Sample records for zackenberg river drainage

  1. Annual glacier dammed lake drainage in Zackenberg, Northeast Greenland

    Lane, Timothy; Adamson, Kathryn; Matthews, Tom


    A.P. Olsen is a 295 km2 ice cap in the Zackenberg region of Northeast Greenland (74.6° N, 21.5° W), 35 km from the ZERO Zackenberg Research Station. The ice cap lies on a gneissic plateau, covering an elevation of 200 to 1450 m a.s.l. A.P. Olsen mass balance has been monitored since 2008 and reconstructed for the period 1995-2007. Meltwater from this ice cap drains into the Zackenberg River, and into Young Sund via the Zackenberg Delta. One outlet dams a c. 0.8 km2 lake fed by the northern part of the ice cap. Observational data suggests this lake drains annually, flooding subglacially into the Zackenberg River. But the impacts of these flood events on the hydrology, sediment transfer, and geomorphology of the proglacial zone downstream have not been examined in detail. Understanding the impacts of glacial lake outburst flood events is important in the sensitive Arctic environment, where glacial change is rapid. We use Landsat scenes to reconstruct lake extent from 1999-2015. This is compared to Zackenberg River discharge measurements, available from the ZERO Zackenberg monitoring programme. These datasets are used to examine the nature and timing of flood events, and assess the impacts on the Zackenberg river downstream.

  2. Etheostoma erythrozonum, a new species of darter (teleostei: Percidae) from the Meramec River drainage, missouri

    Switzer, J.F.; Wood, R.M.


    A new species of darter, Etheostoma erythrozonum, is described from the Meramec River drainage of Missouri, USA. Etheostoma erythrozonum is the first known fish species endemic to the Meramec River drainage. It differs morphologically and genetically from populations of its sister species, Etheostoma tetrazonum, from the Gasconade River, Osage River, and Moreau River drainages. Copyright ?? 2009 ?? Magnolia Press.

  3. Soil-Snow-Vegetation Interactions at Zackenberg, Northeast Greenland

    Gacitua, Guisella

    -term eects on the ecosystem function and dynamics. At the Zackenberg Research Station in Northeast Greenland ecosystem processes are routinely monitored through a comprehensive monitoring program. This PhD project investigates and discusses the interactions between climate, the physical components...... penetrating radar (GPR) technology was used to quantify and validate physical and biotic interactions that can be used to improve the knowledge of ecosystem effects. Standard GPR techniques were adapted to suit Arctic ecosystem and applied to three major ecosystem components of the Zackenberg valley...

  4. Nitrogen budget in the Changjiang River drainage area

    JIANG Tao; YU Zhiming; SONG Xiuxian; CAO Xihua


    We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area.Nitrogen inputs in the budget included N from synthetic fertilizer,biological fixation by leguminous and other crops,wet/dry atmospheric deposition,excreta from humans and animals,and crop residues.The total N input was estimated to be 17.6 Tg,of which 20% or 3.5 Tg N was transported into waterbodies.Of the total N transported into waterbodies,the largest proportion was N from animal waste (26%),followed by N from atmospheric wet/dry deposition (25%),synthetic fertilizer N (17%),N in sewage wastes (17%),N in human waste from rural areas (6%) and industrial wastewater N (9%).We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins,from upstream to downstream:the Tongtian River drainage area (TTD,the headwater drainage area,138 000 km2,less disturbed by human activities); the Jinsha River drainage area (JSD,347 000 km2,less disturbed by human activities,approx.3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD,520 500 km2,large-scale human disturbance,about 2 000 km upstream of the Changjiang estuary);and the Yichang-Datong drainage area (YDD,699 900 km2,large-scale human disturbance,approx.620 km upstream of the Changjiang estuary).The average N input into waterbodies was 2.3,7.3,24.1,and 28.2 kg N/ha in the TTD,JSD,PYD,and YDD sub-basins,respectively,suggesting an increase of N-components of more than 10 times from upstream to downstream areas.

  5. Fishes of the Blackwater River Drainage, Tucker County, West Virginia

    Cincotta, Daniel A.; Welsh, Stuart; Wegman, Douglas P.; Oldham, Thomas E.; Hedrick, Lara B.


    The Blackwater River, a tributary of the upper Cheat River of the Monongahela River, hosts a modest fish fauna. This relatively low diversity of fish species is partly explained by its drainage history. The Blackwater was once part of the prehistoric, northeasterly flowing St. Lawrence River. During the Pleistocene Epoch, the fauna was significantly affected by glacial advance and by proglacial lakes and their associated overflows. After the last glacial retreat, overflow channels, deposits, and scouring altered drainage courses and connected some of the tributaries of the ancient Teays and Pittsburgh drainages. These major alterations allowed the invasion of fishes from North America's more species-rich southern waters. Here we review fish distributions based on 67 surveys at 34 sites within the Blackwater River drainage, and discuss the origin and status of 37 species. Within the Blackwater River watershed, 30 species (20 native, 10 introduced) have been reported from upstream of Blackwater Falls, whereas 29 (26 native, 3 introduced) have been documented below the Falls. Acid mine drainage, historic lumbering, and human encroachment have impacted the Blackwater's ichthyofauna. The fishes that have been most affected are Salvelinus fontinalis (Brook Trout), Clinostomus elongatus (Redside Dace), Nocomis micropogon (River Chub), Hypentelium nigricans (Northern Hog Sucker), Etheostoma flabellare (Fantail Darter), and Percina maculata(Blackside Darter). The first two species incurred range reductions, whereas the latter four were probably extirpated. In the 1990s, acid remediation dramatically improved the water quality of the river below Davis. Recent surveys in the lower drainage revealed 15 fishes where none had been observed since at least the 1940s; seven of these (Cyprinella spiloptera [Spotfin Shiner], Luxilus chrysocephalus [Striped Shiner], Notropis photogenis [Silver Shiner], N. rubellus [Rosyface Shiner];Micropterus dolomieu

  6. Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin

    Skoog, A.


    The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

  7. Crystallaria cincotta, a new species of darter (Teleostei: Percidae) from the Elk River of the Ohio River drainage, West Virginia

    Welsh, S.A.; Wood, R.M.


    A new species of percid, Crystallaria cincotta, is described from the Cumberland, Elk, Green, and Muskingum river drainages of the Ohio River basin, USA. It differs from populations of Crystallaria asprella of the Gulf Coast, lower Mississippi River, middle Mississippi River, upper Mississippi River, and Wabash River drainages by having a reduced number of cheek scale rows restricted to the post-orbital region, a falcate margin on the pelvic fins, a preorbital blotch distinctly separate from the anterior orbital rim, and a wide mouth gape. The Elk River population is also divergent genetically from populations of the Gulf Coast, lower Mississippi River, and upper Mississippi River drainages. Crystallaria cincotta, discovered in the Elk River of the Ohio River drainage in 1980, is a rare species with the only extant population represented by 12 individuals collected from 1980-2005 from the lower 36 km section of the Elk River, West Virginia. Copyright ?? 2008 Magnolia Press.

  8. The Microbial contamination of the Hornad river drainage

    Zdenka Maťašová


    Full Text Available This article deals with the microbiological aspect of the quality assessment of the Hornád river drainage surface waters. The Microbiological parameters were studied in Hornád, Torysa, and Hnilec rivers. During the study period, water quality increase by one degree was observed in most of the sampled areas. Water quality in the sampled areas ranged between polluted and very strongly polluted. The main cause of the pollution is the increased abundance of coliform and thermo-tolerant coliform bacteria. Main reason for the found increased abundance is: public sewage water, waste water from the nearby settlements and allotments, and waste waters from hospitals and sanatoria.

  9. Persistent organochlorine residues in sediments of Haihe River and Dagu Drainage River in Tianjin, China

    DING Hui; LI Xin-gang; LIU Hun; WANG Jun; SHEN Wei-ran; SUN Yi-chao; SHAO Xiao-long


    Persistent organochlorine compounds were analyzed by means of GC-ECD in surface sediment samples from two selected rivers in Tianjin, Haihe River and Dagu Drainage River. A total of 16 surface sediment sites were selected along the both rivers. The frequency of detection of T-HCH and T-DDT in sediment samples both was up to 100%, which illustrated that the contamination of HCH and DDT was widespread in Haihe and Dagu Drainage Rivers. Results indicated that the concentrations of vadous pesticides in sediments from Haihe River were in the range of 3.30-75.96 ng/g dw for T-HCH and 1.57-211.57 ng/g dw for T-DDT. Compared with Haihe River,Dagu Drainage River was contaminated by HCHs and DDTs along the all locations and the values of T-HCH and T-DDT residues in sediments ranged from 2.30 to 124.61 ng/g dw and from 11.28 to 237.30 ng/g dw, respectively. The possible pollution sources were analyzed through monitoring results of organochlorine pesticides(OCPs) residues in sediments from the two rivers. The investigation also indicated that HCH was still used as pesticide in Tianjin partial area.

  10. Pollen transport in the Shiyang River drainage, arid China

    ZHU Yan; XIE Yaowen; CHENG Bo; CHEN Fahu; ZHANG Jiawu


    In order to assess the contribution of the pollen transported by wind and fluvial flows to the pollen spectra in Shiyang River drainage, a typical small endorheic drainage in arid lands of northwest China, preliminary studies on modern pollen rain along two transects with 91 surface soil samples, 8 atmospheric samples, 30 modern fluvial flow samples and 50 riverbed mud samples, were carried out. Results show that dispersal agents (air, flowing water) have dissimilareffects on transport of pollen and the structure of pollen spectra. Fluvial flow has a stronger capacity than wind to transport large quantities of pollen overlong distances. Pollen transported by fluvial flow makes a large contribution to the pollen spectra of riverbed alluvial sediments. Paleoenvironmental reconstructions undertaken using pollen spectra from fluvial sediments in arid lands arestrongly influenced by pollen transport. Therefore, the sources, the transportation agents and the depositional condition of pollen should be systematically investigated before pollen assemblages are used to derive the environmental significance in such settings.

  11. Research on the conversion relationships between the river and groundwater in the Yellow River drainage area

    WANG; Wenke; KONG; Jinling; DUAN; Lei; WANG; Yanlin; MA; Xi


    Conversion relationships between the river and groundwater in the Yellow River drainage area are studied in this paper based on the geologic and physiognomy conditions and the data of the groundwater regime, isotope, groundwater flow field and field survey. Then eight recharge and discharge modes on the relationships are put forward and the hydraulic characteristics of the modes are analysed, which provides a scientific basis for quantitatively simulating and assessing the conversion relationships,maintenance mechanism of the Yellow River and the regeneration ability of the groundwater in the area.


    YUAN Fei; REN Li-liang; YU Zhong-bo; XU Jing


    On the basis of Digital Elevation Model (DEM) data, watershed delineation and spatial topological relationship were proposed by the Digital Elevation Drainage Network Model (DEDNM) for the area upstream of the Hanzhong Hydrological Station in the Hanjiang River in China. Then, the Muskingum-Cunge method considering lateral flow into the river was applied to flood routing on the platform of digital basin derived from DEDNM. Because of considering lateral flow into the river, the Muskingum-Cunge method performs better than the Muskingum method in terms of the Nash-Sutcliffe model efficiency coefficient and the relative error of flood discharge peak value. With a routing-after-superposition algorithm, the Muskingum-Cunge method performs better than the Muskingum method in terms of the Nash-Sutcliffe model efficiency coefficient and the relative error of flood discharge peak value. As a result, the digital basin coupled with the Muskingum-Cunge method provides a better platform for water resources management and flood control.

  13. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game


    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

  14. Fire history of southeastern Glacier National Park: Missouri River Drainage

    Barrett, Stephen W.


    In 1982, Glacier National Park (GNP) initiated long-term studies to document the fire history of all forested lands in the 410,000 ha. park. To date, studies have been conducted for GNP west of the Continental Divide (Barrett et al. 1991), roughly half of the total park area. These and other fire history studies in the Northern Rockies (Arno 1976, Sneck 1977, Arno 1980, Romme 1982, Romme and Despain 1989, Barrett and Arno 1991, Barrett 1993a, Barrett 1993b) have shown that fire history data can be an integral element of fire management planning, particularly wen natiral fire plans are being developed for parks and wilderness. The value of site specific fire history data is apparent when considering study results for lodgepole pin (Pinus contorta var. latifolia) forests. Lodgepole pine is a major subalpine type in the Northern Rockies and such stands experiences a wide range of presettlement fire patterns. On relatively warm-dry sites at lower elevations, such as in GNP's North Fork drainage (Barrett et al. 1991), short to moderately long interval (25-150 yr) fires occurred in a mixed severity pattern ranging from non-lethal underburns to total stand replacement (Arno 1976, Sneck 1977, Barrett and Arno 1991). Markedly different fire history occurred at high elevation lodgepole pine stands on highly unproductive sites, such as on Yellowstone National Park's (YNP) subalpine plateau. Romme (1982) found that, on some sites, stand replacing fires recurred after very long intervals (300-400 yr), and that non-lethal surface fires were rare. For somewhat more productive sites in the Absaroka Mountains in YNP, Barrett (1993a) estimated a 200 year mean replacement interval, in a pattern similar to that found in steep mountain terrain elsewhere, such as in the Middle Fork Flathead River drainage (Barrett et al. 1991, Sneck 1977). Aside from post-1900 written records (ayres 1900; fire atlas data on file, GNP Archives Div. and GNP Resources Mgt. Div.), little fire history

  15. Humpback Whitefish Coregonus pidschian of the Upper Tanana River Drainage: Alaska Fisheries Technical Report Number 90

    US Fish and Wildlife Service, Department of the Interior — Humpback whitefish (Coregonus pidschian) are the primary fishery resource in the upper Tanana River drainage. Subsistence users in the region have reported that...

  16. Power-law tail probabilities of drainage areas in river basins

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.


    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  17. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho, Annual Report 2002.

    Cochnauer, Tim; Claire, Christopher


    In 2002 Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River, Lochsa River, Selway River, and Middle Fork Clearwater River subbasins. Five-hundred forty-one ammocoetes were captured electroshocking 70 sites in the South Fork Clearwater River, Lochsa River, Selway River, Middle Fork Clearwater River, Clearwater River, and their tributaries in 2002. Habitat utilization surveys in Red River support previous work indicating Pacific lamprey ammocoete densities are greater in lateral scour pool habitats compared to riffles and rapids. Presence-absence survey findings in 2002 augmented 2000 and 2001 indicating Pacific lamprey macrothalmia and ammocoetes are not numerous or widely distributed. Pacific lamprey distribution was confined to the lower reaches of Red River below rkm 8.0, the South Fork Clearwater River, Lochsa River (Ginger Creek to mouth), Selway River (Race Creek to mouth), Middle Fork Clearwater River, and the Clearwater River (downstream to Potlatch River).

  18. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Wickert, Andrew D.


    Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins - the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  19. 1986 moose census, lower Nowitna River drainage: Final report

    US Fish and Wildlife Service, Department of the Interior — A moose survey of the lower Nowitna drainage on the Nowitna National Wildlife Refuge was conducted from 17-21 November 1986. The 1986 population estimate for the...

  20. Drainage report for Delair Division of Great River NWR

    US Fish and Wildlife Service, Department of the Interior — Obstacles such as ground seepage, inefficient water control structures, and backwater in the Sny Ditch are all contributing to drainage problems at the Delair...

  1. Summer habitat use by Columbia River redband trout in the Kootenai River drainage, Montana

    Muhlfeld, Clint C.; Bennett, David H.


    The reported decline in the abundance, distribution, and genetic diversity of Columbia River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted fisheries managers to investigate their habitat requirements, identify critical habitat, and develop effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (>=126 mm TL) fish preferred deep microhabitats (>=0.4 m) with low to moderate velocities (<=0.5 m/s) adjacent to the thalweg. Conversely, age-0 (<=35 mm) fish selected slow water (<=0.1 m/s) and shallow depths (<=0.2 m) located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their availability. At the macrohabitat scale, density of Columbia River redband trout (35 mm) was positively related to the abundance of pools and negatively related to stream gradient. The pool: riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for the production of Columbia River redband trout. These data will be useful in assessing the impacts of land-use practices on the remaining populations and may assist with habitat restoration or enhancement efforts.

  2. Impact of subsurface drainage on streamflows in the Red River of the North basin

    Rahman, Mohammed M.; Lin, Zhulu; Jia, Xinhua; Steele, Dean D.; DeSutter, Thomas M.


    The debate about subsurface drainage effects on streamflows has been reignited in the Red River of the North basin in North America, after a decades-long abnormally wet weather pattern in the region. Our study evaluated the applicability of the Soil and Water Assessment Tool (SWAT) in modeling subsurface drainage in a cold environment; we then employed streamflow response analyses to assess the potential impacts of the extensive subsurface drainage development in the Red River Valley (RRV) on streamflows in the Red River. The results showed that extensive subsurface drainage in the RRV would likely increase the magnitude of smaller peak flows while decreasing the magnitude of larger peak flows. Discharge reduction of large peak flows was mainly caused by reducing the flow volumes rather than increasing the time-to-peak of the hydrograph. Our analysis also suggested that extensive subsurface drainage could move more water from the watershed to the rivers in the fall season, creating more storage capacity in the soils. However, such increase in storage capacity in soils would have a negligible effect in reducing the monthly flow volumes in the following spring. The proposed method of coupling a watershed model with streamflow response analysis can be readily adopted by other researchers to evaluate the streamflow impact of land-use and climate changes around the world.

  3. Implication of drainage basin parameters of a tropical river basin of South India

    Babu, K. J.; Sreekumar, S.; Aslam, Arish


    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  4. Explanation of the values of Hack's drainage basin, river length scaling exponent

    Hunt, A. G.


    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  5. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    Hunt, Allen G.


    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  6. Occurrence of Bothriocephalus acheilognathi (Cestoda, Bothriocephallidea) in grass carp Ctenopharyngodon idella in the Changjiang River drainage

    Xi, Bingwen; Wang, Guitang; Xie, Jun


    Bothriocephalus acheilognathi is a potentially serious pathogen in wild or cultured fish in worldwide distribution. We examined 58-farmed grass carp from Nanchang in the Changjiang (Yangtze) River drainage, from which 20.7% were found to harbor the parasite with an infection intensity of 36.9±54.7. The parasites were identified based on morphology and rDNA ITS sequence analysis. The present report represents the first record of the parasite in grass carp Ctenopharyngodon idella in the river drainage.

  7. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment.

    Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan


    Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects.

  8. Quality Assessment in River Network Generalisation by Preserving the Drainage Pattern

    Zhang, L.; Guilbert, E.


    The drainage pattern of a river network is the arrangement in which a stream erodes the channels of its network of tributaries. It can reflect the geographical characteristics of a river network to a certain extent, because it depends on the topography and geology of the land. Whether in cartography or GIS, hydrography is one of the most important feature classes to generalise in order to produce representations at various levels of detail. Cartographic generalisation is an intricate process whereby information is selected and represented on a map at a certain scale, not necessarily preserving all geographical or other cartographic details. There are many methods for river network generalisation, but the generalized results are always inspected by expert cartographers visually. This paper proposes a method that evaluates the quality of a river network generalisation by assessing if drainage patterns are preserved. This method provides a quantitative value that estimates the membership of a river network in different drainage patterns. A set of geometric indicators describing each pattern are presented and the membership of a network is defined based on fuzzy logic. For each pattern, the fuzzy set membership is given by a defined IF-THEN rule composed of several indicators and logical operators. Assessing the quality of a generalisation is done by comparing and analysing the value before and after the network generalisation. This assessment method is tested with several river network generalisation methods on different sets of networks and results are analysed and discussed.

  9. The microbial contamination of the Bodrog river drainage

    Zdenka Maťašová


    Full Text Available This article deals with the microbiological aspect of the quality assessment of the Bodrog rever drainage surface waters. The microbiological parameters in Ondava, Topľa, Laborec and their tributaries were studied. The water quality in the sampled areas ranged between strongly polluted and very strongly polluted. The main cause of the pollution is the increased abundance of coliform and thermo-tolerant coliform bacteria. Main reason for the found increased abundance is: inadequately treated public sewage water, industrial waste water from sugar factory, agricultural distillery, foodstuff warehouse, lumberyard and city swimming pool water, all containing large amounts of organic compounds.

  10. Fluvial responses to late Quaternary climate change in the Shiyang River drainage system, western China

    Gao, Hongshan; Li, Zongmeng; Pan, Baotian; Liu, Fenliang; Liu, Xiaopeng


    As a drainage system located in arid western China, the Shiyang River, combined with considerable fluvial strata and landform information, provides an environmental context within which to investigate fluvial responses to late Quaternary climate change. Sedimentological analysis and optically stimulated luminescence (OSL) dating enabled us to reconstruct the processes and fluvial styles of three sedimentary sequences of the Shagou and Hongshui rivers in the Shiyang drainage system. Our results present a variety of river behaviors during the late Quaternary in these areas. In the upstream Shiyang River, Zhangjiadazhuang (ZJDZ) profile of the Shagou was dominated by aggradation and a meandering channel pattern at 10.6-4.2 ka, while a noticeable channel incision occurred at ~ 4.2 ka followed by lateral channel migration. In the downstream Shiyang River, Datugou (DTG) profile of the Hongshui was an aggrading meandering river from 39.7 to 7.2 ka while channel incision occurred at 7.2 ka. Another downstream profile, Wudunwan (WDW) of the Hongshui was also characterized by aggradation from 22.4 to 4.8 ka; however, its channel pattern shifted from braided to meandering at ~ 13 ka. A discernable downcutting event occurred at ~ 4.8 ka, followed by three channel aggradation and incision episodes prior to 1.8 ka. The last 1.8 ka has been characterized by modern channel and floodplain development. The fluvial processes and styles investigated have a close correlation with late Quaternary climate change in the Shiyang River drainage. During cold phases, the WDW reach was dominated by aggradation with a braided channel pattern. During warm phases, the rivers that we investigated were also characterized by aggradation but with meandering channel patterns. Channel incision events and changes of fluvial style occurred mainly during climate transitions.

  11. River Mileages and Drainage Areas for Illinois Streams. Volume 2. Illinois River Basin.



  12. River piracy and drainage basin reorganization led by climate-driven glacier retreat

    Shugar, Daniel H.; Clague, John J.; Best, James L.; Schoof, Christian; Willis, Michael J.; Copland, Luke; Roe, Gerard H.


    River piracy--the diversion of the headwaters of one stream into another one--can dramatically change the routing of water and sediment, with a profound effect on landscape evolution. Stream piracy has been investigated in glacial environments, but so far it has mainly been studied over Quaternary or longer timescales. Here we document how retreat of Kaskawulsh Glacier--one of Canada's largest glaciers--abruptly and radically altered the regional drainage pattern in spring 2016. We use a combination of hydrological measurements and drone-generated digital elevation models to show that in late May 2016, meltwater from the glacier was re-routed from discharge in a northward direction into the Bering Sea, to southward into the Pacific Ocean. Based on satellite image analysis and a signal-to-noise ratio as a metric of glacier retreat, we conclude that this instance of river piracy was due to post-industrial climate change. Rapid regional drainage reorganizations of this type can have profound downstream impacts on ecosystems, sediment and carbon budgets, and downstream communities that rely on a stable and sustained discharge. We suggest that the planforms of Slims and Kaskawulsh rivers will adjust in response to altered flows, and the future Kaskawulsh watershed will extend into the now-abandoned headwaters of Slims River and eventually capture the Kluane Lake drainage.

  13. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage.

    Silva, Luis F O; Fdez-Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa; Oliveira, Marcos L S; Sampaio, Carlos H; de Brum, Irineu A S; de Leão, Felipe B; Taffarel, Silvio R; Madariaga, Juan M


    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River.

  14. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.


    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  15. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet.

    Smith, Laurence C; Chu, Vena W; Yang, Kang; Gleason, Colin J; Pitcher, Lincoln H; Rennermalm, Asa K; Legleiter, Carl J; Behar, Alberto E; Overstreet, Brandon T; Moustafa, Samiah E; Tedesco, Marco; Forster, Richard R; LeWinter, Adam L; Finnegan, David C; Sheng, Yongwei; Balog, James


    Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km(2) of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54-2.81 cm⋅d(-1)) indicate that the surface drainage system conveyed its own storage volume every meltwater export from the ice sheet to the ocean.

  16. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet

    Smith, Laurence C.; Chu, Vena W.; Yang, Kang; Gleason, Colin J.; Pitcher, Lincoln H.; Rennermalm, Asa K.; Legleiter, Carl J.; Behar, Alberto E.; Overstreet, Brandon T.; Moustafa, Samiah E.; Tedesco, Marco; Forster, Richard R.; LeWinter, Adam L.; Finnegan, David C.; Sheng, Yongwei; Balog, James


    Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km2 of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54–2.81 cm⋅d−1) indicate that the surface drainage system conveyed its own storage volume every ice watershed for Isortoq, a major proglacial river, totaled ∼41–98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056–0.112 km3⋅d−1 vs. ∼0.103 km3⋅d−1), and when integrated over the melt season, totaled just 37–75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean. PMID:25583477

  17. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India

    Rai, Praveen Kumar; Mohan, Kshitij; Mishra, Sameer; Ahmad, Aariz; Mishra, Varun Narayan


    The study indicates that analysis of morphometric parameters with the help of geographic information system (GIS) would prove a viable method of characterizing the hydrological response behaviour of the watershed. It is also well observed that remote sensing satellite data is emerging as the most effective, time saving and accurate technique for morphometric analysis of a basin. This technique is found relevant for the extraction of river basin and its stream networks through ASTER (DEM) in conjunction with remote sensing satellite data (Landsat etm+, 2013 and georeferenced survey of Indian toposheet, 1972). In this study, Kanhar basin a tributaries of Son River has been selected for detailed morphometric analysis. Seven sub-watersheds are also delineated within this basin to calculate the selected morphometric parameters. Morphometric parameters viz; stream order, stream length, bifurcation ratio, drainage density, stream frequency, form factor, circulatory ratio, etc., are calculated. The drainage area of the basin is 5,654 km2 and shows sub-dendritic to dendritic drainage pattern. The stream order of the basin is mainly controlled by physiographic and lithological conditions of the area. The study area is designated as seventh-order basin with the drainage density value being as 1.72 km/km2. The increase in stream length ratio from lower to higher order shows that the study area has reached a mature geomorphic stage.

  18. Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system

    Mario Vicente Caputo

    Full Text Available ABSTRACT: The development of the transcontinental Amazon River System involved geological events in the Andes Chain; Vaupés, Purus and Gurupá arches; sedimentary basins of the region and sea level changes. The origin and age of this river have been discussed for decades, and many ideas have been proposed, including those pertaining to it having originated in the Holocene, Pleistocene, Pliocene, Late Miocene, or even earlier times. Under this context, the geology of the sedimentary basins of northern Brazil has been analyzed from the Mesozoic time on, and some clarifications are placed on its stratigraphy. Vaupés Arch, in Colombia, was uplifted together with the Andean Mountains in the Middle Miocene time. In the Cenozoic Era, the Purus Arch has not blocked this drainage system westward to marine basins of Western South America or eastward to the Atlantic Ocean. Also the Gurupá Arch remained high up to the end of Middle Miocene, directing this drainage system westward. With the late subsidence and breaching of the Gurupá Arch and a major fall in sea level, at the beginning of the Late Miocene, the Amazon River quickly opened its pathway to the west, from the Marajó Basin, through deep headward erosion, capturing a vast drainage network from cratonic and Andean areas, which had previously been diverted towards the Caribbean Sea. During this time, the large siliciclastic influx to the Amazon Mouth (Foz do Amazonas Basin and its fan increased, due to erosion of large tracts of South America, linking the Amazon drainage network to that of the Marajó Basin. This extensive exposure originated the Late Miocene (Tortonian unconformity, which marks the onset of the transcontinental Amazon River flowing into the Atlantic Ocean.

  19. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    Silva, Luis F.O., E-mail: [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Fdez- Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Sampaio, Carlos H.; Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Leão, Felipe B. de; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Madariaga, Juan M. [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain)


    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements.

  20. Tropospheric ozone in the Nisqually River Drainage, Mount Rainier National Park

    Peterson, D.L.; Bowers, Darci


    We quantified the summertime distribution of tropospheric ozone in the topographically complex Nisqually River drainage of Mount Rainier National Park from 1994 to 1997. Passive ozone samplers were used along an elevational transect to measure weekly average ozone concentrations ranging from 570 m to 2040 m elevation. Weekly average ozone concentrations were positively correlated with elevation, with the highest concentrations consistently measured at the highest sampling site (Panorama Point). Weekly average ozone concentrations at Mount Rainier National Park are considerably higher than those in the Seattle-Tacoma metropolitan area to the west. The anthropogenic contribution to ozone within the Nisqually drainage was evaluated by comparing measurements at this location with measurements from a 'reference' site in the western Olympic Mountains. The comparison suggests there is a significant anthropogenic source of ozone reaching the Cascade Range via atmospheric transport from urban areas to the west. In addition. temporal (week to week) variation in ozone distribution is synchronous within the Nisqually drainage, which indicates that subregional patterns are detectable with weekly averages. The Nisqually drainage is likely the 'hot spot' for air pollution in Mount Rainier National Park. By using passive ozone samplers in this drainage in conjunction with a limited number of continuous analyzers, the park will have a robust monitoring approach for measuring tropospheric ozone over time and protecting vegetative and human health.

  1. The Global Geometry of River Drainage Basins and the Signature of Tectonic and Autogenic Processes

    Giachetta, E.; Willett, S.


