compounds in aqueous samples, lumpfish eggs, and zebrafish eleutheroembryos. Additionally, it allows the extraction and the cleanup of extracts from small samples (0.010 g of wet weight in pools of 20 larvae) and complex matrixes (due to high lipid content) and can be used as a basis for bioaccumulation assays performed with zebrafish eleutheroembryos in alternative to OECD test 305.

  11. Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy.

    Directory of Open Access Journals (Sweden)

    Hannah E J Armer

    Full Text Available The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM and Serial Block Face/Scanning Electron Microscopy (SBF/SEM. The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism.

  12. Afferent Connectivity of the Zebrafish Habenulae

    Science.gov (United States)

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  13. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development.

    LENUS (Irish Health Repository)

    Doodnath, Reshma

    2012-02-01

    AIM: Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). METHODS: Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. RESULTS: GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. CONCLUSION: The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the

  14. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L. Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1 during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos. Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L. Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes

  15. Phenotype classification of zebrafish embryos by supervised learning.

    Directory of Open Access Journals (Sweden)

    Nathalie Jeanray

    Full Text Available Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.

  16. Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yao Xiao

    2016-09-01

    Full Text Available A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents.

  17. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Seok, Seung Hyeok [Department of Microbiology and Immunology, Institute for Experimental Animals, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Payumo, Alexander Y.; Chen, James K. [Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  18. Zebrafish models in neuropsychopharmacology and CNS drug discovery.

    Science.gov (United States)

    Khan, Kanza M; Collier, Adam D; Meshalkina, Darya A; Kysil, Elana V; Khatsko, Sergey L; Kolesnikova, Tatyana; Morzherin, Yury Yu; Warnick, Jason E; Kalueff, Allan V; Echevarria, David J

    2017-07-01

    Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society.

  19. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    International Nuclear Information System (INIS)

    Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok; Payumo, Alexander Y.; Chen, James K.; Kwon, Ho Jeong

    2013-01-01

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases

  20. Social learning of an associative foraging task in zebrafish

    Science.gov (United States)

    Zala, Sarah M.; Määttänen, Ilmari

    2013-05-01

    The zebrafish ( Danio rerio) is increasingly becoming an important model species for studies on the genetic and neural mechanisms controlling behaviour and cognition. Here, we utilized a conditioned place preference (CPP) paradigm to study social learning in zebrafish. We tested whether social interactions with conditioned demonstrators enhance the ability of focal naïve individuals to learn an associative foraging task. We found that the presence of conditioned demonstrators improved focal fish foraging behaviour through the process of social transmission, whereas the presence of inexperienced demonstrators interfered with the learning of the control focal fish. Our results indicate that zebrafish use social learning for finding food and that this CPP paradigm is an efficient assay to study social learning and memory in zebrafish.

  1. Organics.

    Science.gov (United States)

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  2. Organizers.

    Science.gov (United States)

    Callison, Daniel

    2000-01-01

    Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a…

  3. Study on radiation modifiers with zebrafish as a vertebrate model

    International Nuclear Information System (INIS)

    Lei Jixiao; Ni Jin; Cai Jianming; Shen Jianliang

    2010-01-01

    Zebrafish (Danio rerio) as a vertebrate model system has been used in a series of biomedical experiments by scientists. It offers distinctive benefits as a laboratory model system, especially for embryonic development, gene expression, drug screening and human disease model. In this paper, the typical radiation modifiers, such as Amifostine, DF-1, AG1478, Flavopiridol and DNA repair proteins involved in biomedical process by use of zebrafish have been reviewed. (authors)

  4. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo

    International Nuclear Information System (INIS)

    Wu, Qin; Yan, Wei; Liu, Chunsheng; Li, Li; Yu, Liqin; Zhao, Sujuan; Li, Guangyu

    2016-01-01

    Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. α1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons. - Highlights: • MCLR accumulation induces developmental neurotoxicity in zebrafish embryo. • The decrease of dopamine levels might be associated with the MCLR-induced developmental neurotoxicity in zebrafish larvae. • The alternation of cholinergic system might contribute to the change of neurobehavior in zebrafish larvae exposure with MCLR. - MCLR accumulation induces developmental neurotoxicity by affecting cholinergic system, dopaminergic signaling, and the development of neurons in zebrafish embryo.

  5. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    OpenAIRE

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2010-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic ...

  6. Ionic channels underlying the ventricular action potential in zebrafish embryo.

    Science.gov (United States)

    Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar

    2014-06-01

    Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. High magnetic field induced otolith fusion in the zebrafish larvae.

    Science.gov (United States)

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-04-11

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.

  8. ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish

    KAUST Repository

    Weerdenburg, Eveline M.

    2012-02-15

    ESX-5 is a mycobacterial type VII protein secretion system responsible for transport of numerous PE and PPE proteins. It is involved in the induction of host cell death and modulation of the cytokine response in vitro. In this work, we studied the effects of ESX-5 in embryonic and adult zebrafish using Mycobacterium marinum. We found that ESX-5-deficient M.marinum was slightly attenuated in zebrafish embryos. Surprisingly, the same mutant showed highly increased virulence in adult zebrafish, characterized by increased bacterial loads and early onset of granuloma formation with rapid development of necrotic centres. This early onset of granuloma formation was accompanied by an increased expression of pro-inflammatory cytokines and tissue remodelling genes in zebrafish infected with the ESX-5 mutant. Experiments using RAG-1-deficient zebrafish showed that the increased virulence of the ESX-5 mutant was not dependent on the adaptive immune system. Mixed infection experiments with wild-type and ESX-5 mutant bacteria showed that the latter had a specific advantage in adult zebrafish and outcompeted wild-type bacteria. Together our experiments indicate that ESX-5-mediated protein secretion is used by M.marinum to establish a moderate and persistent infection. © 2012 Blackwell Publishing Ltd.

  9. Pink spot, white spot: the pineal skylight of the leatherback turtle (Dermochelys coriacea Vandelli 1761) skull and its possible role in the phenology of feeding migrations

    Science.gov (United States)

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2014-01-01

    Leatherback turtles, Dermochelys coriacea, which have an irregular pink area on the crown of the head known as the pineal or ‘pink spot’, forage upon jellyfish in cool temperate waters along the western and eastern margins of the North Atlantic during the summer. Our study showed that the skeletal structures underlying the pink spot in juvenile and adult turtles are compatible with the idea of a pineal dosimeter function that would support recognition of environmental light stimuli. We interrogated an extensive turtle sightings database to elucidate the phenology of leatherback foraging during summer months around Great Britain and Ireland and compared the sightings with historical data for sea surface temperatures and day lengths to assess whether sea surface temperature or light periodicity/levels were likely abiotic triggers prompting foraging turtles to turn south and leave their feeding grounds at the end of the summer. We found that sea temperature was too variable and slow changing in the study area to be useful as a trigger and suggest that shortening of day lengths as the late summer equilux is approached provides a credible phenological cue, acting via the pineal, for leatherbacks to leave their foraging areas whether they are feeding close to Nova Scotia or Great Britain and Ireland.

  10. Development and regeneration of the zebrafish maxillary barbel: a novel study system for vertebrate tissue growth and repair.

    Science.gov (United States)

    LeClair, Elizabeth E; Topczewski, Jacek

    2010-01-15</