WorldWideScience

Sample records for zbo cryogenic systems

  1. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  2. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    1995-01-01

    The CEBAF cryogenic system consists of 3 refrigeration systems: Cryogenic Test Facility (CTF), Central Helium Liquefier (CHL), and End Station Refrigerator (ESR). CHL is the main cryogenic system for CEBAF, consisting of a 4.8 kW, 2.0 K refrigerator and transfer line system to supply 2.0 K and 12 kW of 50 K shield refrigeration for the Linac cavity cryostats and 10 g/s of liquid for the end stations. This paper describes the 9-year effort to commission these systems, concentrating on CHL with the cold compressors. The cold compressors are a cold vacuum pump with an inlet temperature of 3 K which use magnetic bearings, thereby eliminating the possibility of air leaks into the subatmospheric He

  3. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    Brindza, P.; Rode, C.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. These accelerating cavities are arranged in pairs in a cryounit. The ensemble of four cryounits (8 cavities) together with their end caps makes up a complete cryostat called a cryogenic module. The four cryounit helium vessels are cross connected to each other and share a common cryogen supply, radiation shield and insulating vacuum. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2 K and the 4.5 K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0 K at .031 ATM and 4.4 K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  4. CEBAF cryogenic system design

    International Nuclear Information System (INIS)

    Rode, C.; Brindza, P.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. There is one recirculating arc for each energy beam that is circulating and any three of the four correlated energies may be supplied to any of the three experimental halls. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2K and the 4.5K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0K at .031 ATM and 4.4K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  5. Operation of large cryogenic systems

    International Nuclear Information System (INIS)

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab

  6. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  7. SSC Cryogenic System

    International Nuclear Information System (INIS)

    Brown, D.P.; Louttit, R.I.; Rode, C.; VanderArend, P.C.

    1985-01-01

    The design of the 4.5 K primary cooling system and higher temperature shield cooling systems for the SSC are described. Typical flow diagrams for the magnet piping systems are presented. Estimated heat loads are given. The systems have been designed to accomodate the great distances, 90 km and up, over which the load will be distributed. Provision has been made for cooldown, warmup, quench recovery and magnet replacement, as well as for steady-state operation

  8. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    Science.gov (United States)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  9. The cryogenic control system of EAST

    International Nuclear Information System (INIS)

    Zhuang, M.; Hu, L.B.; Zhow, Z.W.; Xia, G.H.

    2012-01-01

    Highlights: ► A reliable and flexible duplex control system is required for cryogenic system. ► The cryogenic control system is based on Delta-V DCS. ► It has been proved to be an effective way to control cryogenic process. ► It will provide useful experience and inspiration for the development in the cryogenic control engineering. - Abstract: A large scale helium cryogenic system is one of the key components for the EAST tokamak device for the cooling of PF and TF coils, structures, thermal shields, buslines, current leads and cryopumps. Since the cooling scheme of the EAST cryogenic system is fairly complicated, a reliable and flexible control system is required for cryogenic system. The cryogenic control system is based on DeltaV DCS which is the process control software developed by Emerson Company. The EAST cryogenic system has been in operation for four years and has been proved to be safe, stable and energy saving by the past 7 experiments. This paper describes the redundant control network, hardware configuration, software structure, auxiliary system and the new development in the future.

  10. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  11. Cryogenic system for TRISTAN superconducting RF cavity

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Yuuji; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Ishimaru, Y.

    1990-01-01

    A cryogenic system consisting of a helium refrigerator (4 kW at 4.4 K) and a liquid helium distribution transfer system for TRISTAN 508 MHz 32 x 5-cell superconducting RF cavities was designed and constructed. After the performance test of the cryogenic system, 16 x 5-cell superconducting RF cavities in 8 cryostats were installed in underground TRISTAN electron-positron collider and connected to the helium refrigerator on the ground level through the transfer line (total length about 330 m) and cooled by liquid helium pool boiling in parallel. The cryogenic system and its operation experience are described. (author)

  12. The cryogenic control system of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    LI Gang; WANG Ke-Xiang; ZHAO Ji-Jiu; YUE Ke-Juan; DAI Ming-Sui; HUANG Yi-Ling; JIANG Bo

    2008-01-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron-Positron Collider Upgrade Project(BEPCⅡ).The system consists of a Siemens PLC(ST-PLC,Programmable Logic Controller)for the compressor control,an Allen Bradley(AB)PLC for the cryogenic equipments,and the Experimental Physics and Industrial Control System(EPICS)that integrates the PLCs.The system fully automates the superconducting cryogenic control with process control,PID(Proportional-Integral-Differential)control loops,real-time data access and data storage,alarm handler and human machine interface.It is capable of automatic recovery as well.This paper describes the BEPCⅡ cryogenic control system,data communication between ST-PLC and EPICS Input/Output Controllers(IOCs),and the integration of the flow control,the low level interlock,the AB-PLC,and EPICS.

  13. Status of the LBNF Cryogenic System

    CERN Document Server

    Montanari, D; Bremer, J; Delany, M; Diaz, A; Doubnik, R; Haaf, K; Henstchel, S; Norris, B; Voirin, E

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  14. Status of the LBNF Cryogenic System

    Science.gov (United States)

    Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.

    2017-12-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  15. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  16. Zero Boil Off System for Cryogen Storage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to develop a zero boil off (ZBO) dewar using a two-stage pulse-tube cooler together with two innovative, continuous-flow cooling loops and an...

  17. Computer automation of a dilution cryogenic system

    International Nuclear Information System (INIS)

    Nogues, C.

    1992-09-01

    This study has been realized in the framework of studies on developing new technic for low temperature detectors for neutrinos and dark matter. The principles of low temperature physics and helium 4 and dilution cryostats, are first reviewed. The cryogenic system used and the technic for low temperature thermometry and regulation systems are then described. The computer automation of the dilution cryogenic system involves: numerical measurement of the parameter set (pressure, temperature, flow rate); computer assisted operating of the cryostat and the pump bench; numerical regulation of pressure and temperature; operation sequence full automation allowing the system to evolve from a state to another (temperature descent for example)

  18. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  19. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  20. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  1. The Cryogenic Supervision System in NSRRC

    CERN Document Server

    Li, Hsing-Chieh; Chiou, Wen-Song; Hsiao, Feng-Zone; Tsai, Zong-Da

    2005-01-01

    The helium cryogenic system in NSRRC is a fully automatic PLC system using the Siemens SIMATIC 300 controller. Modularization in both hardware and software makes it easy in the program reading, the system modification and the problem debug. Based on the Laview program we had developed a supervision system taking advantage of the Internet technology to get system's real-time information in any place. The functions of this supervision system include the real-time data accessing with more than 300 digital/analog signals, the data restore, the history trend display, and the human machine interface. The data is accessed via a Profibus line connecting the PLC system and the supervision system with a maximum baud rate 1.5 Mbit/s. Due to this supervision system, it is easy to master the status of the cryogenic system within a short time and diagnose the problem.

  2. Cryogenics

    International Nuclear Information System (INIS)

    Fradkov, A.B.

    1991-01-01

    The application of cryogenics in various areas of science and technology is related in a popular way. Utilization of cryogenics in the following production processes is described: separation of air, gas mixtures; production of helium; separation of hydrogen isotopes; production of deuterium. Applications of cryogenics in refrigerating engineering, superconductivity and high-energy physics, controlled thermonuclear fusion, superconducting electric motors and electric energy storages are considered

  3. Cryogenic system for TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Y.; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Matsumoto, K.

    1993-01-01

    A large cryogenic system has been designed, constructed and operated in the TRISTAN electron-positron collider at KEK for 508 MHz, 32x5-cell superconducting RF cavities. A 6.5 kW, 4.4 K helium refrigerator with 5 turbo-expanders on the ground level supplies liquid helium in parallel to the 16 cryostats in the TRISTAN tunnel through about 250 m long multichannel transfer line. Two 5-cell cavities are coupled together, enclosed in a cryostat and cooled by about 830 L pool boiling liquid helium. A liquid nitrogen circulation system with a turbo-expander has been adopted for 80 K radiation shields in the multichannel transfer line and the cryostats to reduce liquid nitrogen consumption and to increase the operation stability of the system. The cryogenic system has a total of about 18 000 hours of operating time from the first cool down test in August 1988 to November 1991. The design principle and outline of the cryogenic system and the operational experience are presented. (orig.)

  4. Cryogenics system: strategy to achieve nominal performance and reliable operation

    CERN Document Server

    Bremer, J; Casas, J; Claudet, S; Delikaris, D; Delruelle, N; Ferlin, G; Fluder, C; Perin, A; Perinic, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the overcapacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the "cannibalization" of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of ...

  5. Cryogenics

    International Nuclear Information System (INIS)

    Shukla, R.K.

    1990-01-01

    Cryogenics refers to the coldest area known in nature. This temperature range has an upper limit arbitrarily defined as -100 degrees C (-250 degrees C by some) and a lower limit of absolute zero. These limits separate it from the temperature range generally used in refrigerating engineering. One important application of cryogenics is the separation ad purification of air into its various components (oxygen, nitrogen, argon, and the rare gases). Other important developments have been the large-scale production of liquid hydrogen; helium extraction from natural gas; storage and transport of liquefied gases such as oxygen, argon, nitrogen, helium, neon, xenon, and hydrogen; liquefaction of natural gas for ocean transport and peak shaving; and many new types of cryogenic refrigeration devices. This paper introduces the topic of cryogenic engineering. Cryogenic processes generally range from ambient conditions to the boiling point of the cryogenic fluid. Cryogenic cycles also incorporate two or more pressure levels. These properties must also cover the vapor, vapor-liquid, and sometimes the solid regions. Therefore, the physical properties of fluids over a great range of temperatures and pressures must be known. Solubility of contaminants must be known in order to design for their removal. The main physical properties for design purposes are those usually used in unit operations, such as fluid flow, heat transfer, and the like, in addition to those directly related to the Joule-Thomson effect and expansion work. Properties such as density, viscosity, thermal conductivity, heat capacity, enthalpy, entropy, vapor pressure, and vapor-liquid equilibriums are generally obtained in graphical, tabular, or equation form, as a function of temperature and pressure

  6. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  7. Renovation of the Sissi cryogenic system

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    SISSI (high current superconductor secondary ion source) involved a cryo-generator operating in a close circuit when the whole system was put in service in 1994. Since then the cryo-generator has proved to be insufficiently reliable. A new cryogenic system based on an external liquid helium supply has been designed. The helium transfer lines are surrounded by a shield at liquid nitrogen temperature and numerous layers of super-insulators in order to have minimum thermal losses. The installation was integrated to SISSI in summer 1998 and after the first operating period some improvements concerning the cooling procedure have to be considered. (A.C.)

  8. Commissioning the cryogenic system of the first LHC sector

    International Nuclear Information System (INIS)

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; CERN; Ronayette, L.; GHMFL, Grenoble; Rabehl, R.; Fermilab

    2007-01-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test

  9. The DAΦNE cryogenic system

    International Nuclear Information System (INIS)

    Modena, M.

    1997-12-01

    The DAΦNE Project utilises superconductivity technology for a total of six superconducting magnets: the two Experiment magnets (KLOE and FINUDA) and the four Compensator Solenoid magnets needed to compensate the magnetic effect of the Experiment magnets on the electron and positron beams. This effect, on beams of 510 MeV (nominal DAΦNE Energy), is expected to be relevant, especially with the aim of achieving a very high luminosity, which is the main target of the Project. The KLOE superconducting magnet has two possible working positions: the first in the DAΦNE Hall, when the Experiment will be in operation, and the second one in the KLOE Assembly Hall. This second position is the first to be utilised for the KLOE magnet Acceptance Test and magnetic field mapping, prior to the mounting of all the experimental apparatus inside the magnet. This note intends to present the DAΦNE Cryogenic System and how the authors have converged to the definition of a common Cryogenic System compatible with all the six superconducting magnets

  10. Cryogenics

    International Nuclear Information System (INIS)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V.

    1997-01-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  11. Initial performance of upgraded Tevatron cryogenic systems

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail

  12. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  13. Cryogenic Propellant Feed System Analytical Tool Development

    Science.gov (United States)

    Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.

    2011-01-01

    The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.

  14. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN 2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  15. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  16. Cryogenics system: strategy to achieve nominal performance and reliable operation

    International Nuclear Information System (INIS)

    Bremer, J.; Brodzinski, K.; Casas, J.; Claudet, S.; Delikaris, D.; Delruelle, N.; Ferlin, G.; Fluder, C.; Perin, A.; Perinic, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the over-capacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the 'cannibalization' of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of interventions (e.g. cryo-magnet removal) which can be done without affecting the operating conditions of the adjacent sector. This creates additional constrains and possible extra down-time in the schedule of the shutdowns including the hardware commissioning. This presentation focuses on the consolidation plan foreseen during the LS1 to improve the performance of the LHC cryogenic system in terms of availability and sectorization. (authors)

  17. The DIII-D cryogenic system upgrade

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 ell/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed

  18. The DIII-D cryogenic system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

  19. Cryogenic system options for a superconducting aircraft propulsion system

    International Nuclear Information System (INIS)

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul

    2015-01-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  20. Status of the Cryogenic System Commissioning at SNS

    CERN Document Server

    Casagrande, Fabio; Campisi, Isidoro E; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Gurd, Pamela; Hatfield, Daniel; Howell, Matthew; Knudsen, Peter; Stout, Daniel; Strong, William

    2005-01-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  1. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  2. Cryogenic system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design

  3. Cryogenic systems for large superconducting accelerators/storage rings

    International Nuclear Information System (INIS)

    Brown, D.P.

    1981-01-01

    Particle accelerators and storage rings which utilize superconducting magnets have presented cryogenic system designers, as well as magnet designers, with many new challenges. When such accelerators were first proposed, little operational experience existed to guide the design. Two superconducting accelerators, complete with cryogenic systems, have been designed and are now under construction. These are the Fermilab Doubler Project and the Brookhaven National Laboratory ISABELLE Project. The cryogenic systems which developed at these two laboratories share many common characteristics, especially as compared to earlier cryogenic systems. Because of this commonality, these characteristics can be reasonably taken as also being representative of future systems. There are other areas in which the two systems are dissimilar. In those areas, it is not possible to state which, if either, will be chosen by future designers. Some of the design parameters for the two systems are given

  4. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  5. FRIB Cryogenic Distribution System and Status

    Energy Technology Data Exchange (ETDEWEB)

    Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Laverdure, Nathaniel A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Yang, Shuo [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nellis, Timothy [Michigan State Univ., East Lansing, MI (United States); Jones, S. [Michigan State Univ., East Lansing, MI (United States); Casagrande, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.

  6. Overview of the Long-Baseline Neutrino Facility cryogenic system

    CERN Document Server

    Montanari, David; Bremer, Johan; Delaney, Michael; Aurelien, Diaz; Doubnik, Roza; Haaf, Kevin; Hentschel, Steve; Norris, Barry; Voirin, Erik

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. It also details the status of the design, ...

  7. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  8. Process simulations for the LCLS-II cryogenic systems

    Science.gov (United States)

    Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.

    2017-12-01

    Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.

  9. MYRRHA cryogenic system study on performances and reliability requirements

    International Nuclear Information System (INIS)

    Junquera, T.; Chevalier, N.R.; Thermeau, J.P.; Medeiros Romao, L.; Vandeplassche, D.

    2015-01-01

    A precise evaluation of the cryogenic requirements for accelerator-driven system such as the MYRRHA project has been performed. In particular, operation temperature, thermal losses, and required cryogenic power have been evaluated. A preliminary architecture of the cryogenic system including all its major components, as well as the principles for the cryogenic fluids distribution has been proposed. A detailed study on the reliability aspects has also been initiated. This study is based on the reliability of large cryogenic systems used for accelerators like HERA, LHC or SNS Linac. The requirements to guarantee good cryogenic system availability can be summarised as follows: 1) Mean Time Between Maintenance (MTBM) should be > 8 000 hours; 2) Valves, heat exchangers and turbines are particularly sensitive elements to impurities (dust, oil, gases), improvements are necessary to keep a minimal level in these components; 3) Redundancy studies for all elements containing moving/vibrating parts (turbines, compressors, including their respective bearings and seal shafts) are necessary; 4) Periodic maintenance is mandatory: oil checks, control of screw compressors every 10.000-15.000 hours, vibration surveillance programme, etc; 5) Special control and maintenance of utilities equipment (supply of cooling water, compressed air and electrical supply) is necessary; 6) Periodic vacuum checks to identify leakage appearance such as insulation vacuum of transfer lines and distribution boxes are necessary; 7) Easily exchangeable cold compressors are required

  10. Performance evaluation of various cryogenic energy storage systems

    International Nuclear Information System (INIS)

    Abdo, Rodrigo F.; Pedro, Hugo T.C.; Koury, Ricardo N.N.; Machado, Luiz; Coimbra, Carlos F.M.; Porto, Matheus P.

    2015-01-01

    This work compares various CES (cryogenic energy storage) systems as possible candidates to store energy from renewable sources. Mitigating solar and wind power variability and its direct effect on local grid stability are already a substantial technological bottleneck for increasing market penetration of these technologies. In this context, CES systems represent low-cost solutions for variability that can be used to set critical power ramp rates. We investigate the different thermodynamic and engineering constraints that affect the design of CES systems, presenting theoretical simulations, indicating that optimization is also needed to improve the cryogenic plant performance. - Highlights: • We assessed the performance of cryogenic energy storage systems. • We re-evaluated the Linde–Hampson cycle proposed by Chen. • We proposed the Claude and Collins cycles as alternatives for the Linde–Hampson cycle. • We concluded that Claude cycle is the best alternative for the simulated conditions.

  11. On-board cryogenic system for magnetic levitation of trains

    Energy Technology Data Exchange (ETDEWEB)

    Baldus, S A.W.; Kneuer, R; Stephan, A

    1975-02-01

    An experimental car based on electrodynamic levitation with superconducting magnets was developed and manufactured with an on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. Processes and components are discussed, and a brief description of the first results for the whole system under simulation conditions is given.

  12. On-board cryogenic system for magnetic levitation of trains

    International Nuclear Information System (INIS)

    Asztalos, St.; Baldus, W.; Kneuer, R.; Stephan, A.

    1974-01-01

    An experimental car based on electrodynamic levitation with superconducting magnets has been developed and manufactured by AEG, BBC, Siemens and other partners, together with Linde AG as the firm responsible for the on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotatable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. This paper reports on processes and components. A brief description of the first results for the whole system under simulation conditions is given. (author)

  13. Advanced monitoring, fault diagnostics, and maintenance of cryogenic systems

    CERN Document Server

    Girone, Mario; Pezzetti, Marco

    In this Thesis, advanced methods and techniques of monitoring, fault diagnostics, and predictive maintenance for cryogenic processes and systems are described. In particular, in Chapter 1, mainstreams in research on measurement systems for cryogenic processes are reviewed with the aim of dening key current trends and possible future evolutions. Then, in Chapter 2, several innovative methods are proposed. A transducer based on a virtual ow meter is presented for monitoring helium distribution and consumption in cryogenic systems for particle accelerators [1]. Furthermore, a comprehensive metrological analysis of the proposed transducer for verifying the metrological performance and pointing out most critical uncertainty sources is described [2]. A model-based method for fault detection and early-stage isolation, able to work with few records of Frequency Response Function (FRF) on an unfaulty compressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic procedure, based on a micro-genetic...

  14. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    Science.gov (United States)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  15. Cryogenic System for the Cryomodule Test Stand at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    White, Michael J. [Fermilab; Hansen, Benjamin [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-10-09

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description of the heat load measurement plan.

  16. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  17. Cryogenic system for the HERA magnet measurement facility

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Clausen, M.; Kebler, G.

    1986-01-01

    This paper describes the design for a helium, cryogenic distribution system that allows independent operation and testing of superconducting magnets of the HERA project before they are installed in the 6-km ring tunnel. The 820-GeV proton storage ring of HERA will contain approximately 650 magnets having superconducting coils which are clamped by aluminum/stainless-steel collars and surrounded by a yoke of magnetic iron at liquid helium temperature. When the magnets arive at DESY from the manufacture, each magnet will be individually tested at helium operating conditions in the magnet measurement facility to insure the quality of the magnetic characteristics and the cryogenic performance. The capabilities of the cryogenic system and the schedule for magnet testing are discussed

  18. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems

  19. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.; Nelson, R.L.

    1986-01-01

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  20. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs

  1. Feasibility Study of Cryogenic Cutting Technology by Using a Computer Simulation and Manufacture of Main Components for Cryogenic Cutting System

    International Nuclear Information System (INIS)

    Kim, Sung Kyun; Lee, Dong Gyu; Lee, Kune Woo; Song, Oh Seop

    2009-01-01

    Cryogenic cutting technology is one of the most suitable technologies for dismantling nuclear facilities due to the fact that a secondary waste is not generated during the cutting process. In this paper, the feasibility of cryogenic cutting technology was investigated by using a computer simulation. In the computer simulation, a hybrid method combined with the SPH (smoothed particle hydrodynamics) method and the FE (finite element) method was used. And also, a penetration depth equation, for the design of the cryogenic cutting system, was used and the design variables and operation conditions to cut a 10 mm thickness for steel were determined. Finally, the main components of the cryogenic cutting system were manufactures on the basis of the obtained design variables and operation conditions.

  2. Cryogenic distribution system for ITER proto-type cryoline test

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Shah, N.; Badgujar, S.; Sarkar, B.

    2012-01-01

    Design validation for ITER cryoline will be carried out by proto-type test on cryoline. The major objectives of the test will be to ensure the mechanical integrity, reliability, thermal stress and heat load as well as checking of assembly and fabrication procedures. The cryogenics system has to satisfy the functional operating scenario of the cryoline. Cryoplant, distribution box (DB) including liquid helium (LHe) tank constitute the cryogenic system for the test. Conceptual system architecture is proposed with a commercially available refrigerator/liquefier and custom designed DB housing cold compressor, cold circulator as well as phase separator with sub-merged heat exchanger. System level optimization, mainly with DB and LHe tank with options, has been studied to minimize the cold power required for the system. Aspen HYSYS is used for the purpose of process simulation. The paper describes the system architecture and the optimized design as well as process simulation with associated results. (author)

  3. A new architecture for Fermilab's cryogenic control system

    International Nuclear Information System (INIS)

    Smolucha, J.; Frank, A.; Seino, K.; Lackey, S.

    1992-01-01

    In order to achieve design energy in the Tevatron, the magnet system will be operated at lower temperatures. The increased requirements of operating the Tevatron at lower temperatures necessitated a major upgrade to the both the hardware and software components of the cryogenic control system. The new architecture is based on a distributed topology which couples Fermilab designed I/O subsystems to high performance, 80386 execution processors via a variety of networks including: Arcnet, iPSB, and token ring. (author)

  4. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  5. Cryogenic system of the nuclotron - a new superconducting synchrotron

    International Nuclear Information System (INIS)

    Baldin, A.M.; Agapov, N.N.; Belushkin, V.A.; D'yachkov, E.I.; Khodzhibagiyan, H.G.; Kovalenko, A.D.; Makarov, L.G.; Matyushevsky, E.A.; Smirnov, A.A.

    1994-01-01

    The superconducting relativistic heavy ion accelerator was commissioned the last week of March in Dubna, and the first deuteron beam was circulated in the ring. The total cold mass of the magnetic system is about 80 tons. The magnet with a open-quotes coldclose quotes iron yoke and a hollow superconductor winding is refrigerated by a two-phase helium flow. All 160 magnets are connected in parallel with supply and return helium headers about 250 meters long. The cryogenic supply system is based on three helium refrigerators with a total capacity of 4.8 kW at 4.5 K. The results on the commissioning of the cryogenic system are presented

  6. The Fermilab CMTF cryogenic distribution remote control system

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R. [Fermi National Accelerator Laboratory Batavia, IL, 60510 (United States)

    2014-01-29

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  7. Cryogenic system of the nuclotron - a new superconducting synchrotron

    International Nuclear Information System (INIS)

    Baldin, A.M.; Agapov, N.N.; Belushkin, V.A.

    1993-01-01

    The superconducting relativistic heavy ion accelerator was commissioned the last week of March in Dubna, and the first deuteron beam was circulated in the ring. The total cold mass of the magnetic system is about 80 tons. The magnet with a 'cold' iron yoke and a hollow superconductor winding is refrigerated by a two-phase helium flow. All 160 magnets are connected in parallel with supply and return helium headers about 250 meters long. The cryogenic supply system is based on three helium refrigerators with a total capacity of 4.8 kW at 4.5 K. The results on the commissioning of the cryogenic system are presented. 11 refs.; 5 figs.; 1 tab

  8. Validation and Performance of the LHC Cryogenic System through Commissioning of the First Sector

    CERN Document Server

    Serio, L; Casas-Cubillos, J; Chakravarty, A; Claudet, S; Gicquel, F; Gomes, P; Kumar, M; Kush, PK; Millet, F; Perin, A; Rabehl, R; Singh, MR; Soubiran, M; Tavian, L

    2008-01-01

    The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.

  9. Coupled Cryogenic Thermal and Electrical Models for Transient Analysis of Superconducting Power Devices with Integrated Cryogenic Systems

    Science.gov (United States)

    Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.

    2017-12-01

    Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.

  10. A sub-Kelvin cryogen-free EPR system.

    Science.gov (United States)

    Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard

    2017-09-01

    We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Cryogen free high magnetic field and low temperature sample environments for neutron scattering - latest developments

    International Nuclear Information System (INIS)

    Burgoyne, John

    2016-01-01

    Continuous progress has been made over many years now in the provision of low- and ultra-low temperature sample environments, together with new high-field superconducting magnets and increased convenience for both the user and the neutron research facility via new cooling technologies. Within Oxford Instrument's experience, this has been achieved in many cases through close collaboration with neutron scientists, and with the neutron facilities' sample environment leaders in particular. Superconducting magnet designs ranging from compact Small Angle (SANS) systems up to custom-engineered wide-angle scattering systems have been continuously developed. Recondensing, or 'zero boil-off' (ZBO), systems are well established for situations in which a high field magnet is not conducive to totally cryogen free cooling solutions, and offer a reliable route with the best trade-offs of maximum system capability versus running costs and user convenience. Fully cryogen free solutions for cryostats, dilution refrigerators, and medium-field magnets are readily available. Here we will present the latest technology developments in these options, describing the state-of-the art, the relative advantages of each, and the opportunities they offer to the neutron science community. (author)

  12. The LHC cryogenic system and operational experience from the first three years run

    International Nuclear Information System (INIS)

    Delikaris, Dimitri; Tavian, Laurent

    2014-01-01

    The LHC (Large Hadron Collider) accelerator helium cryogenic system consists of eight cryogenically independent sectors, each 3.3 km long, all cooled and operated at 1.9 K. The overall, entropy equivalent, installed cryogenic capacity totalizes 144 kW (a) 4.5 K including 19.2 kW (a) 1.8 K with an associated helium inventory of 130 ton. The LHC cryogenic system is considered among the most complex and powerful in the world allowing the cooling down to superfluid helium temperature of 1.9 K. of the accelerators' high field superconducting magnets distributed over the 26.7 km underground ring. The present article describes the LHC cryogenic system and its associated cryogen infrastructure. Operational experience, including cryogen management, acquired from the first three years of LHC operation is finally presented. (author)

  13. Cryogenic systems advanced monitoring, fault diagnostics, and predictive maintenance

    CERN Document Server

    Arpaia, Pasquale; Inglese, Vitaliano; Pezzetti, Marco

    2018-01-01

    Cryogenics, the study and technology of materials and systems at very low temperature, is widely used for sensors and instruments requiring very highly precise measurements with low electrical resistance, especially for measurements of materials and energies at a very small scale. Thus, the need to understand how instruments operate and perform over time at temperatures below -2920 F (-1800 C) is critical, for applications from Magnetic Resonance Imaging (MRI) to Nuclear Magnetic Resonance Spectroscopy to instrumentation for particle accelerators of all kinds. This book brings to the reader guidance learned from work at the European Laboratory for Nuclear Research (CERN), and its large scale particle accelerator in Switzerland to help engineers and technicians implement best practices in instrumentation at cryogenic temperatures, including a better understanding of fault detection and predictive maintenance. Special problems with devices like flow meters, pressure gauges, and temperature gauges when operating...

  14. The Control System for the Cryogenics in the LHC Tunnel

    CERN Document Server

    Gomes, P; Antoniotti, F; Avramidou, R; Balle, Ch; Blanco-Viñuela, E; Carminati, Ch; Casas-Cubillos, J; Ciechanowski, M; Dragoneas, A; Dubert, P; Fampris, X; Fluder, C; Fortescue, E; Gaj, W; Gousiou, E; Jeanmonod, N; Jodłowski, P; Karagiannis, F; Klisch, M; López, A; Macuda, P; Malinowski, P; Molina, E; Paiva, S; Patsouli, A; Penacoba, G; Sosin, M; Soubiran, M; Suraci, A; Tovar, A; Vauthier, N; Wolak, T; Zwalinski, L

    2009-01-01

    The Large Hadron Collider makes extensive use of superconductors, in magnets for bending and focusing the particles, and in RF cavities for accelerating them, which are operated at 1.9 K and 4.5 K. The process automation for the cryogenic distribution around the accelerator circumference is based on 16 Programmable Logic Controllers, each running 250 control loops, 500 alarms and interlocks, and a phase sequencer. Spread along 27 km and under ionizing radiation, 15 000 cryogenic sensors and actuators are accessed through industrial field networks. We describe the main hardware and software components of the control system, their deployment and commissioning, together with the project organization, challenges faced, and solutions found.

  15. Online helium inventory monitoring of JLab cryogenic systems

    Science.gov (United States)

    Hasan, N.; Knudsen, P.; Wright, M.

    2017-12-01

    There are five cryogenic plants at Jefferson Lab which support the LINAC, experiment hall end-stations and test facility. The majority of JLab’s helium inventory, which is around 15 tons, is allocated in the LINAC cryo-modules, with the majority of the balance of helium distributed at the cryogenic-plant level mainly as stored gas and liquid for stable operation. Due to the organic evolution of the five plants and independent actions within the experiment halls, the traditional inventory management strategy suffers from rapid identification of potential leaks. This can easily result in losses many times higher than the normally accepted (average) loss rate. A real-time program to quickly identify potential excessive leakage was developed and tested. This program was written in MATLAB© for portability, easy diagnostics and modification. It interfaces directly with EPICS to access the cryogenic system state, and with and NIST REFPROP© for real fluid properties. This program was validated against the actual helium offloaded into the system. The present paper outlines the details of the inventory monitoring program, its validation and a sample of the achieved results.

  16. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  17. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety and Health (ES and H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for

  18. IMPROVEMENTS TO THE CRYOGENIC CONTROL SYSTEM ON DIII-D

    International Nuclear Information System (INIS)

    HOLTROP, K.L; ANDERSON, P.M; MAUZEY, P.S.

    2004-03-01

    OAK-B135 The cryogenic facility that is part of the DIII-D tokamak system supplies liquid nitrogen and liquid helium to the superconducting magnets used for electron cyclotron heating, the D 2 pellet injection system, cryopumps in the DIII-D vessel, and cryopanels in the neutral beam injection system. The liquid helium is liquefied on site using a Sulzer liquefier that has a 150 l/h liquefaction rate. Control of the cryogenic facility at DIII-D was initially accomplished through the use of three different programmable logic controllers (PLCs). Recently, two of those three PLCs, a Sattcon PLC controlling the Sulzer liquefier and a Westinghouse PLC, were removed and all their control logic was merged into the remaining PLC, a Siemens T1555. This replacement was originally undertaken because the removed PLCs were obsolete and unsupported. However, there have been additional benefits from the replacement. The replacement of the RS-232 serial links between the graphical user interface and the PLCs with a high speed Ethernet link allows for real-time display and historical trending of nearly all the cryosystem's data. this has greatly increased the ability to troubleshoot problems with the system, and has permitted optimization of the cryogenic system's performance because of the increased system integration. To move the control logic of the Sattcon control loops into the T1555, an extensive modification of the basic PID control was required. These modifications allow for better control of the control loops and are now being incorporated in other control loops in the system

  19. Cryogenic system for the 45 Tesla hybrid magnet

    International Nuclear Information System (INIS)

    Van Sciver, S.W.; Miller, J.R.; Welton, S.; Schneider-Muntau, H.J.; McIntosh, G.E.