    The plan-form structure of the world's river basins contains extensive information regarding tectonic, paleo-geographic and paleo-climate conditions, but interpretation of this structure is complicated by the need to disentangle these processes from the autogenic behavior of fluvial processes. One method of interpreting this structure is by utilizing the well-established scaling between drainage area and channel slope. Integration of this scaling relationship predicts a relationship between channel length and downstream integrated drainage area, referred to in recent studies as χ (Willett et al., 2014). In this paper, we apply this methodology at a continental scale by calculating χ for the world's river networks using hydrological information from the HydroSHED (Hydrological data and maps based on SHuttleElevation Derivatives at multiple Scales) suite of geo-referenced data sets (drainage directions and flow accumulations). River pixels were identified using a minimum drainage area of 5 km2. A constant value of m/n of 0.45 was assumed. We applied a new method to correct χ within closed basins where base level is different from sea level. Mapping of χ illustrates the geometric stability of a river network, thus highlighting where tectonic or climatic forcing has perturbed the shape and geometry. Each continent shows characteristic features. Continental rift margins on all continents show clear asymmetric escarpments indicating inland migration. Active orogenic belts break up older river basins, but are difficult to interpret because of spatially variable uplift rates. Regions of recent tilting are evident even in cratonic areas by lateral reorganizations of basins. Past and pending river captures are identified on all continents. Very few regions on Earth appear to be in near-equilibrium, though some are identified; for example the Urals appears to provide a stable continental divide for Eurasia. Our analysis of maps of χ at the global scale quantifies a

  2. Pesticides detected in surface waters and fish of the Red River of the North drainage basin

    Brigham, Mark E.


    The Red River of the North drainage basin (herein referred to as Red River Basin) within the United States is a study unit under the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. The overall goals of this program, initiated to better define the status and trends of the Nation’s water quality, are to address regional and national water-quality issues in a nationally consistent manner. Pesticide contamination of surface water and fish is one focus of this program.

  3. Nature of solute loads in the rivers of the Bengal drainage basin, Bangladesh

    Datta, Dilip K.; Subramanian, V.


    The Bengal drainage basin is geologically one of the youngest and tectonically most active denudation regimes of the world, and encompasses the total lower reaches of the Ganges-Brahmaputra-Meghna (GBM) drainage basin. The GBM river system contributes around 4.5% of the total annual global freshwater flux to the oceans. The solute load of the GBM river system is dominated by the carbonate weathering products of the transport-limited denudation regime. However, in the Meghna basin, which drains a mountainous region, silicate weathering is slightly more predominant, and the solute load tends to be more influenced by the atmospheric contribution. The river system represents about 5% (152×10 6 t yr -1) of the annual global chemical flux to the world's oceans. The chemical denudation rate of the GBM system in the Bengal basin, is one of the world's highest (79-114 t km -2 yr -1), suggesting intensive weathering and erosion in the drainage basin both in Bangladesh as well as in the hinterlands of India and China.

  4. Chemical weathering in Zhujiang River Drainage%珠江流域的化学侵蚀

    高全洲; 沈承德; 孙彦敏; 易熙; 邢长平; 陶贞


    he chemical weathering processes on the continental carbonate and silicate minerals consume a large amount of carbon dioxide both from atmosphere and soil air. This gaseous substance, which is the dominating greenhouse gases in the atmosphere, was transformed into fluid substance and transported into the ocean by rivers in the form of bicarbonate ion. In this aspect, the weathering and transportation of bicarbonate ion in river system stand for an important linkage in the global carbon cycle. The range of global climate change in the geological history was weakened through this kind of negative feedback mechanism, i.e., the higher the atmospheric temperature is, the intense the chemical weathering process will be. However, an intense chemical weathering process will consume much greater amount of carbon dioxide, which can drop down the atmospheric temperature.   The Xijiang and Beijiang river drainage areas, which buildup most of the area of the Zhujiang (Pearl) river drainage, located in the typical sub tropical region in South China, are about 353 120 and 46 710 km2 in area, respectively. The discharge is about 230× 109 m3/a for Xijiang River, and 51× 109 m3/a for Beijiang River. The two drainage areas, characterized by the superposition temporarily of the high atmospheric temperature and plenty of precipitation, are the only areas of highest yield of biomass in mid low latitude zone in Northern Hemisphere. The carbonate rocks distribute widely in the two drainage basins. Red regolith crust and limestone red earth are the main soil forming material in those areas. The surficial geochemistry process taken place in the two drainage areas is intense due to the high degree of plant coverage, and due to the plenty of precipitation and a high atmospheric temperature. On the other hand, the mechanical erosion is also intense due to the precipitous topography, and due to high population density, which lead to a high ratio of cultivated area.

  5. Generalization of the Sitnica river drainage system with potential pollution of tributaries

    Valjarević Aleksandar


    Full Text Available Maps are miniature graphic representation of distinct area and as not being completely real require generalization. Cartographic generalization represents a specific investigation method in cartography. Generalization includes the processes of selection, simplification, and symbolization of details according to the purpose and the map scale. The river generalization requires the phase classification, selection, magnification and simplification to being used. Linear symbols are given on the map by their corresponding/characteristic length and remained unchanged even after the generalization. Particular cartographic criterions need to be applied during generalization. In the given case of the Sitnica river drainage system were applied the computer supported generalization based on the software Global Mapper 16.1 and the Open source software QGIS 2.6.1. The Sitnica drainage system is generalized in three levels. The first included digitalization of all linear objects related to the river Sitnica and its tributaries. Second level resulted in vector generalized data that indicate on polluted tributaries, whereas the final, third stage led to construction of multilayered vector map of the Sitnica catchments area with polluted tributaries.

  6. Hybridization of two megacephalic map turtles (testudines: emydidae: Graptemys) in the Choctawhatchee River drainage of Alabama and Florida

    Godwin, James; Lovich, Jeffrey E.; Ennen, Joshua R.; Kreiser, Brian R.; Folt, Brian; Lechowicz, Chris


    Map turtles of the genus Graptemys are highly aquatic and rarely undergo terrestrial movements, and limited dispersal among drainages has been hypothesized to drive drainage-specific endemism and high species richness of this group in the southeastern United States. Until recently, two members of the megacephalic “pulchra clade,” Graptemys barbouri andGraptemys ernsti, were presumed to be allopatric with a gap in both species' ranges in the Choctawhatchee River drainage. In this paper, we analyzed variation in morphology (head and shell patterns) and genetics (mitochondrial DNA and microsatellite loci) from G. barbouri, G. ernsti, and Graptemys sp. collected from the Choctawhatchee River drainage, and we document the syntopic occurrence of those species and back-crossed individuals of mixed ancestry in the Choctawhatchee River drainage. Our results provide a first counter-example to the pattern of drainage-specific endemism in megacephalic Graptemys. Geologic events associated with Pliocene and Pleistocene sea level fluctuations and the existence of paleo-river systems appear to have allowed the invasion of the Choctawhatchee system by these species, and the subsequent introgression likely predates any potential human-mediated introduction.

  7. A microbiological assessment of the surface water quality in the Bodva river drainage area

    Zdenka Maťašová


    Full Text Available This paper deals with the surface water quality assessment in the partial drainage area of the Bodva river and its tributaries. The water quality in the sampled areas ranged between polluted and strongly polluted. The main cause of the pollution is the increased abundance of coliform and thermo-tolerant coliform bacteria, and fecal streptococci. The reason the increase in their abundance is the dumping of the household waste water containing excrements and animal remains, and the unsatisfactorily treated water from the water treatment stations.

  8. The role of river drainages in shaping the genetic structure of capybara populations.

    Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio


    The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

  9. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the Liao River drainage basin, northeast China.

    Hu, Jian; Liu, Congqiang; Zhang, Guoping; Zhang, Yanlin; Li, Siliang; Zhao, Zhiqi; Liu, Baojian; Guo, Qinjun


    The Liao River drainage basin, which is one of China's seven major rivers basins, is located in northeast China. This region is characterized by important industrial bases including steel factories and oil and chemical plants, all of which have the potential to contribute pollutants to the drainage basin. In this study, 16 polycyclic aromatic hydrocarbons (PAHs) in water and suspended particulate matter (SPM) in the major rivers of the Liao River drainage basin were identified and quantified by gas chromatography mass spectrometry (GC/MS). The total PAH concentrations ranged from 0.4 to 76.5 μg/g (dry weight) in SPM and 32.6 to 108 ng/L in surface water, respectively. Low-ring PAHs (including two- and three-ring PAHs) were dominant in all PAH samples, and the level of low-ring PAHs in surface water was higher than that in SPM. The proportion of two-ring PAHs was the highest, accounting for an average of 68.2 % of the total PAHs in surface water, while the level of three-ring PAHs was the highest in SPM, with an average of 66.3 %. When compared with other river systems, the concentrations of PAHs in the Liao River drainage basin were lower. Identification of the emission sources based on diagnostic ratios suggested petroleum and fossil fuel combustion were important contribution to PAHs in the study area.

  10. River and river-related drainage area parameters for site investigation program

    Blomqvist, P.; Brunberg, A.K. [Uppsala Univ. (Sweden). Dept. of Limnology; Brydsten, L. [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Science


    In this paper, a number of parameters of importance to a determination of the function of running waters as transport channels for material from the continents to the sea are presented. We have assumed that retention mechanisms of material in the river and in the riparian zone will be covered by special investigations but tried to create a platform for such investigations by quantification of the extension of different main habitats. The choice of parameters has been made so that also the nature conservation value of the river can be preliminary established, and includes a general description of the river type and the inherent ecosystem. The material links directly to that presented in a previous report concerning site investigation programmes for lakes. The parameters have been divided into five groups: 1) The location of the object relative important gradients in the surrounding nature; 2) The river catchment area and its major constituents; 3) The river morphometry; 4) The river ecosystem; 5) Human-induced damages to the river ecosystem. The first two groups, principally based on the climate, hydrology, geology and vegetation of the catchment area, represent parameters that can be used to establish the rarity and representativity of the system, and will in the context of site investigation program be used as a basis for generalisation of the results. The third group, the river morphometry parameters, are standard parameters for the outline of sampling programmes and for calculations of the physical extension of key habitats in the system. The fourth group, the ecosystem of the river, includes physical, chemical and biological parameters required for determination of the influence from the terrestrial ecosystem of the catchment area, nutrient status, distribution of different habitats, and presence of fish in the system. In the context of site investigation program, the parameters in these two groups will be used for budget calculations of the flow of energy and

  11. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    Servais, P.; Billen, G.; Goncalves, A.; Garcia-Armisen, T.


    The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise) of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC), the most usual faecal contamination indicator. The model is able to calculate the distribution of FC concentrations in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the european water framework directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms or organic matter and

  12. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    P. Servais


    Full Text Available The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC, the most usual faecal contamination indicator. The model is able to calculate the distribution of FC abundance in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the European Water Framework Directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms or

  13. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    P. Servais


    Full Text Available The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC, the most usual faecal contamination indicator. The model is able to calculate the distribution of FC concentrations in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the european water framework directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms

  14. Discharge and sediment loads in the Boise River drainage basin, Idaho 1939-40

    Love, S.K.; Benedict, Paul Charles


    The Boise River project is a highly developed agricultural area comprising some 520 square miles of valley and bench lands in southwestern Idaho. Water for irrigation is obtained from the Boise River and its tributaries which are regulated by storage in Arrow Rock and Deer Flat reservoirs. Distribution of water to the farms is effected by 27 principal canals and several small farm laterals which divert directly from the river. The- New York Canal, which is the largest, not only supplies water to smaller canals and farm laterals, but also is used to fill Deer Flat Reservoir near Nampa from which water is furnished to farms in the lower valley. During the past 15 years maintenance costs in a number of those canals have increased due to deposition of sediment in them and in the river channel itself below the mouth of Moore Creek. Interest in determining the runoff and sediment loads from certain areas in the Boise River drainage basin led to an investigation by the Flood Control Coordinating Committee of the Department of Agriculture. Measurements of daily discharge and sediments loads were made by the Geological Survey at 13 stations in the drainage basin during the 18-month period ended June 30, 1940. The stations were on streams in areas having different kinds of vegetative cover and subjected to different kinds of land-use practice. Data obtained during the investigation furnish a basis for certain comparisons of runoff and sediment loads from several areas arid for several periods of time. Runoff measured at stations on the. Boise River near Twin Springs and on Moore Creek near Arrow Rock was smaller during 1939 than during 1940 and was below the average annual runoff for the period of available record. Runoff measured at the other stations on the project also was smaller during 1939 than during 1940 and probably did not exceed the average for the previous 25 years. The sediment loads measured during the spring runoff in 1939 were smaller at most stations than

  15. Persistence of Metal-rich Particles Downstream Zones of Acid Drainage Mixing in Andean Rivers

    Pasten, P.; Montecinos, M.; Guerra, P. A.; Bonilla, C. A.; Escauriaza, C. R.; Dabrin, A.; Coquery, M.


    The Andes mountain range provides the setting for watersheds with high natural background of metals and for mining operations that enhance contaminant mobilization, notably in Northern and Central Chile. Dissolved and solid metal species are actively transported by streams to the Pacific Ocean from area and point sources, like acid drainage. We examine the response of metal rich particle suspensions downstream zones of mixing where shifts in the chemical environment occur. We propose a conceptual model which is used to analyze the fate of copper in the upper Mapocho watershed. The main source of copper is the Yerba Loca river, a naturally impacted stream with pH ranging from 3 to 7 and high concentrations of Cu (0.8 - 6.3 mg/L), Al (1.3 - 7.6 mg/L) and Fe (0.4 - 4.2 mg/L). Steep chemical shifts occur after the confluences with the San Francisco and the Molina rivers. We characterized stream chemistry, hydrological variables and suspended particles, including particle size distribution (PSD), turbidity, and total suspended solids. A marked seasonal behavior was observed, with a higher total Cu flux during smelting periods and a shift towards the dissolved phase during summer. When acid drainage is discharged into a receiving stream, incomplete mixing occurs thereby promoting the formation of a range of metal-rich solids with a characteristic PSD. Similarly, areas of chemical heterogeneity control the partition of metals associated to suspended geomaterials coming from bank and slope erosion. A highly dynamic process ensues where metastable phases shift to new equilibria as fully mixed conditions are reached. Depending on the reaction kinetics, some particles persist despite being exposed to thermodynamically unfavorable chemical environments. The persistence of metal-rich particles downstream zones of acid drainage mixing is important because it ultimately controls the flux of metals being delivered to the ocean by watersheds impacted by acid drainage. Funding from

  16. Natural hybrids of the madtoms, Noturus flavus and Noturus insignis, from the Monongahela River drainage, West Virginia

    Welsh, S.A.; Cincotta, Dan A.


    Natural hybridization is rare in the family Ictaluridae. Putative hybrids of the madtoms Noturus flavus and N. insignis were collected from Blackwater River, Monongahela River drainage, WV. Noturus flavus is native to the Monongahela River drainage, whereas N. insignis is nonnative. We quantified morphological differences among N. flavus, N. insignis, and putative hybrids by sheared principal components analysis of morphometric characters. Putative hybrids were intermediate in tooth patch dimensions, caudal fin pigmentation, length of the dorsal fin base, distance between the adipose/caudal notch and base of caudal fin, and position of anal fin. Hybridization between N. flavus and N. insignis is supported by morphological intermediacy, and may be linked to higher abundances of N. insignis or degraded habitat in the Blackwater River.




    Full Text Available A statistical and hydrological analysis of the maximum flow in the Terpezița river drainage basin. Starting from the idea that hydrological and hydrometeorological parameters have a statistical existence over time and a spatial distribution that can be represented by an interaction between the mathematical and geographical elements, the present paper aims to analyze the relationship between maximum flows, hourly rains, flow coefficients and concentration times of the Terpezita Basin. This is the second-largest sub-basin (182km2 in the basin of Desnatui, which is located in the SW of Romania and is a first degree tributary of the Danube. The assessment of the concentration time, which involves the sizes of the liquid flow and specific liquid flow, was attained according to the physical and geographical characteristics of the basin. Thus taking into account the homogenous character from this point of view and the existence of statistically established hydrological and pluviometric background, we could outline the behavior of Terpezița River Basin during the extreme hydro-meteorological events. The documentation was completed through an exemplification of previously calculated results, using observations and measurements of the river bed in the vicinity of Terpezita village and processing the values that resulted from the hydro-graph of the 2005 flash-flood.

  18. Concentration changeability of phosphorus, calcium and magnesium in selected partial drainage basins of the River Drwęca

    Pius Bożena


    Full Text Available The paper presents the results of the research conducted between November 2008 and October 2009. The research included seasonal dynamics of the flow and runoff of phosphorus compounds (TP and P-PO43-, as well as Ca2+ and Mg2+ from 13 partial drainage basins of the River Drwęca. Water levels were registered automatically every day by recorders, and measurements of the flow were conducted once a month. Major differences were found in the water abundance as indicated by specific discharges in individual, partial drainage basins: from 1.87 dm3 s-1 km-2 (Lubianka - a lower part of the River Drwęca drainage basin to 8.22 dm3 s-1 km-2 (Gizela - an upper part of the River Drwęca drainage basin. The studied rivers were characterised by very diverse average content of total phosphorus compounds: from 0.047 mg dm-3 (Iłga to 0.816 mg dm-3 (Sandela; calcium: from 47.18 mg dm-3 (Iłga to 131.65 mg dm-3 (Trynka; and magnesium: from 9.71 mg dm-3 (Wel to 36.76 mg dm-3 (Struga Rychnowska. Analysis of variance carried out on hydrochemical properties of the studied rivers divides the rivers into two separate groups: rivers with much higher content of phosphorus, calcium and magnesium compounds (Struga Rychnowska, Trynka, Ruziec, Lubianka, Kujawka, Sandela and Gizela, and a group of rivers with low content of these compounds (Brynica, Brodniczanka, Skarlanka, Wel, Iłga.

  19. Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea

    LIU ZhiFei; Christophe COLIN; HUANG Wei; CHEN Zhong; Alain TRENTESAUX; CHEN JianFang


    Clay minerals have played a significant role in the study of the East Asian monsoon evolution in the South China Sea by being able to track oceanic current variations and to reveal contemporaneous paleoclimatic changes prevailing in continental source areas. As one of the most important rivers inputting terrigenous matters to the northern South China Sea, the Pearl River was not previously paid attention to from the viewpoint of clay mineralogy. This paper presents a detailed study on clay minerals in surface sediments collected from the Pearl River drainage basin (including all three main channels,various branches, and the Lingdingyang in the estuary) by using the X-ray diffraction (XRD) method.The results indicate that the clay mineral assemblage consists dominantly of kaolinite (35%-65%),lesser abundance of chlorite (20%-35%) and illite (12%-42%), and very scare smectite occurrences (generally <5%). Their respective distribution does not present any obvious difference throughout the Pearl River drainage basin. However, downstream the Pearl River to the northern South China Sea, the clay mineral assemblage varies significantly: kaolinite decreases gradually, smectite and illite increase gradually. Additionally, illite chemistry index steps down and illite crystallinity steps up. These variations indicate the contribution of major kaolinite, lesser illite and chlorite, and very scarce smectite to the northern South China Sea from the Pearl River drainage basin. The maximum contribution of clay minerals from the Pearl River is 72% to the northern margin and only 15% to the northern slope of the South China Sea. In both glacials and interglacials, kaolinite indicates that the ability of mechanical erosion occurred in the Pearl River drainage basin.

  20. Morphometric properties of the trans-Himalayan river catchments: Clues towards a relative chronology of orogen-wide drainage integration

    Ghosh, Parthasarathi; Sinha, Sayan; Misra, Arindam


    The geomorphological evolution of the Himalayan mountain belt both in terms of crustal deformation and concomitant erosion by surface processes has been suggested to have a profound influence on a number of earth system processes and has been extensively researched through a number of different techniques. The huge catchments of the trans-Himalayan rivers are the product of long-term fluvial erosion of the landscape. This work attempts to understand their evolution through a study of drainage network, morphology, and internal organization of the smaller watersheds nested within each catchment. Using morphometric techniques applied to an orogen-wide digital elevation data grid, we characterized the drainage network structure and catchment of all the 18 trans-Himalayan rivers situated between the exits of the Indus and Brahmaputra rivers and constructed rectangular approximations of the catchment geometries. With the help of catchment dimensions measured transverse and parallel to the strike of the orogen, and by analyzing the dimension and spatial dispositions of the rectangular approximations, we demonstrate that the trans-Himalayan catchment shapes cannot be explained only as a product of the headward enlargement of drainage networks on a topographic slope, or orogenic taper. Within individual catchments we identified the existence of drainage components (watersheds) that are organized in a systematic manner with respect to the first-order physiographic features of the Himalayas, formed at different periods of geological time. Each of them shows distinct morphometric characteristics that are indicative of differences in processes and / or time scale involved in their formation. The hypsometric properties of the watersheds occupying the upper part of the catchments suggest that they are the remnants of pre-orogenic drainage that became confined to the leeward side of the Himalayas before the advent of monsoon circulation. The shape and organization of the

  1. The Palaeolithic occupation of southern Alentejo: the Sado River Drainage Survey

    Burke, Ariane


    Full Text Available The Sado River Drainage Survey project (2004-2008 was designed to fill a significant gap in our knowledge of the prehistory of Portugal. Southern Alentejo constitutes nearly one third of the total land mass of continental Portugal, but has received comparatively little attention from Palaeolithic archaeologists. Practically nothing was known about the prehistory of the Sado River basin, which includes the southern Alentejo plain, before now. The results of the Sado River Drainage Survey (SRDS indicate that the Sado River basin was likely occupied at low population densities during the Middle Palaeolithic. There is some evidence for a Lower Palaeolithic presence but little or no evidence of an Upper Palaeolithic occupation. The emerging pattern suggests either an occupational hiatus or a major shift in settlement pattern towards the end of the Middle Palaeolithic. Possible explanations for this pattern, including aridification driven by climate change, are explored here.

    El proyecto de prospección de la cuenca del río Sado (SRDS, llevado a cabo entre el 2004 y el 2008, se diseñó para suplir la carencia de información concerniente al conocimiento actual de la Prehistoria de Portugal. Aunque la cuenca del río Sado conforma casi un tercio de la superficie continental de Portugal, aún no había recibido la debida atención para el Paleolítico. Antes de este proyecto, prácticamente nada se conocía acerca de la Prehistoria de dicha cuenca, incluyendo la llanura de Alentejo. Nuestros resultados indican una baja densidad de población durante el Paleolítico Medio, rastro de ocupaciones del Paleolítico Inferior y casi ninguna evidencia de ocupaciones asociadas al Paleolítico Reciente. A partir de los datos obtenidos, se desprende un modelo en el que se evidencia que, hacia finales del Paleolítico Medio, hubo una discontinuidad en la ocupación, probablemente asociada a cambios climáticos o del uso del territorio.

  2. Neotectonic formation of drainage patterns and their palaeohydrological implications for the Okwa River catchment, Botswana

    Hartmann, Kai; Schmidt, Mareike; Shemang, Elisha; Zhang, Shuping; Frank, Riedel


    Large inter- and intramontane endorheic basins provide long term archives of environmental change, often integrating regional to continental climate driven process dynamics of huge drainage systems. On one hand the large-scale integration can be regarded as an advantage by averaging small-scale variations of either local hydrological peculiarities or random triggered drainage behaviour (e.g. internal thresholds, tectonics, etc.) and thus just recording atmospheric circulation pattern up to hemispherical scales with millennial resolution. Otherwise, with increasing basin size the process dynamic and their response system along one or more sediment cascades often become a complexity resulting in crucial problems of sedimentological archive interpretations by e.g. signal interference, equifinality or even multiple reworking. Therefore, studies of geomorphological or hydrological response processes and ecological adaption can only be undertaken on sub-catchment scale considering process dynamics along pathways. For southern-hemispheric palaeoclimate reconstruction of land-ocean linkages, Makgadikgadi Basin - as the largest (c. 37,000 km2) and deepest depression in the middle Kalahari - provides a fluvio-lacustrine archive in high-continental position since at least 300 kyr BP. Recent studies suggest a mega-lake high-stand within the basin for the Last Glacial Maximum (LGM) For the hydrological persistence of the lake for about 6 kyrs, the since Heinrich Event 1 (17-16 ka) inactive Okwa River seems to play a key role indicating a northward-shift of the winter rainfall zone. However, beside some dating of exposed shell bearing sediments at the river mouth, a thorough investigation of the c. 129,000 km2 drainage system is missing. Our presentation aims to point out the linkages between neotectonic activity and sediment transport. The combination of adaptive DEM-filter and multispectral remote sensing data reveals obvious traps (of neotectonic origin) of small temporary

  3. Sediment transferring function of the lower reaches of the Yellow River influenced by drainage basin factors and human activities

    XU; Jiongxin


    Sediment transferring function (Fs) of rivers is defined and indexed in this study, based on the concept of sediment budget at river reach scales. Then, study is made on the Fs of the lower reaches of the Yellow River in relation to natural and human factors in the drainage basin, such as the annual precipitation in different water and sediment source areas, proportion of >0.05 mm sediment of the total sediment load to the lower reaches of Yellow River, the regulated degree of the "clear" baseflow from the drainage area above Lanzhou, frequency of hyperconcentrated flows, area of soil and water conservation measures in the drainage basin. As a result, a multiple regression equation has been established between Fs and 7 influencing factors, with multiple correlation coefficient r = 0.90.The reduction in annual precipitation in different water and sediment source areas has different effects on Fs. The reduction in annual precipitation in the area above Hekou Town and the area between Longmen and Sanmenxia results in a reduction in Fs, but the reduction in annual precipitation in the area between Hekou Town and Longmen results in an increase in Fs. The grain size composition of sediment load strongly affects the Fs; the larger the proportion of >0.05 mm sediment in the suspended sediment load entering the lower reaches of the Yellow River is, the lower the Fs will be. Thus, if the Xiaolangdi Reservoir traps coarse sediment and releases fine sediment, Fs will be enhanced. This study also shows that the lower the proportion of high-flow season river flow to the annual total river flow at Lanzhou Station is, the lower the Fs will be. Therefore, the interception of large quantities of clear water by the reservoirs on the upper reaches of Yellow River is one of the major causes for the decrease in Fs in the lower reaches of the Yellow River.

  4. Range extension of Moenkhausia oligolepis (Günther,1864 to the Pindaré river drainage, of Mearim river basin, and Itapecuru river basin of northeastern Brazil (Characiformes: Characidae

    Erick Cristofore Guimarães


    Full Text Available The present study reports range extansion of Moenkhausia oligolepis to the Pindaré river drainage, of the Mearim river basin, and Itapecuru river basin, Maranhão state, northeastern Brazil. This species was previously known only from Venezuela, Guianas, and the Amazon River basins. In addition, we present some meristic and morphometric data of the specimens herein examined and discuss on its diagnostic characters.

  5. Changes in water quality of a small urban river triggered by deep drainage of a construction site

    Bartnik Adam


    Full Text Available The paper presents the results of the monitoring of the selected physicochemical properties of the Jasień River waters (in Łódź, the third biggest city of Poland and their changes under the influence of drainage of a railway station Łódź Fabryczna construction site. Even 25 years ago the Jasień River was a receiver for the sewage from the Łódź textile factories. The drainage of the excavations and disposal of the water into the Jasień River was started on January 2014 and changed stable hydrological, physical and chemical regime of the river once again. In a consequence, average monthly flows exceeded the Jasień River flow in its upper section by six times, and at the beginning by even ten times. Chloride concentration was systematically growing over the study period. This growth and higher water pH were probably associated with increasing level of contaminants in the discharged water and its gradually decreasing uptake. Average annual water temperature increased and a decrease in its amplitude was observed. The annual conductivity and pH patterns became more uniform and the changes in pH followed a clear trend of monthly changes. Water turbidity increased by two times and during summer floods this parameter was often even a few times higher than before the drainage commenced. Chlorides improved water conductance and sodium and potassium increased basicity.

  6. Water-quality assessment of the Smith River drainage basin, California and Oregon

    Iwatsubo, Rick T.; Washabaugh, Donna S.


    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  7. Time-series studies of drainage pattern and morphological features along the Leitha river (Eastern Austria)

    Zámolyi, A.; Draganits, E.; Doneus, M.; Fera, M.; Griebl, M.


