WorldWideScience

Sample records for zebrafish brain optimization

  1. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  2. Cerebroventricular Microinjection (CVMI) into Adult Zebrafish Brain Is an Efficient Misexpression Method for Forebrain Ventricular Cells

    Science.gov (United States)

    Kizil, Caghan; Brand, Michael

    2011-01-01

    The teleost fish Danio rerio (zebrafish) has a remarkable ability to generate newborn neurons in its brain at adult stages of its lifespan-a process called adult neurogenesis. This ability relies on proliferating ventricular progenitors and is in striking contrast to mammalian brains that have rather restricted capacity for adult neurogenesis. Therefore, investigating the zebrafish brain can help not only to elucidate the molecular mechanisms of widespread adult neurogenesis in a vertebrate species, but also to design therapies in humans with what we learn from this teleost. Yet, understanding the cellular behavior and molecular programs underlying different biological processes in the adult zebrafish brain requires techniques that allow manipulation of gene function. As a complementary method to the currently used misexpression techniques in zebrafish, such as transgenic approaches or electroporation-based delivery of DNA, we devised a cerebroventricular microinjection (CVMI)-assisted knockdown protocol that relies on vivo morpholino oligonucleotides, which do not require electroporation for cellular uptake. This rapid method allows uniform and efficient knockdown of genes in the ventricular cells of the zebrafish brain, which contain the neurogenic progenitors. We also provide data on the use of CVMI for growth factor administration to the brain – in our case FGF8, which modulates the proliferation rate of the ventricular cells. In this paper, we describe the CVMI method and discuss its potential uses in zebrafish. PMID:22076157

  3. Estrogenic effects of several BPA analogs in the developing zebrafish brain

    Directory of Open Access Journals (Sweden)

    Joel eCano-Nicolau

    2016-03-01

    Full Text Available Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA. The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4-day or 7-day post-fertilization (dpf zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B, expressed in the brain, using three different in situ/in vivo strategies: 1 Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols ; 2 Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus; and 3 Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα. Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP did not show estrogenic activity in our model.

  4. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development

    Directory of Open Access Journals (Sweden)

    Sugimoto Masahiko

    2010-07-01

    Full Text Available Abstract Background Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB and blood-retinal (BRB barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP in blood plasma, as an endogenous tracer. Results The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB. Conclusion Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.

  5. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain

    Directory of Open Access Journals (Sweden)

    Hauptmann Giselbert

    2011-04-01

    Full Text Available Abstract Background In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected. Results We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA. Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent in situ hybridization (FISH experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts

  6. Expression and knockdown of zebrafish folliculin suggests requirement for embryonic brain morphogenesis.

    Science.gov (United States)

    Kenyon, Emma J; Luijten, Monique N H; Gill, Harmeet; Li, Nan; Rawlings, Matthew; Bull, James C; Hadzhiev, Yavor; van Steensel, Maurice A M; Maher, Eamonn; Mueller, Ferenc

    2016-07-08

    Birt-Hogg-Dubé syndrome (BHD) is a dominantly inherited familial cancer syndrome characterised by the development of benign skin fibrofolliculomas, multiple lung and kidney cysts, spontaneous pneumothorax and susceptibility to renal cell carcinoma. BHD is caused by mutations in the gene encoding Folliculin (FLCN). Little is known about what FLCN does in a healthy individual and how best to treat those with BHD. As a first approach to developing a vertebrate model for BHD we aimed to identify the temporal and spatial expression of flcn transcripts in the developing zebrafish embryo. To gain insights into the function of flcn in a whole organism system we generated a loss of function model of flcn by the use of morpholino knockdown in zebrafish. flcn is expressed broadly and upregulated in the fin bud, somites, eye and proliferative regions of the brain of the Long-pec stage zebrafish embryos. Together with knockdown phenotypes, expression analysis suggest involvement of flcn in zebrafish embryonic brain development. We have utilised the zFucci system, an in vivo, whole organism cell cycle assay to study the potential role of flcn in brain development. We found that at the 18 somite stage there was a significant drop in cells in the S-M phase of the cell cycle in flcn morpholino injected embryos with a corresponding increase of cells in the G1 phase. This was particularly evident in the brain, retina and somites of the embryo. Timelapse analysis of the head region of flcn morpholino injected and mismatch control embryos shows the temporal dynamics of cell cycle misregulation during development. In conclusion we show that zebrafish flcn is expressed in a non-uniform manner and is likely required for the maintenance of correct cell cycle regulation during embryonic development. We demonstrate the utilisation of the zFucci system in testing the role of flcn in cell proliferation and suggest a function for flcn in regulating cell proliferation in vertebrate embryonic

  7. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  8. Whole-brain activity mapping onto a zebrafish brain atlas

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinase – Mapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  9. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain.

    Directory of Open Access Journals (Sweden)

    Rajini Sreenivasan

    Full Text Available BACKGROUND: Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. METHODOLOGY/PRINCIPAL FINDINGS: We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs, 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and 'rest-of-body' from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4 has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. CONCLUSIONS/SIGNIFICANCE: We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar

  10. Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation.

    Science.gov (United States)

    Diotel, Nicolas; Vaillant, Colette; Kah, Olivier; Pellegrini, Elisabeth

    2016-01-01

    Adult fish exhibit a strong neurogenic capacity due to the persistence of radial glial cells. In zebrafish, radial glial cells display well-established markers such as the estrogen-synthesizing enzyme (AroB) and the brain lipid binding protein (Blbp), which is known to strongly bind omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). While Blpb is mainly described in the telencephalon of adult zebrafish, its expression in the remaining regions of the brain is poorly documented. The present study was designed to further investigate Blbp expression in the brain, its co-expression with AroB, and its link with radial glial cells proliferation in zebrafish. We generated a complete and detailed mapping of Blbp expression in the whole brain and show its complete co-expression with AroB, except in some tectal and hypothalamic regions. By performing PCNA and Blbp immunohistochemistry on cyp19a1b-GFP (AroB-GFP) fish, we also demonstrated preferential Blbp expression in proliferative radial glial cells in almost all regions studied. To our knowledge, this is the first complete and detailed mapping of Blbp-expressing cells showing strong association between Blbp and radial glial cell proliferation in the adult brain of fish. Given that zebrafish is now recognized models for studying neurogenesis and brain repair, our data provide detailed characterization of Blbp in the entire brain and open up a broad field of research investigating the role of omega-3 polyunsaturated fatty acids in neural stem cell activity in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain.

    Science.gov (United States)

    Roussigne, Myriam; Blader, Patrick; Wilson, Stephen W

    2012-03-01

    How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.

  12. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanan; Liu, Xiaochun [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); Zhu, Pei; Li, Jianzhen; Sham, Kathy W.Y. [School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Cheng, Shuk Han [Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Li, Shuisheng; Zhang, Yong [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); Cheng, Christopher H.K., E-mail: chkcheng@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Lin, Haoran, E-mail: lsslhr@mail.sysu.edu.cn [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); College of Ocean, Hainan University, Haikou 570228, Hainan (China)

    2013-05-24

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons.

  13. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    International Nuclear Information System (INIS)

    Shi, Yanan; Liu, Xiaochun; Zhu, Pei; Li, Jianzhen; Sham, Kathy W.Y.; Cheng, Shuk Han; Li, Shuisheng; Zhang, Yong; Cheng, Christopher H.K.; Lin, Haoran

    2013-01-01

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons

  14. Phylostratigraphic profiles in zebrafish uncover chordate origins of the vertebrate brain.

    Science.gov (United States)

    Šestak, Martin Sebastijan; Domazet-Lošo, Tomislav

    2015-02-01

    An elaborated tripartite brain is considered one of the important innovations of vertebrates. Other extant chordate groups have a more basic brain organization. For instance, cephalochordates possess a relatively simple brain possibly homologous to the vertebrate forebrain and hindbrain, whereas tunicates display the tripartite organization, but without the specialized brain centers. The difference in anatomical complexity is even more pronounced if one compares chordates with other deuterostomes that have only a diffuse nerve net or alternatively a rather simple central nervous system. To gain a new perspective on the evolutionary roots of the complex vertebrate brain, we made here a phylostratigraphic analysis of gene expression patterns in the developing zebrafish (Danio rerio). The recovered adaptive landscape revealed three important periods in the evolutionary history of the zebrafish brain. The oldest period corresponds to preadaptive events in the first metazoans and the emergence of the nervous system at the metazoan-eumetazoan transition. The origin of chordates marks the next phase, where we found the overall strongest adaptive imprint in almost all analyzed brain regions. This finding supports the idea that the vertebrate brain evolved independently of the brains within the protostome lineage. Finally, at the origin of vertebrates we detected a pronounced signal coming from the dorsal telencephalon, in agreement with classical theories that consider this part of the cerebrum a genuine vertebrate innovation. Taken together, these results reveal a stepwise adaptive history of the vertebrate brain where most of its extant organization was already present in the chordate ancestor. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    Science.gov (United States)

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  16. Nuclear progesterone receptors are up-regulated by estrogens in neurons and radial glial progenitors in the brain of zebrafish.

    Directory of Open Access Journals (Sweden)

    Nicolas Diotel

    Full Text Available In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.

  17. High-Throughput Behavioral Screens: the First Step towards Finding Genes Involved in Vertebrate Brain Function Using Zebrafish

    Directory of Open Access Journals (Sweden)

    Robert Gerlai

    2010-04-01

    Full Text Available The zebrafish has been in the forefront of developmental biology for three decades and has become a favorite of geneticists. Due to the accumulated genetic knowledge and tools developed for the zebrafish it is gaining popularity in other disciplines, including neuroscience. The zebrafish offers a compromise between system complexity (it is a vertebrate similar in many ways to our own species and practical simplicity (it is small, easy to keep, and prolific. Such features make zebrafish an excellent choice for high throughput mutation and drug screening. For the identification of mutation or drug induced alteration of brain function arguably the best methods are behavioral test paradigms. This review does not present experimental examples for the identification of particular genes or drugs. Instead it describes how behavioral screening methods may enable one to find functional alterations in the vertebrate brain. Furthermore, the review is not comprehensive. The behavioral test examples presented are biased according to the personal interests of the author. They will cover research areas including learning and memory, fear and anxiety, and social behavior. Nevertheless, the general principles will apply to other functional domains and should represent a snapshot of the rapidly evolving behavioral screening field with zebrafish.

  18. Zebrafish: a model animal for analyzing the impact of environmental pollutants on muscle and brain mitochondrial bioenergetics.

    Science.gov (United States)

    Bourdineaud, Jean-Paul; Rossignol, R; Brèthes, D

    2013-01-01

    Mercury, anthropogenic release of uranium (U), and nanoparticles constitute hazardous environmental pollutants able to accumulate along the aquatic food chain with severe risk for animal and human health. The impact of such pollutants on living organisms has been up to now approached by classical toxicology in which huge doses of toxic compounds, environmentally irrelevant, are displayed through routes that never occur in the lifespan of organisms (for instance injecting a bolus of mercury to an animal although the main route is through prey and fish eating). We wanted to address the effect of such pollutants on the muscle and brain mitochondrial bioenergetics under realistic conditions, at unprecedented low doses, using an aquatic model animal, the zebrafish Danio rerio. We developed an original method to measure brain mitochondrial respiration: a single brain was put in 1.5 mL conical tube containing a respiratory buffer. Brains were gently homogenized by 13 strokes with a conical plastic pestle, and the homogenates were immediately used for respiration measurements. Skinned muscle fibers were prepared by saponin permeabilization. Zebrafish were contaminated with food containing 13 μg of methylmercury (MeHg)/g, an environmentally relevant dose. In permeabilized muscle fibers, we observed a strong inhibition of both state 3 mitochondrial respiration and cytochrome c oxidase activity after 49 days of MeHg exposure. We measured a dramatic decrease in the rate of ATP release by skinned muscle fibers. Contrarily to muscles, brain mitochondrial respiration was not modified by MeHg exposure although brain accumulated twice as much MeHg than muscles. When zebrafish were exposed to 30 μg/L of waterborne U, the basal mitochondrial respiratory control ratio was decreased in muscles after 28 days of exposure. This was due to an increase of the inner mitochondrial membrane permeability. The impact of a daily ration of food containing gold nanoparticles of two sizes (12 and

  19. Methylmercury Induced Neurotoxicity and the Influence of Selenium in the Brains of Adult Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Josef Daniel Rasinger

    2017-03-01

    Full Text Available The neurotoxicity of methylmercury (MeHg is well characterised, and the ameliorating effects of selenium have been described. However, little is known about the molecular mechanisms behind this contaminant-nutrient interaction. We investigated the influence of selenium (as selenomethionine, SeMet and MeHg on mercury accumulation and protein expression in the brain of adult zebrafish (Danio rerio. Fish were fed diets containing elevated levels of MeHg and/or SeMet in a 2 × 2 full factorial design for eight weeks. Mercury concentrations were highest in the brain tissue of MeHg-exposed fish compared to the controls, whereas lower levels of mercury were found in the brain of zebrafish fed both MeHg and SeMet compared with the fish fed MeHg alone. The expression levels of proteins associated with gap junction signalling, oxidative phosphorylation, and mitochondrial dysfunction were significantly (p < 0.05 altered in the brain of zebrafish after exposure to MeHg and SeMet alone or in combination. Analysis of upstream regulators indicated that these changes were linked to the mammalian target of rapamycin (mTOR pathways, which were activated by MeHg and inhibited by SeMet, possibly through a reactive oxygen species mediated differential activation of RICTOR, the rapamycin-insensitive binding partner of mTOR.

  20. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.

    Science.gov (United States)

    Prykhozhij, Sergey V; Fuller, Charlotte; Steele, Shelby L; Veinotte, Chansey J; Razaghi, Babak; Robitaille, Johane M; McMaster, Christopher R; Shlien, Adam; Malkin, David; Berman, Jason N

    2018-06-14

    We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.

  1. The microcephaly gene aspm is involved in brain development in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Taek; Lee, Mi-Sun; Choi, Jung-Hwa [Department of Biology and GRAST, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Jung, Ju-Yeon [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Ahn, Dae-Gwon [Department of Biology and GRAST, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yeo, Sang-Yeob [Department of Biotechnology, Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Choi, Dong-Kug, E-mail: choidk@kku.ac.kr [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Kim, Cheol-Hee, E-mail: zebrakim@cnu.ac.kr [Department of Biology and GRAST, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2011-06-17

    Highlights: {yields} We identified a zebrafish aspm/mcph5 gene that is expressed in proliferating cells in the CNS during early development. {yields} Embryos injected with the aspm MO consistently showed a reduced head and eye size but were otherwise grossly normal, closely mimicking the known phenotypes of human microcephaly patients. {yields} Knock-down of aspm causes cell cycle arrest and apoptotic cell death during early development. -- Abstract: MCPH is a neurodevelopmental disorder characterized by a global reduction in cerebral cortical volume. Homozygous mutation of the MCPH5 gene, also known as ASPM, is the most common cause of the MCPH phenotype. To elucidate the roles of ASPM during embryonic development, the zebrafish aspm was identified, which is specifically expressed in proliferating cells in the CNS. Morpholino-mediated knock-down of aspm resulted in a significant reduction in head size. Furthermore, aspm-deficient embryos exhibited a mitotic arrest during early development. These findings suggest that the reduction in brain size in MCPH might be caused by lack of aspm function in the mitotic cell cycle and demonstrate that the zebrafish can provide a model system for congenital diseases of the human nervous system.

  2. The microcephaly gene aspm is involved in brain development in zebrafish

    International Nuclear Information System (INIS)

    Kim, Hyun-Taek; Lee, Mi-Sun; Choi, Jung-Hwa; Jung, Ju-Yeon; Ahn, Dae-Gwon; Yeo, Sang-Yeob; Choi, Dong-Kug; Kim, Cheol-Hee

    2011-01-01

    Highlights: → We identified a zebrafish aspm/mcph5 gene that is expressed in proliferating cells in the CNS during early development. → Embryos injected with the aspm MO consistently showed a reduced head and eye size but were otherwise grossly normal, closely mimicking the known phenotypes of human microcephaly patients. → Knock-down of aspm causes cell cycle arrest and apoptotic cell death during early development. -- Abstract: MCPH is a neurodevelopmental disorder characterized by a global reduction in cerebral cortical volume. Homozygous mutation of the MCPH5 gene, also known as ASPM, is the most common cause of the MCPH phenotype. To elucidate the roles of ASPM during embryonic development, the zebrafish aspm was identified, which is specifically expressed in proliferating cells in the CNS. Morpholino-mediated knock-down of aspm resulted in a significant reduction in head size. Furthermore, aspm-deficient embryos exhibited a mitotic arrest during early development. These findings suggest that the reduction in brain size in MCPH might be caused by lack of aspm function in the mitotic cell cycle and demonstrate that the zebrafish can provide a model system for congenital diseases of the human nervous system.

  3. The gonadotropin-inhibitory hormone (Lpxrfa) system's regulation of reproduction in the brain-pituitary axis of the zebrafish (Danio rerio).

    Science.gov (United States)

    Spicer, Olivia Smith; Zmora, Nilli; Wong, Ten-Tsao; Golan, Matan; Levavi-Sivan, Berta; Gothilf, Yoav; Zohar, Yonathan

    2017-05-01

    Gonadotropin-inhibitory hormone (GNIH) was discovered in quail with the ability to reduce gonadotropin expression/secretion in the pituitary. There have been few studies on GNIH orthologs in teleosts (LPXRFamide (Lpxrfa) peptides), which have provided inconsistent results. Therefore, the goal of this study was to determine the roles and modes of action by which Lpxrfa exerts its functions in the brain-pituitary axis of zebrafish (Danio rerio). We localized Lpxrfa soma to the ventral hypothalamus, with fibers extending throughout the brain and to the pituitary. In the preoptic area, Lpxrfa fibers interact with gonadotropin-releasing hormone 3 (Gnrh3) soma. In pituitary explants, zebrafish peptide Lpxrfa-3 downregulated luteinizing hormone beta subunit and common alpha subunit expression. In addition, Lpxrfa-3 reduced gnrh3 expression in brain slices, offering another pathway for Lpxrfa to exert its effects on reproduction. Receptor activation studies, in a heterologous cell-based system, revealed that all three zebrafish Lpxrfa peptides activate Lpxrf-R2 and Lpxrf-R3 via the PKA/cAMP pathway. Receptor activation studies demonstrated that, in addition to activating Lpxrf receptors, zebrafish Lpxrfa-2 and Lpxrfa-3 antagonize Kisspeptin-2 (Kiss2) activation of Kisspeptin receptor-1a (Kiss1ra). The fact that kiss1ra-expressing neurons in the preoptic area are innervated by Lpxrfa-ir fibers suggests an additional pathway for Lpxrfa action. Therefore, our results suggest that Lpxrfa may act as a reproductive inhibitory neuropeptide in the zebrafish that interacts with Gnrh3 neurons in the brain and with gonadotropes in the pituitary, while also potentially utilizing the Kiss2/Kiss1ra pathway. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish.

    Science.gov (United States)

    Kim, Dal Hyung; Kim, Jungsoo; Marques, João C; Grama, Abhinav; Hildebrand, David G C; Gu, Wenchao; Li, Jennifer M; Robson, Drew N

    2017-11-01

    Calcium imaging with cellular resolution typically requires an animal to be tethered under a microscope, which substantially restricts the range of behaviors that can be studied. To expand the behavioral repertoire amenable to imaging, we have developed a tracking microscope that enables whole-brain calcium imaging with cellular resolution in freely swimming larval zebrafish. This microscope uses infrared imaging to track a target animal in a behavior arena. On the basis of the predicted trajectory of the animal, we applied optimal control theory to a motorized stage system to cancel brain motion in three dimensions. We combined this motion-cancellation system with differential illumination focal filtering, a variant of HiLo microscopy, which enabled us to image the brain of a freely swimming larval zebrafish for more than an hour. This work expands the repertoire of natural behaviors that can be studied with cellular-resolution calcium imaging to potentially include spatial navigation, social behavior, feeding and reward.

  5. Brain-wide neuronal dynamics during motor adaptation in zebrafish.

    Science.gov (United States)

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2012-05-09

    A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.

  6. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    Directory of Open Access Journals (Sweden)

    Alessandra M. Welker

    2016-02-01

    Full Text Available Glioblastoma (GBM is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a

  7. Additive effects of levonorgestrel and ethinylestradiol on brain aromatase (cyp19a1b) in zebrafish specific in vitro and in vivo bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Hinfray, N., E-mail: nathalie.hinfray@ineris.fr [INERIS, Unité d' écotoxicologie in vitro et in vivo , Verneuil-en-Halatte (France); Tebby, C. [INERIS, Unité Modèles pour l' Ecotoxicologie et la Toxicologie, Verneuil-en-Halatte (France); Garoche, C.; Piccini, B. [INERIS, Unité d' écotoxicologie in vitro et in vivo , Verneuil-en-Halatte (France); Bourgine, G. [IRSET, équipe NEED, Université de Rennes 1, Rennes (France); Aït-Aïssa, S. [INERIS, Unité d' écotoxicologie in vitro et in vivo , Verneuil-en-Halatte (France); Kah, O. [IRSET, équipe NEED, Université de Rennes 1, Rennes (France); Pakdel, F. [IRSET, Inserm U1085, équipe TREC, Université de Rennes 1, Rennes (France); Brion, F. [INERIS, Unité d' écotoxicologie in vitro et in vivo , Verneuil-en-Halatte (France)

    2016-09-15

    Estrogens and progestins are widely used in combination in human medicine and both are present in aquatic environment. Despite the joint exposure of aquatic wildlife to estrogens and progestins, very little information is available on their combined effects. In the present study we investigated the effect of ethinylestradiol (EE2) and Levonorgestrel (LNG), alone and in mixtures, on the expression of the brain specific ER-regulated cyp19a1b gene. For that purpose, recently established zebrafish-derived tools were used: (i) an in vitro transient reporter gene assay in a human glial cell line (U251-MG) co-transfected with zebrafish estrogen receptors (zfERs) and the luciferase gene under the control of the zebrafish cyp19a1b gene promoter and (ii) an in vivo bioassay using a transgenic zebrafish expressing GFP under the control of the zebrafish cyp19a1b gene promoter (cyp19a1b-GFP). Concentration-response relationships for single chemicals were modeled and used to design the mixture experiments following a ray design. The results from mixture experiments were analyzed to predict joint effects according to concentration addition and statistical approaches were used to characterize the potential interactions between the components of the mixtures (synergism/antagonism). We confirmed that some progestins could elicit estrogenic effects in fish brain. In mixtures, EE2 and LNG exerted additive estrogenic effects both in vitro and in vivo, suggesting that some environmental progestin could exert effects that will add to those of environmental (xeno-)estrogens. Moreover, our zebrafish specific assays are valuable tools that could be used in risk assessment for both single chemicals and their mixtures. - Highlights: • Combined effects of EE2 and LNG were assessed on ER-dependent cyp19a1b expression. • EE2 and LNG alone induced brain aromatase in zebrafish specific bioassays. • Experimental ray design allowed complete concentration-response surfaces modeling. • EE2 and

  8. A transgenic zebrafish model for the in vivo study of the blood and choroid plexus brain barriers using claudin 5

    Directory of Open Access Journals (Sweden)

    Lisanne Martine van Leeuwen

    2018-02-01

    Full Text Available The central nervous system (CNS has specific barriers that protect the brain from potential threats and tightly regulate molecular transport. Despite the critical functions of the CNS barriers, the mechanisms underlying their development and function are not well understood, and there are very limited experimental models for their study. Claudin 5 is a tight junction protein required for blood brain barrier (BBB and, probably, choroid plexus (CP structure and function in vertebrates. Here, we show that the gene claudin 5a is the zebrafish orthologue with high fidelity expression, in the BBB and CP barriers, that demonstrates the conservation of the BBB and CP between humans and zebrafish. Expression of claudin 5a correlates with developmental tightening of the BBB and is restricted to a subset of the brain vasculature clearly delineating the BBB. We show that claudin 5a-expressing cells of the CP are ciliated ependymal cells that drive fluid flow in the brain ventricles. Finally, we find that CP development precedes BBB development and that claudin 5a expression occurs simultaneously with angiogenesis. Thus, our novel transgenic zebrafish represents an ideal model to study CNS barrier development and function, critical in understanding the mechanisms underlying CNS barrier function in health and disease.

  9. Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Drew Robert E

    2012-07-01

    Full Text Available Abstract Background Domesticated animal populations often show profound reductions in predator avoidance and fear-related behavior compared to wild populations. These reductions are remarkably consistent and have been observed in a diverse array of taxa including fish, birds, and mammals. Experiments conducted in common environments indicate that these behavioral differences have a genetic basis. In this study, we quantified differences in fear-related behavior between wild and domesticated zebrafish strains and used microarray analysis to identify genes that may be associated with this variation. Results Compared to wild zebrafish, domesticated zebrafish spent more time near the water surface and were more likely to occupy the front of the aquarium nearest a human observer. Microarray analysis of the brain transcriptome identified high levels of population variation in gene expression, with 1,749 genes significantly differentially expressed among populations. Genes that varied among populations belonged to functional categories that included DNA repair, DNA photolyase activity, response to light stimulus, neuron development and axon guidance, cell death, iron-binding, chromatin reorganization, and homeobox genes. Comparatively fewer genes (112 differed between domesticated and wild strains with notable genes including gpr177 (wntless, selenoprotein P1a, synaptophysin and synaptoporin, and acyl-CoA binding domain containing proteins (acbd3 and acbd4. Conclusions Microarray analysis identified a large number of genes that differed among zebrafish populations and may underlie behavioral domestication. Comparisons with similar microarray studies of domestication in rainbow trout and canids identified sixteen evolutionarily or functionally related genes that may represent components of shared molecular mechanisms underlying convergent behavioral evolution during vertebrate domestication. However, this conclusion must be tempered by limitations

  10. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    Science.gov (United States)

    Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059

  11. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  12. Whole-brain serial-section electron microscopy in larval zebrafish.

    Science.gov (United States)

    Hildebrand, David Grant Colburn; Cicconet, Marcelo; Torres, Russel Miguel; Choi, Woohyuk; Quan, Tran Minh; Moon, Jungmin; Wetzel, Arthur Willis; Scott Champion, Andrew; Graham, Brett Jesse; Randlett, Owen; Plummer, George Scott; Portugues, Ruben; Bianco, Isaac Henry; Saalfeld, Stephan; Baden, Alexander David; Lillaney, Kunal; Burns, Randal; Vogelstein, Joshua Tzvi; Schier, Alexander Franz; Lee, Wei-Chung Allen; Jeong, Won-Ki; Lichtman, Jeff William; Engert, Florian

    2017-05-18

    High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.

  13. Modeling tuberculous meningitis in zebrafish using Mycobacterium marinum

    Directory of Open Access Journals (Sweden)

    Lisanne M. van Leeuwen

    2014-09-01

    Full Text Available Tuberculous meningitis (TBM is one of the most severe extrapulmonary manifestations of tuberculosis, with a high morbidity and mortality. Characteristic pathological features of TBM are Rich foci, i.e. brain- and spinal-cord-specific granulomas formed after hematogenous spread of pulmonary tuberculosis. Little is known about the early pathogenesis of TBM and the role of Rich foci. We have adapted the zebrafish model of Mycobacterium marinum infection (zebrafish–M. marinum model to study TBM. First, we analyzed whether TBM occurs in adult zebrafish and showed that intraperitoneal infection resulted in granuloma formation in the meninges in 20% of the cases, with occasional brain parenchyma involvement. In zebrafish embryos, bacterial infiltration and clustering of infected phagocytes was observed after infection at three different inoculation sites: parenchyma, hindbrain ventricle and caudal vein. Infection via the bloodstream resulted in the formation of early granulomas in brain tissue in 70% of the cases. In these zebrafish embryos, infiltrates were located in the proximity of blood vessels. Interestingly, no differences were observed when embryos were infected before or after early formation of the blood-brain barrier (BBB, indicating that bacteria are able to cross this barrier with relatively high efficiency. In agreement with this observation, infected zebrafish larvae also showed infiltration of the brain tissue. Upon infection of embryos with an M. marinum ESX-1 mutant, only small clusters and scattered isolated phagocytes with high bacterial loads were present in the brain tissue. In conclusion, our adapted zebrafish–M. marinum infection model for studying granuloma formation in the brain will allow for the detailed analysis of both bacterial and host factors involved in TBM. It will help solve longstanding questions on the role of Rich foci and potentially contribute to the development of better diagnostic tools and therapeutics.

  14. A review of monoaminergic neuropsychopharmacology in zebrafish.

    Science.gov (United States)

    Maximino, Caio; Herculano, Anderson Manoel

    2010-12-01

    Monoamine neurotransmitters are the major regulatory mechanisms in the vertebrate brain, involved in the adjustment of motivation, emotion, and cognition. The chemical anatomy of these systems is thought to be highly conserved in the brain of all vertebrates, including zebrafish. Recently, the development of behavioral assays in zebrafish allowed the neuropsychopharmacological investigation of these circuits and its functions. Here we review neuroanatomical, genetic, neurochemical, and psychopharmacological evidence regarding the roles of histaminergic, dopaminergic, noradrenergic, serotonergic, and melatonergic systems in this species. We conclude that, in spite of species differences, zebrafish are suitable for the investigation of neuropsychopharmacology of drugs that affect theses systems; nonetheless, more thorough validation of behavioral methods is still needed.

  15. The neurogenetic frontier--lessons from misbehaving zebrafish.

    Science.gov (United States)

    Burgess, Harold A; Granato, Michael

    2008-11-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.

  16. Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain

    Directory of Open Access Journals (Sweden)

    Goldstein-Kral Lauren

    2011-01-01

    Full Text Available Abstract Background The mammalian suprachiasmatic nucleus (SCN, located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. Results We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b and cryptochrome 3 (cry3, in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh and serotonin-N-acetyltransferase (aanat2, involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their

  17. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond.

    Science.gov (United States)

    Kalueff, Allan V; Gebhardt, Michael; Stewart, Adam Michael; Cachat, Jonathan M; Brimmer, Mallorie; Chawla, Jonathan S; Craddock, Cassandra; Kyzar, Evan J; Roth, Andrew; Landsman, Samuel; Gaikwad, Siddharth; Robinson, Kyle; Baatrup, Erik; Tierney, Keith; Shamchuk, Angela; Norton, William; Miller, Noam; Nicolson, Teresa; Braubach, Oliver; Gilman, Charles P; Pittman, Julian; Rosemberg, Denis B; Gerlai, Robert; Echevarria, David; Lamb, Elisabeth; Neuhauss, Stephan C F; Weng, Wei; Bally-Cuif, Laure; Schneider, Henning

    2013-03-01

    Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish 'do', and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species.

  18. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury

    Science.gov (United States)

    Richter, Catherine A.; Garcia-Reyero, Natàlia; Martyniuk, Chris; Knoebl, Iris; Pope, Marie; Wright-Osment, Maureen K.; Denslow, Nancy D.; Tillitt, Donald E.

    2011-01-01

    Methylmercury (MeHg) is a potent neurotoxicant and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. The gene expression profile in adult female zebrafish whole brain induced by acute (96 h) MeHg exposure was investigated. Fish were exposed by injection to 0 or 0.5(mu or u)g MeHg/g. Gene expression changes in the brain were examined using a 22,000-feature zebrafish microarray. At a significance level of pbrain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxicants and will investigate responsive genes as potential biomarkers of MeHg exposure.

  19. Cross-Modal Learning between Visual and Vibration Signals in Zebrafish Danio Rerio

    Directory of Open Access Journals (Sweden)

    Mu-Yun Wang

    2011-10-01

    Full Text Available Animals are always integrating environmental information from multiple sensory modalities, but the mechanisms underneath are highly underexploited. Crossmodal interactions in animal perception have been found in several species including human, mice and flies. Here we subjected zebrafish as model because its genetic effects on brain and sense organ development are well studied, but the attentional processes are mainly unexplored. Zebrafish show impressive behaviour capabilities with relatively small or “simple” brains which make their nervous system relatively more accessible to experimentation than large-brained mammals. When conditioned with both vision and vibration signals, zebrafish were able to make higher correct choices than only one sensation. After multimodal training, zebrafish were also able to transfer the memory to unimodal conditioning when only given vision or vibration signals. This study provided basic findings for how animals process multimodal sensory from the environment, and showed crossmodal interactions in zebrafish for the first time.

  20. The neurogenetic frontier—lessons from misbehaving zebrafish

    Science.gov (United States)

    Granato, Michael

    2008-01-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206

  1. The importance of Zebrafish in biomedical research.

    Science.gov (United States)

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  2. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain

    International Nuclear Information System (INIS)

    Vittori, Milos; Breznik, Barbara; Gredar, Tajda; Hrovat, Katja; Bizjak Mali, Lilijana; Lah, Tamara T

    2016-01-01

    An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors

  3. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research.

    Science.gov (United States)

    Kalueff, Allan V; Echevarria, David J; Homechaudhuri, Sumit; Stewart, Adam Michael; Collier, Adam D; Kaluyeva, Aleksandra A; Li, Shaomin; Liu, Yingcong; Chen, Peirong; Wang, JiaJia; Yang, Lei; Mitra, Anisa; Pal, Subharthi; Chaudhuri, Adwitiya; Roy, Anwesha; Biswas, Missidona; Roy, Dola; Podder, Anupam; Poudel, Manoj K; Katare, Deepshikha P; Mani, Ruchi J; Kyzar, Evan J; Gaikwad, Siddharth; Nguyen, Michael; Song, Cai

    2016-01-01

    Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Zebrafish models in neuropsychopharmacology and CNS drug discovery.

    Science.gov (United States)

    Khan, Kanza M; Collier, Adam D; Meshalkina, Darya A; Kysil, Elana V; Khatsko, Sergey L; Kolesnikova, Tatyana; Morzherin, Yury Yu; Warnick, Jason E; Kalueff, Allan V; Echevarria, David J

    2017-07-01

    Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society.

  5. Zebrafish and relational memory: Could a simple fish be useful for the analysis of biological mechanisms of complex vertebrate learning?

    Science.gov (United States)

    Gerlai, Robert

    2017-08-01

    Analysis of the zebrafish allows one to combine two distinct scientific approaches, comparative ethology and neurobehavioral genetics. Furthermore, this species arguably represents an optimal compromise between system complexity and practical simplicity. This mini-review focuses on a complex form of learning, relational learning and memory, in zebrafish. It argues that zebrafish are capable of this type of learning, and it attempts to show how this species may be useful in the analysis of the mechanisms and the evolution of this complex brain function. The review is not intended to be comprehensive. It is a short opinion piece that reflects the author's own biases, and it draws some of its examples from the work coming from his own laboratory. Nevertheless, it is written in the hope that it will persuade those who have not utilized zebrafish and who may be interested in opening their research horizon to this relatively novel but powerful vertebrate research tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish.

    Science.gov (United States)

    Shams, Soaleha; Amlani, Shahid; Buske, Christine; Chatterjee, Diptendu; Gerlai, Robert

    2018-01-01

    The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions. © 2017 Wiley Periodicals, Inc.

  7. The HDAC Inhibitor TSA Ameliorates a Zebrafish Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Johnson, Nathan M; Farr, Gist H; Maves, Lisa

    2013-09-17

    Zebrafish are an excellent model for Duchenne muscular dystrophy. In particular, zebrafish provide a system for rapid, easy, and low-cost screening of small molecules that can ameliorate muscle damage in dystrophic larvae. Here we identify an optimal anti-sense morpholino cocktail that robustly knocks down zebrafish Dystrophin (dmd-MO). We use two approaches, muscle birefringence and muscle actin expression, to quantify muscle damage and show that the dmd-MO dystrophic phenotype closely resembles the zebrafish dmd mutant phenotype. We then show that the histone deacetylase (HDAC) inhibitor TSA, which has been shown to ameliorate the mdx mouse Duchenne model, can rescue muscle fiber damage in both dmd-MO and dmd mutant larvae. Our study identifies optimal morpholino and phenotypic scoring approaches for dystrophic zebrafish, further enhancing the zebrafish dmd model for rapid and cost-effective small molecule screening.

  8. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1 Mutant Zebrafish.

    Directory of Open Access Journals (Sweden)

    Brian P Grone

    Full Text Available Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1, are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing "dark-flash" visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.

  9. Analyzing the structure and function of neuronal circuits in zebrafish

    Directory of Open Access Journals (Sweden)

    Rainer eFriedrich

    2013-04-01

    Full Text Available The clever choice of animal models has been instrumental for many breakthrough discoveries in life sciences. One of the outstanding challenges in neuroscience is the in-depth analysis of neuronal circuits to understand how interactions between large numbers of neurons give rise to the computational power of the brain. A promising model organism to address this challenge is the zebrafish, not only because it is cheap, transparent and accessible to sophisticated genetic manipulations but also because it offers unique advantages for quantitative analyses of circuit structure and function. One of the most important advantages of zebrafish is its small brain size, both at larval and adult stages. Small brains enable exhaustive measurements of neuronal activity patterns by optical imaging and facilitate large-scale reconstructions of wiring diagrams by electron microscopic approaches. Such information is important, and probably essential, to obtain mechanistic insights into neuronal computations underlying higher brain functions and dysfunctions. This review provides a brief overview over current methods and motivations for dense reconstructions of neuronal activity and connectivity patterns. It then discusses selective advantages of zebrafish and provides examples how these advantages are exploited to study neuronal computations in the olfactory bulb.

  10. Pharmacologic modeling of primary mitochondrial respiratory chain dysfunction in zebrafish.

    Science.gov (United States)

    Byrnes, James; Ganetzky, Rebecca; Lightfoot, Richard; Tzeng, Michael; Nakamaru-Ogiso, Eiko; Seiler, Christoph; Falk, Marni J

    2017-07-18

    Mitochondrial respiratory chain (RC) disease is a heterogeneous and highly morbid group of energy deficiency disorders for which no proven effective therapies exist. Robust vertebrate animal models of primary RC dysfunction are needed to explore the effects of variation in RC disease subtypes, tissue-specific manifestations, and major pathogenic factors contributing to each disorder, as well as their pre-clinical response to therapeutic candidates. We have developed a series of zebrafish (Danio rerio) models that inhibit, to variable degrees, distinct aspects of RC function, and enable quantification of animal development, survival, behaviors, and organ-level treatment effects as well as effects on mitochondrial biochemistry and physiology. Here, we characterize four pharmacologic inhibitor models of mitochondrial RC dysfunction in early larval zebrafish, including rotenone (complex I inhibitor), azide (complex IV inhibitor), oligomycin (complex V inhibitor), and chloramphenicol (mitochondrial translation inhibitor that leads to multiple RC complex dysfunction). A range of concentrations and exposure times of each RC inhibitor were systematically evaluated on early larval development, animal survival, integrated behaviors (touch and startle responses), organ physiology (brain death, neurologic tone, heart rate), and fluorescence-based analyses of mitochondrial physiology in zebrafish skeletal muscle. Pharmacologic RC inhibitor effects were validated by spectrophotometric analysis of Complex I, II and IV enzyme activities, or relative quantitation of ATP levels in larvae. Outcomes were prioritized that utilize in vivo animal imaging and quantitative behavioral assessments, as may optimally inform the translational potential of pre-clinical drug screens for future clinical study in human mitochondrial disease subjects. The RC complex inhibitors each delayed early embryo development, with short-term exposures of these three agents or chloramphenicol from 5 to 7 days

  11. Brain Aromatase Modulates Serotonergic Neuron by Regulating Serotonin Levels in Zebrafish Embryos and Larvae

    Directory of Open Access Journals (Sweden)

    Zulvikar Syambani Ulhaq

    2018-05-01

    Full Text Available Teleost fish are known to express two isoforms of P450 aromatase, a key enzyme for estrogen synthesis. One of the isoforms, brain aromatase (AroB, cyp19a1b, is highly expressed during early development of zebrafish, thereby suggesting its role in brain development. On the other hand, early development of serotonergic neuron, one of the major monoamine neurons, is considered to play an important role in neurogenesis. Therefore, in this study, we investigated the role of AroB in development of serotonergic neuron by testing the effects of (1 estradiol (E2 exposure and (2 morpholino (MO-mediated AroB knockdown. When embryos were exposed to E2, the effects were biphasic. The low dose of E2 (0.005 µM significantly increased serotonin (5-HT positive area at 48 hour post-fertilization (hpf detected by immunohistochemistry and relative mRNA levels of tryptophan hydroxylase isoforms (tph1a, tph1b, and tph2 at 96 hpf measured by semi-quantitative PCR. To test the effects on serotonin transmission, heart rate and thigmotaxis, an indicator of anxiety, were analyzed. The low dose also significantly increased heart rate at 48 hpf and decreased thigmotaxis. The high dose of E2 (1 µM exhibited opposite effects in all parameters. The effects of both low and high doses were reversed by addition of estrogen receptor (ER blocker, ICI 182,780, thereby suggesting that the effects were mediated through ER. When AroB MO was injected to fertilized eggs, 5-HT-positive area was significantly decreased, while the significant decrease in relative tph mRNA levels was found only with tph2 but not with two other isoforms. AroB MO also decreased heart rate and increased thigmotaxis. All the effects were rescued by co-injection with AroB mRNA and by exposure to E2. Taken together, this study demonstrates the role of brain aromatase in development of serotonergic neuron in zebrafish embryos and larvae, implying that brain-formed estrogen is an important factor to

  12. Zebrafish: A Versatile Animal Model for Fertility Research

    Directory of Open Access Journals (Sweden)

    Jing Ying Hoo

    2016-01-01

    Full Text Available The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  13. Triclosan Lacks (Anti-Estrogenic Effects in Zebrafish Cells but Modulates Estrogen Response in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Hélène Serra

    2018-04-01

    Full Text Available Triclosan (TCS, an antimicrobial agent widely found in the aquatic environment, is suspected to act as an endocrine disrupting compound, however mechanistic information is lacking in regards to aquatic species. This study assessed the ability of TCS to interfere with estrogen receptor (ER transcriptional activity, in zebrafish-specific in vitro and in vivo reporter gene assays. We report that TCS exhibits a lack of either agonistic or antagonistic effects on a panel of ER-expressing zebrafish (ZELH-zfERα and -zfERβ and human (MELN cell lines. At the organism level, TCS at concentrations of up to 0.3 µM had no effect on ER-regulated brain aromatase gene expression in transgenic cyp19a1b-GFP zebrafish embryos. At a concentration of 1 µM, TCS interfered with the E2 response in an ambivalent manner by potentializing a low E2 response (0.625 nM, but decreasing a high E2 response (10 nM. Altogether, our study suggests that while modulation of ER-regulated genes by TCS may occur in zebrafish, it does so irrespective of a direct binding and activation of zfERs.

  14. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity

    Directory of Open Access Journals (Sweden)

    Katharine A. Horzmann

    2016-08-01

    Full Text Available Neurotransmission is the basis of neuronal communication and is critical for normal brain development, behavior, learning, and memory. Exposure to drugs and chemicals can alter neurotransmission, often through unknown pathways and mechanisms. The zebrafish (Danio rerio model system is increasingly being used to study the brain and chemical neurotoxicity. In this review, the major neurotransmitter systems, including glutamate, GABA, dopamine, norepinephrine, serotonin, acetylcholine, histamine, and glutamate are surveyed and pathways of synthesis, transport, metabolism, and action are examined. Differences between human and zebrafish neurochemical pathways are highlighted. We also review techniques for evaluating neurological function, including the measurement of neurotransmitter levels, assessment of gene expression through transcriptomic analysis, and the recording of neurobehavior. Finally examples of chemical toxicity studies evaluating alterations in neurotransmitter systems in the zebrafish model are reviewed.

  15. Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs.

    Science.gov (United States)

    Savio, L E B; Vuaden, F C; Kist, L W; Pereira, T C; Rosemberg, D B; Bogo, M R; Bonan, C D; Wyse, A T S

    2013-10-10

    Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0mM) during 1h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 μM) were tested. Long-term proline exposures significantly increased AChE activity for both treated groups when compared to the control (34% and 39%). Moreover, the proline-induced increase on AChE activity was completely reverted by acute administration of antipsychotic drugs (haloperidol and sulpiride), as well as the changes induced in ache expression. When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia.