    1994-01-01

    The 45 Tesla hybrid magnet system will consist of a 14 Tesla superconducting outsert magnet and a 31 Tesla water cooled insert. The magnet is planned for operation in early 1995 at the National High Magnetic Field Laboratory. Its purpose is to provide the highest DC magnetic fields for the materials research community. The present paper discusses the overall design of the cryogenic system for the superconducting magnet. Unique features of this system include static 1.8 K pressurized He II as a coolant for the magnet and a refrigerated structural support system for load transfer during fault conditions. The system will consist of two connected cryostats. The magnet is contained within one cryostat which has a clear warm bore of 616 mm and is designed to be free of system interfaces and therefore minimize interference with the magnet user. A second supply cryostat provides the connections to the refrigeration system and magnet power supply. The magnet and supply cryostats are connected to each other through a horizontal services duct section. Issues to be discussed in the present paper include design and thermal analysis of the magnet system during cooldown and in steady state operation and overall cryogenic system design

  20. Precision cryogenic temperature data acquisition system

    International Nuclear Information System (INIS)

    Farah, Y.; Sondericker, J.H.

    1985-01-01

    A Multiplexed Temperature Data Acquisition System with an overall precision of +-25 ppM has been designed using state-of-the-art electronics to accurately read temperature between 2.4 K and 600 K from pre-calibrated transducers such as germanium, silicon diode, thermistor or platinum temperature sensors

  1. Status: Large-scale subatmospheric cryogenic systems

    International Nuclear Information System (INIS)

    Peterson, T.

    1989-01-01

    In the late 1960's and early 1970's an interest in testing and operating RF cavities at 1.8K motivated the development and construction of four large (300 Watt) 1.8K refrigeration systems. in the past decade, development of successful superconducting RF cavities and interest in obtaining higher magnetic fields with the improved Niobium-Titanium superconductors has once again created interest in large-scale 1.8K refrigeration systems. The L'Air Liquide plant for Tore Supra is a recently commissioned 300 Watt 1.8K system which incorporates new technology, cold compressors, to obtain the low vapor pressure for low temperature cooling. CEBAF proposes to use cold compressors to obtain 5KW at 2.0K. Magnetic refrigerators of 10 Watt capacity or higher at 1.8K are now being developed. The state of the art of large-scale refrigeration in the range under 4K will be reviewed. 28 refs., 4 figs., 7 tabs

  2. Dynamic simulations of the cryogenic system of a tokamak

    International Nuclear Information System (INIS)

    Cirillo, R.; Hoa, C.; Michel, F.; Rousset, B.; Poncet, J.M.

    2015-01-01

    In a tokamak plasma confinement is achieved through high magnetic fields generated by superconductive coils that need to be cooled down to 4.4 K with a forced flow of supercritical Helium. Tokamak's coil system works cyclically and so it is subject to pulsed heat loads which have to be handled by the refrigerator. This latter has to be sized on the average power value and not according to the peak to limit investment and operation costs and hence the heat load needs to be smoothed. CEA Grenoble is in charge of providing the cryogenic system for the Japanese tokamak JT60-SA, currently under construction in Naka (Japan). Hence, in order to model and study the smoothing strategies, an experimental set up: HELIOS (Helium Loop for high load smoothing) has been built. This is a scaled down model (1:20) of the helium distribution system whose main components are a saturated helium bath and a supercritical helium loop. This large installation can reproduce conditions of pressure, temperature and transport times, similar to those expected in the cooling circuits of the central solenoid superconducting magnets of JT-60SA. The peak loads representative of the tokamak operation have been reproduced and smoothed before they arrive in the refrigerator, by means of a saturated helium bath (thermal reservoir). A dynamic modelling of the cryogenic system is presented, with results on the pulsed load scenarios. All the simulations have been performed with EcosimPro software developed and the cryogenic library: CRYOLIB. This document is made up of an abstract and the slides of the presentation

  3. ATLAS magnet common cryogenic, vacuum, electrical and control systems

    CERN Document Server

    Miele, P; Delruelle, N; Geich-Gimbel, C; Haug, F; Olesen, G; Pengo, R; Sbrissa, E; Tyrvainen, H; ten Kate, H H J

    2004-01-01

    The superconducting Magnet System for the ATLAS detector at the LHC at CERN comprises a Barrel Toroid, two End Cap Toroids and a Central Solenoid with overall dimensions of 20 m diameter by 26 m length and a stored energy of 1.6 GJ. Common proximity cryogenic and electrical systems for the toroids are implemented. The Cryogenic System provides the cooling power for the 3 toroid magnets considered as a single cold mass (600 tons) and for the CS. The 21 kA toroid and the 8 kA solenoid electrical circuits comprise both a switch-mode power supply, two circuit breakers, water cooled bus bars, He cooled current leads and the diode resistor ramp-down unit. The Vacuum System consists of a group of primary rotary pumps and sets of high vacuum diffusion pumps connected to each individual cryostat. The Magnet Safety System guarantees the magnet protection and human safety through slow and fast dump treatment. The Magnet Control System ensures control, regulation and monitoring of the operation of the magnets. The update...

  4. Operational and troubleshooting experiences in the SST-1 cryogenic system

    Science.gov (United States)

    Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.

    2014-01-01

    Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.

  5. Commissioning of the LHC Cryogenic System Subsystems Cold Commissioning in Preparation of Full Sector Tests

    CERN Document Server

    Serio, L; Ferlin, G; Gilbert, N; Gruehagen, Henning; Knoops, S; Parente, C; Sanmartí, M

    2006-01-01

    The cryogenic system for the Large Hadron Collider accelerator is presently in its final phase of installation and commissioning at nominal operating temperatures. The refrigeration capacity for the LHC will be produced using eight large cryogenic plants installed on five technical sites and distributed around the 26.7-km circumference ring located in a deep underground tunnel. The status of the cryogenic system commissioning is presented together with the experience gained in operating and commissioning it.

  6. EPICS based control system for cryogenic plant at VECC

    International Nuclear Information System (INIS)

    Panda, Umashankar; Pal, Sandip; Mandal, Anupam; Dey, Ranadhir

    2012-01-01

    Cryogenic Plant of Variable Energy Cyclotron Centre consists of two Helium refrigerators (250W and 415W at the rate 4.5K), valve box with sub-cooler and associated sub systems like pure gas storage, helium purifier and impure gas recovery etc. The system also consists of 3.1K liters of liquid Nitrogen (LN 2 ) storage and delivery system. Many of the systems are procured from different suppliers and some are also developed in house. Due to the variety of systems and suppliers the control philosophy, communication protocols and component is also different. So the Supervisory control and data acquisition (SCADA) module has to be such that it can take care of the variance and bring everything into a common control platform. To solve this purpose EPICS (Experimental Physics and Industrial Control System) architecture has been adopted. EPICS is having the advantage of being open source, flexible and unlimited as compared to the commercial SCADA packages. (author)

  7. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    Science.gov (United States)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  8. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  9. The detector calibration system for the CUORE cryogenic bolometer array

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, Jeremy S., E-mail: jeremy.cushman@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Dally, Adam [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Davis, Christopher J. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Ejzak, Larissa; Lenz, Daniel [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lim, Kyungeun E. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Heeger, Karsten M., E-mail: karsten.heeger@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Maruyama, Reina H. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Nucciotti, Angelo [Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 (Italy); INFN – Sezione di Milano Bicocca, Milano I-20126 (Italy); Sangiorgio, Samuele [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Wise, Thomas [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of {sup 130}Te and other rare events. The CUORE detector consists of 988 TeO{sub 2} bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  10. Control and operation cost optimization of the HISS cryogenic system

    International Nuclear Information System (INIS)

    Porter, J.; Anderson, D.; Bieser, F.

    1984-01-01

    This chapter describes a control strategy for the Heavy Ion Spectrometer System (HISS), which relies upon superconducting coils of cryostable design to provide a particle bending field of 3 tesla. The control strategy has allowed full time unattended operation and significant operating cost reductions. Microprocessor control of flash boiling style LIN circuits has been successful. It is determined that the overall operating cost of most cryogenic systems using closed loop helium systems can be minimized by properly balancing the total heat load between the helium and nitrogen circuits to take advantage of the non-linearity which exists in the power input to 4K refrigeration characteristic. Variable throughput compressors have the advantage of turndown capability at steady state. It is concluded that a hybrid system using digital and analog input for control, data display and alarms enables full time unattended operation

  11. Model approach for simulating the thermodynamic behavior of the MFTF cryogenic cooling systems - a status report

    International Nuclear Information System (INIS)

    Sutton, S.B.; Stein, W.; Reitter, T.A.; Hindmarsh, A.C.

    1983-01-01

    A numerical model for calculating the thermodynamic behavior of the MFTF-B cryogenic cooling system is described. Nine component types are discussed with governing equations given. The algorithm for solving the coupled set of algebraic and ordinary differential equations is described. The model and its application to the MFTF-B cryogenic cooling system has not been possible due to lack of funding

  12. Spiral 2 cryogenic system overview: Design, construction and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S. [Air Liquide Advanced Technologies, Sassenage (France); Souli, M. [GANIL, Caen (France); Commeaux, C. [IPN, Orsay (France)

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  13. Options for the Cryogenic System for the BESSY-FEL

    International Nuclear Information System (INIS)

    Kutzschbach, A.; Quack, H.; Haberstroh, Ch.; Knobloch, J.; Anders, W.; Pflueckhahn, D.

    2004-01-01

    The Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung (BESSY GmbH), in January 1999, started operation of BESSY II, a third-generation synchrotron light source delivering world-class, high-brilliance photon beams in the VUV to XUV spectral range. Based on this experience, BESSY has recently proposed the construction of a free-electron laser (FEL), covering a photon-energy range from 20 eV to 1 keV.To reduce the development time and cost, BESSY intends to use proven cavity and cryostat technology developed for the TESLA linear collider. However, the cryogenic load per cavity is approximately 15 to 20 times higher than that anticipated for the (pulsed) TESLA operation. This paper describes possible modifications of the cryostat design to accommodate these additional losses.Superconducting RF cavities are the basis of the FEL accelerator providing the driving electron beam with 2.25 GeV. The accelerator consists of five cold sections separated by warm sections reserved for bunch compression and beam extraction. The total refrigeration load will be covered by a single refrigerator. Several possible layouts of the cryogenic system are described and their advantages and disadvantages are discussed

  14. Cryogenic control system of the large COMPASS polarized target

    CERN Document Server

    Gautheron, F; Baum, G; Berglund, P; Doshita, N; Görtz, S; Gustafsson, K K; Horikawa, N; Kisselev, Yu V; Koivuniemi, J H; Kondo, K; Meyer, Werner T; Reicherz, G

    2004-01-01

    The dilution refrigerator used to cool the large COMPASS polarized target is monitored through a PC running LabVIEW trademark 6.1 under Windows 2000 trademark . About 60 parameters of the target (temperatures, pressures, flow rates) are continuously plotted and checked. They are periodically recorded in an Oracle trademark database and in a data file. An alarm for every parameter can be individually activated and optionally connected to a GSM (Global System for Mobile Communication) delivery message system. A web server receives and publishes the online status of the target with online tables and graphics on a dedicated COMPASS polarized target information web site. A Siemens programmable logic controller (PLC) powered by an uninterruptable source keeps the cryogenic system safe and stable during the long beam periods by controlling valves and interlocks. This safety feature protects the dilution refrigerator against potential damages in case of power failure.

  15. Process instrumentation and control for cryogenic system of VECC

    International Nuclear Information System (INIS)

    Pal, Sandip

    2017-01-01

    Superconducting Cyclotron, which comprises of superconducting main magnet and cryopanels operating at 4.3 K, are operational at VECC in three phases starting from 2005; finally without interruption from July, 2010 to November, 2016. Cryogenic loads of the Cyclotron are catered by any of the two helium liquefiers/refrigerators (250W and 415W @ 4.5K) and associated cryogen distribution system with extensive helium gas management system. The system also consists of 31 K liters of liquid Nitrogen (LN_2) storage and delivery system, necessary of radiation shield. EPICS (Experimental Physics and Industrial Control System) architecture is open source, flexible and has unlimited tags as compared to the commercial Supervisory control and data acquisition (SCADA) packages. Hence, it has been adopted to design the SCADA module. The EPICS Input Output Controller (IOC) communicates with four PLCs over Ethernet based control LAN to control/monitor 618 numbers of field Inputs/ Outputs (I/O). The control system is fully automated and does not require any human intervention for routine operation. Since these two liquefiers share the same high pressure (HP) and low pressure (LP) pipelines, any pressure fluctuation due to rapid change in flow sometimes causes trip of the liquefiers. Few modifications are made in the control scheme in HP and LP zones to avoid liquefier trip. The plant is running very reliably round the clock and the historical data of important parameters during plant operation are archived for plant maintenance, easy diagnosis and future modifications. Total pure helium cycle gas inventory is monitored through EPICS for early detection of helium loss from its trend

  16. Implementation of time synchronized cryogenics control system network architecture for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rakesh J., E-mail: rpatel@ipr.res.in; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-11-15

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  17. Implementation of time synchronized cryogenics control system network architecture for SST-1

    International Nuclear Information System (INIS)

    Patel, Rakesh J.; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  18. Control and operation cost optimization of the HISS cryogenic system

    International Nuclear Information System (INIS)

    Porter, J.; Bieser, F.; Anderson, D.

    1983-08-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable design to provide a maximum particle bending field of 3 tesla. A previous paper describes the cryogenic facility including helium refrigeration and gas management. This paper discusses a control strategy which has allowed full time unattended operation, along with significant nitrogen and power cost reductions. Reduction of liquid nitrogen consumption has been accomplished by making use of the sensible heat available in the cold exhaust gas. Measured nitrogen throughput agrees with calculations for sensible heat utilization of zero to 70%. Calculated consumption saving over this range is 40 liters per hour for conductive losses to the supports only. The measured throughput differential for the total system is higher

  19. Baseline Configuration of the Cryogenic System for the International Linear Collider

    CERN Document Server

    Casas-Cubillos, J; Claudet, S; Ganni, R; Klebaner, A; Parma, V; Peterson, T; Riddone, G; Rode, C; Rousset, B; Serio, L; Tavian, L; Theilacker, J; Vullierme, B; Van Weelderen, R; Weisend, J

    2007-01-01

    The paper discusses the main constraints and boundary conditions and describes the baseline configuration of the International Linear Collider (ILC) cryogenic system. The cryogenic layout, architecture and the cooling principle are presented. The paper addresses a plan for study and development required to demonstrate and improve the performance, to reduce cost and to attain the desired reliability.

  20. An overview of Ball Aerospace cryogen storage and delivery systems

    International Nuclear Information System (INIS)

    Marquardt, J; Keller, J; Mills, G; Schmidt, J

    2015-01-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described. (paper)

  1. Temperature lowering in cryogenic chemical-synthesis techniques and system

    International Nuclear Information System (INIS)

    Martinez, H.E.; Nelson, T.O.; Vikdal, L.N.

    1993-01-01

    When evaluating a chemical synthesis process for a reaction that occurs on the cryogenically cooled walls, it is sometimes necessary to reduce the wall temperatures to enhance the chemical process. To evaluate the chemical process at lower than atmospheric boiling of liquid nitrogen, we built a system and used it to reduce the temperature of the liquid nitrogen. The technique of lowering the liquid nitrogen temperature by reducing the pressure of the boil-off is established knowledge. This paper presents the engineering aspects of the system, design features, equipment requirements, methods of control, and results of the chemical synthesis. The heat input to the system was ∼400 watts, placing a relatively large demand on the pumping system. Our system is a scale-up of the small laboratory experiment, and it provides the information needed to design an effective system. The major problem encountered was the large quantity of liquid escaping the system during the processing, placing a large gas load on the vacuum system

  2. JACoW Online analysis for anticipated failure diagnostics of the CERN cryogenic systems

    CERN Document Server

    Gayet, Philippe; Bradu, Benjamin; Cirillo, Roberta

    2018-01-01

    The cryogenic system is one of the most critical component of the CERN Large Hadron Collider (LHC) and its associated experiments ATLAS and CMS. In the past years, the cryogenic team has improved the maintenance plan and the operation procedures and achieved a very high reliability. However, as the recovery time after failure remains the major issue for the cryogenic availability new developments must take place. A new online diagnostic tool is developed to identify and anticipate failures of cryogenics field equipment, based on the acquired knowledge on dynamic simulation for the cryogenic equipment and on previous data analytic studies. After having identified the most critical components, we will develop their associated models together with the signature of their failure modes. The proposed tools will detect deviation between the actual systems and their model or identify preliminary failure signatures. This information will allow the operation team to take early mitigating actions before the failure occu...

  3. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  4. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    Science.gov (United States)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  5. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    International Nuclear Information System (INIS)

    Energetics, Inc.

    2000-01-01

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during

  6. Spinning-Scroll Pump for Cryogenic Feed System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an efficient, compact, lightweight, reliable, electric-driven, cryogenic spinning scroll pump (CSSP) capable of pumping liquid methane or oxygen at...

  7. Results of KEPCO HTS cable system tests and design of hybrid cryogenic system

    International Nuclear Information System (INIS)

    Lim, J.H.; Sohn, S.H.; Yang, H.S.; Hwang, S.D.; Kim, D.L.; Ryoo, H.S.; Choi, H.O.

    2010-01-01

    In order to investigate the compatibility as a power utility facility, Korea Electric Power Corporation (KEPCO) had installed a 22.9 kV, 1250 A, 100 m long high temperature superconducting (HTS) power cable system. Using the HTS cable, various tests have been performed to investigate electrical and thermo-mechanical properties. Since 2005, a series of thermal cycle tests between liquid nitrogen (LN 2 ) and ambient temperatures have been conducted using a vacuum-pump driven open-loop cryogenic system with a capacity of 3 kW. In the tests, although the open-loop cryogenic system was reliable to operate the HTS cable system, it was not effective in economic view point because LN 2 consumption was larger than expected. In order to secure against unexpected emergencies and solve the problem of LN 2 consumption, a hybrid cryogenic system was designed and installed. A stirling cryocooler was employed and combined with the open-loop cryogenic system. Considering the average heat load at rated condition, the cooling capacity of the cryocooler was determined to 4 kW at 77 K. In this paper, results of performance tests and the design of the hybrid cooling system are presented.

  8. Elmo Bumpy Torus proof of principle, Phase II: Title 1 report. Volume VII. Cryogenic system

    International Nuclear Information System (INIS)

    Poteat, T.J.

    1982-01-01

    This document, Volume VII EBT-P Cryogenic System Title I Design Report, describes the system that resulted from the Title I Preliminary Design effort. It is a self-contained document that can be read apart from the other Volumes comprising the EBT-P Title I Report. This document is a contract deliverable item and provides the detail necessary to support the Cryogenic System design contained in the EBT-P Baseline Design Data Book

  9. Applications of non-cryogenic portable EDXRF systems in archaeometry

    International Nuclear Information System (INIS)

    Cesareo, R.; Castellano, A.; Dabrowski, A.

    1996-01-01

    In this paper the most relevant developments in the realisation of portable energy-dispersive X-ray fluorescence (EDXRF) equipments are discussed. In particular, the latest advances in non-cryogenic (Peltier cooled) X-ray detectors and miniaturised X-ray generators are shown. The energy resolution of the new detection systems is adequate to resolve the characteristic X-ray emission lines of contiguous elements. This small size and low power make the system ideal for portable instrumentation and have stimulated the development of small- and low-power X-ray generators which can be used for the excitation of fluorescence radiation in a broad energy range (5-40 keV). Finally, the use of EDXRF related to archaeometric research (pigments in ancient paintings and major elements in the metal alloys) is emphasised. Recent results obtained with new HgI 2 and silicon PIN detector systems combined with miniaturised highly stable air-cooled X-ray generators are described. (orig.)

  10. A New Cryogenic Sample Manipulator For SRC's Scienta 2002 System

    International Nuclear Information System (INIS)

    Gundelach, Chad T.; Fisher, Mike V.; Hoechst, Hartmut

    2004-01-01

    We discuss the first bench tests of a sample manipulator which was recently designed at SRC for the Scienta 2002 User system. The manipulator concept utilizes the 10 deg. angular window of the Scienta in the horizontal plane (angle dispersion) by rotating the sample normal around the vertical axis while angular scans along the vertical axis (energy dispersion) are continuous within ±30 deg. relative to the electron lens by rotating the sample around the horizontal axis. With this concept it is possible to precisely map the entire two-dimensional k-space of a crystal by means of stitching together 10 deg. wide stripes centered +15 deg. to -50 deg. relative to the sample normal. Three degrees of translational freedom allow positioning the sample surface at the focal point of the analyzer. Two degrees of rotational freedom are available at this position for manipulating the sample. Samples are mounted to a standard holder and transferred to the manipulator via a load-lock system attached to a prep chamber. The manipulator is configured with a cryogenic cold head, an electrical heater, and a temperature sensor permitting continuous closed-loop operation for 20-380 K

  11. Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems

    Science.gov (United States)

    Johnson, Wesley L.; Fesmire, J. E.

    2009-01-01

    Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.

  12. Installation and commissioning of a cryogen distribution system for the TPS project

    Science.gov (United States)

    Tsai, H. H.; Hsiao, F. Z.; Li, H. C.; Lin, M. C.; Wang, C.; Liao, W. R.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Chuang, P. S. D.

    2016-07-01

    A cryogen distribution system was installed and commissioned to transfer liquid nitrogen (LN2) and liquid helium (LHe) from storage dewars to superconducting radio-frequency (SRF) cavities for the 3-GeV Taiwan Photon Source (TPS) project. The cryogen distribution system comprises one distribution valve box (DVB), four control valve boxes (CVB) and seven sections of multichannel transfer line (MCL). The DVB distributes the LHe and LN2 to the CVB, and then to the SRF cavities through independent vacuum-jacketed transfer lines. The vaporized GHe and GN2 from the cryomodules are collected via the MCL. The cryogen distribution system was installed and commissioned from October 2014 to the end of March 2015. This paper presents the installation, pre-commissioning and commissioning of the cryogen distribution system, and describes the heat load test. Thermal acoustic oscillation (TAO) was found in the GHe process line; this phenomenon and its solution are also presented and discussed.

  13. Cryogenic system of the prototype of the superconducting magnet for a deuteron cyclotron-1

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.; Buzdavin, A.P.; Vasilenko, A.T.

    1987-01-01

    The results achieved in developing a cryogenic system for the superconducting magnet of the deuteron cyclotron are described. The cryogenic system consists of a liquefier-refrigerator with the output 40 l.h, or 150 W of power taken off at 4.5 K, a satellite refrigerator, a cryostat of the superconductiong magnet coil and vessels for liquid nitrogen and helium. Now auxiliary equipment is being mounted and the main parts of the magnet are being manufatured

  14. Current measurement system utilizing cryogenic techniques for the absolute measurement of the magnetic flux quantum

    International Nuclear Information System (INIS)

    Endo, T.; Murayama, Y.; Sakamoto, Y.; Sakuraba, T.; Shiota, F.

    1989-01-01

    A series of systems composed of cryogenic devices such as a Josephson potentiometer and a cryogenic current comparator has been proposed and developed to precisely measure a current with any value up to 1 A. These systems will be used to measure the injected electrical energy with an uncertainty of the order of 0.01 ppm or less in the absolute measurement of the magnetic flux quantum by superconducting magnetic levitation. Some preliminary experiments are described

  15. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    CERN Document Server

    Serio, L; Claudet, S; Delikaris, D; Ferlin, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2015-01-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.

  16. Instrumentation, Field Network and Process Automation for the Cryogenic System of the LHC Test String

    CERN Document Server

    Suraci, A; Balle, C; Blanco-Viñuela, E; Casas-Cubillos, J; Gomes, P; Pelletier, S; Serio, L; Vauthier, N; Balle, Ch.

    2001-01-01

    CERN is now setting up String 2, a full-size prototype of a regular cell of the LHC arc. It is composed of two quadrupole, six dipole magnets, and a separate cryogenic distribution line (QRL) for the supply and recovery of the cryogen. An electrical feed box (DFB), with up to 38 High Temperature Superconducting (HTS) leads, powers the magnets. About 700 sensors and actuators are distributed along four Profibus DP and two Profibus PA field buses. The process automation is handled by two controllers, running 126 Closed Control Loops (CCL). This paper describes the cryogenic control system, associated instrumentation, and their commissioning.

  17. Main Consolidations and Improvements of the Control System and Instrumentation for the LHC Cryogenics

    CERN Document Server

    Fluder, C; Bremer, J; Bremer, K; Ivens, B; Casas-Cubillos, J; Claudet, S; Gomes, P; Ivens, B; Perin, A; Pezzetti, M; Tovar-Gonzalez, A; Vauthier, N

    2013-01-01

    Operation of the LHC during 2010 and 2011 with 3.5 TeV beam energy and luminosity up to 3.65x1033 cm-2 s-1, led to radiation-induced failures of micro-electronic devices used in the cryogenic control system. Mitigating actions addressed equipment relocation and corrective patches on electronics and software. Driven by the technical requirements and by feedback from the cryogenic operation team, numerous consolidations and improvements were implemented on-the-fly, enhancing availability and operability of the LHC cryogenics. Furthermore, additional diagnostic tools, test benches, technical procedures and trainings have been provided to strengthen first line support services.

  18. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    International Nuclear Information System (INIS)

    Serio, L; Bremer, J; Claudet, S; Delikaris, D; Ferlin, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2015-01-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented. (paper)

  19. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  20. Commissioning of the Cryogenic System for the ATLAS Superconducting Magnets

    CERN Document Server

    Delruelle, N; Bradshaw, T; Haug, F; ten Kate, H H J; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirotte, O; Rochford, J

    2006-01-01

    The paper describes the test results of the helium cryoplant for the superconducting magnets of the ATLAS particle detector at CERN. It consists of two refrigerators used in common by all the magnets and of two proximity cryogenic systems (PCS) interfacing respectively the toroids and the central solenoid. Emphasis is given to the commissioning of the refrigerators: the main unit of 6 kW equivalent capacity at 4.5 K and the thermal shield refrigerator providing 20 kW between 40 K and 80 K. The first unit is used for refrigeration at 4.5 K and for the cooling of three sets of 20 kA current leads, while the second one provides, in addition to the 20 kW refrigeration of the thermal shields, 60 kW for the cool-down to 100 K of the 660 ton cold mass of the magnets. The tests, carried out with the equipment in the final underground configuration, are extended to the PCS that includes the large liquid helium centrifugal pumps (each providing 1.2 kg/s) for forced-flow cooling of the magnets and the complex distributi...

  1. The cryogenic helium cooling system for the Tokamak physics experiment

    International Nuclear Information System (INIS)

    Felker, B.; Slack, D.S.; Wendland, C.R.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will use supercritical helium to cool all the magnets and supply helium to the Vacuum cryopumping subsystem. The heat loads will come from the standard steady state conduction and thermal radiation sources and from the pulsed loads of the nuclear and eddy currents caused by the Central Solenoid Coils and the plasma positioning coils. The operations of the TPX will begin with pulses of up to 1000 seconds in duration every 75 minutes. The helium system utilizes a pulse load leveling scheme to buffer out the effects of the pulse load and maintain a constant cryogenic plant operation. The pulse load leveling scheme utilizes the thermal mass of liquid and gaseous helium stored in a remote dewar to absorb the pulses of the tokamak loads. The mass of the stored helium will buffer out the temperature pulses allowing 5 K helium to be delivered to the magnets throughout the length of the pulse. The temperature of the dewar will remain below 5 K with all the energy of the pulse absorbed. This paper will present the details of the heat load sources, of the pulse load leveling scheme operations, a partial helium schematic, dewar temperature as a function of time, the heat load sources as a function of time and the helium temperature as a function of length along the various components that will be cooled

  2. StructUre and test results of the Tokamak-7 device cryogenic system

    International Nuclear Information System (INIS)

    Babaev, I.V.; VolobUev, A.N.; Zhul'kin, V.F.

    1982-01-01

    A cryogenic system (CS) of the Tokamak-7 (T-7) installation with the longitudinal field superconducting magnetic system (SMS) is described. The CS is designed for cool-down, cryostatic cooling and heating of the T-7 cryogenic objects and consists of a helium system (HS) and a nitrogen cryogenic system (NCS). The HS consists of:a a heliUm delivery system intended for distributing and controlling the helium flows in the SMS; cryogenic helium units; a 1.25 m 3 volume for storing liquid helium; a compressor compartment using piston compressors at the 3 MPa operating pressure and 140 g/s total capacity; gaseous helium storages (3600 m 3 under normal conditions); helium cleaning and drying systems; a gas holder of 20 m 3 operating volume; cryogenic pipelines and pipe fittings. The NCS operates on delivered nitrogen and includes a 120 m 3 liquid nitrogen storage, evaporators and electric heaters producing up to 230 g/s of gaseous nitrogen at 300 K, a separator, cryogenic pipelines and fittings. It is found that the CS has the necessary cold production reserve, ensures reliable operation of the Tokamak-7 device and permits to carry out practically continuous plasma experiments

  3. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. (General Atomics, San Diego, CA (United States)); Bittner, D.N.; Hendricks, C.D. (W.J. Schafer Associates, Livermore, CA (United States))

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  4. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. [General Atomics, San Diego, CA (United States); Bittner, D.N.; Hendricks, C.D. [W.J. Schafer Associates, Livermore, CA (US)

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  5. Conceptual design report for the University of Rochester cryogenic target delivery system

    International Nuclear Information System (INIS)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D 2 or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility

  6. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    Science.gov (United States)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  7. Construction of cryogenic testing system and tensile deformation behavior of AISI 300 series stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Lee, H.M.; Nahm, S.H.; Huh, Y.H.; Lee, J.J.; Bahng, G.W.

    1990-01-01

    For practical application of cryogenic engineering, development and characterization of structural materials for use at low temperatures are essential. For these purposes, a system for mechanical testing at liquid helium temperatures was developed and it was shown that the precision and accuracy of the system met the requirements of standards for materials testing machines. Using this system, tensile deformation behavior of AISI 304,316 and 310S austenitic stainless steels at cryogenic temperatures was investigated. Tests were conducted on round, tensile specimens having a 6.25mm diameter at 4,77, and 295 K and loading rate was 0.5mm/min. Serrations were observed in all alloys at 4 K. The stress-displacement curves at 77 and 4 K showed different tendency from those at 298 K. As the testing temperature decreased, ultimate strengths of 304 and 316 were largely increased compared to the increase of yield strengths, but the increase of ultimate strength of 310S was almost the same to that of yield strength. Type 310S had the highest yield strength and the lowest tensile strength at all temperatutes. These tensile characteristics were considered to be strongly affected by austenite stability.(Author)

  8. A VME based cryogenic data acquisition and control system (CRYO-DACS)

    International Nuclear Information System (INIS)

    Antony, Joby; Rajkumar; Datta, T.S.