    Geomorphologic mapping and drainage network analysis was conducted in the Southern Vienna Basin on the Leitha and Fischa rivers. The study area belongs to an active pull-apart basin between the Eastern Alps and the Carpathians that started to subside in Karpatian times (~ 17 Ma), but with still active faults, proven by fault scarps and earth quakes. The investigated rivers are important tributaries to the Danube river and run through a region that has been subject to settlement since Neoltihic times. Thus, interaction between land use, settlement pattern and river dynamics can be studied. Several datasets are integrated to perform a comprehensive overview of geomorphological, as well as river dynamic changes in the landscape. During an earlier stage of this investigation a map of paleochannel distribution including the location and shape of the paleochannels was extracted from color-infrared and RGB digital orthophotos. Based on this map the location, character and shape of palaeomeanders is studied on different georeferenced historic maps (Timár et al., 2006; Biszak et al., 2007) in order to derive a time-series study. The paleochannels extracted from the digital orthophotos show a good coincidence with the depicted rivers on the historic maps. This partly allows quite well constrained age estimates of the paleochannel sections. The investigated maps are the Walter maps, the First, Second and Third Military Survey of the Habsburg/Austro-Hungarian Empire. Mapping of the Walter maps was conducted 1754-56 (Ulbrich, 1952), the First, Second and Third Military Surveys were mapped in this area in the time-span of 1782-1785, 1819-1869, and 1872-1873, respectively (Kretschmer et al., 2004). This sequence of georeferenced historical maps allows to study only a very short time-span (1755 - 1873) compared to the geological time scale. However, the characteristics of river dynamics special for the study area can be derived and, considering certain assumptions, extrapolated

  8. Cytogenetic analysis of two locariid species (Teleostei, Siluriformes from Iguatemi River (Parana River drainage in Brazil

    Carlos Alexandre Fernandes


    Full Text Available Fishes of the Loricariidae family, known as “cascudos”, constitute an endemic group in Neotropical freshwaters. In this study, were cytogenetically examined two species of Loricariidae (Pterygoplichthys anisitsi Eigenmann & Kennedy, 1903 and Farlowella amazonum (Günther, 1864 belonging to Hypostominae and Loricariinae subfamilies respectively from Iguatemi River. Our study provide the first description regarding C-band and fluorochromic analysis in F. amazonum. In Farlowella amazonum, diploid number was 58 chromosomes, with single Ag-NOR and heterochromatic blocks in centromeric regions of some chromosomes and large subtelomeric blocks were evidenced on the long arm of the pair 27, being this region CMA3+/DAPI-. The Pterygoplichthys anisitsi showed diploid number equal 52 chromosomes, with single Ag-NOR and heterochromatic blocks in centromeric and telomeric regions of some chromosomes and conspicuous large telomeric blocks on the long arm of the pair 10, being this region CMA3+/DAPI-. The results show that karyotype formula is nonconservative in P. anisitsi and F. amazonum.

  9. In-situ glacier monitoring in Zackenberg (NE Greenland): Freya Glacier and A.P. Olsen Ice Cap

    Hynek, Bernhard; Hillerup Larsen, Signe; Binder, Daniel; Weyss, Gernot; Citterio, Michele; Schöner, Wolfgang; Ahlstrøm, Andreas Peter


    Due to the scarceness of glacier mass balance measurements from glaciers and local ice caps in East Greenland and the strong impact that local glaciers and ice caps outside the Ice Sheet are expected to exert on sea level rise in the present century, in 2007 and 2008 two glaciological monitoring programmes of peripheral Greenlandic glaciers started to operate near the Zackenberg Research Station in NE Greenland (74° N, 21° W). Freya (Fröya) Glacier is a 6 km long valley glacier situated on Clavering Island 10 km southeast of the Zackenberg research station with a surface area of 5.3 km2 (2013), reaching from 1305 m to 273 m a.s.l. The glacier is mainly oriented to NW and surrounded by high mountain ridges on both sides. A.P. Olsen Ice Cap is a 295 km2 peripheral ice cap located 35 km northeast of Zackenberg. The mass balance monitoring network is situated on the SE outlet glacier reaching from 1425 m to 525 m which drains into the hydrological basin of Zackenberg. This outlet glacier dams a lake which caused several glacial outburst floods within the period of investigation. The two studied glaciers are very close to each other (35 km), but they are complementary in many ways. Apart from the difference in size, which requires different monitoring strategies, Freya Glacier is nearer to the coast and therefore exposed to a more maritime climate with higher winter accumulation. The different area-altitude distribution of both glaciers is one of the main reason for the significantly more positive mean specific mass balance of A.P. Olsen Ice Cap compared to Freya Glacier. In this talk we present the glaciological monitoring on both glaciers and the main results of the first seven years of data.

  10. Intersex (Testicular Oocytes) in smallmouth bass from the Potomac River and selected nearby drainages

    Blazer, V.S.; Iwanowicz, L.R.; Iwanowicz, D.D.; Smith, D.R.; Young, J.A.; Hedrick, J.D.; Foster, S.W.; Reeser, S.J.


    Intersex, or the presence of characteristics of both sexes, in fishes that are normally gonochoristic has been used as an indicator of exposure to estrogenic compounds. In 2003, during health assessments conducted in response to kills and a high prevalence of skin lesions observed in smallmouth bass Micropterus dolomieu in the South Branch of the Potomac River, the presence of immature oocytes within testes was noted. To evaluate this condition, a severity index (0-4) was developed based on the distribution of oocytes within the testes. Using gonad samples collected from 2003 to 2005, the number of histologic sections needed to accurately detect the condition in mature smallmouth bass was statistically evaluated. The reliability of detection depended on the severity index and the number of sections examined. Examining five transverse sections taken along the length of the gonad resulted in a greater than 90% probability of detecting testicular oocytes when the severity index exceeded 0.5. Using the severity index we compared smallmouth bass collected at selected sites within the South Branch during three seasons in 2004. Seasonal differences in severity and prevalence were observed. The highest prevalence and severity were consistently noted during the prespawn-spawning season, when compared with the postspawn season. In 2005, smallmouth bass were collected at selected out-of-basin sites in West Virginia where fish kills and external skin lesions have not been reported, as well as at sites in the Shenandoah River, Virginia (part of the Potomac drainage), where kills and lesions occurred in 2004-2005. The prevalence of testicular oocytes is discussed in terms of human population and agricultural intensity. ?? Copyright by the American Fisheries Society 2007.

  11. Temporal and spatial variations in magnetic properties of suspended particular matter in the Yangtze River drainage and their implications

    Luo, Chao; Zheng, Yan; Zheng, Hongbo; Tada, Ryuji; Rits, Daniël S.


    As the largest river of China, the Yangtze River transports large amounts of sediments to the adjacent oceans. Provenance of these ancient marine sediments can only be deciphered when the source-to-sink process of modern sediments in the Yangtze River is fully understood. Many methods have been used to study the provenance of river sediment and an environmental magnetic method is applied in this study because of its fast, nondestructive advantages. Magnetic properties of suspended particulate matter (SPM) along the Yangtze River were measured to provide a holistic understanding about magnetic properties of sediments in this river and its controlling factors. The results indicate that the dominant magnetic mineral in SPM is magnetite, with a small contribution of hematite and goethite. Significant spatial variation was observed in most of the magnetic parameters, which primarily reflects the distribution of major geologic units along the drainage area of the river. Anthropogenic influences are also recorded in the magnetic parameters. The Three Gorges Dam results in a dramatic decrease of magnetic minerals in the downstream reaches, since its construction in 2003. In addition, small variations in magnetic properties of SPM are found along water depth, together with a clear seasonal shift at Datong station. This seasonal variation of magnetic properties of SPM is driven by variability in both hydrology and source contributions. This complicates the use of magnetic parameters for provenance studies. Magnetic properties of sediments in rivers are capable of tracing provenance areas, but caution must be taken into account.

  12. Impact of industrial and mine drainage wastes on the heavy metal distribution in the drainage basin and estuary of the Sado River (Portugal).

    Quevauviller, P; Lavigne, R; Cortez, L


    This paper presents results from a survey of the heavy metal distribution in sediments in the drainage basin and estuary of the Sado River (Portugal). In the drainage basin, heavy metals originate mostly from pyrite outcrop erosion and mining activities (Cd, Zn, Cu and locally Hg, Pg), and also from crust erosion (Sn, Ni, Ti, Zr). These sources are not correlated with the particulate organic carbon (POC) and so the metals are thought to be in inorganic forms in this area. Anthropogenic heavy metal sources (urban and industrial) are found in the lower estuary (Sn, Cd, Hg, Zn, Pb and Cu) along with high POC concentrations. In this zone, these metals are thought to be strongly adsorbed onto organic particles. Furthermore, organo-metallic species are likely to be present, as demonstrated in the case of Sn, since methyl- and butyl-tin species were detected in sediments from this area. This suggests the need for the detection of organo-metallic species to understand the heavy metal geochemical cycles. No long-term changes in metal concentrations are found in sediment cores, except in the middle estuary (Zn, Cu) due to the development of mining activities on an industrial scale in the 1860s.

  13. Migration of global radioactive fallout to the Arctic Ocean (on the example of the Ob's river drainage basin).

    Miroshnikov, A; Semenkov, I


    This article provides an assessment of the impact of global fallout on (137)Cs contamination in the bottom sediments of Kara Sea. The erosiveness of 10th-level river basins was estimated by landscape-geochemical and geomorphological characteristics. All 10th-level basins (n=154) were separated into three groups: mountain, mountain-lowland and plain. Four different types of basins were identified depending on the geochemical conditions of the migration of radiocaesium in the plain and mountain-lowland. Classifications of types were carried out using the geographic information systems-based approach. The Ob River's macroarena covers 3.5 million km(2). Internal drainage basins cover 23 % of the macroarena and accumulate whole radiocaesium from the global fallout. The remaining territory is transitional for the (137)Cs. The field research works performed in the three plain first-level basins allow one to estimate the radiocaesium run-off. The calculations show that 7 % of (137)Cs was removed from the first-level basin in arable land. Accumulation of radiocaesium in the first-level basin under undisturbed forest is 99.8 %. The research shows that (137)Cs transfer from the humid basins is in the range of 6.9-25.5 TBq and for semi-humid basins 5.6-285.5 TBq. The areas of these basins cover 40 and 8 % of the Ob River's macroarena, respectively. Drainage lakes and reservoir drainage basins make up 22 % of the macroarena. Mountainous and semi-arid drainage basins cover 7 % of the macroarena.

  14. Genetic integrity of European grayling (Thymallus thymallus L. 1758 within the Vienne River drainage basin after five decades of stockings

    Henri Persat


    Full Text Available European grayling of the upper Vienne River drainage basin represent the westernmost populations inside the natural distribution of the species. Since the 19th century, their extension across this sub-basin has been dramatically reduced by the harnessing of the river network for dams, initially serving mills but then hydroelectric power generation. Since the 1960s, local fishing authorities have attempted to compensate for these declines with stocking programs, but the efficiency of these efforts have never been accurately monitored. We aim to evaluate the genetic imprints of these stocking programs and thus provide an indirect measure of the long-term survival of stocked fish. Three target populations were analyzed at both mtDNA (Control Region and nDNA levels (12 µSats, and compared to populations representative of surrounding drainage basins or fish farm facilities. Among 37 "wild" fish sequenced, only three control region haplotypes were identified, all belonging to the highly divergent Loire basin lineage. Two were specific to the Upper Vienne area, and one was observed in some individuals of the most downstream location, but previously described from the upper Allier sub-drainage. Microsatellite analysis of 87 "wild" fish also demonstrated a rather low diversity within each population (but typical for the Loire drainage with all Upper Vienne individuals belonging to a single diagnosable unit. This genetic cluster was clearly distinct from all other samples including hatchery strains, which strongly supports its native origin. The only piece of evidence of a possible stocking contribution was the occurrence of the Allier haplotype, but it cannot be excluded that this haplotype was also native to this reach of river. The total lack of genetic impact of five decades of stocking deeply questions the efficacy of this management approach, at least in a regional context.

  15. Drainage evolution of the Heihe River in western Hexi Corridor, China, derived from sedimentary and magnetostratigraphic results

    Pan, Baotian; Chen, Dianbao; Hu, Xiaofei; Cao, Xilin; Chen, Jinjun; Mao, Junwei


    The uplifting of the Tibetan Plateau has significantly changed the environment in surrounding areas by delivering abundant water and sediment. The Heihe River draining the Qilian Shan in the NE Tibetan Plateau acts as a dominant sediment routing system from the uplifted NE Tibetan Plateau to the Hexi Corridor as well as the Badain Jaran Desert. Reconstructing the evolution of the Heihe River could provide evidence for the birth of the Badain Jaran Desert and enhance the understanding of sedimentary basin fill and the relationship between tectonism, drainage evolution and environmental changes. With this aim, two parallel cores (DWJ and XKJD with depths of 140 and 68.2 m, respectively) were drilled in the floodplain of the Heihe River. The facies analysis of the sedimentary sequences from the drilling cores showed that the sedimentary environment changed from the lake system to a delta system and finally to a fluvial system at the depths of ∼133.3 and ∼68 m, respectively. The magnetostratigraphic results revealed ages of approximately 1.75 and 1.12 Ma for the DWJ and XKJD cores, respectively, and an age of approximately 1.1 Ma for the transition from delta to fluvial environment in both the cores. The change of the sedimentary environment at approximately 1.1 Ma was caused by the formation of the integrated Heihe River. The integrated Heihe River may have developed via mechanisms such as river capture and river diversion due to the uplifting of the North Qilian Shan and the Longshou Shan. The present study suggested that the formation of large inland rivers, such as the Heihe River and the Shiyang River in NW China, played an important role in the evolution of the deserts and the Loess Plateau.

  16. Record of Meltwater Discharge in the Lower Mississippi River: Insight into the Timing of Meltwater Diversion between the Mississippi River and Eastern Drainage Routes to the North Atlantic

    Rittenour, T. M.; Blum, M. D.; Goble, R.


    During the last glacial maximum the Mississippi River served as the primary conduit for meltwater discharged from the southern margin of the Laurentide ice sheet. As ice retreated, lower drainage routes were opened to the east causing rapid drainage of glacial lakes, such as Lake Agassiz, and diversion of meltwater into the North Atlantic. Ice margin fluctuations during deglaciation repeatedly opened and closed these drainage routes and forced diversion of meltwater between the Mississippi River and the North Atlantic. Injection of freshwater into the North Atlantic has been modeled to reduce North Atlantic Deep Water (NADW) production (Rahmstorf, 1995, Nature v. 378, p. 145-149) and is proposed to have caused many rapid cooling events during deglaciation, including the Younger Dryas (Clark et al., 2001, Science v. 293, p. 283-287). Dating control for the timing of meltwater routing is based on bracketed radiocarbon age estimates on ice margin positions and glacial lake outlet occupation. No evidence from the Mississippi River has been used to constrain this chronology, primarily due to the lack of datable organic material in the channel belt sediments. Optical luminescence samples were collected from three large braided channel belts in the lower Mississippi valley to develop a detailed chronology of river response to discharge variations. Ages of these channel belts are 19.7-17.8, 16.5-15.0 and 12.1-12.5 cal. kyr. These ages correlate with times of meltwater routing to the North Atlantic (Clark et al., 2001). At times of high discharge, when meltwater was routed to the Mississippi, the channel belts were abandoned as the river incised to the level of the next lower surface. The age of these channel belts and the time of channel belt abandonment provide greater detail in the timing of freshwater forcing events in the North Atlantic during deglaciation.

  17. 基于风险分析法的排水排涝暴雨重现期转换关系%Risk probability analysis of design storm combination of urban pipe drainage and river drainage

    杨星; 李朝方; 刘志龙


    According to the urban planning plan of China, municipal department takes charge of pipe drainage planning and water resources department takes charge of river drainage planning. Because there is a difference of sampling methods of storm data and different regulation , the design standard of urban pipe drainage is usually not in accord with that of river drainage, which produce the problem about the combination design of pipe drainage and river drainage. There is a different safety because of different combination values of pipe drainage and river drainage; and this safety can be indicated by risk probability. Based on these descriptions, the calculation model was built to analyse risk probability on design storm combination of urban pipe drainage and river drainage and to guide the combination design of urban pipe drainage and river drainage. Finally, taking the rainfall data in Shenzhen City as one research object, the ease study of risk probability of the combination design was conducted, which could provide evidence on the rational selection for the design storm combination of urban pipe drainage and river drainage.%按目前国内的城市规划体制,市政部门负责管道排水规划,水利部门负责河道排涝规划,两者采用的暴雨资料统计方法不同导致了设计标准的差异,所以城市管道排水和河道排涝存在组合设计的问题.组合值不同,安全度也不一样,当设计暴雨取值满足河道排涝设计安全条件时,组合的排水设计标准越高,相应的组合安全性越大,组合的排水设计标准越低,则相应的组合安全性越小,这种组合设计的安全性可以用风险率表示.为此,构建了管道排水和河道排涝组合风险计算模型,并依据其组合风险率提出管道排水和河道排涝组合设计方法.考虑到各地水文特征的差异性,以深圳市为特例对这种方法进行了分析,为城市管道排水和河道排涝的组合设计提供科学依据.

  18. The fate of arsenic in sediments formed at a river confluence affected by acid mine drainage

    Guerra, P. A.; Pasten, P. A.; Pizarro, G.; Simonson, K.; Escauriaza, C. R.; Gonzalez, C.; Bonilla, C.


    Fluvial confluences receiving acid mine drainage may play a critical role in a watershed as a suite of interactions between chemistry and hydrodynamics occur, determining the fate of toxic contaminants like arsenic. Solid reactive phases of iron and/or aluminum oxi-hydroxides may form or transform, ranging from iron oxide nanoparticles that aggregate and form floccules that are transported in the suspended load up to gravel and arsenic-rich rock coatings. In order to further understand the role of reactive fluvial confluences, we have studied the mixing between the Caracarani River (flow=170-640 L/s, pH 8, conductivity 1.5 mS/cm, total As 10 mS/cm, total As>2 mg/L, total Fe=35-125 mg/L), located in the Lluta watershed in northern Chile. This site is an excellent natural laboratory located in a water-scarce area, where the future construction of a dam has prompted the attention of decision makers and scientists interested in weighing the risks derived by the accumulation of arsenic-rich sediments. Suspended sediments (> 0.45 μm), riverbed sediments, and coated rocks were collected upstream and downstream from the confluence. Suspended sediments >0.45 μm and riverbed sediments were analyzed by total reflection x-ray fluorescence for metals, while coated river bed rocks were analyzed by chemical extractions and a semi-quantitative approach through portable x-ray fluorescence. Water from the Caracarani and Azufre rivers were mixed in the laboratory at different ratios and mixing velocities aiming to characterize the effect of the chemical-hydrodynamic environment where arsenic solids were formed at different locations in the confluence. Despite a wide range of iron and arsenic concentrations in the suspended sediments from the field (As=1037 ± 1372 mg/kg, Fe=21.0 ± 24.5 g/kg), we found a rather narrow As/Fe ratio, increasing from 36.5 to 55.2 mgAs/kgFe when the bulk water pH increased from 3 to 6. Sequential extraction analyses suggest that ~80% of As in the solid

  19. Influence of mine drainage on water quality along River Nyaba in ...


    and coal refuse piles is the oldest industrial pollution in the Enugu coal area which ... heaps into soils, surface water and groundwater as well as into stream ...... natural attenuation of arsenic in drainage from an abandoned arsenic mine dump.

  20. Chemical quality of surface waters, and sedimentation in the Grand River drainage basin, North and South Dakota

    Hembree, Charles Herbert; Krieger, Robert A.; Jordan, Paul Robert


    An investigation of the chemical quality of surface waters and of the sedimentation in the Grand River drainage basin by the U.S. Geological Survey began in 1946. The chemical quality of the water was studied to obtain information on the nature and amounts of dissolved solids in the streams and on the suitability of the water for domestic, industrial, and irrigation uses. Sedimentation was studied to determine the quantity of sediment that is transported by the streams, the particle sizes of the sediment, and the probable specific weight of the sediment when deposited in a reservoir.

  1. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.


    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  2. Multistage late Cenozoic evolution of the Amargosa River drainage, southwestern Nevada and eastern California Society of America. All rights reserved

    Menges, C.M.


    Stratigraphic and geomorphic analyses reveal that the regional drainage basin of the modern Amargosa River formed via multistage linkage of formerly isolated basins in a diachronous series of integration events between late Miocene and latest Pleistocene-Holocene time. The 275-km-long Amargosa River system drains generally southward across a large (15,540 km 2) watershed in southwestern Nevada and eastern California to its terminus in central Death Valley. This drainage basin is divided into four major subbasins along the main channel and several minor subbasins on tributaries; these subbasins contain features, including central valley lowlands surrounded by highlands that form external divides or internal paleodivides, which suggest relict individual physiographic-hydrologic basins. From north to south, the main subbasins along the main channel are: (1) an upper headwaters subbasin, which is deeply incised into mostly Tertiary sediments and volcanic rocks; (2) an unincised low-gradient section within the Amargosa Desert; (3) a mostly incised section centered on Tecopa Valley and tributary drainages; and (4) a west- to northwest-oriented mostly aggrading lower section along the axis of southern Death Valley. Adjoining subbasins are hydro-logically linked by interconnecting narrows or canyon reaches that are variably incised into formerly continuous paleodivides. The most important linkages along the main channel include: (1) the Beatty narrows, which developed across a Tertiary bedrock paleodivide between the upper and Amargosa Desert subbasins during a latest Miocene-early Pliocene to middle Pleistocene interval (ca. 4-0.5 Ma); (2) the Eagle Mountain narrows, which cut into a mostly alluvial paleodivide between the Amar-gosa Desert and Tecopa subbasins in middle to late Pleistocene (ca. 150-100 ka) time; and (3) the Amargosa Canyon, which formed in late middle Pleistocene (ca. 200140 ka) time through a breached, actively uplifting paleodivide between the Tecopa

  3. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage.

    Desoeuvre, Angélique; Casiot, Corinne; Héry, Marina


    Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations.

  4. Scale effects on the hydrological impact of upland afforestation and drainage using indices of flow variability: the River Irthing, England

    D. Archer


    Full Text Available Frequent assertions by river users that rivers in northern England now rise and fall more quickly than in the past, have never been validated by analysis on catchments of more than 10 km2. The method using indices of flow variability provides a basis for making direct measurements of the annual number and duration of pulses, i.e. rises above a given flow, and for comparing catchments of different sizes. A comparison is made between the small afforested headwater Coalburn catchment (1.5 km2 and the larger River Irthing catchment (335 km2 on which the afforested area comprises 19%. A simple but effective means is provided for decoupling the effect of climatic variability from the effects of land use. The analysis shows that major changes have occurred on the small catchment, first with rising pulse numbers after pre-afforestation drainage, then with a much greater progressive decrease in pulse number accompanied with increasing pulse duration. In contrast, the larger catchment shows little change in variability indices from the beginning of its record in 1968 until the late 1980s after which the pattern of change mirrors that at Coalburn but the proportional change is much smaller. The direction of change is the opposite of that asserted by river users. Keywords: hydrology, flow variability, land-use impacts, forests, scale effects

  5. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China.

    Chen, Meiqin; Lu, Guining; Guo, Chuling; Yang, Chengfang; Wu, Jingxiong; Huang, Weilin; Yee, Nathan; Dang, Zhi


    Sulfate, a major component of acid mine drainage (AMD), its migration in an AMD-affected river which located at the Dabaoshan mine area of South China was investigated to pursue the remediation strategy. The existing factors of relatively low pH values of 2.8-3.9, high concentrations of SO4(2-) (∼1940 mg L(-1)) and Fe(3+) (∼112 mg L(-1)) facilitated the precipitation of schwertmannite (Fe8O8(OH)6SO4·nH2O) in the upstream river. Geochemical model calculations implied the river waters were supersaturated, creating the potential for precipitation of iron oxyhydroxides. These minerals evolved from schwertmannite to goethite with the increasing pH from 2.8 to 5.8 along the river. The concentration of heavy metals in river waters was great reduced as a result of precipitation effects. The large size of the exchangeable sulfate pool suggested that the sediments had a strong capacity to bind SO4(2-). The XRD results indicated that schwertmannite was the predominant form of sulfate-bearing mineral phases, which was likely to act as a major sulfate sink by incorporating water-borne sulfate into its internal structure and adsorbing it onto its surface. The small size of reduced sulfur pools and strong oxidative status in the surface sediments further showed that SO4(2-) shifting from water to sediment in form of sulfate reduction was not activated. In short, precipitation of sulfate-rich iron oxyhydroxides and subsequent SO4(2-) adsorption on these minerals as well as water dilution contributed to the attenuation of SO4(2-) along the river waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    Trotter, Patrick C.


    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  7. A new species of Cottus from the Onega River drainage, White Sea basin (Actinopterygii: Scorpaeniformes: Cottidae).

    Sideleva, Valentina G; Naseka, Alexander M; Zhidkov, Zakhar V


    Cottus gratzianowi, a new cottid species, is described from material collected in the Ukhtomitsa River in the Onega River drainage, White Sea basin. It differs from its congeners in Europe east of the Meuse except C. koshewnikowi by having no transverse dark bands on the pelvic fin, a single chin canal pore, an incomplete lateral line not reaching behind the anal-fin insertion, and the position of the lateral line which is located considerably above the mid-line of the flank. From C. koshewnikowi distributed in the Volga (Caspian basin), Pechora, and Northern Dvina rivers (Arctic basin), C. gratzianowi sp. nov. can be distinguished by a combination of character states, the most differentiating are as follows: a larger eye (horizontal diameter 23-28% HL, equal to or exceeding snout length vs. 16-25% HL, less than snout length), a rounded caudal fin (vs. commonly truncated), frequent presence of one to three branched rays in median part of the pectoral fin (vs. usual absence), an interrupted supratemporal canal commissure with 4 pores (vs. non-interrupted, with 3 pores), abdominal vertebrae commonly 10 (vs. 11), and contrasting black blotches on all fins including pelvic and anal fins (vs. no blotches on pelvic and anal fins).

  8. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Blackstone River Watershed. Appendices.


    weee ir noww md Id I b Wock number) --The eight appendices to the main report provides descriptive material abbut the Blackstone River Basin. Appendices...PNB area). The team concentrated on water supply, water quality, recreation, marine management, flooding and erosion, minerals extraction and the...basin consists of gently rolling wooded hills. Peters River originates in Bellingham, Massachusetts, just north of Silver Lake. It flows southwesterly

  9. The dissipation of carbofuran in two soils with different pesticide application histories within Nzoia River Drainage Basin, Kenya.

    Jemutai-Kimosop, Selly; Orata, Francis O; K'Owino, Isaac O; Getenga, Zachary M


    The dissipation of carbofuran from soils within the Nzoia River Drainage Basin in Kenya was studied under real field conditions for 112 days. Results showed significantly enhanced dissipation of carbofuran with half life (DT50) values of 8 days (p = 0.038) in soils with prior exposure to carbofuran compared to 19 days in soils with no application history. At the end of the experiment, residues of 2.57% and 9.36% of the initial carbofuran applied were recorded in the two types of soil, respectively. Carbofuran metabolites identified in the study were 3-keto carbofuran and carbofuran phenol with 5.84% and 15.0% remaining in soils with prior exposure, respectively. Soils with no application history recorded 16.05% and 12.82% of 3-keto carbofuran and carbofuran phenol metabolites, respectively.

  10. Drainage areas for selected stream-sampling stations, Missouri River Basin

    U.S. Geological Survey, Department of the Interior — As part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA), an investigation of the Missouri River Basin is being conducted to...

  11. Background Contaminants Evaluation of the Republican River Drainage- Colorado, Kansas, and Nebraska

    US Fish and Wildlife Service, Department of the Interior — The Republican River Basin is a very large watershed in west-central Kansas, eastern Colorado, Wyoming and southern Nebraska. This study was conducted to determine...

  12. Metacercarial distribution of Centrocestus formosanus among fish hosts in the Guadalupe River drainage of Texas.

    Fleming, B Paul; Huffman, David G; Bonner, Timothy H; Brandt, Thomas M


    We examined the gills of wild fish collected from central Texas for Centrocestus formosanus metacercariae to determine whether this temperature-restricted parasite had invaded the thermally dynamic Guadalupe River via an introduced population in its thermally stable tributary, the Comal River. We collected fish from three sites in the Guadalupe River near its confluence with the Comal River (upstream, at, and downstream) and one site in the Comal River. Centrocestus formosanus infected 14 of the 25 species examined (56.0%) and 171 of the individual fish (27.1%). Several of the infected fish represent new host records for the parasite, and two are listed as species of special concern by the state of Texas. Mean metacercarial intensities varied from 8 to 616 among species, and the highest recorded intensity was greater than 800 in two Guadalupe roundnose minnow Dionda nigrotaeniata. Among the 24 species examined from the Guadalupe River, 11 (45.8%) were infected with C. formosanus. Thorough surveys at the study sites yielded no living specimens of the first obligate intermediate snail host (red-rim melania Melanoides tuberculatus), which must be present to perpetuate the parasite. Thus, the infections were probably due to drifting cercariae that had been shed into the water column upstream of the study area in the Comal River. We therefore investigated spatial patterns in cercarial acquisition using caged fish to determine whether drifting cercariae were present in the water column at the study sites. Of 57 uninfected blacktail shiners Cyprinella venusta exposed to Guadalupe River water downstream from and at the confluence, 52 (91.2%) became infected with C. Formosanus metacercariae at a mean rate of 4 metacercariae/d. This finding extends the known geographic range of this invasive exotic parasite and is the first report of the life cycle being advanced in the fish assemblage of a thermally variable temperate stream in the USA.

  13. Use of man-made impoundment in mitigating acid mine drainage in the North Branch Potomac River

    Diamond, Jerome M.; Bower, William; Gruber, David


    The US Department of the Army, Baltimore District Corps of Engineers, oversees a long-term monitoring study to assess and evaluate effects of the Jennings-Randolph reservoir on biota in the North Branch Potomac River. The reservoir was intended, in part, to mitigate effects of acid mine drainage originating in upstream and headwater areas. The present study assessed recovery of benthos and fish in this system, six years after completion of the reservoir. Higher pH and lower iron and sulfate concentrations were observed upstream of the reservoir compared to preimpoundment conditions, suggesting better overall water quality in the upper North Branch. Water quality improved slightly directly downstream of the reservoir. However, the reservoir itself was poorly colonized by macrophytes and benthic organisms, and plankton composition suggested either metal toxicity and/or nutrient limitation. One large tributary to the North Branch and the reservoir (Stony River) was shown to have high (and possibly toxic) levels of manganese, iron, zinc, and aluminum due to subsurface coal mine drainage. Macroinvertebrate diversity and number of taxa were higher in sites downstream of the reservoir in the present study. Compared with previous years, the present study suggested relatively rapid recovery in the lower North Branch due to colonization from two major unimpacted tributaries in this system: Savage River and South Branch Potomac. Abundance of certain mayfly species across sites provided the most clear evidence of longitudinal gradients in water quality parameters and geomorphology. Fish data were consistent with macroinvertebrate results, but site-to-site variation in species composition was greater. Data collected between 1982 and 1987 suggested that certain fish species have unsuccessfully attempted to colonize sites directly downstream of the reservoir despite the more neutral pH water there. Our results show that recovery of biota in the North Branch Potomac was attributed

  14. A new species of Percina (Perciformes: Percidae) from the Apalachicola River drainage, southeastern United States

    Freeman, Mary C.; Freeman, B.J.; Burkhead, N.M.; Straight, C.A.