    Science.gov (United States)

    Kim, Jae-Yong; Seo, Juyi; Cho, Kyung-Hyun

    2011-11-01

    Although many artificial sweeteners (AS) have safety issues, the AS have been widely used in industry. To determine the physiologic effect of AS in the presence of hyperlipidemia, zebrafish were fed aspartame or saccharin with a high-cholesterol diet (HCD). After 12 days, 30% of zebrafish, which consumed aspartame and HCD, died with exhibiting swimming defects. The aspartame group had 65% survivability, while the control and saccharin groups had 100% survivability. Under HCD, the saccharin-fed groups had the highest increase in the serum cholesterol level (599 mg/dL). Aspartame-fed group showed a remarkable increase in serum glucose (up to 125 mg/dL), which was 58% greater than the increase in the HCD alone group. The saccharin and HCD groups had the highest cholesteryl ester transfer protein (CETP) activity (52% CE-transfer), while the HCD alone group had 42% CE-transfer. Histologic analysis revealed that the aspartame and HCD groups showed more infiltration of inflammatory cells in the brain and liver sections. Conclusively, under presence of hyperlipidemia, aspartame-fed zebrafish exhibited acute swimming defects with an increase in brain inflammation. Saccharin-fed zebrafish had an increased atherogenic serum lipid profile with elevation of CETP activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Zebrafish Health Conditions in the China Zebrafish Resource Center and 20 Major Chinese Zebrafish Laboratories.

    Science.gov (United States)

    Liu, Liyue; Pan, Luyuan; Li, Kuoyu; Zhang, Yun; Zhu, Zuoyan; Sun, Yonghua

    2016-07-01

    In China, the use of zebrafish as an experimental animal in the past 15 years has widely expanded. The China Zebrafish Resource Center (CZRC), which was established in 2012, is becoming one of the major resource centers in the global zebrafish community. Large-scale use and regular exchange of zebrafish resources have put forward higher requirements on zebrafish health issues in China. This article reports the current aquatic infrastructure design, animal husbandry, and health-monitoring programs in the CZRC. Meanwhile, through a survey of 20 Chinese zebrafish laboratories, we also describe the current health status of major zebrafish facilities in China. We conclude that it is of great importance to establish a widely accepted health standard and health-monitoring strategy in the Chinese zebrafish research community.

  18. Using visual lateralization to model learning and memory in zebrafish larvae.

    Science.gov (United States)

    Andersson, Madelene Åberg; Ek, Fredrik; Olsson, Roger

    2015-03-02

    Impaired learning and memory are common symptoms of neurodegenerative and neuropsychiatric diseases. Present, there are several behavioural test employed to assess cognitive functions in animal models, including the frequently used novel object recognition (NOR) test. However, although atypical functional brain lateralization has been associated with neuropsychiatric conditions, spanning from schizophrenia to autism, few animal models are available to study this phenomenon in learning and memory deficits. Here we present a visual lateralization NOR model (VLNOR) in zebrafish larvae as an assay that combines brain lateralization and NOR. In zebrafish larvae, learning and memory are generally assessed by habituation, sensitization, or conditioning paradigms, which are all representatives of nondeclarative memory. The VLNOR is the first model for zebrafish larvae that studies a memory similar to the declarative memory described for mammals. We demonstrate that VLNOR can be used to study memory formation, storage, and recall of novel objects, both short and long term, in 10-day-old zebrafish. Furthermore we show that the VLNOR model can be used to study chemical modulation of memory formation and maintenance using dizocilpine (MK-801), a frequently used non-competitive antagonist of the NMDA receptor, used to test putative antipsychotics in animal models.

  19. Mind the fish: zebrafish as a model in cognitive social neuroscience

    Directory of Open Access Journals (Sweden)

    Rui F Oliveira

    2013-08-01

    Full Text Available Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioural output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1 identification of the functional building blocks of social skills; (2 identification of the cognitive mechanisms underlying the previously identified social skills; and (3 mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed.

  20. Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended 'male sex drive' hypothesis.

    Science.gov (United States)

    Chatterjee, Aniruddha; Lagisz, Malgorzata; Rodger, Euan J; Zhen, Li; Stockwell, Peter A; Duncan, Elizabeth J; Horsfield, Julia A; Jeyakani, Justin; Mathavan, Sinnakaruppan; Ozaki, Yuichi; Nakagawa, Shinichi

    2016-09-30

    The sex drive hypothesis predicts that stronger selection on male traits has resulted in masculinization of the genome. Here we test whether such masculinizing effects can be detected at the level of the transcriptome and methylome in the adult zebrafish brain. Although methylation is globally similar, we identified 914 specific differentially methylated CpGs (DMCs) between males and females (435 were hypermethylated and 479 were hypomethylated in males compared to females). These DMCs were prevalent in gene body, intergenic regions and CpG island shores. We also discovered 15 distinct CpG clusters with striking sex-specific DNA methylation differences. In contrast, at transcriptome level, more female-biased genes than male-biased genes were expressed, giving little support for the male sex drive hypothesis. Our study provides genome-wide methylome and transcriptome assessment and sheds light on sex-specific epigenetic patterns and in zebrafish for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The Hypocretin/Orexin Neuronal Networks in Zebrafish.

    Science.gov (United States)

    Elbaz, Idan; Levitas-Djerbi, Talia; Appelbaum, Lior

    2017-01-01

    The hypothalamic Hypocretin/Orexin (Hcrt) neurons secrete two Hcrt neuropeptides. These neurons and peptides play a major role in the regulation of feeding, sleep wake cycle, reward-seeking, addiction, and stress. Loss of Hcrt neurons causes the sleep disorder narcolepsy. The zebrafish has become an attractive model to study the Hcrt neuronal network because it is a transparent vertebrate that enables simple genetic manipulation, imaging of the structure and function of neuronal circuits in live animals, and high-throughput monitoring of behavioral performance during both day and night. The zebrafish Hcrt network comprises ~16-60 neurons, which similar to mammals, are located in the hypothalamus and widely innervate the brain and spinal cord, and regulate various fundamental behaviors such as feeding, sleep, and wakefulness. Here we review how the zebrafish contributes to the study of the Hcrt neuronal system molecularly, anatomically, physiologically, and pathologically.

  2. Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    João Sollari Lopes

    Full Text Available Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5 and to other genes related to memory formation (btg2, npas4b, which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics.

  3. Zebrafish models for the functional genomics of neurogenetic disorders.

    Science.gov (United States)

    Kabashi, Edor; Brustein, Edna; Champagne, Nathalie; Drapeau, Pierre

    2011-03-01

    In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Pharmacological analyses of learning and memory in zebrafish (Danio rerio).

    Science.gov (United States)

    Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D

    2015-12-01

    Over the last decade, zebrafish (Danio rerio) have become valuable as a complementary model in behavioral pharmacology, opening a new avenue for understanding the relationships between drug action and behavior. This species offers a useful intermediate approach bridging the gap between in vitro studies and traditional mammalian models. Zebrafish offer great advantages of economy compared to their rodent counterparts, their complex brains and behavioral repertoire offer great translational potential relative to in vitro models. The development and validation of a variety of tests to measure behavior, including cognition, in zebrafish have set the stage for the use of this animal for behavioral pharmacology studies. This has led to research into the basic mechanisms of cognitive function as well as screening for potential cognition-improving drug therapies, among other lines of research. As with all models, zebrafish have limitations, which span pharmacokinetic challenges to difficulties quantifying behavior. The use, efficacy and limitations associated with a zebrafish model of cognitive function are discussed in this review, within the context of behavioral pharmacology. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.

    Science.gov (United States)

    Feierstein, C E; Portugues, R; Orger, M B

    2015-06-18

    In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal. Copyright © 2014. Published by Elsevier Ltd.

  6. Cadmium inhibits neurogenesis in zebrafish embryonic brain development

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Elly Suk Hen [Division of Biology, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125 (United States); Hui, Michelle Nga Yu; Lin Chunchi [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Cheng Shukhan [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: bhcheng@cityu.edu.hk

    2008-05-01

    Cadmium is a non-essential heavy metal found abundantly in the environment. Children of women exposed to cadmium during pregnancy display lower motor and perceptual abilities. High cadmium body burden in children is also related to impaired intelligence and lowered school achievement. However, little is known about the molecular and cellular basis of developmental neurotoxicity in the sensitive early life stages of animals. In this study, we explore neurological deficits caused by cadmium during early embryonic stages in zebrafish by examining regionalization of the neural tube, pattern formation and cell fate determination, commitment of proneural genes and induction of neurogenesis. We show that cadmium-treated embryos developed a smaller head with unclear boundaries between the brain subdivisions, particularly in the mid-hindbrain region. Embryos display normal anterior to posterior regionalization; however, the commitment of neural progenitor cells was affected by cadmium. We observe prominent reductions in the expression of several proneuronal genes including ngn1 in cell clusters, zash1a in the developing optic tectum, and zash1b in the telencephalon and tectum. Cadmium-treated embryos also have fewer differentiated neurons and glia in the facial sensory ganglia as indicated by decreased zn-12 expression. Also, a lower transcription level of neurogenic genes, ngn1 and neuroD, is observed in neurons. Our data suggest that cadmium-induced neurotoxicity can be caused by impaired neurogenesis, resulting in markedly reduced neuronal differentiation and axonogenesis.

  7. Cadmium inhibits neurogenesis in zebrafish embryonic brain development

    International Nuclear Information System (INIS)

    Chow, Elly Suk Hen; Hui, Michelle Nga Yu; Lin Chunchi; Cheng Shukhan

    2008-01-01

    Cadmium is a non-essential heavy metal found abundantly in the environment. Children of women exposed to cadmium during pregnancy display lower motor and perceptual abilities. High cadmium body burden in children is also related to impaired intelligence and lowered school achievement. However, little is known about the molecular and cellular basis of developmental neurotoxicity in the sensitive early life stages of animals. In this study, we explore neurological deficits caused by cadmium during early embryonic stages in zebrafish by examining regionalization of the neural tube, pattern formation and cell fate determination, commitment of proneural genes and induction of neurogenesis. We show that cadmium-treated embryos developed a smaller head with unclear boundaries between the brain subdivisions, particularly in the mid-hindbrain region. Embryos display normal anterior to posterior regionalization; however, the commitment of neural progenitor cells was affected by cadmium. We observe prominent reductions in the expression of several proneuronal genes including ngn1 in cell clusters, zash1a in the developing optic tectum, and zash1b in the telencephalon and tectum. Cadmium-treated embryos also have fewer differentiated neurons and glia in the facial sensory ganglia as indicated by decreased zn-12 expression. Also, a lower transcription level of neurogenic genes, ngn1 and neuroD, is observed in neurons. Our data suggest that cadmium-induced neurotoxicity can be caused by impaired neurogenesis, resulting in markedly reduced neuronal differentiation and axonogenesis

  8. Adaptive optical microscope for brain imaging in vivo

    Science.gov (United States)

    Wang, Kai

    2017-04-01

    The optical heterogeneity of biological tissue imposes a major limitation to acquire detailed structural and functional information deep in the biological specimens using conventional microscopes. To restore optimal imaging performance, we developed an adaptive optical microscope based on direct wavefront sensing technique. This microscope can reliably measure and correct biological samples induced aberration. We demonstrated its performance and application in structural and functional brain imaging in various animal models, including fruit fly, zebrafish and mouse.

  9. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Directory of Open Access Journals (Sweden)

    Angeliki Lyssimachou

    Full Text Available Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT, which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR and peroxisome proliferator-activated receptor gamma (PPARγ. In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  10. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C Marisa R; Teixeira, Catarina; Castro, L Filipe C; Santos, Miguel M

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  11. Cardiac Ca2+ signalling in zebrafish: Translation of findings to man.

    Science.gov (United States)

    van Opbergen, Chantal J M; van der Voorn, Stephanie M; Vos, Marc A; de Boer, Teun P; van Veen, Toon A B

    2018-05-07

    Sudden cardiac death is a leading cause of death worldwide, mainly caused by highly disturbed electrical activation patterns in the heart. Currently, murine models are the most popular model to study underlying molecular mechanisms of inherited or acquired cardiac electrical abnormalities, although the numerous electrophysiological discrepancies between mouse and human raise the question whether mice are the optimal model to study cardiac rhythm disorders. Recently it has been uncovered that the zebrafish cardiac electrophysiology seems surprisingly similar to the human heart, mainly because the zebrafish AP contains a clear plateau phase and ECG characteristics show alignment with the human ECG. Although, before using zebrafish as a model to study cardiac arrhythmogenesis, however, it is very important to gain a better insight into the electrophysiological characteristics of the zebrafish heart. In this review we outline the electrophysiological machinery of the zebrafish cardiomyocytes, with a special focus on the intracellular Ca 2+ dynamics and excitation-contraction coupling. We debate the potential of zebrafish as a model to study human cardiovascular diseases and postulate steps to employ zebrafish into a more 'humanized' model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  13. Whole-body and multispectral photoacoustic imaging of adult zebrafish

    Science.gov (United States)

    Huang, Na; Xi, Lei

    2016-10-01

    Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.

  14. Bioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae

    Science.gov (United States)

    Knafo, Steven; Prendergast, Andrew; Thouvenin, Olivier; Figueiredo, Sophie Nunes; Wyart, Claire

    2017-01-01

    The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small. To improve signals while verifying specificity, we provide an optimized 4 steps protocol achieving: 1) selective expression of a zebrafish codon-optimized GFP-aequorin, 2) efficient soaking of larvae in GFP-aequorin substrate coelenterazine, 3) bioluminescence monitoring of neural activity from motor neurons in free-tailed moving animals performing acoustic escapes and 4) verification of the absence of muscle expression using immunohistochemistry. PMID:29130058

  15. Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish

    International Nuclear Information System (INIS)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming; Zhu, Ai-Yi

    2017-01-01

    Highlights: • Gene changed at mRNA, protein and activity levels between exposure time points. • ROS mediated antioxidant and inflammatory responses by Nrf2 and NF-κB. • The effect of time of day on Cd-induced toxicity should not be neglected in fish. - Abstract: Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97 mg L"−"1 cadmium for 12 h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.

  16. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development.

    Science.gov (United States)

    Parker, Matthew O; Annan, Leonette V; Kanellopoulos, Alexandros H; Brock, Alistair J; Combe, Fraser J; Baiamonte, Matteo; Teh, Muy-Teck; Brennan, Caroline H

    2014-12-03

    Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20mM ethanol for seven days (48hpf-9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Capiotti, Katiucia Marques; De Moraes, Daiani Almeida; Menezes, Fabiano Peres; Kist, Luiza Wilges; Bogo, Maurício Reis; Da Silva, Rosane Souza

    2014-11-01

    Diabetes mellitus, which causes hyperglycemia, affects the central nervous system and can impairs cognitive functions, such as memory. The aim of this study was to investigate the effects of hyperglycemia on memory as well as on the activity of acethylcholinesterase. Hyperglycemia was induced in adult zebrafish by immersion in glucose 111mM by 14 days. The animals were divided in 4 groups: control, glucose-treated, glucose-washout 7-days and glucose-washout 14-days. We evaluated the performance in inhibitory avoidance task and locomotor activity. We also determined acethylcholinesterase activity and gene expression from whole brain. In order to counteract the effect of hyperglycemia underlined by effects on acethylcholinesterase activity, we treated the animals with galantamine (0.05ng/g), an inhibitor of this enzyme. Also we evaluated the gene expression of insulin receptor and glucose transporter from zebrafish brain. The hyperglycemia promoted memory deficit in adult zebrafish, which can be explained by increased AChE activity. The ache mRNA levels from zebrafish brain were decrease in 111mM glucose group and returned to normal levels after 7 days of glucose withdrawal. Insulin receptors (insra-1, insra-2, insrb-1 and insrb-2) and glut-3 mRNA levels were not significantly changed. Our results also demonstrated that galantamine was able to reverse the memory deficit caused by hyperglycemia, demonstrating that these effects involve modulation of AChE activity. These data suggest that the memory impairment induced by hyperglycemia is underlined by the cholinergic dysfunction caused by the mechanisms involving the control of acetylcholinesterase function and gene expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Science.gov (United States)

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  19. Automated processing of zebrafish imaging data: a survey.

    Science.gov (United States)

    Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-09-01

    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

  20. Automated Processing of Zebrafish Imaging Data: A Survey

    Science.gov (United States)

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  1. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish.

    Directory of Open Access Journals (Sweden)

    Beng-Siang Khor

    Full Text Available A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway.

  2. Reprimo tissue-specific expression pattern is conserved between zebrafish and human.

    Directory of Open Access Journals (Sweden)

    Ricardo J Figueroa

    Full Text Available Reprimo (RPRM, a member of the RPRM gene family, is a tumor-suppressor gene involved in the regulation of the p53-mediated cell cycle arrest at G2/M. RPRM has been associated with malignant tumor progression and proposed as a potential biomarker for early cancer detection. However, the expression and role of RPRM, as well as its family, are poorly understood and their physiology is as yet unstudied. In this scenario, a model system like the zebrafish could serve to dissect the role of the RPRM family members in vivo. Phylogenetic analysis reveals that RPRM and RPRML have been differentially retained by most species throughout vertebrate evolution, yet RPRM3 has been retained only in a small group of distantly related species, including zebrafish. Herein, we characterized the spatiotemporal expression of RPRM (present in zebrafish as an infraclass duplication rprma/rprmb, RPRML and RPRM3 in the zebrafish. By whole-mount in situ hybridization (WISH and fluorescent in situ hybridization (FISH, we demonstrate that rprm (rprma/rprmb and rprml show a similar spatiotemporal expression profile during zebrafish development. At early developmental stages rprmb is expressed in somites. After one day post-fertilization, rprm (rprma/rprmb and rprml are expressed in the notochord, brain, blood vessels and digestive tube. On the other hand, rprm3 shows the most unique expression profile, being expressed only in the central nervous system (CNS. We assessed the expression patterns of RPRM gene transcripts in adult zebrafish and human RPRM protein product in tissue samples by RT-qPCR and immunohistochemistry (IHC staining, respectively. Strikingly, tissue-specific expression patterns of the RPRM transcripts and protein are conserved between zebrafish and humans. We propose the zebrafish as a powerful tool to elucidate the both physiological and pathological roles of the RPRM gene family.

  3. Ionic channels underlying the ventricular action potential in zebrafish embryo.

    Science.gov (United States)

    Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar

    2014-06-01

    Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Culturable gut microbiota diversity in zebrafish.

    Science.gov (United States)

    Cantas, Leon; Sørby, Jan Roger Torp; Aleström, Peter; Sørum, Henning

    2012-03-01

    The zebrafish (Danio rerio) is an increasingly used laboratory animal model in basic biology and biomedicine, novel drug development, and toxicology. The wide use has increased the demand for optimized husbandry protocols to ensure animal health care and welfare. The knowledge about the correlation between culturable zebrafish intestinal microbiota and health in relation to environmental factors and management procedures is very limited. A semi-quantitative level of growth of individual types of bacteria was determined and associated with sampling points. A total of 72 TAB line zebrafish from four laboratories (Labs A-D) in the Zebrafish Network Norway were used. Diagnostic was based on traditional bacterial culture methods and biochemical characterization using commercial kits, followed by 16S rDNA gene sequencing from pure subcultures. Also selected Gram-negative isolates were analyzed for antibiotic susceptibility to 8 different antibiotics. A total of 13 morphologically different bacterial species were the most prevalent: Aeromonas hydrophila, Aeromonas sobria, Vibrio parahaemolyticus, Photobacterium damselae, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas luteola, Comamonas testosteroni, Ochrobactrum anthropi, Staphylococcus cohnii, Staphylococcus epidermidis, Staphylococcus capitis, and Staphylococcus warneri. Only Lab B had significantly higher levels of total bacterial growth (OR=2.03), whereas numbers from Lab C (OR=1.01) and Lab D (OR=1.12) were found to be similar to the baseline Lab A. Sexually immature individuals had a significantly higher level of harvested total bacterial growth than mature fish (OR=0.82), no statistically significant differences were found between male and female fish (OR=1.01), and the posterior intestinal segment demonstrated a higher degree of culturable bacteria than the anterior segment (OR=4.1). Multiple antibiotic (>3) resistance was observed in 17% of the strains. We propose that a rapid conventional

  5. Optimizing the Usability of Brain-Computer Interfaces.

    Science.gov (United States)

    Zhang, Yin; Chase, Steve M

    2018-03-22

    Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.

  6. Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment

    Science.gov (United States)

    2013-01-01

    Background Stress and anxiety-related behaviors are seen in many organisms. Studies have shown that in humans and other animals, treatment with selective serotonin reuptake inhibitors (e.g. fluoxetine) can reduce anxiety and anxiety-related behaviors. The efficacies and side effects, however, can vary between individuals. Fluoxetine can modulate anxiety in a stereospecific manner or with equal efficacy regardless of stereoisomer depending on the mechanism of action (e.g. serotonergic or GABAergic effects). Zebrafish are an emerging and valuable translational model for understanding human health related issues such as anxiety. In this study we present data showing the behavioral and whole brain transcriptome changes with fluoxetine treatment in wild-derived zebrafish and suggest additional molecular mechanisms of this widely-prescribed drug. Results We used automated behavioral analyses to assess the effects of racemic and stereoisomeric fluoxetine on male wild-derived zebrafish. Both racemic and the individual isomers of fluoxetine reduced anxiety-related behaviors relative to controls and we did not observe stereospecific fluoxetine effects. Using RNA-sequencing of the whole brain, we identified 411 genes showing differential expression with racemic fluoxetine treatment. Several neuropeptides (neuropeptide Y, isotocin, urocortin 3, prolactin) showed consistent expression patterns with the alleviation of stress and anxiety when anxiety-related behavior was reduced with fluoxetine treatment. With gene ontology and KEGG pathway analyses, we identified lipid and amino acid metabolic processes, and steroid biosynthesis among other terms to be over-enriched. Conclusion Our results demonstrate that fluoxetine reduces anxiety-related behaviors in wild-derived zebrafish and alters their neurogenomic state. We identify two biological processes, lipid and amino acid metabolic synthesis that characterize differences in the fluoxetine treated fish. Fluoxetine may be acting on

  7. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Ruixin Hao

    Full Text Available Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2 or vehicle from 3 hours to 4 days post fertilization (dpf, harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP. Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database. The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  8. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop.

    Science.gov (United States)

    Okuda, Kazuhide Shaun; Tan, Pei Jean; Patel, Vyomesh

    2016-04-01

    Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.

  9. Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon.

    Science.gov (United States)

    Edelmann, Kathrin; Glashauser, Lena; Sprungala, Susanne; Hesl, Birgit; Fritschle, Maike; Ninkovic, Jovica; Godinho, Leanne; Chapouton, Prisca

    2013-09-01

    The zebrafish has recently become a source of new data on the mechanisms of neural stem cell (NSC) maintenance and ongoing neurogenesis in adult brains. In this vertebrate, neurogenesis occurs at high levels in all ventricular regions of the brain, and brain injuries recover successfully, owing to the recruitment of radial glia, which function as NSCs. This new vertebrate model of adult neurogenesis is thus advancing our knowledge of the molecular cues in use for the activation of NSCs and fate of their progeny. Because the regenerative potential of somatic stem cells generally weakens with increasing age, it is important to assess the extent to which zebrafish NSC potential decreases or remains unaltered with age. We found that neurogenesis in the ventricular zone, in the olfactory bulb, and in a newly identified parenchymal zone of the telencephalon indeed declines as the fish ages and that oligodendrogenesis also declines. In the ventricular zone, the radial glial cell population remains largely unaltered morphologically but enters less frequently into the cell cycle and hence produces fewer neuroblasts. The neuroblasts themselves do not change their behavior with age and produce the same number of postmitotic neurons. Thus, decreased neurogenesis in the physiologically aging zebrafish brain is correlated with an increasing quiescence of radial glia. After injuries, radial glia in aged brains are reactivated, and the percentage of cell cycle entry is increased in the radial glia population. However, this reaction is far less pronounced than in younger animals, pointing to irreversible changes in aging zebrafish radial glia. Copyright © 2013 Wiley Periodicals, Inc.

  10. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael Stobb

    Full Text Available Mapping the detailed connectivity patterns (connectomes of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  11. The power of projectomes: genetic mosaic labeling in the larval zebrafish brain reveals organizing principles of sensory circuits.

    Science.gov (United States)

    Robles, Estuardo

    2017-09-01

    In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.

  12. Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests.

    Science.gov (United States)

    Kysil, Elana V; Meshalkina, Darya A; Frick, Erin E; Echevarria, David J; Rosemberg, Denis B; Maximino, Caio; Lima, Monica Gomes; Abreu, Murilo S; Giacomini, Ana C; Barcellos, Leonardo J G; Song, Cai; Kalueff, Allan V

    2017-06-01

    Modeling of stress and anxiety in adult zebrafish (Danio rerio) is increasingly utilized in neuroscience research and central nervous system (CNS) drug discovery. Representing the most commonly used zebrafish anxiety models, the novel tank test (NTT) focuses on zebrafish diving in response to potentially threatening stimuli, whereas the light-dark test (LDT) is based on fish scototaxis (innate preference for dark vs. bright areas). Here, we systematically evaluate the utility of these two tests, combining meta-analyses of published literature with comparative in vivo behavioral and whole-body endocrine (cortisol) testing. Overall, the NTT and LDT behaviors demonstrate a generally good cross-test correlation in vivo, whereas meta-analyses of published literature show that both tests have similar sensitivity to zebrafish anxiety-like states. Finally, NTT evokes higher levels of cortisol, likely representing a more stressful procedure than LDT. Collectively, our study reappraises NTT and LDT for studying anxiety-like states in zebrafish, and emphasizes their developing utility for neurobehavioral research. These findings can help optimize drug screening procedures by choosing more appropriate models for testing anxiolytic or anxiogenic drugs.

  13. Short-term memory in zebrafish (Danio rerio).

    Science.gov (United States)

    Jia, Jason; Fernandes, Yohaan; Gerlai, Robert

    2014-08-15

    Learning and memory represent perhaps the most complex behavioral phenomena. Although their underlying mechanisms have been extensively analyzed, only a fraction of the potential molecular components have been identified. The zebrafish has been proposed as a screening tool with which mechanisms of complex brain functions may be systematically uncovered. However, as a relative newcomer in behavioral neuroscience, the zebrafish has not been well characterized for its cognitive and mnemonic features, thus learning and/or memory screens with adults have not been feasible. Here we study short-term memory of adult zebrafish. We show animated images of conspecifics (the stimulus) to the experimental subject during 1 min intervals on ten occasions separated by different (2, 4, 8 or 16 min long) inter-stimulus intervals (ISI), a between subject experimental design. We quantify the distance of the subject from the image presentation screen during each stimulus presentation interval, during each of the 1-min post-stimulus intervals immediately following the stimulus presentations and during each of the 1-min intervals furthest away from the last stimulus presentation interval and just before the next interval (pre-stimulus interval), respectively. Our results demonstrate significant retention of short-term memory even in the longest ISI group but suggest no acquisition of reference memory. Because in the employed paradigm both stimulus presentation and behavioral response quantification is computer automated, we argue that high-throughput screening for drugs or mutations that alter short-term memory performance of adult zebrafish is now becoming feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Temperature differentially regulates the two kisspeptin systems in the brain of zebrafish.

    Science.gov (United States)

    Shahjahan, Md; Kitahashi, Takashi; Ogawa, Satoshi; Parhar, Ishwar S

    2013-11-01

    Kisspeptins encoded by the kiss1 and kiss2 genes play an important role in reproduction through the stimulation of gonadotropin-releasing hormone (GnRH) secretion by activating their receptors (KissR1 EU047918 and KissR2 EU047917). To understand the mechanism through which temperature affects reproduction, we examined kiss1 and kiss2 and their respective receptor (kissr1 and kissr2) gene expression in the brain of male zebrafish exposed to a low temperature (15°C), normal temperature (27°C), and high temperature (35°C) for 7-days. kiss1 mRNA levels in the brain were significantly increased (2.9-fold) in the low temperature compared to the control (27°C), while no noticeable change was observed in the high temperature conditions. Similarly, kissr1 mRNA levels were significantly increased (1.5-2.2-folds) in the low temperature conditions in the habenula, the nucleus of the medial longitudinal fascicle, oculomotor nucleus, and the interpeduncular nucleus. kiss2 mRNA levels were significantly decreased (0.5-fold) in the low and high temperature conditions, concomitant with kissr2 mRNA levels (0.5-fold) in the caudal zone of the periventricular hypothalamus and the posterior tuberal nucleus. gnrh3 but not gnrh2 mRNA levels were also decreased (0.5-fold) in the low and high temperature conditions. These findings suggest that while the kiss1/kissr1 system is sensitive to low temperature, the kiss2/kissr2 system is sensitive to both extremes of temperature, which leads to failure in reproduction. Copyright © 2013. Published by Elsevier Inc.

  15. Optimal Brain Surgeon on Artificial Neural Networks in

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine

    2012-01-01

    It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick...

  16. Effects of EGCG and Chlorpyrifos on the Mortality, AChE and GSH of Adult Zebrafish: Independent and Combination

    Science.gov (United States)

    Zhang, Rong; Zhang, Jian; Gao, Qian; Guo, Nichun

    2018-01-01

    Chlorpyrifos is a neurotoxic agent and also causes oxidative stress in the body. EGCG is a typical strong antioxidant and has been reported to be neuroprotective. Our study investigated the mortality, the activity of acetylcholinesterase (AChE) in the brain and glutathione (GSH) in the liver of the adult Zebrafish in present of Chlorpyrifos and EGCG independent and combination. The results indicated that after the addition of EGCG, the mortality of zebrafish induced by Chlorpyrifos was reduced and the activity of AChE and glutathione (GSH) inhibited by Chlorpyrifos in zebrafish was significantly increased, which demonstrated that EGCG inhibited the toxicity Chlorpyrifos to zebrafish. The inhibition was dependent on the concentration of EGCG and Chlorpyrifos, which was not shown a gradual change trend but a complex situation.

  17. Functional and Genetic Analysis of Choroid Plexus Development in Zebrafish

    Directory of Open Access Journals (Sweden)

    Hannah Elizabeth Henson

    2014-11-01

    Full Text Available The choroid plexus, an epithelial-based structure localized in the brain ventricle, is the major component of the blood-cerebrospinal fluid barrier. The choroid plexus produces the cerebrospinal fluid and regulates the components of the cerebrospinal fluid. Abnormal choroid plexus function is associated with neurodegenerative diseases, tumor formation in the choroid plexus epithelium, and hydrocephaly. In this study, we used zebrafish (Danio rerio as a model system to understand the genetic components of choroid plexus development. We generated an enhancer trap line, Et(cp:EGFPsj2, that expresses enhanced green fluorescent protein (EGFP in the choroid plexus epithelium. Using immunohistochemistry and fluorescent tracers, we demonstrated that the zebrafish choroid plexus possesses brain barrier properties such as tight junctions and transporter activity. Thus, we have established zebrafish as a functionally relevant model to study choroid plexus development. Using an unbiased approach, we performed a forward genetic dissection of the choroid plexus to identify genes essential for its formation and function. Using Et(cp:EGFPsj2, we isolated 10 recessive mutant lines with choroid plexus abnormalities, which were grouped into five classes based on GFP intensity, epithelial localization, and overall choroid plexus morphology. We also mapped the mutation for two mutant lines to chromosomes 4 and 21, respectively. The mutants generated in this study can be used to elucidate specific genes and signaling pathways essential for choroid plexus development, function, and/or maintenance and will provide important insights into how these genetic mutations contribute to disease.

  18. Diving into the world of alcohol teratogenesis: a review of zebrafish models of fetal alcohol spectrum disorder.

    Science.gov (United States)

    Fernandes, Yohaan; Buckley, Desire M; Eberhart, Johann K

    2018-04-01

    The term fetal alcohol spectrum disorder (FASD) refers to the entire suite of deleterious outcomes resulting from embryonic exposure to alcohol. Along with other reviews in this special issue, we provide insight into how animal models, specifically the zebrafish, have informed our understanding of FASD. We first provide a brief introduction to FASD. We discuss the zebrafish as a model organism and its strengths for alcohol research. We detail how zebrafish has been used to model some of the major defects present in FASD. These include behavioral defects, such as social behavior as well as learning and memory, and structural defects, disrupting organs such as the brain, sensory organs, heart, and craniofacial skeleton. We provide insights into how zebrafish research has aided in our understanding of the mechanisms of ethanol teratogenesis. We end by providing some relatively recent advances that zebrafish has provided in characterizing gene-ethanol interactions that may underlie FASD.

  19. Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming; Zhu, Ai-Yi

    2017-01-15

    Highlights: • Gene changed at mRNA, protein and activity levels between exposure time points. • ROS mediated antioxidant and inflammatory responses by Nrf2 and NF-κB. • The effect of time of day on Cd-induced toxicity should not be neglected in fish. - Abstract: Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97 mg L{sup −1} cadmium for 12 h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.

  20. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression.

    Directory of Open Access Journals (Sweden)

    Arjan P Palstra

    Full Text Available BACKGROUND: Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: Individual zebrafish (n = 10 were able to swim at a critical swimming speed (U(crit of 0.548±0.007 m s(-1 or 18.0 standard body lengths (BL s(-1. The optimal swimming speed (U(opt at which energetic efficiency is highest was 0.396±0.019 m s(-1 (13.0 BL s(-1 corresponding to 72.26±0.29% of U(crit. The cost of transport at optimal swimming speed (COT(opt was 25.23±4.03 µmol g(-1 m(-1. A group-wise experiment was conducted with zebrafish (n = 83 swimming at U(opt for 6 h day(-1 for 5 days week(-1 for 4 weeks vs. zebrafish (n = 84 that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb, insulin-like growth factor 1 receptor a (igf1ra, troponin C (stnnc, slow myosin heavy chain 1 (smyhc1, troponin I2 (tnni2, myosin heavy polypeptide 2 (myhz2 and myostatin (mstnb. CONCLUSIONS/SIGNIFICANCE: From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.

  1. Social dominance modulates eavesdropping in zebrafish

    Science.gov (United States)

    Abril-de-Abreu, Rodrigo; Cruz, Ana S.; Oliveira, Rui F.

    2015-01-01

    Group living animals may eavesdrop on signalling interactions between conspecifics and integrate it with their own past social experience in order to optimize the use of relevant information from others. However, little is known about this interplay between public (eavesdropped) and private social information. To investigate it, we first manipulated the dominance status of bystander zebrafish. Next, we either allowed or prevented bystanders from observing a fight. Finally, we assessed their behaviour towards the winners and losers of the interaction, using a custom-made video-tracking system and directional analysis. We found that only dominant bystanders who had seen the fight revealed a significant increase in directional focus (a measure of attention) towards the losers of the fights. Furthermore, our results indicate that information about the fighters' acquired status was collected from the signalling interaction itself and not from post-interaction status cues, which implies the existence of individual recognition in zebrafish. Thus, we show for the first time that zebrafish, a highly social model organism, eavesdrop on conspecific agonistic interactions and that this process is modulated by the eavesdroppers' dominance status. We suggest that this type of integration of public and private information may be ubiquitous in social learning processes. PMID:26361550

  2. Orthosiphon stamineus Leaf Extract Affects TNF-α and Seizures in a Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Brandon Kar Meng Choo

    2018-02-01

    Full Text Available Epileptic seizures result from abnormal brain activity and can affect motor, autonomic and sensory function; as well as, memory, cognition, behavior, or emotional state. Effective anti-epileptic drugs (AEDs are available but have tolerability issues due to their side effects. The Malaysian herb Orthosiphon stamineus, is a traditional epilepsy remedy and possesses anti-inflammatory, anti-oxidant and free-radical scavenging abilities, all of which are known to protect against seizures. This experiment thus aimed to explore if an ethanolic leaf extract of O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures in a zebrafish model; and the effects of the extract on the expression levels of several genes in the zebrafish brain which are associated with seizures. The results of this study indicate that O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures as it is pharmacologically active against seizures in a zebrafish model. The anti-convulsive effect of this extract is also comparable to that of diazepam at higher doses and can surpass diazepam in certain cases. Treatment with the extract also counteracts the upregulation of NF-κB, NPY and TNF-α as a result of a Pentylenetetrazol (PTZ treated seizure. The anti-convulsive action for this extract could be at least partially due to its downregulation of TNF-α. Future work could include the discovery of the active anti-convulsive compound, as well as determine if the extract does not cause cognitive impairment in zebrafish.

  3. Acute administration of THC impairs spatial but not associative memory function in zebrafish.

    Science.gov (United States)

    Ruhl, Tim; Prinz, Nicole; Oellers, Nadine; Seidel, Nathan Ian; Jonas, Annika; Albayram, Onder; Bilkei-Gorzo, Andras; von der Emde, Gerhard

    2014-10-01

    The present study examined the effect of acute administration of endocannabinoid receptor CB1 ligand ∆-9-tetrahydrocannabinol (THC) on intracellular signalling in the brain and retrieval from two different memory systems in the zebrafish (Danio rerio). First, fish were treated with THC and changes in the phosphorylation level of mitogen-activated protein (MAP) kinases Akt and Erk in the brain were determined 1 h after drug treatment. Next, animals of a second group learned in a two-alternative choice paradigm to discriminate between two colours, whereas a third group solved a spatial cognition task in an open-field maze by use of an ego-allocentric strategy. After memory acquisition and consolidation, animals were pharmacologically treated using the treatment regime as in the first group and then tested again for memory retrieval. We found an enhanced Erk but not Akt phosphorylation suggesting that THC treatment specifically activated Erk signalling in the zebrafish telencephalon. While CB1 agonist THC did not affect behavioural performance of animals in the colour discrimination paradigm, spatial memory was significantly impaired. The effect of THC on spatial learning is probably specific, since neither motor activity nor anxiety-related behaviour was influenced by the drug treatment. That indicates a striking influence of the endocannabinoid system (ECS) on spatial cognition in zebrafish. The results are very coincident with reports on mammals, demonstrating that the ECS is functional highly conserved during vertebrate evolution. We further conclude that the zebrafish provides a promising model organism for ongoing research on the ECS.

  4. Elucidating the mechanism of action of tributyltin (TBT) in zebrafish.

    Science.gov (United States)

    McGinnis, Courtney L; Crivello, Joseph F

    2011-05-01

    Tributyltin (TBT), an antifouling agent, has been implicated in the masculinization of fish species worldwide, but the masculinizing mechanism is not fully understood. We have examined the actions of TBT as an endocrine disruptor in zebrafish (Danio rerio). In HeLa cells transiently co-transfected with plasmid constructs containing the zebrafish estrogen receptors (zfERα, zfERβ(1) and zfERβ(2)) and the zebrafish estrogen response element (zfERE-tk-luc), ethinyl estradiol (EE2) induced luciferase activity 4 to 6-fold and was inhibited by TBT. In HeLa cells transiently co-transfected with the zebrafish androgen receptor (zfAR) and the murine androgen receptor response element (ARE-slp-luc), testosterone induced luciferase activity was not inhibited by TBT. In HeLa cells co-transfected with zfERα, zfERβ(1) and zfERβ(2) and a plasmid containing zebrafish aromatase (zfCyp19b-luc), TBT inhibited luciferase activity. In zebrafish exposed to 1mg/kg and 5mg/kg TBT in vivo, there was a increase in liver sulfotransferase and a decrease acyl-CoA testosterone acyltransferase activity. Real-time PCR analysis of sexual differentiation markers in fish exposed to TBT in vivo revealed a tissue-specific response. In brain there was increased production of Sox9, Dax1, and SF1 mRNA, an androgenizing effect, while in the liver there was increased production of Dax1, Cyp19a and zfERβ(1) mRNA but decreased production of Sox9 mRNA, a feminizing effect. In the gonads there was increased production of zfERα and zfCyp19a mRNA, again a feminizing effect. TBT has an overall masculinizing effect but the masculinizing effect is tempered by a feminizing effect on gene transcription in certain tissues. These results are discussed in the context of TBT as an endocrine disruptor in zebrafish. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish

    Directory of Open Access Journals (Sweden)

    Hyun-Sik Nam

    2016-01-01

    Full Text Available MicroRNA-122 (miRNA-122, also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM and cell death in larval liver (5 μM at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish.

  6. 3-D brain image registration using optimal morphological processing

    International Nuclear Information System (INIS)

    Loncaric, S.; Dhawan, A.P.

    1994-01-01

    The three-dimensional (3-D) registration of Magnetic Resonance (MR) and Positron Emission Tomographic (PET) images of the brain is important for analysis of the human brain and its diseases. A procedure for optimization of (3-D) morphological structuring elements, based on a genetic algorithm, is presented in the paper. The registration of the MR and PET images is done by means of a registration procedure in two major phases. In the first phase, the Iterative Principal Axis Transform (IPAR) is used for initial registration. In the second phase, the optimal shape description method based on the Morphological Signature Transform (MST) is used for final registration. The morphological processing is used to improve the accuracy of the basic IPAR method. The brain ventricle is used as a landmark for MST registration. A near-optimal structuring element obtained by means of a genetic algorithm is used in MST to describe the shape of the ventricle. The method has been tested on the set of brain images demonstrating the feasibility of approach. (author). 11 refs., 3 figs

  7. Behavioral Changes Over Time Following Ayahuasca Exposure in Zebrafish.

    Science.gov (United States)

    Savoldi, Robson; Polari, Daniel; Pinheiro-da-Silva, Jaquelinne; Silva, Priscila F; Lobao-Soares, Bruno; Yonamine, Mauricio; Freire, Fulvio A M; Luchiari, Ana C

    2017-01-01

    The combined infusion of Banisteriopsis caapi stem and Psychotria viridis leaves, known as ayahuasca, has been used for centuries by indigenous tribes. The infusion is rich in N , N -dimethyltryptamine (DMT) and monoamine oxidase inhibitors, with properties similar to those of serotonin. Despite substantial progress in the development of new drugs to treat anxiety and depression, current treatments have several limitations. Alternative drugs, such as ayahuasca, may shed light on these disorders. Here, we present time-course behavioral changes induced by ayahuasca in zebrafish, as first step toward establishing an ideal concentration for pre-clinical evaluations. We exposed adult zebrafish to five concentrations of the ayahuasca infusion: 0 (control), 0.1, 0.5, 1, and 3 ml/L ( n = 14 each group), and behavior was recorded for 60 min. We evaluated swimming speed, distance traveled, freezing and bottom dwelling every min for 60 min. Swimming speed and distance traveled decreased with an increase in ayahuasca concentration while freezing increased with 1 and 3 ml/L. Bottom dwelling increased with 1 and 3 ml/L, but declined with 0.1 ml/L. Our data suggest that small amounts of ayahuasca do not affect locomotion and reduce anxiety-like behavior in zebrafish, while increased doses of the drug lead to crescent anxiogenic effects. We conclude that the temporal analysis of zebrafish behavior is a sensitive method for the study of ayahuasca-induced functional changes in the vertebrate brain.

  8. Behavioral Changes Over Time Following Ayahuasca Exposure in Zebrafish

    Directory of Open Access Journals (Sweden)

    Robson Savoldi

    2017-07-01

    Full Text Available The combined infusion of Banisteriopsis caapi stem and Psychotria viridis leaves, known as ayahuasca, has been used for centuries by indigenous tribes. The infusion is rich in N, N-dimethyltryptamine (DMT and monoamine oxidase inhibitors, with properties similar to those of serotonin. Despite substantial progress in the development of new drugs to treat anxiety and depression, current treatments have several limitations. Alternative drugs, such as ayahuasca, may shed light on these disorders. Here, we present time-course behavioral changes induced by ayahuasca in zebrafish, as first step toward establishing an ideal concentration for pre-clinical evaluations. We exposed adult zebrafish to five concentrations of the ayahuasca infusion: 0 (control, 0.1, 0.5, 1, and 3 ml/L (n = 14 each group, and behavior was recorded for 60 min. We evaluated swimming speed, distance traveled, freezing and bottom dwelling every min for 60 min. Swimming speed and distance traveled decreased with an increase in ayahuasca concentration while freezing increased with 1 and 3 ml/L. Bottom dwelling increased with 1 and 3 ml/L, but declined with 0.1 ml/L. Our data suggest that small amounts of ayahuasca do not affect locomotion and reduce anxiety-like behavior in zebrafish, while increased doses of the drug lead to crescent anxiogenic effects. We conclude that the temporal analysis of zebrafish behavior is a sensitive method for the study of ayahuasca-induced functional changes in the vertebrate brain.

  9. Determination of monoamine neurotransmitters in zebrafish (Danio rerio) by gas chromatography coupled to mass spectrometry with a two-step derivatization.