    2005-01-01

    This report describes a newly developed VME based data acquisition and control system named CRYO-DACS for acquiring and controlling various analog and digital cryogenic parameters from equipment's like beam-line cryostats, Helium compressors, liquefier, cryogenic distribution line etc. A new central control room has been set-up for the remote controls and monitoring. The system monitors various analog parameters like temperature, pressure, vacuum and cryogenic fluid levels inside the cryostats and performs closed loop controls of cryogen valves. The hardware architecture of CRYO-DACS is multi-crate distributed VME, all linked by workstation clients in 100 Mb/s LAN for distributed logging, historical trending, analysis, alarm management and control GUIs. (author)

  9. Construction and commissioning of a hydrogen cryogenic distillation system for tritium recovery at ICIT Rm. Valcea

    Energy Technology Data Exchange (ETDEWEB)

    Ana, George, E-mail: george.ana@icsi.ro [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Cristescu, Ion [Karlsruhe Istitute for Technologies, Tritium Laboratory, Eggenstein-Leopoldshaffen (Germany); Draghia, Mirela [ISTECH, Timisoara (Romania); Bucur, Ciprian; Balteanu, Ovidiu; Vijulie, Mihai; Popescu, Gheorghe; Costeanu, Claudiu; Sofilca, Nicolae; Stefan, Iulia; Daramus, Robert; Niculescu, Alina; Oubraham, Anisoara; Spiridon, Ionut; Vasut, Felicia; Moraru, Carmen; Brad, Sebastian [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Pasca, Gheorghe [ISTECH, Timisoara (Romania)

    2016-05-15

    Highlights: • Cryogenic distillation (CD) process is being employed for tritium separation from tritiated hydrogen mixtures. • Process control and safety phylosophy with the detritiation plant from Rm. Vâlcea. • Tests undertaken prior to commissioning of the CD system from Rm. Vâlcea. • Preliminary experiments with the CD system (non-radiological). - Abstract: Cryogenic distillation (CD) of hydrogen in combination with Liquid Phase Catalytic Exchange (LPCE) or Combined Electrolytic Catalytic Exchange (CECE) process is used for tritium removal/recovery from tritiated water. Tritiated water is being obtained after long time operation of CANDU reactors, or in case of ITER mainly by the Detritiation System (DS). The cryogenic distillation system (CDS) used to remove/recover tritium from a hydrogen stream consists of a cascade of cryogenic distillation columns and a refrigeration unit which provides the cooling capacity for the condensers of CD columns. The columns, together with the condensers and the process heat-exchangers are accommodated in a vacuumed cold box. In the particularly case of the ICIT Plant, the cryogenic distillation cascade consists of four columns with diameters between 100–7 mm and it has been designed to process up to 10 mc/h of tritiated deuterium. This paper will present the steps undertaken for construction and commissioning of a pilot plant for tritium removal/recovery by cryogenic distillation of hydrogen. The paper will show besides preliminary data obtained during commissioning, also general characteristics of the plant and its equipments.

  10. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab

  11. Cryogenic system of steady state superconducting Tokamak SST-1: Operational experience and controls

    International Nuclear Information System (INIS)

    Sarkar, B.; Tank, Jignesh; Panchal, Pradip; Sahu, A.K.; Bhattacharya, Ritendra; Phadke, Gaurang; Gupta, N.C.; Gupta, Girish; Shah, Nitin; Shukla, Pawan; Singh, Manoj; Sonara, Dasarath; Sharma, Rajiv; Saradha, S.; Patel, J.C.; Saxena, Y.C.

    2006-01-01

    The cryogenic system of SST-1 consists of the helium cryogenic system and the nitrogen cryogenic system. The main components of the helium cryogenic system are (a) 1.3 kW helium refrigerator/liquefier (HRL) and (b) warm gas management system (WGM), where as, the nitrogen cryogenic system called as liquid nitrogen (LN 2 ) management system consists of storage tanks and a distribution system. The helium flow distribution and control to different sub-systems is achieved by the integrated flow distribution and control (IFDC) system. The HRL has been commissioned and operated for performing a single toroidal field coil test as well as for the first commissioning of SST-1 superconducting-magnets up to 68 K. Analysis of the results shows that the compressor and turbine parameters of the HRL, namely, the speed and pressure are very stable during operation of the HRL, confirming to the reliability in control of thermo-dynamic parameters of the system. The thermal shield of the SST-1 cryostat consists of ten different types of panels, which have been cooled down to the minimum temperature of 80 K and maintained during the first commissioning of SST-1. The operation and controls of the LN2 management system have been found to be as per the design consideration

  12. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    Science.gov (United States)

    Ravex, Alain; Flachbart, Robin; Holt, Barney

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6

  13. The Development of the Control System for the Cryogenics in the LHC Tunnel

    CERN Document Server

    Fluder, C; Casas-Cubillos, J; Dubert, P; Gomes, P; Pezzetti, M; Tovar-Gonzalez, A; Zwalinski, L

    2011-01-01

    The Large Hadron Collider (LHC) was commissioned at CERN and started operation with beams in 2008. The LHC makes extensive use of superconductors, in magnets, electrical feed boxes and accelerating cavities, which are operated at cryogenic temperatures. The process automation for the cryogenic distribution around the 27 km accelerator circumference is based on 18 Programmable Logic Controllers (PLCs); overall, they handle 4 000 control loops and 8 000 alarms and interlocks; 16 000 cryogenic sensors and actuators are accessed through industrial field networks. This paper reviews the control system architecture and the main hardware and software components; presents the hardware commissioning and software production methodologies; and illustrates some of the problems faced during development, commissioning and nominal cryogenics operation, together with the solutions applied.

  14. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  15. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    International Nuclear Information System (INIS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN 2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014

  16. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D. [TRIUMF, Vancouver, BC, V6T 2A3 (Canada)

    2014-01-29

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN{sub 2} storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  17. Design and development of a device management platform for EAST cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei, E-mail: zzw@ipp.ac.cn; Lu, Xiaofei, E-mail: xiaofeilu@ipp.ac.cn; Zhuang, Ming, E-mail: zhm@ipp.ac.cn; Hu, Liangbing, E-mail: huliangbing@ipp.ac.cn; Xia, Genhai, E-mail: xgh@ipp.ac.cn

    2014-05-15

    Highlights: • A device management platform for EAST cryogenic system based on DCS is designed. • This platform enhances the integrity and continuity of system device information. • It can help predictive maintenance and device management decision. - Abstract: EAST cryogenic system is one of the critical sub-systems of the EAST tokamak device. It is a large scale helium cryoplant, which adopts distributed control system to realize monitoring and control of the cryogenic process and devices. However, the maintenance and management of most field devices are still in the corrective maintenance or traditional preventive maintenance stage. Under maintained or over maintained problems widely exist, which could cause devices fault and increase operation costs. Therefore, a device management platform is proposed for a safe and steady operation as well as fault diagnosis and predictive maintenance of EAST cryogenic system. This paper presents the function design and architecture design of the cryogenic device management platform. This platform is developed based on DeltaV DCS and acquires monitoring data through OPC protocol. It consists of three pillars, namely device information management, device condition management, and device performance monitoring. The development and implementation of every pillar are illustrated in detail in this paper. Test results and discussions are presented in the end.

  18. Operational present status and reliability analysis of the upgraded EAST cryogenic system

    Science.gov (United States)

    Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.

    2017-12-01

    Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.

  19. Dynamics of cold helium flow inside a cryoline used for large cryogenic distribution system

    International Nuclear Information System (INIS)

    Kumar, Uday; Jadon, Mohit; Choukekar, Ketan; Shukla, Vinit; Patel, Pratik; Kapoor, Himanshu; Shah, Nitin; Muralidhara, Srinivasa; Sarkar, Biswanath

    2015-01-01

    The Cryolines, which by definition transfers cryogens from the source, normally a cryogenic plant, to several systems requiring cooling at cryogenic temperature to the level of 4 K and 80 K. The operations of cryolines are normally assumed to be steady state following a cool down from room temperature to the cryogenic temperature. It is to be noted that in a distributed cryogenic system, especially in a nuclear facility such as ITER having confinement definition due to the regulatory requirements, do also attract the attention in the system design that the release from safety valves cannot be allowed inside a building. Therefore, all safety valves need to be discharged inside a confined space, which is a specific space requiring fulfillment of definition for a cryogenic line. The specificity in such cases is that such cryogenic lines will realize dynamic conditions for each release of safety valves or a combination of safety valves in terms of pressure, temperature and flow, leading to unexpected failures. Such operating scenarios also lead to serious impact on fatigue with a question mark on the reliability. Therefore, one can define such cryolines as Relief Collection Header (RCH) which collects discharged helium and transport it to the appropriate place as defined in the system design. The discharges of cold helium from safety relief discharge ports of equipment can result into significantly unsteady and compressible flow in RCH. The proper design of the RCH has to be supported by detailed dynamic of expected flow phenomena for specific cases. The paper presents the dynamics of cold helium flow inside the typical RCH that has been performed to investigate the variation in flow parameters (pressure, temperature, velocity and density) along the axis of RCH and predictions on its reliability. (author)

  20. First Assessment of Reliability Data for the LHC Accelerator and Detector Cryogenic System Components

    CERN Document Server

    Perinic, G; Alonso-Canella, I; Balle, C; Barth, K; Bel, J F; Benda, V; Bremer, J; Brodzinski, K; Casas-Cubillos, J; Cuccuru, G; Cugnet, M; Delikaris, D; Delruelle, N; Dufay-Chanat, L; Fabre, C; Ferlin, G; Fluder, C; Gavard, E; Girardot, R; Haug, F; Herblin, L; Junker, S; Klabi , T; Knoops, S; Lamboy, J P; Legrand, D; Metselaar, J; Park, A; Perin, A; Pezzetti, M; Penacoba-Fernandez, G; Pirotte, O; Rogez, E; Suraci, A; Stewart, L; Tavian, L J; Tovar-Gonzalez, A; Van Weelderen, R; Vauthier, N; Vullierme, B; Wagner, U

    2012-01-01

    The Large Hadron Collider (LHC) cryogenic system comprises eight independent refrigeration and distribution systems that supply the eight 3.3 km long accelerator sectors with cryogenic refrigeration power as well as four refrigeration systems for the needs of the detectors ATLAS and CMS. In order to ensure the highest possible reliability of the installations, it is important to apply a reliability centred approach for the maintenance. Even though large scale cryogenic refrigeration exists since the mid 20th century, very little third party reliability data is available today. CERN has started to collect data with its computer aided maintenance management system (CAMMS) in 2009, when the accelerator has gone into normal operation. This paper presents the reliability observations from the operation and the maintenance side, as well as statistical data collected by the means of the CAMMS system.

  1. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    International Nuclear Information System (INIS)

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-01-01

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m 3 storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  2. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  3. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    Science.gov (United States)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  4. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    Science.gov (United States)

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  5. Design and construction of the SSCL magnet test laboratory cryogenic systems

    International Nuclear Information System (INIS)

    Freeman, M.A.; Kobel, T.A.

    1992-01-01

    The intent of this document is to provide a brief summary of the execution, by Process Systems International, Inc. (PSI), of the Design and Construction of the SSCL Magnet Test Laboratory Cryogenic Systems. This $30 million project requires the expenditure of over 200,000 manhours and the procurement of $17 million in materials within a two year period. SSC magnets will be performance tested at the Magnet Test Laboratory (MTL) and the Accelerator System String Test (ASST) facility under conditions simulating the environment of the SSC main ring. The cryogenic system consists of test stands (five for MTL, one for ASST) and the associated equipment including cryogenic storage, purification, thermal conditioning, and helium refrigeration necessary to support the test program

  6. The development of a cryogenic integrated system with the working temperature of 100K

    Science.gov (United States)

    Liu, En'guang; Wu, Yi'nong; Wang, Yueming; Wen, Jiajia; Lv, Gang; Li, Chunlai; Hou, Jia; Yuan, Liyin

    2016-05-01

    In the infrared system, cooling down the optic components' temperature is a better choice to decrease the background radiation and maximize the sensitivity. This paper presented a 100K cryogenic optical system, for which an integrated designation of mechanical cooler, flexible thermal link and optical bench was developed. The whole infrared optic components which were assembled in a vacuum box were cooled down to 100K by two mechanical coolers. Low thermal conductivity supports and low emissivity multi-layers were used to reduce the cryogenic optical system's heat loss. The experiment results showed that in about eight hours, the temperature of the optical components reached 100K from room temperature, and the vibration from the mechanical coolers nearly have no affection to the imaging process by using of thermal links. Some experimental results of this cryogenic system will be discussed in this paper.

  7. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-03-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and non-high current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  8. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Barger, R.K.; Bianchi, A.J.; Cooper, W.E.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-01-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and nonhigh current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  9. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  10. First operation of the XFEL linac with the 2 K cryogenic system

    Science.gov (United States)

    Paetzold, T.; Petersen, B.; Schnautz, T.; Ueresin, C.; Zajac, J.

    2017-12-01

    The RF operation of the about 800 superconducting 1.3 GHz 9-cell cavities of the XFEL linac requires helium II bath cooling at 2 K, corresponding to a vapor pressure of 3100 Pa. After the first cool-down of the XFEL linac to 4 K in December, 27th 2016 the operation of the 2 K cryogenic system was started in January, 2nd 2017. The 2 K cryogenic system consist of a 4-stage set of cold compressors to compress helium vapor at a mass flow of up to 100 g/s from 2400 Pa to about 110 kPa and a full flow bypass with an arrangement of heat exchangers and control valves. This paper describes the XFEL refrigerating plant, especially the 2 K cryogenic system, the tuning of the cold compressor regulation to adapt to the XFEL linac static and dynamic heat loads and experience of about 6 months of operation.

  11. Economics of Large Helium Cryogenic Systems experience from Recent Projects at CERN

    CERN Document Server

    Claudet, S; Lebrun, P; Tavian, L; Wagner, U

    1999-01-01

    Large projects based on applied superconductivity, such as particle accelerators, tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of which represents a significant, if not dominant fraction of the total capital and operational expenditure. It is therefore important to establish guidelines and scaling laws for costing such systems, based on synthetic estimators of their size and performance. Although such data has already been published for many years, the experience recently gathered at CERN with the LEP and LHC projects, which have de facto turned the laboratory into a major world cryogenic center, can be exploited to update this information and broaden the range of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K refrigeration, cryogen distribution and storage systems, and indicate paths towards their cost-to-performance optimisation.

  12. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  13. A cryogenic system design for the international thermonuclear experimental reactor (ITER)

    International Nuclear Information System (INIS)

    Slack, D.S.

    1991-01-01

    A conceptual design for ITER was completed last year. The author developed a suitable cryogenic system for ITER as part of this conceptual design effort. An overview of the design is reported. Emphasis is on the fact that cryogenics is a mature science, and a system supporting ITER needs can be made from time-proven components without loss of efficiency or reliability. Because of the large size of the ITER cryogenic system, large numbers of compressors and expanders must be used. Very high reliability is assured by arranging these components in parallel banks where servicing of individual components can be done without interruption of operations. This and other ideas based on the author's experience with Mirror Fusion Test Facility (MFTF) operations are described. 5 refs., 3 figs

  14. A cryogenic system for TIBER II [Tokamak Ignition/Burn Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.

    1987-01-01

    Phase II of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) study describes one option for a small, economical, next-generation tokamak [1,2]. Because of its small size, minimum shielding is used between the plasma and the toroidal-field (TF) coils. Consequently, a large cryogenic system (approximately 70 kW at 4.5 K) capable of delivering forced-flow helium is required. This paper describes a cryogenic system that meets this requirement and includes TIBER-II requirements. 3 refs

  15. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  16. Design, Construction, Installation and First Commissioning Results of the LHC Cryogenic System

    CERN Document Server

    Claudet, S

    2006-01-01

    The cryogenic system of the Large Hadron Collider (LHC) will be, upon its completion in 2006, the largest in the world in terms of refrigeration capacity with an equivalent to 144 kW at 4.5 K, about 400'000 litres of superfluid helium with 25 km of superconducting magnets below 2 K leading to a cryogen inventory of 100 tons of helium. The challenges involved in the design, construction and installation, as well as the first commissioning results will be addressed in this talk. Particular mention will be made of the problems encountered and how they were or are being solved. Perspectives for LHC will be presented. General considerations for future large cryogenic systems will be briefly proposed.

  17. Estimation of the energy efficiency of cryogenic filled tank use in different systems and devices

    International Nuclear Information System (INIS)

    Blagin, E.V.; Dovgyallo, A.I.; Nekrasova, S.O.; Sarmin, D.V.; Uglanov, D.A.

    2016-01-01

    Highlights: • The cryogenic fueling tank is a device for storage and gasification of working fluid. • Potential energy of pressure can be converted to electricity by circuit of turbines. • It is possible to compensate up to 8% of energy consumed for liquefaction. - Abstract: This article presents a device for storage and gasification of cryogenic working fluid. This device is called cryogenic fueling tank. Working fluid pressure increases during the gasification and potential energy of this pressure can be used in different ways. The ways of integrating the cryogenic fueling tank into existing energy plants are described in this article. The estimation of the cryogenic fueling tank application in the gasification facility as well as in the onboard power system was carried out. This estimation shows that application of such tank as well as a circuit of turbines allows generating up to near 8% of energy which was consumed during gas liquefaction. The estimation of the additionally generated electric energy value was also carried out for each of the cases.

  18. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  19. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  20. Assessment of the cryogenic distillation system in Cernavoda tritium removal facility

    International Nuclear Information System (INIS)

    Pasca, Gheorghe; Draghia, Mirela; Porcariu, Florina; Ana, George

    2010-01-01

    Full text: This paper aims at presenting an assessment of the Cryogenic Distillation system (CD) in the Cernavoda Tritium Removal Facility (CTRF). The cryogenic distillation system is one of the key components of the CTRF which comprises other systems as: the liquid phase catalytic exchange system, designed to transfer tritium from heavy water to a deuterium stream to be fed into the CD system; the atmosphere detritiation system; the tritium recovery system; the tritium/hydrogen monitoring system; the central interlocking system; the tritium extraction and storage system. Thus, the need to build a tritium separation and recovery system results from economic opportunities offered both by heavy water reuse and tritium production, but, at the same time, it offers an alternative for the storage of tritiated heavy water as radioactive waste. (authors)

  1. Analysis and Design of the Cryogenic System of the Future Circular Collider

    CERN Document Server

    Kotnig, Claudio; Brenn, Günter

    Particle colliders are today's most advanced tools to perform particle physics experiments and penetrate the mysteries of matter. The largest existing particle collider, the LHC, is about to reach its technical limits and the particle physics society has to decide which future machine will enable the successful research to gain new knowledge. One option is the superconducting Future Circular Collider (FCC), which would exceed the LHC's size and generated particle energies by far. The enormous particle energies call for high magnetic fields, which only can be created reliably and economically by special superconducting materials at cryogenic temperature level. The intelligent design of the cryogenic distribution and discharge system to sustain the thermodynamic state of the superconducting electromagnets is the basis for an efficient and functional refrigeration and consequently for the physics experiments themselves. Several requirements and constraints limit the technical possibilities and the cryogenic syst...

  2. Design and development of graphite/epoxy feed line for use of cryogenic propulsion systems

    International Nuclear Information System (INIS)

    Kremer, J.S.; Kreiner, J.H.; Mosallam, A.S.

    1998-01-01

    The development of lightweight composite cryogenic ines is a critical technology for single-stage-to-orbit launch vehicles such as the Reusable Launch Vehicle (RLV). To achieve weight goals, a significant effort will be required to develop feed line designs that can reliably replace today's stainless steel configurations. A number of technical problems exist, including the large coefficient of thermal expansion (CTE) differential between the composite and interfacing metallic materials and the ability to seal against composite materials in a cryogenic environment. This paper reports the results of a development efforts undertaken to design, build, and test a graphite/epoxy propellant feed line to carry liquid hydrogen (-423 degree F). The design incorporates a reusable cryogenic insulation system and a secondarily bonded/co-cured splice joint

  3. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  4. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Energy Technology Data Exchange (ETDEWEB)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  5. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Science.gov (United States)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  6. Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR

    Science.gov (United States)

    Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang

    2017-01-01

    The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.

  7. First Operational Experience and Performance Optimization of the ATLAS Magnet Cryogenic System

    CERN Document Server

    Delruelle, N; Dudarev, A; Passardi, G; Ten Kate, H H J

    2012-01-01

    The ATLAS magnet system, comprising a superconducting central solenoid and three superconducting toroids, has been successfully ramped up for the first time to the nominal operational current of 20.4 kA on 4th August 2008. Since then, new cryogenic operational challenges have been raised, like the smoothing of steady-state parameters, the enhancing of transient procedures to minimize thermal shocks on the magnet cold masses, the optimization of the complex cryogenic system in order to reduce the compressors electric consumption and finally how to avoid regular clogging of the shield refrigerator by water contamination. This paper presents the heat load identification of the various cryogenic sub-systems done at 4.5 K and how one of these loads was reduced, what was gained - in term of electrical consumption - by tuning the turbines settings of the main refrigerator and finally the first consolidation of the cryogenic system implemented in order to minimize the detector downtime during LHC beam runs.

  8. Control System For Cryogenic THD Layering At The National Ignition Facility

    International Nuclear Information System (INIS)

    Fedorov, M.; Blubaugh, J.; Edwards, O.; Mauvais, M.; Sanchez, R.; Wilson, B.

    2011-01-01

    The National Ignition Facility (NIF) is the world largest and most energetic laser system for Inertial Confinement Fusion (ICF). In 2010, NIF began ignition experiments using cryogenically cooled targets containing layers of the tritium-hydrogen-deuterium (THD) fuel. The 75 (micro)m thick layer is formed inside of the 2 mm target capsule at temperatures of approximately 18 K. The ICF target designs require sub-micron smoothness of the THD ice layers. Formation of such layers is still an active research area, requiring a flexible control system capable of executing the evolving layering protocols. This task is performed by the Cryogenic Target Subsystem (CTS) of the NIF Integrated Computer Control System (ICCS). The CTS provides cryogenic temperature control with the 1 mK resolution required for beta-layering and for the thermal gradient fill of the capsule. The CTS also includes a 3-axis x-ray radiography engine for phase contrast imaging of the ice layers inside of the plastic and beryllium capsules. In addition to automatic control engines, CTS is integrated with the Matlab interactive programming environment to allow flexibility in experimental layering protocols. The CTS Layering Matlab Toolbox provides the tools for layer image analysis, system characterization and cryogenic control. The CTS Layering Report tool generates qualification metrics of the layers, such as concentricity of the layer and roughness of the growth boundary grooves. The CTS activities are automatically coordinated with other NIF controls in the carefully orchestrated NIF Shot Sequence.

  9. Automatic Management Systems for the Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Tovar-Gonzalez, A; Herblin, L; Lamboy, J P; Vullierme, B

    2006-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine shall be entirely tested at reception on modular test facilities. The operation 24 hours per day of the cryogenic test facilities is conducted in turn by 3-operator teams, assisted in real time by the use of the Test Bench Priorities Handling System, a process control application enforcing the optimum use of cryogenic utilities and of the "Tasks Tracking System", a web-based e-traveller application handling 12 parallel 38-task test sequences. This paper describes how such computer-based management systems can be used to optimize operation of concurrent test benches within technical boundary conditions given by the cryogenic capacity, and how they can be used to study the efficiency of the automatic steering of all individual cryogenic sub-systems. Finally, this paper presents the overall performance of the cryomagnet test station for the first complete year of operation at high produ...

  10. Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests

    Science.gov (United States)

    Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.

    2017-12-01

    The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.

  11. Operation of the cryogenic system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Chronis, W.C.; Slack, D.S.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) was designed to cool the entire MFTF-B system from ambient to operating temperature in less than 10 days. The system was successfully operated in the recent plant and capital equipment (PACE) acceptance tests, and results from these tests helped us correct problem areas and improve the system

  12. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  13. Mirror fusion test facility cryogenic system - performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1988-01-01

    The cryogenic system for the MFTF is a helium refrigeration system that proved to be successful and cost effective. All operating objectives were met while remaining within a few percent of the initial cost and schedule plans. The management approach used at MFTF is assessed. Manpower levels, extent and type of industrial participation, and subcontractor specifications and interactions are reviewed along with highlights of system testing, documentation, and operation

  14. Upgrade to the Cryogenic Hydrogen Gas Target Monitoring System

    Science.gov (United States)

    Slater, Michael; Tribble, Robert

    2013-10-01

    The cryogenic hydrogen gas target at Texas A&M is a vital component for creating a secondary radioactive beam that is then used in experiments in the Momentum Achromat Recoil Spectrometer (MARS). A stable beam from the K500 superconducting cyclotron enters the gas cell and some incident particles are transmuted by a nuclear reaction into a radioactive beam, which are separated from the primary beam and used in MARS experiments. The pressure in the target chamber is monitored so that a predictable isotope production rate can be assured. A ``black box'' received the analog pressure data and sent RS232 serial data through an outdated serial connection to an outdated Visual Basic 6 (VB6) program, which plotted the chamber pressure continuously. The black box has been upgraded to an Arduino UNO microcontroller [Atmel Inc.], which can receive the pressure data and output via USB to a computer. It has been programmed to also accept temperature data for future upgrade. A new computer program, with updated capabilities, has been written in Python. The software can send email alerts, create audible alarms through the Arduino, and plot pressure and temperature. The program has been designed to better fit the needs of the users. Funded by DOE and NSF-REU Program.

  15. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system

  16. A Cryogenic Fluid System Simulation in Support of Integrated Systems Health Management

    Science.gov (United States)

    Barber, John P.; Johnston, Kyle B.; Daigle, Matthew

    2013-01-01

    Simulations serve as important tools throughout the design and operation of engineering systems. In the context of sys-tems health management, simulations serve many uses. For one, the underlying physical models can be used by model-based health management tools to develop diagnostic and prognostic models. These simulations should incorporate both nominal and faulty behavior with the ability to inject various faults into the system. Such simulations can there-fore be used for operator training, for both nominal and faulty situations, as well as for developing and prototyping health management algorithms. In this paper, we describe a methodology for building such simulations. We discuss the design decisions and tools used to build a simulation of a cryogenic fluid test bed, and how it serves as a core technology for systems health management development and maturation.

  17. Features of applying systems approach for evaluating the reliability of cryogenic systems for special purposes

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2016-01-01

    Full Text Available Summary. The analysis of cryogenic installations confirms objective regularity of increase in amount of the tasks solved by systems of a special purpose. One of the most important directions of development of a cryogenics is creation of installations for air separation product receipt, namely oxygen and nitrogen. Modern aviation complexes require use of these gases in large numbers as in gaseous, and in the liquid state. The onboard gas systems applied in aircraft of the Russian Federation are subdivided on: oxygen system; air (nitric system; system of neutral gas; fire-proof system. Technological schemes ADI are in many respects determined by pressure of compressed air or, in a general sense, a refrigerating cycle. For the majority ADI a working body of a refrigerating cycle the divided air is, that is technological and refrigerating cycles in installation are integrated. By this principle differentiate installations: low pressure; average and high pressure; with detander; with preliminary chilling. There is also insignificant number of the ADI types in which refrigerating and technological cycles are separated. These are installations with external chilling. For the solution of tasks of control of technical condition of the BRV hardware in real time and estimates of indicators of reliability it is offered to use multi-agent technologies. Multi-agent approach is the most acceptable for creation of SPPR for reliability assessment as allows: to redistribute processing of information on elements of system that leads to increase in overall performance; to solve a problem of accumulating, storage and recycling of knowledge that will allow to increase significantly efficiency of the solution of tasks of an assessment of reliability; to considerably reduce intervention of the person in process of functioning of system that will save time of the person of the making decision (PMD and will not demand from it special skills of work with it.

  18. Theoretical calculation of cryogenic distillation for two-component hydrogen isotope system

    International Nuclear Information System (INIS)

    Xia Xiulong; Luo Yangming; Wang Heyi; Fu Zhonghua; Liu Jun; Han Jun; Gu Mei

    2005-10-01

    Cryogenic distillation model for single column was built to simulating hydrogen isotope separation system. Three two-component system H 2 /HD, H 2 /HT and D 2 /DT was studied. Both temperature and concentration distribution was obtained and the results show a clear separation characteristics. H 2 /HT has the best separation performance while D 2 /DT was the most difficult to separate. (authors)

  19. SEU tests performed on the digital communication system for LHC cryogenic instrumentation

    International Nuclear Information System (INIS)

    Casas-Cubillos, J.; Faccio, F.; Gomes, P.; Martin, M.A.; Rodriguez-Ruiz, M.A.

    2002-01-01

    The future LHC particle accelerator will use a large number of cryogenic sensors and actuators, most of which are located inside the machine tunnel and therefore in a radiation environment. These elements will communicate through a fieldbus. This paper reports the irradiation study carried out on WorldFIP fieldbus communication system. A digital communication system based on WorldFIP fieldbus protocol has been implemented and single event effects and total ionizing dose radiation tests have been performed on it

  20. Performance of a cryogenic system prototype for the XENON1T detector

    International Nuclear Information System (INIS)

    Aprile, E; Budnik, R; Choi, B; Contreras, H A; Giboni, K L; Goetzke, L W; Lang, R F; Lim, K E; Melgarejo, A J; Plante, G; Rizzo, A; Shagin, P

    2012-01-01

    We have developed an efficient cryogenic system with heat exchange and associated gas purification system as a prototype for the XENON1T experiment. The XENON1T detector will use about 3 tons of liquid xenon (LXe) at a temperature of 175K as target and detection medium for a dark matter search. In this paper we report results on the cryogenic system performance focusing on the dynamics of the gas circulation-purification through a heated getter, at flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114 SLPM has been achieved, and using two heat exchangers in series, a heat exchange efficiency better than 96% has been measured.

  1. Remote monitoring system for the cryogenic system of superconducting magnets in the SuperKEKB interaction region

    Science.gov (United States)

    Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.

    2017-12-01

    A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.

  2. Cryogenic systems for the SSC and the status of their development

    International Nuclear Information System (INIS)

    Fietz, W.A.; Ganni, V.; Abramovich, S.; Niehaus, T.

    1993-07-01

    The Superconducting Super Collider (SSC) consists of two parallel magnet rings, each 87,120 m in circumference, constructed in a tunnel 25 to 74 m underground. Protons are injected into these ring from the high energy booster (HEB), which contains a separate magnet ring 10,800 m in circumference constructed in a tunnel 14 m above the collider tunnel. The magnets will be operated at a controlled low temperature in order to maintain the windings in the superconducting state. Therefore the magnet cryostat is designed with a high vacuum insulating chamber, multilayer insulation (MLI), and thermal shields at 84 K and 20 K nominal temperatures. The major portion of the heat load is from thermal radiation and conduction through the supports, and is intercepted and absorbed by the shields. The cryogenic system for the machine is divided into sectors of nominally equal length: ten for the collider and two for the HEB. Each sector has a dedicated cryogenic system (SCS) as well as some level of redundancy from the neighboring SCS. The helium refrigeration plants will be installed at the midpoint of each sector. Each cryogenic sector in the collider is divided into four strings, two upper and two lower, about 4000 m long. Each string is subdivided into sections of about 1080 m, the smallest modules that can be isolated for maintenance, or for warmup and cooldown. Each section is subdivided into cells and half cells. The half cell, containing six main magnets and a spool piece is 90 m long. The SSC cryogenic system for each sector consists of a sector refrigerator surface system (SRS) and a sector refrigerator tunnel system (SRT). Proposals for the SRS systems' are presently in review for vendor selection. In this paper the SRT subsystems requirements and their status will be reviewed

  3. Installation and pre-commissioning of the cryogenic system of JT-60SA tokamak

    Science.gov (United States)

    Hoa, C.; Michel, F.; Roussel, P.; Fejoz, P.; Girard, S.; Goncalves, R.; Lamaison, V.; Natsume, K.; Kizu, K.; Koide, Y.; Yoshida, K.; Cardella, A.; Portone, A.; Verrecchia, M.; Wanner, M.; Beauvisage, J.; Bertholat, F.; Gaillard, G.; Heloin, V.; Langevin, B.; Legrand, J.; Maire, S.; Perrier, J. M.; Pudys, V.