    Percina crypta, the Halloween Darter, is described as a new species endemic to the Chattahoochee and Flint River systems in Georgia and Alabama. Percina crypta differs from sympatric Percina nigrofasciata in having narrowly separated dorsal saddles (inter-saddle spaces typically less than or equal to saddle width, compared to frequently wider than saddle width in P. nigrofasciata), in usually possessing a single modified scale between the pelvic bases (compared to two or more in P. nigrofasciata), and in having dark wide bands on pectoral-fin rays (versus pectoral fin clear, or with irregular dark marks or weak tessellations on fin rays in P. nigrofasciata). Phylogenetic relationships of P. crypta to other species of Percina are obscure. Percina crypta occurs in shoal and riffle habitats in the Chattahoochee and Flint River mainstems and in a few tributary systems, with the known extant range comprising four disjunct areas separated by mainstem impoundments and altered river reaches.

  15. Additional record of Batasio merianiensis (Chaudhuri 1913, a catfish (Teleostei: Bagridae in upper Brahmaputra River drainage in Arunachal Pradesh, India

    L. Tamang


    Full Text Available This paper communicates the extension of the distribution range of Batasio merianiensis in Sille River in the upper Brahmaputra drainage, East Siang District, Arunachal Pradesh. Detailed examinations of the specimens revealed existence of few morphological variations against those reported by Heok Hee Ng in 2009 on the following characteristics: by having a longer preanal (70.4-73.4 vs. 66.3-68.2% SL; a longer prepectoral (25.1-29.3 vs. 21.4-25.7% SL; a longer adipose-fin base (22.0-27.6 vs. 16.9-22.2% SL; a shorter post-adipose distance (11.6-13.4 vs.13.4-15.5% SL; a deeper body at anus (depth 18.3-20.8 vs.15.2-18.4% SL and broader head (width 17.6-20.0 vs.13.5-16.2 % HL. Few additional characters of the fish are included along with brief information on its habitat. The LIPUM, the semi-traditional method of fishing in the river is identified as a major threat to this species.

  16. Hydrological modeling of a watershed affected by acid mine drainage (Odiel River, SW Spain). Assessment of the pollutant contributing areas

    Galván, L.; Olías, M.; Cánovas, C. R.; Sarmiento, A. M.; Nieto, J. M.


    The Odiel watershed drains materials belonging to the Iberian Pyrite Belt, where significant massive sulfide deposits have been mined historically. As a result, a huge amount of sulfide-rich wastes are deposited in the watershed, which suffer from oxidation, releasing acidic lixiviates with high sulfate and metal concentrations. In order to reliably estimate the metal loadings along the watershed a complete series of discharge and hydrochemical data are essential. A hydrological model was performed with SWAT (Soil and Water Assessment Tool) to solve the scarcity of gauge stations along the watershed. The model was calibrated and validated from daily discharge data (from 1980 to 2010) at the outlet of the watershed, river inputs into an existent reservoir, and a flow gauge station close to the northern area of the watershed. Discharge data obtained from the hydrological model, together with analytical data, allowed the estimation of the dissolved pollutant load delivered annually by the Odiel River (e.g. 9140 t of Al, 2760 t of Zn). The pollutant load is influenced strongly by the rainfall regime, and can even double during extremely rainy years. Around 50% of total pollution comes from the Riotinto Mining District, so the treatment of Riotinto lixiviates reaching the Odiel watershed would reduce the AMD (Acid Mine Drainages) in a remarkable way, improving the water quality downstream, especially in the reservoir of Alcolea, currently under construction. The information obtained in this study will allow the optimization of remediation efforts in the watershed, in order to improve its water quality.

  17. Export of nutrients from the catchment of the upper Szeszupa River (drainage basin of the Neman River and its seasonality

    Górniak Andrzej


    Full Text Available The article presents the dynamics of concentrations and export of nitrogen, phosphorus, TOC in the upper Szeszupa River (tributary of the River Neman in the period from 2000 to 2014 (15 years based on monthly analyses performed in Poland in the scope of the National Environmental Monitoring. The lakeland river with a mean discharge of 1.6 m3 s−1 and catchment dominated by agricultural land exports approximately 20 kg ha−1 of organic carbon compounds per year. The export of nitrogen is insignificant (3.8 kg ha−1 with 55% accounting for the element in the form of organic compounds and 31% for nitrates. Phosphorus export is also relatively low (0.12 kg ha−1, with 30% of the load of TP constituted by orthophosphates. During four months (February–May, 40–60% of annual export of nutrients was discharged, whereas the load of nitrates and organic nitrogen was higher than the contribution of outflowing water. From 2010, an increasing tendency has been observed in organic nitrogen export. This may be related to the intensification of animal production in NE Poland and an increase in livestock density.

  18. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.


    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and

  19. Physical, chemical, and biological data for detailed study of irrigation drainage in the San Juan River area, New Mexico, 1993-94, with supplemental data, 1991-95

    Thomas, C.L.; Lusk, J.D.; Bristol, R.S.; Wilson, R.M.; Shineman, A.R.


    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior formed an interbureau task group to prepare a plan for investigating water- quality problems on irrigation projects sponsored by the Department of the Interior. The San Juan River area in northwestern New Mexico was one of the areas designated for study. Investigators collected water, bottom-sediment, soil, and biological samples at more than 50 sites in the San Juan River area during 1993-94. Sample sites included (1) sites located within Department of the Interior irrigation project service areas, or areas that receive drainage from irrigation projects; (2) reference sites for comparison with irrigation project sites; and (3) sites located within the reach of the San Juan River from Navajo Dam to 10 miles downstream from the dam. The types of habitat sampled included the main stem of the San Juan River, backwater areas adjacent to the San Juan River, tributaries to the San Juan River, ponds, seeps, irrigation-delivery canals, irrigation-drainage canals, a stock tank, and shallow ground water. The types of media sampled included water, bottom sediment, soil, aquatic plants, aquatic invertebrates, amphibians, and fish. Semipermeable-membrane devices were used as a surrogate medium to sample both air and water in some instances. Sample measurements included concentrations of major ions, trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic-aromatic-hydrocarbon compounds, and stable isotopes of hydrogen and oxygen. This report presents tables of physical, chemical, and biological data collected for the U.S. Department of the Interior National Irrigation Water-Quality Program. Additionally, supplemental physical, chemical, and biological data collected in association with the Navajo Indian Irrigation Project are presented.

  20. A new species of Hemibrycon (Characiformes, Characidae) from the upper San Juan River drainage, Pacific versant, Colombia

    Román-Valencia, César; Ruiz-C, Raquel I.; Taphorn, Donald C.; García-Alzate, Carlos A.


    Abstract Hemibrycon sanjuanensis, new species, is described from the upper San Juan River drainage, Pacific versant, Colombia. It is distinguished from Hemibrycon boquiae, Hemibrycon brevispini, Hemibrycon cairoense, Hemibrycon colombianus, Hemibrycon mikrostiktos, Hemibrycon metae, Hemibrycon palomae, Hemibrycon rafaelense and Hemibrycon tridens by the presence of a circular or oblong humeral spot that is located two scales posterior to the opercle (vs. 3–4 scales in Hemibrycon palomae, Hemibrycon rafaelense, Hemibrycon brevispini and Hemibrycon cairoense, and 0–1 scales, in Hemibrycon metae and Hemibrycon boquiae). It further differs from Hemibrycon colombianus in having a round or oblong humeral spot (vs. rectangular). It differs from Hemibrycon beni, Hemibrycon dariensis, Hemibrycon divisorensis, Hemibrycon helleri, Hemibrycon huambonicus, Hemibrycon inambari, Hemibrycon jabonero, Hemibrycon jelskii, Hemibrycon mikrostiktos, Hemibrycon polyodon, Hemibrycon quindos, Hemibrycon raqueliae, Hemibrycon santamartae, Hemibrycon surinamensis, Hemibrycon taeniurus, Hemibrycon tridens, and Hemibrycon yacopiae in having melanophores on the posterior margins of the scales along the sides of body (vs. lacking melanophores on margins of scales along entire length of the sides of body). The new species differs from all congeners mentioned above in having, among other features, six teeth in the outer premaxillary row arranged in a straight line (vs. five or fewer teeth not arranged in straight line except Hemibrycon cairoense with two to six teeth in the outer premaxillary row). PMID:25493068

  1. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    Klauk, R.H.; Budding, K.E.


    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  2. Use of real-time monitoring to predict concentrations of select constituents in the Menomonee River drainage basin, Southeast Wisconsin, 2008-9

    Baldwin, Austin K.; Graczyk, David J.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher


    The Menomonee River drainage basin in southeast Wisconsin is undergoing changes that may affect water quality. Several rehabilitation and flood-management projects are underway, including removal of concrete channels and the construction of floodwater retention basins. The city of Waukesha may begin discharging treated wastewater into Underwood Creek, thus approximately doubling the current base-flow discharge. In addition, the headwater basins, historically dominated by agriculture and natural areas, are becoming increasingly urbanized.

  3. Captures, Cutoffs, and Autogenic Drainage Basin Reorganization from Bedrock River Meandering in the Oregon Coast Range

    Johnson, K. N.; Finnegan, N. J.


    Meandering bedrock channels in the Oregon Coast Range (OCR), USA, have lateral migration rates far in excess of vertical incision rates. Consequently, the sweeping of trunk streams through this landscape can locally exert a much stronger influence on tributary channel long profiles than far-field tectonic forcing of base-level. Here, we use LiDAR-data to explore the influence of lateral channel mobility on the evolution of tributaries to the Smith River, in the OCR. We focus on two processes that dramatically and instantaneously change tributary long profiles: 1) Capture of tributaries by growing meander bends, and 2) Meander bend neck cutoffs on the main-stem that leave tributaries disconnected from base-level lowering. We focus on these two types of events because they provide clear examples of autogenic drivers of landscape disequilibrium at the sub-watershed scale in a landscape that is commonly argued to reflect steady tectonic forcing of base-level. We show that tributary streams are significantly more likely to flow into the leading edge of meander bends, testifying to the repeated capture of tributaries by growing bends. Examples of eminent captures by migrating bends, and examples with large knick points along recently captured tributaries suggest that the autogenic capture of tributaries by growing bends is a fundamental cause of transience in tributary channels in this landscape. To demonstrate the influence of the process of meander bend neck cutoff on tributary long profile evolution, we compare the long profiles of 34 tributaries that were hung above the main-stem of the Smith River following neck cutoff events. These stagnated tributary channels typically exhibit large convexities that record ongoing lowering of the trunk stream. Measured heights of these hanging tributaries implies that the timescale of adjustment for tributaries following cutoff events is ~ 105-106 years. The timescale of adjustment of tributary channels following meander cutoff


    Jacek Kubiak


    Full Text Available The paper presents the results of research of uranium concentrations in its different kinds – suspended and dissolved – in waters of the largest lakes located in the catchment area of the River Tywa – Strzeszowskie Lake, Dłużyna Lake, Długie Lake and Dłuzec Lake. Small (or the order of several 0,01 µg/l variations in concentration of uranium in different lakes were noted. The study has also shown a seasonal variation – in a similar range – in concentrations of the above species of uranium, as well as total uranium. The content of dissolved uranium was highest in the autumn and winter, lower in the spring and summer. Overall, total uranium was found in greatest concentrations during the fall, in other seasons concentrations were lower and similar to each other. Suspended uranium was found in largest concentrations in autumn and summer, in lower ones in spring and winter. Concentrations of the different species of uranium during the study period showed a small variation – variation coefficient below 10% for total uranium and dissolved uranium, and about 25% for suspended uranium. The observed concentrations of uranium were typical of uncontaminated unpolluted water.

  5. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin


    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  6. Phylogeography of the Mekong mud snake (Enhydris subtaeniata): the biogeographic importance of dynamic river drainages and fluctuating sea levels for semiaquatic taxa in Indochina.

    Lukoschek, Vimoksalehi; Osterhage, Jennifer L; Karns, Daryl R; Murphy, John C; Voris, Harold K


    During the Cenozoic, Southeast Asia was profoundly affected by plate tectonic events, dynamic river systems, fluctuating sea levels, shifting coastlines, and climatic variation, which have influenced the ecological and evolutionary trajectories of the Southeast Asian flora and fauna. We examined the role of these paleogeographic factors on shaping phylogeographic patterns focusing on a species of semiaquatic snake, Enhydris subtaeniata (Serpentes: Homalopsidae) using sequence data from three mitochondrial fragments (cytochrome b, ND4, and ATPase-2785 bp). We sampled E. subtaeniata from seven locations in three river drainage basins that encompassed most of this species' range. Genetic diversities were typically low within locations but high across locations. Moreover, each location had a unique suite of haplotypes not shared among locations, and pairwise φ(ST) values (0.713-0.998) were highly significant between all location pairs. Relationships among phylogroups were well resolved and analysis of molecular variance (AMOVA) revealed strong geographical partitioning of genetic variance among the three river drainage basins surveyed. The genetic differences observed among the populations of E. subtaeniata were likely shaped by the Quaternary landscapes of Indochina and the Sunda Shelf. Historically, the middle and lower Mekong consisted of strongly dissected river valleys separated by low mountain ranges and much of the Sunda Shelf consisted of lowland river valleys that served to connect faunas associated with major regional rivers. It is thus likely that the contemporary genetic patterns observed among populations of E. subtaeniata are the result of their histories in a complex terrain that created abundant opportunities for genetic isolation and divergence yet also provided lowland connections across now drowned river valleys.

  7. [A new species of Hyphessobrycon (Characiformes: Characidae) from the Telembi River drainage, Southern Pacific slope of Colombia].

    García-Alzate, Carlos A; Román-Valencia, César; Taphorn, Donald C


    The genus Hyphessobrycon is included within the subfamily Tetragonopterinae. The species are generally small, do not exceed 70mm of standard length, are economically important as ornamental fish, with 128 valid species distributed from Southern Mexico to Rio La Plata in Argentina. The collections of fish were made with seines, in a single biotope, along shore in backwaters and working downstream. Measurements of the specimens were taken point to point with digital calipers. Observations of bone and cartilage structures were made on cleared and stained (C&S) specimens. The morphometric relationships between species were explored using a principal component analysis (PCA)using 21 variables. We described a new species, Hyphessobrycon chocoensis, from the Telembi River drainage of the Pacific versant of Colombia. The new species, Hyphessobrycon chocoensis, is distinguished from congeners not of the "flammeus" species group by: having a diffuse humeral spot, in lacking a dark spot on the dorsal fin and caudal peduncle. It is distinguished from members its species group by the number of rays in the dorsal fin (ii, 8, i), by the number of branched anal-fin rays (25-26) and by having a diffuse humeral spot. It differs from H. tortuguerae in the number of teeth on the maxilla (1-2), by the number of predorsal scales and the high number of scales between the lateral line and the anal fin (6-7). Hyphessobrycon chocoensis can be distinguished from the other known species of Hyphessobrycon from the Pacific Coast of Colombia in having: a high number of pored lateral-line scales, by the snout to dorsal-fin length, by caudal-peduncle depth and by eye diameter. In addition, it differs from H. columbianus by the distance from the dorsal fin to the anal fin, by the length of the upper jaw, and by snout length. It differs from H. condotensis in having a high number of scales between the lateral line and the dorsal fin, and by the number of simple rays in the anal fin. H. chocoensis is

  8. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.


    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    Wieczorek, Michael; LaMotte, Andrew E.


    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  10. Antibiotic resistance and community analysis of surface and subsurface drainage waters in the South Fork Iowa River watershed

    The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations w...

  11. Antibiotic resistance and community analysis of surface and subsurface drainage waters in the South Fork Iowa River watershed

    The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations wh...

  12. Effects of acid mine drainage on fish and macroinvertebrates of the Tioga River, Pennsylvania and New York

    Barker, James L.


    Acid water from abandoned coal mines in the vicinity of Morris Run and Blossburg, Pa., severely alter the aquatic environment of the Tioga River. From Morris Run to Crooked Creek, a reach of 19 miles, the river bed is influenced by a smothering blanket of heavy metal precipitates and highly acidic water. Biologically, this reach of the river is devoid of fishlife and nearly devoid of benthic macroinvertebrates. Downstream from Crooked Creek the water quality and biota are slowly restored. At Presho, N.Y., the river again supports an abundant and diversified population of fish and bottom-dwelling organisms.

  13. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    Clark, Melanie L.; Mason, Jon P.


    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  14. 平原河网区排涝计算研究%Research on the Calculation of Drainage of River Networks in Plains

    张凯铭; 董增川; 樊孔明; 李梓嘉; 胡昊; 王钰


    行洪排涝是平原河网区汛期的重要任务。利用MIKE11模型中的HD模块,以江苏省泗洪县城区水系为实例,建立了一维水动力学模型,并利用产汇流计算确定了模型的边界条件,对20年一遇暴雨条件下的城区河网水量进行了模拟计算。结果表明,在现有的排涝设施条件下,泗洪县城区河网能够满足设计暴雨下的排涝要求。%Flood defence and drainage are the mental task in the river networks in plains. This paper establishes a 1-D hydrodynamic model by using HD in MIKE11 model to get the boundary conditions of the model by means of produced convergence. And then a simulation is conducted of the river network of the city under the conditions of a rainstorm within 20 years. The results show that the river networks of Sihong County can meet the requirements of the designed rainstorm under the existing conditions.

  15. Variations of the spring precipitation day numbers reconstructed from tree rings in the Urumqi River drainage,Tianshan Mts. Over the last 370 years

    YUAN Yujiang; JIN Liya; SHAO Xuemei; HE Qing; LI Zhizhong; LI Jiangfeng


    The tree-ring cores of Tianshan spruces collected from nine sites in the Urumqi River drainage of the middle Tianshan Mountains were used to establishthree types of the tree-ring width chronologies over the last 370 years, using the international standard method of dendrochronology. Our study demonstrates that dendrochronology can be better used to reconstruct the number of the precipitation day than to reconstruct the precipitation amount in middle Tianshan Mountains. It is found that the residual chronology among the three tree-ring width chronologies has the best relationship with number of spring precipitation days from May 20 to June 8. The chronologies at Haxionggou B site and Zaierdegou site in the Urumiqi drainage have the highest correlation with the observed number of spring precipitation days at Daxigou meteorological station, and are used to reconstruct the spring precipitation days over the last 370 years in the drainage. The main significant decreasing trend of the number of the spring precipitation days occurred during 1665-1717, while the significant increasing trends happened during 1805-1841 and 1914-1943. The reconstructed series of the number of spring precipitation days has quasi-periodic variations of 3.3, 2.1, 2.5, 12.3 and32.0 years with the dominated short periodical changes. The long cycle of 32 years is shown quite clearly in the 10-year smoothed sequence. The maximum spring precipitation days occurred mainly in the 1630s, 1840s and 1940s, while the lowest number of spring precipitation days for the 10-year average occurred in the 1710s.

  16. Spinitectus osorioi (Nematoda: Cystidicolidae in the Mexican endemic fish Atherinella alvarezi (Atherinopsidae from the Atlantic River drainage system in Chiapas, Southern Mexico

    František Moravec


    Full Text Available Specimens of Spinitectus osorioi Choudhury and Pérez-Ponce de León, an intestinal nematode species previously considered to be specific to Chirostoma spp and endemic to some lakes in the Pacific drainage in Michoacán, were collected from the freshwater fish Atherinella alvarezi (Díaz-Pardo (Atherinopsidae of the Michol River near Palenque, Chiapas, Southern Mexico, which belongs to the Atlantic drainage system. Studies using light and scanning electron microscopy revealed some taxonomically important, previously unreported or erroneously reported features of S. osorioi, such as the location of the vulva, the actual number and distribution of postanal papillae and phasmids and the presence of a short median cuticular ridge anterior to the cloacal opening (in addition to two long subventral ridges. The recorded somewhat shorter spicules (420-465 and 105-111 μm and mostly smaller eggs (33-36 × 18-20 μm as compared to the original species description may be due to a different type of host, geographical region or generally smaller body measurements of these specimens. These biometrical differences are considered to be within the limits of the intraspecific variability of S. osorioi. A key to species of Spinitectus parasitizing freshwater fishes in Mexico is provided.

  17. Spinitectus osorioi (Nematoda: Cystidicolidae) in the Mexican endemic fish Atherinella alvarezi (Atherinopsidae) from the Atlantic River drainage system in Chiapas, Southern Mexico.

    Moravec, Frantisek; Salgado-Maldonado, Guillermo; Caspeta-Mandujano, Juan M


    Specimens of Spinitectus osorioi Choudhury and Pérez-Ponce de León, an intestinal nematode species previously considered to be specific to Chirostoma spp and endemic to some lakes in the Pacific drainage in Michoacán, were collected from the freshwater fish Atherinella alvarezi (Díaz-Pardo) (Atherinopsidae) of the Michol River near Palenque, Chiapas, Southern Mexico, which belongs to the Atlantic drainage system. Studies using light and scanning electron microscopy revealed some taxonomically important, previously unreported or erroneously reported features of S. osorioi, such as the location of the vulva, the actual number and distribution of postanal papillae and phasmids and the presence of a short median cuticular ridge anterior to the cloacal opening (in addition to two long subventral ridges). The recorded somewhat shorter spicules (420-465 and 105-111 microm) and mostly smaller eggs (33-36 x 18-20 microm) as compared to the original species description may be due to a different type of host, geographical region or generally smaller body measurements of these specimens. These biometrical differences are considered to be within the limits of the intraspecific variability of S. osorioi. A key to species of Spinitectus parasitizing freshwater fishes in Mexico is provided.

  18. Availability and chemical quality of ground water in the Crystal River and Cattle Creek Drainage Basins near Glenwood Springs, west-central Colorado

    Brogden, Robert E.; Giles, T.F.


    Parts of the Crystal River and cattle Creek drainage basins near Glenwood Springs, Colo., have undergone rapid population growth in recent years. This growth has resulted in an increased demand for information for additional domestic, industrial, and municipal water supplies. A knowledge of the occurrence of ground water will permit a more efficient allocation of the resource. Aquifers in the two drainage basins include: alluvium, basalts, the Mesa Verde Formation, Mancos Shale, Dakota Sandstone, Morrison Formation, Entrada Sandstone, Maroon Formation, Eagle Valley Evaporite, and undifferentiated formations. Except for aquifers in the alluvium, and basalt, well yields are generally low and are less than 25 gallons per minute. Well yields form aquifers in the alluvium and basalt can be as much as several hundred gallons per minute. Water quality is dependent of rock type. Calcium bicarbonate is the predominant type of water in the study area. However, calcium sulfate type water may be found in aquifers in the Eagle Valley Evaporite and in the alluvium where the alluvial material has been derived from the Eagle Valley Evaporite. Concentrations of selenium in excess of U.S. Public Health Service standards for drinking water can be found locally in aquifers in the Eagle Valley Evaporite. (Woodard-USGS)

  19. Study of the Optimization and Adjustment of the Industrial Structure Subjected to Water Resource in the Drainage Area of the Yellow River

    Wang Haiying; Fan Zhenjun; Hou Xiaoli; Dong Suocheng


    Since the 1990s, the Yellow River stream has been temporarily interrupted for several years,which affects the development of society, the economy and human life, limits the economic potential of the drainage areas, and especially causes great harm to regions on the lower reaches. Based on the analysis of the relationship between the development of society and economy and water scarcity, the author thinks it is necessary to optimize and adjust the industrial structure that has extravagantly consumed enormous amounts of water, and to develop ecological agriculture, industry and tourism which are balanced with the ecological environment. Finally, the author puts forward several pieces of advice and countermeasures about how to build the economic systems by which water can be used economically.

  20. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    Clark, Melanie L.; Mason, Jon P.


    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to

  1. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado

    Munk, L.A.; Faure, G.; Pride, D.E. [Ohio State University, Columbus, OH (United States). Dept. of Geological Sciences; Bigham, J.M. [Ohio State University, Columbus, OH (United States). School of Natural Resources


    The quality of water in streams that are contaminated by acid drainage from mines and from the weathering of mineralized rocks improves as the water flows downstream. The purpose of this study was to investigate the geochemical processes that occur in one such stream and to determine the fate of the trace metals that are removed from the water. The stream chosen for this purpose was the Snake River, Summit County, Colorado, which is affected by natural acid rock-drainage (ARD) containing SO{sub 4}, Al, Fe, and various trace elements such as Zn, Cu, Pb, Ni, and others. Most of the Fe in the Snake River is removed from solution by the oxidation of Fe{sup 2+} to Fe{sup 3+} and the subsequent precipitation of Fe-oxyhydroxides that form a massive ferricrete deposit near the springs that feed the river. Further downstream, the Snake River (pH = 3.0) mixes with water from Deer Creek (pH = 7.0) thereby increasing its pH to 6.3 and causing SO{sub 4}-rich precipitates of Al-oxyhydroxide to form. The precipitates and associated organic C complexes sorb trace metals from the water and thus have high concentrations of certain elements, including Zn (540-11,400 ppm), Cu (34-221 ppm), Pb (90-340 ppm), and Ni (11-197 ppm). The concentrations of these elements in the precipitates that coat the streambed rise steeply in the zone of mixing and then decline downstream. The trace element concentrations of the water in the mixing zone at the confluence with Deer Creek decrease by 75% or more and are up to 3 orders of magnitude lower than those of the precipitates. Sorption curves for Zn, Cu, Pb, Ni, and SO{sub 4} were derived by stepwise neutralization of a sample of Snake River water (collected above the confluence with Deer Creek) and indicate that the trace metals are sorbed preferentially with increasing pH in the general order Pb, Cu, Zn, and Ni. Sulfate is removed between pH 4 and 5 to form an Al-hydroxysulfate and/or by sorption to microcrystalline gibbsite. The sorption data

  2. Water information bulletin No. 30, part 13: geothermal investigations in Idaho. Preliminary geologic reconnaissance of the geothermal occurrences of the Wood River Drainage Area

    Anderson, J.E.; Bideganeta, K.; Mitchell, J.C.


    Pre-tertiary sediments of the Milligen and Wood River Formations consisting primarily of argillite, quartzite, shale and dolomite are, for the most part, exposed throughout the area and are cut locally by outliers of the Idaho Batholith. At some locations, Tertiary-age Challis Volcanics overlay these formations. Structurally the area is complex with major folding and faulting visible in many exposures. Many of the stream drainages appear to be fault controlled. Hydrologic studies indicate hot spring occurrences are related to major structural trends, as rock permeabilities are generally low. Geochemical studies using stable isotopes of hydrogen and oxygen indicate the thermal water in the Wood River region to be depleted by about 10 0/00 in D and by 1 to 2 0/00 in /sup 18/0 relative to cold water. This suggests the water could be meteoric water that fell during the late Pleistocene. The geological data, as well as the chemical data, indicate the geothermal waters are heated at depth, and subsequently migrate along permeable structural zones. In almost all cases the chemical data suggest slightly different thermal histories and recharge areas for the water issuing from the hot springs. Sustained use of the thermal water at any of the identified springs is probably limited to flow rates approximating the existing spring discharge. 28 refs., 16 figs., 3 tabs.


    William H.J. Strosnider


    Full Text Available Intensive mining and processing of the polymetallic sulfide ore body of Cerro Rico de Potosí (Bolivia has occurred since 1545. To further investigate acid mine drainage (AMD discharges and their link to downstream contamination, data were gathered during two sampling events during the most extreme periods of the dry and wet seasons of one year. Concentrations of Ag, B, Ba, Mo, Sb, Se, Sn and V in AMD and receiving streams were greater than Bolivian discharge limits and receiving water body guidelines as well as international agricultural use standards. High concentrations of rare earth metals have been documented in this area. Results indicate that contamination from mining has a larger scope than previously thought and underscore the importance of remediation.

  4. Diversity of lampreys and fishes of the Upper Vistula River drainage, Poland: present state and future challenges

    Michał Nowak


    Full Text Available There have been some 57 lamprey and fish species recorded in the Upper Vistula Riverdrainage (S-E Poland. Among these there are a number of species-complexes (Carassius auratus, Gobiogobio, Cobitis taenia with unresolved taxonomy. Identity of some others (Barbus waleckii, Romanogobioalbipinnatus, Cottus gobio is questionable and needs a review. Phylogenetic relationships of anotherones (Eudontomyzon mariae, Lampetra planeri, Lampetra fluviatilis is also under debate. Knowledgeabout the distribution of many species is very scarce and needs to be filled. In the current work webriefly summarise present state of the diversity and classification of lampreys and fishes of the UpperVistula drainage and point some urgent questions that have arose in recent years and are waiting fornew solutions.