    Science.gov (United States)

    Aragon, Alvaro; Legradi, Jessica; Ballesteros-Gómez, Ana; Legler, Juliette; van Velzen, Martin; de Boer, Jacob; Leonards, Pim

    2017-04-01

    A sensitive analytical method for the determination of monoamine neurotransmitters (MNTs) in zebrafish larvae was developed using gas chromatography coupled to mass spectrometry. Six MNTs were selected as target compounds for neurotoxicity testing. MNTs underwent a two-step derivatization with hexamethyldisilazane (HDMS) for O-silylation followed by N-methyl-bis-heptafluorobutyramide (MBHFBA) for N-perfluoroacylation. Derivatization conditions were optimized by an experimental design approach. Method validation showed linear calibration curves (r 2  > 0.9976) in the range of 1-100 ng for all the compounds. The recovery rates were between 92 and 119%. The method was repeatable and reproducible with relative standard deviations (RSD) in the range of 2.5-9.3% for intra-day and 4.8-12% for inter-day variation. The limits of detection and the limits of quantitation were 0.4-0.8 and 1.2-2.7 ng/mL, respectively. The method was successfully applied to detect and quantify trace levels of MNTs in 5-day-old zebrafish larvae that were exposed to low concentrations of neurotoxic chemicals such as pesticides and methylmercury. Although visual malformations were not detected, the MNT levels varied significantly during early zebrafish development. These results show that exposure to neurotoxic chemicals can alter neurotransmitter levels and thereby may influence early brain development. Graphical abstract ᅟ.

  10. Optogenetics: a new enlightenment age for zebrafish neurobiology.

    Science.gov (United States)

    Del Bene, Filippo; Wyart, Claire

    2012-03-01

    Zebrafish became a model of choice for neurobiology because of the transparency of its brain and because of its amenability to genetic manipulation. In particular, at early stages of development the intact larva is an ideal system to apply optical techniques for deep imaging in the nervous system, as well as genetically encoded tools for targeting subsets of neurons and monitoring and manipulating their activity. For these applications,new genetically encoded optical tools, fluorescent sensors, and light-gated channels have been generated,creating the field of "optogenetics." It is now possible to monitor and control neuronal activity with minimal perturbation and unprecedented spatio-temporal resolution.We describe here the main achievements that have occurred in the last decade in imaging and manipulating neuronal activity in intact zebrafish larvae. We provide also examples of functional dissection of neuronal circuits achieved with the applications of these techniques in the visual and locomotor systems.

  11. Monitoring Toxic Ionic Liquids in Zebrafish ( Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI)

    Science.gov (United States)

    Perez, Consuelo J.; Tata, Alessandra; de Campos, Michel L.; Peng, Chun; Ifa, Demian R.

    2017-06-01

    Ambient mass spectrometry imaging has become an increasingly powerful technique for the direct analysis of biological tissues in the open environment with minimal sample preparation and fast analysis times. In this study, we introduce desorption electrospray ionization mass spectrometry imaging (DESI-MSI) as a novel, rapid, and sensitive approach to localize the accumulation of a mildly toxic ionic liquid (IL), AMMOENG 130 in zebrafish ( Danio rerio). The work demonstrates that DESI-MSI has the potential to rapidly monitor the accumulation of IL pollutants in aquatic organisms. AMMOENG 130 is a quaternary ammonium-based IL reported to be broadly used as a surfactant in commercialized detergents. It is known to exhibit acute toxicity to zebrafish causing extensive damage to gill secondary lamellae and increasing membrane permeability. Zebrafish were exposed to the IL in a static 96-h exposure study in concentrations near the LC50 of 1.25, 2.5, and 5.0 mg/L. DESI-MS analysis of zebrafish gills demonstrated the appearance of a dealkylated AMMOENG 130 metabolite in the lowest concentration of exposure identified by a high resolution hybrid LTQ-Orbitrap mass spectrometer as the trimethylstearylammonium ion, [C21H46N]+. With DESI-MSI, the accumulation of AMMOENG 130 and its dealkylated metabolite in zebrafish tissue was found in the nervous and respiratory systems. AMMOENG 130 and the metabolite were capable of penetrating the blood brain barrier of the fish with significant accumulation in the brain. Hence, we report for the first time the simultaneous characterization, distribution, and metabolism of a toxic IL in whole body zebrafish analyzed by DESI-MSI. This ambient mass spectrometry imaging technique shows great promise for the direct analysis of biological tissues to qualitatively monitor foreign, toxic, and persistent compounds in aquatic organisms from the environment. [Figure not available: see fulltext.

  12. Clinical implementation of stereotaxic brain implant optimization

    International Nuclear Information System (INIS)

    Rosenow, U.F.; Wojcicka, J.B.

    1991-01-01

    This optimization method for stereotaxic brain implants is based on seed/strand configurations of the basic type developed for the National Cancer Institute (NCI) atlas of regular brain implants. Irregular target volume shapes are determined from delineation in a stack of contrast enhanced computed tomography scans. The neurosurgeon may then select up to ten directions, or entry points, of surgical approach of which the program finds the optimal one under the criterion of smallest target volume diameter. Target volume cross sections are then reconstructed in 5-mm-spaced planes perpendicular to the implantation direction defined by the entry point and the target volume center. This information is used to define a closed line in an implant cross section along which peripheral seed strands are positioned and which has now an irregular shape. Optimization points are defined opposite peripheral seeds on the target volume surface to which the treatment dose rate is prescribed. Three different optimization algorithms are available: linear least-squares programming, quadratic programming with constraints, and a simplex method. The optimization routine is implemented into a commercial treatment planning system. It generates coordinate and source strength information of the optimized seed configurations for further dose rate distribution calculation with the treatment planning system, and also the coordinate settings for the stereotaxic Brown-Roberts-Wells (BRW) implantation device

  13. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  14. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    International Nuclear Information System (INIS)

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-01-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  15. Encoder-decoder optimization for brain-computer interfaces.

    Science.gov (United States)

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  16. Encoder-decoder optimization for brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Josh Merel

    2015-06-01

    Full Text Available Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model" and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  17. In silico and in situ characterization of the zebrafish (Danio rerio gnrh3 (sGnRH gene

    Directory of Open Access Journals (Sweden)

    Husebye Harald

    2002-08-01

    Full Text Available Abstract Background Gonadotropin releasing hormone (GnRH is responsible for stimulation of gonadotropic hormone (GtH in the hypothalamus-pituitary-gonadal axis (HPG. The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio. Results We have characterized a zebrafish [Trp7, Leu8] or salmon (s GnRH variant, gnrh3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH, was shown capable of driving cell specific reporter gene expression in transgenic zebrafish. Conclusions The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.

  18. Characterization of a cis-acting element involved in cell-specific expression of the zebrafish brain aromatase gene.

    Science.gov (United States)

    Le Page, Yann; Menuet, Arnaud; Kah, Olivier; Pakdel, Farzad

    2008-10-01

    The cytochrome P450 Aromatase is the key enzyme catalyzing the conversion of androgens into estrogens. In zebrafish, the brain aromatase is encoded by cyp19b. Expression of cyp19b is restricted to radial glial cells bordering forebrain ventricles and is strongly stimulated by estrogens during development. At the promoter level, we have previously shown that an estrogen responsive element (ERE) is required for induction by estrogens. Here, we investigated the role of ERE flanking regions in the control of cell-specific expression. First, we show that a 20 bp length motif, named G x RE (glial x responsive element), acts in synergy with the ERE to mediate the estrogenic induction specifically in glial cells. Second, we demonstrate that, in vitro, this sequence binds factors exclusively present in glial or neuro-glial cells and is able to confer a glial specificity to an artificial estrogen-dependent gene. Taken together, these results contribute to the understanding of the molecular mechanisms allowing cyp19b regulation by estrogens and allowed to identify a promoter sequence involved in the strong estrogen inducibility of cyp19b which is specific for glial cells. The exceptional aromatase activity measured in the brain of teleost fish could rely on such mechanisms.

  19. Matrix metalloproteinase-9 plays a role in protecting zebrafish from lethal infection with Listeria monocytogenes by enhancing macrophage migration.

    Science.gov (United States)

    Shan, Ying; Zhang, Yikai; Zhuo, Xunhui; Li, Xiaoliang; Peng, Jinrong; Fang, Weihuan

    2016-07-01

    Zebrafish could serve as an alternative animal model for pathogenic bacteria in multiple infectious routes. Our previous study showed that immersion infection in zebrafish with Listeria monocytogenes did not cause lethality but induced transient expression of several immune response genes. We used an Affymetrix gene chip to examine the expression profiles of genes of zebrafish immersion-infected with L. monocytogenes. A total of 239 genes were up-regulated and 56 genes down-regulated compared with uninfected fish. Highest expression (>20-fold) was seen with the mmp-9 gene encoding the matrix metalloproteinase-9 (Mmp-9) known to degrade the extracellular matrix proteins. By morpholino knockdown of mmp-9, we found that the morphants showed rapid death with much higher bacterial load after intravenous or intraventricular (brain ventricle) infection with L. monocytogenes. Macrophages in mmp-9-knockdown morphants had significant defect in migrating to the brain cavity upon intraventricular infection. Decreased migration of murine macrophages with knockdown of mmp-9 and cd44 was also seen in transwell inserts with 8-μm pore polycarbonate membrane, as compared with the scrambled RNA. These findings suggest that Mmp-9 is a protective molecule against infection by L. monocytogenes by engaging in migration of zebrafish macrophages to the site of infection via a non-proteolytic role. Further work is required on the molecular mechanisms governing Mmp-9-driven macrophage migration in zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Regulation of zebrafish sleep and arousal states: current and prospective approaches

    Directory of Open Access Journals (Sweden)

    Cindy N Chiu

    2013-04-01

    Full Text Available Every day, we shift among various states of sleep and arousal to meet the many demands of our bodies and environment. A central puzzle in neurobiology is how the brain controls these behavioral states, which are essential to an animal’s well-being and survival. Mammalian models have predominated sleep and arousal research, although in the past decade, invertebrate models have made significant contributions to our understanding of the genetic underpinnings of behavioral states. More recently, the zebrafish has emerged as a promising model system for sleep and arousal research. Here we review experimental evidence that the zebrafish, a diurnal vertebrate, exhibits fundamental behavioral and neurochemical characteristics of mammalian sleep and arousal. We also propose how specific advantages of the zebrafish can be harnessed to advance the field. These include tractable genetics to identify and manipulate molecular and cellular regulators of behavioral states, optical transparency to facilitate in vivo observation of neural structure and function, and amenability to high-throughput drug screens to discover novel therapies for neurological disorders.

  1. Optimized temporal pattern of brain stimulation designed by computational evolution.

    Science.gov (United States)

    Brocker, David T; Swan, Brandon D; So, Rosa Q; Turner, Dennis A; Gross, Robert E; Grill, Warren M

    2017-01-04

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson's disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We varied the temporal pattern of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson's disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in a parkinsonian rat model and in patients. Both optimized and standard high-frequency stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution of temporal patterns to increase the efficiency of brain stimulation in treating Parkinson's disease and thereby reduce the energy required for successful treatment below that of current brain stimulation paradigms. Copyright © 2017, American Association for the Advancement of Science.

  2. Slc39a7/zip7 plays a critical role in development and zinc homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Guang Yan

    Full Text Available BACKGROUND: Slc39a7/Zip7, also known as Ke4, is a member of solute carrier family 39 (Slc39a and plays a critical role in regulating cell growth and death. Because the function of Zip7 in vivo was unclear, the present study investigated the function of zip7 in vertebrate development and zinc metabolism using zebrafish as a model organism. PRINCIPAL FINDING: Using real-time PCR to determine the gene expression pattern of zip7 during zebrafish development, we found that zip7 mRNA is expressed throughout embryonic development and into maturity. Interestingly, whole mount in situ hybridization revealed that while zip7 mRNA is ubiquitously expressed until 12 hours post-fertilization (hpf; at 24 hpf and beyond, zip7 mRNA was specifically detected only in eyes. Morpholino-antisense (MO gene knockdown assay revealed that downregulation of zip7 expression resulted in several morphological defects in zebrafish including decreased head size, smaller eyes, shorter palates, and shorter and curved spinal cords. Analysis by synchrotron radiation X-ray fluorescence (SR-XRF showed reduced concentrations of zinc in brain, eyes, and gills of zip7-MO-injected embryos. Furthermore, incubation of the zip7 knockdown embryos in a zinc-supplemented solution was able to rescue the MO-induced morphological defects. SIGNIFICANCE: Our data suggest that zip7 is required for eye, brain, and skeleton formation during early embryonic development in zebrafish. Moreover, zinc supplementation can partially rescue defects resulting from zip7 gene knockdown. Taken together, our data provide critical insight into a novel function of zip7 in development and zinc homeostasis in vivo in zebrafish.

  3. Optimization of Butterworth filter for brain SPECT imaging

    International Nuclear Information System (INIS)

    Minoshima, Satoshi; Maruno, Hirotaka; Yui, Nobuharu

    1993-01-01

    A method has been described to optimize the cutoff frequency of the Butterworth filter for brain SPECT imaging. Since a computer simulation study has demonstrated that separation between an object signal and the random noise in projection images in a spatial-frequency domain is influenced by the total number of counts, the cutoff frequency of the Butterworth filter should be optimized for individual subjects according to total counts in a study. To reveal the relationship between the optimal cutoff frequencies and total counts in brain SPECT study, we used a normal volunteer and 99m Tc hexamethyl-propyleneamine oxime (HMPAO) to obtain projection sets with different total counts. High quality images were created from a projection set with an acquisition time of 300-seconds per projection. The filter was optimized by calculating mean square errors from high quality images visually inspecting filtered reconstructed images. Dependence between total counts and optimal cutoff frequencies was clearly demonstrated in a nomogram. Using this nomogram, the optimal cutoff frequency for each study can be estimated from total counts, maximizing visual image quality. The results suggest that the cutoff frequency of Butterworth filter should be determined by referring to total counts in each study. (author)

  4. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  5. Correlating Whole Brain Neural Activity with Behavior in Head-Fixed Larval Zebrafish.

    Science.gov (United States)

    Orger, Michael B; Portugues, Ruben

    2016-01-01

    We present a protocol to combine behavioral recording and imaging using 2-photon laser-scanning microscopy in head-fixed larval zebrafish that express a genetically encoded calcium indicator. The steps involve restraining the larva in agarose, setting up optics that allow projection of a visual stimulus and infrared illumination to monitor behavior, and analysis of the neuronal and behavioral data.

  6. Immersion infection of germ-free zebrafish with Listeria monocytogenes induces transient expression of innate immune response genes

    Directory of Open Access Journals (Sweden)

    Ying eShan

    2015-04-01

    Full Text Available Zebrafish, Denio rerio, could be an alternative to other classic animal models for human infectious diseases to examine the processes of microbial infections and host-pathogen interactions in vivo because of their small body dimension but large clutch size. We established germ-free zebrafish infection models of Listeria monocytogenes through different routes of infection: oral immersion and injection via yolk sac, brain ventricle and blood island. Immersion of zebrafish larva even with 1010CFU/mL L. monocytogenes EGDe strain in egg water was unable to cause mortality, but GFP-expressing bacteria in the gut lumen could be observed in frozen sections. Several selected maker genes of the innate immune system, including cyp1a, irg1l, il1b and mmp9, were significantly induced by oral immersion not only with strain EGDe, but also with strain M7 and L. innocua, though to a lesser degree (P < 0.01. Such induction appears to be transient with peak at 48 h post-infection, but returned to basal level at 72 h post-infection. Of the three injection routes, mortality after infection by yolk sac was 80% in early stage of infection. Few eggs could survive and hatch. Injection into zebrafish embryos via brain ventricle or blood island led to progressive lethal infection. L. mocytogenes EGDe showed steady replication in the fish embryos and was far more pathogenic than strain M7, which is consistent with findings in the murine model. We conclude that zebrafish could serve as susceptible and microscopically visible infection models for L. monocytogenes via different routes and could be applied to further studies on the interactions between bacterial virulence factors and host immune responses.

  7. Redundant roles of PRDM family members in zebrafish craniofacial development.

    Science.gov (United States)

    Ding, Hai-Lei; Clouthier, David E; Artinger, Kristin B

    2013-01-01

    PRDM proteins are evolutionary conserved Zn-Finger transcription factors that share a characteristic protein domain organization. Previous studies have shown that prdm1a is required for the specification and differentiation of neural crest cells in the zebrafish. Here we examine other members of this family, specifically prdm3, 5, and 16, in the differentiation of the zebrafish craniofacial skeleton. prdm3 and prdm16 are strongly expressed in the pharyngeal arches, while prdm5 is expressed specifically in the area of the forming neurocranium. Knockdown of prdm3 and prdm16 results in a reduction in the neural crest markers dlx2a and barx1 and defects in both the viscerocranium and the neurocranium. The knockdown of prdm3 and prdm16 in combination is additive in the neurocranium, but not in the viscerocranium. Injection of sub-optimal doses of prdm1a with prdm3 or prdm16 Morpholinos together leads to more severe phenotypes in the viscerocranium and neurocranium. prdm5 mutants have defects in the neurocranium and prdm1a and prdm5 double mutants also show more severe phenotypes. Overall, our data reveal that prdm3, 5, and 16 are involved in the zebrafish craniofacial development and that prdm1a may interact with prdm3, 5, and 16 in the formation of the craniofacial skeleton in zebrafish. Copyright © 2012 Wiley Periodicals, Inc.

  8. Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lerebours, Adelaide; Adam-Guillermin, Christelle [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Bat 186, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Brethes, Daniel [CNRS, UMR 5095, Institut de Biochimie et Genetique Cellulaires, Universite Victor Segalen-Bordeaux 2 (France); Frelon, Sandrine; Floriani, Magali; Camilleri, Virginie; Garnier-Laplace, Jacqueline [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Bat 186, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Bourdineaud, Jean-Paul, E-mail: jp.bourdineaud@epoc.u-bordeaux1.fr [CNRS, UMR 5095, Institut de Biochimie et Genetique Cellulaires, Universite Victor Segalen-Bordeaux 2 (France)

    2010-10-01

    Anthropogenic release of uranium (U), originating from the nuclear fuel cycle or military activities, may considerably increase U concentrations in terrestrial and aquatic ecosystems above the naturally occurring background levels found throughout the environment. With a projected increase in the world-wide use of nuclear power, it is important to improve our understanding of the possible effects of this metal on the aquatic fauna at concentrations commensurate with the provisional drinking water guideline value of the World Health Organization (15 {mu}g U/L). The present study has examined the mitochondrial function in brain and skeletal muscles of the zebrafish, Danio rerio, exposed to 30 and 100 {mu}g/L of waterborne U for 10 and 28 days. At the lower concentration, the basal mitochondrial respiration rate was increased in brain at day 10 and in muscles at day 28. This is due to an increase of the inner mitochondrial membrane permeability, resulting in a decrease of the respiratory control ratio. In addition, levels of cytochrome c oxidase subunit IV (COX-IV) increased in brain at day 10, and those of COX-I increased in muscles at day 28. Histological analyses performed by transmission electron microscopy revealed an alteration of myofibrils and a dilatation of endomysium in muscle cells. These effects were largest at the lowest concentration, following 28 days of exposure.

  9. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers.

    Science.gov (United States)

    Li, Ye; Miao, Xiaoqing; Chen, Tongkai; Yi, Xiang; Wang, Ruibing; Zhao, Haitao; Lee, Simon Ming-Yuen; Wang, Xueqing; Zheng, Ying

    2017-08-01

    With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening. Copyright © 2017 Elsevier B

  10. Prey capture in zebrafish larvae serves as a model to study cognitive functions

    Directory of Open Access Journals (Sweden)

    Akira eMuto

    2013-06-01

    Full Text Available Prey capture in zebrafish larvae is an innate behavior which can be observed as early as 4 days post fertilization, the day when they start to swim. This simple behavior apparently involves several neural processes including visual perception, recognition, decision-making, and motor control, and, therefore, serves as a good model system to study cognitive functions underlying natural behaviors in vertebrates. Recent progresses in imaging techniques provided us with a unique opportunity to image neuronal activity in the brain of an intact fish in real-time while the fish perceives a natural prey, paramecium. By expanding this approach, it would be possible to image entire brain areas at a single cell resolution in real-time during prey capture, and identify neuronal circuits important for cognitive functions. Further, activation or inhibition of those neuronal circuits with recently developed optogenetic tools or neurotoxins should shed light on their roles. Thus, we will be able to explore the prey capture in zebrafish larvae more thoroughly at cellular levels, which should establish a basis of understanding of the cognitive function in vertebrates.

  11. Persistent Effects of Developmental Exposure to 17α-Ethinylestradiol on the Zebrafish (Danio rerio Brain Transcriptome and Behavior

    Directory of Open Access Journals (Sweden)

    Tove Porseryd

    2017-04-01

    Full Text Available The synthetic estrogen 17α-ethinylestradiol (EE2 is an endocrine disrupting compound of concern due to its persistence and widespread presence in the aquatic environment. Effects of developmental exposure to low concentrations of EE2 in fish on reproduction and behavior not only persisted to adulthood, but have also been observed to be transmitted to several generations of unexposed progeny. To investigate the possible biological mechanisms of the persistent anxiogenic phenotype, we exposed zebrafish embryos for 80 days post fertilization to 0, 3, and 10 ng/L EE2 (measured concentrations 2.14 and 7.34 ng/L. After discontinued exposure, the animals were allowed to recover for 120 days in clean water. Adult males and females were later tested for changes in stress response and shoal cohesion, and whole-brain gene expression was analyzed with RNA sequencing. The results show increased anxiety in the novel tank and scototaxis tests, and increased shoal cohesion in fish exposed during development to EE2. RNA sequencing revealed 34 coding genes differentially expressed in male brains and 62 in female brains as a result of EE2 exposure. Several differences were observed between males and females in differential gene expression, with only one gene, sv2b, coding for a synaptic vesicle protein, that was affected by EE2 in both sexes. Functional analyses showed that in female brains, EE2 had significant effects on pathways connected to the circadian rhythm, cytoskeleton and motor proteins and synaptic proteins. A large number of non-coding sequences including 19 novel miRNAs were also differentially expressed in the female brain. The largest treatment effect in male brains was observed in pathways related to cholesterol biosynthesis and synaptic proteins. Circadian rhythm and cholesterol biosynthesis, previously implicated in anxiety behavior, might represent possible candidate pathways connecting the transcriptome changes to the alterations to behavior

  12. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets.

    Science.gov (United States)

    Rico, E P; Rosemberg, D B; Seibt, K J; Capiotti, K M; Da Silva, R S; Bonan, C D

    2011-01-01

    Recent advances in neurobiology have emphasized the study of brain structure and function and its association with numerous pathological and toxicological events. Neurotransmitters are substances that relay, amplify, and modulate electrical signals between neurons and other cells. Neurotransmitter signaling mediates rapid intercellular communication by interacting with cell surface receptors, activating second messenger systems and regulating the activity of ion channels. Changes in the functional balance of neurotransmitters have been implicated in the failure of central nervous system function. In addition, abnormalities in neurotransmitter production or functioning can be induced by several toxicological compounds, many of which are found in the environment. The zebrafish has been increasingly used as an animal model for biomedical research, primarily due to its genetic tractability and ease of maintenance. These features make this species a versatile tool for pre-clinical drug discovery and toxicological investigations. Here, we present a review regarding the role of different excitatory and inhibitory neurotransmitter systems in zebrafish, such as dopaminergic, serotoninergic, cholinergic, purinergic, histaminergic, nitrergic, glutamatergic, glycinergic, and GABAergic systems, and emphasizing their features as pharmacological and toxicological targets. The increase in the global knowledge of neurotransmitter systems in zebrafish and the elucidation of their pharmacological and toxicological aspects may lead to new strategies and appropriate research priorities to offer insights for biomedical and environmental research. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    International Nuclear Information System (INIS)

    Lemaire, Benjamin; Kubota, Akira; O'Meara, Conor M.; Lamb, David C.; Tanguay, Robert L.; Goldstone, Jared V.; Stegeman, John J.

    2016-01-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. - Highlights: • The “orphan” CYP20A1 was cloned from zebrafish and its sequence analyzed. • Knockdown of CYP20A1 reduced an optomotor response and elicited bursts of activity. • Effects of

  14. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, Benjamin; Kubota, Akira; O' Meara, Conor M. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Lamb, David C. [Institute of Life Science, Medical School, Swansea University, Swansea (United Kingdom); Tanguay, Robert L. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR (United States); Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States)

    2016-04-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. - Highlights: • The “orphan” CYP20A1 was cloned from zebrafish and its sequence analyzed. • Knockdown of CYP20A1 reduced an optomotor response and elicited bursts of activity. • Effects of

  15. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12.

    Science.gov (United States)

    Hu, Qinglian; Guo, Fengliang; Zhao, Fenghui; Fu, Zhengwei

    2017-04-01

    Nanomaterials hold significant potential for industrial and biomedical application these years. Therefore, the relationship between nanoparticles and neurodegenerative disease is of enormous interest. In this contribution, zebrafish embryos and PC12 cell lines were selected for studying neurotoxicity of titanium dioxide nanoparticles (TiO 2 NPs). After exposure of different concentrations of TiO 2 NPs to embryos from fertilization to 96 hpf, the hatching time of zebrafish was decreased, accompanied by an increase in malformation rate. However, no significant increases in mortality relative to control were observed. These results indicated that TiO 2 NPs exposure hold a risk for premature of zebrafish embryos, but not fatal. The further investigation confirmed that TiO 2 NPs could accumulate in the brain of zebrafish larvae, resulting in reactive oxygen species (ROS) generation and cell death of hypothalamus. Meanwhile, q-PCR analysis showed that TiO 2 NPs exposure increased the pink1, parkin, α-syn and uchl1 gene expression, which are related with the formation of Lewy bodies. We also observed loss of dopaminergic neurons in zebrafish and in vitro. These remarkable hallmarks are all linked to these Parkinson's disease (PD) symptoms. Our results indicate that TiO 2 NPs exposure induces neurotoxicity in vivo and in vitro, which poses a significant risk factor for the development of PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus.

    Science.gov (United States)

    Aizawa, Hidenori; Bianco, Isaac H; Hamaoka, Takanori; Miyashita, Toshio; Uemura, Osamu; Concha, Miguel L; Russell, Claire; Wilson, Stephen W; Okamoto, Hitoshi

    2005-02-08

    The habenulae are part of an evolutionarily highly conserved limbic-system conduction pathway that connects telencephalic nuclei to the interpeduncular nucleus (IPN) of the midbrain . In zebrafish, unilateral activation of the Nodal signaling pathway in the left brain specifies the laterality of the asymmetry of habenular size . We show "laterotopy" in the habenulo-interpeduncular projection in zebrafish, i.e., the stereotypic, topographic projection of left-sided habenular axons to the dorsal region of the IPN and of right-sided habenular axons to the ventral IPN. This asymmetric projection is accounted for by a prominent left-right (LR) difference in the size ratio of the medial and lateral habenular sub-nuclei, each of which specifically projects either to ventral or dorsal IPN targets. Asymmetric Nodal signaling directs the orientation of laterotopy but is dispensable for the establishment of laterotopy itself. Our results reveal a mechanism by which information distributed between left and right sides of the brain can be transmitted bilaterally without loss of LR coding, which may play a crucial role in functional lateralization of the vertebrate brain .

  17. A Student Team in a University of Michigan Biomedical Engineering Design Course Constructs a Microfluidic Bioreactor for Studies of Zebrafish Development

    Science.gov (United States)

    Shen, Yu-chi; Li, David; Al-Shoaibi, Ali; Bersano-Begey, Tom; Chen, Hao; Ali, Shahid; Flak, Betsy; Perrin, Catherine; Winslow, Max; Shah, Harsh; Ramamurthy, Poornapriya; Schmedlen, Rachael H.; Takayama, Shuichi

    2009-01-01

    Abstract The zebrafish is a valuable model for teaching developmental, molecular, and cell biology; aquatic sciences; comparative anatomy; physiology; and genetics. Here we demonstrate that zebrafish provide an excellent model system to teach engineering principles. A seven-member undergraduate team in a biomedical engineering class designed, built, and tested a zebrafish microfluidic bioreactor applying microfluidics, an emerging engineering technology, to study zebrafish development. During the semester, students learned engineering and biology experimental design, chip microfabrication, mathematical modeling, zebrafish husbandry, principles of developmental biology, fluid dynamics, microscopy, and basic molecular biology theory and techniques. The team worked to maximize each person's contribution and presented weekly written and oral reports. Two postdoctoral fellows, a graduate student, and three faculty instructors coordinated and directed the team in an optimal blending of engineering, molecular, and developmental biology skill sets. The students presented two posters, including one at the Zebrafish meetings in Madison, Wisconsin (June 2008). PMID:19292670

  18. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    Science.gov (United States)

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Optimism and the brain: trait optimism mediates the protective role of the orbitofrontal cortex gray matter volume against anxiety.

    Science.gov (United States)

    Dolcos, Sanda; Hu, Yifan; Iordan, Alexandru D; Moore, Matthew; Dolcos, Florin

    2016-02-01

    Converging evidence identifies trait optimism and the orbitofrontal cortex (OFC) as personality and brain factors influencing anxiety, but the nature of their relationships remains unclear. Here, the mechanisms underlying the protective role of trait optimism and of increased OFC volume against symptoms of anxiety were investigated in 61 healthy subjects, who completed measures of trait optimism and anxiety, and underwent structural scanning using magnetic resonance imaging. First, the OFC gray matter volume (GMV) was associated with increased optimism, which in turn was associated with reduced anxiety. Second, trait optimism mediated the relation between the left OFC volume and anxiety, thus demonstrating that increased GMV in this brain region protects against symptoms of anxiety through increased optimism. These results provide novel evidence about the brain-personality mechanisms protecting against anxiety symptoms in healthy functioning, and identify potential targets for preventive and therapeutic interventions aimed at reducing susceptibility and increasing resilience against emotional disturbances. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.

    Directory of Open Access Journals (Sweden)

    Subhra Prakash Hui

    Full Text Available Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.

  1. Transcriptome analysis of severe hypoxic stress during development in zebrafish

    Directory of Open Access Journals (Sweden)

    I.G. Woods

    2015-12-01

    Full Text Available Hypoxia causes critical cellular injury both in early human development and in adulthood, leading to cerebral palsy, stroke, and myocardial infarction. Interestingly, a remarkable phenomenon known as hypoxic preconditioning arises when a brief hypoxia exposure protects target organs against subsequent, severe hypoxia. Although hypoxic preconditioning has been demonstrated in several model organisms and tissues including the heart and brain, its molecular mechanisms remain poorly understood. Accordingly, we used embryonic and larval zebrafish to develop a novel vertebrate model for hypoxic preconditioning, and used this model to identify conserved hypoxia-regulated transcripts for further functional study as published in Manchenkov et al. (2015 in G3: Genes|Genomes|Genetics. In this Brief article, we provide extensive annotation for the most strongly hypoxia-regulated genes in zebrafish, including their human orthologs, and describe in detail the methods used to identify, filter, and annotate hypoxia-regulated transcripts for downstream functional and bioinformatic assays using the source data provided in Gene Expression Omnibus Accession GSE68473.

  2. User-customized brain computer interfaces using Bayesian optimization.

    Science.gov (United States)

    Bashashati, Hossein; Ward, Rabab K; Bashashati, Ali

    2016-04-01

    The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject's brain characteristics. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  3. Emerging various environmental threats to brain and overview of surveillance system with zebrafish model

    Directory of Open Access Journals (Sweden)

    Rafael Vargas

    Full Text Available Pathologies related to neurotoxicity represent an important percentage of the diseases that determine the global burden of diseases. Neurotoxicity may be related to the increasing levels of potentially neurotoxic agents that pollute the environment, which generates concern, since agents that affect children may increase the incidence of neurodevelopmental disorders, affecting the quality of life of future citizens. Many environmental contaminants have been detected, and many of them derive from several human activities, including the mining, agriculture, manufacturing, pharmaceutical, beverage and food industries. These problems are more acute in third world countries, where environmental regulations are lax or non-existent. An additional major emerging problem is drug contamination. Periodic monitoring should be performed to identify potential neurotoxic substances using biological tests capable of identifying the risk. In this sense the fish embryo test (FET, which is performed on zebrafish embryos, is a useful, reliable and economical alternative that can be implemented in developing countries. Keywords: Neurotoxicity, Global burden disease, Environmental contaminants, Zebrafish embryo test

  4. Expression pattern of cdkl5 during zebrafish early development: implications for use as model for atypical Rett syndrome.

    Science.gov (United States)

    Vitorino, Marta; Cunha, Nídia; Conceição, Natércia; Cancela, M Leonor

    2018-05-11

    Atypical Rett syndrome is a child neurodevelopmental disorder induced by mutations in CDKL5 gene and characterized by a progressive regression in development with loss of purposeful use of the hands, slowed brain and head growth, problems with walking, seizures, and intellectual disability. At the moment, there is no cure for this pathology and little information is available concerning animal models capable of mimicking its phenotypes, thus the development of additional animal models should be of interest to gain more knowledge about the disease. Zebrafish has been used successfully as model organism for many human genetic diseases; however, no information is available concerning the spatial and temporal expression of cdkl5 orthologous in this organism. In the present study, we identified the developmental expression patterns of cdkl5 in zebrafish by quantitative PCR and whole-mount in situ hybridization. cdkl5 is expressed maternally at low levels during the first 24 h of development. After that the expression of the gene increases significantly and it starts to be expressed mainly in the nervous system and in several brain structures, such as telencephalon, mesencephalon and diencephalon. The expression patterns of cdkl5 in zebrafish is in accordance with the tissues known to be affected in humans and associated to symptoms and deficits observed in Rett syndrome patients thus providing the first evidence that zebrafish could be an alternative model to study the molecular pathways of this disease as well as to test possible therapeutic approaches capable of rescuing the phenotype.

  5. Oxidative stress and regulation of Pink1 in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Madhusmita Priyadarshini

    Full Text Available Oxidative stress-mediated neuronal dysfunction is characteristic of several neurodegenerative disorders, including Parkinson's disease (PD. The enzyme tyrosine hydroxylase (TH catalyzes the formation of L-DOPA, the rate-limiting step in the biosynthesis of dopamine. A lack of dopamine in the striatum is the most characteristic feature of PD, and the cause of the most dominant symptoms. Loss of function mutations in the PTEN-induced putative kinase (PINK1 gene cause autosomal recessive PD. This study explored the basic mechanisms underlying the involvement of pink1 in oxidative stress-mediated PD pathology using zebrafish as a tool. We generated a transgenic line, Tg(pink1:EGFP, and used it to study the effect of oxidative stress (exposure to H2O2 on pink1 expression. GFP expression was enhanced throughout the brain of zebrafish larvae subjected to oxidative stress. In addition to a widespread increase in pink1 mRNA expression, mild oxidative stress induced a clear decline in tyrosine hydroxylase 2 (th2, but not tyrosine hydroxylase 1 (th1 expression, in the brain of wild-type larvae. The drug L-Glutathione Reduced (LGR has been associated with anti-oxidative and possible neuroprotective properties. Administration of LGR normalized the increased fluorescence intensity indicating pink1 transgene expression and endogenous pink1 mRNA expression in larvae subjected to oxidative stress by H2O2. In the pink1 morpholino oliogonucleotide-injected larvae, the reduction in the expression of th1 and th2 was partially rescued by LGR. The pink1 gene is a sensitive marker of oxidative stress in zebrafish, and LGR effectively normalizes the consequences of mild oxidative stress, suggesting that the neuroprotective effects of pink1 and LGR may be significant and useful in drug development.

  6. Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction

    Directory of Open Access Journals (Sweden)

    Jenessa Lancaster

    2018-02-01

    Full Text Available Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years we trained support vector machines to (i distinguish between young (<22 years and old (>50 years brains (classification and (ii predict chronological age (regression. We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years. Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm. For predicting chronological age, a mean absolute error (MAE of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm. This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian

  7. Identification and characterization of zebrafish thrombocytes.

    Science.gov (United States)

    Jagadeeswaran, P; Sheehan, J P; Craig, F E; Troyer, D

    1999-12-01

    To analyse primary haemostasis in the zebrafish we have identified and characterized the zebrafish thrombocyte by morphologic, immunologic and functional approaches. Novel methods were developed for harvesting zebrafish blood with preservation of thrombocytes, and assaying whole blood adhesion/aggregation responses in microtitre plates. Light and electron microscopy of the thrombocyte illustrated morphological characteristics including the formation of aggregates, pseudopodia, and surface-connected vesicles analagous to the platelet canalicular system. Immunostaining with polyclonal antisera versus human platelet glycoproteins demonstrated the presence of glycoprotein Ib and IIb/IIIa-like complexes on the thrombocyte surface. Whole blood assays for adhesion/aggregation and ATP release showed ristocetin-induced adhesion without ATP release, and platelet agonist (collagen, arachidonic acid) induced aggregation with ATP release. Blood harvested from zebrafish treated with aspirin demonstrated inhibition of arachidonic acid induced aggregation and agonist induced ATP release, consistent with at least partial dependence on an intact cyclo oxygenase pathway. The combined morphologic immunologic and functional evidence suggest that the zebrafish thrombocyte is the haemostatic homologue of the mammalian platelet. Conservation of major haemostatic pathways involved in platelet function and coagulation suggests that the zebrafish is a relevant model for mammalian haemostasis and thrombosis.

  8. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol

    DEFF Research Database (Denmark)

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne

    2014-01-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen...... to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarioswere compared: continuous exposure to environmentally relevant concentrations (0.1–10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water....... The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b)mRNA expression...

  9. Generation and characterization of Kctd15 mutations in zebrafish.

    Directory of Open Access Journals (Sweden)

    Alison Heffer

    Full Text Available Potassium channel tetramerization domain containing 15 (Kctd15 was previously found to have a role in early neural crest (NC patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs to generate null mutations in zebrafish kctd15a and kctd15b paralogs to study the in vivo role of Kctd15. We found that while deletions producing frame-shift mutations in each paralog showed no apparent phenotype, kctd15a/b double mutant zebrafish are smaller in size and show several phenotypes including some affecting the NC, such as expansion of the early NC domain, increased pigmentation, and craniofacial defects. Both melanophore and xanthophore pigment cell numbers and early markers are up-regulated in the double mutants. While we find no embryonic craniofacial defects, adult mutants have a deformed maxillary segment and missing barbels. By confocal imaging of mutant larval brains we found that the torus lateralis (TLa, a region implicated in gustatory networks in other fish, is absent. Ablation of this brain tissue in wild type larvae mimics some aspects of the mutant growth phenotype. Thus kctd15 mutants show deficits in the development of both neural crest derivatives, and specific regions within the central nervous system, leading to a strong reduction in normal growth rates.

  10. Finding influential nodes for integration in brain networks using optimal percolation theory.

    Science.gov (United States)

    Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A

    2018-06-11

    Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.

  11. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions.

    Science.gov (United States)

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.

  12. Aromatic L-amino acid decarboxylase (AADC is crucial for brain development and motor functions.

    Directory of Open Access Journals (Sweden)

    De-Fen Shih

    Full Text Available Aromatic L-amino acid decarboxylase (AADC deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc, in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos. Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.

  13. Swimming Effects on Developing Zebrafish

    NARCIS (Netherlands)

    Kranenbarg, S.; Pelster, B.

    2013-01-01

    Zebrafish represent an important vertebrate model species in developmental biology. This chapter reviews the effects of exercise on the development of the musculoskeletal system, the cardiovascular system, metabolic capacities of developing zebrafish, and regulation of these processes on the gene

  14. Laser capture microdissection of gonads from juvenile zebrafish

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John; Morthorst, Jane Ebsen

    2009-01-01

    was adjusted and optimised to isolate juvenile zebrafish gonads. Results: The juvenile zebrafish gonad is not morphologically distinguishable when using dehydrated cryosections on membrane slides and a specific staining method is necessary to identify the gonads. The protocol setup in this study allows......Background: Investigating gonadal gene expression is important in attempting to elucidate the molecular mechanism of sex determination and differentiation in the model species zebrafish. However, the small size of juvenile zebrafish and correspondingly their gonads complicates this type...... of investigation. Furthermore, the lack of a genetic sex marker in juvenile zebrafish prevents pooling gonads from several individuals. The aim of this study was to establish a method to isolate the gonads from individual juvenile zebrafish allowing future investigations of gonadal gene expression during sex...

  15. New tides: using zebrafish to study renal regeneration.

    Science.gov (United States)

    McCampbell, Kristen K; Wingert, Rebecca A

    2014-02-01

    Over the past several decades, the zebrafish has become one of the major vertebrate model organisms used in biomedical research. In this arena, the zebrafish has emerged as an applicable system for the study of kidney diseases and renal regeneration. The relevance of the zebrafish model for nephrology research has been increasingly appreciated as the understanding of zebrafish kidney structure, ontogeny, and the response to damage has steadily expanded. Recent studies have documented the amazing regenerative characteristics of the zebrafish kidney, which include the ability to replace epithelial populations after acute injury and to grow new renal functional units, termed nephrons. Here we discuss how nephron composition is conserved between zebrafish and mammals, and highlight how recent findings from zebrafish studies utilizing transgenic technologies and chemical genetics can complement traditional murine approaches in the effort to dissect how the kidney responds to acute damage and identify therapeutics that enhance human renal regeneration. Copyright © 2014 Mosby, Inc. All rights reserved.

  16. Nanodiamond for biolabelling and toxicity evaluation in the zebrafish embryo in vivo.

    Science.gov (United States)

    Lin, Y-C; Wu, K-T; Lin, Z-R; Perevedentseva, E; Karmenyan, A; Lin, M-D; Cheng, C-L

    2016-08-01

    Nanodiamond (ND) has been proposed for various biomedical applications, including bioimaging, biosensing and drug delivery, owing to its physical-chemical properties and biocompatibility. Particularly, ND has been demonstrated as fluorescence- and Raman-detectable labels in many cellular models. Different surface functionalization methods have been developed, varying the ND's surface properties and rendering the possibility to attach biomolecules to provide interaction with biological targets. For this, toxicity is of major concern in animal models. Aside from cellular models, a cost-effective animal test will greatly facilitate the development of applications. In this study, we use the rapid, sensitive and reproducible zebrafish embryo model for in vivo nanotoxicity test. We optimize the conditions for using this animal model and analyze the zebrafish embryonic development in the presence of ND. ND is observed in the embryo in vivo using laser confocal fluorescence microscopy and fluorescence lifetime imaging. Using the zebrafish model for a safety evaluation of ND-based nanolabel is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mechanisms of social buffering of fear in zebrafish.

    Science.gov (United States)

    Faustino, Ana I; Tacão-Monteiro, André; Oliveira, Rui F

    2017-03-31

    Some humans thrive whereas others resign when exposed to threatening situations throughout life. Social support has been identified as an important modulator of these discrepancies in human behaviour, and other social animals also exhibit phenomena in which individuals recover better from aversive events when conspecifics are present - aka social buffering. Here we studied social buffering in zebrafish, by exposing focal fish to an aversive stimulus (alarm substance - AS) either in the absence or presence of conspecific cues. When exposed to AS in the presence of both olfactory (shoal water) and visual (sight of shoal) conspecific cues, focal fish exhibited a lower fear response than when tested alone, demonstrating social buffering in zebrafish. When separately testing each cue's effectiveness, we verified that the visual cue was more effective than the olfactory in reducing freezing in a persistent threat scenario. Finally, we verified that social buffering was independent of shoal size and coincided with a distinct pattern of co-activation of brain regions known to be involved in mammalian social buffering. Thus, this study suggests a shared evolutionary origin for social buffering in vertebrates, bringing new evidence on the behavioural, sensory and neural mechanisms underlying this phenomenon.

  18. User-customized brain computer interfaces using Bayesian optimization

    Science.gov (United States)

    Bashashati, Hossein; Ward, Rabab K.; Bashashati, Ali

    2016-04-01

    Objective. The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject’s brain characteristics. Approach. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. Main Results. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Significance. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  19. Object recognition memory in zebrafish.

    Science.gov (United States)

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish

    International Nuclear Information System (INIS)

    Cano-Nicolau, Joel; Garoche, Clémentine; Hinfray, Nathalie; Pellegrini, Elisabeth; Boujrad, Noureddine; Pakdel, Farzad; Kah, Olivier; Brion, François

    2016-01-01

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC 50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. - Highlights: • P4 + 24 progestins

  1. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish

    Energy Technology Data Exchange (ETDEWEB)

    Cano-Nicolau, Joel [Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Garoche, Clémentine; Hinfray, Nathalie [Unité d' Ecotoxicologie in vitro et in vivo , Institut National de l' Environnement Industriel et des Risques (INERIS), BP 2, 60550 Verneuil-en-Halatte (France); Pellegrini, Elisabeth [Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Boujrad, Noureddine; Pakdel, Farzad [TREK, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Kah, Olivier, E-mail: oliver.kah@univ-rennes1.fr [Team NEED, Institut de recherche en Santé Environnement et Travail (Irset), INSERM U1085, Université de Rennes 1, Campus de Beaulieu, SFR Biosit, 35042 Rennes cedex (France); Brion, François, E-mail: francois.brion@ineris.fr [Unité d' Ecotoxicologie in vitro et in vivo , Institut National de l' Environnement Industriel et des Risques (INERIS), BP 2, 60550 Verneuil-en-Halatte (France)

    2016-08-15

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC{sub 50} ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. - Highlights: • P4 + 24

  2. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Lisa, E-mail: lisa.baumann@vetsuisse.unibe.ch [Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, PO Box 8466, CH-3001 Bern (Switzerland); Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Knörr, Susanne, E-mail: susanne.knoerr@gmx.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Keiter, Susanne, E-mail: susanne.keiter@cos.uni-heidelberg.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Rehberger, Kristina, E-mail: k.rehberger@stud.uni-heidelberg.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Volz, Sina, E-mail: s.volz@stud.uni-heidelberg.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Schiller, Viktoria, E-mail: schiller@molbiotech.rwth-aachen.de [Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, D-52074 Aachen (Germany); Fenske, Martina, E-mail: martina.fenske@ime.fraunhofer.de [Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, D-52074 Aachen (Germany); Holbech, Henrik, E-mail: hol@biology.sdu.dk [Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Segner, Helmut, E-mail: helmut.segner@vetsuisse.unibe.ch [Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, PO Box 8466, CH-3001 Bern (Switzerland); Braunbeck, Thomas, E-mail: braunbeck@uni-hd.de [Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany)

    2014-08-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1–10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish. - Highlights: • Zebrafish were exposed to 17α-ethinylestradiol during their sexual differentiation. • Reversibility of effects was investigated after depuration of 40 days. • Morphological and physiological parameters were compared. • Zebrafish were able to recover at all different levels from mRNA to population.