    2017-02-01

    The cryogenic system for the superconducting tokamak JT-60SA is currently being commissioned in Naka, Japan and shall be ready for operation in summer 2016. This contribution is part of the Broader Approach agreement between Japan and Europe. With an equivalent refrigeration capacity of about 9.5 kW at 4.5 K the cryogenic system will supply cryo-pump panels at 3.7 K, superconducting magnets and their structures at 4.4 K, high temperature superconducting current leads at 50 K and thermal shields between 80 K and 100 K. The system has been specifically designed to handle large pulse loads at 4.4 K during plasma operation. The mechanical and electrical assembly of the cryogenic system has been achieved within six months by October 2015. The main contractor Air Liquide Advanced Technology (AL-aT) have supplied eight parallel working screw compressors with a common oil removal and dryer system, a Refrigeration Cold Box and an Auxiliary Cold box with cold rotating machines. F4E has provided six GHe storage vessels and QST has provided the complete infrastructure and the facilities for the utilities. The paper gives an overview of the main design features, the infrastructure and the status of installation and pre-commissioning.

  4. Recommendations for a cryogenic system for ITER [International Thermonuclear Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a new tokamak design project with joint participation from Japan, the European Community, the Soviet Union, and the United States. ITER will be a large machine requiring up to 100 kW of refrigeration at 4.5 K to cool its superconducting magnets. Unlike earlier fusion experiments, the ITER cryogenic system must handle pulse loads constituting a large percentage of the total load. These come from neutron heating during a fusion burn and from ac losses during ramping of current in the PF (poloidal field) coils. This paper presents a conceptual design for a cryogenic system that meets ITER requirements. It describes a system with the following features: Only time-proven components are used. The system obtains a high efficiency without use of cold pumps or other developmental components. High reliability is achieved by paralleling compressors and expanders and by using adequate isolation valving. The problem of load fluctuations is solved by a simple load-leveling device. The cryogenic system can be housed in a separate building located at a considerable distance from the ITER core, if desired. The paper also summarizes physical plant size, cost estimates, and means of handling vented helium during magnet quench. 4 refs., 4 figs., 3 tabs

  5. ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience

    International Nuclear Information System (INIS)

    Koveshnikov, A; Bylinskii, I; Hodgson, G; Kishi, D; Laxdal, R; Ma, Y; Nagimov, R; Yosifov, D

    2015-01-01

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience. (paper)

  6. EXERGY ANALYSIS OF THE CRYOGENIC HELIUM DISTRIBUTION SYSTEM FOR THE LARGE HADRON COLLIDER (LHC)

    International Nuclear Information System (INIS)

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  7. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Tavian, L; Wagner, U

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world’s largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility..

  8. The cryogenic system for the superconducting solenoid magnet of the CMS experiment

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Lottin, J C; Lottin, J P; Lyraud, C

    1998-01-01

    The design concept of the CMS experiment, foreseen for the Large Hadron Collider (LHC) project at CERN, is based on a superconducting solenoid magnet. The large coil will be made of a four layers winding generating the 4 T uniform magnetic induction required by the detector. The length of the solenoid is 13 m with an inner diameter of 5.9 m. The mass kept at liquid helium temperature totals 220 t and the electromagnetic stored energy is 2.7 GJ. The windings are indirectly cooled with a liquid helium flow driven by a thermosyphon effect. The external cryogenic system consists of a 1.5 kW at 4.5 K (entropy equivalent) cryoplant including an additional liquid nitrogen precooling unit and a 5000 litre liquid helium buffer. The whole magnet and cryogenic system will be tested at the surface by 2003 before final installation in the underground area of LHC.

  9. Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)

    Science.gov (United States)

    Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff

    2004-01-01

    Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.

  10. Boomerang project: structural calculations and verifications of mechanical support of space cryogenic system

    International Nuclear Information System (INIS)

    Zucchini, A.; Orsi, R.

    1995-12-01

    The Boomerang (Ballon Observations of Millimetric Extragalactic radiation ANd Geophysics) experiment is an international effort to measure the Cosmic Microwave Background anisotropy on angular scales of 20' to 4x, with unprecedent sensitivity, sky and spectral coverage. The telescope will be flown from Antarctica by NASA-NSBF with a long duration stratospheric balloon (1-3 weeks), and is scheduled for flight in 1996. Space cryogenic systems need adeguate mechanical support to survive the large accelerations and vibrations induced during launch and landing. Static and modal analyses were carried out in order to assist the design of the mechanical support of the space cryogenic system. This report describes the models and the results of the FEM analyses carried out for different design solutions (kevlar cords or fiber-glass cylinders) of the cryostat support structure

  11. A large-stroke cryogenic imaging FTS system for SPICA-Safari

    Science.gov (United States)

    Jellema, Willem; van Loon, Dennis; Naylor, David; Roelfsema, Peter

    2014-08-01

    The scientific goals of the far-infrared astronomy mission SPICA challenge the design of a large-stroke imaging FTS for Safari, inviting for the development of a new generation of cryogenic actuators with very low dissipation. In this paper we present the Fourier Transform Spectrometer (FTS) system concept, as foreseen for SPICA-Safari, and we discuss the technical developments required to satisfy the instrument performance.

  12. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    International Nuclear Information System (INIS)

    Qing, Xinlin P; Beard, Shawn J; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-01-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H 2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment

  13. A dynamic model for beam tube vacuum effects on the SSC cryogenic system

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Schiesser, W.E.; Shih, H.J.; Xu, X.; Yuecel, A.

    1992-01-01

    The dynamic interaction between the beam-gas scattering induced energy deposition and the SSC cryogenic system is studied by integrating a cryogenic system dynamic simulator with an adsorption model and a beam-gas scattering and energy deposition model. Simulation results are obtained for a 1km long SSC arc section where the beam tube pressure in one of the dipoles is increased up to 150 times its nominal operating pressure. The beam-gas scattering induced heat loads arising from such high pressure perturbations can be very high locally but do not overload the cryogenic system. They are more likely to induce a magnet quench as they result in coil temperatures that largely exceed the desired operating limit. Simulations are also carried out for the case where a large external heat load of 1W/m is imposed on the coldmass of a half-cell in the section. Results show that the coldmass temperatures rise significantly with the added heat load but the energy deposition in the cold mass due to beam-gas scattering remains low despite the increase in the beam tube temperature

  14. Dynamic modeling and simulation of the superconducting super collider cryogenic helium system

    International Nuclear Information System (INIS)

    Hartzog, D.G.; Fox, V.G.; Mathias, P.M.; Nahmias, D.; McAshan, M.; Carcagno, R.

    1989-01-01

    To study the operation of the Superconducting Super Collider (SSC) cryogenic system during transient operating conditions, they have developed and programmed in FORTRAN, a time-dependent, nonlinear, homogeneous, lumped-parameter simulation model of the SSC cryogenic system. This dynamic simulator has a modular structure so that process flowsheet modifications can be easily accommodated with minimal recoding. It uses the LSODES integration package to advance the solution in time. For helium properties it uses Air Products implementation of the standard thermodynamic model developed by the NBS. Two additional simplified helium thermodynamic models developed by Air Products are available as options to reduce computation time. To facilitate the interpretation of output, they have linked the simulator to the speakeasy conversational language. The authors present a flowsheet of the process simulated, and the material and energy balances used in the engineering models. They then show simulation results for three transient operating scenarios: startup of the refrigeration system from standby to full load; the loss of 4K refrigeration caused by the tripping of one of two parallel compressors in a sector; and a full-field quench of a single magnet half-cell. They discuss the response of the fluid within the cryogenic circuits during these scenarios. 14 refs., 19 figs., 2 tabs

  15. A dynamic model for beam tube vacuum effects on the SSC cryogenic system

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Schiesser, W.E.; Shih, H.J.; Xu, X.; Yuecel, A.

    1992-03-01

    The dynamic interaction between the beam-gas scattering induced energy deposition and the SSC cryogenic system is studied by integrating a cryogenic system dynamic simulator with an adsorption model and a beam-gas scattering and energy deposition model. Simulation results are obtained for a 1 km long SSC arc section where the beam tube pressure in one of the dipoles in increased up to 150 times its nominal operating pressure. The beam-gas scattering induced heat loads arising from such high pressure perturbations can be very locally but do not overload the cryogenic system. They are more likely to induce a magnet quench as they result in coil temperatures that largely exceed the desired operating limit. Simulations are also carried out for the case where a large external heat load of 1 W/m is imposed on the coldmass of a half-cell in the section. Results show that the coldmass temperatures rise significantly with the added heat load but the energy deposition in the coldmass due to beam-gas scattering remains low despite the increase in the beam tube temperature

  16. Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckl, C., E-mail: csto@lle.rochester.edu; Bedzyk, M.; Brent, G.; Epstein, R.; Fiksel, G.; Guy, D.; Goncharov, V. N.; Hu, S. X.; Ingraham, S.; Jacobs-Perkins, D. W.; Jungquist, R. K.; Marshall, F. J.; Mileham, C.; Nilson, P. M.; Sangster, T. C.; Shoup, M. J.; Theobald, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si He{sub α} line at ∼1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ∼7 cm in ∼100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ∼1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 μm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.

  17. Gas gap heat switch for a cryogen-free magnet system

    International Nuclear Information System (INIS)

    Barreto, J; De Sousa, P Borges; Martins, D; Bonfait, G; Catarino, I; Kar, S

    2015-01-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported. (paper)

  18. Energy Efficiency of large Cryogenic Systems: the LHC Case and Beyond

    CERN Document Server

    Claudet, S; Ferlin, G; Lebrun, P; Tavian, L; Wagner, U

    2013-01-01

    Research infrastructures for high-energy and nuclear physics, nuclear fusion and production of high magnetic fields are increasingly based on applied superconductivity and associated cryogenics in their quest for scientific breakthroughs at affordable capital and operation costs, a condition for their acceptance and sustained funding by society. The thermodynamic penalty for operating at low temperature makes energy efficiency a key requirement for their large cryogenic systems, from conceptual design to procurement, construction and operation. Meeting this requirement takes a combined approach on several fronts in parallel: management of heat loads and sizing of cooling duties, distribution of cooling power matching the needs of the superconducting devices, efficient production of refrigeration, optimal control resting on precise instrumentation and diagnostics, as well as a targeted industrial procurement policy. The case of the Large Hadron Collider (LHC) at CERN is presented. Potential improvements for fu...

  19. Gaseous Helium storage and management in the cryogenic system for the LHC

    CERN Document Server

    Barranco-Luque, M

    2000-01-01

    The Large Hadron Collider (LHC) is presently under construction at CERN. Its main components are superconducting magnets which will operate in superfluid helium requiring cryogenics on a length of about 24 km around the machine ring with a total helium inventory of about 100 tonnes. As no permanent liquid helium storage is foreseen and for reasons of investment costs, only half of the total helium content can be stored in gaseous form in medium pressure vessels. During the LHC operation part of these vessels will be used as helium buffer in the case of multiple magnet quenches. This paper describes the storage, distribution and management of the helium, the layout and the connection to the surface and underground equipment of the cryogenic system.

  20. Cryogenic thermometer calibration system using a helium cooling loop and a temperature controller [for LHC magnets

    CERN Document Server

    Chanzy, E; Thermeau, J P; Bühler, S; Joly, C; Casas-Cubillos, J; Balle, C

    1998-01-01

    The IPN-Orsay and CERN are designing in close collaboration a fully automated cryogenic thermometer calibration facility which will calibrate in 3 years 10,000 cryogenic thermometers required for the Large Hadron Collider (LHC) operation. A reduced-scale model of the calibration facility has been developed, which enables the calibration of ten thermometers by comparison with two rhodium-iron standard thermometers in the 1.8 K to 300 K temperature range under vacuum conditions. The particular design, based on a helium cooling loop and an electrical temperature controller, gives good dynamic performances. This paper describes the experimental set-up and the data acquisition system. Results of experimental runs are also presented along with the estimated global accuracy for the calibration. (3 refs).

  1. Development status of the cryogenic distillation system in Cernavoda Tritium Removal Facility

    International Nuclear Information System (INIS)

    Draghia, Mirela; Ana, George; Pasca, Gheorghe; Porcariu, Florina

    2009-01-01

    Full text: The reference design technology for the heavy water detritiation plant of Cernavoda CANDU station is based on combination of Liquid Phase Catalytic Exchange (LPCE) and Cryogenic Distillation (CD) processes. Based on this technology, tritium is transferred from the heavy water to a deuterium stream in the catalyzed isotopic exchange process, LPCE, followed by a final enrichment within the cryogenic distillation cascade. The final step is the tritium storage on metallic hydride. The basic function of the Cryogenic Distillation System (CDS) is the separation of tritium from the tritiated deuterium coming from the LPCE column in the following conditions: - the final product has to be tritium with a concentration of at least 99%; - it must be provided a detritiation factor of at least 100 (the ration between the tritium concentration in the deuterium stream fed to the CD system and the tritium concentration in the returned stream to the LPCE); - the deuterium must be enriched up to 99.995%, by removing the protium; - provisions for safe discharge of the entire inventory of the CD cascade into buffer vessels shall be implemented. To summarize, the present status of the project consists of technical documentation for all the components of CDS, including the P and ID (Pipping and Instrumentation Diagram), preliminary data sheets, technical specifications, drawings for the major components as the buffer vessels, coldbox, etc, and 3D models as well for almost all the components. (authors)

  2. Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Ion, E-mail: ion.cristescu@kit.edu

    2016-11-01

    Highlights: • An enhanced configuration of ITER WDS has been developed. • The proposed configuration allows minimization of hazards due to the reduction of tritium inventory. • The load on the tritium recovery system (ITER ISS) is minimized with benefits on mitigation of the explosion hazards. - Abstract: Tritiated water is generated in the ITER systems by various sources and may contain deuterium and tritium at various concentrations. The reference process for the ITER Water Detritiation System is based on Combined Electrolysis Catalytic Exchange (CECE) configuration. During long time operation of the CECE process, the accumulation of deuterium in the electrolysis unit and consequently along the Liquid Phase Catalytic Exchange (LPCE) column is unavoidable with consequences on the overall detritiation factor of the system. Beside the deuterium issue in the process, the large amount of the tritiated water with tritium activity up to 500 Ci/kg in the electrolysis cells is a concern from the safety aspect of the plant. The enhanced configuration of a system for processing tritiated water allows mitigation of the effects due to deuterium accumulation and also reduction of tritium inventory within the electrolysis system. In addition the benefits concerning to the interface between the water detritiation system and tritium recovery based cryogenic distillation are also presented.

  3. Computer-aided system for cryogenic research facilities

    International Nuclear Information System (INIS)

    Gerasimov, V.P.; Zhelamsky, M.V.; Mozin, I.V.; Repin, S.S.

    1994-01-01

    A computer-aided system is developed for the more effective choice and optimization of the design and manufacturing technologies of the superconductor for the magnet system of the International Thermonuclear Experimental Reactor (ITER) with the aim to ensure the superconductor certification. The computer-aided system provides acquisition, processing, storage and display of data describing the proceeding tests, the detection of any parameter deviations and their analysis. Besides, it generates commands for the equipment switch off in emergency situations. ((orig.))

  4. Control system implementation for a complex low inventory cryogenic distillation system for Princeton TFTR

    International Nuclear Information System (INIS)

    Busigin, A.; Busigin, C.J.; Adamek, F.; Woodall, K.B.; Robins, J.R.; Bellamy, D.G.; Fong, C.; Kalyanam, K.M.; Sood, S.K.

    1995-01-01

    The TFTR Tritium Purification System (TPS) is based on a Pd/Ag diffuser front-end for separating hydrogen isotopes from inert gas, and a four column cryogenic distillation cascade for separation of hydrogen isotopes. The system has a tritium inventory of approximately 0.5 g while successfully producing pure H 2 , D 2 and T 2 products. The system has recently been built and successfully commissioned with protium and deuterium. Stable automatic control of the cascade has been demonstrated even when feed rate and composition varied. The automatic control scheme maintained stable column inventories and excellent H 2 and D 2 product qualities. The control system employed new control concepts such as real time analysis of mid-column composition using temperature and pressure data for feedback control. Very stable column inventory control was achieved by automatic adjustment of inter-column flows (feed forward and feed back). This paper discusses the control system design and presents performance test results. (orig.)

  5. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    Science.gov (United States)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  6. Approach to modeling of the fast energy discharge in cryogenic systems in the form of an electric arc

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Superconducting magnets are supplied with a few kA of electric current and can store a large amount of energy. Therefore, cryogenic systems which are comprised of such magnets are subject to the risk of fast energy discharge from the magnets themselves in the form of an electric arc. The arcing can be a result of failure in the insulation of an electric circuit or in the connection between the magnet and its current lead. During the discharge, energy can be partially dissipated into the cryogen and partially into the cryogenic system metallic structure. The part of the energy that is transferred to the metallic structure will strongly heat up the metal surface, which can lead to material burning. In this case, the cryogen will flow through the perforation to the insulation vacuum space, which can trigger a rapid increase in pressure in the vacuum enclosure. However, the discharged energy that has been stored in the cryogen also causes a rapid increase in cryogenic pressure. Hence, the proper estimation of the...

  7. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    Science.gov (United States)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  8. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  9. Cryogenic System for a High-Temperature Superconducting Power Transmission Cable

    International Nuclear Information System (INIS)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-01-01

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed

  10. Cryogenic thermal storage system for discontinuous industrial vacuum processes

    Directory of Open Access Journals (Sweden)

    Scaringella M.

    2012-10-01

    Full Text Available Phase Change Materials are proposed for refrigerating systems in discontinuous industrial vacuum processes where temperatures as low as −140 ÷ −100°C are necessary within time-frames representing 10÷20% of total operating time. An application is proposed for cooling systems used in a Physical Vapour Deposition (PVD apparatus. A prototype has been manufactured which couples a cryopump with a reservoir filled with MethylCycloPentane (MCP-C6H12 and a distribution line where nitrogen in the gaseous state is flowing. Preliminary tests show that temperatures of about −120°C are actually achieved within time windows compatible with PVD applications.

  11. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J. M.; Hernandez, A.

    1994-07-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01 % in the range 1 to 30, and 3 x 10{sup 6} for loss tangent values below 10{sup 2}, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99.9 % purity in the same temperature range are presented. (Author) 23 refs.

  12. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J.M.; Hernandez, A.

    1994-01-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01% in the range 1 to 30, and 3 x 10''6 for loss tangent values below 10''2, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99,9% purity in the same temperature range are presented

  13. Commissioning results of CERN HIE-ISOLDE and INFN ALPI cryogenic control systems

    Science.gov (United States)

    Inglese, V.; Pezzetti, M.; Calore, A.; Modanese, P.; Pengo, R.

    2017-02-01

    The cryogenic systems of both accelerators, namely HIE ISOLDE (High Intensity and Energy Isotope Separator On Line DEvice) at CERN and ALPI (Acceleratore Lineare Per Ioni) at LNL, have been refurbished. HIE ISOLDE is a major upgrade of the existing ISOLDE facilities, which required the construction of a superconducting linear accelerator consisting of six cryomodules, each containing five superconductive RF cavities and superconducting solenoids. The ALPI linear accelerator, similar to HIE ISOLDE, is located at Legnaro National Laboratories (LNL) and became operational in the early 90’s. It is composed of 74 superconducting RF cavities, assembled inside 22 cryostats. The new control systems are equipped with PLC, developed on the CERN UNICOS framework, which include Schneider and Siemens PLCs and various fieldbuses (Profibus DP and PA, WorldFIP). The control systems were developed in synergy between CERN and LNL in order to build, effectively and with an optimized use of resources, control systems allowing to enhance ease of operation, maintainability, and long-term availability. This paper describes (i) the cryogenic systems, with special focus on the design of the control systems hardware and software, (ii) the strategy adopted in order to achieve a synergic approach, and (iii) the commissioning results after the cool-down to 4.5 K of the cryomodules.

  14. Six movements measurement system employed for GAIA secondary mirror positioning system vacuum tests at cryogenic temperatures

    Science.gov (United States)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Garranzo García-Ibarrola, Daniel; Belenguer Dávila, Tomás

    2008-07-01

    In this work, the optical measurement system employed to evaluate the performance of a 6 degrees of freedom (dof) positioning mechanism under cryogenic conditions is explored. The mechanism, the flight model of three translations and three rotations positioning mechanism, was developed by the Spanish company SENER (for ASTRIUM) to fulfil the high performance requirements from ESA technology preparatory program for the positioning of a secondary mirror within the GAIA Astrometric Mission. Its performance has been evaluated under vacuum and temperature controlled conditions (up to a 10-6mbar and 100K) at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA). After the description of the 'alignment tool' developed to compare a fixed reference with the optical signal corresponding to the movement under evaluation, the optical system that allows measuring the displacements and the rotations in the three space directions is reported on. Two similar bread-boards were defined and mounted for the measurements purpose, one containing two distancemeters, in order to measure the displacements through the corresponding axis, and an autocollimator in order to obtain the rotations on the plane whose normal vector is the axis mentioned before, and other one containing one distancemeter and one autocollimator. Both distancemeter and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions.

  15. Physics Based Model for Online Fault Detection in Autonomous Cryogenic Loading System

    Science.gov (United States)

    Kashani, Ali; Devine, Ekaterina Viktorovna P; Luchinsky, Dmitry Georgievich; Smelyanskiy, Vadim; Sass, Jared P.; Brown, Barbara L.; Patterson-Hine, Ann

    2013-01-01

    We report the progress in the development of the chilldown model for rapid cryogenic loading system developed at KSC. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDAFLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDAFLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation.

  16. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    Science.gov (United States)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  17. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  18. Commissioning of Water Detritiation and Cryogenic Distillation Systems at TLK in View of ITER Design

    International Nuclear Information System (INIS)

    Cristescu, I.; Doerr, L.; Glugla, M.; Hellriegel, G.; Schaefer, P.; Welte, St.; Wurster, W.; Murdoch, D.

    2006-01-01

    The Water Detritiation System (WDS) of ITER is one of the key systems to control the tritium content in the effluents streams, to recover as much tritium as possible and consequently to minimize the impact on the environment. In order to mitigate the concern over tritium release into the environment during pulsed operation of the Torus, the WDS and Isotope Separation System (ISS) will operate in such way that WDS will be a final barrier for the processed protium waste gas stream discharged from ISS. The ITER ISS consists of a cascade of four cryogenic distillation columns with the aim to process mainly two gas streams, one from Torus exhaust and other from WDS mixed with the returned stream from Neutral Beam Injectors (NBI). The behavior of the CD cascade has to be characterized with high accuracy with respect to thermal and isotopic fluctuations during Torus pulses. To support the research activities needed to characterize the performances of various components for WDS and ISS processes in various working conditions and configurations as needed for ITER design, an experimental facility called TRENTA based on the combination Combined Electrolysis Catalytic Exchange (CECE) - Cryogenic Distillation (CD), representative of the ITER WDS and ISS protium separation column, is under full commissioning at TLK. The CECE process consists of a solid polymer electrolyser unit as envisaged to be used in ITER WDS, and an 8 m Liquid Phase Catalytic Exchange Column (LPCE). The Electrolysis unit was commissioned with tritiated water and the enrichment factor was measured. The experimental program on the Cryogenic distillation facility at TLK is conducted to provide the necessary design and operation information for ITER ISS. It is focused on two major issues: - To investigate the separation performances and liquid hold up of different packings in cryogenic distillation process and to validate the steady-state mathematical modeling of the process. - To investigate the CD process

  19. Design of the advanced divertor pump cryogenic system for DIII-D

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Baxi, C.B.; Campbell, G.L.; Gootgeld, A.M.; Langhorn, A.R.; Laughon, G.J.; Smith, J.P.; Anderson, P.M.; Menon, M.M.

    1991-11-01

    The design of the cryogenic system for the D3-D advanced divertor cryocondensation pump is presented. The advanced divertor incorporates a baffle chamber and bias ring located near the bottom of the D3-D vacuum vessel. A 50,000 l/s cryocondensation pump will be installed underneath the baffle for plasma particle exhaust. The pump consists of a liquid helium cooled tube operating at 4.3 degrees K and a liquid nitrogen cooled radiation shield. Liquid helium is fed by forced flow through the cryopump. Compressed helium gas flowing through the high pressure side of a heat exchanger is regeneratively cooled by the two-phase helium leaving the pump. The cooled high pressure gaseous helium is than liquefied by a Joule-Thomson expansion valve. The liquid is returned to a storage dewar. The liquid nitrogen for the radiation shield is supplied by forced flow from a bulk storage system. Control of the cryogenic system is accomplished by a programmable logic controller

  20. Design concept of control system for cryogenic distillation columns of fusion reactor

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1993-09-01

    Control systems were designed for cryogenic distillation columns in the main fuel cycle and the breeder blanket interface systems of fusion reactors. Three basic control modes were proposed for the column whose top product was more important; the column whose bottom product is more important; and the column having a feed back stream. The key component in the important product stream was selected for each column, and the analysis method for measurement of this key component was discussed. Some of the columns need the gas chromatography as the analysis instrument of the control system. The time required for the measurement of product purity by the gas chromatography considerably affects the stability of the control system. A significant conclusion is that permissible time is about 20 min. It is possible to complete the measurement within 20 minute by the gas chromatography. The gas chromatography is applicable for the control system of the column. (author)

  1. Cryogenic-laser-fusion target implosion studies performed with the OMEGA uv-laser system

    International Nuclear Information System (INIS)

    Marshall, F.J.; Letzring, S.A.; Verdon, C.P.; Skupsky, S.; Keck, R.L.; Knauer, J.P.; Kremens, R.L.; Bradley, D.K.; Kessler, T.; Delettrez, J.; and others.

    1989-01-01

    A series of direct-drive laser-fusion implosion experiments was performed on cryogenically cooled, DT-filled glass microballoons with the OMEGA 24-beam uv (351-nm) laser system. The targets consisted of glass microballoons having radii of 100 to 150 μm, wall thicknesses of 3 to 7 μm, filled with DT gas at pressures of 75 to 100 atm. The targets were cooled to below the freezing point of DT, in situ, by a cryogenic target system. The targets were irradiated by approximately 1 to 1.2 kJ of uv light in 650-ps Gaussian pulses. The on-target irradiation uniformity was enhanced for these experiments by the use of distributed phase plates, which brought the estimated irradiation nonuniformities to ∼12% (σ rms ). Target performance was diagnosed by an array of x-ray, plasma, and nuclear instruments. The measured target performance showed ∼70% absorption, thermonuclear yields of 10 6 to 10 8 neutrons, and final fuel areal densities of 20 to 40 mg/cm 2 for the optimum targets examined in these experiments. Fuel densities at the time of thermonuclear neutron production, inferred from direct measurements of the fuel areal density, were in the range of 20 to 50 g/cm 3 (100 to 200 times the density of liquid DT) for the optimum targets

  2. Design and development of a direct injection system for cryogenic engines

    Science.gov (United States)

    Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng

    2018-04-01

    The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.

  3. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  4. The Development of Automatic Sequences for the RF and Cryogenic Systems at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Gurd, Pamela; Casagrande, Fabio; Mccarthy, Michael; Strong, William; Ganni, Venkatarao

    2005-01-01

    Automatic sequences both ease the task of operating a complex machine and ensure procedural consistency. At the Spallation Neutron Source project (SNS), a set of automatic sequences have been developed to perform the start up and shut down of the high power RF systems. Similarly, sequences have been developed to perform backfill, pump down, automatic valve control and energy management in the cryogenic system. The sequences run on Linux soft input-output controllers (IOCs), which are similar to ordinary EPICS (Experimental Physics and Industrial Control System) IOCs in terms of data sharing with other EPICS processes, but which share a Linux processor with other such processors. Each sequence waits for a command from an operator console and starts the corresponding set of instructions, allowing operators to follow the sequences either from an overview screen or from detail screens. We describe each system and our operational experience with it.

  5. LDR cryogenics

    Science.gov (United States)

    Nast, T.

    1988-01-01

    A brief summary from the 1985 Large Deployable Reflector (LDR) Asilomar 2 workshop of the requirements for LDR cryogenic cooling is presented. The heat rates are simply the sum of the individual heat rates from the instruments. Consideration of duty cycle will have a dramatic effect on cooling requirements. There are many possible combinations of cooling techniques for each of the three temperatures zones. It is clear that much further system study is needed to determine what type of cooling system is required (He-2, hybrid or mechanical) and what size and power is required. As the instruments, along with their duty cycles and heat rates, become better defined it will be possible to better determine the optimum cooling systems.

  6. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  7. Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems

    Science.gov (United States)

    Fesmire, J. E.; Johnson, W. L.

    2018-01-01

    Extensive cryogenic thermal testing of more than 100 different multilayer insulation (MLI) specimens was performed over the last 20 years for the research and development of evacuated reflective thermal insulation systems. From this data library, 26 MLI systems plus several vacuum-only systems are selected for analysis and comparison. The test apparatus, methods, and results enabled the adoption of two new technical consensus standards under ASTM International. Materials tested include reflectors of aluminum foil or double-aluminized Mylar and spacers of fiberglass paper, polyester netting, silk netting, polyester fabric, or discrete polymer standoffs. The six types of MLI systems tested are listed as follows: Mylar/Paper, Foil/Paper, Mylar/Net, Mylar/Blanket, Mylar/Fabric, Mylar/Discrete. Also tested are vacuum-only systems with different cold surface materials/finishes including stainless steel, black, copper, and aluminum. Testing was performed between the boundary temperatures of 78 K and 293 K (and up to 350 K) using a thermally guarded one-meter-long cylindrical calorimeter (Cryostat-100) for absolute heat flow measurement. Cold vacuum pressures include the full range from 1 × 10-6 torr to 760 torr with nitrogen as the residual gas. System variations include number of layers from one to 80 layers, layer densities from 0.5 to 5 layers per millimeter, and installation techniques such layer-by-layer, blankets (multi-layer assemblies), sub-blankets, seaming, butt-joining, spiral wrapping, and roll-wrapping. Experimental thermal performance data for the different MLI systems are presented in terms of heat flux and effective thermal conductivity. Benchmark cryogenic-vacuum thermal performance curves for MLI are given for comparison with different insulation approaches for storage and transfer equipment, cryostats, launch vehicles, spacecraft, or science instruments.

  8. Progress on the MICE Liquid Absorber Cooling and Cryogenic Distribution System

    International Nuclear Information System (INIS)

    Green, M.A.; Baynham, E.; Bradshaw, T.; Drumm, P.; Ivanyushenkov, Y.; Ishimoto, S.; Cummings, M.A.C.; Lau, W.W.; Yang, S.Q.

    2005-01-01

    This report describes the progress made on the design of the cryogenic cooling system for the liquid absorber for the international Muon Ionization Cooling Experiment (MICE). The absorber consists of a 20.7-liter vessel that contains liquid hydrogen (1.48 kg at 20.3 K) or liquid helium (2.59 kg at 4.2 K). The liquid cryogen vessel is located within the warm bore of the focusing magnet for the MICE. The purpose of the magnet is to provide a low beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. The absorber thin windows separate the liquid in the absorber from the absorber vacuum. The absorber vacuum vessel also has thin windows that separate the absorber vacuum space from adjacent vacuum spaces. Because the muon beam in MICE is of low intensity, there is no beam heating in the absorber. The absorber can use a single 4 K cooler to cool either liquid helium or liquid hydrogen within the absorber

  9. Investigation of cryogenic irradiation influence on mechanical and physical properties of ITER magnetic system insulation materials

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Scherbacov, E.N.; Dudchenko, N.A.; Shihalev, V.S.; Bedin, V.V.; Paltusov, N.A.; Korsunskiy, V.E.

    1998-01-01

    A set of methods of cryogenic irradiation influence test on mechanical and physical properties of insulation of ITER magnetic system are presented in this paper. Investigations are carried out without intermediate warming up of samples. A Russian insulating composite material was irradiated in the IVV-2M reactor. The ratio of energy absorbed by insulation materials from neutron irradiation to that from gamma irradiation can be varied from ∝(25:75)% to ∝(50:50)% in the reactor. The test results on the thermal expansion, thermal conductivity and gas evolution of the above material are presented. It was shown, that cryogenic irradiation up to the fluence ∝2 x 10 22 n/m 2 (E ≥ 0.1 MeV) leads to 0.27% linear size changes along layers of fiber-glass, the thermal conductivity coefficient is decreased on 15% at 100 k in perpendicular direction to fiber-glass plane, and thermal coefficient of linear expansion (TCLE) has anomalous temperature dependence. (orig.)