  5. 长沙市排水专项规划浅析 --河西主体部分%On special drainage planning in Changsha-the main area in the west of the Xiang river



    The present drainage condition and drainage planning for the main part in the west of Xiang river were introduced and the principle and measures for solving the problems of development and protection in the urban construction were also put forward.%介绍了河西主体部分的排水现状及排水规划,并针对在城市建设中所遇到的发展与保护的问题,提出了解决的原则和措施。

  6. Multidisciplinary work on barium contamination of the karstic upper Kupa River drainage basin (Croatia and Slovenia); calling for watershed management.

    Francisković-Bilinski, S; Bilinski, H; Grbac, R; Zunić, J; Necemer, M; Hanzel, D


    The present work was designed as an extension of a previous study of a barium anomaly observed in stream sediments of the Kupa River. In its upper part the Kupa River drains a region underlain by a trans-boundary aquifer. The river is a significant water resource in a region of tourism, sport, and fishing in both Croatia and Slovenia. The contamination source is situated in Homer (Lokve), Croatia, where barite was mined until 10 years ago. The barium processing waste material (Kupa River. Barium waste and stream sediments were analyzed using comparative techniques: X-ray diffraction (XRD), X-ray fluorescence (XRF), Mössbauer spectroscopy, and grain size analysis. XRD of the waste material identified the major minerals quartz, barite, and dolomite and the Fe-containing minor minerals muscovite and goethite. Barite was identified as a minor or trace mineral in the Kupica River sediments. XRF analysis of the waste material has shown Ba and Fe to be the predominant elements, Ca and K to be minor elements, and Mn, Zn, Sr, Pb, Co, Cu, As, Zr, Rb, Y, and Mo to be trace elements. Mössbauer spectroscopy performed at room temperature (RT) was used to study iron minerals, particularly to obtain information on the valence status of Fe ions. Grain size analysis of the waste material (<63-microm fraction) has shown that it contains 23.5% clay-size material in comparison with 7-8% clay-size material in stream sediments. It is our aim to combine geochemical and medical methods to investigate the possible impact of waste disposal on human health in Lokve. At this stage of the work, concentrations of Ba and other toxic elements in the water compartment of the Kupica River (a source of drinking water) have not been monitored by Croatian Waters (name of the Croatian water authorities). The necessity of such measurements in future studies has been highlighted. A preliminary study of diseases diagnosed in Lokve shows that about 18% of the total inhabitants have serious medical

  7. The inflow of 234U and 238U from the River Odra drainage basin to the Baltic Sea

    Bogdan Skwarzec


    Full Text Available In this study the activity of uranium isotopes 234U and 238U in Odra river water samples, collected from October 2003 to July2004, was measured using alpha spectrometry. The uranium concentrations were different in each of the seasons analysed; the lowest values were recorded in summer. In all seasons, uranium concentrations were the highest in Bystrzyca river waters (from 27.81 ± 0.29Bq m-3 of 234U and 17.82 ± 0.23 Bq m-3 of 238U in spring to 194.76 ± 3.43 Bq m-3 of 234U and 134.88 ± 2.85 Bq m-3 of 238U in summer. The lowest concentrations were noted in the Mała Panew (from 1.33 ± 0.02 Bq m-3 of 234U and 1.06 ± 0.02 Bq m-3 of 238U in spring to 3.52 ± 0.05 Bq m-3 of 234U and 2.59± 0.04 Bq m-3 of 238U in autumn. The uranium radionuclides 234U and 238U in the water samples were not in radioactive equilibrium. The 234U / 238U activity ratios were the highest in Odra water samples collected at Głogów (1.84 in autumn, and the lowest in water from the Noteć (1.03 in winter and spring. The 234U / 238U activity ratio decreases along the main stream of the Odra, owing to changes in the salinity of the river's waters. Annually, 8.19 tons of uranium (126.29 G Bq of 234U and 100.80 G Bq of 238U flow into the Szczecin Lagoon with Odra river waters.

  8. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    Balistrieri, Laurie S.; Borrok, David M.; Wanty, Richard B.; Ridley, W. Ian


    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (αsoln-solid) are 0.99927 ± 0.00008 for Cu and 0.99948 ± 0.00004 for Zn or, alternately, the separation factors (Δsoln-solid) are -0.73 ± 0.08‰ for Cu and -0.52 ± 0.04‰ for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  9. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.


    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  10. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  11. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    McAda, Douglas P.; Naus, Cheryl A.


    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  12. Water-quality characteristics and trend analyses for the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010

    Clark, Melanie L.


    The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios


    Roberto José Vervloet


    Full Text Available The issues addressed in this article refer to the concluding part entitled research Morphologic and Structural Dynamics Constraints in the river basin of Rio hydroghaphy Benevente – Espirito Santo which aimed to investigate the lithostructural, tectonic, morphologic factors as constrain the in evolution of the drainage network of Benevente, river basin located in the south of Espírito Santo, state, Brazil. In this article it’s present the fold of background, studied by Ruellan (1952, set out the basic levels in local and regional erosion process, while also affects the evolution of the drainage network, as responsible for the dynamics of sub-compartments relief associated to lithostructural interface tectonic-relief-fluvial channels evolution. This article does homage to the pioneering work of Ruellan regarding the geomorphologic studies about Brazilian territory.

  14. Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage.

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo; Sanz, José Luis


    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (-210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides.

  15. Diametric structure of the shrub and tree vegetation around the headwaters in the Piauitinga River drainage basin, Salgado – Sergipe, Brazil

    Ednei Santos de Almeida


    Full Text Available This study was carried out in order to analyze the diametric structure of the ciliary vegetation in headwaters in the Piauitinga River drainage basin, located at the town of Salgado, Sergipe, Brazil. One analyzed 14 headwaters, using a classification with regard to the conservation status and the type of reservoir, being divided into 4 categories: 1 punctual preserved (PPr, 1 punctual disturbed (PD, 6 punctual degraded (PD, and 6 diffuse degraded (DD. The survey was conducted through a population census of vegetation in a 50 m radius around the headwaters, equivalent to 0.79 ha, where one recorded all living shrub and tree individuals with diameter at breast height (DBH ≥ 5.0 cm. The individuals were distributed into diametric classes, at 2.5 cm intervals. The punctual preserved and the punctual disturbed headwaters showed a diametric structure characteristic of heterogeneous forests, with an “inverted J” shape. The diffuse and punctual degraded headwaters didn’t show the “inverted J” pattern, except for DD2, perhaps reflecting the higher numberof individuals in this headwater. The intense disturbance generated in the headwater areas, which are currently degraded, promoted the impoverishment of natural regeneration and, as a result, compromised the recruitment of individuals in the early diameter grades.

  16. Report of progress of stream measurements for the calendar year 1905, Part XI, Colorado River drainage above Yuma

    Hinderlider, M.C.; Swendsen, G.L.


    The hydrographic work of the United States Geological Survey includes the collection of facts concerning and the study of conditions affecting the behavior of water from the time it reaches the earh as rain or snow until it joins the oceans or great navigable rivers. These investigations became a distinct feature of the work of the Survey in the fall of 1888, when an instruction camp was established at Embudo, N. Mex. The frist specific appropriation for gaging streams was amde by the act of August 18, 1894, which contained an item of $12, 500 'for gaging the streams and determining the water supply of the United States, including the investigation of underground currents and artesian wells in the arid and semiarid sections.'

  17. Computationally efficient and flexible modular modelling approach for river and urban drainage systems based on surrogate conceptual models

    Wolfs, Vincent; Willems, Patrick


    Water managers rely increasingly on mathematical simulation models that represent individual parts of the water system, such as the river, sewer system or waste water treatment plant. The current evolution towards integral water management requires the integration of these distinct components, leading to an increased model scale and scope. Besides this growing model complexity, certain applications gained interest and importance, such as uncertainty and sensitivity analyses, auto-calibration of models and real time control. All these applications share the need for models with a very limited calculation time, either for performing a large number of simulations, or a long term simulation followed by a statistical post-processing of the results. The use of the commonly applied detailed models that solve (part of) the de Saint-Venant equations is infeasible for these applications or such integrated modelling due to several reasons, of which a too long simulation time and the inability to couple submodels made in different software environments are the main ones. Instead, practitioners must use simplified models for these purposes. These models are characterized by empirical relationships and sacrifice model detail and accuracy for increased computational efficiency. The presented research discusses the development of a flexible integral modelling platform that complies with the following three key requirements: (1) Include a modelling approach for water quantity predictions for rivers, floodplains, sewer systems and rainfall runoff routing that require a minimal calculation time; (2) A fast and semi-automatic model configuration, thereby making maximum use of data of existing detailed models and measurements; (3) Have a calculation scheme based on open source code to allow for future extensions or the coupling with other models. First, a novel and flexible modular modelling approach based on the storage cell concept was developed. This approach divides each

  18. Refinement of regression models to estimate real-time concentrations of contaminants in the Menomonee River drainage basin, southeast Wisconsin, 2008-11

    Baldwin, Austin K.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher


    In 2008, the U.S. Geological Survey and the Milwaukee Metropolitan Sewerage District initiated a study to develop regression models to estimate real-time concentrations and loads of chloride, suspended solids, phosphorus, and bacteria in streams near Milwaukee, Wisconsin. To collect monitoring data for calibration of models, water-quality sensors and automated samplers were installed at six sites in the Menomonee River drainage basin. The sensors continuously measured four potential explanatory variables: water temperature, specific conductance, dissolved oxygen, and turbidity. Discrete water-quality samples were collected and analyzed for five response variables: chloride, total suspended solids, total phosphorus, Escherichia coli bacteria, and fecal coliform bacteria. Using the first year of data, regression models were developed to continuously estimate the response variables on the basis of the continuously measured explanatory variables. Those models were published in a previous report. In this report, those models are refined using 2 years of additional data, and the relative improvement in model predictability is discussed. In addition, a set of regression models is presented for a new site in the Menomonee River Basin, Underwood Creek at Wauwatosa. The refined models use the same explanatory variables as the original models. The chloride models all used specific conductance as the explanatory variable, except for the model for the Little Menomonee River near Freistadt, which used both specific conductance and turbidity. Total suspended solids and total phosphorus models used turbidity as the only explanatory variable, and bacteria models used water temperature and turbidity as explanatory variables. An analysis of covariance (ANCOVA), used to compare the coefficients in the original models to those in the refined models calibrated using all of the data, showed that only 3 of the 25 original models changed significantly. Root-mean-squared errors (RMSEs

  19. Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, U.S.A.

    Kimball, Briant A.


    Inflows of metal-rich, acidic water that drain from mine dumps and tailings piles in the Leadville, Colorado, area enter the non-acidic water in the upper Arkansas River. Hydrous iron oxides precipitate as colloids and move downstream in suspension, particularly downstream from California Gulch, which has been the major source of metal loads. The colloids influence the concentrations of metals dissolved in the water and the concentrations in bed sediments. To determine the role of colloids, samples of water, colloids, and fine-grained bed sediment were obtained at stream-gaging sites on the upper Arkansas River and at the mouths of major tributaries over a 250-km reach. Dissolved and colloidal metal concentrations in the water column were operationally defined using tangential-flow filtration through 0.001-pm membranes to separate the water and the colloids. Surface-extractable and total bed sediment metal concentrations were obtained on the Iron dominated the colloid composition, but substantial concentrations of As, Cd, Cu, Mn, Pb, and Zn also occurred in the colloidal solids. The colloidal load decreased by one half in the first 50 km downstream from the mining inflows due to sedimentation of aggregated colloids to the streambed. Nevertheless, a substantial load of colloids was transported through the entire study reach to Pueblo Reservoir. Dissolved metals were dominated by Mn and Zn, and their concentrations remained relatively high throughout the 250-km reach. The composition of extractable and total metals in bed sediment for several kilometers downstream from California Gulch is similar to the composition of the colloids that settle to the bed. Substantial concentrations of Mn and Zn were extractable, which is consistent with sediment-water chemical reaction. Concentrations of Cd, Pb, and Zn in bed sediment clearly result from the influence of mining near Leadville. Concentrations of Fe and Cu in bed sediments are nearly equal to concentrations in colloids

  20. Stream-Sediment Geochemistry in Mining-Impacted Drainages of the Yankee Fork of the Salmon River, Custer County, Idaho

    Frost, Thomas P.; Box, Stephen E.


    This reconnaissance study was undertaken at the request of the USDA Forest Service, Region 4, to assess the geochemistry, in particular the mercury and selenium contents, of mining-impacted sediments in the Yankee Fork of the Salmon River in Custer County Idaho. The Yankee Fork has been the site of hard-rock and placer mining, primarily for gold and silver, starting in the 1880s. Major dredge placer mining from the 1930s to 1950s in the Yankee Fork disturbed about a 10-kilometer reach. Mercury was commonly used in early hard-rock mining and placer operations for amalgamation and recovery of gold. During the late 1970s, feasibility studies were done on cyanide-heap leach recovery of gold from low-grade ores of the Sunbeam and related deposits. In the mid-1990s a major open-pit bulk-vat leach operation was started at the Grouse Creek Mine. This operation shut down when gold values proved to be lower than expected. Mercury in stream sediments in the Yankee Fork ranges from below 0.02 ppm to 7 ppm, with the highest values associated with old mill locations and lode and placer mines. Selenium ranges from below the detection limit for this study of 0.2 ppm to 4 ppm in Yankee Fork sediment samples. The generally elevated selenium content in the sediment samples reflect the generally high selenium contents in the volcanic rocks that underlie the Yankee Fork and the presence of gold and silver selenides in some of the veins that were exploited in the early phases of mining.

  1. From geodiversity and biodiversity through geoheritage to geoconservation; case study for the Dębnica River drainage basin (Poland)

    Mazurek, Małgorzata; Najwer, Alicja; Borysiak, Janina; Gudowicz, Joanna; Zwoliński, Zbigniew


    The poster presents the geodiversity of morphogenetically youngest Polish areas, which are a part of the North European Plain. The representative study area was the Dębnica River catchment (200 square km), which includes postglacial landforms. The geodiversity is presented spatially, using the spatial units map, varied in terms of their geodiversity indicator. The indicator was determined by a geoinformation analysis, using the quality classification method, and it captures the landscape complexity. The factor maps relating to landform energy, selected geomorphometric parameters, landforms, lithology and hydrography were taken into consideration. The set of factor maps includes also the map of the syngenetic type of real vegetation, as well as land cover and land use maps. The data were extracted from the digital elevation model (DTED 2) and digital geomorphological, geological and hydrographic maps in a scale of 1:50,000. The data on land cover and land use were extracted from the CORINE Land Cover 2006 database. Details were added to the data using field mapping at a scale of 1:50,000, for the period 2012-2014. Spontaneous real vegetation was diagnosed using the phytosociological method, simultaneously with the field mapping procedure. Unified spatial units were assigned for each factor map. Relationships between the geodiversity and biodiversity were established, based on the calculated correlation coefficients. The spatial units which were varied in terms of geodiversity and biodiversity are presented on the final map. The map shows areas of very high geodiversity and biodiversity, which are the hotspots for the local natural and cultural geoheritage. Various geoconservation methods of such areas were also suggested in the study.

  2. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.


    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  3. Relation of water quality to land use in the drainage basins of six tributaries to the lower Delaware River, New Jersey, 2002-07

    Baker, Ronald J.; Esralew, Rachel A.


    Concentrations and loads of water-quality constituents in six streams in the lower Delaware River Basin of New Jersey were determined in a multi-year study conducted by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection. Two streams receive water from relatively undeveloped basins, two from largely agricultural basins, and two from heavily urbanized basins. Each stream was monitored during eight storms and at least eight times during base flow during 2002-07. Sampling was conducted during base flow before each storm, when stage was first observed to rise, and several times during the rising limb of the hydrographs. Agricultural and urban land use has resulted in statistically significant increases in loads of nitrogen and phosphorus species relative to loads in undeveloped basins. For example, during the growing season, median storm flow concentrations of total nitrogen in the two streams in agricultural areas were 6,290 and 1,760 mg/L, compared to 988 and 823 mg/L for streams in urban areas, and 719 and 333 mg/L in undeveloped areas. Although nutrient concentrations and loads were clearly related to land useurban, agricultural, and undeveloped within the drainage basins, other basin characteristics were found to be important. Residual nutrients entrapped in lake sediments from streams that received effluent from recently removed sewage-treatment plants are hypothesized to be the cause of extremely high levels of nutrient loads to one urban stream, whereas another urban stream with similar land-use percentages (but without the legacy of sewage-treatment plants) had much lower levels of nutrients. One of the two agricultural streams studied had higher nutrient loads than the other, especially for total phosphorous and organic nitrogen. This difference appears to be related to the presence (or absence) of livestock (cattle).

  4. 渭干河平原绿洲灌区合理灌排比探讨%Rational Ratio of Irrigation to Drainage in Weigan River Irrigat ion District

    胡顺军; 艾尼瓦尔·吾买尔; 田长彦; 周宏飞; 宋郁东; 王永平; 蒋庆华; 艾则孜; 黄文山; 吐尔逊


    根据灌区盐量平衡原理,采用实际监测资料,对渭干河及其所属的库车、沙雅、新和县平原绿洲灌区进行盐均衡分析,深入探讨了临界灌排比的影响因素及其确定方法。研究结果表明:(1)灌排比的概念简捷明了,体现了干旱区水利建设、灌溉农业的特点,可作为衡量干旱区绿洲灌区水盐运动状况的一个指标,同时亦是进行灌排管理、规划设计的科学依据。(2)临界灌排比与灌溉引水量、排水量、河水含盐浓度、排水含盐浓度等因素有关。渭干河、库车、沙雅、新和灌区临界灌排比分别为10.80,6.55,20.09,21.48。若没有特殊的地形地貌,干旱区绿洲灌区临界灌排比为21左右。(3)在干旱区进行水量平衡计算,制定灌溉制度以及进行灌溉排水管理时,应保证有一定量的深层渗漏,便于淋洗盐分,同时应完善排水系统,使灌区在小于临界灌排比下运行。%Based on the principle of salt equilibrium in irrigationdistricts, the salt e qu ilibrium of Weigan river irrigation district is analyzed by using measured data. The factors of affecting critical ratio of irrigation to drainage and the metho d of determining critical ratio of irrigation to drainage are also discussed pro foundly. The results show that: (1) The conception of the ratio of irrigation to drainage is brief, embodies the characteristics of water conservation construct ion and irrigation agriculture, which can be used as the criterion of estimating the dynamics of moisture-salt movement in plain oasis irrigation distract in arid area,and can also used as the scientific basis of management of irrigatio n and drainage ,planning and designing.(2)Critical ratio of irrigation to drainage is related to the irrigation water volume, drainage water volume ,salt content of irrigation water and drainage water and so on. The critical ratio of irrigati o n to drainage for Weigan

  5. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 24. Seismic Refraction Tomography for Volume Analysis of Saturated Alluvium in the Straight Creek Drainage and Its Confluence With Red River, Taos County, New Mexico

    Powers, Michael H.; Burton, Bethany L.


    As part of a research effort directed by the New Mexico Environment Department to determine pre-mining water quality of the Red River at a molybdenum mining site in northern New Mexico, we used seismic refraction tomography to create subsurface compressional-wave velocity images along six lines that crossed the Straight Creek drainage and three that crossed the valley of Red River. Field work was performed in June 2002 (lines 1-4) and September 2003 (lines 5-9). We interpreted the images to determine depths to the water table and to the top of bedrock. Depths to water and bedrock in boreholes near the lines correlate well with our interpretations based on seismic data. In general, the images suggest that the alluvium in this area has a trapezoidal cross section. Using a U.S. Geological Survey digital elevation model grid of surface elevations of this region and the interpreted elevations to water table and bedrock obtained from the seismic data, we generated new models of the shape of the buried bedrock surface and the water table through surface interpolation and extrapolation. Then, using elevation differences between the two grids, we calculated volumes of dry and wet alluvium in the two drainages. The Red River alluvium is about 51 percent saturated, whereas the much smaller volume of alluvium in the tributary Straight Creek is only about 18 percent saturated. When combined with average ground-water velocity values, the information we present can be used to determine discharge of Straight Creek into Red River relative to the total discharge of Red River moving past Straight Creek. This information will contribute to more accurate models of ground-water flow, which are needed to determine the pre-mining water quality in the Red River.

  6. Drainage area data for Alabama streams

    Stallings, J.S.; Peirce, L.B.


    The drainage area of a river basin is an important parameter in many engineering equations used for hydrologic design. It is not a parameter, however, that always requires precise measurement. Factors in the hydrologic cycle such as rainfall, runoff, transpiration, and infiltration cannot be measured nearly as closely as drainage area. Largely for this reason, drainage areas are often measured to varying degrees of precision depending upon the immediate need, with little thought to some other use or some other user of the figure obtained. It can readily be appreciated that this practice, continued for long by many different agencies, will result in a heterogeneous collection of drainage area figures, often discordant and of an accuracy unknown to any but those who computed them. Figures of drainage area published by various Federal agencies are frequently discrepant or contradictory, giving rise to confusion in the use of drainage area data. Seeking to better this situation, the Federal Inter-Agency River Basin Committee (FIARBC) in November 1951 published its Bulletin No. 4, Inter-Agency Coordination of Drainage Area Data. That Bulletin recommended procedures to be followed by the interested Federal agencies “for coordinating drainage area data in the interest of promoting uniformity, reducing confusion and contradiction of published figures, and improving the ready availability of drainage area data pertaining to drainage basins of the United States and its possessions.”

  7. Construction technology of soft foundation reinforcement with plastic drainage plates for Minjiang River flood dike%闽江防洪堤软土地基塑料排水板加固施工技术



    The author discussed the engineering geological conditions of Fuzhou section(1st-stage)of Minjiang River Flood Protection Project and the working principle of soft foundation treatment with plastic drainage plates. An introduction was made on the material of plastic drainage plate, the construction machine, technical program, monitoring method and construction quality control measures.%论述了闽江防洪工程福州段(一期)工程的工程地质情况及塑料排水板处理软土地基的工作原理。介绍了塑料排水板的材料、施工机械、工艺流程、监测方法和施工质量控制措施。

  8. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 1. Depth to Bedrock Determinations Using Shallow Seismic Data Acquired in the Straight Creek Drainage Near Red River, New Mexico

    Powers, Michael H.; Burton, Bethany L.


    In late May and early June of 2002, the U.S. Geological Survey (USGS) acquired four P-wave seismic profiles across the Straight Creek drainage near Red River, New Mexico. The data were acquired to support a larger effort to investigate baseline and pre-mining ground-water quality in the Red River basin (Nordstrom and others, 2002). For ground-water flow modeling, knowledge of the thickness of the valley fill material above the bedrock is required. When curved-ray refraction tomography was used with the seismic first arrival times, the resulting images of interval velocity versus depth clearly show a sharp velocity contrast where the bedrock interface is expected. The images show that the interpreted buried bedrock surface is neither smooth nor sharp, but it is clearly defined across the valley along the seismic line profiles. The bedrock models defined by the seismic refraction images are consistent with the well data.

  9. Study of the dynamics of drainage of {sup 137C}s present on the catchment basins of French rivers; Etude de la dynamique de drainage du {sup 137}Cs present sur les bassins versants des cours d'eau francais. Etat d'avancement

    Vray, F.; Debayle, Ch.; Metivier, J.M


    An operational model describing the drainage of radionuclides was selected from a bibliographical synthesis. This model supplies an expression of the dissolved flux in rivers according to the flow of the river and the activity deposited on the catchment basin. To adjust this model for {sup 137}Cs coming from the Chernobylsk accident and the main French rivers, series of data reporting the temporal evolution of the activity of {sup 137}Cs in the water are necessary.The difficulty inherent to the measure of this radionuclide in the water led to dread its activity through that, more easily measurable, sediments and water plants. Measures on these indicators, upstream to any release of industrial effluents, were notably realized since 1991 within the framework of the annual follow-up of French nuclear power plants. The model of drainage is thus adjusted essentially on these data within a multiplicative factor (this factor being K{sub d} or F{sub c}). This requires however some preliminary adaptations: K{sub d} being dependent on granulometry characteristics of the sediments samples, a standardization of their activity on granulometry criteria must be made. For the aquatic plants, it is necessary to look for their time of answer before being able to adjust the model. The obtained results, on plants as on sediments, indicate that for the big French rivers, the activity of {sup 137}Cs in aquatic environment decreases since 1987 with a period from 4 to 7 years. If the level of contamination of every river depends on the average contamination of the catchment basin (average deposit in Bq by m{sup 2}), it seems that this level is also influenced by the other parameters as the size of the catchment basin, even some characteristics of the drained soils. This part of the study remains to deepen. It joins the works led to the L.E.R.C.M. on the migration of radionuclides in soils. On the upstream part of the Rhone river, the aquatic plants indicate that the flow plays a role of

  10. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1...

  11. Experimental study on geotextile envelope for subsurface drainage in Yellow River Delta%黄河三角洲暗管排水土工布外包滤料的试验研究

    刘文龙; 罗纨; 贾忠华; 卜凡敏; 潘延鑫; 唐双成; 袁黄春; 李山


    In recent years, subsurface drainage has been greatly advocated in the Yellow River Delta area for salinity control and land reclamation. With the very uniform textured silty sand as major soils in the Yellow River Delta, and lacking of gravel envelope material, there is an urgent need to select proper synthetic envelope for subsurface drainage construction in the area. Proper selection of envelope materials is critical for a subsurface drainage system construction. Geotextile envelope has multiple advantages, including good water conductivity, retaining soil particles from clogging the drains, low cost and convenience for mechanical construction. Thus geotextile envelope is widely used in subsurface drainage system constructions throughout the world. In China, however, very few subsurface drainage projects used geotextiles as envelope materials for various reasons. Therefore, geotextile envelope may find its wide application in many poorly drained areas, such as the Yellow River Delta in China provided that proper selection criteria are met. Based on soil particle size analysis and theoretical calculations, this paper presents an experimental study on geotextile material used for subsurface drainage envelope in the Yellow River Delta, China. A testing permeameter was built on the basis of existing literature-Materials for subsurface drainage system (IDP 60). The selection criteria have three major factors, including thickness, permeability and O90. After analyzing the soil particle size distribution and measuring the saturated hydraulic conductivity (Ks) with the falling head method, we chose two types of geotextiles as the tested samples. One of these geo-textiles (Geotextile A) has a larger O90 than that in the criterion by IDP 60, while the other one (Geotextile B) meets the criterion. With these essential information, we conducted a series of experimental studies to evaluate the performance of geotextiles in filtration, permeability and anti-clogging. After

  12. Quaternary Reorganization of North American Mid-continent Drainage Systems

    Carson, E. C.; Rawling, J. E., III; Attig, J. W.; Bates, B. R.


    Identification of ancestral drainage systems in the North American mid-continent has been a topic of research and debate among geologists since the middle of the 19th Century. Over time our understanding of the significance of Quaternary glaciations in reshaping drainage patterns has grown. The ancestral Teays River, which drained large areas of the central Appalachians and flowed westward across Indiana and western Illinois, was dammed multiple times by Quaternary glaciers before finally being rerouted to the course of the modern central Ohio River. Similarly, the northward-flowing ancestral Pittsburgh River was dammed by pre-Illinoian glaciers; subsequent stream piracy converted this river system into the modern Allegheny, Monongahela and uppermost Ohio Rivers. Deposits and geomorphic features along the westward-flowing lower Wisconsin River indicate that the modern upper Mississippi River and Wisconsin River may have experienced a similar history of ice blockage, stream piracy, and radical rerouting. Coring into the Bridgeport strath terrace along the lower Wisconsin River reveals that the bedrock surface dips to the east, indicating the valley was cut by an eastward-flowing river. We believe the most likely scenario following this interpretation is that an ancestral river flowing along the modern upper Mississippi River valley made a sharp bend at Prairie du Chien, WI, and flowed eastward along the valley occupied by the modern lower Wisconsin River. This river, referred to here as the Wyalusing River, likely flowed northeastward into the Great Lakes (St. Lawrence) drainage until that path was blocked by ice advancing from the northwest. Subsequent stream piracy immediately south of the modern confluence of the Mississippi and Wisconsin Rivers rerouted these streams, converting them to the headwaters of the greater Mississippi drainage. The combined rerouting of these river systems into entirely different drainage basins necessitates significant fundamental

  13. Geomorphic indices of the river and drainage in Helan Mountain and its indication to tectonics%贺兰山水系流域数值地貌特征及其构造指示意义

    李宗盟; 高红山; 潘保田; 张忱; 刘芬良; 管东升


    基于Argis9.3与ASTER GDEM数据,提取了贺兰山两侧主要水系及其流域边界,根据河流及流域指标提取河流纵剖面、流域的Strahler曲线,并计算其面积高度积分值(Hypsometric Intergral)、河流纵剖面的凹度值(Concavity).通过HI值、凹度值同河流落差、河流长度、流域面积之间相关性分析发现,后3种地貌参数与HI值、凹度值间的相关性较差.对比分析贺兰山两侧河流HI值及凹度值发现:贺兰山东侧北段活动性大于南段,西侧构造活动性分布规律不明显.结合9条河流所处流域的Strahler曲线、河流纵剖面形态和HI值、凹度值分析发现:汝箕沟及其以北贺兰山地区处于地形演化的老年期,汝箕沟以南贺兰山段处于均衡调整的壮年期.%Watershed terrain and the relationship between drainage tectonic and erosion are one of the core content of geomorphology. The Helan Mountains area locates in the west edge of the Ordos, and it is a hinge area which links the western and eastern different geoteetonie units of the north of China. Research on river system and watershed area in the Helan Mountains can help us to construct in-depth understandling of river and landscape evolution in tectnnic movement active regions. Many authors have studied the characteristics of the tectonic and climate of the Helan Mountains, But For rivers, the especially quantitative analysis of river morphology is relatively rare. Hypsometric integral is a relief variable that is widely used to measure the degree ufuvial landscape erosion and describes the distribution of elevations across the drainage basin area. It is a powerful tool to tell apart the technically active and inactive areas. We choose hypsometric integral and stream profile concavity to study the tectonic activity and e-volution of the landforms in the Helan Mountains. The drainage network and drainage basins in the Helan Mountains and the hypsometric integral and concavity of the river

  14. Qingjiang River Developer


    THE 400-kilometer Qingjiang River, second tributary of the Yangtze River in Hubei Province, has a drainage area of 17,000 square kilometers. Its advantageous natural conditions have made it a key water power development project.