  3. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol

    International Nuclear Information System (INIS)

    Baumann, Lisa; Knörr, Susanne; Keiter, Susanne; Rehberger, Kristina; Volz, Sina; Schiller, Viktoria; Fenske, Martina; Holbech, Henrik; Segner, Helmut; Braunbeck, Thomas

    2014-01-01

    The aim of the present study was to investigate the persistence of the feminizing effects of discontinued 17α-ethinylestradiol (EE2) exposure on zebrafish (Danio rerio). An exposure scenario covering the sensitive phase of sexual differentiation, as well as final gonad maturation was chosen to examine the estrogenic effects on sexual development of zebrafish. Two exposure scenarios were compared: continuous exposure to environmentally relevant concentrations (0.1–10 ng/L EE2) up to 100 days post-hatch (dph) and developmental exposure up to 60 dph, followed by 40 days of depuration in clean water. The persistence of effects was investigated at different biological organization levels from mRNA to population-relevant endpoints to cover a broad range of important parameters. EE2 had a strong feminizing and inhibiting effect on the sexual development of zebrafish. Brain aromatase (cyp19b) mRNA expression showed no clear response, but vitellogenin levels were significantly elevated, gonad maturation and body growth were inhibited in both genders, and sex ratios were skewed towards females and undifferentiated individuals. To a large extent, all of these effects were reversed after 40 days of recovery, leading to the conclusion that exposure to the estrogen EE2 results in very strong, but reversible underdevelopment and feminization of zebrafish. The present study is the first to show this reversibility at different levels of organization, which gives better insight into the mechanistic basis of estrogenic effects in zebrafish. - Highlights: • Zebrafish were exposed to 17α-ethinylestradiol during their sexual differentiation. • Reversibility of effects was investigated after depuration of 40 days. • Morphological and physiological parameters were compared. • Zebrafish were able to recover at all different levels from mRNA to population

  4. Molecular cloning and expression analysis of a zebrafish novel zinc finger protein gene rnf141

    Directory of Open Access Journals (Sweden)

    Wenqian Deng

    2009-01-01

    Full Text Available ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE. The open reading frame (ORF encodes a polypeptide of 222 amino acids which shares 75.65% identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates.

  5. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2011-03-01

    Tuberous sclerosis complex (TSC is an autosomal dominant disease caused by mutations in either the TSC1 (encodes hamartin or TSC2 (encodes tuberin genes. Patients with TSC have hamartomas in various organs throughout the whole body, most notably in the brain, skin, eye, heart, kidney and lung. To study the development of hamartomas, we generated a zebrafish model of TSC featuring a nonsense mutation (vu242 in the tsc2 gene. This tsc2vu242 allele encodes a truncated Tuberin protein lacking the GAP domain, which is required for inhibition of Rheb and of the TOR kinase within TORC1. We show that tsc2vu242 is a recessive larval-lethal mutation that causes increased cell size in the brain and liver. Greatly elevated TORC1 signaling is observed in tsc2vu242/vu242 homozygous zebrafish, and is moderately increased in tsc2vu242/+ heterozygotes. Forebrain neurons are poorly organized in tsc2vu242/vu242 homozygous mutants, which have extensive gray and white matter disorganization and ectopically positioned cells. Genetic mosaic analyses demonstrate that tsc2 limits TORC1 signaling in a cell-autonomous manner. However, in chimeric animals, tsc2vu242/vu242 mutant cells also mislocalize wild-type host cells in the forebrain in a non-cell-autonomous manner. These results demonstrate a highly conserved role of tsc2 in zebrafish and establish a new animal model for studies of TSC. The finding of a non-cell-autonomous function of mutant cells might help explain the formation of brain hamartomas and cortical malformations in human TSC.

  6. Characterization of heme oxygenase and biliverdin reductase gene expression in zebrafish (Danio rerio): Basal expression and response to pro-oxidant exposures

    International Nuclear Information System (INIS)

    Holowiecki, Andrew; O'Shields, Britton; Jenny, Matthew J.

    2016-01-01

    While heme is an important cofactor for numerous proteins, it is highly toxic in its unbound form and can perpetuate the formation of reactive oxygen species. Heme oxygenase enzymes (HMOX1 and HMOX2) degrade heme into biliverdin and carbon monoxide, with biliverdin subsequently being converted to bilirubin by biliverdin reductase (BVRa or BVRb). As a result of the teleost-specific genome duplication event, zebrafish have paralogs of hmox1 (hmox1a and hmox1b) and hmox2 (hmox2a and hmox2b). Expression of all four hmox paralogs and two bvr isoforms were measured in adult tissues (gill, brain and liver) and sexually dimorphic differences were observed, most notably in the basal expression of hmox1a, hmox2a, hmox2b and bvrb in liver samples. hmox1a, hmox2a and hmox2b were significantly induced in male liver tissues in response to 96 h cadmium exposure (20 μM). hmox2a and hmox2b were significantly induced in male brain samples, but only hmox2a was significantly reduced in male gill samples in response to the 96 h cadmium exposure. hmox paralogs displayed significantly different levels of basal expression in most adult tissues, as well as during zebrafish development (24 to 120 hpf). Furthermore, hmox1a, hmox1b and bvrb were significantly induced in zebrafish eleutheroembryos in response to multiple pro-oxidants (cadmium, hemin and tert-butylhydroquinone). Knockdown of Nrf2a, a transcriptional regulator of hmox1a, was demonstrated to inhibit the Cd-mediated induction of hmox1b and bvrb. These results demonstrate distinct mechanisms of hmox and bvr transcriptional regulation in zebrafish, providing initial evidence of the partitioning of function of the hmox paralogs. - Highlights: • hmox1a, hmox2a, hmox2b and bvrb are sexually dimorphic in expression. • hmox paralogs were induced in adult tissues by cadmium exposure. • hmox1a, hmox1b and bvrb were induced by multiple pro-oxidants zebrafish embryos. • Differential expression of zebrafish hmox paralogs suggest

  7. Characterization of heme oxygenase and biliverdin reductase gene expression in zebrafish (Danio rerio): Basal expression and response to pro-oxidant exposures

    Energy Technology Data Exchange (ETDEWEB)

    Holowiecki, Andrew [Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487 (United States); Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); O' Shields, Britton [Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487 (United States); Jenny, Matthew J., E-mail: mjjenny@ua.edu [Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-11-15

    While heme is an important cofactor for numerous proteins, it is highly toxic in its unbound form and can perpetuate the formation of reactive oxygen species. Heme oxygenase enzymes (HMOX1 and HMOX2) degrade heme into biliverdin and carbon monoxide, with biliverdin subsequently being converted to bilirubin by biliverdin reductase (BVRa or BVRb). As a result of the teleost-specific genome duplication event, zebrafish have paralogs of hmox1 (hmox1a and hmox1b) and hmox2 (hmox2a and hmox2b). Expression of all four hmox paralogs and two bvr isoforms were measured in adult tissues (gill, brain and liver) and sexually dimorphic differences were observed, most notably in the basal expression of hmox1a, hmox2a, hmox2b and bvrb in liver samples. hmox1a, hmox2a and hmox2b were significantly induced in male liver tissues in response to 96 h cadmium exposure (20 μM). hmox2a and hmox2b were significantly induced in male brain samples, but only hmox2a was significantly reduced in male gill samples in response to the 96 h cadmium exposure. hmox paralogs displayed significantly different levels of basal expression in most adult tissues, as well as during zebrafish development (24 to 120 hpf). Furthermore, hmox1a, hmox1b and bvrb were significantly induced in zebrafish eleutheroembryos in response to multiple pro-oxidants (cadmium, hemin and tert-butylhydroquinone). Knockdown of Nrf2a, a transcriptional regulator of hmox1a, was demonstrated to inhibit the Cd-mediated induction of hmox1b and bvrb. These results demonstrate distinct mechanisms of hmox and bvr transcriptional regulation in zebrafish, providing initial evidence of the partitioning of function of the hmox paralogs. - Highlights: • hmox1a, hmox2a, hmox2b and bvrb are sexually dimorphic in expression. • hmox paralogs were induced in adult tissues by cadmium exposure. • hmox1a, hmox1b and bvrb were induced by multiple pro-oxidants zebrafish embryos. • Differential expression of zebrafish hmox paralogs suggest

  8. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH neurons

    Directory of Open Access Journals (Sweden)

    Christian Cortés-Campos

    2015-09-01

    Full Text Available Gonadotropin-releasing hormone (GnRH is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons.

  9. MO-F-CAMPUS-T-01: Radiosurgery of Multiple Brain Metastases with Single-Isocenter VMAT: Optimizing Treatment Geometry to Reduce Normal Brain Dose

    International Nuclear Information System (INIS)

    Wu, Q; Snyder, K; Liu, C; Huang, Y; Li, H; Chetty, I; Wen, N

    2015-01-01

    Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas were the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API

  10. MO-F-CAMPUS-T-01: Radiosurgery of Multiple Brain Metastases with Single-Isocenter VMAT: Optimizing Treatment Geometry to Reduce Normal Brain Dose

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q [Wayne State University, Detroit, MI (United States); Snyder, K; Liu, C; Huang, Y; Li, H; Chetty, I; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2015-06-15

    Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas were the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API.

  11. Episodic-like memory in zebrafish.

    Science.gov (United States)

    Hamilton, Trevor J; Myggland, Allison; Duperreault, Erika; May, Zacnicte; Gallup, Joshua; Powell, Russell A; Schalomon, Melike; Digweed, Shannon M

    2016-11-01

    Episodic-like memory tests often aid in determining an animal's ability to recall the what, where, and which (context) of an event. To date, this type of memory has been demonstrated in humans, wild chacma baboons, corvids (Scrub jays), humming birds, mice, rats, Yucatan minipigs, and cuttlefish. The potential for this type of memory in zebrafish remains unexplored even though they are quickly becoming an essential model organism for the study of a variety of human cognitive and mental disorders. Here we explore the episodic-like capabilities of zebrafish (Danio rerio) in a previously established mammalian memory paradigm. We demonstrate that when zebrafish were presented with a familiar object in a familiar context but a novel location within that context, they spend more time in the novel quadrant. Thus, zebrafish display episodic-like memory as they remember what object they saw, where they saw it (quadrant location), and on which occasion (yellow or blue walls) it was presented.

  12. Zebrafish swimming in the flow: a particle image velocimetry study

    Directory of Open Access Journals (Sweden)

    Violet Mwaffo

    2017-11-01

    Full Text Available Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.

  13. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    Energy Technology Data Exchange (ETDEWEB)

    Barillet, Sabrina, E-mail: sabrina.barillet@free.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Adam-Guillermin, Christelle, E-mail: christelle.adam-guillermin@irsn.f [Laboratory of Radioecology and Ecotoxicology, IRSN (Institute for Radiological protection and Nuclear Safety), DEI/SECRE/LRE, Cadarache, Bat 186, BP 3, 13115 St-Paul-Lez-Durance cedex (France); Palluel, Olivier, E-mail: olivier.palluel@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Porcher, Jean-Marc, E-mail: jean-marc.porcher@ineris.f [Ecotoxicological Risk Assessment Unit, INERIS (National Institute for Industrial Environment and Risks), Parc technologique ALATA, 60 550 Verneuil-en-Halatte (France); Devaux, Alain, E-mail: alain.devaux@entpe.f [Universite de Lyon, INRA, EFPA-SA, Environmental Science Laboratory (LSE), ENTPE, 69518 Vaulx en Velin cedex (France)

    2011-02-15

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 {mu}g/L. Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. DNA damage is induced in red blood cells after 20 d of exposure to 500 {mu}g DU/L. The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  14. Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure

    International Nuclear Information System (INIS)

    Barillet, Sabrina; Adam-Guillermin, Christelle; Palluel, Olivier; Porcher, Jean-Marc; Devaux, Alain

    2011-01-01

    Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose-response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect. - Research highlights: → Depleted U bioconcentration factor is of about 1000 in zebrafish exposed to 20 μg/L. → Hepatic antioxidant disorders are noticed as soon as the first hours of exposure. → DNA damage is induced in red blood cells after 20 d of exposure to 500 μg DU/L. → The brain cholinergic system (AChE activity) is impacted. - This study demonstrates that U is highly bioaccumulated in fish, resulting in biological disorders such as hepatic oxidative stress as well as genotoxic and neurotoxic events.

  15. Suppression of the endoplasmic reticulum calcium pump during zebrafish gastrulation affects left-right asymmetry of the heart and brain.

    Science.gov (United States)

    Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert

    2008-01-01

    Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.

  16. Transient knockdown of tyrosine hydroxylase during development has persistent effects on behaviour in adult zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Isabel Formella

    Full Text Available Abnormal dopamine (DA signaling is often suggested as causative in schizophrenia. The other prominent hypothesis for this disorder, largely driven by epidemiological data, is that certain adverse events during the early stages of brain development increase an individual's risk of developing schizophrenia later in life. However, the clinical and preclinical literature consistently implicates behavioural, cognitive, and pharmacological abnormalities, implying that DA signaling is abnormal in the adult brain. How can we reconcile these two major hypotheses underlying much of the clinical and basic research into schizophrenia? In this study we have transiently knocked down tyrosine hydroxylase (TH, the rate limiting enzyme in DA synthesis gene expression in the early stages of brain development in zebrafish using morpholinos. We show that by adulthood, TH and DA levels have returned to normal and basic DA-mediated behaviours, such as locomotion, are also normal. However, when they were exposed to a novel environment the levels of freezing and immediate positioning in deeper zones were significantly reduced in these adult fish. The neurochemistry underlying these behaviours is complex, and the exact mechanisms for these abnormal behaviours remains unknown. This study demonstrates that early transient alterations in DA ontogeny can produce persistent alterations in adult brain function and suggests that the zebrafish may be a promising model animal for future studies directed at clarifying the basic neurodevelopmental mechanisms behind complex psychiatric disease.

  17. Discovery, characterization and expression of a novel zebrafish gene, znfr, important for notochord formation.

    Science.gov (United States)

    Xu, Yan; Zou, Peng; Liu, Yao; Deng, Fengjiao

    2010-06-01

    Genes specifically expressed in the notochord may be crucial for proper notochord development. Using the digital differential display program offered by the National Center for Biotechnology Information, we identified a novel EST sequence from a zebrafish ovary library (No. XM_701450). The full-length cDNA of this transcript was cloned by performing 3' and 5'-RACE and was further confirmed by PCR and sequencing. The resulting 614 bp gene was found to encode a novel 94 amino acid protein that did not share significant homology with any other known protein. Characterization of the genomic sequence revealed that the gene spanned 4.9 kb and was composed of four exons and three introns. RT-PCR gene expression analysis revealed that our gene of interest was expressed in ovary, kidney, brain, mature oocytes and during the early stages of embryogenesis. During embryonic development, znfr mRNA was found to be expressed in the embryonic shield, chordamesoderm and the vacuolated notochord cells by in situ hybridization. Based on this information, we hypothesize that this novel gene is an important maternal factor required for zebrafish notochord formation during early embryonic development. We have thus named this gene znfr (zebrafish notochord formation related).

  18. The Zebrafish Model Organism Database (ZFIN)

    Data.gov (United States)

    U.S. Department of Health & Human Services — ZFIN serves as the zebrafish model organism database. It aims to: a) be the community database resource for the laboratory use of zebrafish, b) develop and support...

  19. A panel of recombinant monoclonal antibodies against zebrafish neural receptors and secreted proteins suitable for wholemount immunostaining.

    Science.gov (United States)

    Staudt, Nicole; Müller-Sienerth, Nicole; Fane-Dremucheva, Alla; Yusaf, Shahnaz P; Millrine, David; Wright, Gavin J

    2015-01-02

    Cell surface receptors and secreted proteins play important roles in neural recognition processes, but because their site of action can be a long distance from neuron cell bodies, antibodies that label these proteins are valuable to understand their function. The zebrafish embryo is a popular vertebrate model for neurobiology, but suffers from a paucity of validated antibody reagents. Here, we use the entire ectodomain of neural zebrafish cell surface or secreted proteins expressed in mammalian cells to select monoclonal antibodies to ten different antigens. The antibodies were characterised by Western blotting and the sensitivity of their epitopes to formalin fixation was determined. The rearranged antigen binding regions of the antibodies were amplified and cloned which enabled expression in a recombinant form from a single plasmid. All ten antibodies gave specific staining patterns within formalin-treated embryonic zebrafish brains, demonstrating that this generalised approach is particularly efficient to elicit antibodies that stain native antigen in fixed wholemount tissue. Finally, we show that additional tags can be easily added to the recombinant antibodies for convenient multiplex staining. The antibodies and the approaches described here will help to address the lack of well-defined antibody reagents in zebrafish research. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  1. A comparative expression analysis of gene transcripts in brain tissue of non-transgenic and GH-transgenic zebrafish (Danio rerio using a DDRT-PCR approach

    Directory of Open Access Journals (Sweden)

    Fernanda A. Alves-Costa

    2012-06-01

    Full Text Available The presence of higher level of exogenous growth hormone (GH in transgenic animals could lead to several physiological alterations. A GH transgenic zebrafish (Danio rerio line was compared to nontransgenic (NT samples of the species through a DDRT-PCR approach, with the goal of identifying candidate differentially expressed transcripts in brain tissues that could be involved in GH overexpression. Densitometric analyses of two selected amplification products, p300 and ADCY2, pointed to a significant lower gene expression in the transgenic zebrafish (104.02 ± 57.71; 224.10 ± 91.73 when compared to NT samples (249.75 ± 30.08; 342.95 ± 65.19. The present data indicate that p300 and ADCY2 are involved in a regulation system for GH when high circulating levels of this hormone are found in zebrafishes.A presença de níveis mais elevados do hormônio de crescimento (GH em animais transgênicos poderia levar a várias alterações fisiológicas. Uma linhagem transgênica de paulistinha (Danio rerio para o GH foi comparada com amostras não transgênicas (NT desta espécie, através de uma abordagem de DDRT-PCR, com o objetivo de identificar transcritos candidatos diferencialmente expressos em tecido cerebral que poderiam estar envolvidos na superexpressão de GH. Análises densitométricas de dois produtos de amplificação selecionados, p300 e ADCY2, apontaram uma expressão gênica significativamente menor nas amostras transgênicas de paulistinha (104.02 ± 57.71; 224.10 ± 91.73, quando comparadas com as amostras NT (249.75 ± 30.08; 342.95±65.19. Os presentes dados indicam que p300 e ADCY2 estão envolvidos em um sistema de regulação do GH, quando altos níveis circulantes desse hormônio são encontrados em paulistinha.

  2. Macrophage–Microbe Interactions: Lessons from the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Nagisa Yoshida

    2017-12-01

    Full Text Available Macrophages provide front line defense against infections. The study of macrophage–microbe interplay is thus crucial for understanding pathogenesis and infection control. Zebrafish (Danio rerio larvae provide a unique platform to study macrophage–microbe interactions in vivo, from the level of the single cell to the whole organism. Studies using zebrafish allow non-invasive, real-time visualization of macrophage recruitment and phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been central to decipher the complex role of macrophages during infection. Here, we discuss the latest developments using zebrafish models of bacterial and fungal infection. We also review novel aspects of macrophage biology revealed by zebrafish, which can potentiate development of new therapeutic strategies for humans.

  3. FishNet: an online database of zebrafish anatomy

    Directory of Open Access Journals (Sweden)

    Gibson Abigail J

    2007-08-01

    Full Text Available Abstract Background Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish. Results To overcome this deficit we have utilized the technique of optical projection tomography to produce three-dimensional (3D models of larval fish. In order to view and display these models we have created FishNet http://www.fishnet.org.au, an interactive reference of zebrafish anatomy spanning the range of zebrafish development from 24 h until adulthood. Conclusion FishNet contains more than 36 000 images of larval zebrafish, with more than 1 500 of these being annotated. The 3D models can be manipulated on screen or virtually sectioned. This resource represents the first complete embryo to adult atlas for any species in 3D.

  4. Zebrafish: an animal model for research in veterinary medicine.

    Science.gov (United States)

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  5. Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    François Brion

    Full Text Available The tg(cyp19a1b-GFP transgenic zebrafish expresses GFP (green fluorescent protein under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i it is only expressed in radial glial progenitors in the brain of fish and (ii it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture, including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.

  6. Prolonged hypoxia increases survival even in Zebrafish (Danio rerio showing cardiac arrhythmia.

    Directory of Open Access Journals (Sweden)

    Renate Kopp

    Full Text Available Tolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia. Breakdance mutants (bre are characterized by chronically reduced cardiac output. Despite an about 50% heart rate reduction, they become adults, but survival rate significantly drops to 40%. Normoxic bre animals demonstrate increased hypoxia inducible factor 1 a (Hif-1α expression, which indicates an activated hypoxic signaling pathway. Consequently, cardiovascular acclimation, like cardiac hypertrophy and increased erythrocyte concentration, occurs. Thus, it was hypothesized, that under hypoxic conditions survival might be even more reduced. When bre mutants were exposed to hypoxic conditions, they surprisingly showed higher survival rates than under normoxic conditions and even reached wildtype values. In hypoxic wildtype zebrafish, survival yet exceeded normoxic control values. To specify physiological acclimation, cardiovascular and metabolic parameters were measured before hypoxia started (3 dpf, when the first differences in survival rate occurred (7 dpf and when survival rate plateaued (15 dpf. Hypoxic animals expectedly demonstrated Hif-1α accumulation and consequently enhanced convective oxygen carrying capacity. Moreover, bre animals showed a significantly enhanced heart rate under hypoxic conditions, which reached normoxic wildtype values. This improvement in convective oxygen transport ensured a sufficient oxygen and nutrient supply and was also reflected in the significantly higher mitochondrial activity. The highly optimized energy metabolism observed in hypoxic zebrafish larvae might be decisive for periods of higher energy demand due to organ development, growth and increased activity. However, hypoxia increased survival only during a

  7. Optimal-mass-transfer-based estimation of glymphatic transport in living brain

    Science.gov (United States)

    Ratner, Vadim; Zhu, Liangjia; Kolesov, Ivan; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2015-03-01

    It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange system designated the `glymphatic pathway' plays a key role in removing waste products from the brain, similarly to the lymphatic system in other body organs . It is therefore important to study the flow patterns of glymphatic transport through the live brain in order to better understand its functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly through a network of dedicated vessels, but rather through para-vascular channels and brain parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive MRI sequences do not provide much useful information about the desired flow patterns. We have accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and (b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations given initial conditions. We model the liquid flow through the brain by the diffusion equation. We then use the Optimal Mass Transfer (OMT) approach to derive the glymphatic flow vector field, and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that the resulting model successfully reproduces the dominant features of the experimental data. Keywords: inverse problem, optimal mass transport, diffusion equation, cerebrospinal fluid flow in brain, optical flow, liquid flow modeling, Monge Kantorovich problem, diffusion tensor estimation

  8. A simple non-invasive method for measuring gross brain size in small live fish with semi-transparent heads

    Directory of Open Access Journals (Sweden)

    Joacim Näslund

    2014-09-01

    Full Text Available This paper describes a non-invasive method for estimating gross brain size in small fish with semi-transparent heads, using system camera equipment. Macro-photographs were taken from above on backlit free-swimming fish undergoing light anaesthesia. From the photographs, the width of the optic tectum was measured. This measure (TeO-measure correlates well with the width of the optic tectum as measured from out-dissected brains in both brown trout fry and zebrafish (Pearson r > 0.90. The TeO-measure also correlates well with overall brain wet weight in brown trout fry (r = 0.90, but less well for zebrafish (r = 0.79. A non-invasive measure makes it possible to quickly assess brain size from a large number of individuals, as well as repeatedly measuring brain size of live individuals allowing calculation of brain growth.

  9. Acute Exposure to Fluoxetine Alters Aggressive Behavior of Zebrafish and Expression of Genes Involved in Serotonergic System Regulation

    Directory of Open Access Journals (Sweden)

    Michail Pavlidis

    2017-04-01

    Full Text Available Zebrafish, Danio rerio, is an emerging model organism in stress and neurobehavioral studies. In nature, the species forms shoals, yet when kept in pairs it exhibits an agonistic and anxiety-like behavior that leads to the establishment of dominant-subordinate relationships. Fluoxetine, a selective serotonin reuptake inhibitor, is used as an anxiolytic tool to alter aggressive behavior in several vertebrates and as an antidepressant drug in humans. Pairs of male zebrafish were held overnight to develop dominant—subordinate behavior, either treated or non-treated for 2 h with fluoxetine (5 mg L−1, and allowed to interact once more for 1 h. Behavior was recorded both prior and after fluoxetine administration. At the end of the experiment, trunk and brain samples were also taken for cortisol determination and mRNA expression studies, respectively. Fluoxetine treatment significantly affected zebrafish behavior and the expression levels of several genes, by decreasing offensive aggression in dominants and by eliminating freezing in the subordinates. There was no statistically significant difference in whole-trunk cortisol concentrations between dominant and subordinate fish, while fluoxetine treatment resulted in higher (P = 0.004 cortisol concentrations in both groups. There were statistically significant differences between dominant and subordinate fish in brain mRNA expression levels of genes involved in stress axis (gr, mr, neural activity (bdnf, c-fos, and the serotonergic system (htr2b, slc6a4b. The significant decrease in the offensive and defensive aggression following fluoxetine treatment was concomitant with a reversed pattern in c-fos expression levels. Overall, an acute administration of a selective serotonin reuptake inhibitor alters aggressive behavior in male zebrafish in association with changes in the neuroendocrine mediators of coping styles.

  10. Quo natas, Danio?—Recent Progress in Modeling Cancer in Zebrafish

    Directory of Open Access Journals (Sweden)

    Stefanie Kirchberger

    2017-08-01

    Full Text Available Over the last decade, zebrafish has proven to be a powerful model in cancer research. Zebrafish form tumors that histologically and genetically resemble human cancers. The live imaging and cost-effective compound screening possible with zebrafish especially complement classic mouse cancer models. Here, we report recent progress in the field, including genetically engineered zebrafish cancer models, xenotransplantation of human cancer cells into zebrafish, promising approaches toward live investigation of the tumor microenvironment, and identification of therapeutic strategies by performing compound screens on zebrafish cancer models. Given the recent advances in genome editing, personalized zebrafish cancer models are now a realistic possibility. In addition, ongoing automation will soon allow high-throughput compound screening using zebrafish cancer models to be part of preclinical precision medicine approaches.

  11. Arsenic transport by zebrafish aquaglyceroporins

    Directory of Open Access Journals (Sweden)

    Landfear Scott M

    2009-11-01

    Full Text Available Abstract Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII. However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII and antimonite (SbIII was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were named aqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye

  12. Evaluating human cancer cell metastasis in zebrafish

    International Nuclear Information System (INIS)

    Teng, Yong; Xie, Xiayang; Walker, Steven; White, David T; Mumm, Jeff S; Cowell, John K

    2013-01-01

    In vivo metastasis assays have traditionally been performed in mice, but the process is inefficient and costly. However, since zebrafish do not develop an adaptive immune system until 14 days post-fertilization, human cancer cells can survive and metastasize when transplanted into zebrafish larvae. Despite isolated reports, there has been no systematic evaluation of the robustness of this system to date. Individual cell lines were stained with CM-Dil and injected into the perivitelline space of 2-day old zebrafish larvae. After 2-4 days fish were imaged using confocal microscopy and the number of metastatic cells was determined using Fiji software. To determine whether zebrafish can faithfully report metastatic potential in human cancer cells, we injected a series of cells with different metastatic potential into the perivitelline space of 2 day old embryos. Using cells from breast, prostate, colon and pancreas we demonstrated that the degree of cell metastasis in fish is proportional to their invasion potential in vitro. Highly metastatic cells such as MDA231, DU145, SW620 and ASPC-1 are seen in the vasculature and throughout the body of the fish after only 24–48 hours. Importantly, cells that are not invasive in vitro such as T47D, LNCaP and HT29 do not metastasize in fish. Inactivation of JAK1/2 in fibrosarcoma cells leads to loss of invasion in vitro and metastasis in vivo, and in zebrafish these cells show limited spread throughout the zebrafish body compared with the highly metastatic parental cells. Further, knockdown of WASF3 in DU145 cells which leads to loss of invasion in vitro and metastasis in vivo also results in suppression of metastasis in zebrafish. In a cancer progression model involving normal MCF10A breast epithelial cells, the degree of invasion/metastasis in vitro and in mice is mirrored in zebrafish. Using a modified version of Fiji software, it is possible to quantify individual metastatic cells in the transparent larvae to correlate with

  13. F-spondin/spon1b expression patterns in developing and adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Veronica Akle

    Full Text Available F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF. F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate.

  14. Normal anatomy and histology of the adult zebrafish.

    Science.gov (United States)

    Menke, Aswin L; Spitsbergen, Jan M; Wolterbeek, Andre P M; Woutersen, Ruud A

    2011-08-01

    The zebrafish has been shown to be an excellent vertebrate model for studying the roles of specific genes and signaling pathways. The sequencing of its genome and the relative ease with which gene modifications can be performed have led to the creation of numerous human disease models that can be used for testing the potential and the toxicity of new pharmaceutical compounds. Many pharmaceutical companies already use the zebrafish for prescreening purposes. So far, the focus has been on ecotoxicity and the effects on embryonic development, but there is a trend to expand the use of the zebrafish with acute, subchronic, and chronic toxicity studies that are currently still carried out with the more conventional test animals such as rodents. However, before we can fully realize the potential of the zebrafish as an animal model for understanding human development, disease, and toxicology, we must first greatly advance our knowledge of normal zebrafish physiology, anatomy, and histology. To further this knowledge, we describe, in the present article, location and histology of the major zebrafish organ systems with a brief description of their function.

  15. Knockout of the Gnrh genes in zebrafish: effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides.

    Science.gov (United States)

    Marvel, Miranda; Spicer, Olivia Smith; Wong, Ten-Tsao; Zmora, Nilli; Zohar, Yonathan

    2018-04-04

    Gonadotropin-releasing hormone (GnRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a non-cell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.

  16. Evaluation of visible implant elastomer tags in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Claudia Hohn

    2013-11-01

    The use of the visible implant elastomer (VIE tagging system in zebrafish (Danio rerio was examined. Two tag orientations (horizontal and vertical at the dorsal fin base were tested for tag retention, tag fragmentation and whether VIE tags affected growth and survival of juvenile zebrafish (1–4 month post hatch. Six tag locations (abdomen, anal fin base, caudal peduncle, dorsal fin base, pectoral fin base, isthmus and 5 tag colors (yellow, red, pink, orange, blue were evaluated for ease of VIE tag application and tag visibility in adult zebrafish. Long-term retention (1 year and multiple tagging sites (right and left of dorsal fin and pectoral fin base were examined in adult zebrafish. Lastly, survival of recombination activation gene 1−/− (rag1−/− zebrafish was evaluated after VIE tagging. The best tag location was the dorsal fin base, and the most visible tag color was pink. Growth rate of juvenile zebrafish was not affected by VIE tagging. Horizontal tagging is recommended in early stages of fish growth (1–2 months post hatch. VIE tags were retained for 1 year and tagging did not interfere with long-term growth and survival. There was no mortality associated with VIE tagging in rag1−/− zebrafish. The VIE tagging system is highly suitable for small-sized zebrafish. When familiar with the procedure, 120 adult zebrafish can be tagged in one hour. It does not increase mortality in adult zebrafish or interfere with growth in juvenile or adult zebrafish.

  17. Learning and memory in zebrafish larvae

    Science.gov (United States)

    Roberts, Adam C.; Bill, Brent R.; Glanzman, David L.

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory. PMID:23935566

  18. N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish.

    Science.gov (United States)

    Robinson, Bonnie; Dumas, Melanie; Gu, Qiang; Kanungo, Jyotshna

    2018-06-08

    N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism. Published by Elsevier B.V.

  19. A dominant negative zebrafish Ahr2 partially protects developing zebrafish from dioxin toxicity.

    Directory of Open Access Journals (Sweden)

    Kevin A Lanham

    Full Text Available The toxicity by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD is thought to be caused by activation of the aryl hydrocarbon receptor (AHR. However, our understanding of how AHR activation by TCDD leads to toxic effects is poor. Ideally we would like to manipulate AHR activity in specific tissues and at specific times. One route to this is expressing dominant negative AHRs (dnAHRs. This work describes the construction and characterization of dominant negative forms of the zebrafish Ahr2 in which the C-terminal transactivation domain was either removed, or replaced with the inhibitory domain from the Drosophila engrailed repressor protein. One of these dnAhr2s was selected for expression from the ubiquitously active e2fα promoter in transgenic zebrafish. We found that these transgenic zebrafish expressing dnAhr2 had reduced TCDD induction of the Ahr2 target gene cyp1a, as measured by 7-ethoxyresorufin-O-deethylase activity. Furthermore, the cardiotoxicity produced by TCDD, pericardial edema, heart malformation, and reduced blood flow, were all mitigated in the zebrafish expressing the dnAhr2. These results provide in vivo proof-of-principle results demonstrating the effectiveness of dnAHRs in manipulating AHR activity in vivo, and demonstrating that this approach can be a means for blocking TCDD toxicity.

  20. Neurotransmitter-Regulated Regeneration in the Zebrafish Retina

    Directory of Open Access Journals (Sweden)

    Mahesh B. Rao

    2017-04-01

    Full Text Available Summary: Current efforts to repair damaged or diseased mammalian retinas are inefficient and largely incapable of fully restoring vision. Conversely, the zebrafish retina is capable of spontaneous regeneration upon damage using Müller glia (MG-derived progenitors. Understanding how zebrafish MG initiate regeneration may help develop new treatments that prompt mammalian retinas to regenerate. We show that inhibition of γ-aminobutyric acid (GABA signaling facilitates initiation of MG proliferation. GABA levels decrease following damage, and MG are positioned to detect decreased ambient levels and undergo dedifferentiation. Using pharmacological and genetic approaches, we demonstrate that GABAA receptor inhibition stimulates regeneration in undamaged retinas while activation inhibits regeneration in damaged retinas. : Unlike mammals, zebrafish regenerate following retina damage from a resident adult stem cell (Müller glia. Dissecting the mechanisms that zebrafish use could lead to new therapeutic targets to treat retinal diseases. Patton and colleagues have discovered a mechanism by which decreased GABA levels are sensed by Müller glia to initiate a regenerative response. Keywords: zebrafish, retina, regeneration, Müller glia, GABA

  1. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ciura, Sorana; Lattante, Serena; Le Ber, Isabelle; Latouche, Morwena; Tostivint, Hervé; Brice, Alexis; Kabashi, Edor

    2013-08-01

    To define the role that repeat expansions of a GGGGCC hexanucleotide sequence of the C9orf72 gene play in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A genetic model for ALS was developed to determine whether loss of function of the zebrafish orthologue of C9orf72 (zC9orf72) leads to abnormalities in neuronal development. C9orf72 mRNA levels were quantified in brain and lymphoblasts derived from FTLD and ALS/FTLD patients and in zebrafish. Knockdown of the zC9orf72 was performed using 2 specific antisense morpholino oligonucleotides to block transcription. Quantifications of spontaneous swimming and tactile escape response, as well as measurements of axonal projections from the spinal cord, were performed. Significantly decreased expression of C9orf72 transcripts in brain and lymphoblasts was found in sporadic FTLD and ALS/FTLD patients with normal-size or expanded hexanucleotide repeats. The zC9orf72 is selectively expressed in the developing nervous system at developmental stages. Loss of function of the zC9orf72 transcripts causes both behavioral and cellular deficits related to locomotion without major morphological abnormalities. These deficits were rescued upon overexpression of human C9orf72 mRNA transcripts. Our results indicate C9orf72 haploinsufficiency could be a contributing factor in the spectrum of ALS/FTLD neurodegenerative disorders. Loss of function of the zebrafish orthologue of zC9orf72 expression in zebrafish is associated with axonal degeneration of motor neurons that can be rescued by expressing human C9orf72 mRNA, highlighting the specificity of the induced phenotype. These results reveal a pathogenic consequence of decreased C9orf72 levels, supporting a loss of function mechanism of disease. © 2013 American Neurological Association.

  2. Biological Screening of Newly Synthesized BIAN N-Heterocyclic Gold Carbene Complexes in Zebrafish Embryos

    Science.gov (United States)

    Farooq, Muhammad; Abu Taha, Nael; Butorac, Rachel R.; Evans, Daniel Anthony; Elzatahry, Ahmed A.; Elsayed, Elsayed Ahmed; Wadaan, Mohammad A. M.; Al-Deyab, Salem S.; Cowley, Alan H.

    2015-01-01

    N-Heterocyclic carbene (NHC) metal complexes possess diverse biological activities but have yet to be extensively explored as potential chemotherapeutic agents. We have previously reported the synthesis of a new class of NHC metal complexes N-heterocyclic with acetate [IPr(BIAN)AuOAc] and chloride [IPr(BIAN)AuCl] ligands. In the experiments reported herein, the zebrafish embryos were exposed to serial dilutions of each of these complexes for 10–12 h. One hundred percent mortality was observed at concentrations ≥50 µM. At sub-lethal concentrations (10–30 µM), both compounds influenced zebrafish embryonic development. However, quite diverse categories of abnormalities were found in exposed embryos with each compound. Severe brain deformation and notochord degeneration were evident in the case of [IPr(BIAN)AuOAc]. The zebrafish embryos treated with [IPr(BIAN)AuCl] exhibited stunted growth and consequently had smaller body sizes. A depletion of 30%–40% glutathione was detected in the treated embryos, which could account for one of the possible mechanism of neurotoxicity. The fact that these compounds are capable of both affecting the growth and also compromising antioxidant systems by elevating intracellular ROS production implies that they could play an important role as a new breed of therapeutic molecules. PMID:26501273

  3. A Zebrafish Heart Failure Model for Assessing Therapeutic Agents.

    Science.gov (United States)

    Zhu, Xiao-Yu; Wu, Si-Qi; Guo, Sheng-Ya; Yang, Hua; Xia, Bo; Li, Ping; Li, Chun-Qi

    2018-03-20

    Heart failure is a leading cause of death and the development of effective and safe therapeutic agents for heart failure has been proven challenging. In this study, taking advantage of larval zebrafish, we developed a zebrafish heart failure model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days postfertilization) were treated with verapamil at a concentration of 200 μM for 30 min, which were determined as optimum conditions for model development. Tested drugs were administered into zebrafish either by direct soaking or circulation microinjection. After treatment, zebrafish were randomly selected and subjected to either visual observation and image acquisition or record videos under a Zebralab Blood Flow System. The therapeutic effects of drugs on zebrafish heart failure were quantified by calculating the efficiency of heart dilatation, venous congestion, cardiac output, and blood flow dynamics. All 8 human heart failure therapeutic drugs (LCZ696, digoxin, irbesartan, metoprolol, qiliqiangxin capsule, enalapril, shenmai injection, and hydrochlorothiazide) showed significant preventive and therapeutic effects on zebrafish heart failure (p failure model developed and validated in this study could be used for in vivo heart failure studies and for rapid screening and efficacy assessment of preventive and therapeutic drugs.

  4. Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association.

    Science.gov (United States)

    Gorelick, Philip B; Furie, Karen L; Iadecola, Costantino; Smith, Eric E; Waddy, Salina P; Lloyd-Jones, Donald M; Bae, Hee-Joon; Bauman, Mary Ann; Dichgans, Martin; Duncan, Pamela W; Girgus, Meighan; Howard, Virginia J; Lazar, Ronald M; Seshadri, Sudha; Testai, Fernando D; van Gaal, Stephen; Yaffe, Kristine; Wasiak, Hank; Zerna, Charlotte

    2017-10-01

    Cognitive function is an important component of aging and predicts quality of life, functional independence, and risk of institutionalization. Advances in our understanding of the role of cardiovascular risks have shown them to be closely associated with cognitive impairment and dementia. Because many cardiovascular risks are modifiable, it may be possible to maintain brain health and to prevent dementia in later life. The purpose of this American Heart Association (AHA)/American Stroke Association presidential advisory is to provide an initial definition of optimal brain health in adults and guidance on how to maintain brain health. We identify metrics to define optimal brain health in adults based on inclusion of factors that could be measured, monitored, and modified. From these practical considerations, we identified 7 metrics to define optimal brain health in adults that originated from AHA's Life's Simple 7: 4 ideal health behaviors (nonsmoking, physical activity at goal levels, healthy diet consistent with current guideline levels, and body mass index brain health but recognize that the truly ideal circumstance may be uncommon because there is a continuum of brain health as demonstrated by AHA's Life's Simple 7. Therefore, there is opportunity to improve brain health through primordial prevention and other interventions. Furthermore, although cardiovascular risks align well with brain health, we acknowledge that other factors differing from those related to cardiovascular health may drive cognitive health. Defining optimal brain health in adults and its maintenance is consistent with the AHA's Strategic Impact Goal to improve cardiovascular health of all Americans by 20% and to reduce deaths resulting from cardiovascular disease and stroke by 20% by the year 2020. This work in defining optimal brain health in adults serves to provide the AHA/American Stroke Association with a foundation for a new strategic direction going forward in cardiovascular health

  5. Biosecurity and Health Monitoring at the Zebrafish International Resource Center.

    Science.gov (United States)

    Murray, Katrina N; Varga, Zoltán M; Kent, Michael L

    2016-07-01

    The Zebrafish International Resource Center (ZIRC) is a repository and distribution center for mutant, transgenic, and wild-type zebrafish. In recent years annual imports of new zebrafish lines to ZIRC have increased tremendously. In addition, after 15 years of research, we have identified some of the most virulent pathogens affecting zebrafish that should be avoided in large production facilities, such as ZIRC. Therefore, while importing a high volume of new lines we prioritize safeguarding the health of our in-house fish colony. Here, we describe the biosecurity and health-monitoring program implemented at ZIRC. This strategy was designed to prevent introduction of new zebrafish pathogens, minimize pathogens already present in the facility, and ensure a healthy zebrafish colony for in-house uses and shipment to customers.

  6. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Titus, Tom A.; Yan Yilin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Bremiller, Ruth A.; Canestro, Cristian; Rodriguez-Mari, Adriana; He Xinjun [Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403 (United States); Postlethwait, John H., E-mail: jpostle@uoneuro.uoregon.edu [Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403 (United States)

    2009-07-31

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only

  7. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics.

    Science.gov (United States)

    Titus, Tom A; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M; Frohnmayer, Jonathan D; Bremiller, Ruth A; Cañestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H

    2009-07-31

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only

  8. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    International Nuclear Information System (INIS)

    Titus, Tom A.; Yan Yilin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Bremiller, Ruth A.; Canestro, Cristian; Rodriguez-Mari, Adriana; He Xinjun; Postlethwait, John H.

    2009-01-01

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only

  9. Bio-electrosprayed multicellular zebrafish embryos are viable and develop normally

    International Nuclear Information System (INIS)

    Clarke, Jonathan D W; Jayasinghe, Suwan N

    2008-01-01

    Bio-electrosprays are rapidly emerging as a viable protocol for directly engineering living cells. This communication reports the bio-electrospraying of multicellular organisms, namely zebrafish embryos. The results demonstrate that the bio-electrospray protocol fails to induce any embryological perturbations. In addition to analysing overall embryo morphology, we use transgenic embryos that express green fluorescent protein in specific brain neurons to determine that neuronal numbers and organization are completely normal. These results demonstrate that the bio-electrospraying protocol does not interfere with the complex gene regulation and cell movements required for the development of a multicellular organism. (communication)

  10. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Directory of Open Access Journals (Sweden)

    Alicia Blaker-Lee

    2012-11-01

    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs, intellectual disability disorder (IDD and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV. The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed ‘dosage sensors’, which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development – impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa and kinesin family member 22 (kif22 genes were identified as giving clear phenotypes when RNA levels were reduced by ∼50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.