  10. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    International Nuclear Information System (INIS)

    Delruelle, N; Inglese, V; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for each cryo-module. This paper describes the whole cryogenic system and presents the commissioning results including the preliminary operation at 4.5 K of the first cryo- module in the experimental hall. (paper)

  11. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  12. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  13. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-01-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems

  14. Calibration system with cryogenically-cooled loads for cosmic microwave background polarization detectors.

    Science.gov (United States)

    Hasegawa, M; Tajima, O; Chinone, Y; Hazumi, M; Ishidoshiro, K; Nagai, M

    2011-05-01

    We present a novel system to calibrate millimeter-wave polarimeters for cosmic microwave background (CMB) polarization measurements. This technique is an extension of the conventional metal mirror rotation approach, however, it employs cryogenically-cooled blackbody absorbers. The primary advantage of this system is that it can generate a slightly polarized signal (∼100 mK) in the laboratory; this is at a similar level to that measured by ground-based CMB polarization experiments observing a ∼10 K sky. It is important to reproduce the observing condition in the laboratory for reliable characterization of polarimeters before deployment. In this paper, we present the design and principle of the system and demonstrate its use with a coherent-type polarimeter used for an actual CMB polarization experiment. This technique can also be applied to incoherent-type polarimeters and it is very promising for the next-generation CMB polarization experiments.

  15. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  16. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  17. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  18. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  19. Cryogenic solid Schmidt camera as a base for future wide-field IR systems

    Science.gov (United States)

    Yudin, Alexey N.

    2011-11-01

    Work is focused on study of capability of solid Schmidt camera to serve as a wide-field infrared lens for aircraft system with whole sphere coverage, working in 8-14 um spectral range, coupled with spherical focal array of megapixel class. Designs of 16 mm f/0.2 lens with 60 and 90 degrees sensor diagonal are presented, their image quality is compared with conventional solid design. Achromatic design with significantly improved performance, containing enclosed soft correcting lens behind protective front lens is proposed. One of the main goals of the work is to estimate benefits from curved detector arrays in 8-14 um spectral range wide-field systems. Coupling of photodetector with solid Schmidt camera by means of frustrated total internal reflection is considered, with corresponding tolerance analysis. The whole lens, except front element, is considered to be cryogenic, with solid Schmidt unit to be flown by hydrogen for improvement of bulk transmission.

  20. Application of PLC to dynamic control system for liquid He cryogenic pumping facility on JT-60U NBI system

    International Nuclear Information System (INIS)

    Honda, A.; Okano, F.; Ooshima, K.; Akino, N.; Kikuchi, K.; Tanai, Y.; Takenouchi, T.; Numazawa, S.; Ikeda, Y.

    2008-01-01

    The control system of the cryogenic facility in the JT-60 NBI system has been replaced by employing the PLC (Programmable Logic Controller) and SCADA (Supervisory Control And Data Acquisition) system. The original control system was constructed about 20 years ago by specifying the DCS (Distributed Control System) computer to deal with ∼400 feedback loops. Recently, troubles on this control system have increased due to its age-induced deterioration. To maintain the high reliability of the cryogenic facility, a new control system has been planned with the PLC and SCADA systems. Their attractive features include high market availability and cost-effectiveness, however, the use of PLC for such a large facility with ∼400 feedback loops has not been established because of insufficient processing capability of the early PLC. Meanwhile, the recent progress in the PLC enables to use the FBD (function block diagram) programming language for 500 function blocks. By optimizing the function blocks and connecting them in the FBD language, the feedback loops have been successfully replaced from DCS to PLC without a software developer. Moreover, an oscillation of the liquid He level, which often occurs during the cooldown mode of the cryopumps, can be automatically stabilized by easily adding a new process program in the PLC. At present, the new control system has worked well

  1. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  2. On the energy consumption of cryogenic systems and the choice of cryopumps

    International Nuclear Information System (INIS)

    Kholod, Yu.V.; Yuferov, V.B.

    1981-01-01

    Energy consumption during the mutual use of cryogenic magnetic and vacuum systems including superconductina magnet, forevacuum and high vacuum cryopumps, is analyzed. The portion of energy consumption on preliminary condensational pumping-out of vaccuum chamber with volume of 6 m 3 for the considered case does not exceed 12% and decreases in time. Summary portion of energy consumption on operation of forevacuum and high vacuum cryopumps does not exceed one third of energy consumption on preliminary cooling of superconducting magnet and decreases to 10% during stationary operation of cryogenic system during 85O hours. A comparison of general and specific energy consumptions during the operation of different condensational cryopumps as well as of forevacuum condensational and sorption pumps is made. A conclusion is made that at small periods of time (tens of hours) of cryovacuum system operation it is expidient to use one cryopump with a wide range of working pressures (atmosphere-superhigh vacuum) instead of a combination of forevacuum and high vacuum cryopumps. Besides, a conclusion is made on expediency of the use of nitrogen condensational pumps instead of nitrogen cryosorption ones in the range of high pressures (760-10 mm Hg) expecially during the pumping out of vacuum chambers of high volume (1m 3 and higher). It is shown that account of energy consumptions on preliminary cooling of cryopumps and high vacuum ones in particular, at small (tens of hours) times of their operation increases average specific energy consumptions about 3 times. It is concluded that one can disregard the energy consumption used for preliminary cooling of cryopumps only in case of their stationary operation during about 10 3 hours [ru

  3. 2nd Biennial Conference on Refrigeration for Cryogenic Sensors and Electronic Systems

    CERN Document Server

    1983-01-01

    This proceedings documents the output of the Second Biennial Conference on Refrigeration for Cryogenic Sensors and Electronic Systems held at the National Aeronautics and Space Administration's Goddard Space Flight Center, Greenbelt, Maryland, on December 7-8, 1982. Building on the first open meeting hosted by the National Bureau of Standards in 1980, the focus of this second meeting was again on low-temperature, closed-cycle cooler technology. However, higher temperature coolers (77 K), with technology applicable to the low temperature coolers, were considered to be within the scope of this meeting. This second conference consisted of 30 papers presented by representatives of industry, government, and academia. The conference proceedings reproduced here was published by the NASA Goddard Space Flight Center in Greenbelt Maryland as NASA Conference Publication 2287.

  4. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y.F. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Graduate School of Chinese Academy of Sciences, Beijing (China); Gong, L.H.; Xu, X.D.; Li, L.F.; Zhang, L. [Chinese Academy of Sciences, Beijing (China). Technical Institute of Physics and Chemistry; Xiao, L.Y. [Chinese Academy of Sciences, Beijing (China). Institute of Electrical Engineering

    2005-04-01

    A 10 m long, three-phase AC high-temperature superconducting (HTS) power cable had been fabricated and tested in China August 2003. The sub-cooled liquid nitrogen (LN{sub 2}) was used to cool the HTS cable. The sub-cooled LN{sub 2} circulation was built by means of a centrifugal pump through a heat exchanger in the sub-cooler, the three-phase HTS cable cryostats and a LN{sub 2} gas-liquid separator. The LN{sub 2} was cooled down to 65 K by means of decompressing, and the maximum cooling capacity was about 3.3 kW and the amount of consumed LN{sub 2} was about 72 L/h at 1500 A. Cryogenic system design, test and some experimental results would be presented in this paper. (author)

  5. Cryogenic and Gas System Piping Pressure Tests (A Collection of PT Permits)

    International Nuclear Information System (INIS)

    Rucinski, Russell A.

    2002-01-01

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  6. Design and operating experience of the cryogenic system of the U.S. SCMS as incorporated into the bypass loop of the U-25 MHD generator facility

    International Nuclear Information System (INIS)

    Niemann, R.C.; Mataya, K.F.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Smelser, P.; Privalov, N.P.

    1978-01-01

    The design features and accumulated operating experience, from a cryogenics point of view, of the United States Superconducting Magnet System (U.S. SCMS) are presented. The principal cryogenic system design parameters are enumerated. Details of the cryogenic aspects of magnetic system commissioning, standby mode, and operation with MHD generators are discussed. Included are system operation, problems encountered and corrective actions taken, and measured operating parameters which include liquid helium boiloff, cryostat pressure and level versus time, etc. The aspects of the transition between operation in the laboratory and in an MHD plant are elaborated

  7. Internal stray radiation measurement for cryogenic infrared imaging systems using a spherical mirror.

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; He, Fengyun; Li, Zhou; Qiao, Yanfeng

    2017-06-10

    Internal stray radiation is a key factor that influences infrared imaging systems, and its suppression level is an important criterion to evaluate system performance, especially for cryogenic infrared imaging systems, which are highly sensitive to thermal sources. In order to achieve accurate measurement for internal stray radiation, an approach is proposed, which is based on radiometric calibration using a spherical mirror. First of all, the theory of spherical mirror design is introduced. Then, the calibration formula considering the integration time is presented. Following this, the details regarding the measurement method are presented. By placing a spherical mirror in front of the infrared detector, the influence of internal factors of the detector on system output can be obtained. According to the calibration results of the infrared imaging system, the output caused by internal stray radiation can be acquired. Finally, several experiments are performed in a chamber with controllable inside temperatures to validate the theory proposed in this paper. Experimental results show that the measurement results are in good accordance with the theoretical analysis, and demonstrate that the proposed theories are valid and can be employed in practical applications. The proposed method can achieve accurate measurement for internal stray radiation at arbitrary integration time and ambient temperatures. The measurement result can be used to evaluate whether the suppression level meets the system requirement.

  8. Acquisition/expulsion system for earth orbital propulsion system study. Volume 1: Summary report. [cryogenic storage and fuel flow regulation system for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    Design, construction, and quality control tests on a dual screen liner device for the space shuttle orbiter cryogenic fuel tank and feedliner system are summarized. The dual stainless steel mesh of the device encloses eight liquid fuel channels and provides the liquid/vapor interface stability required for low gravity orbits.

  9. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  10. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    Science.gov (United States)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  11. Design of the fill/transfer station cryostat for the OMEGA cryogenic target system

    International Nuclear Information System (INIS)

    Gibson, C.R.; Charmin, C.M.; Del Bene, J.V.; Hoffmann, E.H.; Besenbruch, G.E.; Anteby, I.

    1997-09-01

    General Atomics is designing, testing and fabricating a system for supplying cryogenic targets for the University of Rochester's OMEGA laser system. A prototype system has demonstrated the filling of 1 mm diameter, 3 microm wall plastic spheres to 111 MPa (1,100 atm) with deuterium and then cooling to 18 K to condense the fuel. The production design must be capable of routinely filling and cooling targets with a 50/50 mix of deuterium and tritium and transferring them to a device which places the targets into the focus of 60 laser beams. This paper discusses the design and analysis of the production Fill/Transfer Station cryostat. The cryostat has two major components, a fixed base and a removable dome. The joint between the base and the dome is similar to a bayonet fitting and is sealed by a room temperature elastomeric o-ring. Since the cryostat must be housed in a glovebox, its design is driven strongly by maintenance requirements. To reach the equipment inside the cryostat, the dome is simply unbolted and lifted. The inside of the cryostat is maintained at 16 K by a closed loop helium flow system. Gaseous helium at about 1.4 MPa (200 psi) flows through tubes which are brazed to the inner walls. Cooling is provided by several cryocoolers which are located external to the cryostat. Liquid nitrogen is used as a heat intercept and to precool the helium gas

  12. Kodak AMSD Cryogenic Test Plans

    Science.gov (United States)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  13. Detection of AE signals from a HTS tape during quenching in a solid cryogen-cooling system

    International Nuclear Information System (INIS)

    Kim, K.J.; Song, J.B.; Kim, J.H.; Lee, J.H.; Kim, H.M.; Kim, W.S.; Na, J.B.; Ko, T.K.; Lee, H.G.

    2010-01-01

    The acoustic emission (AE) technique is suitable for detecting the presence of thermal and mechanical stress in superconductors, which have adverse effects on the stability of their application systems. However, the detection of AE signals from a HTS tape in a bath of liquid cryogen (such as liquid nitrogen, LN 2 ) has not been reported because of its low signal to noise ratio due to the noise from the boiling liquid cryogen. In order to obtain the AE signals from the HTS tapes during quenching, this study carried out repetitive quench tests for YBCO coated conductor (CC) tapes in a cooling system using solid nitrogen (SN 2 ). This paper examined the performance of the AE sensor in terms of the amplitudes of the AE signals in the SN 2 cooling system.

  14. The cryogenic system for the Panda-X dark matter search experiment

    International Nuclear Information System (INIS)

    Gong, H; Giboni, K L; Ji, X; Tan, A; Zhao, L

    2013-01-01

    Panda-X is a liquid xenon dual-phase detector for the Dark Matter Search. The first modestly-sized module will soon be installed in the China JinPing Deep Underground Laboratory in Sichuan province, P.R. China. The cryogenic system is designed to handle much larger detectors, even the final version in the ton scale. Special attention has been paid to the reliability, serviceability, and adaptability to the requirements of a growing experiment. The system is cooled by a single Iwatani PC150 Pulse Tube Refrigerator. After subtracting all thermal losses, the remaining cooling power is still 82 W. The fill speed was 0.75 g/s, but could be boosted by LN 2 assisted cooling to 3.3 g/s. For the continuous recirculation and purification through a hot getter, a heat exchanger was employed to reduce the required cooling power. The recirculation speed is limited to 2.9 g/s by the gas pump. At this speed, recirculation only adds 18.5 W to the heat load of the system, corresponding to a 95.2 % efficiency of the heat exchanger.

  15. Performance of the MAGCOOL-subcooler cryogenic system after SSC quadrupole quenches

    International Nuclear Information System (INIS)

    Wu, K.C.

    1993-01-01

    The subcooler assembly installed in the MAGCOOL magnet test area at Brookhaven National Laboratory has been used for testing SSC dipoles, quadrupoles and a spool piece since 1989. A detailed description of the system, its steady state capacity and the performance after quenches of a 50 mm SSC dipole were given. Subsequent studies on low current quenches of the SSC dipoles and quenches of the RHIC dipoles were also carried out. In this paper, the performance of the subcooler after quenches of the SSC quadrupole QCC404 is presented. Pressures, temperatures and flow rates in the magnet cooling loop after magnet quenches are given as a function of time. The cooling rates and total energy removed by cooling during quench recovery have been calculated for quench currents between 2000 and 7952 amperes. Because the inductance of the quadrupole is about one tenth that of a SSC dipole, the stored energy released is small and the impact on the system is mild. The cooling loop pressure never exceeds 12 atmospheres and the cryogenic system recovers in less than 15 minutes. As in all past studies, the peak pressure and temperature in the magnet cooling loop are linearly proportional to the energy released during a quench and excellent agreement between the total cooling provided and the magnetic stored energy is found

  16. Cryogenic aspects of a demountable toroidal field magnet system for tokamak type fusion reactors

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Powell, J.; Lehner, J.

    1977-01-01

    A new concept for superconducting Toroidal Field (TF) magnet construction is presented. It is termed the ''Demountable Externally Anchored Low Stress'' (DEALS) magnet system. In contrast to continuous wound conventional superconducting coils, each magnet coil is made from several straight coil segments to form a polygon which can be joined and disjoined to improve reactor maintenance accessibility or to replace failed coil segments if necessary. A design example is presented of a DEALS magnet system for a UWMAK II size reactor. The overall magnet system is described, followed by a detailed analysis of the major heat loads in order to assess the refrigeration requirements for the concept. Despite the increased heat loads caused by high current power leads (200,000 amps) and the coil warm reinforcement support system, the analysis shows that at most, only about one percent (approximately 20 Mw) of the plant electrical output (approximately 2,000 Mw) is needed to operate the magnet cryogenic system. The advantages and the drawbacks of the DEALS magnet system are also discussed. The advantages include: capability to replace failed coils, increased accessibility to the blanket shield assembly, reduced reliability requirements for the magnet, much lower stress in conductor, easier application of improved high field brittle superconductors like Nb 3 Sn, improved magnet safety features, etc. The drawbacks are the increased refrigeration requirements and the necessity of a movable coil support system. A comparison with a conventional magnet system is made. It is concluded that the benefits of the DEALS approach far outweigh its penalties, and that the DEALS concept is the most practical, economical way to construct TF magnet systems for Tokamak reactors

  17. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  18. Dynamic simulations for preparing the acceptance test of JT-60SA cryogenic system

    Science.gov (United States)

    Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.

    2016-12-01

    Power generation in the future could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to around 4.5 K. Within this frame, an experimental tokamak device, JT-60SA is currently under construction in Naka (Japan). The plasma works cyclically and the coil system is subject to pulsed heat loads. In order to size the refrigerator close to the average power and hence optimizing investment and operational costs, measures have to be taken to smooth the heat load. Here we present a dynamic model of the JT-60SA's Auxiliary Cold box (ACB) for preparing the acceptance tests of the refrigeration system planned in 2016 in Naka. The aim of this study is to simulate the pulsed load scenarios using different process controls. All the simulations have been performed with EcosimPro® and the associated cryogenic library: CRYOLIB.

  19. An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2014-05-01

    Full Text Available In this study, an improved CO2 separation and purification system is proposed based on in-depth analyses of cryogenic separation and distillation theory as well as the phase transition characteristics of gas mixtures containing CO2. Multi-stage compression, refrigeration, and separation are adopted to separate the majority of the CO2 from the gas mixture with relatively low energy penalty and high purity. Subsequently, the separated crude liquid CO2 is distilled under high pressure and near ambient temperature conditions so that low energy penalty purification is achieved. Simulation results indicate that the specific energy consumption for CO2 capture is only 0.425 MJ/kgCO2 with 99.9% CO2 purity for the product. Techno-economic analysis shows that the total plant investment is relatively low. Given its technical maturity and great potential in large-scale production, compared to conventional MEA and SelexolTM absorption methods, the cost of CO2 capture of the proposed system is reduced by 57.2% and 45.9%, respectively. The result of this study can serve as a novel approach to recovering CO2 from high CO2 concentration gas mixtures.

  20. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  1. Present status of cryogenic system for e-linac at VECC

    International Nuclear Information System (INIS)

    Ahammed, Manir; Mondal, Manas; Pal, Sandip; Duttagupta, Anjan; Bandyopadhyay, Arup; Naik, Vaishali; Chakrabarti, Alok; Laxdal, Robert E.; Koveshnikov, Alexy

    2015-01-01

    VECC is constructing a 50 MeV, 100 kW, superconducting electron linear accelerator (e-Linac) for the upcoming ANURIB (Advanced National facility for Unstable and Rare Isotope Beams) project at the new campus. Presently a 10 MeV injector for the e-Linac is being developed in collaboration with TRIUMF laboratory in Canada.The Injector comprises a 300 kV electron gun, low energy beam transport (LEBT) line and an injector cryo-module (ICM) that houses one 9-cell beta=1, 1.3 GHz niobium elliptical cavity operated at 2K. Alternatively, a capture cryo-module (CCM) having two single cell beta=1, 1.3 GHz niobium cavities that will allow the electron gun to be operated at 100 kV is also being developed. The e-Linac has been jointly designed by VECC and TRIUMF. The ICM is being built by TRIUMF whereas front-end of the injector is being built indigenously at VECC. In this report the details and present status of the cryogenic system for the e-Linac will be presented

  2. Development of the Cryogenic System of AEgIS at CERN

    CERN Document Server

    Derking, J H; Burghart, G; Doser, M; Dudarev, A; Haider, S

    2014-01-01

    The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is located at the antiproton decelerator complex of CERN. The main goal of the experiment is to perform the first direct measurement of the Earth’s gravitational acceleration on antihydrogen atoms within 1% precision. The antihydrogen is produced in a cylindrical Penning trap by combining antiprotons with positrons. To reach the precision of 1%, the antihydrogen has to be cooled to 100 mK to reduce its random velocity. A dilution refrigerator is selected to deliver the necessary cooling capacity of 100 μW at 50 mK. The AEgIS cryogenic system basically consists of cryostats for a 1-T and for a 5-T superconducting magnet, a central region cryostat, a dilution refrigerator cryostat and a measurement cryostat with a Moiré deflectometer to measure the gravitational acceleration. In autumn 2012, the 1-T cryostat, 5-T cryostat and central region cryostat were assembled and commissioned. The apparatus is cooled down in eight days ...

  3. The cryogenic photon detection system for the ALPS II experiment. Characterization, optimization and background rejection

    International Nuclear Information System (INIS)

    Bastidon, Noemi Alice Chloe

    2017-01-01

    The search for new fundamental bosons at very low mass is the central objective of the ALPS II experiment which is currently set up at the Deutsches Elektronen-Synchrotron (DESY, Hamburg). This experiment follows the light-shining-through-the-wall concept where photons could oscillate into weakly interacting light bosons in front of a wall and back into photons behind the wall, giving the impression that light can shine through a light tight barrier. In this concept, the background-free detection of near-infrared photons is required to fully exploit the sensitivity of the apparatus. The high efficiency single-photon detection in the near-infrared is challenging and requires a cryogenic detector. In this project, a Transition-Edge Sensor (TES) operated below 100mK will be used to detect single photons. This thesis focuses on the characterization and optimization of the ALPS II detector system including an Adiabatic Demagnetisation Refrigerator (ADR) with its two-stage pulse-tube cooler, two TES detectors and their Superconducting Quantum Interference Devices (SQUIDs) read-out system. Stability of the detection system over time is a priority in the ALPS II experiment. It is in this context that the cooling system has been subjected to many upgrades. In the framework of this thesis, the cooling setup has been studied in detail in order to optimize its cooling performances. Furthermore, the stability of the detector has been studied according to various criteria. Other essential parameters of the ALPS II experiment are its detection efficiency and its background rate. Indeed, the sensitivity of the experiment directly depends on these two characteristics. Both elements have been studied in depth in order to define if the chosen TES detector will meet ALPS IIc specifications.

  4. The cryogenic photon detection system for the ALPS II experiment. Characterization, optimization and background rejection

    Energy Technology Data Exchange (ETDEWEB)

    Bastidon, Noemi Alice Chloe

    2017-01-12

    The search for new fundamental bosons at very low mass is the central objective of the ALPS II experiment which is currently set up at the Deutsches Elektronen-Synchrotron (DESY, Hamburg). This experiment follows the light-shining-through-the-wall concept where photons could oscillate into weakly interacting light bosons in front of a wall and back into photons behind the wall, giving the impression that light can shine through a light tight barrier. In this concept, the background-free detection of near-infrared photons is required to fully exploit the sensitivity of the apparatus. The high efficiency single-photon detection in the near-infrared is challenging and requires a cryogenic detector. In this project, a Transition-Edge Sensor (TES) operated below 100mK will be used to detect single photons. This thesis focuses on the characterization and optimization of the ALPS II detector system including an Adiabatic Demagnetisation Refrigerator (ADR) with its two-stage pulse-tube cooler, two TES detectors and their Superconducting Quantum Interference Devices (SQUIDs) read-out system. Stability of the detection system over time is a priority in the ALPS II experiment. It is in this context that the cooling system has been subjected to many upgrades. In the framework of this thesis, the cooling setup has been studied in detail in order to optimize its cooling performances. Furthermore, the stability of the detector has been studied according to various criteria. Other essential parameters of the ALPS II experiment are its detection efficiency and its background rate. Indeed, the sensitivity of the experiment directly depends on these two characteristics. Both elements have been studied in depth in order to define if the chosen TES detector will meet ALPS IIc specifications.

  5. Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator.

    Science.gov (United States)

    Pelliccione, M; Sciambi, A; Bartel, J; Keller, A J; Goldhaber-Gordon, D

    2013-03-01

    We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design. Using Coulomb blockade thermometry on a GaAs/AlGaAs gate-defined quantum dot, we demonstrate an electron temperature of 45 mK.

  6. Cryogenic system for collecting noble gases from boiling water reactor off-gas

    International Nuclear Information System (INIS)

    Schmauch, G.E.

    1973-01-01

    In boiling water reactors, noncondensible gases are expelled from the main condenser. This off-gas stream is composed largely of radiolytic hydrogen and oxygen, air in-leakage, and traces of fission product krypton and xenon. In the Air Products' treatment system, the stoichiometric hydrogen and oxygen are reacted to form water in a catalytic recombiner. The design of the catalytic recombiner is an extension of industrial gas technology developed for purification of argon and helium. The off-gas after the recombiner is processed by cryogenic air-separation technology. The gas is compressed, passed into a reversing heat exchanger where water vapor and carbon dioxide are frozen out, further cooled, and expanded into a distillation column where refrigeration is provided by addition of liquid nitrogen. More than 99.99 percent of the krypton and essentially 100 percent of the xenon entering the column are accumulated in the column bottoms. Every three to six months, the noble-gas concentrate accumulated in the column bottom is removed as liquid, vaporized, diluted with steam, mixed with hydrogen in slight excess of oxygen content, and fed to a small recombiner where all the oxygen reacts to form water. The resulting gas stream, containing from 20 to 40 percent noble gases, is compressed into small storage cylinders for indefinite retention or for decay of all fission gases except krypton-85, followed by subsequent release under controlled conditions and favorable meteorology. This treatment system is based on proven technology that is practiced throughout the industrial gas industry. Only the presence of radioactive materials in the process stream and the application in a nuclear power plant environment are new. Adaptations to meet these new conditions can be made without sacrificing performance, reliability, or safety

  7. Cryogenic support member

    International Nuclear Information System (INIS)

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1987-01-01

    A cryogenic support member is described for restraining a cryogenic system comprising; a rod having a depression at a first end. The rod is made of non-metallic material. The non-metallic material has an effectively low thermal conductivity; a metallic plug; and a metallic sleeve. The plug and the sleeve are shrink-fitted to the depression in the rod and assembled thereto such that the plug is disposed inside the depression of the rod. The sleeve is disposed over the depression in the rod and the rod is clamped therebetween. The shrink-fit clamping the rod is generated between the metallic plug and the metallic sleeve

  8. Cool Down Experiences with the SST-1 Helium Cryogenics System before and after Current Feeders System Modification

    Science.gov (United States)

    Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.

    The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.

  9. Dynamic behavior of polydisperse dust system in cryogenic gas discharge complex plasmas

    NARCIS (Netherlands)

    Antipov, S.N.; Schepers, L.P.T.; Vasiliev, M.M.; Petrov, O.F.

    2016-01-01

    Complex (dusty) plasmas of micron-sized CeO2 polydisperse particles in dc glow discharges at 77 and ∼ 10 K were experimentally investigated. It was obtained that dust structure in cryogenic gas discharge plasma can be a mixture of two fractions (components) with completely different dust ordering

  10. Development of the cryogenic system of AEgIS at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Derking, J. H.; Bremer, J.; Burghart, G.; Doser, M.; Dudarev, A.; Haider, S. [Technology Department, CERN, Geneva 23, CH-1211 (Switzerland)

    2014-01-29

    The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is located at the antiproton decelerator complex of CERN. The main goal of the experiment is to perform the first direct measurement of the Earth’s gravitational acceleration on antihydrogen atoms within 1% precision. The antihydrogen is produced in a cylindrical Penning trap by combining antiprotons with positrons. To reach the precision of 1%, the antihydrogen has to be cooled to 100 mK to reduce its random velocity. A dilution refrigerator is selected to deliver the necessary cooling capacity of 100 μW at 50 mK. The AEgIS cryogenic system basically consists of cryostats for a 1-T and for a 5-T superconducting magnet, a central region cryostat, a dilution refrigerator cryostat and a measurement cryostat with a Moiré deflectometer to measure the gravitational acceleration. In autumn 2012, the 1-T cryostat, 5-T cryostat and central region cryostat were assembled and commissioned. The apparatus is cooled down in eight days using 2500 L of liquid helium and liquid nitrogen. During operation, the average consumption of liquid helium is 150 L⋅day{sup −1} and of liquid nitrogen 5 L⋅day{sup −1}. The temperature sensors at the Penning traps measured 12 K to 18 K, which is higher than expected. Simulations show that this is caused by a bad thermalization of the trap wiring. The implementation of the sub-kelvin region is foreseen for mid-2015. The antihydrogen will be cooled down to 100 mK in an ultra-cold trap consisting of multiple high-voltage electrodes made of sapphire with gold plated electrode sectors.

  11. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  12. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  13. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  14. Design of a Cryogenic Distillation Column for JET Water Detritiation System for Tritium Recovery

    International Nuclear Information System (INIS)

    Parracho, A.I.; Camp, P.; Dalgliesh, P.; Hollingsworth, A.; Lefebvre, X.; Lesnoj, S.; Sacks, R.; Shaw, R.; Smith, R.; Wakeling, B.

    2015-01-01

    A Water Detritiation System (WDS) is currently being designed and manufactured to be installed in the Active Gas Handling System (AGHS) of JET, currently the largest magnetic fusion experiment in the world. JET has been designed and built to study fusion operating conditions with the plasma fuelling done by means of a deuterium-tritium gas mixture. AGHS is a plant designed and built to safely process gas mixtures and impurities containing tritium recovered from the JET torus exhaust gases. Tritium is removed from these gas mixtures and recycled. Tritium depleted gases are sent to Exhaust Detritiation System (EDS) for final tritium removal prior to discharge into the environment. In EDS, tritium and tritiated species are catalytically oxidized into water, this tritiated water is then adsorbed onto molecular sieve beds (MSB). After saturation the MSBs are heated and the water is desorbed and collected for tritium recovery. The WDS facility is designed to recover tritium from water with an average activity of 1.9 GBq/l, and is able to process water with activities of 85 GBq/l and higher. Tritiated water is filtered and supplied to the electrolyser where the water is converted into gaseous oxygen and tritiated hydrogen. The hydrogen stream is first purified by selective diffusion through membranes of palladium alloy and then is fed to two cryogenic distillation columns (CD). These operate in parallel or in series depending on the water activity. In the CD columns, hydrogen isotopes containing tritium are recovered as the bottom product and hydrogen, the top product, is safely discarded to a stack. The CD columns are foreseen to have a throughput between 200 and 300 mole/h of hydrogen isotopes vapour and they operate at approximately ≈21.2K and 105 kPa. The design of the CD columns will be presented in this work. This work has been carried out within the framework of the Contract for the Operation of the JET Facilities and has received funding from the European Union

  15. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C; Jimenez D, J; Cejudo A, J; Hernandez M, V [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  16. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  17. The Control System for the Cryogenics in the LHC Tunnel [First Experience and Improvements

    CERN Document Server

    Gomes, P; Casas, J; Fluder, C; Fortescue, E; Le Roux, P; Penacoba, G; Pezzetti, M; Soubiran, M; Tovar, A; Zwalinski, L

    2010-01-01

    The Large Hadron Collider (LHC) was commissioned at CERN and started operation with beams in 2008. Several months of operation in nominal cryogenic conditions have triggered an optimisation of the process functional analysis. This lead to a few revisions of the control logic, which were realised on-the-fly. During the 2008-09 shut-down, and in order to enhance the safety, availability and operability of the LHC cryogenics, a major rebuild of the logic and several hardware modifications were implemented. The databases, containing instruments and controls in-formation, are being rationalized; the automatic tool, that extracts data for the control software, is being simplified. This paper describes the main improvements and sug-gests perspectives of further developments.

  18. Vapour phase motion in cryogenic systems containing superheated and subcooled liquids

    Science.gov (United States)

    Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.

    The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.

  19. NASA Cryogenic Propellant Systems Technology Development and Potential Opportunities for Discussion

    Science.gov (United States)

    Meyer, Michael L.

    2015-01-01

    Members of the eCryo Team are traveling to France to meet with CNES (Centre National d'Etudes Spatiales) on the benchmarking of CFM (Cryogenic Fluids Management) analytical models the week of January 26th, 2015. Mike Meyer is representing the Agency and eCryo Project and will conduct a conversation to explore future work. This slide package (28 charts and 3 movies) requires approval via a 1676. ISS data in this chart set has been copied from public websites.