    GRAY, NICHOLAS FREDERICK; Sullivan, Monica


    This review examine the action of acid mine drainage (AMD), which is a multifactor pollutant, on surface waters. It affects aquatic ecosystems via a number of direct and indirect pathways. Major impact areas are coastal waters, rivers, lakes and estuaries, with AMD affecting ecosystems in different ways. Ground waters can also be severely impacted. Due to its complexity, the impact of AMD is particularly difficult to quantify and predict in lotic systems. Acid mine drainage pollut...

  16. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.


    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  17. The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: Evidence from lead isotopes in the Sacramento River, California

    Dunlap, C.E.; Alpers, C.N.; Bouse, R.; Taylor, H.E.; Unruh, D.M.; Flegal, A.R.


    Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immediately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-mining in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sacramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the 19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge associated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in the surface environment. ?? 2008 Elsevier Ltd.

  18. A geometria fractal da rede de drenagem da bacia hidrográfica do Caeté, Alfredo Wagner-SC Fractal geometry of the drainage network of the Caeté river watershed, Alfredo Wagner-SC

    Leandro Redin Vestena


    Full Text Available Os objetivos deste trabalho foram estimar e avaliar a dimensão fractal da rede de drenagem da bacia hidrográfica do Caeté, em Alfredo Wagner, SC, a partir de diferentes métodos, com o propósito de caracterizar as formas geomorfológicas irregulares. A rede de drenagem apresenta propriedades multifractais. As dimensões fractais para os segmentos individuais (df e para a rede de drenagem inteira (Df foram determinadas por métodos que se fundamentaram nas razões de Horton e pelo método da contagem de caixas (Box-Counting. A rede de drenagem tem característica de autoafinidade. A dimensão fractal proveniente da relação de parâmetros obtidos pelas Leis de Horton apresentou resultados dentro dos limiares da teoria da geometria fractal.The objective of the present work was to evaluate the fractal dimensions of the drainage network of the Caeté river watershed, Alfredo Wagner/SC, with different methods in order to characterize the irregular geomorphologic forms. The drainage network possesses multi-fractal properties. That is why the fractal dimensions for the individual segments (df and for the entire network (Df were evaluated with Horton's Laws and the Box-Counting method. The drainage network has self-affinity characteristics. The fractal dimension obtained through the parameters relationship of Horton's Laws showed the results within the thresholds of the fractal geometry theory.


    McCauley, John F.; Breed, Carlos S.; Schaber, Gerald G.; McHugh, William P.; Issawi, Bahay; Haynes, C. Vance; Grolier, Maurice J.; El Kilani, Ali


    A complex history of Cenozoic fluvial activity in the presently hyperarid eastern Sahara is inferred from Shuttle Imaging Radar (SIR) data and postflight field investigations in southwest Egypt and northwest Sudan. SIR images were coregistered with Landsat and existing maps as a guide to exploration of the buried paleodrainages (radar rivers) first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers: RR-1, RR-2, and RR-3. A generalized model of the radar rivers, based on field studies and regional geologic relations, shows apparent changes in river regimen since the large valleys were established during the late Paleogene-early Neogene eras. SIR-based mapping of these paleodrainages, although incomplete, reveals missing links in an area once thought to be devoid of master streams.

  20. Drainage-area boundaries for selected sampling stations, scale 1:100,000, Yellowstone River Basin, Montana, North Dakota, and Wyoming

    U.S. Geological Survey, Department of the Interior — As part of the U.S. Geological Survey's National Water-Quality Assessment Program, an investigation of the Yellowstone River Basin study unit is being conducted to...

  1. Drainage-area boundaries for selected sampling stations, scale 1:100,000, Yellowstone River Basin, Montana, North Dakota, and Wyoming

    U.S. Geological Survey, Department of the Interior — As part of the U.S. Geological Survey's National Water-Quality Assessment Program, an investigation of the Yellowstone River Basin study unit is being conducted to...

  2. A survey of the Population of Gambusia Affinis in a Part of Drainage Area of Suzhou River, Shanghai%苏州河部分流域食蚊鱼种群特征调查



    食蚊鱼(Gambusia affinis)是苏州河一期治理后于2001年7月河里出现的第一种鱼。2010年7~8月在苏州河流域设置五个采样点,对食蚊鱼样品进行种群特征的数据统计和分析,检测鱼体、胚胎和样点水质的重金属离子含量。结果表明,目前河水重金属离子没有对食蚊鱼的生存造成影响,同时发现,苏州河食蚊鱼个体普遍偏小,种群正在形成发展中,合适的水文环境也是关系到食蚊鱼能否生存繁衍的一个重要因素。%The Gambusia affinis was the kind of first fish discovered in the Suzhou in July 2001. Based on collection of the Gamubusia at five sample localities in a part of River after the first of governance drainage area along the fiver, The population charactr/stics including sex ratio, body length and weight and reproduction ability were measured and analyzed and heavy metals in river water and fish body were anlyzed. The results showed that the heave metals in the river water did not affect to the Gambusia growth. The bodies of Gambusia in the fiver were smaller than that of the normal fish and the population of the Gambusia was developing. A suitable hydrology environments was vary important for development of the Gambusia population in the Suzhou River.

  3. Detrital Geochemical Fingerprints Of Rivers Along The Yalu Suture Zone In Tibet: Implications For Drainage Evolution, Timing Of Arc Development And Erosion

    Hassim, M. B.; Carrapa, B.; Gehrels, G. E.; Cosca, M. A.; Kapp, P. A.


    The Yalu suture zone between India and Asia comprises today a central depression occupied by the Yulu River, flanked to the north and to the south by high-elevation ranges. Rivers along the suture zone are derived from such ranges and drain into the Yulu River, which in turns drains eastward. Modern sands from these rivers provide an opportunity to broadly sample rocks present within the suture zone and study their regional geochemical fingerprints and tectono-erosional implications. Seven sand samples from rivers along the suture zone in Tibet between Xigatze to the east and Mt. Kailas to the west were collected for detrital zircon U-Pb geochronological analyses, white mica 40Ar/39Ar and apatite fission track thermochronology. Zircon U-Pb ages for all rivers range between 15 and 3568 Ma. Rivers draining the northern side of the suture zone mainly yield ages between 40 and 60 Ma, similar to the age of the Gangdese arc. Samples draining the southern side of the suture zone record a Tethyan signal characterized by age clusters at 500 Ma and 1050 Ma. Samples collected from the western rivers yield zircon ages that are younger compared to those from the east; with ages predominantly <100 Ma. U-Pb zircon ages indicate that ~85% of the zircon are younger than 100 Ma in the farthest west side of the river samples (near Mt. Kailas) whereas only ~5% of zircons are younger than 100 Ma in the farthest east side of the river samples (near Xigatze). A more detailed analysis of the youngest zircon U-Pb age components reveal strong signals between 30 Ma and 100 Ma with significant peaks at 47 - 50 Ma and at 37 - 40 Ma, 57 - 63 Ma and 94 - 97 Ma, recording the activity of the magmatic arc along strike. Further analysis of the young age components (below 100 Ma) suggest a trend in age along the suture zone, with younging direction towards the west - and probably younging northward. However, the variation in ages is small. Our U-Pb detrital zircon ages are overall in agreement with

  4. The effects of drainage basin geomorphometry on minimum low flow discharge: the study of small watershed in Kelang River Valley in Peninsular Malaysia


    This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbeddrainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia.The drainage basins selected were third-orderbasins so as to facilitate a common base for sampling and performing an unbiased statistical analyses.Three levels of relationships were observedin the study.Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly,individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set upshowed that minimum flow discharge( Q min) was dependent of basin area(AU), stream length( LS ), maximum relief( Hmax), average relief(HAV) and stream frequency (SF).These findings further enforced other studies of this nature that drainage basins were dynamic andfunctional entities whose operations were governed by complex interrelationships occurring within the basins.Changes to any of thegeomorphometric properties would influence their role as basin regulators thus influencing a change in basin response.In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow.A shorter timeperiod would mean higher discharge, which is generally considered the prerequisite to flooding.This research also conclude that the role ofgeomorphometric properties to control the water supply within the stream through out the year even though during the drought and lessprecipitations months.Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the watersupply as well as the habitat within the areas.

  5. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.


    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  6. Historic and Current Distributions of River Otters (Lontra canadensis and (Lontra longicaudis in the Río Grande or Río Bravo del Norte Drainage of Colorado and New Mexico, USA and of Chihuahua, Mexico and Adjacent Areas

    Paul Polechla


    Full Text Available The Río Grande drainage is an important and imperiled wetland of the US/Mexican border arid lands. There is a desire to restore otter populations in this river by interested parties. In order to follow IUCN guidelines for restoration, biologists need learn more fully the situation prior to implementation of restoration management. A prerequisite for proper restoration conservation is to know the organism’s taxonomy (i.e., what taxa or species and subspecies one is dealing with, distribution, and relative abundance. The historic and current distribution of the Nearctic otter (Lontra canadensis and Neotropical otter (L. longicaudis in the borderlands of US and Mexico are reviewed in this paper. The evidence indicates that otters were native to the Río Grande valley and has been recorded in the languages and customs of Native Americans such as the Pueblo people prior to European settlement of the area. The first Spanish documents we were able to find whereby otters were recorded, date to the middle 16th century. Otters during historical times were probably more numerous than previously thought and one of the first wildlife laws in the borderlands revolved around a moratorium on trapping the otter and beaver. Presently, populations of otters occur in 1 the Río San Pedro of Chihuahua, a tributary of the Río Conchos entering the Río Grande from the southeast, 2 the upper Río Grande near the Colorado/New Mexico border, and 3 the middle Pecos River in southeastern New Mexico entering the Río Grande from the west. These observations are corroborated by multiple observations by competent observers and in the case of the first population, otter photos and sign. These populations are centered on areas with macro-habitats characterized by a river flowing through 1 deep canyons, or 2 ancillary wetlands. Considerable more detailed survey work is needed to determine the full extent of the distribution of otters in the Río Grande drainage. A genetic

  7. [Little Dry Creek Drainage

    US Fish and Wildlife Service, Department of the Interior — Map of the drainage boundary, direction of flow, canals and ditches, and streets for the drainage study plan and profile for Little Dry Creek sub area in the North...

  8. Percutaneous Abscess Drainage

    ... Physician Resources Professions Site Index A-Z Percutaneous Abscess Drainage An abscess is an infected fluid collection ... are the benefits vs. risks? What is Percutaneous Abscess Drainage? An abscess is an infected fluid collection ...

  9. Fall 1979 moose surveys, Sheenjek, Old Woman, Coleen drainages

    US Fish and Wildlife Service, Department of the Interior — Summary of fall moose population statistics for the upper Sheenjek River drainage (including all tributaries upstream of Lobo Lake) and of Old Woman Creek. William...

  10. Transient drainage summary report



    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  11. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    Gilchrist, Sivajini; Gates, Alexander; Szabo, Zoltan; Lamothe, Paul J.


    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4·7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  12. The Geochemistry of Acid Mine Drainage

    Blowes, D. W.; Ptacek, C. J.; Jambor, J. L.; Weisener, C. G.


    Mine wastes are the largest volume of materials handled in the world (ICOLD, 1996). The generation of acidic drainage and the release of water containing high concentrations of dissolved metals from these wastes is an environmental problem of international scale. Acidic drainage is caused by the oxidation of sulfide minerals exposed to atmospheric oxygen. Although acid drainage is commonly associated with the extraction and processing of sulfide-bearing metalliferous ore deposits and sulfide-rich coal, acidic drainage can occur wherever sulfide minerals are excavated and exposed to atmospheric oxygen. Engineering projects, including road construction, airport development, and foundation excavation are examples of civil projects that have resulted in the generation of acidic drainage. On United States Forest Service Lands there are (2-5)×104 mines releasing acidic drainage (USDA, 1993). Kleinmann et al. (1991) estimated that more than 6,400 km of rivers and streams in the eastern United States have been adversely affected by mine-drainage water. About (0.8-1.6)×104 km of streams have been affected by metal mining in the western United States. The annual worldwide production of mine wastes exceeded 4.5 Gt in 1982 (ICOLD, 1996). Estimated costs for remediating mine wastes internationally total in the tens of billions of dollars ( Feasby et al.,1991).

  13. The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin

    Hoorn, Carina; Bogotá-A, Giovanni R.; Romero-Baez, Millerlandy; Lammertsma, Emmy I.; Flantua, Suzette G. A.; Dantas, Elton L.; Dino, Rodolfo; do Carmo, Dermeval A.; Chemale, Farid


    The Amazon submarine fan is a large sediment apron situated offshore Pará (Brazil) and represents the most distal extent of the Amazon River. The age of onset of this transcontinental river remains debated, yet is of great importance for understanding biotic evolutionary processes on land and at sea. Here we present new geochemical and palynological data from a borehole drilled at the continental slope and dated based on nannofossil biostratigraphy. We found that sediments of mixed source (craton and adjacent) occur at least from the late Oligocene (NP25) to late Miocene (NN9), and that the earliest Andes-derived sediments occur in NN10 (late Miocene). Our geochemical record indicates an onset of the transcontinental Amazon River between 9.4 and 9 Ma, which postdates the regional unconformity by 1 to 1.5 My. The shift in sediment geochemistry is more gradually replicated in the palynological record by a change from coastal plain and tropical lowland taxa to a mixture of tropical lowland, and montane forest to open Andean taxa. In particular, the appearance of taxa such as Jamesonia and Huperzia, followed by Valeriana, Polylepis-Acaena, Lysipomia and Plantago (with a current altitudinal range from 3200 to 4000 m) suggests the development of open, treeless, vegetation between 9.5 and 5.4 Ma, and highlight the presence of a high Andes in the late Miocene hinterland. Poaceae progressively increased from 9 Ma, with a notable rise from 4 Ma onwards, and percentages well above post-glacial and modern values, particularly between 2.6 and 0.8 Ma. We hypothesize that the rise of the grasses is a basin-wide phenomenon, but that the Plio-Pleistocene expansion of open, treeless vegetation on the Andean slopes and foothills are the main contributor. This rise in grasses was likely caused by climatic fluctuations, and subsequent changes in relief and erosion rates. We conclude that the onset of the Amazon River is coupled with Neogene Andean tectonism and that subsequent

  14. Geology and ground-water resources of the lower Little Bighorn River Valley, Big Horn County, Montana, with special reference to the drainage of waterlogged lands, with a section on chemical quality of the water

    Moulder, E.A.; Klug, M.F.; Morris, D.A.; Swenson, F.A.; Krieger, R.A.


    The lower Little Bighorn River valley, Montana, is in the unglaciated part of the Missouri Plateau section of the Great Plains physiographic province. The river and its principal tributaries rise in the Bighorn Mountains, and the confluence of this northward-flowing stream with the Bighorn River is near the east edge of Hardin, Mont. The normal annual precipitation ranges from about 12 inches in the northern part of the area to 15 inches in the southern part. The economy of the area is founded principally on farming, much of the low-lying land adjacent to the river being irrigated. The irrigated land is within the Crow Indian Reservation, although a part is privately owned. The bedrock formations exposed in the area are of Cretaceous age and include the Parkman sandstone, Claggett shale, Eagle sandstone, Telegraph Creek shale, and Cody shale. The Cloverly formation, Tensleep sandstone, and Madison limestone, which underlie but are not exposed in the area, and the Parkman sandstone in the southern half of the area appear to be the principal bedrock aquifers. All except the Parkman lie at depths ranging from a few feet to several thousand feet, and all appear to be capable of yielding water in commercial quantities. Some of the other formations arc capable of yielding enough water for domestic and stock needs. The river alluvium of Recent age and the Pleistocene terrace deposits are the principal unconsolidated formations in the area with respect to water supply and drainage. Wells yielding as much as 100 gallons per minute may be developed in favorable areas. Pumping tests reveal that the transmissibility of the coarser unconsolidated materials probably ranges from about 15,000 to 30,000 gallons per day per foot. Two tests of the Parkman sandstone showed transmissibilities of 6,000 and 20,000 gallons per day per foot. Although a test of the Cloverly formation showed a transmissibility of only 3,000 gallons per day per foot, the high artesian pressure--80 pounds per

  15. Assessing the effect of natural controls and land use change on sediment yield in a major Andean River: the Magdalena drainage basin, Colombia.

    Restrepo, Juan Darío; Syvitski, James P M


    The Magdalena River, a major fluvial system draining most of the Colombian Andes, is a world-class river, in the top 10 in terms of sediment load (approximately 150 MT/yr). In this study, we explore the major natural factors and anthropogenic influences behind the patterns in sediment yield on the Magdalena basin and reconstruct the spatial and temporal pattern of deforestation and agricultural intensification across the basin to test the relationships between land use change and trends in sediment yield. Our results show that sediment yield for the whole Magdalena catchment can be explained by natural variables, including runoff and maximum water discharge. These two estimators explain 58% of variance in sediment yield. Temporal analyses of sediment discharges and land use show that the extent of erosion within the catchment has increased over the last 10 to 20 years. Many anthropogenic influences, including a forest decrease by 40% in a 20-year period, an agriculture and pasture increase by 65%, poor soil conservation and mining practices, and increasing rates of urbanization, may have accounted for the overall increasing trends in sediment yield on a regional scale.

  16. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.


    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in

  17. Geothermal investigations in Idaho. Part 12. Stable isotopic evaluation of thermal water occurrences in the Weiser and Little Salmon River drainage basins and adjacent areas, west-central Idaho with attendant gravity and magnetic data on the Weiser area

    Mitchell, J.C.; Bideganeta, K.; Palmer, M.A.


    Fifteen thermal springs, two thermal wells, and eight cold springs in the Weiser and Little Salmon river drainages were sampled for deuterium and oxygen-18 analysis during the fall of 1981. The straight-line fit of delta D and delta /sup 18/O versus latitude and longitude observed in the data is what would be expected if the recharge areas for the thermal and non-thermal waters were in close proximity to their respective discharge points. The discrete values of delta D and delta /sup 18/O for each thermal discharge suggest that none of the sampled thermal systems have common sources. The depleted deuterium and oxygen-18 contents of most thermal relative to non-thermal waters sampled suggests that the thermal waters might be Pleistocene age precipitation. The isotopic data suggest little or no evidence for mixing of thermal and non-thermal water for the sampled discharges. Thermal waters from Weiser, Crane Creek, Cove Creek, and White Licks hot springs show enrichment in oxygen-18 suggesting that these waters have been at elevated temperatures relative to other sampled thermal discharges in the area. Gravity and magnetic data gathered by the Idaho State University Geology Department in the Weiser Hot Springs area suggest that southeastward plunging synclinal-anticlinal couples, which underlie the hot springs, are cut south of the springs by a northeast trending boundary fault.

  18. Topological Analysis of Urban Drainage Networks

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan; Rao, Suresh


    Urban drainage networks are an essential component of infrastructure, and comprise the aggregation of underground pipe networks carrying storm water and domestic waste water for eventual discharge to natural stream networks. Growing urbanization has contributed to rapid expansion of sewer networks, vastly increasing their complexity and scale. Importance of sewer networks has been well studied from an engineering perspective, including resilient management, optimal design, and malfunctioning impact. Yet, analysis of the urban drainage networks using complex networks approach are lacking. Urban drainage networks consist of manholes and conduits, which correspond to nodes and edges, analogous to junctions and streams in river networks. Converging water flows in these two networks are driven by elevation gradient. In this sense, engineered urban drainage networks share several attributes of flows in river networks. These similarities between the two directed, converging flow networks serve the basis for us to hypothesize that the functional topology of sewer networks, like river networks, is scale-invariant. We analyzed the exceedance probability distribution of upstream area for practical sewer networks in South Korea. We found that the exceedance probability distributions of upstream area follow power-law, implying that the sewer networks exhibit topological self-similarity. The power-law exponents for the sewer networks were similar, and within the range reported from analysis of natural river networks. Thus, in line with our hypothesis, these results suggest that engineered urban drainage networks share functional topological attributes regardless of their structural dissimilarity or different underlying network evolution processes (natural vs. engineered). Implications of these findings for optimal design of sewer networks and for modeling sewer flows will be discussed.

  19. Temperature, vegetation and precipitation variability in the Nile River drainage during the past 27,000 years: Insights from molecular and isotopic proxies

    Castañeda, Isla; Schouten, Stefan; Pätzold, Jürgen; Schefuß, Enno


    The paleoclimate history of the Eastern Mediterranean (EM) region is of much interest due to its long history of human occupation. To date, much of our knowledge of past climate in the EM region comes from marine sedimentary records. These indicate that since the Last Glacial Maximum, major and sometimes abrupt sea surface temperature (SST) fluctuations occurred in response to global climate events including the Younger Dryas (YD), the Bølling-Allerød, and Heinrich Event 1 (H1). In comparison, less is known regarding continental paleoclimate conditions in this region due to a scarcity of well-dated continuous climate archives, particularly from Saharan North Africa. Here, we present new reconstructions of continental precipitation (plant leaf wax δD), C3 vs. C4 vegetation (plant leaf wax δ13C) and soil temperature (MBT/CBT paleothermometer) in the Nile River catchment in conjunction with previously published U37k' and TEX86SST reconstructions from the EM Sea. Our multiproxy records indicate that relative to the present, the LGM was characterized by arid conditions with cooler SST and soil temperatures in the catchment. The H1 event stands out as a major excursion in nearly all proxies and is characterized by an abrupt decrease in SST and the most arid conditions of the past 27,000 years. The African Humid Period (AHP) of the early Holocene is the wettest interval of the entire record and is observed from ~10,000 to 5,500 cal BP, with maximum wet conditions noted at ~8,000 cal BP. Interestingly, a rather abrupt cooling is noted in the MBT/CBT record at ~5.5 cal kyr, coinciding with the end of the AHP off west Africa; however, the transition out of the AHP is more gradual in the δD record. Overall both the continental and marine climate records indicate millennial scale climate variability. Our records also shed light on shifting sources of organic matter in response to the sequential cessation and re-initiation of different tributaries to the main flow of the

  20. Foam consolidation and drainage.

    Jun, S; Pelot, D D; Yarin, A L


    A theoretical model of foam as a consolidating continuum is proposed. The general model is applied to foam in a gravity settler. It is predicted that liquid drainage from foam in a gravity settler begins with a slow drainage stage. Next, a stage with faster drainage occurs where the drainage rate doubles compared to the initial stage. The experiments conducted within the framework of this work confirmed the theoretical predictions and allowed measurements of foam characteristics. Foams of three different concentrations of Pantene Pro-V Classic Care Solutions shampoo were studied, as well as the addition of polyethylene oxide (PEO) in one case. The shampoo's main foaming components are sodium lauryl sulfate and sodium laureth sulfate. It is shown to what extent foam drainage is slowed down by using higher shampoo concentrations and how it is further decreased by adding polymer (PEO).

  1. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Inmachuk, Kugruk, Kiwalik, and Koyuk River drainages, Granite Mountain, and the northern Darby Mountains, Bendeleben, Candle, Kotzebue, and Solomon quadrangles, Alaska

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.


    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract

  2. Agricultural Drainage Well Intakes

    Iowa State University GIS Support and Research Facility — Locations of surface intakes for registered agriculture drainage wells according to the database maintained by IDALS. Surface intakes were located from their...

  3. Surface Water & Surface Drainage

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  4. Airport Pavement Drainage


    drainage layer and trench drains can be found in Cedergren (10). 4.2 COMPONENTS OF SUBSURFACE DRAINAGE SYSTEM 4.2.1 Outflow Once the water has found...According to Cedergren (10) the open graded aggregate can replace the normally used dense graded materials on an inch-for-inch basis. A main problem in...the perforated pipe to prevent fines from entering, Figure 4.24 (11). Cedergren (10) suggests that collector pipes should be 42 laid with the

  5. Change of the Surface Soil in the Ohno River Drainage and its Impact on the Detrital Composition of the Sediments in the Beppu Bay, the Southwestern Japan, during the Holocene

    Irino, T.; Yamamoto, M.; Ikehara, K.; Kuwae, M.; Takemura, K.


    Detrtal fraction contained in marine sediments can be generally used as climate proxies because variations in provenance and mineralogy could be affected by the precipitation distribution and weathering intensity. Change in the surface soil composition could be observed if a well-preserved depositional soil sequence was found. In order to detect the change in provenances and interpret the terrestrial environment using detrital proxies in the marine sediments, it is necessary to know the variability or range of the mineral composition of a particular provenance during the targeted time periods. The Ohno River is located in the northeast Kyushu Island, the southwestern Japan, which has the head water region at the Mt. Kuju and Mt. Aso, flows eastward combining some tributaries from the south, and then flows northward to the Beppu Bay. Surface geology of the drainage area is roughly divided into two as andosol in the northeast and brown forest soil in the south. Such contrasting detrital provenances could provide a variety of grain composition to the marine sediments deposited in the Beppu Bay. The No. 5 boring core was drilled at a landfill site on the mouth of the Ono River. The core continuously recovers 97 m length and consists of Holocene marine sediments which could be a good record of the terrestrial environment of hinterland (the Ohno River Basin). We also found a soil sequence on the foot of the Mt. Kuju at 850 m altitude, which covers the similar time interval as the No.5. The soil sequence consists of brown loam overlain by the alternation of tephra and andosol. We tried to compare the variations in mineral compositions both for this soil sequence and the No.5 core since about 8,000 yrs age. The No. 5 core mainly consists of smectite, illite, chlorite (or kaolinite), amphiboles, quartz, feldspars, and amorphous materials with minor calcite. Amorphous material is supposed to mainly consists biogenic opal. Amorphous material is higher during 7000 to 3500 yrs

  6. Application of digital elevation model in delineating drainage networks

    SUN Yan-ling; XIE De-ti; LIU Hong-bin; WEI Chao-fu


    A practical method to extract drainage network from DEM (digital elevation model) is introduced. DEM pretreatment includes depression and flat areas treatment. The flow direction of each grid cell in DEM is calculated according to the 8-direction pour point model, and then the flow accumulation grid from the flow direction grid. With the flow accumulation grid, streams are defined according to the given threshold value of flow accumulation. Taking Gufo River watershed as an example, the extraction of drainage network was done from DEM. The results are basically consistent with the digitized drainage network from the relief maps.

  7. River

    Morel Mathieu


    Full Text Available The OECD report “Boosting Resilience through Innovative Risk Governance” examines the efforts of OECD countries to prevent or reduce future disaster impacts, and highlights several key areas where improvements can be made. International collaboration is insufficiently utilised to address shocks that have increasingly global consequences. Institutional design plays a significant role in facilitating or hampering the engagement and investments of governmental and non-governmental stakeholders in disaster risk prevention and mitigation. To inform the design of “better” institutions, the OECD proposes the application of a diagnostic framework that helps governments identify institutional shortcomings and take actions to improve them. The goal of the case study on the Rhone River is to conduct an analysis of the progress, achievements and existing challenges in designing and implementing disaster risk reduction strategies through the Rhone Plan from a comparative perspective across a set of selected countries of this study, like Austria and Switzerland, will inform how to improve institutional frameworks governing risk prevention and mitigation. The case study will be used to identify examples of successful practice taking into account their specific country contexts, and analyse their potential for policy transfer.

  8. 格尔木河流域面积-高程积分值的地貌学分析%Geomorphologic Analysis of the Golmud River Drainage Basin Based on Hypsometric Integral Value

    张敬春; 李川川; 张梅; 刘耕年


    The interaction between tectonics and climate on landform has sparked much interest over years. The hypsometric integral (HI) value could reflect both tectonic activity and climate change, and might be a promising tool that links those two aspects. Based on SRTM - DEM data, this paper withdraws the measuring indicators of the landform and hypsometric integral from the third order basins and some of the second order basins in the Golmud river drainage basin using GIS spatial analysis, discusses the area and space dependence for hypsometric integral, and presents its significance in indicating tectonics, lithology and the degree of glacial erosion. The results show: the HI value depends on area and space; the southern fault of east Kunlun (F4) - Xidatan ( F3 ) fault can be divided into two parts, the east and the west, by the Kunlun Pass; both of them show similar scenario that the activity decrease from the center to the sides; there is no apparent change in the activity of the central fault of east Kunlun (Fl); intrusive rock shows greatest erosion-resistance while schist shows least and carbonate rocks shows modest, respectively; glacial processes could rework the landform and change the degree of erosion; the drainage basin with modern glacier and/or with extensively distributed palco-glacier is of higher HI value and develops U -shaped valley, compared to those without or with limited paleo-glacier.%在sRTM-DEM数据的基础上,运用GIS空间分析技术,系统提取了格尔木河三级流域及部分二级流域地形参数和面积-高程积分值,探讨了面积-高程积分值的面积及空间依赖性,并对面积-高程积分值(HI)对构造活动性、岩性变化、冰川作用强度的指示意义进行了研究.研究表明:HI值具有面积依赖及空间依赖性;东昆南断裂(F4)-西大滩断裂(F3)以昆仑山口为界可以分为东西两部分,各自的活动性都是中间强往两边依次减小,东昆中断裂(F1)的活动性变化不

  9. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods.