  11. Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio: evidence for subfunctionalization or neofunctionalization of duplicated genes

    Directory of Open Access Journals (Sweden)

    Denovan-Wright Eileen M

    2009-09-01

    Full Text Available Abstract Background In the Duplication-Degeneration-Complementation (DDC model, subfunctionalization and neofunctionalization have been proposed as important processes driving the retention of duplicated genes in the genome. These processes are thought to occur by gain or loss of regulatory elements in the promoters of duplicated genes. We tested the DDC model by determining the transcriptional induction of fatty acid-binding proteins (Fabps genes by dietary fatty acids (FAs in zebrafish. We chose zebrafish for this study for two reasons: extensive bioinformatics resources are available for zebrafish at zfin.org and zebrafish contains many duplicated genes owing to a whole genome duplication event that occurred early in the ray-finned fish lineage approximately 230-400 million years ago. Adult zebrafish were fed diets containing either fish oil (12% lipid, rich in highly unsaturated fatty acid, sunflower oil (12% lipid, rich in linoleic acid, linseed oil (12% lipid, rich in linolenic acid, or low fat (4% lipid, low fat diet for 10 weeks. FA profiles and the steady-state levels of fabp mRNA and heterogeneous nuclear RNA in intestine, liver, muscle and brain of zebrafish were determined. Result FA profiles assayed by gas chromatography differed in the intestine, brain, muscle and liver depending on diet. The steady-state level of mRNA for three sets of duplicated genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, and fabp11a/fabp11b, was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR. In brain, the steady-state level of fabp7b mRNAs was induced in fish fed the linoleic acid-rich diet; in intestine, the transcript level of fabp1b.1 and fabp7b were elevated in fish fed the linolenic acid-rich diet; in liver, the level of fabp7a mRNAs was elevated in fish fed the low fat diet; and in muscle, the level of fabp7a and fabp11a mRNAs were elevated in fish fed the linolenic acid-rich or the low fat diets. In all cases

  12. The zebrafish genome: a review and msx gene case study.

    Science.gov (United States)

    Postlethwait, J H

    2006-01-01

    Zebrafish is one of several important teleost models for understanding principles of vertebrate developmental, molecular, organismal, genetic, evolutionary, and genomic biology. Efficient investigation of the molecular genetic basis of induced mutations depends on knowledge of the zebrafish genome. Principles of zebrafish genomic analysis, including gene mapping, ortholog identification, conservation of syntenies, genome duplication, and evolution of duplicate gene function are discussed here using as a case study the zebrafish msxa, msxb, msxc, msxd, and msxe genes, which together constitute zebrafish orthologs of tetrapod Msx1, Msx2, and Msx3. Genomic analysis suggests orthologs for this difficult to understand group of paralogs.

  13. Tools for automating the imaging of zebrafish larvae.

    Science.gov (United States)

    Pulak, Rock

    2016-03-01

    The VAST BioImager system is a set of tools developed for zebrafish researchers who require the collection of images from a large number of 2-7 dpf zebrafish larvae. The VAST BioImager automates larval handling, positioning and orientation tasks. Color images at about 10 μm resolution are collected from the on-board camera of the system. If images of greater resolution and detail are required, this system is mounted on an upright microscope, such as a confocal or fluorescence microscope, to utilize their capabilities. The system loads a larvae, positions it in view of the camera, determines orientation using pattern recognition analysis, and then more precisely positions to user-defined orientation for optimal imaging of any desired tissue or organ system. Multiple images of the same larva can be collected. The specific part of each larva and the desired orientation and position is identified by the researcher and an experiment defining the settings and a series of steps can be saved and repeated for imaging of subsequent larvae. The system captures images, then ejects and loads another larva from either a bulk reservoir, a well of a 96 well plate using the LP Sampler, or individually targeted larvae from a Petri dish or other container using the VAST Pipettor. Alternative manual protocols for handling larvae for image collection are tedious and time consuming. The VAST BioImager automates these steps to allow for greater throughput of assays and screens requiring high-content image collection of zebrafish larvae such as might be used in drug discovery and toxicology studies. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  14. Examination of a Palatogenic Gene Program in Zebrafish

    Science.gov (United States)

    Swartz, Mary E.; Sheehan-Rooney, Kelly; Dixon, Michael J.; Eberhart, Johann K.

    2011-01-01

    Human palatal clefting is debilitating and difficult to rectify surgically. Animal models enhance our understanding of palatogenesis and are essential in strategies designed to ameliorate palatal malformations in humans. Recent studies have shown that the zebrafish palate, or anterior neurocranium, is under similar genetic control to the amniote palatal skeleton. We extensively analyzed palatogenesis in zebrafish to determine the similarity of gene expression and function across vertebrates. By 36 hpf palatogenic cranial neural crest cells reside in homologous regions of the developing face compared to amniote species. Transcription factors and signaling molecules regulating mouse palatogenesis are expressed in similar domains during palatogenesis in zebrafish. Functional investigation of a subset of these genes, fgf10a, tgfb2, pax9 and smad5 revealed their necessity in zebrafish palatogenesis. Collectively, these results suggest that the gene regulatory networks regulating palatogenesis may be conserved across vertebrate species, demonstrating the utility of zebrafish as a model for palatogenesis. PMID:22016187

  15. Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold

    Directory of Open Access Journals (Sweden)

    Cécile Bordier

    2017-08-01

    Full Text Available Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.

  16. DNA methylation regulates gabrb2 mRNA expression: developmental variations and disruptions in l-methionine-induced zebrafish with schizophrenia-like symptoms.

    Science.gov (United States)

    Wang, L; Jiang, W; Lin, Q; Zhang, Y; Zhao, C

    2016-11-01

    Single nucleotide polymorphisms (SNPs) in the human type A gamma-aminobutyric acid (GABA) receptor β 2 subunit gene (GABRB2) have been associated with schizophrenia and quantitatively correlated with mRNA expression in the postmortem brain tissue of patients with schizophrenia. l-Methionine (MET) administration has been reported to cause a recrudescence of psychotic symptoms in patients with schizophrenia, and similar symptoms have been generated in MET-induced mice. In this study, a zebrafish animal model was used to evaluate the relationship between the gabrb2 mRNA expression and its promoter DNA methylation in developmental and MET-induced schizophrenia-like zebrafish. The results indicated developmental increases in global DNA methylation and decreases in gabrb2 promoter methylation in zebrafish. A significant increase in gabrb2 mRNA levels was observed after GABA was synthesized. Additionally, the MET-triggered schizophrenia-like symptoms in adult zebrafish, involving social withdrawal and cognitive dysfunction analyzed with social interaction and T-maze behavioral tests, were accompanied by significantly increased DNA methylation levels in the global genome and the gabrb2 promoter. Furthermore, the significant correlation between gabrb2 mRNA expression and gabrb2 promoter methylation observed in the developmental stages became non-significant in MET-triggered adult zebrafish. These findings demonstrate that gabrb2 mRNA expression is associated with DNA methylation varies by developmental stage and show that these epigenetic association mechanisms are disrupted in MET-triggered adult zebrafish with schizophrenia-like symptoms. In conclusion, these results provide plausible epigenetic evidence of the GABA A receptor β 2 subunit involvement in the schizophrenia-like behaviors and demonstrate the potential use of zebrafish models in neuropsychiatric research. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. Detection of vitellogenin incorporation into zebrafish oocytes by FITC fluorescence

    Directory of Open Access Journals (Sweden)

    Yokoi Hayato

    2011-04-01

    Full Text Available Abstract Background Large volumes of lymph can be collected from the eye-sacs of bubble-eye goldfish. We attempted to induce vitellogenin (Vtg in the eye-sac lymph of bubble-eye goldfish and develop a method for visualizing Vtg incorporation by zebrafish oocytes using FITC-labeling. Methods Estrogen efficiently induced Vtg in the eye-sac lymph of goldfish. After FITC-labeled Vtg was prepared, it was injected into mature female zebrafish. Results Incorporation of FITC-labeled Vtg by zebrafish oocytes was detected in in vivo and in vitro experiments. The embryos obtained from zebrafish females injected with FITC-labeled Vtg emitted FITC fluorescence from the yolk sac and developed normally. Conclusion This method for achieving Vtg incorporation by zebrafish oocytes could be useful in experiments related to the development and endocrinology of zebrafish oocytes.

  18. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2007-06-01

    Full Text Available Abstract Background The zebrafish (Danio rerio is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. Results Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. Conclusion The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.

  19. Biosecurity and Health Monitoring at the Zebrafish International Resource Center

    OpenAIRE

    Murray, Katrina N.; Varga, Zolt?n M.; Kent, Michael L.

    2016-01-01

    The Zebrafish International Resource Center (ZIRC) is a repository and distribution center for mutant, transgenic, and wild-type zebrafish. In recent years annual imports of new zebrafish lines to ZIRC have increased tremendously. In addition, after 15 years of research, we have identified some of the most virulent pathogens affecting zebrafish that should be avoided in large production facilities, such as ZIRC. Therefore, while importing a high volume of new lines we prioritize safeguarding ...

  20. Egr-1 induction provides a genetic response to food aversion in zebrafish

    Directory of Open Access Journals (Sweden)

    Brigitte eBoyer

    2013-05-01

    Full Text Available As soon as zebrafish larvae start eating, they exhibit a marked aversion for bitter and acidic substances, as revealed by a consumption assay, in which fluorescent Tetrahymena serve as a feeding basis, to which various stimuli can be added. Bitter and acidic substances elicited an increase in mRNA accumulation of the immediate-early response gene egr-1, as revealed by in situ hybridization. Conversely, chemostimulants that did not induce aversion did not induce egr-1 response. Maximum labelling was observed in cells located in the oropharyngeal cavity and on the gill rakers. Gustatory areas of the brain were also labelled. Interestingly, when bitter tastants were repeatedly associated with food reward, zebrafish juveniles learned to ingest food in the presence of the bitter compound. After habituation, the acquisition of acceptance for bitterness was accompanied by a loss of egr-1 labelling. Altogether, our data indicate that egr-1 participates specifically in food aversion. The existence of reward-coupled changes in taste sensitivity in humans suggests that our results are relevant to situations in humans.

  1. Egr-1 induction provides a genetic response to food aversion in zebrafish.

    Science.gov (United States)

    Boyer, Brigitte; Ernest, Sylvain; Rosa, Frédéric

    2013-01-01

    As soon as zebrafish larvae start eating, they exhibit a marked aversion for bitter and acidic substances, as revealed by a consumption assay, in which fluorescent Tetrahymena serve as a feeding basis, to which various stimuli can be added. Bitter and acidic substances elicited an increase in mRNA accumulation of the immediate-early response gene egr-1, as revealed by in situ hybridization. Conversely, chemostimulants that did not induce aversion did not induce egr-1 response. Maximum labeling was observed in cells located in the oropharyngeal cavity and on the gill rakers. Gustatory areas of the brain were also labeled. Interestingly, when bitter tastants were repeatedly associated with food reward, zebrafish juveniles learned to ingest food in the presence of the bitter compound. After habituation, the acquisition of acceptance for bitterness was accompanied by a loss of egr-1 labeling. Altogether, our data indicate that egr-1 participates specifically in food aversion. The existence of reward-coupled changes in taste sensitivity in humans suggests that our results are relevant to situations in humans.

  2. Real-time whole-body visualization of Chikungunya Virus infection and host interferon response in zebrafish.

    Directory of Open Access Journals (Sweden)

    Nuno Palha

    Full Text Available Chikungunya Virus (CHIKV, a re-emerging arbovirus that may cause severe disease, constitutes an important public health problem. Herein we describe a novel CHIKV infection model in zebrafish, where viral spread was live-imaged in the whole body up to cellular resolution. Infected cells emerged in various organs in one principal wave with a median appearance time of ∼14 hours post infection. Timing of infected cell death was organ dependent, leading to a shift of CHIKV localization towards the brain. As in mammals, CHIKV infection triggered a strong type-I interferon (IFN response, critical for survival. IFN was mainly expressed by neutrophils and hepatocytes. Cell type specific ablation experiments further demonstrated that neutrophils play a crucial, unexpected role in CHIKV containment. Altogether, our results show that the zebrafish represents a novel valuable model to dynamically visualize replication, pathogenesis and host responses to a human virus.

  3. Global gene expression profile induced by the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zucchi, Sara; Oggier, Daniela M.; Fent, Karl

    2011-01-01

    Residues of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are ubiquitously found in aquatic biota but potential adverse effects in fish are fairly unknown. To identify molecular effects and modes of action of EHMC we applied a gene expression profiling in zebrafish using whole genome microarrays. Transcriptome analysis and validation of targeted genes were performed after 14 days of exposure of male zebrafish. Concentrations of 2.2 μg/L and 890 μg/L EHMC lead to alteration of 1096 and 1137 transcripts, respectively, belonging to many pathways. Genes involved in lipid metabolism and estrogenic pathway (vtg1), lipid biosynthesis (ptgds), vitamin A metabolic process (rbp2a), DNA damage and apoptosis (gadd45b), and regulation of cell growth (igfbp1a) were investigated by qRT-PCR analysis in whole body, liver, brain and testis. The analysis showed tissue-specific gene profiles and revealed that EHMC slightly affects the transcription of genes involved in hormonal pathways including vtg1, esr1, esr2b, ar, cyp19b and hsd17β3. - Highlights: → The UV-filter EHMC accumulates in biota and shows expressional changes in fish. → Molecular effects of EHMC are demonstrated by microarrays and qRT-PCR in zebrafish. → Expressional changes in zebrafish occur at environmentally relevant concentrations. → The expressional changes point to interference of EHMC with the sex hormone system. → Additionally, many pathways are affected demonstrating multiple activities of EHMC. - Gene expression changes by 2-ethyl-hexyl-4-trimethoxycinnamate in zebrafish.

  4. Global gene expression profile induced by the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zucchi, Sara [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gruendensrasse 40, CH-4132 Muttenz (Switzerland); Oggier, Daniela M. [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gruendensrasse 40, CH-4132 Muttenz (Switzerland); University of Zuerich, Institute of Plant Biology, Division of Limnology, 8802 Kilchberg (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gruendensrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zuerich (ETH Zuerich), Department of Environmental Sciences, 8092 Zuerich (Switzerland)

    2011-10-15

    Residues of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are ubiquitously found in aquatic biota but potential adverse effects in fish are fairly unknown. To identify molecular effects and modes of action of EHMC we applied a gene expression profiling in zebrafish using whole genome microarrays. Transcriptome analysis and validation of targeted genes were performed after 14 days of exposure of male zebrafish. Concentrations of 2.2 {mu}g/L and 890 {mu}g/L EHMC lead to alteration of 1096 and 1137 transcripts, respectively, belonging to many pathways. Genes involved in lipid metabolism and estrogenic pathway (vtg1), lipid biosynthesis (ptgds), vitamin A metabolic process (rbp2a), DNA damage and apoptosis (gadd45b), and regulation of cell growth (igfbp1a) were investigated by qRT-PCR analysis in whole body, liver, brain and testis. The analysis showed tissue-specific gene profiles and revealed that EHMC slightly affects the transcription of genes involved in hormonal pathways including vtg1, esr1, esr2b, ar, cyp19b and hsd17{beta}3. - Highlights: > The UV-filter EHMC accumulates in biota and shows expressional changes in fish. > Molecular effects of EHMC are demonstrated by microarrays and qRT-PCR in zebrafish. > Expressional changes in zebrafish occur at environmentally relevant concentrations. > The expressional changes point to interference of EHMC with the sex hormone system. > Additionally, many pathways are affected demonstrating multiple activities of EHMC. - Gene expression changes by 2-ethyl-hexyl-4-trimethoxycinnamate in zebrafish.

  5. Characterization of behavioral and endocrine effects of LSD on zebrafish.

    Science.gov (United States)

    Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

    2010-12-25

    Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Characterization of the Zebrafish Homolog of Zipper Interacting Protein Kinase

    Directory of Open Access Journals (Sweden)

    Brandon W. Carr

    2014-06-01

    Full Text Available Zipper-interacting protein kinase (ZIPK is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.

  7. HCV IRES-mediated core expression in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ye Zhao

    Full Text Available The lack of small animal models for hepatitis C virus has impeded the discovery and development of anti-HCV drugs. HCV-IRES plays an important role in HCV gene expression, and is an attractive target for antiviral therapy. In this study, we report a zebrafish model with a biscistron expression construct that can co-transcribe GFP and HCV-core genes by human hepatic lipase promoter and zebrafish liver fatty acid binding protein enhancer. HCV core translation was designed mediated by HCV-IRES sequence and gfp was by a canonical cap-dependent mechanism. Results of fluorescence image and in situ hybridization indicate that expression of HCV core and GFP is liver-specific; RT-PCR and Western blotting show that both core and gfp expression are elevated in a time-dependent manner for both transcription and translation. It means that the HCV-IRES exerted its role in this zebrafish model. Furthermore, the liver-pathological impact associated with HCV-infection was detected by examination of gene markers and some of them were elevated, such as adiponectin receptor, heparanase, TGF-β, PDGF-α, etc. The model was used to evaluate three clinical drugs, ribavirin, IFNα-2b and vitamin B12. The results show that vitamin B12 inhibited core expression in mRNA and protein levels in dose-dependent manner, but failed to impact gfp expression. Also VB12 down-regulated some gene transcriptions involved in fat liver, liver fibrosis and HCV-associated pathological process in the larvae. It reveals that HCV-IRES responds to vitamin B12 sensitively in the zebrafish model. Ribavirin did not disturb core expression, hinting that HCV-IRES is not a target site of ribavirin. IFNα-2b was not active, which maybe resulted from its degradation in vivo for the long time. These findings demonstrate the feasibility of the zebrafish model for screening of anti-HCV drugs targeting to HCV-IRES. The zebrafish system provides a novel evidence of using zebrafish as a HCV model organism.

  8. Analysis of Lethality and Malformations During Zebrafish (Danio rerio) Development.

    Science.gov (United States)

    Raghunath, Azhwar; Perumal, Ekambaram

    2018-01-01

    The versatility offered by zebrafish (Danio rerio) makes it a powerful and an attractive vertebrate model in developmental toxicity and teratogenicity assays. Apart from the newly introduced chemicals as drugs, xenobiotics also induce abnormal developmental abnormalities and congenital malformations in living organisms. Over the recent decades, zebrafish embryo/larva has emerged as a potential tool to test teratogenicity potential of these chemicals. Zebrafish responds to compounds as mammals do as they share similarities in their development, metabolism, physiology, and signaling pathways with that of mammals. The methodology used by the different scientists varies enormously in the zebrafish embryotoxicity test. In this chapter, we present methods to assess lethality and malformations during zebrafish development. We propose two major malformations scoring systems: binomial and relative morphological scoring systems to assess the malformations in zebrafish embryos/larvae. Based on the scoring of the malformations, the test compound can be classified as a teratogen or a nonteratogen and its teratogenic potential is evaluated.

  9. A zebrafish model of inflammatory lymphangiogenesis

    Directory of Open Access Journals (Sweden)

    Kazuhide S. Okuda

    2015-10-01

    Full Text Available Inflammatory bowel disease (IBD is a disabling chronic inflammatory disease of the gastrointestinal tract. IBD patients have increased intestinal lymphatic vessel density and recent studies have shown that this may contribute to the resolution of IBD. However, the molecular mechanisms involved in IBD-associated lymphangiogenesis are still unclear. In this study, we established a novel inflammatory lymphangiogenesis model in zebrafish larvae involving colitogenic challenge stimulated by exposure to 2,4,6-trinitrobenzenesulfonic acid (TNBS or dextran sodium sulphate (DSS. Treatment with either TNBS or DSS resulted in vascular endothelial growth factor receptor (Vegfr-dependent lymphangiogenesis in the zebrafish intestine. Reduction of intestinal inflammation by the administration of the IBD therapeutic, 5-aminosalicylic acid, reduced intestinal lymphatic expansion. Zebrafish macrophages express vascular growth factors vegfaa, vegfc and vegfd and chemical ablation of these cells inhibits intestinal lymphatic expansion, suggesting that the recruitment of macrophages to the intestine upon colitogenic challenge is required for intestinal inflammatory lymphangiogenesis. Importantly, this study highlights the potential of zebrafish as an inflammatory lymphangiogenesis model that can be used to investigate the role and mechanism of lymphangiogenesis in inflammatory diseases such as IBD.

  10. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    Science.gov (United States)

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  11. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio).

    Science.gov (United States)

    Rainieri, Sandra; Conlledo, Nadia; Larsen, Bodil K; Granby, Kit; Barranco, Alejandro

    2018-04-01

    Microplastics contamination of the aquatic environment is considered a growing problem. The ingestion of microplastics has been documented for a variety of aquatic animals. Studies have shown the potential of microplastics to affect the bioavailability and uptake route of sorbed co-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected zebrafish to four different feeds: A) untreated feed; B) feed supplemented with microplastics (LD-PE 125-250µm of diameter); C) feed supplemented with 2% microplastics to which a mixture of PCBs, BFRs, PFCs and methylmercury were sorbed; and D) feed supplemented with the mixture of contaminants only. After 3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects on zebrafish in the experimental conditions tested; on the contrary, the combined effect of microplastics and sorbed contaminants altered significantly their organs homeostasis in a greater manner than the contaminants alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Functional characterization of a full length pregnane X receptor, expression in vivo, and identification of PXR alleles, in Zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 (Brazil); Kubota, Akira; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Lille-Langøy, Roger [Department of Biology, University of Bergen, N-5020 Bergen (Norway); Karchner, Sibel I. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Celander, Malin C. [Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30 Göteborg (Sweden); Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Goksøyr, Anders [Department of Biology, University of Bergen, N-5020 Bergen (Norway); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-15

    Highlights: •Full-length pxr has been cloned from zebrafish. •Alleles of pxr were identified in zebrafish. •Full length Pxr was activated less strongly than ligand binding domain in cell-based reporter assays. •High levels of pxr expression were found in eye and brain as well as in liver. •TCPOBOP and PB did not significantly alter expression of pxr in liver. -- Abstract: The pregnane X receptor (PXR) (nuclear receptor NR1I2) is a ligand activated transcription factor, mediating responses to diverse xenobiotic and endogenous chemicals. The properties of PXR in fish are not fully understood. Here we report on cloning and characterization of full-length PXR of zebrafish, Danio rerio, and pxr expression in vivo. Initial efforts gave a cDNA encoding a 430 amino acid protein identified as zebrafish pxr by phylogenetic and synteny analysis. The sequence of the cloned Pxr DNA binding domain (DBD) was highly conserved, with 74% identity to human PXR-DBD, while the ligand-binding domain (LBD) of the cloned sequence was only 44% identical to human PXR-LBD. Sequence variation among clones in the initial effort prompted sequencing of multiple clones from a single fish. There were two prominent variants, one sequence with S183, Y218 and H383 and the other with I183, C218 and N383, which we designate as alleles pxr*1 (nr1i2*1) and pxr*2 (nr1i2*2), respectively. In COS-7 cells co-transfected with a PXR-responsive reporter gene, the full-length Pxr*1 (the more common variant) was activated by known PXR agonists clotrimazole and pregnenolone 16α-carbonitrile but to a lesser extent than the full-length human PXR. Activation of full-length Pxr*1 was only 10% of that with the Pxr*1 LBD. Quantitative real time PCR analysis showed prominent expression of pxr in liver and eye, as well as brain and intestine of adult zebrafish. The pxr was expressed in heart and kidney at levels similar to that in intestine. The expression of pxr in liver was weakly induced by ligands for

  13. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  14. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    International Nuclear Information System (INIS)

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-01-01

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes

  15. An Optimized Clustering Approach for Automated Detection of White Matter Lesions in MRI Brain Images

    Directory of Open Access Journals (Sweden)

    M. Anitha

    2012-04-01

    Full Text Available Settings White Matter lesions (WMLs are small areas of dead cells found in parts of the brain. In general, it is difficult for medical experts to accurately quantify the WMLs due to decreased contrast between White Matter (WM and Grey Matter (GM. The aim of this paper is to
    automatically detect the White Matter Lesions which is present in the brains of elderly people. WML detection process includes the following stages: 1. Image preprocessing, 2. Clustering (Fuzzy c-means clustering, Geostatistical Possibilistic clustering and Geostatistical Fuzzy clustering and 3.Optimization using Particle Swarm Optimization (PSO. The proposed system is tested on a database of 208 MRI images. GFCM yields high sensitivity of 89%, specificity of 94% and overall accuracy of 93% over FCM and GPC. The clustered brain images are then subjected to Particle Swarm Optimization (PSO. The optimized result obtained from GFCM-PSO provides sensitivity of 90%, specificity of 94% and accuracy of 95%. The detection results reveals that GFCM and GFCMPSO better localizes the large regions of lesions and gives less false positive rate when compared to GPC and GPC-PSO which captures the largest loads of WMLs only in the upper ventral horns of the brain.

  16. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    Directory of Open Access Journals (Sweden)

    Hyde David R

    2007-10-01

    Full Text Available Abstract Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO, subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.

  17. Toxicity assessment of zebrafish following exposure to CdTe QDs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: wzhang@ecust.edu.cn [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Lin, Kuangfei, E-mail: kflin@ecust.edu.cn [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Miao, Youna [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Dong, Qiaoxiang; Huang, Changjiang; Wang, Huili [Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, Wenzhou Medical College, Wenzhou 325035 (China); Guo, Meijin [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Cui, Xinhong [Shanghai Institute of Landscape Gardening, Shanghai 200233 (China)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer The LC{sub 50} of TGA-CdTe for zebrafish at 120 hpf was 185.9 nM. Black-Right-Pointing-Pointer Zebrafish exposed to TGA-CdTe resulted in lower hatch rate and more malformation. Black-Right-Pointing-Pointer Body length and heart beat of zebrafish declined after exposure to TGA-CdTe. Black-Right-Pointing-Pointer Larvae exposure to TGA-CdTe elicited a higher basal swimming rate. Black-Right-Pointing-Pointer Abnormal vascular of FLI-1 transgenic zebrafish larvae exposed to TGA-CdTe occurred. - Abstract: CdTe quantum dots (QDs) are nanocrystals of unique composition and properties that have found many new commercial applications; therefore, their potential toxicity to aquatic organisms has become a hot research topic. The lab study was performed to determine the developmental and behavioral toxicities to zebrafish under continuous exposure to low concentrations of CdTe QDs (1-400 nM) coated with thioglycolic acid (TGA). The results show: (1) the 120 h LC{sub 50} of 185.9 nM, (2) the lower hatch rate and body length, more malformations, and less heart beat and swimming speed of the exposed zebrafish, (3) the brief burst and a higher basal swimming rate of the exposed zebrafish larvae during a rapid transition from light-to-dark, and (4) the vascular hyperplasia, vascular bifurcation, vascular crossing and turbulence of the exposed FLI-1 transgenic zebrafish larvae.

  18. Zebrafish syntenic relationship to human/mouse genomes revealed by radiation hybrid mapping

    International Nuclear Information System (INIS)

    Samonte, Irene E.

    2007-01-01

    Zebrafish (Danio rerio) is an excellent model system for vertebrate developmental analysis and a new model for human disorders. In this study, however, zebrafish was used to determine its syntenic relationship to human/mouse genomes using the zebrafish-hamster radiation hybrid panel. The focus was on genes residing on chromosomes 6 and 17 of human and mouse, respectively, and some other genes of either immunologic or evolutionary importance. Gene sequences of interest and zebrafish expressed sequence tags deposited in the GenBank were used in identifying zebrafish homologs. Polymerase chain reaction (PCR) amplification, cloning and subcloning, sequencing, and phylogenetic analysis were done to confirm the homology of the candidate genes in zebrafish. The promising markers were then tested in the 94 zebrafish-hamster radiation hybrid panel cell lines and submitted for logarithm of the odds (LOD) score analysis to position genes on the zebrafish map. A total of 19 loci were successfully mapped to zebrafish linkage groups 1, 14, 15, 19, and 20. Four of these loci were positioned in linkage group 20, whereas, 3 more loci were added in linkage group 19, thus increasing to 34 loci the number of human genes syntenic to the group. With the sequencing of the zebrafish genome, about 20 more MHC genes were reported linked on the same group. (Author)

  19. Scopolamine methylbromide mitigates radiation induced damage and lethality in zebrafish

    International Nuclear Information System (INIS)

    Shrivastava, Nitisha; Joshi, Jayadev; Ghosh, Subhajit; Dimri, Manali; Prem Kumar, Indracanti; Sehgal, Neeta

    2014-01-01

    In view of the strategic importance radiation countermeasures hold, the present study was undertaken to screen a collection of small molecule clinical compounds for possible radioprotective action using zebrafish as a model system. Preliminary screening in developing zebrafish embryos (24 hour post fertilization, (hpf)) using damage manifestations and survival as end point identified scopolamine methylbromide (SMB), a muscarinic receptor antagonist, as a potential radiomitigator. It was found to be optimal (60% survival advantage after 6 th post irradiation day) at a dose of 80 μM when added 3 h post 20 Gy exposure. Mechanistic studies suggested that SMB though exhibited no significant antioxidant potential, but was found to limit radiation induced apoptosis (pre G1 population) quantified through flow cytometry (6 and 5% reduction after 8 or 24 h after treatments) and annexin V staining (8% reduction). Further, quantitative analysis, using caspase 3 assay, revealed a 2.46 fold increase in apoptosis in irradiated group and treatment of irradiated zebrafish embryos with SMB led to a significant reduction in global apoptosis (1.7 fold; p<0.05) when compared to irradiated group. In silico studies based on structural and functional similarity with known radioprotectors suggested similarities with atropine, a known anti-inflammatory agent with muscarinic antagonism and radioprotective potential. In view of this SMB was tested, in silico, for possible anti-inflammatory action. Molecular docking studies revealed that SMB interacts (B.E-8.0 Kcal/mole) with cycloxygenase-2 (COX-2). In lieu of this, anti-inflammation activity was assessed through ChIN (chemically induced inflammation) method in 3 dpf (days post fertilization) embryos and SMB was found to significantly inhibit inflammation at all doses studied from 20-200 μM at 3 and 6 hpi (hours post inflammation). Overall the result suggests that scopolamine methylbromide mitigates radiation induced injury and lethality in

  20. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles, E-mail: Jean-charles.gabillard@rennes.inra.fr

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  1. Transcriptome analysis of zebrafish embryogenesis using microarrays.

    Directory of Open Access Journals (Sweden)

    Sinnakaruppan Mathavan

    2005-08-01

    Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

  2. The zebrafish world of colors and shapes: preference and discrimination.

    Science.gov (United States)

    Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana

    2015-04-01

    Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies.

  3. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo

    International Nuclear Information System (INIS)

    Wu, Qin; Yan, Wei; Liu, Chunsheng; Li, Li; Yu, Liqin; Zhao, Sujuan; Li, Guangyu

    2016-01-01

    Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. α1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons. - Highlights: • MCLR accumulation induces developmental neurotoxicity in zebrafish embryo. • The decrease of dopamine levels might be associated with the MCLR-induced developmental neurotoxicity in zebrafish larvae. • The alternation of cholinergic system might contribute to the change of neurobehavior in zebrafish larvae exposure with MCLR. - MCLR accumulation induces developmental neurotoxicity by affecting cholinergic system, dopaminergic signaling, and the development of neurons in zebrafish embryo.

  4. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    Science.gov (United States)

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  5. Zebrafish Database: Customizable, Free, and Open-Source Solution for Facility Management.

    Science.gov (United States)

    Yakulov, Toma Antonov; Walz, Gerd

    2015-12-01

    Zebrafish Database is a web-based customizable database solution, which can be easily adapted to serve both single laboratories and facilities housing thousands of zebrafish lines. The database allows the users to keep track of details regarding the various genomic features, zebrafish lines, zebrafish batches, and their respective locations. Advanced search and reporting options are available. Unique features are the ability to upload files and images that are associated with the respective records and an integrated calendar component that supports multiple calendars and categories. Built on the basis of the Joomla content management system, the Zebrafish Database is easily extendable without the need for advanced programming skills.

  6. Method for somatic cell nuclear transfer in zebrafish.

    Science.gov (United States)

    Siripattarapravat, Kannika; Cibelli, Jose B

    2011-01-01

    Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we meticulously outline each step of the published protocol as well as preparations of equipments and reagents used in zebrafish SCNT. All describable detailed-tips are elaborated in texts and figures. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights.

    Science.gov (United States)

    Harrison, Nicholas R; Laroche, Fabrice J F; Gutierrez, Alejandro; Feng, Hui

    2016-01-01

    Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.

  8. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior.

    Science.gov (United States)

    Perathoner, Simon; Cordero-Maldonado, Maria Lorena; Crawford, Alexander D

    2016-06-01

    Emotion is a key aspect of behavior, enabling humans and animals to assign either positive or negative values to sensory inputs and thereby to make appropriate decisions. Classical experiments in mammalian models, mainly in primates and rodents, have shown that the amygdala is essential for appetitive and aversive associative processing and that dysfunction of this brain region leads to various psychiatric conditions, including depression, generalized anxiety disorder, panic disorder, phobias, autism, and posttraumatic stress disorder. In the past 2 decades, the zebrafish (Danio rerio; Cyprinidae) has emerged as a versatile, reliable vertebrate model organism for the in vivo study of development, gene function, and numerous aspects of human pathologies. Small size, high fecundity, rapid external development, transparency, genetic tractability, and high genetic and physiologic homology with humans are among the factors that have contributed to the success with this small fish in different biomedical research areas. Recent findings indicate that, despite the anatomical differences in the brain structure of teleosts and tetrapods, fish possess a structure homologous to the mammalian amygdala, a hypothesis that is supported by the expression of molecular markers, analyses of neuronal projections in different brain areas, and behavioral studies. This Review summarizes this evidence and highlights a number of relevant bioassays in zebrafish to study emotional memory and motivational behavior. © 2016 Wiley Periodicals, Inc.

  9. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency.

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-06-01

    Full Text Available Multiple Acyl-CoA Dehydrogenase Deficiency (MADD is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463 that has an inactivating mutation in the etfa gene. dxa(vu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1 with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.

  10. Low cost light-sheet microscopy for whole brain imaging

    Science.gov (United States)

    Kumar, Manish; Nasenbeny, Jordan; Kozorovitskiy, Yevgenia

    2018-02-01

    Light-sheet microscopy has evolved as an indispensable tool in imaging biological samples. It can image 3D samples at fast speed, with high-resolution optical sectioning, and with reduced photobleaching effects. These properties make light-sheet microscopy ideal for imaging fluorophores in a variety of biological samples and organisms, e.g. zebrafish, drosophila, cleared mouse brains, etc. While most commercial turnkey light-sheet systems are expensive, the existing lower cost implementations, e.g. OpenSPIM, are focused on achieving high-resolution imaging of small samples or organisms like zebrafish. In this work, we substantially reduce the cost of light-sheet microscope system while targeting to image much larger samples, i.e. cleared mouse brains, at single-cell resolution. The expensive components of a lightsheet system - excitation laser, water-immersion objectives, and translation stage - are replaced with an incoherent laser diode, dry objectives, and a custom-built Arduino-controlled translation stage. A low-cost CUBIC protocol is used to clear fixed mouse brain samples. The open-source platforms of μManager and Fiji support image acquisition, processing, and visualization. Our system can easily be extended to multi-color light-sheet microscopy.

  11. UPLC/MS MS data of testosterone metabolites in human and zebrafish liver microsomes and whole zebrafish larval microsomes

    Directory of Open Access Journals (Sweden)

    Moayad Saad

    2018-02-01

    Full Text Available This article represents data regarding a study published in Toxicology in vitro entitled “ in vitro CYP-mediated drug metabolism in the zebrafish (embryo using human reference compounds” (Saad et al., 2017 [1]. Data were acquired with ultra-performance liquid chromatography – accurate mass mass spectrometry (UPLC-amMS. A full spectrum scan was conducted for the testosterone (TST metabolites from the microsomal stability assay in zebrafish and humans. The microsomal proteins were extracted from adult zebrafish male (MLM and female (FLM livers, whole body homogenates of 96 h post fertilization larvae (EM and a pool of human liver microsomes from 50 donors (HLM. Data are expressed as the abundance from the extracted ion chromatogram of the metabolites.

  12. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

    Science.gov (United States)

    Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C

    2017-08-15

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Hypoxia-induced retinopathy model in adult zebrafish

    DEFF Research Database (Denmark)

    Cao, Ziquan; Jensen, Lasse D.; Rouhi, Pegah

    2010-01-01

    Hypoxia-induced vascular responses, including angiogenesis, vascular remodeling and vascular leakage, significantly contribute to the onset, development and progression of retinopathy. However, until recently there were no appropriate animal disease models recapitulating adult retinopathy available....... In this article, we describe protocols that create hypoxia-induced retinopathy in adult zebrafish. Adult fli1: EGFP zebrafish are placed in hypoxic water for 3-10 d and retinal neovascularization is analyzed using confocal microscopy. It usually takes 11 d to obtain conclusive results using the hypoxia......-induced retinopathy model in adult zebrafish. This model provides a unique opportunity to study kinetically the development of retinopathy in adult animals using noninvasive protocols and to assess therapeutic efficacy of orally active antiangiogenic drugs....

  14. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio).

    Science.gov (United States)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-11-01

    Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1mgL -1 Cd for 24h and 96h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained stable at 24 and 96h in the brain. Taken together, we demonstrated Cd-induced oxidative stress and immunotoxicity in fish, possibly through transcriptional regulation of Nrf2 and NF-κB and gene modifications at transcriptional, translational, post-translational levels, which would greatly extend our understanding on the Cd

  15. OPTIMAL REPRESENTATION OF MER SIGNALS APPLIED TO THE IDENTIFICATION OF BRAIN STRUCTURES DURING DEEP BRAIN STIMULATION

    Directory of Open Access Journals (Sweden)

    Hernán Darío Vargas Cardona

    2015-07-01

    Full Text Available Identification of brain signals from microelectrode recordings (MER is a key procedure during deep brain stimulation (DBS applied in Parkinson’s disease patients. The main purpose of this research work is to identify with high accuracy a brain structure called subthalamic nucleus (STN, since it is the target structure where the DBS achieves the best therapeutic results. To do this, we present an approach for optimal representation of MER signals through method of frames. We obtain coefficients that minimize the Euclidean norm of order two. From optimal coefficients, we extract some features from signals combining the wavelet packet and cosine dictionaries. For a comparison frame with the state of the art, we also process the signals using the discrete wavelet transform (DWT with several mother functions. We validate the proposed methodology in a real data base. We employ simple supervised machine learning algorithms, as the K-Nearest Neighbors classifier (K-NN, a linear Bayesian classifier (LDC and a quadratic Bayesian classifier (QDC. Classification results obtained with the proposed method improves significantly the performance of the DWT. We achieve a positive identification of the STN superior to 97,6%. Identification outcomes achieved by the MOF are highly accurate, as we can potentially get a false positive rate of less than 2% during the DBS.

  16. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Seok, Seung Hyeok [Department of Microbiology and Immunology, Institute for Experimental Animals, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Payumo, Alexander Y.; Chen, James K. [Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  17. Phenotype classification of zebrafish embryos by supervised learning.

    Directory of Open Access Journals (Sweden)

    Nathalie Jeanray

    Full Text Available Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.

  18. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    International Nuclear Information System (INIS)

    Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok; Payumo, Alexander Y.; Chen, James K.; Kwon, Ho Jeong

    2013-01-01

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases

  19. Social learning of an associative foraging task in zebrafish

    Science.gov (United States)

    Zala, Sarah M.; Määttänen, Ilmari

    2013-05-01

    The zebrafish ( Danio rerio) is increasingly becoming an important model species for studies on the genetic and neural mechanisms controlling behaviour and cognition. Here, we utilized a conditioned place preference (CPP) paradigm to study social learning in zebrafish. We tested whether social interactions with conditioned demonstrators enhance the ability of focal naïve individuals to learn an associative foraging task. We found that the presence of conditioned demonstrators improved focal fish foraging behaviour through the process of social transmission, whereas the presence of inexperienced demonstrators interfered with the learning of the control focal fish. Our results indicate that zebrafish use social learning for finding food and that this CPP paradigm is an efficient assay to study social learning and memory in zebrafish.

  20. Effects of 2,2',4,4'-tetrabromodiphenyl ether on neurobehavior and memory change and bcl-2, c-fos, grin1b and lingo1b gene expression in male zebrafish (Danio rerio).

    Science.gov (United States)

    Zheng, Shukai; Liu, Caixia; Huang, Yanhong; Bao, Mian; Huang, Yuanni; Wu, Kusheng

    2017-10-15

    Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants in various environmental matrices and organisms and pose a threat to neural systems of organisms. However, though quite a few studies have explored the effect of PBDEs on neural behaviors such as learning and memory abilities in animals, their mechanisms are less known. We used the zebrafish model to evaluate neurotoxicity of PBDEs and observe changes in behavior and related gene expression. In behavioral testing, 50 zebrafish were divided into five groups treated with different concentrations of BDE-47. T-maze exploration was used for learning and memory testing, which was recorded by camera every 7days. After 21days, all fish were killed, and the gene expression of c-fos, bcl-2, lingo1b and grin1b in brain tissue was analyzed by RT-qPCR. The behavioral changes (latency to leave the start zone, reach the reward zone, and stay in the reward zone; accuracy in choosing the right maze arm, accumulation of freezing bouts, etc.) were related to BDE-47 concentration and had a time-effect relation with increasing exposure days, especially with 500μg/L BDE-47. BDE-47 elevated brain bcl-2, grin1b and lingo1b expression. The expression of c-fos showed an increase with 50 and 100μg/L BDE-47 exposure. The PBDE BDE-47 had a negative impact on the neurobehaviors of zebrafish and affected the expression of c-fos, bcl-2, lingo1b and grin1b in zebrafish brain tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Targeted Mutagenesis of the Hypophysiotropic Gnrh3 in Zebrafish (Danio rerio Reveals No Effects on Reproductive Performance.

    Directory of Open Access Journals (Sweden)

    Olivia Smith Spicer

    Full Text Available Gnrh is the major neuropeptide regulator of vertebrate reproduction, triggering a cascade of events in the pituitary-gonadal axis that result in reproductive competence. Previous research in mice and humans has demonstrated that Gnrh/GNRH null mutations result in hypogonadotropic hypogonadism and infertility. The goal of this study was to eliminate gnrh3 (the hypophysiotropic Gnrh form function in zebrafish (Danio rerio to determine how ontogeny and reproductive performance are affected, as well as factors downstream of Gnrh3 along the reproductive axis. Using the TALEN technology, we developed a gnrh3-/- zebrafish line that harbors a 62 bp deletion in the gnrh3 gene. Our gnrh3-/- zebrafish line represents the first targeted and heritable mutation of a Gnrh isoform in any organism. Using immunohistochemistry, we verified that gnrh3-/- fish do not possess Gnrh3 peptide in any regions of the brain. However, other than changes in mRNA levels of pituitary gonadotropin genes (fshb, lhb, and cga during early development, which are corrected by adulthood, there were no changes in ontogeny and reproduction in gnrh3-/- fish. The gnrh3-/- zebrafish are fertile, displaying normal gametogenesis and reproductive performance in males and females. Together with our previous results that Gnrh3 cell ablation causes infertility, these results indicate that a compensatory mechanism is being activated, which is probably primed early on upon Gnrh3 neuron differentiation and possibly confined to Gnrh3 neurons. Potential compensation factors and sensitive windows of time for compensation during development and puberty should be explored.

  2. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joachim, E-mail: Joachim.Berger@Monash.edu [Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton (Australia); Sztal, Tamar; Currie, Peter D. [Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton (Australia)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  3. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    International Nuclear Information System (INIS)

    Berger, Joachim; Sztal, Tamar; Currie, Peter D.

    2012-01-01

    Highlights: ► Report of an unbiased quantification of the birefringence of muscle of fish larvae. ► Quantification method readily identifies level of overall muscle damage. ► Compare zebrafish muscle mutants for level of phenotype severity. ► Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  4. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  5. Evaluation of the rewarding properties of nicotine and caffeine by implementation of a five-choice conditioned place preference task in zebrafish.