  20. Conceptual Design of the Cryogenic System for the High-luminosity Upgrade of the Large Hadron Collider (LHC)

    Science.gov (United States)

    Brodzinski, K.; Claudet, S.; Ferlin, G.; Tavian, L.; Wagner, U.; Van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This paper will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  1. Status of Cryogenic System for Spallation Neutron Source's Superconducting Radiofrequency Test Facility at Oak Ridge National Lab

    International Nuclear Information System (INIS)

    Xu, Ting; Casagrande, Fabio; Ganni, Venkatarao; Knudsen, Peter N.; Strong, William Herb

    2011-01-01

    Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) is building an independent cryogenic system for its Superconducting Radiofrequency Test Facility (SRFTF). The scope of the system is to support the SNS cryomodule test and cavity test at 2-K (using vacuum pump) and 4.5K for the maintenance purpose and Power Upgrade Project of SNS, and to provide the part of the cooling power needed to backup the current CHL to keep Linac at 4.5-K during CHL maintenance period in the future. The system is constructed in multiple phases. The first phase is to construct an independent 4K helium refrigeration system with helium Dewar and distribution box as load interface. It is schedule to be commissioned in 2013. Here we report the concept design of the system and the status of the first phase of this project.

  2. Cryogenic photodetectors

    Science.gov (United States)

    Chardin, G.

    2000-03-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  3. Cryogenic photodetectors

    CERN Document Server

    Chardin, G

    2000-01-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  4. Use of the TACL [Thaumaturgic Automated Control Logic] system at CEBAF [Continuous Electron Beam Accelerator Facility] for control of the Cryogenic Test Facility

    International Nuclear Information System (INIS)

    Navarro, E.; Keesee, M.; Bork, R.; Grubb, C.; Lahti, G.; Sage, J.

    1989-01-01

    A logic-based control software system, called Thaumaturgic Automated Control Logic (TACL), is under development at the Continuous Electron Beam Accelerator Facility in Newport News, VA. The first version of the software was placed in service in November, 1987 for control of cryogenics during the first superconducting RF cavity tests at CEBAF. In August, 1988 the control system was installed at the Cryogenic Test Facility (CTF) at CEBAF. CTF generated liquid helium in September, 1988 and is now in full operation for the current round of cavity tests. TACL is providing a powerful and flexible controls environment for the operation of CTF. 3 refs

  5. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  6. Gas Condensates onto a LHC Type Cryogenic Vacuum System Subjected to Electron Cloud

    CERN Multimedia

    Baglin, V

    2004-01-01

    In the Large Hadron Collider (LHC), the gas desorbed via photon stimulated molecular desorption or electron stimulated molecular desorption will be physisorbed onto the beam screen held between 5 and 20 K. Studies of the effects of the electron cloud onto a LHC type cryogenic vacuum chamber have been done with the cold bore experiment (COLDEX) installed in the CERN Super Proton Synchrotron (SPS). Experiments performed with gas condensates such as H2, H2O, CO and CO2 are described. Implications for the LHC design and operation are discussed.

  7. Design and Development of a Robot-Based Automation System for Cryogenic Crystal Sample Mounting at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Preissner, C.; Nocher, D.; Han, Y.; Barraza, J.; Lee, P.; Lee, W.-K.; Cai, Z.; Ginell, S.; Alkire, R.; Lazarski, K.; Schuessler, R.; Joachimiak, A.

    2004-01-01

    X-ray crystallography is the primary method to determine the 3D structures of complex macromolecules at high resolution. In the years to come, the Advanced Photon Source (APS) and similar 3rd-generation synchrotron sources elsewhere will become the most powerful tools for studying atomic structures of biological molecules. One of the major bottlenecks in the x-ray data collection process is the constant need to change and realign the crystal sample. This is a very time- and manpower-consuming task. An automated sample mounting system will help to solve this bottleneck problem. We have developed a novel robot-based automation system for cryogenic crystal sample mounting at the APS. Design of the robot-based automation system, as well as its on-line test results at the Argonne Structural Biology Center (SBC) 19-BM experimental station, are presented in this paper

  8. A fast framing camera system for observation of acceleration and ablation of cryogenic hydrogen pellet in ASDEX Upgrade plasmas

    International Nuclear Information System (INIS)

    Kocsis, G.; Kalvin, S.; Veres, G.; Cierpka, P.; Lang, P.T.; Neuhauser, J.; Wittman, C.; ASDEX Upgrade Team

    2004-01-01

    An observation system using fast digital cameras was developed to measure a cryogenic hydrogen pellet's cloud structure, trajectory, and velocity changes during its ablation in ASDEX Upgrade plasmas. In this article the system, the applied numerical methods, and the results are presented. The three-dimensional pellet trajectory and velocity components were reconstructed from images of observations from two different directions. Pellet acceleration both in the radial and toroidal directions was detected. The pellet cloud distribution was measured with high spatio-temporal resolution. The cloud surrounding the pellet was found to be elongated along the magnetic field lines. Its typical size is 5-7 cm along the field lines and 2 cm in the perpendicular directions. A cloud extension in the poloidal direction was also observed which may be related to the drift of the detached part of the cloud

  9. FY1995 research report on the survey of cryogenic energy utilization systems for environmentally friendly energy community project. Case studies of LNG cryogenic energy cascade-wise utilization; 1995 nendo kankyo chowagata energycommunity jigyo ni kakawaru reinetsu riyo system kento chosa hokokusho. LNG reinetsu no cascade teki riyo case study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Japan's import of LNG (liquefied natural gas) has increased in these 15 years from 13-million tons to 43-million tons at a high rate of 2-million tons a year. At present LNG is used only in power generation and town gas business, and its cryogenic feature which may be useful in various fields is not being utilized. In this survey, factors impeding the wider application of the cryogenic energy are investigated, methods for using the energy more widely and mechanisms required therefor are studied, and discussion is made about the feasibility of the utilization of the energy in a cascade-wise form under the environmentally friendly energy community project. Researches are conducted and the results are evaluated in a study carried out on the comprehensive utilization of LNG cryogenic energy. These researches involve the actualities and trends of LNG cryogenic energy utilization in Japan; current status and prospect of the involvement of LNG bases with their neighboring industries and communities; technological measures for cryogenic energy utilization; technological measures related to low-temperature media and cold heat transportation systems; technological measures for the cascade-wise multidirectional utilization of cryogenic energy; and case studies on assumed local models. (NEDO)

  10. FY1995 research report on the survey of cryogenic energy utilization systems for environmentally friendly energy community project. Case studies of LNG cryogenic energy cascade-wise utilization; 1995 nendo kankyo chowagata energycommunity jigyo ni kakawaru reinetsu riyo system kento chosa hokokusho. LNG reinetsu no cascade teki riyo case study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Japan's import of LNG (liquefied natural gas) has increased in these 15 years from 13-million tons to 43-million tons at a high rate of 2-million tons a year. At present LNG is used only in power generation and town gas business, and its cryogenic feature which may be useful in various fields is not being utilized. In this survey, factors impeding the wider application of the cryogenic energy are investigated, methods for using the energy more widely and mechanisms required therefor are studied, and discussion is made about the feasibility of the utilization of the energy in a cascade-wise form under the environmentally friendly energy community project. Researches are conducted and the results are evaluated in a study carried out on the comprehensive utilization of LNG cryogenic energy. These researches involve the actualities and trends of LNG cryogenic energy utilization in Japan; current status and prospect of the involvement of LNG bases with their neighboring industries and communities; technological measures for cryogenic energy utilization; technological measures related to low-temperature media and cold heat transportation systems; technological measures for the cascade-wise multidirectional utilization of cryogenic energy; and case studies on assumed local models. (NEDO)

  11. The evolution of cryogenic safety at Fermilab

    International Nuclear Information System (INIS)

    Stanek, R.; Kilmer, J.

    1992-12-01

    Over the past twenty-five years, Fermilab has been involved in cryogenic technology as it relates to pursuing experimentation in high energy physics. The Laboratory has instituted a strong cryogenic safety program and has maintained a very positive safety record. The solid commitment of management and the cryogenic community to incorporating safety into the system life cycle has led to policies that set requirements and help establish consistency for the purchase and installation of equipment and the safety analysis and documentation

  12. Cryogenics for SMES

    International Nuclear Information System (INIS)

    McIntosh, G.E.

    1981-01-01

    A wide-ranging study of superconducting magnetic energy storage (SMES) structural and cryogenic requirements was made. Concepts and computational methods have been developed for all of the major problems in these areas. Design analyses have been made to provide more detailed information on some items and experimental work has been performed to create data bases in the areas of superfluid heat transfer, superfluid dielectric properties, heat transfer from conductors, and in the thermal and mechanical properties of materials at low temperatures. In most cases optimum solutions have not been made because of the developing nature of the overall study but methodology for optimization has been worked out for essentially all SMES cryogenic and structural elements. The selection of 1.8 K cooling and all aluminum systems in bedrock continues to be the best choice

  13. Cryogenic treatment of gas

    Science.gov (United States)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  14. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  15. Thermodynamic optimization for cryogenic systems with a finite number of heat intercepts

    International Nuclear Information System (INIS)

    Bisio, G.

    1989-01-01

    It has been already shown that in cryogenic plants it is very useful to apply thermodynamic optimization, either with a continuous variation of the heat transfer rate through the insulation or with the spatial positioning of discrete heat exchangers in the same insulation. The aim of this paper is to study the thermodynamic optimization by the variation of the heat transfer rate in a finite number of points through insulation for one-dimensional materials in series, whose equivalent conductivity is a function of temperature. For this purpose the results of some researches by the author, in the field of generalized thermodynamics, for the properties of some functions and in particular of the rate of entropy production, regarding one-dimensional heat transfer, are utilized

  16. Steady state operation of the first cryogenic column in a krypton separation system

    International Nuclear Information System (INIS)

    von Ammon, R.; Bumiller, W.; Hutter, E.; Neffe, G.

    1981-01-01

    Recent results obtained during the operation of the inactive test unit KRETA for the cryogenic separation of krypton from simulated reprocessing off-gases are presented. The first rectification column of this unit was modified by shortening its lower part from 18 to 8 practical plates and placing the feed point into the warmer, krypton-rich section. Two essential results were thus achieved: plugging by desubliming xenon was not observed even at xenon feed concentrations as high as 1 vol.-%; and, accumulation of oxygen was much lower than in the column version used previously, thus reducing the potential hazard by ozone formation drastically. The accumulation of methane, however, was found to be high, in agreement with calculations

  17. Boiling of multicomponent working fluids used in refrigeration and cryogenic systems

    Science.gov (United States)

    Mogorychny, V. I.; Dolzhikov, A. S.

    2017-11-01

    Working fluids based on mixtures are widely used in cryogenic and refrigeration engineering. One of the main elements of low-temperature units is a recuperative heat exchanger where the return flow cools the direct (cold regeneration is carrying out) resulting in continuous boiling and condensation of the multicomponent working fluid in the channels. The temperature difference between the inlet and outlet of the heat exchanger can be more than 100K, which leads to a strong change in thermophysical properties along its length. In addition, the fraction of the liquid and vapor phases in the flow varies very much, which affects the observed flow regimes in the heat exchanger channels. At the moment there are not so many experimental data and analytical correlations that would allow to estimate the heat transfer coefficient during the flow of a two-phase mixture flow at low temperatures. The work is devoted to the study of the boiling process of multicomponent working fluids used in refrigeration and cryogenic engineering. The description of the method of determination of heat transfer coefficient during boiling of mixtures in horizontal heated channel is given as well as the design of the experimental stand allowing to make such measurements. This stand is designed on the basis of a refrigeration unit operating on the Joule-Thomson throttle cycle and makes it possible to measure the heat transfer coefficient with a good accuracy. Also, the calculated values of the heat transfer coefficient, obtained with the use of various correlations, are compared with the existing experimental data. Knowing of the heat transfer coefficient will be very useful in the design of heat exchangers for low-temperature units operating on a mixture refrigerant.

  18. Measured Performance of Four New 18 kW@4.5 K Helium Refrigerators for the LHC Cryogenic System

    CERN Document Server

    Gruehagen, Henning

    2005-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include four new 4.5 K-helium refrigerators, to cover part of the cooling needs of the LHC at the 4.5-20 K and 50-75 K levels. Two refrigerators are delivered by Air Liquide, France, and two by Linde Kryotechnik, Switzerland. During the last three years, all four refrigerators have been installed and commissioned at four different points along the LHC. The specified requirements of the refrigerators are presented, with special focus on the capacities at the various temperature levels. The capacities of the refrigerators were measured using a dedicated test cryostat, and the measured performance for all four installations is presented, and compared to the guaranteed performance in the original proposal of the suppliers. Finally, the process design of the two supplies is compared, and their differences and similarities briefly analysed.

  19. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    CERN Document Server

    Delruelle, N; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for eac...

  20. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  1. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  2. A Reference Guide for Cryogenic Properties of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weisend, John G

    2003-09-16

    A thorough knowledge of the behavior of materials at cryogenic temperatures is critical for the design of successful cryogenic systems. Over the past 50 years, a tremendous amount of material properties at cryogenic temperatures have been measured and published. This guide lists resources for finding these properties. It covers online databases, computer codes, conference proceedings, journals, handbooks, overviews and monographs. It includes references for finding reports issued by government laboratories and agencies. Most common solids and fluids used in cryogenics are covered.

  3. Proposal for the award of a contract for the supply, testing, installation and commissioning of the proximity cryogenic system for the ATLAS toroid magnet system

    CERN Document Server

    European Organization for Nuclear Research

    2002-01-01

    This document concerns the award of a contract for the supply, testing, installation and commissioning of the proximity cryogenic system for the ATLAS toroid magnet system. Following a market survey carried out among 61 firms in ten Member States and 14 firms in three non-Member States, a call for tenders (IT-2624/EP/ATLAS) was sent on 19 April 2002 to four firms and three consortia in six Member States and two firms in one non-Member State. By the closing date, CERN had received three tenders. The Finance Committee is invited to agree to the negotiation of a contract with AIR LIQUIDE ITALIA (IT), the lowest bidder, for the supply, testing, installation and commissioning of the proximity cryogenic system for the ATLAS toroid magnet system for a total amount not exceeding 2 840 000 euros (4 191 300 Swiss francs), not subject to revision. The rate of exchange which has been used is that stipulated in the tender. This procurement will be financed by the ATLAS Common Fund and CERN's contribution will not exceed 8...

  4. A new system for complete separation of 3He and T2 composed of a falling liquid film condenser and a cryogenic distillation column with a feedback stream

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Bartlit, J.R.; Sherman, R.H.

    1982-11-01

    A new system composed of a falling liquid film condenser and a cryogenic distillation column with a feedback stream, is developed for complete separation of 3 He and T 2 . For accomplishment of the separation, a sufficient flow rate of protium is added to the feed mixture. The resultant stream of 3 He, H 2 , HT and T 2 is fed to the falling liquid film condenser, and 3 He is removed almost completely. The H-T mixture from the bottom of the falling liquid film condenser is further processed by the cryogenic distillation column for complete separation of protium and tritium. The tritium recovery percentage of the system is 100%, and the two top streams can be transferred to a tritium waste treatment system. (author)

  5. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Geynisman, M. [Fermilab; Bremer, J. [CERN; Chalifour, M. [CERN; Delaney, M. [Fermilab; Dinnon, M. [Fermilab; Doubnik, R. [Fermilab; Hentschel, S. [Fermilab; Kim, M. J. [Fermilab; Montanari, C. [INFN, Pavia; Monatanari, D. [Fermilab; Nichols, T. [Fermilab; Norris, B. [Fermilab; Sarychev, M. [Fermilab; Schwartz, F. [Fermilab; Tillman, J. [Fermilab; Zuckerbrot, M. [Fermilab

    2017-08-31

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.

  6. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  7. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  8. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    International Nuclear Information System (INIS)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio

  9. A solution for the helium problem. Cryogen-free cooling systems for low temperatures; Eine Loesung fuer das Heliumproblem. Kryogenfreie Kuehlsysteme fuer tiefe Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Good, Jeremy [Cryogenic Limited, London (United Kingdom)

    2014-09-15

    Pulse tube or Gifford-McMahon coolers are related to Stirling engines. Extremely low temperatures - 1 K can be reached with these devices. As a cryogen-free system the devices need only small amounts of helium as working gas. This fact reduces the gaseous and liquid helium consumption of research labs considerably and allows new applications. The cost-efficiency of this alternative technique is important for research facilities that use superconducting magnets.

  10. Superconducting magnets and cryogenics: proceedings

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1986-01-01

    Separate abstracts were prepared for 70 papers in these workshop proceeedings. Topics covered include: superconducting accelerator magnet research and development; superconductor development; electrical measurements; magnet design and construction methods; field correction methods; power schemes and quench protection; cryogenic systems; and magnet measurements

  11. Optimal design of the first stage of the plate-fin heat exchanger for the EAST cryogenic system

    Science.gov (United States)

    Qingfeng, JIANG; Zhigang, ZHU; Qiyong, ZHANG; Ming, ZHUANG; Xiaofei, LU

    2018-03-01

    The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means of a spatial interpolation method coupled with a hybrid genetic algorithm. Compared with empirical correlations, this spatial interpolation algorithm based on a kriging model can be adopted to more precisely predict the Colburn heat transfer factors and Fanning friction factors of offset-strip fins. Moreover, strict computational fluid dynamics simulations can be carried out to predict the heat transfer and friction performance in the absence of reliable experimental data. Within the constraints of heat exchange requirements, maximum allowable pressure drop, existing manufacturing techniques and structural strength, a mathematical model of an optimized design with discrete and continuous variables based on a hybrid genetic algorithm is established in order to minimize the volume. The results show that for the first-stage heat exchanger in the EAST refrigerator, the structural size could be decreased from the original 2.200 × 0.600 × 0.627 (m3) to the optimized 1.854 × 0.420 × 0.340 (m3), with a large reduction in volume. The current work demonstrates that the proposed method could be a useful tool to achieve optimization in an actual engineering project during the practical design process.

  12. A PC-based system for simulation of processes in the isotopic exchange column of a cryogenic pilot plant

    International Nuclear Information System (INIS)

    Retevoi, Carmen Maria; Stefan, Liviu; Baltateanu, Ovidiu; Stefan, Iuliana

    2001-01-01

    The technology developed at the Institute of Cryogenics and Isotope Separations is based on catalytic isotope exchange between water and hydrogen gas both carrying various isotopes of hydrogen: normal hydrogen, deuterium, and tritium. This isotope exchange is followed by cryogenic distillation to separate the various isotopes of hydrogen gas. The detritiation process was simulated using water as working fluid, with a small content of deuterium and a gaseous mixture of hydrogen and deuterium. Isotopic separation of hydrogen is very important for nuclear plants utilizing the CANDU reactor concept. Tritiated water is extracted from the moderator of the reactor and the tritium is removed in order to reduce the radiation levels from the reactor. One of the most important steps in this process is the catalytic isotope exchange between tritiated water and hydrogen gas. In the 'Catalytic isotope exchange' system, tritium transfer occurs from the liquid phase (tritiated heavy water) into the gaseous phase (hydrogen) in an isotope exchange column. The column is packed with alternating layers of two types of catalysts: an ordered B7 type of phosphorous bronze to catalyze the equilibration between liquid and gaseous water and a PT/C/PTFE catalyst to catalyze the reaction between water vapor and hydrogen gas. The corresponding reactions are (DTO) L + (D 2 O) V ↔ (D 2 O) L + (DTO) V and (DTO) V + (D 2 ) G ↔ (D 2 O) V + (DT)G. The design of the process requires a constant catalytic exchange temperature that must be maintained at a value of 90 deg.C. To achieve this, the plant is equipped with electrical heat exchangers for heating the gas (hydrogen) and the heavy water. The control is achieved using an array of sensors and controllers. The sensors used for monitoring the process are type J thermocouples. The temperature control is achieved by controlling the electrical power fed to the heaters. Besides sensing the fluid temperatures at various points, we also monitor the

  13. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    Science.gov (United States)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  14. Cryogenic Insulation Standard Data and Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of...

  15. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  16. Cryogenics for LDR

    Science.gov (United States)

    Kittel, Peter

    1988-01-01

    Three cryogenic questions of importance to Large Deployable Reflector (LDR) are discussed: the primary cooling requirement, the secondary cooling requirement, and the instrument changeout requirement.

  17. Below-Ambient and Cryogenic Thermal Testing

    Science.gov (United States)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  18. A cryogenic monitor system for the Liquid Argon Calorimeter in the SLD detector

    International Nuclear Information System (INIS)

    Fox, M.J.; Fox, J.D.

    1988-10-01

    This paper describes the monitoring electronics system design for the Liquid Argon Calorimeter (LAC) portion of the SLD detector. This system measures temperatures and liquid levels inside the LAC cryostat and transfers the results over a fiber-optic serial link to an external monitoring computer. System requirements, unique design constraints, and detailed analog, digital and software designs are presented. Fault tolerance and the requirement for a single design to work in several different operating environments are discussed. 4 refs., 3 figs., 1 tab

  19. Installation and early operation of a complex low inventory cryogenic distillation system for the Princeton TFTR

    International Nuclear Information System (INIS)

    Busigin, A.; Busigin, C.J.; Robins, J.R.; Woodall, K.B.; Bellamy, D.G.; Fong, C.; Kalyanam, K.; Sood, S.K.

    1995-01-01

    A low inventory Tritium Purification System (TPS) has just been installed at the Princeton Plasma Physics Laboratory (PPPL). The TPS was designed specifically for PPPL, based on their specifications for exhaust gases. The generic design, however, can easily be modified to accept a large variety of input conditions. The Princeton system is designed to have a total tritium inventory of approximately 0.5 g while producing pure product streams consisting of H 2 , D 2 , and T 2 . The purpose of the system is to separate and recycle unburnt tritium from the TFTR and to produce hydrogen and deuterium streams that are free of tritium. These streams can be disposed by stacking, thus eliminating the need to create large volume waste streams that are contaminated with tritium and that must be managed for permanent disposal. This paper will discuss the installation, the modifications and preliminary results of operation of this system at Princeton. 2 refs., 3 figs

  20. A Testbed for Implementing Prognostic Methodologies on Cryogenic Propellant Loading Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Prognostics technologies determine the health state of a system and predict its remaining useful life. With this information, operators are able to make...

  1. Booster cryogenics

    International Nuclear Information System (INIS)

    Storm, D.W.; Weitkamp, W.G.; Will, D.I.

    1984-01-01

    During this past year the authors have ordered a helium refrigerator, developed cryostat specifications and come to understand better some of the potential problems to avoid in helium distribution systems. The helium refrigerator consists of a Koch Process Systems 2800HR with three type RS screw compressors. The 2800HR has two dry expansion engines, each with two 3'' diameter pistons, and one wet expansion engine with a single 2'' diameter piston. It has guaranteed capacities at 4.5 0 K of 440 W without liquid nitrogen precool and of 510 W with liquid nitrogen precool which compare favorably with the estimated need of 300 W. At present the authors have nearly completed material, technique and performance specifications for their cryostats, pending a decision on bayonet design, and the authors are beginning preliminary specifications for their liquid helium distribution manifold and transfer siphons

  2. Design of a nitrogen purification system with cryogenic method for neutrino detection.

    Science.gov (United States)

    Peng, Zhang; Zhongjun, Hu; Bingming, Wang; Qing, Li

    2018-04-04

    In order to detect the neutrino with liquid scintillation detector, high-purity nitrogen is essential for gas stripping in this detector. Therefore, it is necessary to design a purification system for the detector to purify nitrogen. Using the method of low temperature adsorption for the purification system, the key designs including the flow path, the adsorber and the selection of activated carbon, are introduced in this study. In these designs, the selection of activated carbon is the most important because the adsorption characteristic of the carbon is related to the performance of the purification system. The method of grand canonical ensemble Monte Carlo is adopted to simulate the adsorption of radon by the activated carbon with its slit pore model. Using this method, the working temperature and the key characteristic of the activated carbon are obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Determination of the Optimal Operating Parameters for Jefferson Laboratory's Cryogenic Cold Compressor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jr., Joe D. [Christopher Newport Univ., Newport News, VA (United States)

    2003-01-01

    The technology of Jefferson Laboratory's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) and Free Electron Laser (FEL) requires cooling from one of the world's largest 2K helium refrigerators known as the Central Helium Liquefier (CHL). The key characteristic of CHL is the ability to maintain a constant low vapor pressure over the large liquid helium inventory using a series of five cold compressors. The cold compressor system operates with a constrained discharge pressure over a range of suction pressures and mass flows to meet the operational requirements of CEBAF and FEL. The research topic is the prediction of the most thermodynamically efficient conditions for the system over its operating range of mass flows and vapor pressures with minimum disruption to JLab operations. The research goal is to find the operating points for each cold compressor for optimizing the overall system at any given flow and vapor pressure.

  4. Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    1979-04-01

    The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how does this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design

  5. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    International Nuclear Information System (INIS)

    Rabin, Michael W.; Hoover, Andrew S.; Bacrania, Minesh K.; Croce, Mark P.; Hoteling, N.J.; Lamont, S.P.; Plionis, A.A.; Dry, D.E.; Ullom, J.N.; Bennett, D.A.; Horansky, R.; Kotsubo, V.; Cantor, R.

    2009-01-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with ∼15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.

  6. Cryogenic Microcalorimeter System for Ultra-High Resolution Alpha-Particle Spectrometry

    Science.gov (United States)

    Croce, M. P.; Bacrania, M. K.; Hoover, A. S.; Rabin, M. W.; Hoteling, N. J.; LaMont, S. P.; Plionis, A. A.; Dry, D. E.; Ullom, J. N.; Bennett, D. A.; Horansky, R. D.; Kotsubo, V.; Cantor, R.

    2009-12-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with ˜15-μK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis. This paper will discuss design and operation of our microcalorimeter alpha-particle spectrometer, and will show recent results.

  7. Investigation of transducers for large-scale cryogenic systems in Italy

    International Nuclear Information System (INIS)

    Pavese, F.

    1984-01-01

    This chapter investigates temperature, pressure (static, absolute), strain and flowrate transducers. A modular cryostat system, which includes a superconducting solenoid, is used for measurements. The module for pressure transducers allows them to be measured one at a time. Adiabatic conditions for the functional part of the module for strain-gages are ensured by sliding thermal anchors. The equipment is driven by three computer-based systems which act separately. Magnetoresistance has been measured up to 6 T. Only foil-type strain gages were investigated. It is determined that apparent strain has a peculiar trend at liquid helium temperatures. Four types of transducers, specifically designed for low-temperature measurement of static, absolute pressure, and uncalibrated, were tested

  8. A SQUID magnetometry system for a cryogenic neutron electric dipole moment experiment

    Energy Technology Data Exchange (ETDEWEB)

    Henry, S., E-mail: s.henry@physics.ox.ac.uk; Clarke, C.; Cottle, A.; Lynch, A.; Pipe, M.

    2014-11-01

    Precision magnetometry is an essential component of any neutron electric dipole moment experiment in order to correct shifts in the neutron precession frequency due to changes in the magnetic field. We have developed a magnetometry system using 12 SQUID sensors, designed to operate in 0.5 K superfluid helium. The pick-up loops located near the neutron cell are connected to the SQUID sensors by ∼2 m twisted wire pairs. The SQUID readout cables are run via an intermediate stage at 4.2 K. The system has been installed and tested in the cryoEDM apparatus at the ILL, Grenoble, and used to characterise the magnetic environment. Further tests in a suitable low noise environment confirm it meets our requirements.

  9. A novel Kr-83m tracer method for characterizing xenon gas and cryogenic distillation systems

    Czech Academy of Sciences Publication Activity Database

    Rosendahl, S.; Bokeloh, K.; Brown, E.; Cristescu, R.; Fieguth, A.; Huhmann, C.; Lebeda, Ondřej; Levy, C.; Murra, M.; Schneider, S.; Vénos, Drahoslav; Weinheimer, C.

    2014-01-01

    Roč. 9, OCT (2014), p10010 ISSN 1748-0221 R&D Projects: GA ČR(CZ) GAP203/12/1896; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : photon detectors for UV * visible and IR photons (gas) * gas systems and purification * scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) * very low-energy charged particle detectors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.399, year: 2014

  10. MOSFET's for Cryogenic Amplifiers

    Science.gov (United States)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  11. MFTF magnet cryogenics

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1981-07-01

    The prime requirement of the cryogenics of the magnets is to assure a superconducting state for the magnet coils, a large task considering their enormous size. The following presentation addresses the principal topics that have been considered in this cryogenic design

  12. Determination of the Optimal Operating Parameters for the Jefferson Lab's Cryogenic Cold Compressor System

    International Nuclear Information System (INIS)

    Joe Wilson; Venkatarao Ganni; Dana Arenius; Jonathan Creel

    2004-01-01

    Jefferson Lab's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) and Free Electron Laser (FEL) are supported by 2 K helium refrigerator known as the Central Helium Liquefier (CHL), which maintains a constant low vapor pressure over the accelerators' large liquid helium inventory with a five-stage centrifugal compressor train. The cold compressor train operates with constrained discharge pressure and can be varied over a range of suction pressures and mass flows to meet the operational requirements of the two accelerators. Using data from commissioning and routine operations of the cold compressor system, the presented procedure predicts an operating point for each cold compressor such that maximum efficiency is attained for the overall cold compressor system for a given combination of mass flow and vapor pressure. The procedure predicts expected efficiency of the system and relative compressors speeds for operating vapor pressures from 4 to 2.5 kPa (corresponds to overall pressure ratios of 29 to 56) and flow rates of 135 g/s to 250 g/s. The results of the predictions are verified by test for a few operating conditions of mass flows and vapor pressures

  13. Thermodynamic optimization with a finite number of heat intercepts for cryogenic systems with parameters stepwise continuous

    International Nuclear Information System (INIS)

    Bisio, G.

    1992-01-01

    The aim of this paper is to study the thermodynamic optimization by the variation of the heat transfer rate in a finite number of points through insulation for the general case of one-dimensional heat transfer (flat plate, hollow cylinder and hollow sphere) in systems, consisting of different materials in series, whose thermal conductivity is a function of temperature and of the coordinate in the heat flux direction. Besides, some parameters or their first derivative are assumed stepwise continuous. For this purpose, the results of some researches by the author pertinent to the properties of entropy production rate in the one-dimensional heat transfer are utilized

  14. Development of a non-cryogenic nitrogen/oxygen supply system. [for spacecraft environments

    Science.gov (United States)

    1977-01-01

    Modular components were refined or replaced to improve the performance of the electrolysis module in a system which generates both oxygen and hydrogen from hydrazine hydrate. Significant mechanical and electrical performance improvements were achieved in the cathode. Improvements were also made in the phase separation area but at considerable cost in time and money and to the detriment of other investigative areas. Only the pump/bubble separator failed in a manner necessitating redesign. Its failure was, however, due to its being operated above the temperature range for which it was designed. The basic electrolysis cell design was not changed.

  15. Risk analysis update of the LHC cryogenic system following the 19th September 2008 incident

    CERN Document Server

    Chorowski, M; Modlinski, Z; Polinski, J; Tavian, L; Wach, J

    2011-01-01

    On 19th September 2008, during powering tests of the main dipole circuit of the Large Hadron Collider, an electrical fault occurred producing an electrical arc and resulting in mechanical and electrical damage, release of helium from the magnet cold mass to the insulation vacuum enclosure and consequently to the tunnel, via the spring-loaded relief discs on the vacuum enclosure. The pressurization of the vacuum space exceeded significantly the allowed design value. Mathematical modeling based on a thermodynamic approach has enabled the revision of the helium discharge system protecting the vacuum enclosure against the over-pressurization in case of a redefined maximum credible incident (MCI) occurrence.

  16. The neutral beam test facility cryopumping operation: preliminary analysis and design of the cryogenic system

    International Nuclear Information System (INIS)

    Gravil, B.; Henry, D.; Cordier, J.J.; Hemsworth, R.; Van Houtte, D.