    Søndergaard, Jens; Tamstorf, Mikkel; Elberling, Bo; Larsen, Martin M; Mylius, Maria Rask; Lund, Magnus; Abermann, Jakob; Rigét, Frank


    Riverine mercury (Hg) export dynamics from the Zackenberg River Basin (ZRB) in Northeast Greenland were studied for the period 2009-2013. Dissolved and sediment-bound Hg was measured regularly in the Zackenberg River throughout the periods with running water (June-October) and coupled to water discharge measurements. Also, a few samples of snow, soil, and permafrost were analysed for Hg. Mean concentrations of dissolved and sediment-bound Hg in the river water (±SD) were 0.39 ± 0.13 and 5.5 ± 1.4 ngL(-1), respectively, and mean concentrations of Hg in the river sediment were 0.033 ± 0.025 mg kg(-1). Temporal variations in river Hg were mainly associated with snowmelt, sudden erosion events, and outburst floods from a glacier-dammed lake in the upper part of the ZRB. Annual Hg exports from the 514 km(2) ZRB varied from 0.71 to >1.57 kg and the majority (86-96%) was associated with sediment-bound Hg. Hg yields from the ZRB varied from 1.4-3.1 gH gk m(-2)yr(-1) and were among the highest yields reported from Arctic river basins. River exports of Hg from ZRB were found to be largely controlled by the frequency, magnitude and timing of the glacial lake outburst floods, which occurred in four of the five years in July-August. Floods accounted for 5 to >10% of the annual water discharge, and up to >31% of the annual Hg export. Also, the winter snowfall and the summer temperatures were found to be important indirect controls on the annual Hg export. The occurrence and timing of glacial lake outburst floods in the ZRB in late summer at the time of maximum soil thaw depth, the location of the glacier in the upper ZRB, and increased thawing of the permafrost in Zackenberg in recent years leading to destabilisation of river banks are considered central factors explaining the high fraction of flood-controlled Hg export in this area.

  10. Impact of land drainage on peatland hydrology.

    Holden, J; Evans, M G; Burt, T P; Horton, M


    There is a long history of drainage of blanket peat but few studies of the long-term hydrological impact of drainage. This paper aims to test differences in runoff production processes between intact and drained blanket peat catchments and determine whether there have been any long-term changes in stream flow since drainage occurred. Hillslope runoff processes and stream discharge were measured in four blanket peat catchments. Two catchments were drained with open-cut ditches in the 1950s. Ditching originally resulted in shorter lag times and flashier storm hydrographs but no change in the annual catchment runoff efficiency. In the period between 2002 and 2004, the hydrographs in the drained catchments, while still flashy, were less sensitive to rainfall than in the 1950s and the runoff efficiency had significantly increased. Drains resulted in a distinctive spatial pattern of runoff production across the slopes. Overland flow was significantly lower in the drained catchments where throughflow was more dominant. In the intact peatlands, matrix throughflow produced by peat layers below 10 cm was rare and produced structure could explain the long-term changes in river flow, which are in addition to those occurring in the immediate aftermath of peatland drainage.

  11. Wound Drainage Culture (For Parents)

    ... to Be Smart About Social Media Wound Drainage Culture KidsHealth > For Parents > Wound Drainage Culture Print A A A What's in this article? ... Have Questions What It Is A wound drainage culture is a test to detect germs such as ...

  12. Suspended sediment in a high-Arctic river: An appraisal of flux estimation methods.

    Ladegaard-Pedersen, Pernille; Sigsgaard, Charlotte; Kroon, Aart; Abermann, Jakob; Skov, Kirstine; Elberling, Bo


    Quantifying fluxes of water, sediment and dissolved compounds through Arctic rivers is important for linking the glacial, terrestrial and marine ecosystems and to quantify the impact of a warming climate. The quantification of fluxes is not trivial. This study uses a 8-years data set (2005-2012) of daily measurements from the high-Artic Zackenberg River in Northeast Greenland to estimate annual suspended sediment fluxes based on four commonly used methods: M1) is the discharge weighted mean and uses direct measurements, while M2-M4) are one uncorrected and two bias corrected rating curves extrapolating a continuous concentration trace from measured values. All methods are tested on complete and reduced datasets. The average annual runoff in the period 2005-2012 was 190±25mio·m(3)y(-1). The different estimation methods gave a range of average annual suspended sediment fluxes between 43,000±10,000ty(-1) and 61,000±16,000ty(-1). Extreme events with high discharges had a mean duration of 1day. The average suspended sediment flux during extreme events was 17,000±5000ty(-1), which constitutes a year-to-year variation of 20-37% of the total annual flux. The most accurate sampling strategy was bi-daily sampling together with a sampling frequency of 2h during extreme events. The most consistent estimation method was an uncorrected rating curve of bi-daily measurements (M2), combined with a linear interpolation of extreme event fluxes. Sampling can be reduced to every fourth day, with both method-agreements and accuracies agreements were Arctic Zackenberg River, unless sampling was done bi-daily, every day and events sampled high-frequently.

  13. Soil nutrient distribution and its relations with topography in Huangshui River drainage baSin%黄水河小流域土壤养分分布及其与地形的关系

    宋轩; 李立东; 寇长林; 陈杰


    By using GIS and geostatistic techniques, this paper studied the spatial distribution patterns of soil nutrients and their relationships with topographic factors in Huangshui River drainage basin, a water source of Danjiangkou Reservoir. In the study area, the soil total nitrogen, total phosphorus, and organic matter varied spatially at medium level, with the variation coefficients being 51% , 66% , and 85% , respectively, whereas the soil available phosphorus displayed a strong spatial variation, with the variation coefficient reached 161%. The soil total nitrogen and organic matter exhibited a spatially positive autocorrelation, while the soil total and available phosphorus presented a spatially weak autocorrelation. Altitude was one of the main topographic factors affecting the spatial distribution patterns of the soil nutrients, having significant effects on the spatial distribution of total nitrogen, total phosphorus, and organic matter. Slope and profile curvature also had significant effects on the spatial distribution of the soil total nitrogen and organic matter. Based on these, the regression prediction models of topographic factors and soil nutrient spatial distribution were established, and the digital mappings of the soil nutrients were made, which provided data support for the precise management of soil resources in the study area.%基于GIS和地统计学原理,对丹江口水库水源区黄水河小流域土壤养分空间分布及其与地形因子间的关系进行分析.结果表明:研究区土壤全氮、全磷、有机质的变异系数分别为51%、66%和85%,为中等变异,土壤速效磷的变异系数为161%,属强变异;土壤全氮和有机质表现为显著正向空间自相关,速效磷和全磷的空间自相关性较弱;海拔是影响该区土壤养分分布的主要因素,其对全氮、全磷和有机质都具有极显著影响,坡度和剖面曲率显著影响全氮和有机质分布.建立了地形因子与土壤

  14. Predicting tile drainage discharge

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes;

    of the water load coming from the tile drainage system is therefore essential. This work aims at predicting tile drainage discharge using dynamic as well as a statistical predictive models. A large dataset of historical tile drain discharge data, daily discharge values as well as yearly average values were......More than 50 % of Danish agricultural areas are expected to be artificial tile drained. Transport of water and nutrients through the tile drain system to the aquatic environment is expected to be significant. For different mitigation strategies such as constructed wetlands an exact knowledge...... used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...

  15. Acid mine drainage

    Bigham, Jerry M.; Cravotta, Charles A.


    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  16. Archaeological Survey and Site Testing in Sloughing Easement Areas along the Sac River Downstream from Stockton Dam, Missouri.


    lower Pomme de Terre River Valley by McMillan (1976a). Post oak, white oak, and black oak were found to be the most abundant tree species; but...lists for the lower Pomme de Terre River Valley along with the habitat preferences of each species. Similar species were probably present in the...research has been carried out in the lover Sac River drainage, the Pomme de Terre River drainage, and the Osage River drainage. Most of this work

  17. The impact of thermal energy and materials derived from the hot spring drainage on the fish community near the estuary

    Yamada, M.; Shoji, J.; Mishima, T.; Honda, H.; Fujii, M.; Ohsawa, S.; Taniguchi, M.


    Beppu is a region with many hot springs in Japan. Some of environmental studies of the rivers in this region (e.g. Kawano et al., 1998, Ohsawa et al., 2008) show that hot spring drainage flows into a river and then flow into the coastal are, and it strongly affects the river water quality. On the other hands, several kinds of tropical fish lives in those rivers (Hiramatu et al., 1995). We can easily have watched those fish there. Although the relationship between hot spring drainage and the fish community had not been investigated in the past in this area, it is easily assumed that thermal energy and materials derived from the hot spring drainage strongly affect the ecosystem. However, the impact of the hot spring drainage on the ecosystem in river and coastal area is not clear. We investigated the river water quality and physical property of six rivers in this region. Additionally, we investigated the fish community near the estuary at two rivers which are strongly affected by the hot spring drainage and not the influence of the hot spring at all. We tried an evaluation about the influence of thermal energy and materials derived from the hot spring drainage on the fish community near the estuary.The results of chemical and physical data in these rivers are as follows. The size of influence of hot spring drainage on river is different every river. In this region, Hirata River is most strongly affected by the hot spring drainage. The water temperature of Hirata River maintains 25 degrees Celsius or more through the year and the concentrations of dissolved component is very high. On the other hand, the water temperature and the concentrations of dissolved component of Hiya Rive is low. These data are similar to data of the upper side of Hirata River. The results of investigating the fish community indicate that Oreochromis niloticus and Rhinogobius giurinus is the dominant species at Hirata River and Hiya River respectively. In addition, there is more the number of

  18. Special report of Horsefeldt-White River patrol

    US Fish and Wildlife Service, Department of the Interior — This report covers a patrol made by horseback and pack train from the headwaters of the copper River across the upper drainage to the Tanana River and terminating on...

  19. Thresholds of geographic environmental elements in sediment yield of drainage basins

    CHEN; Hao; ZHOU; Jinxing; CAI; Qiangguo; LU; Zhongchen; LI


    Threshold of environmental elements in drainage basin sediment yield refers to, under effect of climate, underlying surface and human activity, a turning point of abrupt changes in drainage sediment yield related to environmental element characteristics. Previous studies on threshold of sediment yield of relevant drainage basins were mainly concentrated on impact of natural zones with a few researches on impact of other environmental elements. Particularly studies on compound environmental element threshold in drainage basin sediment yield remain blank today. Studies indicate that sediment yield in drainage basins is affected by compound interactions and complex actions. Based on single element analysis, the present paper gives quantitatively compound threshold of environmental elements affecting sediment yield of the drainage basin between Hekouzhen and Tongguan in the middle Yellow River by the method of multi-variant, polynomial formula regression analysis.

  20. Sustainable Drainage Systems

    Miklas Scholz


    Full Text Available Urban water management has somewhat changed since the publication of The Sustainable Drainage System (SuDS Manual in 2007 [1], transforming from building traditional sewers to implementing SuDS, which are part of the best management practice techniques used in the USA and seen as contributing to water-sensitive urban design in Australia. Most SuDS, such as infiltration trenches, swales, green roofs, ponds, and wetlands, address water quality and quantity challenges, and enhance the local biodiversity while also being acceptable aesthetically to the public. Barriers to the implementation of SuDS include adoption problems, flood and diffuse pollution control challenges, negative public perception, and a lack of decision support tools addressing, particularly, the retrofitting of these systems while enhancing ecosystem services. [...

  1. Distribution Characteristics and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Liaohe River Drainage Basin,Northeast China.%辽河流域多环芳烃(PAHs)的分布特征及来源解析

    张岩林; 胡健; 刘宝剑; 李思亮; 灌瑾


    Sixteen polycyclic aromatic hydrocarbons(PAHs) in surface water and suspended particulate matter(SPM) in the major rivers of the Liaohe River drainage basin were determined by GC/MS.The concentrations and distribution characteristics,pollution levels,and sources of PAHs were discussed.The total PAHs concentrations range from 0.41 to 76.45 μg·g-1(dry weight) in SPM,and 32.57 to 108.47 ng·L-1 in surface water,respectively.The PAHs concentrations in western Liaohe River are higher than those in eastern Liaohe River and its main streams.The compositions of PAHs are predominant by low-ring PAHs(including two-and three-ring PAHs),while the percentage of low-ring PAHs in dissolved form is higher than that in SPM.The two-ring PAHs percentage is highest with an average of 68.19 % in dissolved PAHs,while the three-ring PAHs percentage is highest with an average of 66.28% in SPM,respectively.Compared with other rivers both at home and abroad,the PAHs concentrations in the Liaohe River drainage basin are at a lower level,and some rivers have suffered PAHs contamination to a certain extent.The main sources of PAHs are petroleum and fossil fuel combustion-based mixture,which are related to the complex energy structure of Liaoning Province.%采用气相色谱-质谱(GC/MS)的分析方法,对辽河水系主要河流的表层水和悬浮物中的16种PAHs进行了定量分析,并对其分布特征、污染水平以及来源进行了探讨。结果显示:颗粒态PAHs的浓度范围为0.41~76.45μg.g-1,溶解态PAHs的浓度范围为32.57~108.47ng.L-1,西辽河PAHs的浓度比东辽河以及辽河干流中PAHs的浓度要高。在多环芳烃组成上,溶解态和颗粒态样品的PAHs均以低环数(二、三环)为主,且溶解态中低环数PAHs所占比例较颗粒态中所占的比例高。其中,溶解态中二环的PAHs比例最高(平均为68.19%),颗粒态中三环的PAHs比例最高(平均为66.28%)。相对于国内外

  2. Examining the provenance of branched GDGTs in the Tagus River drainage basin and its outflow into the Atlantic Ocean over the Holocene to determine their usefulness for paleoclimate applications

    Warden, L.; Kim, J.-H; Zell, C.; Vis, G.-J.; de Stigter, H.C.; Bonnin, J.; Sinninghe Damste, J.S.


    The distributions of branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are transported from the soils where they are predominantly produced to marine sediments via rivers, have been applied in reconstructing mean annual air temperature (MAT) and pH of soils. However, paleoclimate

  3. Examining the provenance of branched GDGTs in the Tagus River drainage basin and its outflow into the Atlantic Ocean over the Holocene to determine their usefulness for paleoclimate applications

    Warden, L.; Kim, J.-H; Zell, C.; Vis, G.-J.; de Stigter, H.C.; Bonnin, J.; Sinninghe Damste, J.S.


    The distributions of branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are transported from the soils where they are predominantly produced to marine sediments via rivers, have been applied in reconstructing mean annual air temperature (MAT) and pH of soils. However, paleoclimate recon

  4. Examining the provenance of branched GDGTs in the Tagus River drainage basin and its outflow into the Atlantic Ocean over the Holocene to determine their usefulness for paleoclimate applications

    Warden, L.A.; Kim, J.H.; Zell, C.I.; Vis, G.J.; de Stigter, Henko; Bonnin, J.; Sinninghe Damsté, J.S.


    The distributions of branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are transported from the soils where they are predominantly produced to marine sediments via rivers, have been applied in reconstructing mean annual air temperature (MAT) and pH of soils. However, paleoclimate recon

  5. The impact of 90 years of drainage works on some chemical properties of raised peat bog organic soils - case study from valley of the Upper San river in Polish Bieszczady Mts. (Eastern Carpathians).

    Stolarczyk, Mateusz


    Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works

  6. Regional view of a Trans-African Drainage System

    Mohamed Abdelkareem; Farouk El-Baz


    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the anc...

  7. Spring staging waterfowl on the Naknek River

    US Fish and Wildlife Service, Department of the Interior — Alaska Peninsula/Becharof National Wildlife Refuge staff conducted a survey of spring staging waterfowl on the Naknek River in the Bristol Bay drainage, Alaska...

  8. Vertical Analysis of Martian Drainage Basins

    Stepinski, T. F.; OHara, W. J.


    We have performed a vertical analysis of drainage basins on Mars that were computationally extracted from DEMs based on the MOLA data. Longitudinal profiles of main streams are calculated and the slope-area relation is established for 20 basins coming from assorted martian locations. An identical analysis is done for 19 terrestrial river basins. Our results show that, in comparison to terrestrial basins, martian basins have more linear longitudinal profiles, more frequent existence of knickpoints, predominance of asymmetric location of the main stream in the basin, and smaller values of concavity exponent. This suggests a limited role for surface runoff on the global scale. However, two basins extracted from the slopes of martian volcanoes show a strong similarity to terrestrial basins, indicating a possible local role for the process of surface runoff.

  9. Geochemical Processes Controlling the Generation and Environmental Impacts of Acid Mine Drainage in Semi Arid Conditions

    Magombedze, Chris


    This study evaluates the geochemical processes that control the geochemistry of acid mine drainage in semi arid conditions. The central objective is to characterise and understand the evolution of acid mine drainage and its potential environmental impacts on the Mazowe River sub-catchment, in north east Zimbabwe. The work is based on a case study at three neighbouring metal sulphide mines, namely Trojan Nickel Mine, Mazowe Gold Mine and Iron Duke Pyrites.The methodology used in this research ...

  10. Filter Fabrics for Airport Drainage.


    Systems for *r- field Pavements," Harry R. Cedergren . d. "Development of Guidelines for the Design of Subsurfac( Drainage Systems for Highway Pavement...Structural 4Sectic s," H. R. Cedergren , J. A. Arman, and K. H. O’Brien. e. Drainage of Highway and Airfield Pavements, Harry R. Cedergren .> Cedergren (974).5 Additionally, several references were used, particularly those describing experimental anu construction prolects using filter

  11. Morphometry Governs the Dynamics of a Drainage Basin: Analysis and Implications

    Atrayee Biswas


    Full Text Available Mountainous rivers are the most significant source of water supply in the Himalayan provinces of India. The drainage basin dynamics of these rivers are controlled by the tectonomorphic parameters, which include both surface and subsurface characteristics of a basin. To understand the drainage basin dynamics and their usefulness in watershed prioritisation and management in terms of soil erosion studies and groundwater potential assessment and flood hazard risk reduction in mountainous rivers, morphometric analysis of a Himalayan River (Supin River basin has been taken as a case study. The entire Supin River basin has been subdivided into 27 subwatersheds and 36 morphometric parameters have been calculated under four broad categories: drainage network, basin geometry, drainage texture, and relief characteristics, each of which is further grouped into five different clusters having similar morphometric properties. The various morphometric parameters have been correlated with each other to understand their underlying relationship and control over the basin hydrogeomorphology. The result thus generated provides adequate knowledge base required for decision making during strategic planning and delineation of prioritised hazard management zones in mountainous terrains.

  12. Nitrogen surface water retention in the Baltic Sea drainage basin

    P. Stålnacke


    Full Text Available In this paper, we estimate the surface water retention of nitrogen (N in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated to 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N is retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (% and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily. The obtained results will hopefully enable the Helsinki Commission (HELCOM to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP, as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.

  13. Phylogeographic structure of Terminalia franchetii (combretaceae) in southwest China and its implications for drainage geological history.

    Zhang, Ticao; Sun, Hang


    Following the rapid uplift of the Qinghai-Tibetan Plateau, the reorganization of the major river drainages in southwest China was primarily caused by river capture events. However, the impact of these past changes in drainage patterns on the current distribution and genetic structure of the endemic flora of this region remains largely unknown. Here we report a survey of amplified fragment length polymorphism (AFLP) in Terminalia franchetii, an endemic shrub or small tree of the deep and dry-hot river valleys of this region. We surveyed AFLP variation within and among 21 populations (251 individuals) of T. franchetii, distributed disjunctively between northern and southern drainage systems. Using STRUCTURE, principal coordinates analysis, and genetic distance methods, we identified two main population genetic groups (I and II) and four subgroups within the species, as follows: (I) the Upper Jinshajiang Valley (subgroup I((north))) and the Honghe drainage area (subgroup I((south))); (II) the Middle and Lower Jinshajiang and Yalongjiang Valleys (subgroup II((north))) and the Nanpanjiang drainage area (subgroup II((south))). Genetic diversity was lower in group I than in group II. According to the genetic diversity and genetic structure results, we suggest that the modern disjunctive distribution and associated patterns of genetic structure of T. franchetii result from vicariance caused by several historical drainage capture events, involving the separation of the Upper Jinshajiang, Yalongjiang and Daduhe from the Honghe or Nanpanjiang in southwest China.

  14. Impact of acid mine drainage from mining exploitations on the Margajita River basin and the Hatillo reservoir (Dominican Republic); Impacto del drenaje acido de explotaciones mineras en la cuenca del Rio Margajita y Embalse de Hatillo (Republica Dominicana)

    Grandia, F.; Salas, J.; Arcos, D.; Archambault, A.; Cottard, F.


    Mining of the Pueblo Viejo high-sulphidation epithermal deposit (Dominican Republic) leads to environmental impact due to the formation of acid mine drainage associated with the oxidative dissolution of sulphides and sulpho salts. In addition to the very low pH, the acid waters are capable of transporting away from the mining areas high concentrations of metals and metalloids in solution. In the present work, a geochemical study of sediments deposited in the Hatillo reservoir is carried out. This reservoir is fed by the Margajita and Yuna streams which transport leachates from the Pueblo Viejo and Falcondo-Bonao (Cr-Ni) mining areas, respectively. The results show that these sediments have very high concentrations of Fe, Al and sulphate, along with significant amounts of As, Zn and Te, which are of especial environmental concern. The main contributor to this metal discharge into the reservoir is the Margajita stream, whereas the Yuna stream does not transport significant amounts of metals in solution due to its neutral pH, although it is likely that metals such as Mn, Cr, Ni and Co can be mobilised as a particulate. (Author) 5 refs.

  15. 干旱区石羊河流域河水孢粉组合特征%Pollen Assemblage Features of Modern Water Samples from the Shiyang River Drainage, Arid Region of China

    朱艳; 陈发虎; 程波; 张家武; David B MADSEN


    Pollen analysis of 30 modern water samples from the Shiyang River, an internal river system located between the Tengger and Badain Jaran deserts, Northwest China was carried out to examine the river's capacity to carry pollen and spores, and to assess the contribution of the water-borne pollen to pollen assemblages in lake sediments at the end of the river system. Results indicate the pollen assemblages in water samples consist of both local and upland pollen. Percentages of upland pollen reach 30%-60%, and pollen assemblages in water samples do not indicate the nature of local vegetation at the sampling sites. Fluvial currents have the capacity to transport large quantities of pollen long distances, and the contribution of this fluvial transported pollen is relatively high. For example, percentages of Picea Dietr. pollen in water samples at sampling sites 130 km and 145 km away from Picea forests reach 16.5% and 7.7%, respectively. Fluvial pollen transport occurs primarily during flood periods, and pollen concentrations from the flood samples are 17.1-12.5 times those from normal fluvial flow. Reservoirs affect pollen transportation since pollen is deposited at reservoir inlets and pollen concentrations are much reduced at reservoir outlets. Human activity can thus change natural features of pollen transportation and deposition. The main factors influencing pollen concentrations and assemblages are sampling time, sampling location, and rainfall intensity.%石羊河流域初春和仲夏两季不同地点,洪水期、平水期30个河水样孢粉分析显示, 没有人类影响的情况下,河水样孢粉组合是由河流上游径流区的植物孢粉和采样点附近植被孢粉组成的,前者在孢粉组合中至少占30%~60%.河水搬运孢粉的能力非常强,可长距离、大量地搬运孢粉.孢粉组合中河水贡献孢粉的含量较高,如:云杉属(Picea Dietr.)花粉河水的贡献率在中下游可达16.5%和7.7%.采样时间、地点影响河




    Full Text Available Providing adequate drainage to a pavement system has been considered as an important design consideration to prevent premature failures due to water related problems such as pumping action, loss of support, and rutting, among others. Most water in pavements is due to rainfall infiltration into unsaturated pavement layers, throughjoints, cracks, shoulder edges, and various other defects, especially in older deteriorated pavements. Water also seep upward from a high groundwater table due to capillary suction or vapour movements, or it may flow laterally from the pavement edges and side ditches. Providing adequate drainage to a pavement system has been considered as an important design consideration to ensure satisfactory performance of the pavement, particularly from the perspective of life cycle cost and serviceability. To minimize premature pavement distresses and to enhance the pavement performance, it is imperative to provide adequate drainage to allow infiltrated water to drain out from the base and sub-base, thus avoiding saturation of base and subgrade soils. This paper deals with the analysis of the impact of subsurface drainage on pavement system performance. The requirement ofeffective subsurface drainage for pavement performance is also discussed.

  17. Integrating Local Scale Drainage Measures in Meso Scale Catchment Modelling

    Sandra Hellmers


    Full Text Available This article presents a methodology to optimize the integration of local scale drainage measures in catchment modelling. The methodology enables to zoom into the processes (physically, spatially and temporally where detailed physical based computation is required and to zoom out where lumped conceptualized approaches are applied. It allows the definition of parameters and computation procedures on different spatial and temporal scales. Three methods are developed to integrate features of local scale drainage measures in catchment modelling: (1 different types of local drainage measures are spatially integrated in catchment modelling by a data mapping; (2 interlinked drainage features between data objects are enabled on the meso, local and micro scale; (3 a method for modelling multiple interlinked layers on the micro scale is developed. For the computation of flow routing on the meso scale, the results of the local scale measures are aggregated according to their contributing inlet in the network structure. The implementation of the methods is realized in a semi-distributed rainfall-runoff model. The implemented micro scale approach is validated with a laboratory physical model to confirm the credibility of the model. A study of a river catchment of 88 km2 illustrated the applicability of the model on the regional scale.

  18. Examining the provenance of branched GDGTs in the Tagus River drainage basin and its outflow into the Atlantic Ocean over the Holocene to determine their usefulness for paleoclimate applications

    Warden, Lisa; Kim, Jung-Hyun; Zell, Claudia; Vis, Geert-Jan; de Stigter, Henko; Bonnin, Jérôme; Sinninghe Damsté, Jaap S.


    The distributions of branched glycerol dialkyl glycerol tetraethers (brGDGTs), which are transported from the soils where they are predominantly produced to marine sediments via rivers, have been applied in reconstructing mean annual air temperature (MAT) and pH of soils. However, paleoclimate reconstructions using sedimentary brGDGTs have proven difficult in arid regions, including the Iberian Peninsula. Recently, six novel 6-methyl brGDGTs have been described using new analytical methods (in addition to the nine 5-methyl brGDGTs previously used for climate reconstructions), and so new pH and MAT calibrations have been developed that were shown to improve the accuracy of reconstructions in a set of global soil samples, especially in arid regions. Because of this we decided to apply the new method to separate the 5- and 6-methyl isomers along with the novel calibrations to a sample set from the Iberian Peninsula to determine whether it improves paleoclimate reconstructions in this area. This set includes samples that run in a transect from source to sink along the Tagus River and out to the deep ocean off the Portuguese margin spanning the last 6000 years. We found that although pH reconstructions in the soils were improved using the new calibration, MAT reconstructions were not much better even with the separation of the 5- and 6-methyl brGDGTs. This confirmed the conclusion of previous studies that the amount of aquatically produced brGDGTs is overwhelming the soil-derived ones in marine sediments and complicating MAT reconstructions in the region. Additionally, the new separation revealed a strong and until now unseen relationship between the new degree of cyclization (DC') of the brGDGTs and MAT that could be making temperature reconstructions in this and other arid regions difficult.

  19. Technical note on drainage systems

    Bentzen, Thomas Ruby

    This technical note will present simple but widely used methods for the design of drainage systems. The note will primarily deal with surface water (rainwater) which on a satisfactorily way should be transport into the drainage system. Traditional two types of sewer systems exist: A combined system......’s not major different than described below - just remember to include this contribution for combined systems where the surface water (rain) and sewage are carried in the same pipes in the system and change some of the parameters for failure allowance (this will be elaborated further later on). The technical...


    Walter Collischonn


    Full Text Available The development and improvement of Geographic Information Systems and geoprocessing algorithms,together with the increase in computational capacity and data availability from remote sensing, becamepossible to prepare information for hydrologic studies of large areas with relative low cost and incrediblespeed. This paper describes the use of SRTM data to derive drainage network and related products, suchas accumulated drainage areas and river lengths, with application to the Uruguay river basin. Six distinctDigital Elevation Models (DEMs were used, varying the spatial resolution and applying the stream burningpre-processing technique. The main limitations of the DEM-derived drainage network refer to the incapacityof representing river meanders that are smaller than the pixel size and the problem of artificial sinuosity thatoccurs when the width of the river is larger than pixel side.

  1. Conceptual design report for site drainage control

    Hunter, M.R.


    The Mound Plant (Mound), located in Miamisburg, Ohio, is a Department of Energy (DOE) development and production facility performing support work for DOE`s weapons and energy-related programs. EG&G Mound Applied Technologies, Inc. (EG&G) is the Operating Contractor (OC) for this Government-Owned, Contractor-Operated (GOCO) facility. The work performed at Mound emphasizes nuclear energy and explosives technology. Mound is currently implementing an Environmental, Safety & Health (ES&H) Upgrades Program designed to protect its employees, the public, and the environment from adverse effects caused by facility activities. The first project of this multiphase program is now in the final stages of construction, and the second project is currently under design. Four additional projects, one of which is presented in this report, are in the conceptual design stage. At Mound, 22 soil zones have become contaminated with radioactive material. These zones cover approximately 20 percent of the total area of developed property at the site. During a storm event, the rainwater washes contaminated soil from these zones into the storm sewer system. These radioactive contaminants may then be discharged along with the stormwater into the Great Miami River via the Miami Erie Canal. This conceptual design report (CDR), Site Drainage Control, the fourth project in the ES&H program, describes a project that will provide improvements and much needed repairs to inadequate and deteriorating portions of the storm drainage system on the developed property. The project also will provide a stormwater retention facility capable of storing the stormwater runoff, from the developed property, resulting from a 100-year storm event. These improvements will permit the effective control and monitoring of stormwater to prevent the spread of radioactive contaminants from contaminated soil zones and will provide a means to collect and contain accidental spills of hazardous substances.