    Science.gov (United States)

    Faillace, M P; Pisera-Fuster, A; Bernabeu, R

    2018-06-08

    The rewarding properties of drugs in zebrafish can be studied using the conditioned place preference (CPP) paradigm. Most devices that have been used for CPP consist of two-half tanks with or without a central chamber. Here we evaluated the rewarding effects of nicotine and caffeine using a tank with five arms distributed radially from a central chamber that we have denoted Fish Tank Radial Maze (FTRM). Zebrafish were trained to associate nicotine or caffeine with a coloured arm. In testing sessions to assess CPP induction, between two and five different arms were available to explore. We found that when offering the two arms, one of them associated to the drug mediating conditioning for 14 days, zebrafish showed nicotine-induced CPP but not caffeine-induced CPP. When zebrafish had the option to explore drug-paired arms together with new coloured arms as putative distractors, the nicotine-CPP strength was maintained for at least three days. The presence of novel environments induced caffeine-CPP, which was still positive after three days of testing sessions. Complementary behavioural data supported these findings. Nicotine-CPP was prevented by the histone deacetylase inhibitor phenylbutyrate administered during conditioning; however, there were no effects on caffeine-CPP. The specific acetylation of lysine 9 in histone 3 (H3-K9) was increased in nicotine-conditioned zebrafish brains. This study suggests that novel environmental cues facilitate drug-environment associations, and hence, the use of drugs of abuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Ribosomal protein gene knockdown causes developmental defects in zebrafish.

    Directory of Open Access Journals (Sweden)

    Tamayo Uechi

    Full Text Available The ribosomal proteins (RPs form the majority of cellular proteins and are mandatory for cellular growth. RP genes have been linked, either directly or indirectly, to various diseases in humans. Mutations in RP genes are also associated with tissue-specific phenotypes, suggesting a possible role in organ development during early embryogenesis. However, it is not yet known how mutations in a particular RP gene result in specific cellular changes, or how RP genes might contribute to human diseases. The development of animal models with defects in RP genes will be essential for studying these questions. In this study, we knocked down 21 RP genes in zebrafish by using morpholino antisense oligos to inhibit their translation. Of these 21, knockdown of 19 RPs resulted in the development of morphants with obvious deformities. Although mutations in RP genes, like other housekeeping genes, would be expected to result in nonspecific developmental defects with widespread phenotypes, we found that knockdown of some RP genes resulted in phenotypes specific to each gene, with varying degrees of abnormality in the brain, body trunk, eyes, and ears at about 25 hours post fertilization. We focused further on the organogenesis of the brain. Each knocked-down gene that affected the morphogenesis of the brain produced a different pattern of abnormality. Among the 7 RP genes whose knockdown produced severe brain phenotypes, 3 human orthologs are located within chromosomal regions that have been linked to brain-associated diseases, suggesting a possible involvement of RP genes in brain or neurological diseases. The RP gene knockdown system developed in this study could be a powerful tool for studying the roles of ribosomes in human diseases.

  7. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    Science.gov (United States)

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  8. High magnetic field induced otolith fusion in the zebrafish larvae.

    Science.gov (United States)

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-04-11

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.

  9. Neutrophil Reverse Migration Becomes Transparent with Zebrafish

    Directory of Open Access Journals (Sweden)

    Taylor W. Starnes

    2012-01-01

    Full Text Available The precise control of neutrophil-mediated inflammation is critical for both host defense and the prevention of immunopathology. In vivo imaging studies in zebrafish, and more recently in mice, have made the novel observation that neutrophils leave a site of inflammation through a process called neutrophil reverse migration. The application of advanced imaging techniques to the genetically tractable, optically transparent zebrafish larvae was critical for these advances. Still, the mechanisms underlying neutrophil reverse migration and its effects on the resolution or priming of immune responses remain unclear. Here, we review the current knowledge of neutrophil reverse migration, its potential roles in host immunity, and the live imaging tools that make zebrafish a valuable model for increasing our knowledge of neutrophil behavior in vivo.

  10. In vivo metabolism of organophosphate flame retardants and distribution of their main metabolites in adult zebrafish.

    Science.gov (United States)

    Wang, Guowei; Chen, Hanyan; Du, Zhongkun; Li, Jianhua; Wang, Zunyao; Gao, Shixiang

    2017-07-15

    Understanding the metabolism of chemicals as well as the distribution and depuration of their main metabolites in tissues are essential for evaluating their fate and potential toxicity in vivo. Herein, we investigated the metabolism of six typical organophosphate (OP) flame retardants (tripropyl phosphate (TPRP), tri-n-butyl phosphate (TNBP), tris(2-butoxyethyl) phosphate (TBOEP), tris(2-chloroethyl) phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tri-p-cresyl phosphate (p-TCP)) in adult zebrafish in laboratory at three levels (0, 1/150 LC 50 (environmentally relevant level), and 1/30 LC 50 per OP analog). Twenty main metabolites were detected in the liver of OPs-exposed zebrafish using high resolution mass spectrometry (Q-TOF). The reaction pathways involving scission of the ester bond (hydrolysis), cleavage of the ether bond, oxidative hydroxylation, dechlorination, and coupling with glucuronic acid were proposed, and were further confirmed by the frontier electron density and point charge calculations. Tissue distribution of the twenty metabolites revealed that liver and intestine with the highest levels of metabolites were the most active organs for OPs biotransformation among the studied tissues of intestine, liver, roe, brain, muscle, and gill, which showed the importance of hepatobiliary system (liver-bile-intestine) in the metabolism and excretion of OPs in zebrafish. Fast depuration of metabolites from tissues indicated that the formed metabolites might be not persistent in fish, and easily released into water. This study provides comprehensive information on the metabolism of OPs in the tissue of zebrafish, which might give some hints for the exploration of their toxic mechanism in aquatic life. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Husbandry stress exacerbates mycobacterial infections in adult zebrafish, Danio rerio (Hamilton)

    Science.gov (United States)

    Ramsay, J.M.; Watral, Virginia G.; Schreck, C.B.; Kent, M.L.

    2009-01-01

    Mycobacteria are significant pathogens of laboratory zebrafish, Danio rerio (Hamilton). Stress is often implicated in clinical disease and morbidity associated with mycobacterial infections but has yet to be examined with zebrafish. The aim of this study was to examine the effects of husbandry stressors on zebrafish infected with mycobacteria. Adult zebrafish were exposed to Mycobacterium marinum or Mycobacterium chelonae, two species that have been associated with disease in zebrafish. Infected fish and controls were then subjected to chronic crowding and handling stressors and examined over an 8-week period. Whole-body cortisol was significantly elevated in stressed fish compared to non-stressed fish. Fish infected with M. marinum ATCC 927 and subjected to husbandry stressors had 14% cumulative mortality while no mortality occurred among infected fish not subjected to husbandry stressors. Stressed fish, infected with M. chelonae H1E2 from zebrafish, were 15-fold more likely to be infected than non-stressed fish at week 8 post-injection. Sub-acute, diffuse infections were more common among stressed fish infected with M. marinum or M. chelonae than non-stressed fish. This is the first study to demonstrate an effect of stress and elevated cortisol on the morbidity, prevalence, clinical disease and histological presentation associated with mycobacterial infections in zebrafish. Minimizing husbandry stress may be effective at reducing the severity of outbreaks of clinical mycobacteriosis in zebrafish facilities. ?? 2009 Blackwell Publishing Ltd.

  12. Zebrafish in Toxicology and Environmental Health.

    Science.gov (United States)

    Bambino, Kathryn; Chu, Jaime

    2017-01-01

    As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. © 2017 Elsevier Inc. All rights reserved.

  13. Axonal regeneration in zebrafish spinal cord

    Science.gov (United States)

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  14. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.

    2008-01-01

    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  15. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  16. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Science.gov (United States)

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  17. BMP signaling modulates hepcidin expression in zebrafish embryos independent of hemojuvelin.

    Directory of Open Access Journals (Sweden)

    Yann Gibert

    2011-01-01

    Full Text Available Hemojuvelin (Hjv, a member of the repulsive-guidance molecule (RGM family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv.

  18. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis.

    Directory of Open Access Journals (Sweden)

    Xun-wei Xie

    Full Text Available FOXO genes are involved in many aspects of development and vascular homeostasis by regulating cell apoptosis, proliferation, and the control of oxidative stress. In addition, FOXO genes have been showed to inhibit Wnt/β-catenin signaling by competing with T cell factor to bind to β-catenin. However, how important of this inhibition in vivo, particularly in embryogenesis is still unknown. To demonstrate the roles of FOXO genes in embryogenesis will help us to further understand their relevant physiological functions. Zebrafish foxo3b gene, an orthologue of mammalian FOXO3, was expressed maternally and distributed ubiquitously during early embryogenesis and later restricted to brain. After morpholino-mediated knockdown of foxo3b, the zebrafish embryos exhibited defects in axis and neuroectoderm formation, suggesting its critical role in early embryogenesis. The embryo-developmental marker gene staining at different stages, phenotype analysis and rescue assays revealed that foxo3b acted its role through negatively regulating both maternal and zygotic Wnt/β-catenin signaling. Moreover, we found that foxo3b could interact with zebrafish β-catenin1 and β-catenin2 to suppress their transactivation in vitro and in vivo, further confirming its role relevant to the inhibition of Wnt/β-catenin signaling. Taken together, we revealed that foxo3b played a very important role in embryogenesis and negatively regulated maternal and zygotic Wnt/β-catenin signaling by directly interacting with both β-catenin1 and β-catenin2. Our studies provide an in vivo model for illustrating function of FOXO transcription factors in embryogenesis.

  19. Zebrafish Expression Ontology of Gene Sets (ZEOGS): A Tool to Analyze Enrichment of Zebrafish Anatomical Terms in Large Gene Sets

    Science.gov (United States)

    Marsico, Annalisa

    2013-01-01

    Abstract The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene

  20. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  1. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Hayden R. [Department of Biology, Whittier College, Whittier, CA 90608 (United States); Radić, Zoran; Taylor, Palmer [Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650 (United States); Fradinger, Erica A., E-mail: efrading@whittier.edu [Department of Biology, Whittier College, Whittier, CA 90608 (United States)

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not

  2. Defects of the Glycinergic Synapse in Zebrafish

    Science.gov (United States)

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish. PMID:27445686

  3. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo.

    Directory of Open Access Journals (Sweden)

    Daniel Brönnimann

    Full Text Available Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo.Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations.Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001. Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01 and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03.In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic alterations.

  4. Biodistribution and toxicological study of PEGylated single-wall carbon nanotubes in the zebrafish (Danio rerio) nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Gisele E.B.; Dal Bosco, Lidiane [Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900 (Brazil); Programa de Pós-graduação em Ciências Fisiológicas–Fisiologia Animal Comparada, FURG, Rio Grande, RS, 96210-900 (Brazil); Gonçalves, Carla O.F.; Santos, Adelina P. [Laboratório de Química de Nanoestruturas, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, MG, 31270-901 (Brazil); Fantini, Cristiano [Instituto de Ciências Exatas, Departamento de Física, Belo Horizonte, MG, 31270-901 (Brazil); Furtado, Clascídia A. [Laboratório de Química de Nanoestruturas, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, MG, 31270-901 (Brazil); Parfitt, Gustavo M.; Peixoto, Carolina [Laboratório de Neurociências, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96210-900 (Brazil); Programa de Pós-graduação em Ciências Fisiológicas–Fisiologia Animal Comparada, FURG, Rio Grande, RS, 96210-900 (Brazil); Romano, Luis Alberto [Instituto de Oceanografía, Universidade Federal do Rio Grande, Rio Grande, RS, 96210-030 (Brazil); and others

    2014-11-01

    Nanotechnology has been proven to be increasingly compatible with pharmacological and biomedical applications. Therefore, we evaluated the biological interactions of single-wall carbon nanotubes functionalized with polyethylene glycol (SWNT-PEG). For this purpose, we analyzed biochemical, histological, behavioral and biodistribution parameters to understand how this material behaves in vitro and in vivo using the fish Danio rerio (zebrafish) as a biological model. The in vitro results for fish brain homogenates indicated that SWNT-PEG had an effect on lipid peroxidation and GSH (reduced glutathione) content. However, after intraperitoneal exposure, SWNT-PEG proved to be less biocompatible and formed aggregates, suggesting that the PEG used for the nanoparticle functionalization was of an inappropriate size for maintaining product stability in a biological environment. This problem with functionalization may have contributed to the low or practically absent biodistribution of SWNT-PEG in zebrafish tissues, as verified by Raman spectroscopy. There was an accumulation of material in the abdominal cavity that led to inflammation and behavioral disturbances, as evaluated by a histological analysis and an open field test, respectively. These results provide evidence of a lack of biocompatibility of SWNTs modified with short chain PEGs, which leads to the accumulation of the material, tissue damage and behavioral alterations in the tested subjects. - Highlights: • In vitro brain exposure diminished lipid peroxidation. • In vitro brain exposure depletes the GSH content. • SWNT-PEG was not biocompatible and formed aggregates after the exposure. • Practically absent biodistribution of SWNT-PEG was observed by Raman spectroscopy. • SWNT-PEG exposure lead to tissue damage and inflammatory responses.

  5. Biodistribution and toxicological study of PEGylated single-wall carbon nanotubes in the zebrafish (Danio rerio) nervous system

    International Nuclear Information System (INIS)

    Weber, Gisele E.B.; Dal Bosco, Lidiane; Gonçalves, Carla O.F.; Santos, Adelina P.; Fantini, Cristiano; Furtado, Clascídia A.; Parfitt, Gustavo M.; Peixoto, Carolina; Romano, Luis Alberto

    2014-01-01

    Nanotechnology has been proven to be increasingly compatible with pharmacological and biomedical applications. Therefore, we evaluated the biological interactions of single-wall carbon nanotubes functionalized with polyethylene glycol (SWNT-PEG). For this purpose, we analyzed biochemical, histological, behavioral and biodistribution parameters to understand how this material behaves in vitro and in vivo using the fish Danio rerio (zebrafish) as a biological model. The in vitro results for fish brain homogenates indicated that SWNT-PEG had an effect on lipid peroxidation and GSH (reduced glutathione) content. However, after intraperitoneal exposure, SWNT-PEG proved to be less biocompatible and formed aggregates, suggesting that the PEG used for the nanoparticle functionalization was of an inappropriate size for maintaining product stability in a biological environment. This problem with functionalization may have contributed to the low or practically absent biodistribution of SWNT-PEG in zebrafish tissues, as verified by Raman spectroscopy. There was an accumulation of material in the abdominal cavity that led to inflammation and behavioral disturbances, as evaluated by a histological analysis and an open field test, respectively. These results provide evidence of a lack of biocompatibility of SWNTs modified with short chain PEGs, which leads to the accumulation of the material, tissue damage and behavioral alterations in the tested subjects. - Highlights: • In vitro brain exposure diminished lipid peroxidation. • In vitro brain exposure depletes the GSH content. • SWNT-PEG was not biocompatible and formed aggregates after the exposure. • Practically absent biodistribution of SWNT-PEG was observed by Raman spectroscopy. • SWNT-PEG exposure lead to tissue damage and inflammatory responses

  6. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics

    Directory of Open Access Journals (Sweden)

    Emma D. Spikol

    2016-03-01

    Full Text Available Prader-Willi syndrome (PWS is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients.

  7. ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish

    KAUST Repository

    Weerdenburg, Eveline M.

    2012-02-15

    ESX-5 is a mycobacterial type VII protein secretion system responsible for transport of numerous PE and PPE proteins. It is involved in the induction of host cell death and modulation of the cytokine response in vitro. In this work, we studied the effects of ESX-5 in embryonic and adult zebrafish using Mycobacterium marinum. We found that ESX-5-deficient M.marinum was slightly attenuated in zebrafish embryos. Surprisingly, the same mutant showed highly increased virulence in adult zebrafish, characterized by increased bacterial loads and early onset of granuloma formation with rapid development of necrotic centres. This early onset of granuloma formation was accompanied by an increased expression of pro-inflammatory cytokines and tissue remodelling genes in zebrafish infected with the ESX-5 mutant. Experiments using RAG-1-deficient zebrafish showed that the increased virulence of the ESX-5 mutant was not dependent on the adaptive immune system. Mixed infection experiments with wild-type and ESX-5 mutant bacteria showed that the latter had a specific advantage in adult zebrafish and outcompeted wild-type bacteria. Together our experiments indicate that ESX-5-mediated protein secretion is used by M.marinum to establish a moderate and persistent infection. © 2012 Blackwell Publishing Ltd.

  8. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.

    Science.gov (United States)

    Lim, K-H; Chang, Y-C; Chiang, Y-H; Lin, H-C; Chang, C-Y; Lin, C-S; Huang, L; Wang, W-T; Gon-Shen Chen, C; Chou, W-C; Kuo, Y-Y

    2016-10-07

    CALR mutations are identified in about 30% of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs) including essential thrombocythemia (ET) and primary myelofibrosis. Although the molecular pathogenesis of CALR mutations leading to MPNs has been studied using in vitro cell lines models, how mutant CALR may affect developmental hematopoiesis remains unknown. Here we took advantage of the zebrafish model to examine the effects of mutant CALR on early hematopoiesis and model human CALR-mutated MPNs. We identified three zebrafish genes orthologous to human CALR, referred to as calr, calr3a and calr3b. The expression of CALR-del52 and CALR-ins5 mutants caused an increase in the hematopoietic stem/progenitor cells followed by thrombocytosis without affecting normal angiogenesis. The expression of CALR mutants also perturbed early developmental hematopoiesis in zebrafish. Importantly, morpholino knockdown of mpl but not epor or csf3r could significantly attenuate the effects of mutant CALR. Furthermore, the expression of mutant CALR caused jak-stat signaling activation in zebrafish that could be blocked by JAK inhibitors (ruxolitinib and fedratinib). These findings showed that mutant CALR activates jak-stat signaling through an mpl-dependent mechanism to mediate pathogenic thrombopoiesis in zebrafish, and illustrated that the signaling machinery related to mutant CALR tumorigenesis are conserved between human and zebrafish.

  9. Whole-Volume Clustering of Time Series Data from Zebrafish Brain Calcium Images via Mixture Modeling.

    Science.gov (United States)

    Nguyen, Hien D; Ullmann, Jeremy F P; McLachlan, Geoffrey J; Voleti, Venkatakaushik; Li, Wenze; Hillman, Elizabeth M C; Reutens, David C; Janke, Andrew L

    2018-02-01

    Calcium is a ubiquitous messenger in neural signaling events. An increasing number of techniques are enabling visualization of neurological activity in animal models via luminescent proteins that bind to calcium ions. These techniques generate large volumes of spatially correlated time series. A model-based functional data analysis methodology via Gaussian mixtures is suggested for the clustering of data from such visualizations is proposed. The methodology is theoretically justified and a computationally efficient approach to estimation is suggested. An example analysis of a zebrafish imaging experiment is presented.

  10. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    Science.gov (United States)

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  11. Evaluation of color preference in zebrafish for learning and memory.

    Science.gov (United States)

    Avdesh, Avdesh; Martin-Iverson, Mathew T; Mondal, Alinda; Chen, Mengqi; Askraba, Sreten; Morgan, Newman; Lardelli, Michael; Groth, David M; Verdile, Giuseppe; Martins, Ralph N

    2012-01-01

    There is growing interest in using zebrafish (Danio rerio) as a model of neurodegenerative disorders such as Alzheimer's disease. A zebrafish model of tauopathies has recently been developed and characterized in terms of presence of the pathological hallmarks (i.e., neurofibrillary tangles and cell death). However, it is also necessary to validate these models for function by assessing learning and memory. The majority of tools to assess memory and learning in animal models involve visual stimuli, including color preference. The color preference of zebrafish has received little attention. To validate zebrafish as a model for color-associated-learning and memory, it is necessary to evaluate its natural preferences or any pre-existing biases towards specific colors. In the present study, we have used four different colors (red, yellow, green, and blue) to test natural color preferences of the zebrafish using two procedures: Place preference and T-maze. Results from both experiments indicate a strong aversion toward blue color relative to all other colors (red, yellow, and green) when tested in combinations. No preferences or biases were found among reds, yellows, and greens in the place preference procedure. However, red and green were equally preferred and both were preferred over yellow by zebrafish in the T-maze procedure. The results from the present study show a strong aversion towards blue color compared to red, green, and yellow, with yellow being less preferred relative to red and green. The findings from this study may underpin any further designing of color-based learning and memory paradigms or experiments involving aversion, anxiety, or fear in the zebrafish.

  12. An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2013-01-01

    Full Text Available Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM with RBF kernel, using particle swarm optimization (PSO to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.

  13. Knocking Down Snrnp200 Initiates Demorphogenesis of Rod Photoreceptors in Zebrafish

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2015-01-01

    Full Text Available Purpose. The small nuclear ribonucleoprotein 200 kDa (SNRNP200 gene is a fundamental component for precursor message RNA (pre-mRNA splicing and has been implicated in the etiology of autosomal dominant retinitis pigmentosa (adRP. This study aims to determine the consequences of knocking down Snrnp200 in zebrafish. Methods. Expression of the Snrnp200 transcript in zebrafish was determined via whole mount in situ hybridization. Morpholino oligonucleotide (MO aiming to knock down the expression of Snrnp200 was injected into zebrafish embryos, followed by analyses of aberrant splicing and expression of the U4/U6-U5 tri-small nuclear ribonucleoproteins (snRNPs components and retina-specific transcripts. Systemic changes and retinal phenotypes were further characterized by histological study and immunofluorescence staining. Results. Snrnp200 was ubiquitously expressed in zebrafish. Knocking down Snrnp200 in zebrafish triggered aberrant splicing of the cbln1 gene, upregulation of other U4/U6-U5 tri-snRNP components, and downregulation of a panel of retina-specific transcripts. Systemic defects were found correlated with knockdown of Snrnp200 in zebrafish. Only demorphogenesis of rod photoreceptors was detected in the initial stage, mimicking the disease characteristics of RP. Conclusions. We conclude that knocking down Snrnp200 in zebrafish could alter regular splicing and expression of a panel of genes, which may eventually trigger rod defects.

  14. Subdivisions of the adult zebrafish pallium based on molecular marker analysis [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Julia Ganz

    2015-11-01

    Full Text Available Background: The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. Results: We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish (Danio rerio pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of ascl1a, eomesa, emx1, emx2, emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of emx1, emx2 and emx3 in the zebrafish larval brain. Conclusions: Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish

  15. Flat mount preparation for observation and analysis of zebrafish embryo specimens stained by whole mount in situ hybridization.

    Science.gov (United States)

    Cheng, Christina N; Li, Yue; Marra, Amanda N; Verdun, Valerie; Wingert, Rebecca A

    2014-07-17

    The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.

  16. Forward Genetic Screening Using Behavioral Tests in Zebrafish: A Proof of Concept Analysis of Mutants.

    Science.gov (United States)

    Gerlai, Robert; Poshusta, Tanya L; Rampersad, Mindy; Fernandes, Yohaan; Greenwood, Tammy M; Cousin, Margot A; Klee, Eric W; Clark, Karl J

    2017-01-01

    The zebrafish enjoys several advantages over other model organisms. It is small, easy to maintain, prolific, and numerous genetic tools are available for it. For example, forward genetic screens have allowed investigators to identify important genes potentially involved in a variety of functions from embryogenesis to cancer. However, despite its sophisticated behavioral repertoire, behavioral methods have rarely been utilized in forward genetic screens. Here, we employ a two-tiered strategy, a proof of concept study, to explore the feasibility of behavioral screens. We generated mutant lines using transposon-based insertional mutagenesis, allowing us to bias mutant selection with target genes expressed within the brain. Furthermore, we employed an efficient and fast behavioral pre-selection in which we investigated the locomotory response of 5-day post-fertilization old larval fish to hyperosmotic shock. Based on this assay, we selected five lines for our lower throughput secondary adult behavioral screen. The latter screen utilized tests in which computer animated image presentation and video-tracking-based automated quantification of behavior allowed us to compare heterozygous zebrafish with their wild-type siblings on their responses to a variety of stimuli. We found significant mutation induced adult behavioral alterations in 4 out of the 5 lines analyzed, including changes in response to social or fear inducing stimuli, to handling and novelty, or in habituation to novelty. We discuss the pros and cons of behavioral phenotyping and of the use of different forward genetic methods in biomedical research with zebrafish.

  17. Targeted knock-in of CreER T2 in zebrafish using CRISPR/Cas9.

    Science.gov (United States)

    Kesavan, Gokul; Hammer, Juliane; Hans, Stefan; Brand, Michael

    2018-04-01

    New genome-editing approaches, such as the CRISPR/Cas system, have opened up great opportunities to insert or delete genes at targeted loci and have revolutionized genetics in model organisms like the zebrafish. The Cre-loxp recombination system is widely used to activate or inactivate genes with high spatial and temporal specificity. Using a CRISPR/Cas9-mediated knock-in strategy, we inserted a zebrafish codon-optimized CreER T2 transgene at the otx2 gene locus to generate a conditional Cre-driver line. We chose otx2 as it is a patterning gene of the anterior neural plate that is expressed during early development. By knocking in CreER T2 upstream of the endogenous ATG of otx2, we utilized this gene's native promoter and enhancer elements to perfectly match CreER T2 and endogenous otx2 expression patterns. Next, by combining this novel driver line with a Cre-dependent reporter line, we show that only in the presence of tamoxifen can efficient Cre-loxp-mediated recombination be achieved in the anterior neural plate-derived tissues like the telencephalon, the eye and the optic tectum. Our results imply that the otx2:CreER T2 transgenic fish will be a valuable tool for lineage tracing and conditional mutant studies in larval and adult zebrafish.

  18. Evaluation of MWNT toxic effects on daphnia and zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Olasagasti, Maider; Rainieri, Sandra [AZTI-TECNALIA, Parque Tecnologico de Bizkaia 609, 48160 Derio (Spain)], E-mail: srainieri@azti.es; Alvarez, Noelia; Vera, Carolina [INASMET-TECNALIA, Mikeletegi pasealekua, 2, Parque Tecnologico, 20009 San Sebastian (Spain)

    2009-05-01

    Organisms of daphnia (Daphnia magna) and zebrafish (Danio rerio) embryos were exposed to a range of different concentrations of COOH-functionalized MWCNT suspended in an aqueous solution of Tween 20. Immobilization of daphnia and growth retardation, inhibition and malformation of zebrafish embryos were the endpoints tested after 24 and 48 hours. Immobilization of daphnia could be observed from 3 to 16 ppm and an increasing mortality of zebrafish embryo was detected at all the concentration tested. To identify more subtle toxic effects, we took advantage of the extensive information available on the zebrafish genome and monitored by RT-PCR the expression patterns of different zebrafish genes that could act as toxicity bio-markers. At some of the concentrations tested, changes in the expression profiles of the genes examined were detected. Our results suggest that MWCNT could potentially represent a risk to human health and environment, therefore a wider range of concentrations and further testing of this molecules should be carried out to define possible limitations in their use.

  19. Nutrition for the ageing brain: Towards evidence for an optimal diet.

    Science.gov (United States)

    Vauzour, David; Camprubi-Robles, Maria; Miquel-Kergoat, Sophie; Andres-Lacueva, Cristina; Bánáti, Diána; Barberger-Gateau, Pascale; Bowman, Gene L; Caberlotto, Laura; Clarke, Robert; Hogervorst, Eef; Kiliaan, Amanda J; Lucca, Ugo; Manach, Claudine; Minihane, Anne-Marie; Mitchell, Ellen Siobhan; Perneczky, Robert; Perry, Hugh; Roussel, Anne-Marie; Schuermans, Jeroen; Sijben, John; Spencer, Jeremy P E; Thuret, Sandrine; van de Rest, Ondine; Vandewoude, Maurits; Wesnes, Keith; Williams, Robert J; Williams, Robin S B; Ramirez, Maria

    2017-05-01

    As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is a desire to develop effective and safe strategies. Growing preclinical and clinical research in healthy individuals or at the early stage of cognitive decline has demonstrated the beneficial impact of nutrition on cognitive functions. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). The latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive ageing are presented. Furthermore, several key points related to mechanisms contributing to brain ageing, pathological conditions affecting brain function, and brain biomarkers are also discussed. Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups. Such approaches are likely to provide the necessary evidence to develop research portfolios that will inform about new dietary recommendations on how to prevent cognitive decline. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Expression of prostaglandin synthases (pgds and pges) during zebrafish gonadal differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Nielsen, Betina Frydenlund

    2010-01-01

    The present study aimed at elucidating whether the expression pattern of the membrane bound form of prostaglandin E2 synthase (pges) and especially the lipocalin-type prostaglandin D2 synthase (pgds) indicates involvement in gonadal sex differentiation in zebrafish as has previously been found....... In this study, a sexually dimorphic expression of pgds was found in gonads of adult zebrafish with expression in testis but not in ovaries. To determine whether the sex-specific expression pattern of pgds was present in gonads of juvenile zebrafish and therefore could be an early marker of sex in zebrafish, we...... microdissected gonads from four randomly selected individual zebrafish for every second day in the period 2-20 days post hatch (dph) and 0-1 dph. The temporal expression of pgds and pges was investigated in the microdissected gonads, however, no differential expression that could indicate sex-specific difference...

  1. Zebrafish Lacking Circadian Gene per2 Exhibit Visual Function Deficiency

    Directory of Open Access Journals (Sweden)

    Deng-feng Huang

    2018-03-01

    Full Text Available The retina has an intrinsic circadian clock, but the importance of this clock for vision is unknown. Zebrafish offer many advantages for studying vertebrate vision and circadian rhythm. Here, we explored the role of zebrafish per2, a light-regulated gene, in visual behavior and the underlying mechanisms. We observed that per2 mutant zebrafish larvae showed decreased contrast sensitivity and visual acuity using optokinetic response (OKR assays. Using a visual motor response (VMR assay, we observed normal OFF responses but abnormal ON responses in mutant zebrafish larvae. Immunofluorescence showed that mutants had a normal morphology of cone photoreceptor cells and retinal organization. However, electron microscopy showed that per2 mutants displayed abnormal and decreased photoreceptor ribbon synapses with arciform density, which resulted in retinal ON pathway defect. We also examined the expression of three cone opsins by quantitative real-time PCR (qRT-PCR, and the expression of long-wave-sensitive opsin (opn1lw and short-wave-sensitive opsin (opn1sw was reduced in mutant zebrafish larvae. qRT-PCR analyses also showed a down-regulation of the clock genes cry1ba and bmal1b in the adult eye of per2 mutant zebrafish. This study identified a mechanism by which a clock gene affects visual function and defined important roles of per2 in retinal information processing.

  2. TOXICITY EVALUATION OF NEW ENGINEERED NANOMATERIALS IN ZEBRAFISH

    Directory of Open Access Journals (Sweden)

    Maria Violetta Brundo

    2016-04-01

    Full Text Available The effect of the nanoparticles on the marine organisms, depends on their size, chemical composition, surface structure, solubility and shape.In order to take advantage from their activity, preserving the surrounding environment from a possible pollution, we are trying to trap the nanoparticles into new nanomaterials. The nanomaterials tested were synthesized proposing a ground-breaking approach by an upside-down vision of the Au/TiO2nano-system to avoid the release of nanoparticles. The system was synthesized by wrapping Au nanoparticles with a thin layer of TiO2. The non-toxicity of the nano-system was established by testing the effect of the material on zebrafish larvae. Danio rerio o zebrafish was considered a excellent model for the environmental biomonitoring of aquatic environments and the Zebrafish Embryo Toxicity Test is considered an alternative method of animal test. For this reason zebrafish larvae were exposed to different concentrations of nanoparticles of TiO2 and Au and new nanomaterials. As biomarkers of exposure, we evaluated the expression of metallothioneins by immunohistochemistry analysis and western blotting analysis also. The results obtained by toxicity test showed that neither mortality as well as sublethal effects were induced by the different nanomaterials and nanoparticles tested. Only zebrafish larvae exposed to free Au nanoparticles showed a different response to anti-MT antibody. In fact, the immunolocalization analysis highlighted an increase of the metallothioneins synthesis.

  3. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    Science.gov (United States)

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  4. Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD.

    Directory of Open Access Journals (Sweden)

    Xavier Joya

    Full Text Available The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS. In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines.In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification.Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s of ethanol-induced developmental toxicity at very early stages of embryonic development.

  5. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-11-15

    Highlights: • Cd induced oxidative stress and immunotoxicity by the generation of ROS. • The toxic effects depended on exposure time and different tissues. • Nrf2 and NF-κB mediated antioxidant and inflammatory responses. • Gene changed at transcriptional, translational, post-translational levels. - Abstract: Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1 mg L{sup −1} Cd for 24 h and 96 h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24 h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained

  6. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-01-01

    Highlights: • Cd induced oxidative stress and immunotoxicity by the generation of ROS. • The toxic effects depended on exposure time and different tissues. • Nrf2 and NF-κB mediated antioxidant and inflammatory responses. • Gene changed at transcriptional, translational, post-translational levels. - Abstract: Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1 mg L"−"1 Cd for 24 h and 96 h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24 h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained

  7. Short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish (Danio rerio).

    Science.gov (United States)

    Cao, Fangjie; Wu, Peizhuo; Huang, Lan; Li, Hui; Qian, Le; Pang, Sen; Qiu, Lihong

    2018-05-01

    Previous study indicated that azoxystrobin had high acute toxicity to zebrafish, and larval zebrafish were more sensitive to azoxystrobin than adult zebrafish. The objective of the present study was to investigate short-term developmental effects and potential mechanisms of azoxystrobin in larval and adult zebrafish. After zebrafish embryos and adults were exposed to 0.01, 0.05 and 0.20 mg/L azoxystrobin (equal to 25, 124 and 496 nM azoxystrobin, respectively) for 8 days, the lethal effect, physiological responses, liver histology, mitochondrial ultrastructure, and expression alteration of genes related to mitochondrial respiration, oxidative stress, cell apoptosis and innate immune response were determined. The results showed that there was no significant effect on larval and adult zebrafish after exposure to 0.01 mg/L azoxystrobin. However, increased ROS, MDA concentration and il1b in larval zebrafish, as well as increased il1b, il8 and cxcl-c1c in adult zebrafish were induced after exposure to 0.05 mg/L azoxystrobin. Reduced mitochondrial complex III activity and ATP concentration, increased SOD activity, ROS and MDA concentration, decreased cytb, as well as increased sod1, sod2, cat, il1b, il8 and cxcl-c1c were observed both in larval and adult zebrafish after exposure to 0.20 mg/L azoxystrobin; meanwhile, increased p53, bax, apaf1 and casp9, alteration of liver histology and mitochondrial ultrastructure in larval zebrafish, and alteration of mitochondrial ultrastructure in adult zebrafish were also induced. The results demonstrated that azoxytrobin induced short-term developmental effects on larval zebrafish and adult zebrafish, including mitochondrial dysfunction, oxidative stress, cell apoptosis and innate immune response. Statistical analysis indicated that azoxystrobin induced more negative effects on larval zebrafish, which might be the reason for the differences of developmental toxicity between larval and adult zebrafish caused by

  8. High-content screening in zebrafish embryos identifies butafenacil as a potent inducer of anemia.

    Directory of Open Access Journals (Sweden)

    Jessica K Leet

    Full Text Available Using transgenic zebrafish (fli1:egfp that stably express enhanced green fluorescent protein (eGFP within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05-50 µM using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO--an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors--flumioxazin--resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1 screening chemicals for cardiovascular toxicity and (2 prioritizing chemicals for future hypothesis

  9. A bioenergetic model for zebrafish Danio rerio (Hamilton)

    Science.gov (United States)

    Chizinski, C.J.; Sharma, Bibek; Pope, K.L.; Patino, R.

    2008-01-01

    A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18-32?? C) of water temperatures, and evaluated with a 50 day laboratory trial at 28?? C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass. ?? 2008 The Authors.

  10. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research.

    Science.gov (United States)

    Seto, Sai-Wang; Kiat, Hosen; Lee, Simon M Y; Bensoussan, Alan; Sun, Yu-Ting; Hoi, Maggie P M; Chang, Dennis

    2015-12-05

    The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  11. In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions

    Science.gov (United States)

    Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2017-01-01

    Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.

  12. Screening on the differentially expressed miRNAs in zebrafish (Danio rerio) exposed to trace β-diketone antibiotics and their related functions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jieyi; Liu, Jinfeng; Zhang, Yuhuan [College of Life Sciences, Wenzhou Medical University, Wenzhou 325035 (China); Wang, Xuedong [Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035 (China); Li, Weijun [Puyang People’s Hospital of Henan Province, Puyang 457000 (China); Zhang, Hongqin [College of Life Sciences, Wenzhou Medical University, Wenzhou 325035 (China); Wang, Huili, E-mail: wxdong@wzmc.edu.cn [College of Life Sciences, Wenzhou Medical University, Wenzhou 325035 (China)

    2016-09-15

    Highlights: • DKAs possessed toxic effect transfer relation across larval and adult zebrafish. • 215 mature miRNAs were differentially expressed in three comparison groups. • A regulatory network for 4 positive miRNA genes (miR-10, −96, −92, −184) was plotted. • Expression of miR-184, −96, −10 and −92 was proved with miRNA-seq, qRT-PCR and ISH. • DKA exposure induced severe histopathological changes in zebrafish tissues. - Abstract: The toxicity of β-diketone antibiotics (DKAs) to larval and adult zebrafish (Danio rerio) was investigated by miRNA sequencing and bioinformatics analyses. In control and DKA-exposed groups, 215 differentially expressed miRNAs were screened, and 4076 differential target genes were predicted. Among 51 co-differentially expressed genes, 45 were annotated in KOG functional classification, and 34 in KEGG pathway analysis. The homology analysis of 20 miRNAs with human hsa-miRNAs demonstrated 17 high homologous sequences. The expression levels of 12 miRNAs by qRT-PCR were consistent with those by sRNA-seq. A regulatory network for 4 positive miRNA genes (dre-miR-10, −96, −92 and −184) was plotted, and the high-degree of connectivity between miRNA-gene pairs suggests that these miRNAs play critical roles during zebrafish development. The consistent expression of dre-miR-184 and dre-miR-96 was proved in 120-hpf zebrafish brain, gill, otoliths and lateral line neuromast by qRT-PCR, miRNA-seq, W-ISH and ISH. DKA-exposure led to vacuolation of interstitial cells, reduced number of neurons, glial cell proliferation and formation of glial scar, and the obvious abnormality of cell structure might result from abnormal expression of differentially expressed miRNAs. In general, chronic DKA-exposure resulted in comprehensively toxic effects on larval and adult zebrafish tissues, especially for nervous system.

  13. Screening on the differentially expressed miRNAs in zebrafish (Danio rerio) exposed to trace β-diketone antibiotics and their related functions

    International Nuclear Information System (INIS)

    Li, Jieyi; Liu, Jinfeng; Zhang, Yuhuan; Wang, Xuedong; Li, Weijun; Zhang, Hongqin; Wang, Huili

    2016-01-01

    Highlights: • DKAs possessed toxic effect transfer relation across larval and adult zebrafish. • 215 mature miRNAs were differentially expressed in three comparison groups. • A regulatory network for 4 positive miRNA genes (miR-10, −96, −92, −184) was plotted. • Expression of miR-184, −96, −10 and −92 was proved with miRNA-seq, qRT-PCR and ISH. • DKA exposure induced severe histopathological changes in zebrafish tissues. - Abstract: The toxicity of β-diketone antibiotics (DKAs) to larval and adult zebrafish (Danio rerio) was investigated by miRNA sequencing and bioinformatics analyses. In control and DKA-exposed groups, 215 differentially expressed miRNAs were screened, and 4076 differential target genes were predicted. Among 51 co-differentially expressed genes, 45 were annotated in KOG functional classification, and 34 in KEGG pathway analysis. The homology analysis of 20 miRNAs with human hsa-miRNAs demonstrated 17 high homologous sequences. The expression levels of 12 miRNAs by qRT-PCR were consistent with those by sRNA-seq. A regulatory network for 4 positive miRNA genes (dre-miR-10, −96, −92 and −184) was plotted, and the high-degree of connectivity between miRNA-gene pairs suggests that these miRNAs play critical roles during zebrafish development. The consistent expression of dre-miR-184 and dre-miR-96 was proved in 120-hpf zebrafish brain, gill, otoliths and lateral line neuromast by qRT-PCR, miRNA-seq, W-ISH and ISH. DKA-exposure led to vacuolation of interstitial cells, reduced number of neurons, glial cell proliferation and formation of glial scar, and the obvious abnormality of cell structure might result from abnormal expression of differentially expressed miRNAs. In general, chronic DKA-exposure resulted in comprehensively toxic effects on larval and adult zebrafish tissues, especially for nervous system.

  14. Expression of sall4 in taste buds of zebrafish.

    Science.gov (United States)

    Jackson, Robyn; Braubach, Oliver R; Bilkey, Jessica; Zhang, Jing; Akimenko, Marie-Andrée; Fine, Alan; Croll, Roger P; Jonz, Michael G

    2013-07-01

    We characterized the expression of sall4, a gene encoding a zinc finger transcription factor involved in the maintenance of embryonic stem cells, in taste buds of zebrafish (Danio rerio). Using an enhancer trap line (ET5), we detected enhanced green fluorescent protein (EGFP) in developing and adult transgenic zebrafish in regions containing taste buds: the lips, branchial arches, and the nasal and maxillary barbels. Localization of EGFP to taste cells of the branchial arches and lips was confirmed by co-immunolabeling with antibodies against calretinin and serotonin, and a zebrafish-derived neuronal marker (zn-12). Transgenic insertion of the ET construct into the zebrafish genome was evaluated and mapped to chromosome 23 in proximity (i.e. 23 kb) to the sall4 gene. In situ hybridization and expression analysis between 24 and 96 h post-fertilization (hpf) demonstrated that transgenic egfp expression in ET5 zebrafish was correlated with the spatial and temporal pattern of expression of sall4 in the wild-type. Expression was first observed in the central nervous system and branchial arches at 24 hpf. At 48 hpf, sall4 and egfp expression was observed in taste bud primordia surrounding the mouth and branchial arches. At 72 and 96 hpf, expression was detected in the upper and lower lips and branchial arches. Double fluorescence in situ hybridization at 3 and 10 dpf confirmed colocalization of sall4 and egfp in the lips and branchial arches. These studies reveal sall4 expression in chemosensory cells and implicate this transcription factor in the development and renewal of taste epithelia in zebrafish. Copyright © 2013 Wiley Periodicals, Inc.

  15. Zebrafish as a Model for the Study of Human Myeloid Malignancies

    Directory of Open Access Journals (Sweden)

    Jeng-Wei Lu

    2015-01-01

    Full Text Available Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies.

  16. Optimization of the standards clinico-neurology and beam diagnostics of an easy brain injury

    International Nuclear Information System (INIS)

    Vakulenko, I.P.; Semisalov, S.Ya.; Sajko, D.Yu.

    2003-01-01

    16825 cases of a brain injury (BI) at the persons are investigated is more senior than 14 years. Axial computer topography (ACT) at concussion of a head brain was made 1/3 injureds. The careful analysis clinico-neuralgic symptoms allows to optimize purpose the ACT at easy BI, that not only improves quality of diagnostics, but in the certain degree normalizes beam loading on the injureds

  17. Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy.

    Directory of Open Access Journals (Sweden)

    Adriana Monserrath Orellana-Paucar

    Full Text Available In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ. In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf] in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application.

  18. Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy.

    Science.gov (United States)

    Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K; Dehaen, Wim; de Witte, Peter A M; Esguerra, Camila V

    2013-01-01

    In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application.

  19. Egfl6 is involved in zebrafish notochord development.

    Science.gov (United States)

    Wang, Xueqian; Wang, Xin; Yuan, Wei; Chai, Renjie; Liu, Dong

    2015-08-01

    The epidermal growth factor (EGF) repeat motif defines a superfamily of diverse protein involved in regulating a variety of cellular and physiological processes, such as cell cycle, cell adhesion, proliferation, migration, and neural development. Egfl6, an EGF protein, also named MAGE was first cloned in human tissue. Up to date, the study of zebrafish Egfl6 expression pattern and functional analysis of Egfl6 involved in embryonic development of vertebrate in vivo is thus far lacking. Here we reported that Egfl6 was involved in zebrafish notochord development. It was shown that Egfl6 mRNA was expressed in zebrafish, developing somites, fin epidermis, pharyngeal arches, and hindbrain region. Particularly the secreted Egfl6 protein was significantly accumulated in notochord. Loss of Egfl6 function in zebrafish embryos resulted in curved body with distorted notochord in the posterior trunk. It was observed that expression of all Notch ligand and receptors in notochord of 28 hpf Egfl6 morphants was not affected, except notch2, which was up-regulated. We found that inhibition of Notch signaling by DAPT efficiently rescued notochord developmental defect of Egfl6 deficiency embryos.