    2004-01-01

    The ITER neutral beam heating and current drive system is to be equipped with a cryosorption cryopump made up of 12 panels connected in parallel, refrigerated by 4.5 K 0.4 MPa supercritical helium. The pump is submitted to a non homogeneous flux of H 2 or D 2 molecules, and the absorbed flux varies from 3 Pa.m -3 .s -1 to 35 Pa.m -3 .s -1 . In the frame of the 'ITER first injector and test facility CSU-EFDA task' (TW3-THHN-IITF1), the ITER reference cryo-system and cryo-plant designs have been assessed and compared to optimised designs devoted to the Neutral Beam Test Facility (NBTF). The 4.5 K cryo-panel, which has a mass of about 1000 kg, must be periodically regenerated up to 90 K and occasionally to 470 K. The cool-down time after regeneration depends strongly on the refrigeration capacity. Fast regeneration and cool-down of the cryo-panels are not considered a priority for the test facility operation, and an analysis of the consequences of a limited cold power refrigerator on the cooling down time has been carried out and will be discussed. This paper presents a preliminary evaluation of the NBTF cryo-plant and the associated process flow diagram. (authors)

  17. Conceptual design of the cryogenic system for the helical-type fusion power plant FFHR

    International Nuclear Information System (INIS)

    Yamada, S.; Sagara, A.; Imagawa, S.; Mito, T.; Motojima, O.

    2007-01-01

    The force-free helical-type fusion reactor, FFHR, is proposed on the basis of the engineering achievements and confinement properties of the experimental fusion device of LHD. The outputs of the thermal power and electric power are optimized to 3 and 1 GW, respectively. Total weight of the superconducting (SC) coils and their supporting structures of the FFHR are estimated to be 18,000 t. An equivalent refrigeration capacity of 98 kW is necessary for coping with different plant loads. Mass-flow rate of the main circulation compressors is 9.5 kg/s and their power consumption is 29 MW. The FFHR is used for the co-generation system of electricity and hydrogen. The pressurized hydrogen of 100 t per day can be produced, when the stem electrolyzer of 150 MW class is applied. Electric power consumption of the hydrogen liquefaction with 100 t per day is estimated to be 26 MW

  18. Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS)

    Science.gov (United States)

    Capone, John I.; Content, David A.; Kutyrev, Alexander S.; Robinson, Frederick D.; Lotkin, Gennadiy N.; Toy, Vicki L.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2014-07-01

    The Rapid Infrared Imager/Spectrometer (RIMAS) is designed to perform follow-up observations of transient astronomical sources at near infrared (NIR) wavelengths (0.9 - 2.4 microns). In particular, RIMAS will be used to perform photometric and spectroscopic observations of gamma-ray burst (GRB) afterglows to compliment the Swift satellite's science goals. Upon completion, RIMAS will be installed on Lowell Observatory's 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The instrument's optical design includes a collimator lens assembly, a dichroic to divide the wavelength coverage into two optical arms (0.9 - 1.4 microns and 1.4 - 2.4 microns respectively), and a camera lens assembly for each optical arm. Because the wavelength coverage extends out to 2.4 microns, all optical elements are cooled to ~70 K. Filters and transmission gratings are located on wheels prior to each camera allowing the instrument to be quickly configured for photometry or spectroscopy. An athermal optomechanical design is being implemented to prevent lenses from loosing their room temperature alignment as the system is cooled. The thermal expansion of materials used in this design have been measured in the lab. Additionally, RIMAS has a guide camera consisting of four lenses to aid observers in passing light from target sources through spectroscopic slits. Efforts to align these optics are ongoing.

  19. Radiation Tests on the Complete System of the Instrumentation of the LHC Cryogenics at the CERN Neutrinos to Gran Sasso (CNGS) Test Facility

    CERN Document Server

    Gousiou, E; Casas Cubillos, J; de la Gama Serrano, J

    2009-01-01

    There are more than 6000 electronic cards for the instrumentation of the LHC cryogenics, housed in crates and distributed around the 27 km tunnel. Cards and crates will be exposed to a complex radiation field during the 10 years of LHC operation. Rad-tol COTS and rad-hard ASIC have been selected and individually qualified during the design phase of the cards. The test setup and the acquired data presented in this paper target the qualitative assessment of the compliance with the LHC radiation environment of an assembled system. It is carried out at the CNGS test facility which provides exposure to LHC-like radiation field.

  20. Cryogenic moderator simulations: confronting reality

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities

  1. Cryogenics will cool LHC

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Results of the investigation into the cryogenic regulating line (QRL) performed by the LHC laboratory are presented. It is projected that eight cryogenic units located in five places around the LHC ring will provide superconducting magnets by liquid helium through eight cryogenic regulating lines of 3.2 km each. All QRL zones remain to be independent. CERN uses three test units with the aim of the certification of chosen constructions and verification of their thermal and mechanical efficiency before starting full-scale production [ru

  2. Fundamentals of cryogenic engineering

    CERN Document Server

    Mukhopadhyay, Mamata

    2014-01-01

    The author, with her vast and varied experience in teaching and allied fields, clearly enunciates the behaviour and various properties of common cryogenic fluids, methods of liquefaction, and separation and applications of cryogens with thermodynamic analysis for process selection. This profusely illustrated study with clear-cut diagrams and process charts, should serve not only as a textbook for students but also as an excellent reference for researchers and practising engineers on design of cryogenic refrigeration, and liquefaction and separation process plants for various applications.

  3. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  4. The DFBX cryogenic distribution boxes for the LHC straight sections

    International Nuclear Information System (INIS)

    Zbasnik, Jon P.; Corradi, Carol A.; Green, Michael A.; Kajiyama, Y.; Knolls, Michael J.; LaMantia, Roberto F.; Rasson, Joseph E.; Reavill, Dulie; Turner, William C.

    2002-01-01

    The DFBX distribution boxes are designed to connect the LHC cryogenic distribution system to the interaction region quadrupoles [1] and dipoles for the Large Hadron Collider (LHC). The DFBX distribution boxes also have the current leads for the superconducting interaction region magnets and the LHC interaction region correction coils. The DFBX boxes also connect the magnet and cryogenic instrumentation to the CERN data collection system. The DFBX boxes serve as the cryogenic circulation center and the nerve center for four of the LHC straight sections. This report describes primarily the cryogenic function of the DFBXs

  5. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    CERN Document Server

    Geynisman, M; Chalifour, M; Delaney, M; Dinnon, M; Doubnik, R; Hentschel, S; Kim, M J; Montanari, C; Montanari, D; Nichols, T; Norris, B; Sarychev, M; Schwartz, F; Tillman, J; Zuckerbrot, M

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution prese...

  6. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  7. Some General Principles in Cryogenic Design, Implementation, and Testing

    Science.gov (United States)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  8. Proposal for the award of a contract for the supply of the external cryogenic sub-system for the magnets of the ATLAS experiment

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply, including design, installation, commissioning and testing at CERN of the external cryogenic sub-system for the magnets of the ATLAS experiment. Following a market survey carried out among 28 firms in eight Member States and eight firms in two non-Member States, a call for tenders (IT-2807/EP/ATLAS) was sent on 17 August 2000 to two firms in two Member States. By the closing date, CERN had received tenders from the two firms. The Finance Committee is invited to agree to the negotiation of a contract with LINDE KRYOTECHNIK (CH), the lowest bidder, for the design, supply, installation, commissioning and testing at CERN of the external cryogenic sub-system for the magnets of the ATLAS experiment for a total amount of 6 652 000 Swiss francs, not subject to revision, with options for interconnecting low- and high-pressure warm piping and for spare parts, for an additional amount of 910 170 Swiss francs, not subject to revision, bringing the total amount...

  9. Proposal for the award of a contract for the supply and installation of the cryogenic helium refrigeration system for the CMS experiment

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply and installation of the cryogenic helium refrigeration system for the CMS Experiment. Following a market survey carried out among 22 firms in seven Member States and seven firms in two non-Member States, a call for tenders (IT-2576/EP/CMS) was sent on 17 February 1999 to two firms in two Member States and one firm in one non-Member State. By the closing date, CERN had received two tenders. The Finance Committee is invited to agree to the negotiation of a contract with AIR LIQUIDE (FR), the lowest bidder, for the supply and installation of a cryogenic helium refrigeration system for an amount of 4 552 500 euros, subject to revision, with an option for one liquid nitrogen dewar and a one-year extension of the warranty period, for an amount of 205 000 euros, subject to revision, bringing the total amount to 4 757 500 euros. At the rate of exchange given in the tender, this amount is equal to 7 612 000 Swiss francs. This procurement will be financed by...

  10. Infrared detectors and test technology of cryogenic camera

    Science.gov (United States)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  11. Feasibility study of parallel conduction cooling of NbTi magnet and sample probe in a cryogen-free magnet system

    Science.gov (United States)

    Catarino, I.; Soni, V.; Barreto, J.; Martins, D.; Kar, S.

    2017-02-01

    The conduction cooling of both a 6 T superconducting magnet along with a sample probe in a parallel configuration is addressed in this work. A Gifford-McMahon (GM) cryocooler is directly cooling the NbTi magnet, which aims to be kept at 4 K, while a gas-gap heat switch (GGHS) manages the cooling power to be diverted to the sample probe, which may be swept from 4 K up to 300 K. A first prototype of a GGHS was customized and validated for this purpose. A sample probe assembly has been designed and assembled with the existing cryogen-free magnet system. The whole test setup and components are described and the preliminary experimental results on the integration are presented and discussed. The magnet was charged up to 3 T with a 4 K sample space and up to 1 T with a sweeping sample space temperature up to 300 K while acting on the GGHS. Despite some identified thermal insulation problems that occurred during this first test, the overall results demonstrated the feasibility of the cryogen-free parallel conduction cooling on study.

  12. Cryogen free low temperature sample environment for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Evans, B E; Down, R B E; Bowden, Z A

    2009-01-01

    Recent increase in liquid helium cost caused by global helium supply problems rose significant concern about affordability of conventional cryogenic equipment. Luckily the progress in cryo-cooler technology offers a new generation of cryogenic systems with significantly reduced consumption and in some cases nearly complete elimination of cryogens. These cryogen-free systems also offer the advantage of operational simplicity and require less space than conventional cryogen-cooled systems. The ISIS facility carries on an internal development program intended to substitute gradually all conventional cryogenic systems with cryogen free systems preferably based on pulse tube refrigerators. A unique feature of this cryo-cooler is the absence of cold moving parts. This considerably reduces vibrations and increases the reliability of the cold head. The program includes few development projects which are aiming to deliver range of cryogen free equipment including top-loading cryostat, superconducting magnets and dilution refrigerators. Here we are going to describe the design of these systems and discuss the results of prototypes testing.

  13. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  14. Cryogenic Permanent Magnet Undulators

    International Nuclear Information System (INIS)

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-01-01

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm 2 Co 17 or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  15. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  16. Cryogen therapy of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors studied the cure of skin cancer in particular cryogen therapy of skin cancer. They noted that cryogen therapy of skin cancer carried new possibilities and improved results of neoplasms treatment

  17. Material and structural mechanical modelling and reliability of thin-walled bellows at cryogenic temperatures. Application to LHC compensation system

    CERN Document Server

    Garion, Cédric; Skoczen, Blazej

    The present thesis is dedicated to the behaviour of austenitic stainless steels at cryogenic temperatures. The plastic strain induced martensitic transformation and ductile damage are taken into account in an elastic-plastic material modelling. The kinetic law of →’ transformation and the evolution laws of kinematic/isotropic mixed hardening are established. Damage issue is analysed by different ways: mesoscopic isotropic or orthotropic model and a microscopic approach. The material parameters are measured from 316L fine gauge sheet at three levels of temperature: 293 K, 77 K and 4.2 K. The model is applied to thin-walled corrugated shell, used in the LHC interconnections. The influence of the material properties on the stability is studied by a modal analysis. The reliability of the components, defined by the Weibull distribution law, is analysed from fatigue tests. The impact on reliability of geometrical imperfections and thermo-mechanical loads is also analysed.

  18. Cryogenic propulsion for lunar and Mars missions

    Science.gov (United States)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  19. Cryogenic process simulation

    International Nuclear Information System (INIS)

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems

  20. The Relativistic Heavy Ion Collider (RHIC) cryogenic system at Brookhaven National Laboratory: Review of the modifications and upgrades since 2002 and planned improvements

    International Nuclear Information System (INIS)

    Than, R.; Tuozzolo, Joseph; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao; Knudsen, Peter; Arenius, Dana

    2008-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system, which also resulted in an improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases, balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid-helium storage tanks, insulation of the third liquid-helium storage tank, compressor-bypass flow reduction and the addition of a load turbine (Joule-Thomson)

  1. The Cryogenic Storage Ring CSR

    OpenAIRE

    von Hahn, Robert; Becker, Arno; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A.; Heber, Oded; Herwig, Philipp

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion a...

  2. Cryogenics for HL-LHC

    Science.gov (United States)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  3. The Management of Cryogens at CERN

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Serio, L; Tavian, L

    2005-01-01

    CERN is a large user of industrially procured cryogens essentially liquid helium and nitrogen. Recent contracts have been placed by the Organization for the delivery of quantities up to 280 tons of liquid helium over four years and up to 50000 tons of liquid nitrogen over three years. Main users are the very large cryogenic system of the LHC accelerator complex, the physics experiments using superconducting magnets and liquefied gases and all the related test facilities whether industrial or laboratory scale. With the commissioning of LHC, the need of cryogens at CERN will considerably increase and the procurement policy must be adapted accordingly. In this paper, we discuss procurement strategy for liquid helium and nitrogen, including delivery rates, distribution methods and adopted safety standards. Global turnover, on site re-liquefaction capacity, operational consumption, accidental losses, purification means and storage capacity will be described. Finally, the short to medium term evolution of the Orga...

  4. Designs of pulsed power cryogenic transformers

    International Nuclear Information System (INIS)

    Singh, S.K.; Heyne, C.J.; Hackowrth, D.T.; Shestak, E.J.; Eckels, P.W.; Rogers, J.D.

    1988-01-01

    The Westinghouse Electric Corporation has completed designs of three pulsed power cryogenic transformers of three pulsed power cryogenic transformers for the Los Alamos National Laboratory. These transformers will be configured to transfer their stored energy sequentially to an electro-magnetic launcher and form a three-stage power supply. The pulse transformers will act as two winding energy storage solenoids which provide a high current and energy pulse compression by transforming a 50 kA power supply into a megamp level power supply more appropriate for the electromagnetic launcher duty. This system differs from more traditional transformer applications in that significant current levels do not exists simultaneously in the two windings of the pulse transformer. This paper describes the designs of the pulsed power cryogenic transformers

  5. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  6. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  7. Research of the cold shield in cryogenic liquid storage

    Science.gov (United States)

    Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.

    2017-12-01

    To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.

  8. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  9. The LHC cryogenic operation for first collisions and physics run

    CERN Document Server

    Brodzinski, K; Benda, V; Bremer, J; Casas-Cubillos, J; Claudet, S; Delikaris, D; Ferlin, G; Fernandez Penacoba, G; Perin, A; Pirotte, O; Soubiran, M; Tavian, L; van Weelderen, R; Wagner, U

    2011-01-01

    The Large Hadron Collider (LHC) cryogenic system was progressively and successfully run for the LHC accelerator operation period starting from autumn 2009. The paper recalls the cryogenic system architecture and main operation principles. The system stability during magnets powering and availability periods for high energy beams with first collisions at 3.5 TeV are presented. Treatment of typical problems, weak points of the system and foreseen future consolidations will be discussed.

  10. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri Devi, V.; Sircar, A.; Sarkar, B. [Institute of Plasma Research, Bhat, Gandhinagar, Gujarar (India)

    2015-03-15

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption mass transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)

  11. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  12. Cryogenics Testbed Laboratory Flange Baseline Configuration

    Science.gov (United States)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  13. The cryogenic storage ring CSR

    Science.gov (United States)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  14. The cryogenic storage ring CSR.

    Science.gov (United States)

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  15. The cryogenic storage ring CSR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. von; Becker, A.; Berg, F.; Blaum, K.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); and others

    2016-06-15

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm{sup −3} is derived, equivalent to a room-temperature pressure below 10{sup −14} mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  16. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  17. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    Science.gov (United States)

    Fast, R. W.

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250

  18. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  19. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  20. Comparison of cryogenic low-pass filters.

    Science.gov (United States)

    Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  1. Use of PROFIBUS for cryogenic instrumentation at XFEL

    Science.gov (United States)

    Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.

    2017-12-01

    The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.

  2. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  3. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  4. Development and test of a cryogenic trap system dedicated to confinement of radioactive volatile isotopes in SPIRAL2 post-accelerator

    Science.gov (United States)

    Souli, M.; Dolégiéviez, P.; Fadil, M.; Gallardo, P.; Levallois, R.; Munoz, H.; Ozille, M.; Rouillé, G.; Galet, F.

    2011-12-01

    A cryogenic trap system called Cryotrap has been studied and developed in the framework of nuclear safety studies for SPIRAL2 accelerator. The main objective of Cryotrap is to confine and reduce strongly the migration of radioactive volatile isotopes in beam lines. These radioactive gases are produced after interaction between a deuteron beam and a fissile target. Mainly, Cryotrap is composed by a vacuum vessel and two copper thermal screens maintained separately at two temperatures T1=80 K and T2=20 K. A Cryocooler with two stages at previous temperatures is used to remove static heat losses of the cryostat and ensure an efficient cooling of the system. Due to strong radiological constraints that surround Cryotrap, the coupling system between Cryocooler and thermal screens is based on aluminum thermo-mechanical contraction. The main objective of this original design is to limit direct human maintenance interventions and provide maximum automated operations. A preliminary prototype of Cryotrap has been developed and tested at GANIL laboratory to validate its design, and determine its thermal performance and trapping efficiency. In this paper, we will first introduce briefly SPIRAL2 project and discuss the main role of Cryotrap in nuclear safety of the accelerator. Then, we will describe the proposed conceptual design of Cryotrap and its main characteristics. After that, we will focus on test experiment and analyze experimental data. Finally, we will present preliminary results of gas trapping efficiency tests.

  5. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  6. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  7. Cryogenics in nuclear reactor technology

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1982-01-01

    The cryogenic technology has significantly contributed to the development of several proven techniques for use in the nuclear power industry. A noteworthy feature is the unique role of cryogenics in minimising the release of radioactive and some chemical pollutants to the environment during the operation of various plants associated with this industry. The salient technological features of several cryogenic processes relevant to the nuclear reactor technology are discussed. (author)

  8. Surface Tension Confines Cryogenic Liquid

    Science.gov (United States)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  9. Sprayable Thermal Insulation for Cryogenic Tanks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sprayable Thermal Insulation for Cryogenic Tanks (STICT) is a thermal management system applied by either an automated or manual spraying process with less...

  10. Sprayable Thermal Insulation for Cryogenic Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation addressed in this proposal is Sprayable Thermal Insulation for Cryogenic Tanks, or STICT. This novel system could be applied in either an automated or...

  11. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  12. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    Science.gov (United States)

    Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.

    2014-01-01

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.

  13. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Liu, L. Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China); Wang, P. [Beijing Sciample Technology Co., Ltd., Beijing, 100190 (China)

    2014-01-29

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.

  14. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  15. THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) CRYOGENIC SYSTEM AT BNL: REVIEW OF THE MODIFICATIONS AND UPGRADES SINCE 2002 AND PLANNED IMPROVEMENTS

    International Nuclear Information System (INIS)

    THAN, Y.R.; TUOZZOLO, J.; SIDI-YAKHLEF, A.; GANNI, V.; KNUDSEN, P.; ARENIUS, D.

    2007-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system which also resulted in improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases by balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid helium storage tanks, insulation of the third liquid helium storage tank, compressor bypass flow reduction and the addition of a load turbine (Joule-Thompson expander) with associated heat exchangers at the cold end of the plant. Also, liquid helium pumps used for forced circulation of the sub-cooled helium through the magnet loops were eliminated by an accelerator supply flow reconfiguration. Planned future upgrades include the resizing of expanders 5 and 6 to increase their efficiencies

  16. Cryogenic polarized target facility: status

    International Nuclear Information System (INIS)

    Gould, C.; Nash, H.K.; Roberson, N.; Schneider, M.; Seagondollar, W.; Soderstrum, J.

    1985-01-01

    The TUNL cryogenically polarized target facility consists of a 3 He- 4 He dilution refrigerator and a superconducting magnet, together capable of maintaining samples at between 10 and 20 mK in magnetic fields up to 7 Tesla. At these temperatures and magnetic fields brute-force nuclear orientation occurs. Polarizations from 20 to 60% are attainable in about twenty nonzero spin nuclei. Most are metals, ranging in mass from 6 Li to 209 Bi, but the nuclei 1 H and 3 He are also polarizable via this method. The main effort is directed towards a better determination of the effective spin-spin force in nuclei. These experiments are briefly described and the beam stabilization system, cryostat and polarized 3 He targets are discussed

  17. Cryogenic implications for DT

    International Nuclear Information System (INIS)

    Souers, P.C.

    1977-10-01

    Cryogenic hydrogen data is being compiled for magnetic fusion engineering. Many physical properties of DT can be extrapolated from H 2 and D 2 values. The phase diagram properties of the D 2 -DT-T 2 mixture are being measured. Three properties which will be greatly affected by tritium should be measured. In order of their perceived importance, they are: (1) solid thermal conductivity, (2) solid mechanical strength, and (3) gaseous electrical conductivity. The most apparent need for DT data is in Tokomak fuel pellet injection. Cryopumping and distillation applications are also considered

  18. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  19. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  20. The European Graduate Course in Cryogenics hosted at CERN.

    CERN Multimedia

    Laurent Tavian

    2010-01-01

    The “liquid helium” week of the European Graduate Course in Cryogenics was held at CERN from 30 August to 3 September 2010. This course scheduled annually since 2008 is a common teaching project of the Universities of Technology of Dresden, Wroclaw and Trondheim. It is focused on liquid natural gas, hydrogen and helium cryogenics. Attending students were carefully selected, and will take an examination giving ECTS credits for their academic curriculum.   This year, as Wroclaw University of Technology was already heavily involved in organising the International Cryogenic Engineering Conference (ICEC), it requested that the “liquid helium” week to be exceptionally held at CERN. While this is certainly a good choice from the point of view of large cryogenic helium systems, with the large cryoplants cooling the Large Hadron Collider (LHC) and its experiments, CERN has only acted as host laboratory organizing the course classes and visits, and the teaching and i...

  1. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...

  2. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    Science.gov (United States)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  3. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  4. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  5. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    Science.gov (United States)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  6. A superconducting linear motor drive for a positive displacement bellows pump for use in the g-2 cryogenics system

    International Nuclear Information System (INIS)

    Green, M.A.

    1994-10-01

    Forced two-phase cooling of indirectly cooled magnets requires circulation of liquid helium through the magnet cooling channel. A bellows helium pump is one possible way of providing helium flow to a magnet cooling system. Since the bellows type of helium pump is immersed in liquid helium, a superconducting linear motor drive appears to be an attractive option. This report describes a linear motor drive that employs oriented permanent magnet materials such as samarium-cobalt as the stator magnet system and a superconducting loud speaker voice coil type of drive as the armature of the linear motor. This report examines drive motor requirements for a helium pump

  7. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  8. Characterization of titanium alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Reytier, M.; Kircher, F.; Levesy, B.

    2002-01-01

    Titanium alloys are employed in the design of superconducting magnet support systems for their high mechanical strength associated with their low thermal conductivity. But their use requires a careful attention to their crack tolerance at cryogenic temperature. Measurements have been performed on two extra low interstitial materials (Ti-5Al-2.5Sn ELI and Ti-6Al-4V ELI) with different thickness and manufacturing process. The investigation includes the tensile properties at room and liquid helium temperatures using smooth and notched samples. Moreover, the fracture toughness has been determined at 4.2 K using Compact Tension specimens. The microstructure of the different alloys and the various fracture surfaces have also been studied. After a detailed description of the experimental procedures, practical engineering characteristics are given and a comparison of the different titanium alloys is proposed for cryogenic applications

  9. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  10. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  11. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  12. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  13. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  14. The development of a non-cryogenic nitrogen/oxygen supply system. [using hydrazine/water electrolysis

    Science.gov (United States)

    Greenough, B. M.; Mahan, R. E.

    1974-01-01

    A hydrazine/water electrolysis process system module design was fabricated and tested to demonstrate component and module performance. This module is capable of providing both the metabolic oxygen for crew needs and the oxygen and nitrogen for spacecraft leak makeup. The component designs evolved through previous R and D efforts, and were fabricated and tested individually and then were assembled into a complete module which was successfully tested for 1000 hours to demonstrate integration of the individual components. A survey was made of hydrazine sensor technology and a cell math model was derived.

  15. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    CERN Document Server

    Ferlin, G; Claudet, S; Pezzetti, M

    2015-01-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  16. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    Science.gov (United States)

    Ferlin, G.; Tavian, L.; Claudet, S.; Pezzetti, M.

    2015-12-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  17. Current experimental work related to a system alternative to that using the cryogenic separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Pierini, G.; Spelta, B.; Rizzello, C.

    1985-01-01

    The feasibility study of an alternative exhaust plasma process based mainly on the handling of tritiated waters had shown that it could be competitive as some units used in the isotopic separation system (ISS) could attain the performance required in the conceptual design. In particular, the two cells operating in the ISS should have confirmed, first the high separation factor between protium and tritium found in the literature, second the possibility of working at very low liquid (electrolyte) inventory or, in other words, tritium inventory. Moreover, research has been undertaken in order to investigate the preparation and charcterization of some types of separators which should be resistent to the beta radiation of tritiated water

  18. Performance of a Cryogenic Multipath Herriott Cell Vacuum-Coupled to a Bruker IFS-125HR System

    Science.gov (United States)

    Mantz, Arlan; Sung, Keeyoon; Crawford, Timothy J.; Brown, Linda; Smith, Mary Ann H.

    2014-06-01

    Accurate modeling of atmospheric trace gases requires detailed knowledge of spectroscopic line parameters at temperatures and pressures relevant to the atmospheric layers where the spectroscopic signatures form. Pressure-broadened line shapes, frequency shifts, and their temperature dependences, are critical spectroscopic parameters that limit the accuracy of state-of-the-art atmospheric remote sensing. In order to provide temperature dependent parameters from controlled laboratory experiments, a 20.946 ± 0.001 m long path Herriott cell and associated transfer optics were designed and fabricated at Connecticut College to operate in the near infrared using a Bruker 125 HR Fourier transform spectrometer. The cell body and gold coated mirrors are fabricated with Oxygen-Free High Conductivity (OFHC) copper. Transfer optics are through-put matched for entrance apertures smaller than 2 mm. A closed-cycle Helium refrigerator cools the cell and cryopumps the surrounding vacuum box. This new system and its transfer optics are fully evacuated to ˜10 mTorr (similar to the pressure inside the interferometer). Over a period of several months, this system has maintained extremely good stability in recording spectra at gas sample temperatures between 75 and 250 K. The absorption path length and cell temperatures are validated using CO spectra. The characterization of the Herriott cell is described along with its performance and future applications. We thank Drs. V. Malathy Devi and D. Chris Benner at The College of William and Mary for helpful discussion. Research described in this paper was performed at Connecticut College, the Jet Propulsion Laboratory, California Institute of Technology, and NASA Langley Research Center, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  19. Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector

    Science.gov (United States)

    Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses

    2014-10-01

    An ASIC is developed to control and data quantization for large format NIR/SWIR detector arrays. Both cryogenic and space radiation environment issue are considered during the design. Therefore it can be integrated in the cryogenic chamber, which reduces significantly the vast amount of long wires going in and out the cryogenic chamber, i.e. benefits EMI and noise concerns, as well as the power consumption of cooling system and interfacing circuits. In this paper, we will describe the development of this prototype ASIC for image sensor driving and signal processing as well as the testing in both room and cryogenic temperature.

  20. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    Science.gov (United States)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  1. Cryogenic characterization of LEDs for space application

    Science.gov (United States)

    Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu

    2017-09-01

    In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.

  2. Setup and commissioning of a cryogenic system for the production of targets to be used in experiments with high energy lasers and heavy ion beams; Aufbau und Inbetriebnahme einer Kryoanlage zur Targeterzeugung fuer Experimente mit Hochenergielasern und Schwerionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Jurij Alexander

    2010-02-10

    Part of this work was the development of a cryogenic system to produce solid state targets out of nitrogen and rare gases but also hydrogen and deuterium. For target optimization a portable cryogenic test and development chamber has been set up, which can be used offline at different experimental places. Cryogenic targets with different geometries have been produced. Targets with a high aspect ratio having a thickness of only a few micrometers and transverse sizes of millimeters are of special interest for the envisioned investigations. Such targets permit the generation of laser plasmas with a high degree of homogeneity, thus enabling the measurement of the ion energy loss under well defined conditions. Nevertheless, high aspect ratio targets are technologically demanding. Thus, in view of energy loss experiments a simpler geometry has also been considered. Therefore, cryogenic nitrogen targets with cm sizes have been produced and irradiated by the nhelix high energy laser system. The free electron density of the generated plasma has been measured in the range up to 10{sup 20} cm{sup -3}. The measured electron temperature was about 200 eV. The experimental results have been compared to computer simulations and analyzed. It turned out that simulation and experiment are in good agreement, but the free electron density was too low and inhomogeneous for reliable energy loss experiments. Therefore, further deuterium targets with a high aspect ratio but varying geometries have been produced. These targets have been probed by the UNILAC ion beam and it has been shown that the ion beam can penetrate through them. The targets have also been simultaneously irradiated by the high energy laser systems nhelix and Phelix. The free electron density inside the deuterium plasma has been measured and compared with computer simulations. As in the case of nitrogen plasmas a good agreement has been observed. A new measurement technique has been developed to characterize the target

  3. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  4. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  5. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  6. Cryogenic, superconducting and rf results of the SRFQ2 of PIAVE

    Indian Academy of Sciences (India)

    mance, i.e., 280 kV inter-electrode voltage (equivalent to 25 MV/m peak surface electrical field) at 7 ... At present the installation of PIAVE cryogenic plants and relative distribution lines are ..... straight up to 250 kV, but with a puzzling positive drop, as can be seen in figure 6. ... The cryogenic system feeding the RFQ cryostat.

  7. Cryogenics bringing the temperature down, underground

    CERN Multimedia

    2005-01-01

    The first 600m of the LHC cryogenic distribution line (QRL), which will feed the accelerator's superconducting magnets, has passed initial validating tests of its mechanical design at room and cryogenic temperatures.

  8. Production and Innovative Applications of Cryogenic Solid Pellets

    International Nuclear Information System (INIS)

    Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

    1999-01-01

    For over two decades Oak Ridge National Laboratory has been developing cryogenic pellet injectors for fueling hot, magnetic fusion plasmas. Cryogenic solid pellets of all three hydrogen isotopes have been produced in a size range of 1- to 10-mm diameter and accelerated to speeds from <100 to ∼3000 m/s. The pellets have been formed discretely by cryocondensation in gun barrels and also by extrusion of cryogenic solids at mass flow rates up to ∼0.26 g/s and production rates up to ten pellets per second. The pellets traverse the hot plasma in a fraction of a millisecond and continuously ablate, providing fresh hydrogenic fuel to the interior of the plasma. From this initial application, uses of this technology have expanded to include (1) cryogenic xenon drops or solids for use as a debris-less target in a laser plasma source of X-rays for advanced lithography systems, (2) solid argon and carbon dioxide pellets for surface cleaning or decontamination, and (3) methane pellets in a liquid hydrogen bath for use as an innovative moderator of cold neutrons. Methods of production and acceleration/transport of these cryogenic solids will be described, and examples will be given of their use in prototype systems

  9. Cryogenic safety organisation at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  10. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  11. Applied superconductivity and cryogenic research activities in NIFS

    International Nuclear Information System (INIS)

    Mito, T.; Sagara, A.; Imagawa, S.; Yamada, S.; Takahata, K.; Yanagi, N.; Chikaraishi, H.; Maekawa, R.; Iwamoto, A.; Hamaguchi, S.; Sato, M.; Noda, N.; Yamauchi, K.; Komori, A.; Motojima, O.