  20. Cyp1a reporter zebrafish reveals target tissues for dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun-Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Park, Hye-Jeong [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Jin Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Suhyun [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Williams, Darren R. [New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Myeong-Kyu [Department of Neurology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Jung, Young Do [Department of Biochemistry, Chonnam National University Medical School, Gwangju (Korea, Republic of); Teraoka, Hiroki [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Park, Hae-Chul [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Choy, Hyon E., E-mail: hyonchoy@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Shin, Boo Ahn, E-mail: bashin@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Choi, Seok-Yong, E-mail: zebrafish@chonnam.ac.kr [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); School of Biological Sciences and Technology, Chonnam National University, Gwangju (Korea, Republic of)

    2013-06-15

    Highlights: •2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic anthropogenic substance ever identified. •Transgenic cyp1a reporter zebrafish reveals target tissues for TCDD. •The retinal bipolar cells, otic vesicle, lateral line, pancreas, cloaca and pectoral fin bud are novel targets in zebrafish for TCDD. •Our findings will further understanding of human health risks by TCDD. -- Abstract: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the unintentional byproduct of various industrial processes, is classified as human carcinogen and could disrupt reproductive, developmental and endocrine systems. Induction of cyp1a1 is used as an indicator of TCDD exposure. We sought to determine tissues that are vulnerable to TCDD toxicity using a transgenic zebrafish (Danio rerio) model. We inserted a nuclear enhanced green fluorescent protein gene (EGFP) into the start codon of a zebrafish cyp1a gene in a fosmid clone using DNA recombineering. The resulting recombineered fosmid was then used to generate cyp1a reporter zebrafish, embryos of which were exposed to TCDD. Expression pattern of EGFP in the reporter zebrafish mirrored that of endogenous cyp1a mRNA. In addition, exposure of the embryos to TCDD at as low as 10 pM for 72 h, which does not elicit morphological abnormalities of embryos, markedly increased GFP expression. Furthermore, the reporter embryos responded to other AhR ligands as well. Exposure of the embryos to TCDD revealed previously reported (the cardiovascular system, liver, pancreas, kidney, swim bladder and skin) and unreported target tissues (retinal bipolar cells, otic vesicle, lateral line, cloaca and pectoral fin bud) for TCDD. Transgenic cyp1a reporter zebrafish we have developed can further understanding of ecotoxicological relevance and human health risks by TCDD. In addition, they could be used to identify agonists of AhR and antidotes to TCDD toxicity.

  1. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates.

    Science.gov (United States)

    Lin, Xudong; Wang, Shiqi; Yu, Xudong; Liu, Zhuguo; Wang, Fei; Li, Wai Tsun; Cheng, Shuk Han; Dai, Qiuyun; Shi, Peng

    2015-02-07

    The reconstruction of neural activity across complete neural circuits, or brain activity mapping, has great potential in both fundamental and translational neuroscience research. Larval zebrafish, a vertebrate model, has recently been demonstrated to be amenable to whole brain activity mapping in behaving animals. Here we demonstrate a microfluidic array system ("Fish-Trap") that enables high-throughput mapping of brain-wide activity in awake larval zebrafish. Unlike the commonly practiced larva-processing methods using a rigid gel or a capillary tube, which are laborious and time-consuming, the hydrodynamic design of our microfluidic chip allows automatic, gel-free, and anesthetic-free processing of tens of larvae for microscopic imaging with single-cell resolution. Notably, this system provides the capability to directly couple pharmaceutical stimuli with real-time recording of neural activity in a large number of animals, and the local and global effects of pharmacoactive drugs on the nervous system can be directly visualized and evaluated by analyzing drug-induced functional perturbation within or across different brain regions. Using this technology, we tested a set of neurotoxin peptides and obtained new insights into how to exploit neurotoxin derivatives as therapeutic agents. The novel and versatile "Fish-Trap" technology can be readily unitized to study other stimulus (optical, acoustic, or physical) associated functional brain circuits using similar experimental strategies.

  2. Influence of carbon nanotube length on toxicity to zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Cheng J

    2012-07-01

    Full Text Available Jinping Cheng,1,2 Shuk Han Cheng11Department of Biology and Chemistry, City University of Hong Kong, Hong Kong; 2State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, ChinaAbstract: There is currently a large difference of opinion in nanotoxicology studies of nanomaterials. There is concern about why some studies have indicated that there is strong toxicity, while others have not. In this study, the length of carbon nanotubes greatly affected their toxicity in zebrafish embryos. Multiwalled carbon nanotubes (MWCNTs were sonicated in a nitric acid solution for 24 hours and 48 hours. The modified MWCNTs were tested in early developing zebrafish embryo. MWCNTs prepared with the longer sonication time resulted in severe developmental toxicity; however, the shorter sonication time did not induce any obvious toxicity in the tested developing zebrafish embryos. The cellular and molecular changes of the affected zebrafish embryos were studied and the observed phenotypes scored. This study suggests that length plays an important role in the in vivo toxicity of functionalized CNTs. This study will help in furthering the understanding on current differences in toxicity studies of nanomaterials.Keywords: length, carbon nanotubes, sonication, developmental toxicity, zebrafish

  3. Molecular genetics of pituitary development in zebrafish.

    Science.gov (United States)

    Pogoda, Hans-Martin; Hammerschmidt, Matthias

    2007-08-01

    The pituitary gland of vertebrates consists of two major parts, the neurohypophysis (NH) and the adenohypophysis (AH). As a central part of the hypothalamo-hypophyseal system (HHS), it constitutes a functional link between the nervous and the endocrine system to regulate basic body functions, such as growth, metabolism and reproduction. The development of the AH has been intensively studied in mouse, serving as a model for organogenesis and differential cell specification. However, given that the AH is a relatively recent evolutionary advance of the chordate phylum, it is also interesting to understand its development in lower chordate systems. In recent years, the zebrafish has emerged as a powerful lower vertebrate system for developmental studies, being amenable for large-scale genetic approaches, embryological manipulations, and in vivo imaging. Here, we present an overview of current knowledge of the mechanisms and genetic control of pituitary formation during zebrafish development. First, we describe the components of the zebrafish HHS, and the different pituitary cell types and hormones, followed by a description of the different steps of normal pituitary development. The central part of the review deals with the genes found to be essential for zebrafish AH development, accompanied by a description of the corresponding mutant phenotypes. Finally, we discuss future directions, with particular focus on evolutionary aspects, and some novel functional aspects with growing medical and social relevance.

  4. A two-scale model for correlation between B cell VDJ usage in zebrafish

    Science.gov (United States)

    Pan, Keyao; Deem, Michael

    2011-03-01

    The zebrafish (Danio rerio) is one of the model animals for study of immunology. The dynamics of the adaptive immune system in zebrafish is similar to that in higher animals. In this work, we built a two-scale model to simulate the dynamics of B cells in primary and secondary immune reactions in zebrafish and to explain the reported correlation between VDJ usage of B cell repertoires in distinct zebrafish. The first scale of the model consists of a generalized NK model to simulate the B cell maturation process in the 10-day primary immune response. The second scale uses a delay ordinary differential equation system to model the immune responses in the 6-month lifespan of zebrafish. The generalized NK model shows that mature B cells specific to one antigen mostly possess a single VDJ recombination. The probability that mature B cells in two zebrafish have the same VDJ recombination increases with the B cell population size or the B cell selection intensity and decreases with the B cell hypermutation rate. The ODE model shows a distribution of correlation in the VDJ usage of the B cell repertoires in two six-month-old zebrafish that is highly similar to that from experiment. This work presents a simple theory to explain the experimentally observed correlation in VDJ usage of distinct zebrafish B cell repertoires after an immune response.

  5. 10th European Zebrafish Meeting 2017, Budapest: Husbandry Workshop Summary.

    Science.gov (United States)

    Oltová, Jana; Barton, Carrie; Certal, Ana Catarina; Argenton, Francesco; Varga, Zoltán M

    2018-01-02

    A husbandry workshop on July 3, 2017, at the 10th European Zebrafish Meeting in Budapest, Hungary (July 3-July 7, 2017), focused on the standardization, optimization, and streamlining of fish facility procedures. Standardization can be achieved for example by developing novel software and hardware tools, such as a fish facility database for husbandry and environmental facility management (Zebrabase, Oltova), or a hand-held, air-pressurized fish feeder for consistent food distribution (Blowfish, Argenton). Streamlining is achieved when work hours are reduced, as with the standardized fish feeder, or by limiting the number and types of fish diets and observing the effect on animal welfare and performance (Barton). Testing the characteristics of new fish diets and observing whether they produce better experimental outcomes (Certal) optimizes diets and improves fish productivity. Collectively, the workshop presentations emphasized how consistency and harmonization of husbandry procedures within and across aquatic facilities yield reproducible scientific outcomes.

  6. ZebrafishMiner: an open source software for interactive evaluation of domain-specific fluorescence in zebrafish

    Directory of Open Access Journals (Sweden)

    Reischl Markus

    2017-09-01

    Full Text Available High-throughput microscopy makes it possible to observe the morphology of zebrafish on large scale to quantify genetic, toxic or drug effects. The image acquisition is done by automated microscopy, images are evaluated automatically by image processing pipelines, tailored specifically to the requirements of the scientific question. The transfer of such algorithms to other projects, however, is complex due to missing guidelines and lack of mathematical or programming knowledge. In this work, we implement an image processing pipeline for automatic fluorescence quantification in user-defined domains of zebrafish embryos and larvae of different age. The pipeline is capable of detecting embryos and larvae in image stacks and quantifying domain activity. To make this protocol available to the community, we developed an open source software package called „ZebrafishMiner“ which guides the user through all steps of the processing pipeline and makes the algorithms available and easy to handle. We implemented all routines in an MATLAB-based graphical user interface (GUI that gives the user control over all image processing parameters. The software is shipped with a manual of 30 pages and three tutorial datasets, which guide the user through the manual step by step. It can be downloaded at https://sourceforge.net/projects/scixminer/.

  7. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.

    Science.gov (United States)

    Chen, Yunru; Zeng, Shiyang; Hu, Ruikun; Wang, Xiangxiu; Huang, Weilai; Liu, Jiangfang; Wang, Luying; Liu, Guifen; Cao, Ying; Zhang, Yong

    2017-01-01

    Although the CRISPR/Cas9 has been successfully applied in zebrafish, considerable variations in efficiency have been observed for different gRNAs. The workload and cost of zebrafish mutant screening is largely dependent on the mutation rate of injected embryos; therefore, selecting more effective gRNAs is especially important for zebrafish mutant construction. Besides the sequence features, local chromatin structures may have effects on CRISPR/Cas9 efficiency, which remain largely unexplored. In the only related study in zebrafish, nucleosome organization was not found to have an effect on CRISPR/Cas9 efficiency, which is inconsistent with recent studies in vitro and in mammalian cell lines. To understand the effects of local chromatin structure on CRISPR/Cas9 efficiency in zebrafish, we first determined that CRISPR/Cas9 introduced genome editing mainly before the dome stage. Based on this observation, we reanalyzed our published nucleosome organization profiles and generated chromatin accessibility profiles in the 256-cell and dome stages using ATAC-seq technology. Our study demonstrated that chromatin accessibility showed positive correlation with CRISPR/Cas9 efficiency, but we did not observe a clear correlation between nucleosome organization and CRISPR/Cas9 efficiency. We constructed an online database for zebrafish gRNA selection based on local chromatin structure features that could prove beneficial to zebrafish homozygous mutant construction via CRISPR/Cas9.

  8. Tributyltin and Zebrafish: Swimming in Dangerous Water

    Directory of Open Access Journals (Sweden)

    Clemilson Berto-Júnior

    2018-04-01

    Full Text Available Zebrafish has been established as a reliable biological model with important insertion in academy (morphologic, biochemical, and pathophysiological studies and pharmaceutical industry (toxicology and drug development due to its molecular complexity and similar systems biology that recapitulate those from other organisms. Considering the toxicological aspects, many efforts using zebrafish models are being done in order to elucidate the effects of endocrine disruptors, and some of them are focused on tributyltin (TBT and its mechanism of action. TBT is an antifouling agent applied in ship’s hull that is constantly released into the water and absorbed by marine organisms, leading to bioaccumulation and biomagnification effects. Thus, several findings of malformations and changes in the normal biochemical and physiologic aspects of these marine animals have been related to TBT contamination. In the present review, we have compiled the most significant studies related to TBT effects in zebrafish, also taking into consideration the effects found in other study models.

  9. Tributyltin and Zebrafish: Swimming in Dangerous Water

    Science.gov (United States)

    Berto-Júnior, Clemilson; de Carvalho, Denise Pires; Soares, Paula; Miranda-Alves, Leandro

    2018-01-01

    Zebrafish has been established as a reliable biological model with important insertion in academy (morphologic, biochemical, and pathophysiological studies) and pharmaceutical industry (toxicology and drug development) due to its molecular complexity and similar systems biology that recapitulate those from other organisms. Considering the toxicological aspects, many efforts using zebrafish models are being done in order to elucidate the effects of endocrine disruptors, and some of them are focused on tributyltin (TBT) and its mechanism of action. TBT is an antifouling agent applied in ship’s hull that is constantly released into the water and absorbed by marine organisms, leading to bioaccumulation and biomagnification effects. Thus, several findings of malformations and changes in the normal biochemical and physiologic aspects of these marine animals have been related to TBT contamination. In the present review, we have compiled the most significant studies related to TBT effects in zebrafish, also taking into consideration the effects found in other study models. PMID:29692757

  10. Disease modeling in genetic kidney diseases: zebrafish.

    Science.gov (United States)

    Schenk, Heiko; Müller-Deile, Janina; Kinast, Mark; Schiffer, Mario

    2017-07-01

    Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.

  11. Use of zebrafish to study Shigella infection

    Science.gov (United States)

    Duggan, Gina M.

    2018-01-01

    ABSTRACT Shigella is a leading cause of dysentery worldwide, responsible for up to 165 million cases of shigellosis each year. Shigella is also recognised as an exceptional model pathogen to study key issues in cell biology and innate immunity. Several infection models have been useful to explore Shigella biology; however, we still lack information regarding the events taking place during the Shigella infection process in vivo. Here, we discuss a selection of mechanistic insights recently gained from studying Shigella infection of zebrafish (Danio rerio), with a focus on cytoskeleton rearrangements and cellular immunity. We also discuss how infection of zebrafish can be used to investigate new concepts underlying infection control, including emergency granulopoiesis and the use of predatory bacteria to combat antimicrobial resistance. Collectively, these insights illustrate how Shigella infection of zebrafish can provide fundamental advances in our understanding of bacterial pathogenesis and vertebrate host defence. This information should also provide vital clues for the discovery of new therapeutic strategies against infectious disease in humans. PMID:29590642

  12. Use of zebrafish to study Shigella infection

    Directory of Open Access Journals (Sweden)

    Gina M. Duggan

    2018-02-01

    Full Text Available Shigella is a leading cause of dysentery worldwide, responsible for up to 165 million cases of shigellosis each year. Shigella is also recognised as an exceptional model pathogen to study key issues in cell biology and innate immunity. Several infection models have been useful to explore Shigella biology; however, we still lack information regarding the events taking place during the Shigella infection process in vivo. Here, we discuss a selection of mechanistic insights recently gained from studying Shigella infection of zebrafish (Danio rerio, with a focus on cytoskeleton rearrangements and cellular immunity. We also discuss how infection of zebrafish can be used to investigate new concepts underlying infection control, including emergency granulopoiesis and the use of predatory bacteria to combat antimicrobial resistance. Collectively, these insights illustrate how Shigella infection of zebrafish can provide fundamental advances in our understanding of bacterial pathogenesis and vertebrate host defence. This information should also provide vital clues for the discovery of new therapeutic strategies against infectious disease in humans.

  13. Glyphosate and Roundup® alter morphology and behavior in zebrafish.

    Science.gov (United States)

    Bridi, Daiane; Altenhofen, Stefani; Gonzalez, Jonas Brum; Reolon, Gustavo Kellermann; Bonan, Carla Denise

    2017-12-01

    Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup ® . This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup ® on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup ® (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup ® exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup ® at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup ® -treated adult zebrafish demonstrated a significant

  14. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    OpenAIRE

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2010-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic ...

  15. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model

    International Nuclear Information System (INIS)

    Marques, Ines J; Bagowski, Christoph P; Weiss, Frank Ulrich; Vlecken, Danielle H; Nitsche, Claudia; Bakkers, Jeroen; Lagendijk, Anne K; Partecke, Lars Ivo; Heidecke, Claus-Dieter; Lerch, Markus M

    2009-01-01

    Aberrant regulation of cell migration drives progression of many diseases, including cancer cell invasion and metastasis formation. Analysis of tumour invasion and metastasis in living organisms to date is cumbersome and involves difficult and time consuming investigative techniques. For primary human tumours we establish here a simple, fast, sensitive and cost-effective in vivo model to analyse tumour invasion and metastatic behaviour. We fluorescently labelled small explants from gastrointestinal human tumours and investigated their metastatic behaviour after transplantation into zebrafish embryos and larvae. The transparency of the zebrafish embryos allows to follow invasion, migration and micrometastasis formation in real-time. High resolution imaging was achieved through laser scanning confocal microscopy of live zebrafish. In the transparent zebrafish embryos invasion, circulation of tumour cells in blood vessels, migration and micrometastasis formation can be followed in real-time. Xenografts of primary human tumours showed invasiveness and micrometastasis formation within 24 hours after transplantation, which was absent when non-tumour tissue was implanted. Furthermore, primary human tumour cells, when organotopically implanted in the zebrafish liver, demonstrated invasiveness and metastatic behaviour, whereas primary control cells remained in the liver. Pancreatic tumour cells showed no metastatic behaviour when injected into cloche mutant embryos, which lack a functional vasculature. Our results show that the zebrafish is a useful in vivo animal model for rapid analysis of invasion and metastatic behaviour of primary human tumour specimen

  16. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Skoglund, Karl; Ryberg, Charlotte

    2005-01-01

    , the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator...

  17. Brain drains: new insights into brain clearance pathways from lymphatic biology.

    Science.gov (United States)

    Bower, Neil I; Hogan, Benjamin M

    2018-05-01

    The lymphatic vasculature act as the drainage system for most of our tissues and organs, clearing interstitial fluid and waste and returning them to the blood circulation. This is not the case for the central nervous system (CNS), which is devoid of parenchymal lymphatic vessels. Nevertheless, the brain is responsible for 25% of the body's metabolism and only compromises 2% of the body's mass. This high metabolic load requires an efficient system to remove waste products and maintain homeostasis. Well-described mechanisms of waste clearance include phagocytic immune cell functions as well as perivascular fluid flow; however, the need for active drainage of waste from the brain is becoming increasingly appreciated. Recent developments in lymphatic vascular biology challenge the proposition that the brain lacks lymphatic drainage or an equivalent. In this review, we describe the roles of the glymphatic system (a key drainage mechanism in the absence of lymphatics), the recently characterized meningeal lymphatic vessels, and explore an enigmatic cell population found in zebrafish called mural lymphatic endothelial cells. These systems may play important individual and collective roles in draining and clearing wastes from the brain.

  18. Zebrafish kidney phagocytes utilize macropinocytosis and Ca+-dependent endocytic mechanisms.

    Directory of Open Access Journals (Sweden)

    Claudia Hohn

    Full Text Available BACKGROUND: The innate immune response constitutes the first line of defense against invading pathogens and consists of a variety of immune defense mechanisms including active endocytosis by macrophages and granulocytes. Endocytosis can be used as a reliable measure of selective and non-selective mechanisms of antigen uptake in the early phase of an immune response. Numerous assays have been developed to measure this response in a variety of mammalian and fish species. The small size of the zebrafish has prevented the large-scale collection of monocytes/macrophages and granulocytes for these endocytic assays. METHODOLOGY/PRINCIPAL FINDINGS: Pooled zebrafish kidney hematopoietic tissues were used as a source of phagocytic cells for flow-cytometry based endocytic assays. FITC-Dextran, Lucifer Yellow and FITC-Edwardsiella ictaluri were used to evaluate selective and non-selective mechanisms of uptake in zebrafish phagocytes. CONCLUSIONS/SIGNIFICANCE: Zebrafish kidney phagocytes characterized as monocytes/macrophages, neutrophils and lymphocytes utilize macropinocytosis and Ca(2+-dependant endocytosis mechanisms of antigen uptake. These cells do not appear to utilize a mannose receptor. Heat-killed Edwardsiella ictaluri induces cytoskeletal interactions for internalization in zebrafish kidney monocytes/macrophages and granulocytes. The proposed method is easy to implement and should prove especially useful in immunological, toxicological and epidemiological research.

  19. Comparison of Antemortem and Environmental Samples for Zebrafish Health Monitoring and Quarantine

    Science.gov (United States)

    Crim, Marcus J; Lawrence, Christian; Livingston, Robert S; Rakitin, Andrei; Hurley, Shane J; Riley, Lela K

    2017-01-01

    Molecular diagnostic assays offer both exquisite sensitivity and the ability to test a wide variety of sample types. Various types of environmental sample, such as detritus and concentrated water, might provide a useful adjunct to sentinels in routine zebrafish health monitoring. Similarly, antemortem sampling would be advantageous for expediting zebrafish quarantine, without euthanasia of valuable fish. We evaluated the detection of Mycobacterium chelonae, M. fortuitum, M. peregrinum, Pseudocapillaria tomentosa, and Pseudoloma neurophilia in zebrafish, detritus, pooled feces, and filter membranes after filtration of 1000-, 500-, and 150-mL water samples by real-time PCR analysis. Sensitivity varied according to sample type and pathogen, and environmental sampling was significantly more sensitive than zebrafish sampling for detecting Mycobacterium spp. but not for Pseudocapillaria neurophilia or Pseudoloma tomentosa. The results of these experiments provide strong evidence of the utility of multiple sample types for detecting pathogens according to each pathogen's life cycle and ecological niche within zebrafish systems. In a separate experiment, zebrafish subclinically infected with M. chelonae, M. marinum, Pleistophora hyphessobryconis, Pseudocapillaria tomentosa, or Pseudoloma neurophilia were pair-spawned and individually tested with subsets of embryos from each clutch that received no rinse, a fluidizing rinse, or were surface-disinfected with sodium hypochlorite. Frequently, one or both parents were subclinically infected with pathogen(s) that were not detected in any embryo subset. Therefore, negative results from embryo samples may not reflect the health status of the parent zebrafish. PMID:28724491

  20. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    Science.gov (United States)

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-04-02

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

  1. Two-Photon-Based Photoactivation in Live Zebrafish Embryos

    OpenAIRE

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-01-01

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a...

  2. Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yao Xiao

    2016-09-01

    Full Text Available A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents.

  3. Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction

    International Nuclear Information System (INIS)

    Deng Jun; Liu Chunsheng; Yu Liqin; Zhou Bingsheng

    2010-01-01

    Tribromophenol (2,4,6-TBP) is ubiquitously found in aquatic environments and biota. In this study, we exposed zebrafish embryos (F 0 ; 2'''' days post-fertilization, dpf) to environmental concentration (0.3 μg/L) and a higher concentration (3.0 μg/L) of TBP and assessed the impact of chronic exposure (120 dpf) on reproduction. TBP exposure did not cause a significant increase in the malformation and reduction in the survival in the F 0 -generation fish. After TBP exposure, the plasma testosterone and estradiol levels significantly increased in males and decreased in females. The transcription of steroidogenic genes (3β-HSD, 17β-HSD, CYP17, CYP19A, CYP19B) was significantly upregulated in the brain and testes in males and downregulated in the brain and ovary in females. TBP exposure significantly downregulated and upregulated the expression of VTG in the liver of female and male fish, respectively. Meanwhile, TBP exposure altered the sex ratio toward a male-dominant state. The F 1 -generation larvae exhibited increased malformation, reduced survival, and retarded growth, suggesting that TBP in the aquatic environment has significant adverse effects on fish population.

  4. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis

    International Nuclear Information System (INIS)

    Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Foote, Matthew; Lehman, Margot; Chan, Lawrence Wing Chi

    2017-01-01

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, following the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.

  5. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Eva Sau Fan [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong); Wu, Vincent Wing Cheung [Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong); Harris, Benjamin [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); Foote, Matthew; Lehman, Margot [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); School of Medicine, University of Queensland (Australia); Chan, Lawrence Wing Chi, E-mail: wing.chi.chan@polyu.edu.hk [Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong)

    2017-07-01

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, following the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.

  6. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.

    Science.gov (United States)

    Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B

    2018-06-01

    A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. SINs and SOMs: Neural microcircuits for size tuning in the zebrafish and mouse visual pathway.

    Directory of Open Access Journals (Sweden)

    Alison J. Barker

    2013-05-01

    Full Text Available In many animals, a fast and reliable circuit for discriminating between predator-sized objects and edible (prey-sized objects is necessary for survival. How are receptive fields in visual brain areas organized to extract information about size? Recent studies from the zebrafish optic tectum and the mouse visual cortex suggest de novo shaping of receptive fields by subtypes of inhibitory neurons. Del Bene et al. (2010 describe a population of GABAergic neurons in the zebrafish optic tectum (Superficial Interneurons, SINs that are necessary for size filtering during prey capture. Adesnik et al. (2012 describe a somatostatin-expressing interneuron population (SOMs that confers surround suppression on layer II/III pyramidal cells in mouse V1. Strikingly both the SINs and the SOMs, display size-dependent response properties. Increasing visual stimulus size increases excitatory input to these neurons. Dampening SIN or SOM activity alters tuning of neighboring circuits such that they lose preference for small objects. Both results provide exciting evidence for mechanisms of size filtering in visual circuits. Here we review the roles of the SINs and the SOMs and speculate on the similarity of such spatial filters across species.

  8. Determining Optimal Microwave Antigen Retrieval Conditions for Microtubule-Associated Protein 2 Immunohistochemistry in the Guinea Pig Brain

    Science.gov (United States)

    2002-12-01

    sections of formalin-fixed guinea pig brains using different MAP-2 monoclonal antibodies. Brain sections were boiled in sodium citrate, citric acid...citric acid solution at pH 6.0 is the optimal microwave-assisted AR method for immunolabeling MAP-2 in formalin-fixed, paraffin-processed guinea pig brain...studies on archival guinea pig brain paraffin blocks, ultimately relaxing the use of additional animals to evaluate changes in MAP-2 expression between chemical warfare nerve agent-treated and control samples.

  9. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  10. The essential role of endogenous ghrelin in growth hormone expression during zebrafish adenohypophysis development.

    Science.gov (United States)

    Li, Xi; He, Jiangyan; Hu, Wei; Yin, Zhan

    2009-06-01

    Ghrelin, a multifunctional hormone, including potent GH stimulation activity, has been suggested to be important during embryonic development. Expression of ghrelin has been confirmed in the zebrafish pancreas during embryonic stages. Interfering with ghrelin function using two specific antisense morpholino oligonucleotides causes defects during zebrafish embryonic development. In ghrelin morphants the expression of GH was abolished in zebrafish somatotropes, whereas the expression patterns of the other key molecules involved in hypothalamic-pituitary development and distinct pituitary hormones genes remain largely intact at the appropriate time during zebrafish adenohypophysis development. Effective rescue of the ghrelin morphants with exogenous ghrelin mRNA showed that the correct gene had been targeted. Moreover, by analyzing the efficiencies of the ghrelin morphants rescue experiments with various forms of exogenous mutant ghrelin mRNAs, we also demonstrated the essentiality of the form acyl-ghrelin on GH stimulation during zebrafish adenohypophysis development. Our in vivo experiments, for the first time, also provided evidence of the existence of functional obestatin in the C-terminal part of zebrafish proghrelin peptides. Our research here has demonstrated that zebrafish is a unique model for functional studies of endogenous ghrelin, especially during embryonic development.

  11. Developmental effects of aerosols and coal burning particles in zebrafish embryos

    International Nuclear Information System (INIS)

    Olivares, Alba; Drooge, Barend L. van; Casado, Marta; Prats, Eva; Serra, Montserrat; Ven, Leo T. van der; Kamstra, Jorke H.; Hamers, Timo; Hermsen, Sanne; Grimalt, Joan O.; Piña, Benjamin

    2013-01-01

    Embryo toxicity of particles generated by combustion processes is of special concern for human health. A significant part of these toxic effects is linked to the binding of some pollutants (like polycyclic aromatic hydrocarbons or PAHs) to the Aryl hydrocarbon Receptor (AhR) and the activation of target genes, like the cytochrome P4501A. This activity was analyzed for ambient air and coal-combustion particle extracts in zebrafish embryos (the cyp1aDarT assay) and in two single-cell bioassays: the yeast-based YCM-RYA and the DR-luc (rat cells) assay. Observed AhR ligand activity of samples generally correlated to the predicted toxic effect according to their PAH composition, except for one of the coal combustion samples with an anomalously high activity in the cyp1aDarT assay. This sample induced deformities in zebrafish embryos. We concluded that the combination of morphological and molecular assays may detect embryonic toxic effects that cannot be predicted from chemical analyses or single-cell bioassays. -- Highlights: ► Samples from air particulated matter and coal waste gob showed embryo toxicity in zebrafish. ► PAHs composition of samples does not adequately predict the toxic effects in zebrafish. ► Active coal waste gob samples show maximal AhR-ligand activity and induce deformations in zebrafish embryos. -- Aerosols and coal burning particles showed a strong developmental toxicity in zebrafish, in a degree that cannot be directly predicted from chemical analyses or single-cell bioassays

  12. A multi-scale model for correlation in B cell VDJ usage of zebrafish

    International Nuclear Information System (INIS)

    Pan, Keyao; Deem, Michael W

    2011-01-01

    The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment

  13. A multi-scale model for correlation in B cell VDJ usage of zebrafish

    Science.gov (United States)

    Pan, Keyao; Deem, Michael W.

    2011-10-01

    The zebrafish (Danio rerio) is one of the model animals used for the study of immunology because the dynamics in the adaptive immune system of zebrafish are similar to that in higher animals. In this work, we built a multi-scale model to simulate the dynamics of B cells in the primary and secondary immune responses of zebrafish. We use this model to explain the reported correlation between VDJ usage of B cell repertoires in individual zebrafish. We use a delay ordinary differential equation (ODE) system to model the immune responses in the 6-month lifespan of a zebrafish. This mean field theory gives the number of high-affinity B cells as a function of time during an infection. The sequences of those B cells are then taken from a distribution calculated by a 'microscopic' random energy model. This generalized NK model shows that mature B cells specific to one antigen largely possess a single VDJ recombination. The model allows first-principle calculation of the probability, p, that two zebrafish responding to the same antigen will select the same VDJ recombination. This probability p increases with the B cell population size and the B cell selection intensity. The probability p decreases with the B cell hypermutation rate. The multi-scale model predicts correlations in the immune system of the zebrafish that are highly similar to that from experiment.

  14. Endocrine disruption of courtship behaviour and reproduction in zebrafish (Danio rerio)

    DEFF Research Database (Denmark)

    Broch-Lips, Mia Gina Gruwier

    2011-01-01

    of the reversibility of hormonally induced shifts in sex ratio of zebrafish. In the first part of this study zebrafish were exposed to three different environmentally relevant concentrations of the synthetic oestrogen17α-ethinylestradiol (EE2) from egg stage to sexual maturity. Secondary sexual characteristics...... as fertilizing the spawned eggs. It was further demonstrated that the exposure to TB led to irreversible masculinisation of zebrafish which is in contrast with the partial reversibility of oestrogen induced sex change. During my investigations leading to this thesis it became apparent that sexual behaviour...... courtship behaviour have only been scarcely investigated. The aim of this project was to learn more about the effects of EDCS on the courtship behaviour and reproduction in zebrafish as well as investigating the reversibility of observed effects. I furthermore observed some interesting aspects...

  15. Repairing quite swimmingly: advances in regenerative medicine using zebrafish.

    Science.gov (United States)

    Goessling, Wolfram; North, Trista E

    2014-07-01

    Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future. © 2014. Published by The Company of Biologists Ltd.

  16. Asymmetry of the Brain: Development and Implications.

    Science.gov (United States)

    Duboc, Véronique; Dufourcq, Pascale; Blader, Patrick; Roussigné, Myriam

    2015-01-01

    Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.

  17. Biotransformation of ginsenosides F4 and Rg6 in zebrafish.

    Science.gov (United States)

    Shen, Wen-Wen; Zhang, Hai-Xia; Qiu, Shou-Bei; Wei, Ying-Jie; Zhu, Fen-Xia; Wang, Jing; Wang, Dan-Dan; Jia, Xiao-Bin; Tang, Dao-Quan; Chen, Bin

    2017-03-28

    Ginsenosides F 4 and Rg 6 (GF 4 and GRg 6 ), two main active components of steamed notoginseng or red ginseng, are dehydrated disaccharide saponins. In this work, biotransformation of ginsenosides F 4 and Rg 6 in zebrafish was investigated by qualitatively identifying their metabolites and then proposing their possible metabolic pathways. The prediction of possible metabolism of ginsenosides F 4 and Rg 6 using zebrafish model which can effectively simulate existing mammals model was early and quickly performed. Metabolites of ginsenosides F 4 and Rg 6 after exposing to zebrafish for 24 h were identified by Ultraperformance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry. A total of 8 and 6 metabolites of ginsenosides F 4 and Rg 6 were identified in zebrafish, respectively. Of these, 7 and 5, including M1, M3-M5, M7-M9 and N1 (N5), N2, N4 (N9), N7-N8 were reported for the first time as far as we know. The mechanisms of their biotransformation involved were further deduced to be desugarization, glucuronidation, sulfation, dehydroxylation, loss of C-17 and/or C-23 residue pathways. It was concluded that loss of rhamnose at position C-6 and glucuronidation at position C-3 in zebrafish were considered as the main physiologic and metabolic processes of ginsenosides F 4 and ginsenosides Rg 6 , respectively.

  18. Developmental toxicity of thyroid-active compounds in a zebrafish embryotoxicity test

    NARCIS (Netherlands)

    Jomaa, B.; Hermsen, S.A.B.; Kessels, M.Y.; Berg, van den J.H.J.; Peijenburg, A.C.M.; Aarts, J.M.M.J.G.; Piersma, A.H.; Rietjens, I.

    2014-01-01

    Zebrafish embryos were exposed to concentration ranges of selected thyroid-active model compounds in order to assess the applicability of zebrafish-based developmental scoring systems within an alternative testing strategy to detect the developmental toxicity of thyroid-active compounds. Model

  19. Sex specific response in cholesterol level in zebrafish (Danio rerio) after long-term exposure of difenoconazole

    International Nuclear Information System (INIS)

    Mu, Xiyan; Wang, Kai; Chai, Tingting; Zhu, Lizhen; Yang, Yang; Zhang, Jie; Pang, Sen; Wang, Chengju; Li, Xuefeng

    2015-01-01

    Difenoconazole is a widely used triazole fungicide, its extensive application may potentially cause toxic effects on non-target organisms. To investigate the effect of difenoconazole on cholesterol content and related mechanism, adult zebrafish were exposed to environmental related dosage (0.1, 10 and 500 μg/L) difenoconazole. The body weight and hepatic total cholesterol (TCHO) level was tested at 7, 15 and 30 days post exposure (dpe). The expressions of eight cholesterol synthesis genes and one cholesterol metabolism gene were assessed via Quantitative PCR method. The significant decrease of TCHO level in male zebrafish liver was observed at 15 and 30 dpe, which was accompanied by apparent hepatic cholesterol-genesis genes expression decline. In comparison with males, female zebrafish showed different transcription modification of tested genes, and the cholesterol content maintain normal level during the whole exposure. - Highlights: • Difenoconazle could reduce TCHO level in male zebrafish liver. • Difenoconazole could inhibit sterol-genesis genes expression in male zebrafish. • Female zebrafish didn't show obvious change of TCHO level after exposure. • Difenoconazole could inhibit body weight of both male and female zebrafish. - Difenoconazle could reduce cholesterol level and sterol-genesis genes expression in male zebrafish. While female zebrafish showed no obvious cholesterol content change during exposure

  20. Toxicity of silver nanoparticles in zebrafish models

    Energy Technology Data Exchange (ETDEWEB)

    Asharani, P V; Valiyaveettil, Suresh [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Wu Yilian; Gong Zhiyuan [Department of Biological Sciences, National University of Singapore, Science Drive 4, 117543 (Singapore)], E-mail: chmsv@nus.edu.sg

    2008-06-25

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag{sup +} ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  1. Toxicity of silver nanoparticles in zebrafish models

    International Nuclear Information System (INIS)

    Asharani, P V; Valiyaveettil, Suresh; Wu Yilian; Gong Zhiyuan

    2008-01-01

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag + ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development

  2. Fish from Head to Tail: The 9th European Zebrafish Meeting in Oslo.

    Science.gov (United States)

    Griffiths, Gareth; Müller, Ferenc; Ledin, Johan; Patton, E Elizabeth; Gjøen, Tor; Lobert, Viola Hélène; Winther-Larsen, Hanne Cecilie; Mullins, Mary; Joly, Jean-Stephane; Weltzien, Finn-Arne; Press, Charles McLean; Aleström, Peter

    2016-04-01

    The 9th European Zebrafish Meeting took place recently in Oslo (June 28-July 2, 2015). A total of 650 participants came to hear the latest research news focused on the zebrafish, Danio rerio, and to its distant evolutionary relative medaka, Oryzias latipes. The packed program included keynote and plenary talks, short oral presentations and poster sessions, workshops, and strategic discussions. The meeting was a great success and revealed dramatically how important the zebrafish in particular has become as a model system for topics, such as developmental biology, functional genomics, biomedicine, toxicology, and drug development. A new emphasis was given to its potential as a model for aquaculture, a topic of great economic interest to the host country Norway and for the future global food supply in general. Zebrafish husbandry as well as its use in teaching were also covered in separate workshops. As has become a tradition in these meetings, there was a well-attended Wellcome Trust Sanger Institute and ZFIN workshop focused on Zebrafish Genome Resources on the first day. The full EZM 2015 program with abstracts can be read and downloaded from the EZM 2015 Web site zebrafish2015.org .

  3. Afferent connectivity of the zebrafish habenulae

    Directory of Open Access Journals (Sweden)

    Katherine Jane Turner

    2016-04-01

    Full Text Available The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates.Here we describe the main afferents to the habenulae in larval and adult zebrafish.We observe afferents from the subpallium, nucleus rostrolateralis,posterior tuberculum, posterior hypothalamic lobe, median raphe, olfactory bulb to the right habenula and from the parapineal to the lefthabenula.In addition,we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus(vENT,confirming and extending observations of Amo et al.(2014.Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hpf.No afferents to the habenula were observed from the dorsal entopeduncular nucleus(dENT.Consequently,we confirm that the vENT(and not the dENT should be considered as the entopeduncular nucleus proper in zebrafish.Furthermore,comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus,being homologous to the entopeduncular nucleus of mammals(internal segment of the globus pallidus of primates by both embryonic origin and projections,as previously suggested by Amo et al.(2014.Key words: habenula,connections,afferents,entopeduncular nucleus,posterior tuberculum,basal ganglia,zebrafish

  4. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    Science.gov (United States)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  5. Knockdown of Zebrafish Blood Vessel Epicardial Substance Results in Incomplete Retinal Lamination

    Directory of Open Access Journals (Sweden)

    Yu-Ching Wu

    2014-01-01

    Full Text Available Cell polarity during eye development determines the normal retinal lamination and differentiation of photoreceptor cells in the retina. In vertebrates, blood vessel epicardial substance (Bves is known to play an important role in the formation and maintenance of the tight junctions essential for epithelial cell polarity. In the current study, we generated a transgenic zebrafish Bves (zbves promoter-EGFP zebrafish line to investigate the expression pattern of Bves in the retina and to study the role of zbves in retinal lamination. Immunostaining with different specific antibodies from retinal cells and transmission electron microscopy were used to identify the morphological defects in normal and Bves knockdown zebrafish. In normal zebrafish, Bves is located at the apical junctions of embryonic retinal neuroepithelia during retinogenesis; later, it is strongly expressed around inner plexiform layer (IPL and retinal pigment epithelium (RPE. In contrast, a loss of normal retinal lamination and cellular polarity was found with undifferentiated photoreceptor cells in Bves knockdown zebrafish. Herein, our results indicated that disruption of Bves will result in a loss of normal retinal lamination.

  6. Screening in larval zebrafish reveals tissue-specific distribution of fifteen fluorescent compounds

    Directory of Open Access Journals (Sweden)

    Yuxiao Yao

    2017-09-01

    Full Text Available The zebrafish is a prominent vertebrate model for low-cost in vivo whole organism screening. In our recent screening of the distribution patterns of fluorescent compounds in live zebrafish larvae, fifteen compounds with tissue-specific distributions were identified. Several compounds were observed to accumulate in tissues where they were reported to induce side-effects, and compounds with similar structures tended to be enriched in the same tissues, with minor differences. In particular, we found three novel red fluorescent bone-staining dyes: purpurin, lucidin and 3-hydroxy-morindone; purpurin can effectively label bones in both larval and adult zebrafish, as well as in postnatal mice, without significantly affecting bone mass and density. Moreover, two structurally similar chemotherapeutic compounds, doxorubicin and epirubicin, were observed to have distinct distribution preferences in zebrafish. Epirubicin maintained a relatively higher concentration in the liver, and performed better in inhibiting hepatic hyperplasia caused by the over-expression of krasG12V. In total, our study suggests that the transparent zebrafish larvae serve as valuable tools for identifying tissue-specific distributions of fluorescent compounds.

  7. From schooling to shoaling: patterns of collective motion in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Noam Miller

    Full Text Available Animal groups on the move can take different configurations. For example, groups of fish can either be 'shoals' or 'schools': shoals are simply aggregations of individuals; schools are shoals exhibiting polarized, synchronized motion. Here we demonstrate that polarization distributions of groups of zebrafish (Danio rerio are bimodal, showing two distinct modes of collective motion corresponding to the definitions of shoaling and schooling. Other features of the group's motion also vary consistently between the two modes: zebrafish schools are faster and less dense than zebrafish shoals. Habituation to an environment can also alter the proportion of time zebrafish groups spend schooling or shoaling. Models of collective motion suggest that the degree and stability of group polarization increases with the group's density. Examining zebrafish groups of different sizes from 5 to 50, we show that larger groups are less polarized than smaller groups. Decreased fearfulness in larger groups may function similarly to habituation, causing them to spend more time shoaling than schooling, contrary to most models' predictions.

  8. Protective Role of Comfrey Leave Extracts on UV-induced Zebrafish Fin Damage.

    Science.gov (United States)

    Cheng, Chien-Chung; Chou, Chi-Yuan; Chang, Yao-Chin; Wang, Hsuan-Wen; Wen, Chi-Chung; Chen, Yau-Hung

    2014-07-01

    In zebrafish, UV exposure leads to fin malformation phenotypes including fin reduction or absence. The present study evaluated UV-protective activities of comfrey leaves extracts in a zebrafish model by recording fin morphological changes. Chemopreventive effects of comfrey leave extracts were evaluated using Kaplan-Meier analysis and Cox proportional hazards regression. The results showed that (1) the mean times of return to normal fin in the UV+comfrey (50 and 100 ppm) groups were 3.43 and 2.86 days and were quicker compared with that in the UV only group (4.21 days); (2) zebrafish fins in the UV+comfrey (50 and 100 ppm) groups were 2.05 and 3.25 times more likely to return to normal than those in the UV only group; and (3) comfrey leave extracts had UV-absorbance abilities and significantly reduced ROS production in UV-exposed zebrafish embryos, which may attenuate UV-mediated apoptosis. In conclusion, comfrey leaves extracts may have the potential to be developed as UV-protective agents to protect zebrafish embryos from UV-induced damage.

  9. Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension.

    Science.gov (United States)

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-07-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. Copyright © 2011 Wiley-Liss, Inc.

  10. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish

    DEFF Research Database (Denmark)

    Lundegaard, Pia R.; Anastasaki, Corina; Grant, Nicola J.

    2015-01-01

    Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors...... as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult...... zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance...

  11. Modeling Myeloid Malignancies Using Zebrafish

    Directory of Open Access Journals (Sweden)

    Kathryn S. Potts

    2017-12-01

    Full Text Available Human myeloid malignancies represent a substantial disease burden to individuals, with significant morbidity and death. The genetic underpinnings of disease formation and progression remain incompletely understood. Large-scale human population studies have identified a high frequency of potential driver mutations in spliceosomal and epigenetic regulators that contribute to malignancies, such as myelodysplastic syndromes (MDS and leukemias. The high conservation of cell types and genes between humans and model organisms permits the investigation of the underlying mechanisms of leukemic development and potential therapeutic testing in genetically pliable pre-clinical systems. Due to the many technical advantages, such as large-scale screening, lineage-tracing studies, tumor transplantation, and high-throughput drug screening approaches, zebrafish is emerging as a model system for myeloid malignancies. In this review, we discuss recent advances in MDS and leukemia using the zebrafish model.