    2006-01-01

    Since the foundation of National Institute for Fusion Science (NIFS) in 1989, the primary mission of the applied superconductivity and cryogenic researches has been focused on the development of the large helical device (LHD): the largest fusion experimental apparatus exclusively utilizing superconducting technologies. The applied superconductivity and cryogenics group in NIFS was organized to be responsible for this activity. As a result of extensive research activities, the construction of LHD was completed in 1997. Since then, the LHD superconducting system has been demonstrating high availability of more than 97% during eight years operation and it keeps proving high reliability of large-scale superconducting systems. This paper describes the extensive activities of the applied superconductivity and cryogenic researches in NIFS during and after the development of LHD and the fundamental researches that aim at realizing a helical-type fusion reactor

  12. Beam screen cryogenic control improvements for the LHC run 2

    CERN Document Server

    AUTHOR|(CDS)2068353; Rogez, Edouard; Blanco Vinuela, Enrique; Ferlin, Gerard; Tovar-Gonzalez, Antonio

    2017-01-01

    This paper presents the improvements made on the cryogenic control system for the LHC beam screens. The regulation objective is to maintain an acceptable temperature range around 20 K which simultaneously ensures a good LHC beam vacuum and limits cryogenic heat loads. In total, through the 27 km of the LHC machine, there are 485 regulation loops affected by beam disturbances. Due to the increase of the LHC performance during Run 2, standard PID controllers cannot keeps the temperature transients of the beam screens within desired limits. Several alternative control techniques have been studied and validated using dynamic simulation and then deployed on the LHC cryogenic control system in 2015. The main contribution is the addition of a feed-forward control in order to compensate the beam effects on the beam screen temperature based on the main beam parameters of the machine in real time.

  13. Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Barry [Fermilab; Bremer, Johan [CERN; Chalifour, Michel [Fermilab; Delaney, Mike [Fermilab; Dinnon, Mike [Fermilab; Doubnik, Roza [Fermilab; Geynisman, Michael [Fermilab; Hentschel, Steve [Fermilab; Kim, Min Jeong [Fermilab; Stefanik, Andy [Fermilab; Tillman, Justin [Fermilab; Zuckerbrot, Mike [Fermilab

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260 ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and

  14. Compliance of the CERN electronics used by the LHC Cryogenic System with the Electromagnetic Compatibility (EMC) Norm IEC 61000 4-4

    CERN Document Server

    Casas, J

    2011-01-01

    Within the ITER-CERN collaboration agreement, task “PROCUREMENT OF CRYOGENIC THERMOMETERS TO MONITOR ITER MAGNETS AND FEEDER TEMPERATURES”, CERN is recommending the use by ITER of LHC like electronics for the temperature channels. ITER require that any electronic equipment shall be qualified according to the standard IEC 61000 4-4 that refers to the Electromagnetic compatibility (EMC), Part 4: Testing and measurement techniques, Section 4: Electrical fast transient/burst immunity test (EFT/B). This document describes the qualification procedure and the results for the LHC like temperature measurement chains according to the procedures described in the standard.

  15. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; Fermilab

    2006-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  16. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  17. A word from the DG: A cryogenic success

    CERN Multimedia

    2007-01-01

    The beginning of this month saw the start of a new phase in the LHC project, with its first inauguration, for the LHC cryogenics. This was marked with a symposium in the Globe attended by 178 representatives of the industrial partners and research institutes involved. It also coincided with stable low-temperature operation of the cryogenic plant for sector 7-8, the first sector of the LHC to be cooled down. A look at the LHC web site (http://lhc.web.cern.ch/lhc/) shows this steady operation. The cryogenic system for the LHC is the largest and most complex ever built, involving many large devices on an industrial scale, where reliability is of paramount importance. The LHC’s energy of 7 TeV required a high magnetic field provided by niobium-titanium coils operating at 1.9 K. This is a new temperature regime for large-scale cryogenics, chosen to make use of the excellent heat-transfer properties of helium in its superfluid state. The final design for the LHC cryogenics had to incorporate both newly ordered ...

  18. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    Science.gov (United States)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  19. Automatic control of cryogenic wind tunnels

    Science.gov (United States)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  20. ngVLA Cryogenic Subsystem Concept

    Science.gov (United States)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic

  1. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  2. Specification of the 2nd cryogenic plant for RAON

    Science.gov (United States)

    Yoon, S.; Ki, T.; Lee, K. W.; Kim, Y.; Jo, H. C.; Kim, D. G.

    2017-12-01

    RAON is a rare isotope beam facility being built at Daejeon, South Korea. The RAON consists of three linear accelerators, SCL1 (1st SuperConducting LINAC), SCL2, and SCL3. Each LINAC has its own cryogenic plant. The cryogenic plant for SCL2 will provide the cooling for cryomodules, low temperature SC magnets, high temperature SC magnets, and a cryogenic distribution system. This paper describes the specification of the plant including cooling capacity, steady state and transient operation modes, and cooling strategies. In order to reduce CAPEX with the specification, two suppliers will consider no liquid nitrogen pre-cooling, one integrated cold box, and one back-up HP compressor. The detail design of the plant will be started at the end of this year.

  3. Radiation hard cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Casagrande, L.; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D'Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.

    2002-01-01

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors

  4. LHC Cryogenics on the mend

    CERN Multimedia

    2004-01-01

    On 29 September, repairs began on the LHC cryogenic distribution line, or QRL, to replace a faulty part that occurs in the hundreds of elements of the line that are already on-site. The Accelerator Technology Department is designing a work programme to finish the repairs as soon as possible and minimize delays to the rest of the LHC project.

  5. Champagne for the cryogenics teams

    CERN Multimedia

    2005-01-01

    Christmas has come early for the LHC as a complete sector of the cryogenic distribution line has been operating at 10 degrees Kelvin (-263°C) for the past two weeks, just a few degrees above the machine's nominal operating temperature.

  6. Cryogenic detectors for particle physics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-11-01

    A comprehensive introduction to cryogenic detector developments for particle physics is presented, covering conventional detectors cooled to low temperature (scintillators and semiconductors), superconductive and thermal sensitive devices, as well as the basics of cold electronics. After giving a critical overview of current work, we elaborate on possible new ways for further improvements and briefly evaluate the feasibility of the main proposed applications

  7. 136 Xe enrichment through cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Back, Henning O.; Bottenus, Daniel R.; Clayton, Christopher K.; Stephenson, David E.; TeGrotenhuis, Ward E.

    2017-09-01

    The next generation of 136Xe neutrinoless double beta decay experiments will require on the order of 5 tons of enriched 136Xe. By estimating the relative volatilities of the xenon isotopes and using standard chemical engineering techniques we explore the feasibility of using cryogenic distillation to produce 5 tons of 80% enriched 136Xe in 5-6 years. With current state-of-the-art distillation column packing materials we can estimate the total height of a traditional cryogenic distillation column. We also, report on how Micro Channel Distillation may reduce the overall size of a distillation system for 136Xe production.

  8. Commissioning of the cryogenics of the LHC long straight sections

    International Nuclear Information System (INIS)

    Perin, A.; Casas-Cubillos, J.; Claudet, S.; Darve, C.; Ferlin, G.; Millet, F.; Parente, C.; Rabehl, R.; Soubiran, M.; van Weelderen, R.; Wagner, U.

    2010-01-01

    The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.

  9. Commissioning of the Cryogenics of the LHC Long Straight Sections

    CERN Document Server

    Perin, A; Claudet, S; Darve, C; Ferlin, G; Millet, F; Parente, C; Rabehl, R; Soubiran, M; van Weelderen, R; Wagner, U

    2010-01-01

    The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.

  10. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  11. Analysis for liquid cryogen spillage in the superconducting cyclotron building at VECC

    CERN Document Server

    Roy S ,; Pal, G; Bhandari, R K

    2009-01-01

    The cryogenic system uses liquid helium and liquid nitrogen to cool the superconducting cyclotron magnet and its cryopanels. In order to assess safety scenarios subsequent to an unusual leakage of cryogens from the system, a deterministic analysis has been carried out to estimate the variation of oxygen concentration with time at several locations of superconducting cyclotron building. The entire process is simulated assuming evaporated cryogens mixes instantaneously with air in the confined space, the ventilation system of the cyclotron building is operational, fresh air continuously enters the confined volume and mixes instantaneously with air in the confined space.

  12. Use of thin plastic films at cryogenic temperatures

    Science.gov (United States)

    Lark, R. F.; Hoggatt, J. T.; Wiedekamp, K. E.; Shdo, J. G.

    1972-01-01

    Commercially available plastic film materials that remain flexible at cryogenic temperatures and resist failures caused by folds and wrinkles created during expulsion were investigated for use in expulsion bladders for liquefied gases. Compatible adhesive systems, fabrication techniques, and results of impact and dynamic loading tests are summarized.

  13. Contributions to the 12th. International Cryogenic Engineering Conference

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The report consists of two papers read at the 12 th International Cryogenic Engineering Conference Held in Southampton from 12 to 15 July 1988. The first deals with the design of a conductor for NET machine; the second one gives the description of the liquid Nitrogen cooling system of the FTU tokamak

  14. SPICA sub-Kelvin cryogenic chains

    Science.gov (United States)

    Duband, L.; Duval, J. M.; Luchier, N.; Prouve, T.

    2012-04-01

    SPICA, a Japanese led mission, is part of the JAXA future science program and is planned for launch in 2018. SPICA will perform imaging and spectroscopic observations in the mid- and far-IR waveband, and is developing instrumentation spanning the 5-400 μm range. The SPICA payload features several candidate instruments, some of them requiring temperature down to 50 mK. This is currently the case for SAFARI, a core instrument developed by a European-based consortium, and BLISS proposed by CALTECH/JPL in the US. SPICA's distinctive feature is to actively cool its telescope to below 6 K. In addition, SPICA is a liquid cryogen free satellite and all the cooling will be provided by radiative cooling (L2 orbit) down to 30 K and by mechanical coolers for lower temperatures. The satellite will launch warm and slowly equilibrate to its operating temperatures once in orbit. This warm launch approach makes it possible to eliminate a large liquid cryogen tank and to use the mass saved to launch a large diameter telescope (3.2 m). This 4 K cooled telescope significantly reduces its own thermal radiation, offering superior sensitivity in the infrared region. The cryogenic system that enables this warm launch/cooled telescope concept is a key issue of the mission. This cryogenic chain features a number of cooling stages comprising passive radiators, Stirling coolers and several Joule Thomson loops, offering cooling powers at typically 20, 4.5, 2.5 and 1.7 K. The SAFARI and BLISS detectors require cooling to temperatures as low as 50 mK. The instrument coolers will be operated from these heat sinks. They are composed of a small demagnetization refrigerator (ADR) pre cooled by either a single or a double sorption cooler, respectively for SAFARI and BLISS. The BLISS cooler maintains continuous cooling at 300 mK and thus suppresses the thermal equilibrium time constant of the large focal plane. These hybrid architectures allow designing low weight coolers able to reach 50 mK. Because

  15. An object-oriented approach to cryogenic control systems for the CERN test facilities: a case study based on the UNICOS framework.

    CERN Document Server

    Dudek, Michał

    2010-01-01

    This paper consists of two parts, the first of which is more general and presents the reason of particle collision research, the LHC accelerator and its main detectors (Chapter 1). It also provides information about the test stations in SM18, the cryogenic architecture of the hall and the significant properties of the liquid helium, which make him perfect coolant for the superconducting devices (Chapter 2). The second part of this thesis presents the revamping of the SM18 test facility. It describes the previous functional view and changes that were done. The new layout of the Radio Frequency Cavities rack and communication is also presented (Chapter 3). Chapter 4 gives the information about the software frameworks, code generation for the PLC and the synoptic production.

  16. Design of high-energy-class cryogenically cooled Yb.sup.3+./sup.:YAG multislab laser system with low wavefront distortion

    Czech Academy of Sciences Publication Activity Database

    Divoký, Martin; Sikocinski, Pawel; Pilař, Jan; Lucianetti, Antonio; Sawicka, Magdalena; Slezák, Jiří; Mocek, Tomáš

    2013-01-01

    Roč. 52, č. 6 (2013), "064201-1"-"064201-6" ISSN 0091-3286 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : DPSSL * Yb 3+ :YAG * cryogenically cooled amplifier * pulsed high average power laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.958, year: 2013

  17. Cryogenics for the MuCool Test Area (MTA)

    International Nuclear Information System (INIS)

    Darve, Christine; Norris, Barry; Pei, Liujin

    2006-01-01

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner

  18. Cryogenic refractive index of Heraeus homosil glass

    Science.gov (United States)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-08-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34—3.16 μm and temperature range of 120—335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASA's Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a fieldwidened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitive performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/dλ) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in the literature.

  19. Advanced ACTPol Cryogenic Detector Arrays and Readout

    Science.gov (United States)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  20. Electromagnetic dampers for cryogenic applications

    Science.gov (United States)

    Brown, Gerald V.; Dirusso, Eliseo

    1988-01-01

    Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

  1. Tanec jako projev zbožnosti

    OpenAIRE

    Všetičková, Veronika

    2007-01-01

    The bachelor thesis "Dance as a Manifestation of Devotion" is an exposition on dance in the context of Christian culture. It draws out the development of religious dance and its possibilities and apprehension in various cultures and religions at the dawn of history. It also explains an approach and a principle of scepticism with regard to dance that still exists somewhere in the society. The paper presents a view of dance that can express our devotion to God through its gestures and moves; da...

  2. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  3. Surface tension confined liquid cryogen cooler

    International Nuclear Information System (INIS)

    Castles, S.H.; Schein, M.E.

    1989-01-01

    A cryogenic cooler is described for use in craft such as launch, orbital and space vehicles subject to changes in orientation and conditions of vibration and weightlessness comprising: an insulated tank; a porous open celled sponge-like material disposed substantially throughout the contained volume of the insulated tank; a cryogenic fluid disposed within the sponge-like material; a cooling finger immersed in the cryogenic fluid, the finger extending from inside the insulated tank externally to an outside source such as an instrument detector for the purpose of transmitting heat from the outside source into the cryogenic fluid; means for filling the insulated tank with cryogenic fluid; and means for venting vaporized cryogenic fluid from the insulated tank

  4. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  5. The cryogenic cooling program at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.; Mills, D.M.; Assoufid, L.

    1994-06-01

    This paper describes the experimental and analytical program in cryogenic cooling of high-heat-load optics at the Advanced-Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of pressurized liquid nitrogen and is sized to handle up to 5 kW of optic heat load. Also, a high-vacuum, double-crystal monochromator testing tank has been fabricated. This system will be used to test cryogenic crystals at existing synchrotron sources. A finite element analysis has been performed for a cryogenically cooled Si crystal in the inclined geometry for Undulator A at 100 mA. The inclination angle was 80 degrees. It was set to diffract from the (111) planes at the first harmonic energy of 4.2 keV. The maximum slope error in the diffraction plane was calculated to be about 1 μrad with a peak temperature of 94 K. An analysis has also been performed for a cryogenically-cooled ''thin'' crystal oriented in the Bragg geometry which accepts 87% of the lst harmonic photons at 3.866 keV. The total absorbed power was 131 W at 100 mA current and the peak temperature was 124 K

  6. Cryogenic technology review of cold neutron source facility for localization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Cheol; Park, D. S.; Moon, H. M.; Soon, Y. P. [Daesung Cryogenic Research Institute, Ansan (Korea); Kim, J. H. [United Pacific Technology, Inc., Ansan (Korea)

    1998-02-01

    This Research is performed to localize the cold neutron source(CNS) facility in HANARO and the report consists of two parts. In PART I, the local and foreign technology for CNS facility is investigated and examined. In PART II, safety and licensing are investigated. CNS facility consists of cryogenic and warm part. Cryogenic part includes a helium refrigerator, vacuum insulated pipes, condenser, cryogenic fluid tube and moderator cell. Warm part includes moderator gas control, vacuum equipment, process monitoring system. Warm part is at high level as a result of the development of semiconductor industries and can be localized. However, even though cryogenic technology is expected to play a important role in developing the 21st century's cutting technology, it lacks of specialists and the research facility since the domestic market is small and the research institutes and government do not recognize the importance. Therefore, it takes a long research time in order to localize the facility. The safety standard of reactor for hydrogen gas in domestic nuclear power regulations is compared with that of the foreign countries, and the licensing method for installation of CNS facility is examined. The system failure and its influence are also analyzed. 23 refs., 59 figs., 26 tabs. (Author)

  7. Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and...

  8. Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and...

  9. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    Science.gov (United States)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  10. Cold atoms in a cryogenic environment

    International Nuclear Information System (INIS)

    Haslinger, S.

    2011-01-01

    The idea of quantum information processing attracts increasingly interest, where a complex collection of quantum objects and quantum bits are employed to find the ideal building blocks for quantum information systems. Hybrid quantum systems are therefore promising objects as they countervail the particular drawbacks of single quantum objects. Based on superconducting resonator technology, microwave coplanar waveguides provide a well suited interconnection for photons and solid-state quantum bits (qubits), extensively investigated in recent years. Since a quantum memory is presently missing in those electrical accessible circuit cavity quantum devices, connecting the fast processing in a solid sate device to the exceptional long coherence times in atomic ensembles, the presented work is focused to establish the technological foundations for the hybridization of such quantum systems. The microwave photons stored in a superconducting high finesse microwave resonator are therefore an ideal connection between the atom and the solid state quantum world. In the last decade, the miniaturization and integration of quantum optics and atomic physics manipulation techniques on to a single chip was successfully established. Such atom chips are capable of detailed quantum manipulation of ultra-cold atoms and provide a versatile platform to combine the manipulation techniques from atomic physics with the capability of nano-fabrication. In recent years several experiments succeeded in realization of superconducting atom chips in cryogenic environments which opens the road for integrating super-conductive microwave resonators to magnetically couple an atomic ensemble to photons stored in the coplanar high finesse cavity. This thesis presents the concept, design and experimental setup of two approaches to establish an atomic ensemble of rubidium atoms inside a cryogenic environment, based on an Electron beam driven alkali metal atom source for loading a magneto optical trap in a

  11. Testing of Prototype Magnetic Suspension Cryogenic Transfer Line

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.

    2006-04-01

    A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.

  12. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  13. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    International Nuclear Information System (INIS)

    Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.

    2004-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed

  14. Cryogenic Airborne Interferometer

    Science.gov (United States)

    1976-12-22

    fine posi- tional adjustment of the secondary mirror which is very small and licht , ijy comblnlnc these twe motor systems, the overall drive can...s2 m v FIGUR£ 2 -33- After these; two quadrature sißnp.ls are venerated, the phase anfle V5 can be detected usinc voltsne de - tectors. The

  15. Cryogenic aspects of the mirror fusion test facility

    International Nuclear Information System (INIS)

    Sterbentz, W.H.; Nelson, R.L.

    1979-01-01

    This paper covers the design and construction of the MFTF cryogenic system and a description of the operating procedures throughout the many functional modes. The coils and the cryopanels for maintaining the high vacuum environment weigh 417,000 kg (920,000 lb) and must be cooled from room temperature to 4.5 k. The cryogenic system for MFTF consists of a closed-loop helium system with a 3000-W helium refrigerator that uses gas-bearing expansion turbines and oil-flooded screw compressors. In addition, liquid helium storage facilities have adequate capacity for standby operation, and a complete helium-purification plant is capable of processing 17 m 3 /min (600 scfm). An open-loop liquid nitrogen system (with provision for later addition of a nitrogen recondenser) provides the required refrigeration for the radiation shields that must be maintained at 85 K

  16. Field Testing of Cryogenic Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, Aaron [Sustainable Energy Solutions, LLC; Frankman, Dave [Sustainable Energy Solutions, LLC; Baxter, Andrew [Sustainable Energy Solutions, LLC; Stitt, Kyler [Sustainable Energy Solutions, LLC; Baxter, Larry [Sustainable Energy Solutions, LLC; Brigham Young Univ., Provo, UT (United States)

    2017-07-17

    Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cement kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.

  17. Characterizing Dissolved Gases in Cryogenic Liquid Fuels

    Science.gov (United States)

    Richardson, Ian A.

    Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine

  18. Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel

    Science.gov (United States)

    Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.

    2018-01-01

    When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.

  19. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam

    2017-01-01

    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  20. First Experience with the LHC Cryogenic Instrumentation

    CERN Document Server

    Vauthier, N; Balle, Ch; Casas-Cubillos, J; Ciechanowski, M; Fernandez-Penacoba, G; Fortescue-Beck, E; Gomes, P; Jeanmonod, N; Lopez-Lorente, A; Suraci, A

    2008-01-01

    The LHC under commissioning at CERN will be the world's largest superconducting accelerator and therefore makes extensive use of cryogenic instruments. These instruments are installed in the tunnel and therefore have to withstand the LHC environment that imposes radiation-tolerant design and construction. Most of the instruments require individual calibration; some of them exhibit several variants as concerns measuring span; all relevant data are therefore stored in an Oracle® database. Those data are used for the various quality assurance procedures defined for installation and commissioning, as well as for generating tables used by the control system to configure automatically the input/output channels. This paper describes the commissioning of the sensors and the corresponding electronics, the first measurement results during the cool-down of one machine sector; it discusses the different encountered problems and their corresponding solutions.

  1. Cryogenic microwave channelized receiver

    International Nuclear Information System (INIS)

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-01-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results

  2. A Cryogenic Infrared Calibration Target

    Science.gov (United States)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  3. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  4. Precision mechanisms for optics in a vacuum cryogenic environment

    Science.gov (United States)

    Navarro, R.; Elswijk, E.; Tromp, N.; Kragt, J.; Kroes, G.; Hanenburg, H.; de Haan, M.; Schuil, M.; Teuwen, M.; Janssen, H.; Venema, L.

    2017-11-01

    To achieve superb stability in cryogenic optical systems, NOVA-ASTRON generally designs optical instruments on the basis of a 'no adjustments' philosophy. This means that in principle no corrections are possible after assembly. The alignment precision and consequently the performance of the instrument is guaranteed from the design, the tolerance analysis and the detailed knowledge of the material behavior and manufacturing process. This resulted in a higher degree of integrated optomechanical-cryogenic design with fewer parts, but with a higher part complexity. The 'no adjustments' strategy is successful because in the end the risk on instrument performance and project delays is much reduced. Astronomical instrument specifications have become more challenging over the years. Recent designs of the European Southern Observatory Very Large Telescope Interferometer (ESO VLTI) 4 Telescope combiner MATISSE include hundreds of optical components in a cryogenic environment. Despite the large number of optical components the alignment accuracy and stability requirements are in the order of nanometers. The 'no adjustments' philosophy would be too costly in this case, because all components would need to meet extremely tight manufacturing specifications. These specifications can be relaxed dramatically if cryogenic mechanisms are used for alignment. Several mechanisms have been developed: a tip-tilt mirror mechanism, an optical path distance mechanism, a slider mechanism, a bistable cryogenic shutter and a mirror mounting clip. Key aspects of these mechanisms are that the optical element and mechanism are combined in a compact single component, driven by e.g. self braking piezo actuators in order to hold position without power. The design, realization and test results of several mechanisms are presented in this paper.

  5. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  6. Cryogenic instrumentation with cold electronics-A review

    International Nuclear Information System (INIS)

    Rao, M.G.; Scurlock, R.G.

    1986-01-01

    The low level signals from cryogenic sensors and transducers are usually carried to the electronic signal conditioning and data handling systems at ambient temperatures by long electrical leads running from the cyrogenic environment to ambient. There are many applications, outside those using superconducting devices, in which there are advantages to be gained by placing part or all of the electronic system in the cryogenic environment adjacent to the measuring point. This paper discusses the requirements for an ideal cold electronic instrumentation system and then reviews the present state of the art in relation to off-the-shelf electronic components, devices and integrated circuits, and the published literature. The integration of sensors/transducers with cold electronics is discussed and areas for development are outlined

  7. Cryogenic laboratory (80 K - 4 K)

    International Nuclear Information System (INIS)

    Brad, Sebastian; Steflea, Dumitru

    2002-01-01

    The technology of low temperature at the beginning of this century, developed for the production of oxygen, nitrogen and rare gases, was the basis for setting up the cryogenic technology in all the companies with these activity fields. The cryogenics section of today comprises engineering and construction of cryogenic plants for science, research and development, space technology, nuclear power techniques. Linde has designed and built a reliable small scale Helium liquefier. This fully automatic cryoliquefier operates for purification, liquefaction as well as re-liquefaction of Helium-gas, evaporated in cryostat systems. The basic equipment of the Linde L5 are the liquefier apparatus, transfer line, medium pressure buffer vessel, automatic purifier, compressor with mechanical oil separation unit, oil adsorber, electrical control unit. The accessories of the Linde L5 are the liquid helium storage tank, high-pressure gas supply, helium recovery unit, and cryocomponents. The cycle compressor C 101 designed as a single stage screw compressor supplies the liquefaction process with approx. 10 g/s of helium at a pressure of 10 to 12 bar and a temperature of approx. 300 K. In the first plate heat exchanger E 201 the gas is cooled down to approx. 70 K. Then the He high-pressure flow is divided: about 7 g/s reach the turbine X 201 via valve 203 (turbine entry) and are expanded there to approx. 4.6 bar, the gas cooling down to 64 K. After further cooling in the heat exchanger E 203 to about 16 K, another power-consuming expansion to 1.2 bar takes place. The implied cooling of the gas results in a temperature of 12 K at the outlet of the turbine X 202. This gas is then transferred to the low-pressure side of the heat exchanger E 204. The smaller part of the He high-pressure gas flow (approx. 3 g/s) is cooled down in the heat exchanger E 202 - E 205 to about 7 K. One part of the cold helium gas (approx. 0.17 g/s) is used in the purifier to cool down the feed gas to air

  8. Using of polyamide in construction of supporting blocks of cryogenic tanks on example of LNG container

    OpenAIRE

    E. Lisowski; W. Czyżycki; K. Łazarczyk

    2010-01-01

    Interest in using of cryogenic gases is increasing recently. It particularly applies to LNG (Liquefied Natural Gas), which is relatively inexpensive and environmental friendly. In the liquefied form this gas is highly compressed. One cubic meter of liquefied LNG can be expanded to 660 cubic meters of normal usable gas. At the atmospheric pressure, the liquefaction temperature of LNG is under minus 160 Celsius degrees. Therefore, there is a necessity to store it in a cryogenic tank. A system o...

  9. Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced Gravity

    Science.gov (United States)

    Marchetta, J. G.; Hochstein, J. I.

    2002-01-01

    Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced strong evidence that a magnetic positioning system may be a feasible alternative technology for use in the management of cryogenic propellants onboard spacecraft. The results of these preliminary studies have indicated that further investigation of the physical processes and potential reliability of such a system is required. The utility of magnetic fields as an alternative method in cryogenic propellant management is dependent on its reliability and flexibility. Simulations and experiments have previously yielded evidence in support of the magnetic positive positioning (MPP) process to predictably reorient LOX for a variety of initial conditions. Presently, though, insufficient evidence has been established to support the use of magnetic fields with respect to the long-term storage of cryogenic propellants. Current modes of propellant storage have met with a moderate level of success and are well suited for short duration missions using monopropellants. However, the storage of cryogenic propellants warrants additional consideration for long-term missions. For example, propellant loss during storage is due to vaporization by incident solar radiation and the vaporized ullage must be vented to prevent excessive pressurization of the tank. Ideally, positioning the fluid in the center of the tank away from the tank wall will reduce vaporization by minimizing heat transfer through the tank wall to the liquid. A second issue involves the capability of sustaining a stable fluid configuration at tank center under varying g-levels or perturbations propellant storage. Results presented herein include comparisons illustrating the influence of gravity, fluid volume, and the magnetic field on a paramagnetic fluid, LOX. The magnetic Bond number is utilized as predictive correlating parameter for investigating these processes. A dimensionless relationship between the Bom and Bo was sought with the goal of

  10. Cryogen-free dilution refrigerators

    International Nuclear Information System (INIS)

    Uhlig, K

    2012-01-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4 He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4 He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  11. Cryogen-free dilution refrigerators

    Science.gov (United States)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  12. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    Science.gov (United States)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  13. Cryogenics for Superconductors: Refrigeration, Delivery, and Preservation of the Cold

    Science.gov (United States)

    Ganni, V.; Fesmire, J. E.

    2011-01-01

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.

  14. Development of multifunctional electronic modules for cryogenic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gust, Norbert; Kade, Andreas; Klier, Juergen [Institut fuer Luft- und Kaeltetechnik (ILK) gemeinuetzige Gesellschaft mbH, Dresden (Germany)

    2017-07-01

    A new universal cryogenic measurement system has been developed which can measure resistance and voltages with high precision (< 0.025 %) and low noise (-88 dB) at low powers (< 1 nW) in a high electromagnetic interference environment. The system is effectively designed and equipped with noise and distortion suppressing electronics and algorithms. It can be extended with cryogenic multiplexers for up to 80 sensors, which can be directly mounted inside cryostats for reduced wiring. The size of the devices is relatively small (handheld), low power (< 2 W), can operate on battery and has easy access to calibration and sensor data. Sensor types are not limited and it can be used to measure, e.g., temperature, voltage, magnetic field, pressure and level simultaneously. Within this paper we present our developments and first measurement results. The key components which we describe in detail are cold multiplexers and smart measurement bridges for a wide field of applications.

  15. A lens-coupled scintillation counter in cryogenic environment

    International Nuclear Information System (INIS)

    Stoykov, A; Scheuermann, R; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the 'lens light guide' is about 50%. A reliable performance of the detector down to 3 K is demonstrated.

  16. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  17. Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA

    International Nuclear Information System (INIS)

    Goncharov, V N; Regan, S P; Sangster, T C; Betti, R; Boehly, T R; Campbell, E M; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Froula, D H; Glebov, V Yu; Harding, D R; Hu, S X; Igumenshchev, I V; Marshall, F J; McCrory, R L; Michel, D T; Myatt, J F; Radha, P B

    2016-01-01

    Achieving ignition in a direct-drive cryogenic implosion at the National Ignition Facility (NIF) requires reaching central stagnation pressures in excess of 100 Gbar, which is a factor of 3 to 4 less than what is required for indirect-drive designs. The OMEGA Laser System is used to study the physics of cryogenic implosions that are hydrodynamically equivalent to the spherical ignition designs of the NIF. Current cryogenic implosions on OMEGA have reached 56 Gbar, and implosions with shell convergence CR< 17 and fuel adiabat α > 3.5 proceed close to 1-D predictions. Demonstrating hydrodynamic equivalence on OMEGA will require reducing coupling losses caused by cross-beam energy transfer (CBET), minimizing long- wavelength nonuniformity seeded by power imbalance and target offset, and removing target debris occumulated during cryogenic target production. (paper)

  18. New Process Controls for the Hera Cryogenic Plant

    Science.gov (United States)

    Böckmann, T.; Clausen, M.; Gerke, Chr.; Prüß, K.; Schoeneburg, B.; Urbschat, P.

    2010-04-01

    The cryogenic plant built for the HERA accelerator at DESY in Hamburg (Germany) is now in operation for more than two decades. The commercial process control system for the cryogenic plant is in operation for the same time period. Ever since the operator stations, the control network and the CPU boards in the process controllers went through several upgrade stages. Only the centralized Input/Output system was kept unchanged. Many components have been running beyond the expected lifetime. The control system for one at the three parts of the cryogenic plant has been replaced recently by a distributed I/O system. The I/O nodes are connected to several Profibus-DP field busses. Profibus provides the infrastructure to attach intelligent sensors and actuators directly to the process controllers which run the open source process control software EPICS. This paper describes the modification process on all levels from cabling through I/O configuration, the process control software up to the operator displays.

  19. Dynamics of superconductor bearings in a cryogenic failure

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Amit [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)]. E-mail: Amit.Rastogi@avizatechnology.com; Campbell, A.M. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom); Coombs, T.A. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2006-08-01

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behaviour.

  20. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the