  12. Potential teratogenicity of methimazole: exposure of zebrafish embryos to methimazole causes similar developmental anomalies to human methimazole embryopathy.

    Science.gov (United States)

    Komoike, Yuta; Matsuoka, Masato; Kosaki, Kenjiro

    2013-06-01

    While methimazole (MMI) is widely used in the therapy for hyperthyroidism, several groups have reported that maternal exposure to MMI results in a variety of congenital anomalies, including choanal and esophageal atresia, iridic and retinal coloboma, and delayed neurodevelopment. Thus, adverse effects of maternal exposure to MMI on fetal development have long been suggested; however, direct evidence for the teratogenicity of MMI has not been presented. Therefore, we studied the effects of MMI on early development by using zebrafish as a model organism. The fertilized eggs of zebrafish were collected immediately after spawning and grown in egg culture water containing MMI at various concentrations. External observation of the embryos revealed that exposure to high concentrations of MMI resulted in loss of pigmentation, hypoplastic hindbrain, turbid tissue in the forebrain, swelling of the notochord, and curly trunk. Furthermore, these effects occurred in a dose-dependent manner. Precise observation of the serial cross-sections of MMI-exposed embryos elucidated delayed development and hypoplasia of the whole brain and spinal cord, narrowing of the pharynx and esophagus, severe disruption of the retina, and aberrant structure of the notochord. These neuronal, pharyngeal, esophageal, and retinal anomalous morphologies have a direct analogy to the congenital anomalies observed in children exposed to MMI in utero. Here, we show the teratogenic effects of MMI on the development of zebrafish and provide the first experimental evidence for the connection between exposure to MMI and human MMI embryopathy. © 2013 Wiley Periodicals, Inc.

  13. Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Du Miaomiao [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Dandan; Yan Changzhou [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhang Xian, E-mail: xzhang@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2012-05-15

    Structural dissimilarities of hexabromocyclododecane diastereoisomers could raise substantial differences in physicochemical, biological and toxicological properties. In order to fully assess the environmental safety and health risk of hexabromocyclododecanes (HBCDs), zebrafish embryos were used to evaluate the developmental toxicity of individual HBCD diastereoisomers ({alpha}-HBCD, {beta}-HBCD and {gamma}-HBCD). Four-hour post-fertilization (hpf) zebrafish embryos were exposed to different concentrations of HBCD diastereoisomers (0, 0.01, 0.1 and 1.0 mg/l) until 120 hpf. The results showed that exposure to HBCDs can affect the development of zebrafish embryos/larvae in a dose-dependent and diastereoselective manner. The diastereoisomers {alpha}-, {beta}- and {gamma}-HBCD at 0.01 mg/l had little effect on the development of zebrafish embryos except that exposure to 0.01 mg/l {gamma}-HBCD significantly delayed hatching (P < 0.05). At 0.1 mg/l, {alpha}-HBCD resulted in depressed heart rate of larvae (96 hpf) and delayed hatching, whereas {beta}- and {gamma}-HBCD both caused significant hatching delay and growth inhibition (P < 0.05). In addition, a remarkable and significant increase in mortality and malformation rate was noted at 0.1 mg/l {gamma}-HBCD exposure groups (P < 0.05). At 1.0 mg/l, {alpha}-, {beta}- and {gamma}-HBCD significantly affected all of the endpoints monitored (P < 0.05). Additionally, HBCD diastereoisomers could induce the generation of reactive oxygen species (ROS) and the activities of caspase-3 and caspase-9 in a dose-dependent manner. The results indicated that HBCD diastereoisomers could cause developmental toxicity to zebrafish embryos through inducing apoptosis by ROS formation. The overall results showed a good agreement confirming that the order of developmental toxicity of HBCD diastereoisomers in zebrafish is {gamma}-HBCD > {beta}-HBCD > {alpha}-HBCD.

  14. Disruption of the folate pathway in zebrafish causes developmental defects

    Directory of Open Access Journals (Sweden)

    Lee Marina S

    2012-04-01

    Full Text Available Abstract Background Folic acid supplementation reduces the risk of neural tube defects and congenital heart defects. The biological mechanisms through which folate prevents birth defects are not well understood. We explore the use of zebrafish as a model system to investigate the role of folate metabolism during development. Results We first identified zebrafish orthologs of 12 human folate metabolic genes. RT-PCR and in situ analysis indicated maternal transcripts supply the embryo with mRNA so that the embryo has an intact folate pathway. To perturb folate metabolism we exposed zebrafish embryos to methotrexate (MTX, a potent inhibitor of dihydrofolate reductase (Dhfr an essential enzyme in the folate metabolic pathway. Embryos exposed to high doses of MTX exhibited developmental arrest prior to early segmentation. Lower doses of MTX resulted in embryos with a shortened anterior-posterior axis and cardiac defects: linear heart tubes or incomplete cardiac looping. Inhibition of dhfr mRNA with antisense morpholino oligonucleotides resulted in embryonic lethality. One function of the folate pathway is to provide essential one-carbon units for dTMP synthesis, a rate-limiting step of DNA synthesis. After 24 hours of exposure to high levels of MTX, mutant embryos continue to incorporate the thymidine analog BrdU. However, additional experiments indicate that these embryos have fewer mitotic cells, as assayed with phospho-histone H3 antibodies, and that treated embryos have perturbed cell cycles. Conclusions Our studies demonstrate that human and zebrafish utilize similar one-carbon pathways. Our data indicate that folate metabolism is essential for early zebrafish development. Zebrafish studies of the folate pathway and its deficiencies could provide insight into the underlying etiology of human birth defects and the natural role of folate in development.

  15. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  16. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish.

    Science.gov (United States)

    Chen, Wen; Zhang, Xuan; Li, Jing; Huang, Shulan; Xiang, Shuanglin; Hu, Xiang; Liu, Changning

    2018-05-09

    Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs' function and conservation is really intriguing. We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human.

  17. Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications.

    Science.gov (United States)

    Zhou, Yangzhong; Cattley, Richard T; Cario, Clinton L; Bai, Qing; Burton, Edward A

    2014-07-01

    This article describes a method to quantify the movements of larval zebrafish in multiwell plates, using the open-source MATLAB applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB scripts; and implementation of validation controls. The method is reliable, automated and flexible, requires plate format suitable for high-throughput applications.

  18. Acute toxicity and gene responses induced by endosulfan in zebrafish (Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Young-Sun Moon

    2016-10-01

    Full Text Available Endosulfan has been listed as a persistent organic pollutant, and is frequently found in agricultural environments during monitoring processes owing to its heavy use and persistent characteristics. This study was conducted to understand the effects of endosulfan on the development of zebrafish (Danio rerio embryos by exposing them to a specific range of endosulfan concentrations. Exposing zebrafish embryos to endosulfan for 96 h yielded no acute toxicity until the concentration reached 1500 μg L−1, whereas malformed zebrafish larvae developed severely curved spines and shortened tails. About 50% of zebrafish larvae were malformed when exposed to 600 μg L−1 of endosulfan. Comparative gene expression using real-time quantitative polymerase chain reaction was assessed using endosulfan-exposed zebrafish embryos. CYP1A and CYP3A were significantly enhanced in response to endosulfan treatment. Two genes, acacb and fasn, encoding acetyl-CoA carboxylase b and fatty acid synthase proteins, respectively, were also up-regulated after treating zebrafish embryos with endosulfan. These genes are also involved in fatty acid biosynthesis. The genes encoding vitellogenin and Hsp70 increased in a concentration-dependent manner in embryos. Finally, biochemical studies showed that acetylcholinesterase activity was reduced, whereas glutathione S-transferase and carboxylesterase activities were enhanced in zebrafish embryos after endosulfan treatment. These biochemical and molecular biological differences might be used for tools to determine contamination of endosulfan in the aquatic environment.

  19. Two-photon-based photoactivation in live zebrafish embryos.

    Science.gov (United States)

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-12-24

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell's destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

  20. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals.

    NARCIS (Netherlands)

    Yang, Lixin; Ho, Nga Yu; Alshut, Rüdiger; Legradi, J.B.; Weiss, Carsten; Reischl, Markus; Mikut, Ralf; Liebel, Urban; Müller, Ferenc; Strähle, Uwe

    2009-01-01

    The experimental virtues of the zebrafish embryo such as small size, development outside of the mother, cheap maintenance of the adult made the zebrafish an excellent model for phenotypic genetic and more recently also chemical screens. The availability of a genome sequence and several thousand

  1. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants.

    Directory of Open Access Journals (Sweden)

    Tohei Yokogawa

    2007-10-01

    Full Text Available Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates.

  2. A variant of fibroblast growth factor receptor 2 (Fgfr2 regulates left-right asymmetry in zebrafish.

    Directory of Open Access Journals (Sweden)

    Da-Wei Liu

    Full Text Available Many organs in vertebrates are left-right asymmetrical located. For example, liver is at the right side and stomach is at the left side in human. Fibroblast growth factor (Fgf signaling is important for left-right asymmetry. To investigate the roles of Fgfr2 signaling in zebrafish left-right asymmetry, we used splicing blocking morpholinos to specifically block the splicing of fgfr2b and fgfr2c variants, respectively. We found that the relative position of the liver and the pancreas were disrupted in fgfr2c morphants. Furthermore, the left-right asymmetry of the heart became random. Expression pattern of the laterality controlling genes, spaw and pitx2c, also became random in the morphants. Furthermore, lefty1 was not expressed in the posterior notochord, indicating that the molecular midline barrier had been disrupted. It was also not expressed in the brain diencephalon. Kupffer's vesicle (KV size became smaller in fgfr2c morphants. Furthermore, KV cilia were shorter in fgfr2c morphants. We conclude that the fgfr2c isoform plays an important role in the left-right asymmetry during zebrafish development.

  3. A variant of fibroblast growth factor receptor 2 (Fgfr2) regulates left-right asymmetry in zebrafish.

    Science.gov (United States)

    Liu, Da-Wei; Hsu, Chia-Hao; Tsai, Su-Mei; Hsiao, Chung-Der; Wang, Wen-Pin

    2011-01-01

    Many organs in vertebrates are left-right asymmetrical located. For example, liver is at the right side and stomach is at the left side in human. Fibroblast growth factor (Fgf) signaling is important for left-right asymmetry. To investigate the roles of Fgfr2 signaling in zebrafish left-right asymmetry, we used splicing blocking morpholinos to specifically block the splicing of fgfr2b and fgfr2c variants, respectively. We found that the relative position of the liver and the pancreas were disrupted in fgfr2c morphants. Furthermore, the left-right asymmetry of the heart became random. Expression pattern of the laterality controlling genes, spaw and pitx2c, also became random in the morphants. Furthermore, lefty1 was not expressed in the posterior notochord, indicating that the molecular midline barrier had been disrupted. It was also not expressed in the brain diencephalon. Kupffer's vesicle (KV) size became smaller in fgfr2c morphants. Furthermore, KV cilia were shorter in fgfr2c morphants. We conclude that the fgfr2c isoform plays an important role in the left-right asymmetry during zebrafish development.

  4. A Pathological Brain Detection System based on Extreme Learning Machine Optimized by Bat Algorithm.

    Science.gov (United States)

    Lu, Siyuan; Qiu, Xin; Shi, Jianping; Li, Na; Lu, Zhi-Hai; Chen, Peng; Yang, Meng-Meng; Liu, Fang-Yuan; Jia, Wen-Juan; Zhang, Yudong

    2017-01-01

    It is beneficial to classify brain images as healthy or pathological automatically, because 3D brain images can generate so much information which is time consuming and tedious for manual analysis. Among various 3D brain imaging techniques, magnetic resonance (MR) imaging is the most suitable for brain, and it is now widely applied in hospitals, because it is helpful in the four ways of diagnosis, prognosis, pre-surgical, and postsurgical procedures. There are automatic detection methods; however they suffer from low accuracy. Therefore, we proposed a novel approach which employed 2D discrete wavelet transform (DWT), and calculated the entropies of the subbands as features. Then, a bat algorithm optimized extreme learning machine (BA-ELM) was trained to identify pathological brains from healthy controls. A 10x10-fold cross validation was performed to evaluate the out-of-sample performance. The method achieved a sensitivity of 99.04%, a specificity of 93.89%, and an overall accuracy of 98.33% over 132 MR brain images. The experimental results suggest that the proposed approach is accurate and robust in pathological brain detection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish

    International Nuclear Information System (INIS)

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang; Huang, Changjiang; Yang, Dongren

    2016-01-01

    Highlights: • PFOS chronic exposure induces sex-dependent hepatic steotosis in zebrafish. • PFOS interferes with β-oxidation, lipid synthesis, and lipid hepatic export process. • Zebrafish could be used as an alternative model for PFOS chronic toxicity screening. - Abstract: Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5 μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening.

  6. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Yang, Dongren, E-mail: yangdongren@yahoo.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China)

    2016-07-15

    Highlights: • PFOS chronic exposure induces sex-dependent hepatic steotosis in zebrafish. • PFOS interferes with β-oxidation, lipid synthesis, and lipid hepatic export process. • Zebrafish could be used as an alternative model for PFOS chronic toxicity screening. - Abstract: Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5 μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening.

  7. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Science.gov (United States)

    Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.

    2018-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362

  8. In Vivo Nanotoxicity Testing using the Zebrafish Embryo Assay.

    Science.gov (United States)

    Rizzo, Larissa Y; Golombek, Susanne K; Mertens, Marianne E; Pan, Yu; Laaf, Dominic; Broda, Janine; Jayapaul, Jabadurai; Möckel, Diana; Subr, Vladimir; Hennink, Wim E; Storm, Gert; Simon, Ulrich; Jahnen-Dechent, Willi; Kiessling, Fabian; Lammers, Twan

    2013-06-10

    Nanoparticles are increasingly used for biomedical purposes. Many different diagnostic and therapeutic applications are envisioned for nanoparticles, but there are often also serious concerns regarding their safety. Given the fact that numerous new nanomaterials are being developed every day, and that not much is known about the long-term toxicological impact of exposure to nanoparticles, there is an urgent need to establish efficient methods for nanotoxicity testing. The zebrafish (Danio rerio) embryo assay has recently emerged as an interesting 'intermediate' method for in vivo nanotoxicity screening, enabling (semi-) high-throughput analyses in a system significantly more complex than cultured cells, but at the same time also less 'invasive' and less expensive than large-scale biocompatibility studies in mice or rats. The zebrafish embryo assay is relatively well-established in the environmental sciences, but it has not yet gained wide notice in the nanomedicine field. Using prototypic polymeric drug carriers, gold-based nanodiagnostics and nanotherapeutics, and iron oxide-based nanodiagnostics, we here show that toxicity testing using zebrafish embryos is easy, efficient and informative, and faithfully reflects, yet significantly extends, cell-based toxicity testing. We therefore expect that the zebrafish embryo assay will become a popular future tool for in vivo nanotoxicity screening.

  9. Melatonin mitigates neomycin-induced hair cell injury in zebrafish.

    Science.gov (United States)

    Oh, Kyoung Ho; Rah, Yoon Chan; Hwang, Kyu Ho; Lee, Seung Hoon; Kwon, Soon Young; Cha, Jae Hyung; Choi, June

    2017-10-01

    Ototoxicity due to medications, such as aminoglycosides, is irreversible, and free radicals in the inner ear are assumed to play a major role. Because melatonin has an antioxidant property, we hypothesize that it might mitigate hair cell injury by aminoglycosides. The objective of this study was to evaluate whether melatonin has an alleviative effect on neomycin-induced hair cell injury in zebrafish (Danio rerio). Various concentrations of melatonin were administered to 5-day post-fertilization zebrafish treated with 125 μM neomycin for 1 h. Surviving hair cells within four neuromasts were compared with that of a control group. Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The changes of ultrastructure were confirmed using a scanning electron microscope. Melatonin alleviated neomycin-induced hair cell injury in neuromasts (neomycin + melatonin 100 μM: 13.88 ± 0.91 cells, neomycin only: 7.85 ± 0.90 cells; n = 10, p melatonin for 1 h in SEM findings. Melatonin is effective in alleviating aminoglycoside-induced hair cell injury in zebrafish. The results of this study demonstrated that melatonin has the potential to reduce apoptosis induced by aminoglycosides in zebrafish.

  10. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay.

    Science.gov (United States)

    Todd, Douglas W; Philip, Rohit C; Niihori, Maki; Ringle, Ryan A; Coyle, Kelsey R; Zehri, Sobia F; Zabala, Leanne; Mudery, Jordan A; Francis, Ross H; Rodriguez, Jeffrey J; Jacob, Abraham

    2017-08-01

    Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.

  11. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Directory of Open Access Journals (Sweden)

    Lucy A. Heap

    2018-01-01

    Full Text Available The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC/stratum griseum periventriculare (SPV, and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.

  12. Spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium

    Directory of Open Access Journals (Sweden)

    Toshiaki Mochizuki

    2014-09-01

    Full Text Available Cell proliferation is a key regulator of tissue morphogenesis. We examined cell proliferation and cell division in zebrafish lens epithelium by visualizing cell-cycle phases and nuclear positions, using fluorescent-labeled geminin and histone proteins. Proliferation was low in the anterior region of lens epithelium and higher in the marginal zone anterior to the equator, suggesting that the proliferation zone, called the germinative zone, is formed in zebrafish lens. Interestingly, cell-division orientation was biased longitudinally in the anterior region, shifted from longitudinal to circumferential along the anterior–posterior axis of lens sphere, and was biased circumferentially in the peripheral region. These data suggest that cell-division orientation is spatially regulated in zebrafish lens epithelium. The Hertwig rule indicates that cells tend to divide along their long axes. Orientation of long axes and cell division were biased similarly in zebrafish lens epithelium, suggesting that cell geometry correlates with cell-division orientation. A cell adhesion molecule, E-cadherin, is expressed in lens epithelium. In a zebrafish e-cadherin mutant, the long axes and cell-division orientation were shifted more longitudinally. These data suggest that E-cadherin is required for the spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium.

  13. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Eva Yi Kong

    2016-12-01

    Full Text Available Exposure to ionizing radiations (IRs is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review.

  14. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE.

    Science.gov (United States)

    Gut, Philipp; Reischauer, Sven; Stainier, Didier Y R; Arnaout, Rima

    2017-07-01

    The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date. Copyright © 2017 the American Physiological Society.

  15. The role of Sox6 in zebrafish muscle fiber type specification.

    Science.gov (United States)

    Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W

    2015-01-01

    The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation

  16. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Coffey

    2018-03-01

    Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.

  17. Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish

    Science.gov (United States)

    Lahvic, Jamie L.; Ji, Yongchang; Marin, Paloma; Zuflacht, Jonah P.; Springel, Mark W.; Wosen, Jonathan E.; Davis, Leigh; Hutson, Lara D.; Amack, Jeffrey D.; Marvin, Martha J.

    2013-01-01

    Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left-right asymmetry. In zebrafish, laterality is determined by the motility of cilia in Kupffer’s vesicle (KV), where hspb7 is expressed; knockdown of hspb7 causes laterality defects by disrupting the motility of these cilia. In embryos with reduced hspb7, the axonemes of KV cilia have a 9+0 structure, while control embyros have a predominately 9+2 structure. Reduction of either hspb7 or hspb12 alters the expression pattern of genes that propagate the signals that establish left-right asymmetry: the nodal-related gene southpaw (spaw) in the lateral plate mesoderm, and its downstream targets pitx2, lefty1 and lefty2. Partial depletion of hspb7 causes concordant heart, brain and visceral laterality defects, indicating that loss of KV cilia motility leads causes coordinated but randomized laterality. Reducing hspb12 leads to similar alterations in the expression of downstream laterality genes, but at a lower penetrance. Simultaneous reduction of hspb7 and hspb12 randomizes heart, brain and visceral laterality, suggesting that these two genes have partially redundant functions in the establishment of left-right asymmetry. In addition, both hspb7 and hspb12 are expressed in the precardiac mesoderm and in the yolk syncytial layer, which supports the migration and fusion of mesodermal cardiac precursors. In embryos in which the reduction of hspb7 or hspb12 was limited to the yolk, migration defects predominated, suggesting that the yolk expression of these genes rather than heart expression is responsible for the migration defects. PMID:24140541

  18. Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors

    Directory of Open Access Journals (Sweden)

    Jeng-Wei Lu

    2017-09-01

    Full Text Available Colorectal cancer (CRC is one of the world’s most common cancers and is the second leading cause of cancer deaths, causing more than 50,000 estimated deaths each year. Several risk factors are highly associated with CRC, including being overweight, eating a diet high in red meat and over-processed meat, having a history of inflammatory bowel disease, and smoking. Previous zebrafish studies have demonstrated that multiple oncogenes and tumor suppressor genes can be regulated through genetic or epigenetic alterations. Zebrafish research has also revealed that the activation of carcinogenesis-associated signal pathways plays an important role in CRC. The biology of cancer, intestinal disorders caused by carcinogens, and the morphological patterns of tumors have been found to be highly similar between zebrafish and humans. Therefore, the zebrafish has become an important animal model for translational medical research. Several zebrafish models have been developed to elucidate the characteristics of gastrointestinal diseases. This review article focuses on zebrafish models that have been used to study human intestinal disorders and tumors, including models involving mutant and transgenic fish. We also report on xenograft models and chemically-induced enterocolitis. This review demonstrates that excellent zebrafish models can provide novel insights into the pathogenesis of gastrointestinal diseases and help facilitate the evaluation of novel anti-tumor drugs.

  19. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish

    OpenAIRE

    Faught, Erin; Best, Carol; Vijayan, Mathilakath M.

    2016-01-01

    Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to mon...

  20. Imaging a seizure model in zebrafish with structured illumination light sheet microscopy

    Science.gov (United States)

    Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Baraban, Scott; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.

  1. Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a.

    Directory of Open Access Journals (Sweden)

    Keith A Hultman

    2007-01-01

    Full Text Available The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla and kit ligand b (kitlb, and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb. In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that

  2. SSVEP and ANN based optimal speller design for Brain Computer Interface

    Directory of Open Access Journals (Sweden)

    Irshad Ahmad Ansari

    2015-07-01

    Full Text Available This work put forwards an optimal BCI (Brain Computer Interface speller design based on Steady State Visual Evoked Potentials (SSVEP and Artificial Neural Network (ANN in order to help the people with severe motor impairments. This work is carried out to enhance the accuracy and communication rate of  BCI system. To optimize the BCI system, the work has been divided into two steps: First, designing of an encoding technique to choose characters from the speller interface and the second is the development and implementation of feature extraction algorithm to acquire optimal features, which is used to train the BCI system for classification using neural network. Optimization of speller interface is focused on representation of character matrix and its designing parameters. Then again, a lot of deliberations made in order to optimize selection of features and user’s time window. Optimized system works nearly the same with the new user and gives character per minute (CPM of 13 ± 2 with an average accuracy of 94.5% by choosing first two harmonics of power spectral density as the feature vectors and using the 2 second time window for each selection. Optimized BCI performs better with experienced users with an average accuracy of 95.1%. Such a good accuracy has not been reported before in account of fair enough CPM.DOI: 10.15181/csat.v2i2.1059

  3. Fetal Origins of Life Stage Disease: A Zebrafish Model for the ...

    Science.gov (United States)

    In the U.S., childhood obesity has more than doubled in children and quadrupled in adolescents in the past 30 years, affects 35% of adults, and costs the U.S. healthcare industry >$200 billion annually. The chemical environment in the womb may cause susceptibility to different life-stage and life-long metabolic diseases including obesity. The challenge is to understand if exposures during developmentally sensitive windows impact life-stage disease, such as obesity, by increasing adipose tissue mass. In vitro models lack the integrated systems approach needed to assess adipose development, while mammalian models are impractical in a screen of thousands of chemicals. Therefore, an obesogen screening method was developed to interrogate bioactivity using a full systems approach, in a vertebrate zebrafish model with complete metabolic activity, at a time when the full signaling repertoire is expressed and active, to optimally examine how chemical dose and duration impact life-stage adipose mass. A time-line for adipose depot formation was mapped in zebrafish 6−14 days post fertilization (dpf) using the lipophilic dye, Nile Red, in combination with fluorescent microscopy. Those time points were then used to investigate the impact of embryonic tributyltin chloride (TBT, a known obesogen) exposure (10nM daily renewal, 0−5dpf) on adipose mass. Fluorescent microscopy revealed adipose depots that were larger and appeared 2 days earlier in TBT treated compared to contro

  4. Zebrafish: A marvel of high-throughput biology for 21st century toxicology.

    Science.gov (United States)

    Bugel, Sean M; Tanguay, Robert L; Planchart, Antonio

    2014-09-07

    The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing.

  5. Effectiveness of Rapid Cooling as a Method of Euthanasia for Young Zebrafish (Danio rerio).

    Science.gov (United States)

    Wallace, Chelsea K; Bright, Lauren A; Marx, James O; Andersen, Robert P; Mullins, Mary C; Carty, Anthony J

    2018-01-01

    Despite increased use of zebrafish (Danio rerio) in biomedical research, consistent information regarding appropriate euthanasia methods, particularly for embryos, is sparse. Current literature indicates that rapid cooling is an effective method of euthanasia for adult zebrafish, yet consistent guidelines regarding zebrafish younger than 6 mo are unavailable. This study was performed to distinguish the age at which rapid cooling is an effective method of euthanasia for zebrafish and the exposure times necessary to reliably euthanize zebrafish using this method. Zebrafish at 3, 4, 7, 14, 16, 19, 21, 28, 60, and 90 d postfertilization (dpf) were placed into an ice water bath for 5, 10, 30, 45, or 60 min (n = 12 to 40 per group). In addition, zebrafish were placed in ice water for 12 h (age ≤14 dpf) or 30 s (age ≥14 dpf). After rapid cooling, fish were transferred to a recovery tank and the number of fish alive at 1, 4, and 12-24 h after removal from ice water was documented. Euthanasia was defined as a failure when evidence of recovery was observed at any point after removal from ice water. Results showed that younger fish required prolonged exposure to rapid cooling for effective euthanasia, with the required exposure time decreasing as fish age. Although younger fish required long exposure times, animals became immobilized immediately upon exposure to the cold water, and behavioral indicators of pain or distress rarely occurred. We conclude that zebrafish 14 dpf and younger require as long as 12 h, those 16 to 28 dpf of age require 5 min, and those older than 28 dpf require 30 s minimal exposure to rapid cooling for reliable euthanasia.

  6. Geometry-Driven-Diffusion filtering of MR Brain Images using dissimilarities and optimal relaxation parameter

    Energy Technology Data Exchange (ETDEWEB)

    Bajla, Ivan [Austrian Research Centres Sibersdorf, Department of High Performance Image Processing and Video-Technology, A-2444 Seibersdorf (Austria); Hollander, Igor [Institute of information Processing, Austrian Academy of Sciences, Sonnenfelsgasse 19/2, 1010 Wien (Austria)

    1999-12-31

    A novel method of local adapting of the conductance using a pixel dissimilarity measure is developed. An alternative processing methodology is proposed, which is based on intensity gradient histogram calculated for region interiors and boundaries of a phantom which models real MR brain scans. It involves a specific cost function suitable for the calculation of the optimum relaxation parameter Kopt and for the selection of the optimal exponential conductance. Computer experiments for locally adaptive geometry-driven-diffusion filtering of an MR brain phantom have been performed and evaluated. (authors) 6 refs., 3 figs.2 tabs.

  7. Geometry-Driven-Diffusion filtering of MR Brain Images using dissimilarities and optimal relaxation parameter

    International Nuclear Information System (INIS)

    Bajla, Ivan; Hollander, Igor

    1998-01-01

    A novel method of local adapting of the conductance using a pixel dissimilarity measure is developed. An alternative processing methodology is proposed, which is based on intensity gradient histogram calculated for region interiors and boundaries of a phantom which models real MR brain scans. It involves a specific cost function suitable for the calculation of the optimum relaxation parameter Kopt and for the selection of the optimal exponential conductance. Computer experiments for locally adaptive geometry-driven-diffusion filtering of an MR brain phantom have been performed and evaluated. (authors)

  8. ZNStress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    McGown, Alexander; Shaw, Dame Pamela J; Ramesh, Tennore

    2016-07-26

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease with death on average within 2-3 years of symptom onset. Mutations in superoxide dismutase 1 (SOD1) have been identified to cause ALS. Riluzole, the only neuroprotective drug for ALS provides life extension of only 3 months on average. Thishighlights the need for compound screening in disease models to identify new neuroprotective therapies for this disease. Zebrafish is an emerging model system that is well suited for the study of diseasepathophysiology and also for high throughput (HT) drug screening. The mutant sod1 zebrafish model of ALS mimics the hallmark features of ALS. Using a fluorescence based readout of neuronal stress, we developed a high throughput (HT) screen to identify neuroprotective compounds. Here we show that the zebrafish screen is a robust system that can be used to rapidly screen thousands ofcompounds and also demonstrate that riluzole is capable of reducing neuronal stress in this model system. The screen shows optimal quality control, maintaining a high sensitivity and specificity withoutcompromising throughput. Most importantly, we demonstrate that many compounds previously failed in human clinical trials, showed no stress reducing activity in the zebrafish assay. We conclude that HT drug screening using a mutant sod1 zebrafish is a reliable model system which supplemented with secondary assays would be useful in identifying drugs with potential for neuroprotective efficacy in ALS.

  9. Real-Time Monitoring and Analysis of Zebrafish Electrocardiogram with Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Michael Lenning

    2017-12-01

    Full Text Available Heart disease is the leading cause of mortality in the U.S. with approximately 610,000 people dying every year. Effective therapies for many cardiac diseases are lacking, largely due to an incomplete understanding of their genetic basis and underlying molecular mechanisms. Zebrafish (Danio rerio are an excellent model system for studying heart disease as they enable a forward genetic approach to tackle this unmet medical need. In recent years, our team has been employing electrocardiogram (ECG as an efficient tool to study the zebrafish heart along with conventional approaches, such as immunohistochemistry, DNA and protein analyses. We have overcome various challenges in the small size and aquatic environment of zebrafish in order to obtain ECG signals with favorable signal-to-noise ratio (SNR, and high spatial and temporal resolution. In this paper, we highlight our recent efforts in zebrafish ECG acquisition with a cost-effective simplified microelectrode array (MEA membrane providing multi-channel recording, a novel multi-chamber apparatus for simultaneous screening, and a LabVIEW program to facilitate recording and processing. We also demonstrate the use of machine learning-based programs to recognize specific ECG patterns, yielding promising results with our current limited amount of zebrafish data. Our solutions hold promise to carry out numerous studies of heart diseases, drug screening, stem cell-based therapy validation, and regenerative medicine.

  10. Metabolite Profiling of Four Major Flavonoids of Herba Epimdii in Zebrafish

    Directory of Open Access Journals (Sweden)

    Xiaobin Jia

    2012-01-01

    Full Text Available The zebrafish model organism was applied first in a metabolic study of icariin, baohuoside I, epimedin A and epimedin C, which are flavonoids in Herba Epimedii. Metabolites of these compounds in zebrafish after exposure for 24 h were identified by HPLC-ESI-MS, whereby the separation was performed with a Zorbax C-18 column using a gradient elution of 0.05% formic acid acetonitrile-0.05% formic acid water. The quasi-molecular ions of compounds were detected in simultaneous negative and positive ionization modes. Metabolic products of icariin and epimedin C via cleavage of glucose residue instead of rhamnose residues were found, which coincided with the results using regular metabolic analysis methods. In addition, the zebrafish model was used to predict the metabolism of the trace component epimedin A, whose metabolic mechanisms haven’t been clearly elucidated with the current metabolism model. The metabolic pathway of epimedin A in zebrafish was similar to those of its homologue icariin and epimedin C. Our study demonstrated that the zebrafish model can successfully imitate the current models in elucidating metabolic pathways of model flavonoids, which has advantages of lower cost, far less amount of compound needed, easy set up and high performance. This novel model can also be applied in quickly predicting the metabolism of Chinese herb components, especially trace compounds.

  11. A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish.

    Science.gov (United States)

    Candelier, Raphaël; Murmu, Meena Sriti; Romano, Sebastián Alejo; Jouary, Adrien; Debrégeas, Georges; Sumbre, Germán

    2015-07-21

    Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.

  12. Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid tumor formation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Maura McGrail

    2011-04-01

    Full Text Available Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700-6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.

  13. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    International Nuclear Information System (INIS)

    Ding, Yu-Ju; Chen, Yau-Hung

    2012-01-01

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  14. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yu-Ju; Chen, Yau-Hung, E-mail: yauhung@mail.tku.edu.tw

    2012-05-15

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  15. Optimized hyperventilation preserves 2,3-diphosphoglycerate in severe traumatic brain injury

    OpenAIRE

    Torres,Rayne Borges; Terzi,Renato Giuseppe Giovanni; Falcão,Antônio Luís Eiras; Höehr,Nelci Fenalti; Dantas Filho,Venâncio Pereira

    2007-01-01

    INTRODUCTION: The concentration of 2,3-diphosphoglycerate (2,3-DPG/Hct) increases as a physiological occurrence to pH increase and hyperventilation. This response was tested in patients with severe traumatic brain injury (TBI). METHOD: The concentration of 2,3-DPG/Hct was measured daily for six days in eleven patients with severe TBI in need of optimized hyperventilation because of intracranial hypertension. RESULTS:There was correlation between pH and the concentration of DPG/Hct. The concen...

  16. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf. Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  17. An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    DEFF Research Database (Denmark)

    Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model...

  18. Zebrafish as a potential model organism for drug test against hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Cun-Bao Ding

    Full Text Available Screening and evaluating anti- hepatitis C virus (HCV drugs in vivo is difficult worldwide, mainly because of the lack of suitable small animal models. We investigate whether zebrafish could be a model organism for HCV replication. To achieve NS5B-dependent replication an HCV sub-replicon was designed and created with two vectors, one with HCV ns5b and fluorescent rfp genes, and the other containing HCV's 5'UTR, core, 3'UTR and fluorescent gfp genes. The vectors containing sub-replicons were co-injected into zebrafish zygotes. The sub-replicon amplified in liver showing a significant expression of HCV core RNA and protein. The sub-replicon amplification caused no abnormality in development and growth of zebrafish larvae, but induced gene expression change similar to that in human hepatocytes. As the amplified core fluorescence in live zebrafish was detectable microscopically, it rendered us an advantage to select those with replicating sub-replicon for drug experiments. Ribavirin and oxymatrine, two known anti-HCV drugs, inhibited sub-replicon amplification in this model showing reduced levels of HCV core RNA and protein. Technically, this method had a good reproducibility and is easy to operate. Thus, zebrafish might be a model organism to host HCV, and this zebrafish/HCV (sub-replicon system could be an animal model for anti-HCV drug screening and evaluation.

  19. Comparison of the Exomes of Common Carp (Cyprinus carpio) and Zebrafish (Danio rerio)

    Science.gov (United States)

    Henkel, Christiaan V.; Dirks, Ron P.; Jansen, Hans J.; Forlenza, Maria; Wiegertjes, Geert F.; Howe, Kerstin; van den Thillart, Guido E.E.J.M.

    2012-01-01

    Abstract Research on common carp, Cyprinus carpio, is beneficial for zebrafish research because of resources available owing to its large body size, such as the availability of sufficient organ material for transcriptomics, proteomics, and metabolomics. Here we describe the shot gun sequencing of a clonal double-haploid common carp line. The assembly consists of 511891 scaffolds with an N50 of 17 kb, predicting a total genome size of 1.4–1.5 Gb. A detailed analysis of the ten largest scaffolds indicates that the carp genome has a considerably lower repeat coverage than zebrafish, whilst the average intron size is significantly smaller, making it comparable to the fugu genome. The quality of the scaffolding was confirmed by comparisons with RNA deep sequencing data sets and a manual analysis for synteny with the zebrafish, especially the Hox gene clusters. In the ten largest scaffolds analyzed, the synteny of genes is almost complete. Comparisons of predicted exons of common carp with those of the zebrafish revealed only few genes specific for either zebrafish or carp, most of these being of unknown function. This supports the hypothesis of an additional genome duplication event in the carp evolutionary history, which—due to a higher degree of compactness—did not result in a genome larger than that of zebrafish. PMID:22715948

  20. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis

    Directory of Open Access Journals (Sweden)

    Lletta Lewis

    2018-04-01

    Full Text Available Zebrafish (Danio rerio have become an important model for integrative physiological research. Zebrafish inhabit a hypo-osmotic environment; to maintain ionic and acid-base homeostasis, they must actively take up ions and secrete acid to the water. The gills in the adult and the skin at larval stage are the primary sites of ionic regulation in zebrafish. The uptake of ions in zebrafish is mediated by specific ion transporting cells termed ionocytes. Similarly, in mammals, ion reabsorption and acid excretion occur in specific cell types in the terminal region of the renal tubules (distal convoluted tubule and collecting duct. Previous studies have suggested that functional regulation of several ion transporters/channels in the zebrafish ionocytes resembles that in the mammalian renal cells. Additionally, several mechanisms involved in regulating the epithelial ion transport during metabolic acidosis are found to be similar between zebrafish and mammals. In this article, we systemically review the similarities and differences in ionic regulation between zebrafish and mammals during metabolic acidosis. We summarize the available information on the regulation of epithelial ion transporters during acidosis, with a focus on epithelial Na+, Cl− and Ca2+ transporters in zebrafish ionocytes and mammalian renal cells. We also discuss the neuroendocrine responses to acid exposure, and their potential role in ionic compensation. Finally, we identify several knowledge gaps that would benefit from further study.

  1. Lipid Uptake, Metabolism, and Transport in the Larval Zebrafish

    Directory of Open Access Journals (Sweden)

    Vanessa H. Quinlivan

    2017-11-01

    Full Text Available The developing zebrafish is a well-established model system for studies of energy metabolism, and is amenable to genetic, physiological, and biochemical approaches. For the first 5 days of life, nutrients are absorbed from its endogenous maternally deposited yolk. At 5 days post-fertilization, the yolk is exhausted and the larva has a functional digestive system including intestine, liver, gallbladder, pancreas, and intestinal microbiota. The transparency of the larval zebrafish, and the genetic and physiological similarity of its digestive system to that of mammals make it a promising system in which to address questions of energy homeostasis relevant to human health. For example, apolipoprotein expression and function is similar in zebrafish and mammals, and transgenic animals may be used to examine both the transport of lipid from yolk to body in the embryo, and the trafficking of dietary lipids in the larva. Additionally, despite the identification of many fatty acid and lipid transport proteins expressed by vertebrates, the cell biological processes that mediate the transport of dietary lipids from the intestinal lumen to the interior of enterocytes remain to be elucidated. Genetic tractability and amenability to live imaging and a range of biochemical methods make the larval zebrafish an ideal model in which to address open questions in the field of lipid transport, energy homeostasis, and nutrient metabolism.

  2. Modeling mixtures of thyroid gland function disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo

    International Nuclear Information System (INIS)

    Thienpont, Benedicte; Barata, Carlos; Raldúa, Demetrio

    2013-01-01

    Maternal thyroxine (T4) plays an essential role in fetal brain development, and even mild and transitory deficits in free-T4 in pregnant women can produce irreversible neurological effects in their offspring. Women of childbearing age are daily exposed to mixtures of chemicals disrupting the thyroid gland function (TGFDs) through the diet, drinking water, air and pharmaceuticals, which has raised the highest concern for the potential additive or synergic effects on the development of mild hypothyroxinemia during early pregnancy. Recently we demonstrated that zebrafish eleutheroembryos provide a suitable alternative model for screening chemicals impairing the thyroid hormone synthesis. The present study used the intrafollicular T4-content (IT4C) of zebrafish eleutheroembryos as integrative endpoint for testing the hypotheses that the effect of mixtures of TGFDs with a similar mode of action [inhibition of thyroid peroxidase (TPO)] was well predicted by a concentration addition concept (CA) model, whereas the response addition concept (RA) model predicted better the effect of dissimilarly acting binary mixtures of TGFDs [TPO-inhibitors and sodium-iodide symporter (NIS)-inhibitors]. However, CA model provided better prediction of joint effects than RA in five out of the six tested mixtures. The exception being the mixture MMI (TPO-inhibitor)-KClO 4 (NIS-inhibitor) dosed at a fixed ratio of EC 10 that provided similar CA and RA predictions and hence it was difficult to get any conclusive result. There results support the phenomenological similarity criterion stating that the concept of concentration addition could be extended to mixture constituents having common apical endpoints or common adverse outcomes. - Highlights: • Potential synergic or additive effect of mixtures of chemicals on thyroid function. • Zebrafish as alternative model for testing the effect of mixtures of goitrogens. • Concentration addition seems to predict better the effect of mixtures of

  3. Modeling mixtures of thyroid gland function disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo

    Energy Technology Data Exchange (ETDEWEB)

    Thienpont, Benedicte; Barata, Carlos [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona, 18-26, 08034 Barcelona (Spain); Raldúa, Demetrio, E-mail: drpqam@cid.csic.es [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona, 18-26, 08034 Barcelona (Spain); Maladies Rares: Génétique et Métabolisme (MRGM), University of Bordeaux, EA 4576, F-33400 Talence (France)

    2013-06-01

    Maternal thyroxine (T4) plays an essential role in fetal brain development, and even mild and transitory deficits in free-T4 in pregnant women can produce irreversible neurological effects in their offspring. Women of childbearing age are daily exposed to mixtures of chemicals disrupting the thyroid gland function (TGFDs) through the diet, drinking water, air and pharmaceuticals, which has raised the highest concern for the potential additive or synergic effects on the development of mild hypothyroxinemia during early pregnancy. Recently we demonstrated that zebrafish eleutheroembryos provide a suitable alternative model for screening chemicals impairing the thyroid hormone synthesis. The present study used the intrafollicular T4-content (IT4C) of zebrafish eleutheroembryos as integrative endpoint for testing the hypotheses that the effect of mixtures of TGFDs with a similar mode of action [inhibition of thyroid peroxidase (TPO)] was well predicted by a concentration addition concept (CA) model, whereas the response addition concept (RA) model predicted better the effect of dissimilarly acting binary mixtures of TGFDs [TPO-inhibitors and sodium-iodide symporter (NIS)-inhibitors]. However, CA model provided better prediction of joint effects than RA in five out of the six tested mixtures. The exception being the mixture MMI (TPO-inhibitor)-KClO{sub 4} (NIS-inhibitor) dosed at a fixed ratio of EC{sub 10} that provided similar CA and RA predictions and hence it was difficult to get any conclusive result. There results support the phenomenological similarity criterion stating that the concept of concentration addition could be extended to mixture constituents having common apical endpoints or common adverse outcomes. - Highlights: • Potential synergic or additive effect of mixtures of chemicals on thyroid function. • Zebrafish as alternative model for testing the effect of mixtures of goitrogens. • Concentration addition seems to predict better the effect of

  4. Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace-Beltrami embedding space.

    Science.gov (United States)

    Gahm, Jin Kyu; Shi, Yonggang

    2018-05-01

    Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer's disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Functional analysis of human hematopoietic stem cell gene expression using zebrafish.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Although several reports have characterized the hematopoietic stem cell (HSC transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow (CD34+(CD33-(CD38-Rho(lo(c-kit+ cells, enriched for hematopoietic stem/progenitor cells with (CD34+(CD33-(CD38-Rho(hi cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23% of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global

  6. Skin too thin? The developing utility of zebrafish skin (neuro)pharmacology for CNS drug discovery research.

    Science.gov (United States)

    Nguyen, Michael; Poudel, Manoj K; Stewart, Adam Michael; Kalueff, Allan V

    2013-09-01

    Skin coloration can be affected by many genetic, environmental and pharmacological factors. Zebrafish (Danio rerio) are a useful and versatile model organism in biomedical research due to their genetic tractability, physiological homology to mammals, low cost, reproducibility and high throughput. Zebrafish coloration is mediated by chromatophores - the skin color pigment cells largely controlled by endocrine and neural mechanisms. The characteristic darkening of zebrafish skin is caused by the dispersion (and paling - by aggregation) of melanosomes (pigment-containing organelles), which show high homology to mammalian structures. Various pharmacological agents potently affect zebrafish coloration - the phenotype that often accompanies behavioral effects of the drugs, and may be used for drug discovery. Although zebrafish behavior and skin responses are usually not directly related, they share common regulatory (neural, endocrine) mechanisms, and therefore may be assessed in parallel during psychotropic drug screening. For example, some psychoactive drugs can potently affect zebrafish skin coloration. Can we use this knowledge to refine phenotype-driven psychotropic drug discovery? Here, we present current models using zebrafish skin coloration assays, and discuss how these models may be applied to enhance in vivo CNS drug discovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Zebrafish models flex their muscles to shed light on muscular dystrophies.

    Science.gov (United States)

    Berger, Joachim; Currie, Peter D

    2012-11-01

    Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  8. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    Science.gov (United States)

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further