  2. Sulphates Removal from Acid Mine Drainage

    Luptáková, Alena; Mačingová, Eva; Kotuličová, Ingrida; Rudzanová, Dominika


    Acid mine drainage (AMD) are a worldwide problem leading to ecological destruction in river basins and the contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. In order to minimize negative impacts of AMD appropriate treatment techniques has to be chosen. Treatment processes are focused on neutralizing, stabilizing and removing pollutants. From this reason efficient and environmental friendly methods are needed to be developed in order to reduce heavy metals as well as sulphates. Various methods are used for remediation of acid mine drainage, but any of them have been applied under commercial-scale conditions. Their application depends on geochemical, technical, natural, financial, and other factors. The aim of the present work was to interpret the study of biological methods for sulphates removal from AMD out-flowing from the shaft Pech of the deposit Smolmk in Slovak Republic. In the experimental works AMD were used after removal of heavy metals by precipitation and sorption using the synthetic sorbent Slovakite. The base of the studied method for the sulphates elimination was the anaerobic bacterial sulphate reduction using sulphate-reducing bacteria (SRB) genera Desulfovibrio. SRB represent a group of bacteria that uses sulphates as a terminal electron acceptor for their metabolism. These bacteria realize the conversion of sulphate to hydrogen sulphide under anaerobic conditions. For the purposes of experiments a few variants of the selective medium DSM-63 culture media were used in term of the sulphates and sodium lactate contents in the selective medium as well as sulphates in the studied AMD.

  3. Microbial decontamination of uranium mine drainage

    Hard, B.C.; Babel, W. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany)


    One of the problems one is faced with when uranium mines are closed is the decontamination of acid mine drainage (AMD) from tailings and flooding of the underground mines. The high concentrations of sulfates and metals in mining water make it impossible to dispose of the water into rivers without having to decontaminate it first. A bioremediation process is proposed in which sulfate-reducing bacteria are used to remove metals, neutralize the water and reduce the sulfate concentrations. Methylotrophic sulfate-reducing strains have been isolated which can be used in such a process. Lab scale experiments with different reactor types were carried out in order to find the optimum design for this bioremediation process. Comparisons were made between methanol and other electron donors with regards to their suitability as substrate for this process. Methanol was found to be most suited. Laboratory data suggest that immobilizing the bacteria on pumice particles increases the sulfate-reduction rate (SRR) up to three fold to 18 mg/l.h, compared to the rates of free flowing cells of between 3.7 and 6.8 mg/l.h. Preliminary experiments on a larger scale (15 l) using acid mine drainage pH 2.5 show SRR of 0.71 mg/l.h. In biosorption experiments up to 140 mg of aluminium per g biomass was removed from the water. One strain was found to reduce uranium VI, thus changing it from the soluble to the insoluble form. The application of the proposed process with regards to bioremediation of AMD are discussed. (orig.)

  4. 天山北坡玛纳斯河流域晚冰期以来植被垂直带推移%Shifting of vertical vegetation zones in Manas River drainage on northern slope of Tianshan Mountains since the Late Glacier

    纪中奎; 刘鸿雁


    The statistical relationships between climate indexes(moisture index and warmth index)and typical pollen taxa were established with linear regression method on the Manas River drainage on the northern slope of the Tianshan Mountains.Climate and vegetation developments in this region were reconstructed based on the different pollen taxa content of a previously published sediment sequence from the Manas Lake, a desiccated end lake of the Manas River, as well as modern climate, vegetation and landform relationships.Since 13000 a BP, the palaeoclimate change in this area has experienced several important stages: warm-dry, cold-moist, warm-dry, cold-moist, warm-dry, cold-moist and warm-dry, in correspondance with the climate change, ancient vertical vegetation change around the area has experienced a series of succession processes: desert, desert steppe(to develop lowland meadow and stepped locally), extreme arid desert, desert steppe, desert, desert steppe, desert.When the climate in the Manas River drainage changed from warm-dry to cold-moist, all vegetation boundaries in the area moved downward, hence the area of desert and forest was enlarged and the lower limit of conifer may get to current steppe.When the palaeoclimate changed from cold-moist to warm-dry, all vegetation boundaries moved upward, the area of desert was enlarged, while the area of steppe and forest was decreased, and the lower limit of conifer may get to current alpine and sub alpine meadow.%建立了反映天山北坡玛纳斯河流域典型花粉类型与气候指标(湿润指数和温暖指数)的统计函数.基于前人研究得出的玛纳斯湖沉积剖面中不同花粉的百分含量复原了晚冰期以来玛纳斯河流域古气候的变化,并基于山地植被-气候-地形关系推断了玛纳斯河流域的植被演变过程.研究结果表明:该区晚冰期以来经历了暖干-冷湿-暖干-偏冷偏湿-暖干-冷湿-暖干的气候变化过程,植被垂直带基带相应为荒漠-

  5. Percutaneous drainage of abdominal abcess

    Men, Sueleyman E-mail:; Akhan, Okan; Koeroglu, Mert


    The mortality in undrained abdominal abscesses is high with a mortality rate ranging between 45 and 100%. The outcome in abdominal abscesses, however, has improved due to advances in image guided percutaneous interventional techniques. The main indications for the catheter drainage include treatment or palliation of sepsis associated with an infected fluid collection, and alleviation of the symptoms that may be caused by fluid collections by virtue of their size, like pancreatic pseudocele or lymphocele. The single liver abscesses may be drained with ultrasound guidance only, whereas the multiple abscesses usually require computed tomography (CT) guidance and placement of multiple catheters. The pancreatic abscesses are generally drained routinely and urgently. Non-infected pancreatic pseudocysts may be simply observed unless they are symptomatic or cause problems such as pain or obstruction of the biliary or the gastrointestinal tract. Percutaneous routes that have been described to drain pelvic abscesses include transrectal or transvaginal approach with sonographic guidance, a transgluteal, paracoccygeal-infragluteal, or perineal approach through the greater sciatic foramen with CT guidance. Both the renal and the perirenal abscesses are amenable to percutaneous drainage. Percutaneous drainage provides an effective and safe alternative to more invasive surgical drainage in most patients with psoas abscesses as well.

  6. Definition of the drainage filter problem

    Zaslavsky, D.


    It is common to consider the following: I. Retention of soil particles that may enter the drainage pipe and cause its clogging. For some sensitive structures it is important to prevent settlements due to soil transportation by drainage water.

  7. Polder Construction and its Ecological and Social Effects --An investigation of Joint River Embankment in Taihu Drainage Area ( 1950s - 1970s)%圩区建设与生态、社会效应——20世纪50-70年代太湖流域联圩并圩的考察



    自20世纪50年代开始,太湖流域各级政府和民众为抵御洪涝灾害,在农田水利建设过程中进行了联圩并圩,至70年代中后期,联圩工程由低洼地区向半高田地区全面推开。这一时期的联圩并圩不同于80年代后的标准化圩区建设,而具有粗放性的特点,对生态和社会都产生了重要的影响。从积极方面看,联圩内抵制洪水的能力有所增强、农作物产量明显提高;从消极方面看,太湖流域水系蓄泄能力总体下降,水域生态环境遭到一定程度的破坏,部分联圩因施工质量低下和其他原因存在安全隐患,各种水利纠纷与矛盾屡有发生。%From the 1950s to the 1970s, people and governments at all levels in Taihu drainage area started joint river embankment in low-lying lands and then extended to higher lands to protect the polder lands from flood damage. Unlike standardized construction in the 1980s, the embankment in the 1970s was of an extensive style, casting various influences on ecological environment and social development. Positively, it strengthened anti -flooding capability and increased agricultural output in polder areas; while negatively it lowered overall storing and discharging capacity of the water system in Taihu drainage area, damaged ecological environment, produced potential safety risks due to poor construction quality of the joint dikes and other reasons, and caused various disputes and conflicts over irrigation.

  8. Recent drainage events of glacial Lake Cachet 2, Patagonia

    Casassa, G.; Wendt, J.; Wendt, A.; Escobar, F.; Lopez, P.; Carrasco, J.; Rivera, A.; Leidich, J.


    Lake Cachet 2 (47°12' S, 73°15' W, 422 m a.s.l.) is a proglacial lake of 4 km2 located on the eastern margin of the Northern Patagonia Icefield (3,953 km2, Rivera et al., 2007), which is dammed on its southern margin by Colonia Glacier. Until April 2008 there was no historical evidence of catastrophic flooding of this lake. In 2008 three sudden drainage events occurred at Lake Cachet 2 (April 6-7; October 7-8 and 21-22 December). During each event the flood wave traveled down Colonia River to the confluence with Baker River, then affected Baker River to a distance of up to 25 km upstream from the confluence and downstream all the way to its mouth on the Pacific Ocean fjords at Caleta Tortel (100 km to the southwest), transporting abundant sediments. In April the runoff of Baker River close to the confluence with Colonia River increased from a base level of 1,200 m3/s on April 7 to a peak runoff of 3,570 m3/s within a period of less than 48 hours, resulting in a river level increase of 4.5 m and an associated water temperature drop from 8°C to 4°C. In October the base level was 573 m3/s, with a peak runoff of 3,007 m3/s, a river level increase of 4.7 m and a water temperature drop from 7.3°C to 4.8°C, while in December the corresponding values were 1,145 m3/s, 3,052 m3/s, 11°C and 8°C. The flood affected roads, bridges, farms and cattle, fortunately not resulting in any human damage. Similar floods had been reported on Colonia River several decades ago, the last having occurred in the 1970s, all of which originated at that time at glacial Lake Arco, located south of Colonia Glacier. Airborne and ground explorations carried out after each event in 2008 confirmed that the floods originated at Lake Cachet 2, draining under Colonia Glacier for a distance of 8 km and emerging at the front of the glacier. As a result parts of the glacier front collapsed after each event, where large ice fractures could be observed. During the October event a complete drainage of

  9. A Visit to Gyigu by the Tongtian River



    Tongtian River refers to the reach where the Tuto River, the origin of Yangtze River, joins the Tangqu, running southeast and passing the Batang outfall in Yushu, the Tibetan-inhabited area in Qinghai. It stretches 813 km, with a drainage area of 138,000 square km.

  10. The impacts of neutralized acid mine drainage contaminated water on the expression of selected endocrine-linked genes in juvenile Mozambique tilapia Oreochromis mossambicus exposed in vivo

    Truter, JC


    Full Text Available Acid mine drainage (AMD) is a global environmental concern due to detrimental impacts on river ecosystems. Little is however known regarding the biological impacts of neutralized AMD on aquatic vertebrates despite excessive discharge...

  11. 近60a来玛纳斯河流域气候变化趋势及突变分析%Analysis of the Climate Change and Abrupt Change in the Manas River Drainage Basin in Recent 60 Years

    王东方; 任刚; 张凤华


    [ Objective and Method ] Global climate change is the gravest environmental problem that human has ever faced. The climate change in China is similar to global change but is most significant in its arid land. Xinjiang is among the most eminent arid region. In this study, the Manas River Valley, which is the typical inland river formed from glacier - melted water in the Central Asia, was chosen as the sample. The temperature and precipitation change trend from 1956 to 2010 were analyzed by using linear regression analysis and Man - Kendall trend text. [ Result ] The results show the mean climate generally trended to be warm and humid in recent 60 years, and the rate of increase were 0. 44℃ /10 a and 12. 6 mm/10a; The temperature trend rates of spring, summer, autumn and winter respectively were 0.50℃/10 a, 0. 21℃/10 a, 0.52℃/10 a, 0.52℃/10 a, and the precipitation trend rate were 2.44 mm/10 a, 3.22 mm/10 a, 2.76 mm/10 a, 3.64 mm/10 a. The mean annual temperature of the Basin revealed a obvious increasing trend in 1980s. The point of abrupt change was in 1989, and the difference seasonal abrupt change of annual average temperature occurred in 1995, 1986, 1996 and 1987, respectively. The annual precipitation abrupt change also occurred in the late 1980s, and the points of abrupt change in autumn and winter occurred increased at 1983 and 1997, but there were not abrupt changes in spring and summer. [ Conclusion ] The findings are meaningful for us to have a comprehensive understanding of the climate change to predict the annual and seasonal climate change in the arid land.%[目的]气候变化是21世纪人类面临的最大环境问题之一.其中以干旱区较为明显,而新疆是最为突出的地区之一.[方法]以中亚典型冰川融化区玛纳斯河流域为例,运用线性回归及Mann - Kendall趋势检验方法分析其1956 ~2010年气温及降水资料的变化趋势和突变点.[结果]近60a来玛纳斯河流域经历了一个增温趋

  12. Percutaneous catheter drainage of intrapulmonary fluid collection

    Park, E. D.; Kim, H. J.; Choi, P. Y.; Jung, S. H. [Gyeongsang National University Hospital, Chinju (Korea, Republic of)


    With the success of percutaneous abdominal abscess drainage, attention is now being focused on the use of similar techniques in the thorax. We studied to evaluate the effect of percutaneous drainage in parenchymal fluid collections in the lungs. We performed percutaneous drainage of abscesses and other parenchymal fluid collections of the lungs in 15 patients. All of the procedures were performed under the fluoroscopic guidance with an 18-gauge Seldinger needle and coaxial technique with a 8-10F drainage catheter. Among 10 patients with lung abscess, 8 patients improved by percutaneous catheter drainage. In one patient, drainage was failed by the accidental withdrawal of the catheter before complete drainage. One patient died of sepsis 5 hours after the procedure. Among three patients with complicated bulla, successful drainage was done in two patients, but in the remaining patient, the procedure was failed. In one patient with intrapulmonary bronchogenic cyst, the drainage was not successful due to the thick internal contents. In one patient with traumatic hematoma, after the drainage of old blood clots, the signs of infection disappeared. Overally, of 14 patients excluding one who died, 11 patients improved with percutaneous catheter drainage and three patients did not. There were no major complications during and after the procedure. We conclude that percutaneous catheter drainage is effective and safe procedure for the treatment of parenchymal fluid collections of the lung in patients unresponsive to the medical treatment.

  13. Nitrate-Nitrogen, Landuse/Landcover, and Soil Drainage Associations at Multiple Spatial Scales

    Managing non–point-source pollution of water requires knowledge of land use/land cover (LULC) influences at altering watershed scales. To gain improved understanding of relationships among LULC, soil drainage, and dissolved nitrate-N dynamics within the Calapooia River Basin in w...

  14. An advanced distributed automated extraction of drainage network model on high-resolution DEM

    Mao, Y.; Ye, A.; Xu, J.; Ma, F.; Deng, X.; Miao, C.; Gong, W.; Di, Z.


    A high-resolution and high-accuracy drainage network map is a prerequisite for simulating the water cycle in land surface hydrological models. The objective of this study was to develop a new automated extraction of drainage network model, which can get high-precision continuous drainage network on high-resolution DEM (Digital Elevation Model). The high-resolution DEM need too much computer resources to extract drainage network. The conventional GIS method often can not complete to calculate on high-resolution DEM of big basins, because the number of grids is too large. In order to decrease the computation time, an advanced distributed automated extraction of drainage network model (Adam) was proposed in the study. The Adam model has two features: (1) searching upward from outlet of basin instead of sink filling, (2) dividing sub-basins on low-resolution DEM, and then extracting drainage network on sub-basins of high-resolution DEM. The case study used elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution in Zhujiang River basin, China. The results show Adam model can dramatically reduce the computation time. The extracting drainage network was continuous and more accurate than HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales).

  15. 云南李仙江流域水电开发中的鱼类资源保护%Fishery resource protection by artificial propagation in hydroelectric development: Lixianjiang River drainage in Yunnan as an example

    杨永宏; 杨君兴; 潘晓赋; 周伟; 杨美临


    Hydroelectric developments can result in a number of negative environmental consequences.Conservation aquaculture is a branch of science derived from conservation and population recovery studies on endangered fishes. Here we discuss the impacts on fishes caused by hydropower projects in Lixianjiang, and evaluate effects and problems on the propagation of Parazacco spilurus. Hemibagrus pluriradiatus. Neolissochilus benasi and Semilabeo obscurus. A successful propagation project includes foraging ecology in fields, pond cultivation, juvenile fish raising, prevention and curing on fish disease, genetic management, artificial releasing and population monitoring.Artificial propagation is the practicable act on genetic intercommunication, preventing population deterioration for fishes in upper and lower reaches of the dam. For long-term planning, fish stocks are not suitable for many kind of fishes, but can prevent fishes from going extinct in the wild. Basic data collection on fish ecology, parent fish hunting, prevention on fish disease are the most important factors on artificial propagation. Strengthening the genetic management of stock population for keeping a higher genetic diversity can increase the success of stock enhancement. The works on Lixianjiang provide a new model for river fish protection. To make sure the complicated proj ect works well, proj ect plans,comnussion contracts, base line monitoring and techniques on artificial reproduction must be considered early. Last,fishery conservation should be considered alongside location development.%水电工程的开发对江河道鱼类资源产生了诸多不利影响,在保护和恢复日益增多的濒危鱼类种群的实践中,孕育和逐渐形成了保护水产学.该文对李仙江流域水电开发与流域内珍稀鱼类异鱲、越鳠、软鳍新光唇鱼和暗色唇鱼人工增殖保护实践中的实施效果和存在问题进行了分析.李仙江水电开发与鱼类增殖保护为河流鱼类的

  16. EUS-Guided Biliary Drainage

    Marc Giovannini


    Full Text Available The echoendoscopic biliary drainage is an option to treat obstructive jaundices when ERCP drainage fails. These procedures compose alternative methods to the side of surgery and percutaneous transhepatic biliary drainage, and it was only possible by the continuous development and improvement of echoendoscopes and accessories. The development of linear setorial array echoendoscopes in early 1990 brought a new approach to diagnostic and therapeutic dimenion on echoendoscopy capabilities, opening the possibility to perform punction over direct ultrasonographic view. Despite of the high success rate and low morbidity of biliary drainage obtained by ERCP, difficulty could be found at the presence of stent tumor ingrown, tumor gut compression, periampulary diverticula, and anatomic variation. The echoendoscopic technique starts performing punction and contrast of the left biliary tree. When performed from gastric wall, the access is made through hepatic segment III. From duodenum, direct common bile duct punction. Dilatation is required before stent introduction, and a plastic or metallic stent is introduced. This phrase should be replaced by: diathermic dilatation of the puncturing tract is required using a 6F cystostome. The technical success of hepaticogastrostomy is near 98%, and complications are present in 36%: pneumoperitoneum, choleperitoneum, infection, and stent disfunction. To prevent bile leakage, we have used the 2 stent techniques, the first stent introduced was a long uncovered metallic stent (8 or 10 cm, and inside this first stent a second fully covered stent of 6 cm was delivered to bridge the bile duct and the stomach. Choledochoduodenostomy overall success rate is 92% and described complications include, in frequency order, pneumoperitoneum and focal bile peritonitis, present in 19%. By the last 10 years, the technique was especially performed in reference centers, by ERCP experienced groups, and this seems to be a general

  17. Exploring Agricultural Drainage's Influence on Wetland and ...

    Artificial agricultural drainage (i.e. surface ditches or subsurface tile) is an important agricultural management tool. Artificial drainage allows for timely fieldwork and adequate root aeration, resulting in greater crop yields for farmers. This practice is widespread throughout many regions of the United States and the network of artificial drainage is especially extensive in flat, poorly-drained regions like the glaciated Midwest. While beneficial for crop yields, agricultural drains often empty into streams within the natural drainage system. The increased network connectivity may lead to greater contributing area for watersheds, altered hydrology and increased conveyance of pollutants into natural water bodies. While studies and models at broader scales have implicated artificial drainage as an important driver of hydrological shifts and eutrophication, the actual spatial extent of artificial drainage is poorly known. Consequently, metrics of wetland and watershed connectivity within agricultural regions often fail to explicitly include artificial drainage. We use recent agricultural census data, soil drainage data, and land cover data to create estimates of potential agricultural drainage across the United States. We estimate that agricultural drainage in the US is greater than 31 million hectares and is concentrated in the upper Midwest Corn Belt, covering greater than 50% of available land for 114 counties. Estimated drainage values for numerous countie

  18. Use of Natural and Applied Tracers to Guide Targeted Remediation Efforts in an Acid Mine Drainage System, Colorado Rockies, USA

    Rory Cowie; Mark W. Williams; Mike Wireman; Robert L. Runkel


    Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD), a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD to passive treatment ponds that discharge to the Dolores River. The mine workings are excavated into the hillslope on either side of a tributary stream with workings passing directly under the stream channel. ...

  19. Spring staging waterfowl on the Naknek River, Alaska Peninsula, Alaska

    US Fish and Wildlife Service, Department of the Interior — Alaska Peninsula/Becharof National Wildlife Refuge staff conducted a survey of spring staging waterfowl on the Naknek River in the Bristol Bay drainage, Alaska...

  20. Geometry of River Networks; 3, Characterization of Component Connectivity

    Dodds, P S; Dodds, Peter Sheridan; Rothman, Daniel H.


    River networks serve as a paradigmatic example of all branching networks. Essential to understanding the overall structure of river networks is a knowledge of their detailed architecture. Here we show that sub-branches are distributed exponentially in size and that they are randomly distributed in space, thereby completely characterizing the most basic level of river network description. Specifically, an averaged view of network architecture is first provided by a proposed self-similarity statement about the scaling of drainage density, a local measure of stream concentration. This scaling of drainage density is shown to imply Tokunaga's law, a description of the scaling of side branch abundance along a given stream, as well as a scaling law for stream lengths. This establishes the scaling of the length scale associated with drainage density as the basic signature of self-similarity in river networks. We then consider fluctuations in drainage density and consequently the numbers of side branches. Data is anal...

  1. Mount St. Helens Project. Cowlitz River Levee Systems, 2009 Level of Flood Protection Update Summary


    Cowlitz River near Kosmos , WA 14233500 1040 Cowlitz River at Mossyrock, WA 14235000 1162 Tilton River above Bear Canyon near Cinebar, WA 14236200 141...Cowlitz Falls dam, the Cowlitz River near Randle gage was abandoned in 1994; however, the Cowlitz River near Kosmos , WA (#14233500) was in place just...downstream. The drainage areas are within 1% of eachother, so no adjustments were made to the Kosmos gage data. The Cowlitz River at Mossyrock, WA

  2. Vertical drainage capacity of new electrical drainage board on improvement of super soft clayey ground

    沈扬; 励彦德; 黄文君; 徐海东; 胡品飞


    As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage (EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.

  3. Ammonia-nitrogen removal from urban drainage using modified fresh empty fruit bunches: A case study in Kota Kinabalu, Sabah

    Ricky, L. N. S.; Shahril, Y.; Nurmin, B.; Zahrim, AY


    Highly concentration of ammonia nitrogen in urban drainage could pollute the river and give pungent smell. The strong pungent odours that coming out from the urban drainage may degrade the image a city and could possibly reduce the present of tourist. To minimize the presence of pungent odours, the ammonia nitrogen can be removed from the urban drainage by applying proper adsorbent. In this study, an adsorbent produced through chemical modification of fresh empty fruit bunch (EFB) fibers has been carried out. The maximum adsorption capacity is between 0.01-0.60 mg/g. The finding also shows that the retention time is vital when designing ammonia nitrogen filter.

  4. Deformation of an experimental drainage network in oblique collision

    Guerit, L.; Dominguez, S.; Malavieille, J.; Castelltort, S.


    In oblique collision settings, parallel and perpendicular components of the relative plate motion can be partitioned into different structures of deformation and may be localized close to the plate boundary, or distributed on a wider region. In the Southern Alps of New Zealand, it has been proposed that one-third of the regional convergence is distributed in a broad area along the Southern Alps orogenic wedge. To better document and understand the regional dynamics of such systems, reliable markers of the horizontal tectonic motion over geological time scales are needed. River networks are able to record a large amount of distributed strain and they can thus be used to reconstruct the mode and rate of distribution away from major active structures. To explore the controls on river resilience to deformation, we develop an experimental model to investigate river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a rainfall system to activate erosion, sediment transport and river development on the model surface. At the end of the experiment, the drainage network is statistically rotated clockwise, confirming that rivers can record the distribution of motion along the wedge. Image analysis of channel time-space evolution shows how the fault-parallel and fault-perpendicular components of motion decrease toward the fault and impose rotation to the main trunk valleys. However, rivers do not record the whole imposed rotation rate, which suggest that the natural lateral channel dynamics can alter the capacity of rivers to act as passive markers of deformation.

  5. Analysis on River Sediment Changes of the Upper Reaches of Yangtze River

    ZHONG Xiang-hao; SHI Guo-yu; XU Quan-xi; CHEN Ze-fang; LIU Shu-zhen


    The sediment load and river sedimentation of the upper reaches of Yangtze River has been undergoing constant changes as complex landform, large mountain area and plentiful precipitation make the drainage area of Yangtze River very vulnerable to water erosion and gravity erosion. Through analyzing the hydrological and sediment load statistics recorded by major hydrological stations along Yangtze River since 1950s, and editing the accumulation graph of annual runoff volume and annual sediment load, we find out that the suspended-sediment of Yangtze river has been decreasing year by year in Wulong Hydrological Station on Wujiang River, Beibei Hydrological Station on Jialingjiang River, Lijiawan Hydrological Station on Tuojiang River and Gaochang Hydrological Station on Minjiang River, Yichang Hydrological Station, Cuntan Hydrological Station along Yangtze River mainstream share the same experience too. But the statistics obtained at Pingshan Hydrological Station on Jinshajiang River shows the sediment load there has increased. Taking ecological construction, hydraulic engineering construction and precipitation changes into consideration, the thesis analyses the causes for the sediment load decrease of Jialingjiang River, Tuojiang River, Minjiang River and Wujiang River and provides us both scientific foundation for further study of river sediment changes of the upper reaches of Yangtze River, and measures to control river sedimentation.

  6. Mineralogical correlation of surficial sediment from area drainages with selected sedimentary interbeds at the Idaho National Engineering Laboratory, Idaho

    Bartholomay, R.C.


    Ongoing research by the US Geological Survey at the INEL involves investigation of the migration of radioactive elements contained in low-level radioactive waste, hydrologic and geologic factors affecting waste movement, and geochemical factors that influence the chemical composition of the waste. Identification of the mineralogy of the Snake River Plain is needed to aid in the study of the hydrology and geochemistry of subsurface waste disposal. The US Geological Surveys project office at the Idaho National Engineering Laboratory, in cooperation with the US Department of Energy, used mineralogical data to correlate surficial sediment samples from the Big Lost River, Little Lost River, and Birch Greek drainages with selected sedimentary interbed core samples taken from test holes at the RWMC (Radioactive Waste Management Complex), TRA (Test Reactors Area), ICPP (Idaho Chemical Processing Plant), and TAN (Test Area North). Correlating the mineralogy of a particular present-day drainage area with a particular sedimentary interbed provides information on historical source of sediment for interbeds in and near the INEL. Mineralogical data indicate that surficial sediment samples from the Big Lost River drainage contained a larger amount of feldspar and pyroxene and a smaller amount of calcite and dolomite than samples from the Little Lost River and Birch Creek drainages. Mineralogical data from sedimentary interbeds at the RWMC, TRA, and ICPP correlate with surficial sediment of the present-day big Lost River drainage. Mineralogical data from a sedimentary interbed at TAN correlate with surficial sediment of the present-day Birch Creek drainage. 13 refs., 5 figs., 3 tabs.

  7. Regional view of a Trans-African Drainage System

    Mohamed Abdelkareem


    Full Text Available Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is the biggest river system in Africa.

  8. Mine Drainage Generation and Control Options.

    Wei, Xinchao; Rodak, Carolyn M; Zhang, Shicheng; Han, Yuexin; Wolfe, F Andrew


    This review provides a snapshot of papers published in 2015 relevant to the topic of mine drainage generation and control options. The review is broken into 3 sections: Generation, Prediction and Prevention, and Treatment Options. The first section, mine drainage generation, focuses on the characterization of mine drainage and the environmental impacts. As such, it is broken into three subsections focused on microbiological characterization, physiochemical characterization, and environmental impacts. The second section of the review is divided into two subsections focused on either the prediction or prevention of acid mine drainage. The final section focuses on treatment options for mine drainage and waste sludge. The third section contains subsections on passive treatment, biological treatment, physiochemical treatment, and a new subsection on beneficial uses for mine drainage and treatment wastes.

  9. Simple model for river network evolution

    Leheny, R.L. [The James Franck Institute and The Department of Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 (United States)


    We simulate the evolution of a drainage basin by erosion from precipitation and avalanching on hillslopes. The avalanches create a competition in growth between neighboring basins and play the central role in driving the evolution. The simulated landscapes form drainage systems that share many qualitative features with Glock`s model for natural network evolution and maintain statistical properties that characterize real river networks. We also present results from a second model with a modified, mass conserving avalanche scheme. Although the terrains from these two models are qualitatively dissimilar, their drainage networks share the same general evolution and statistical features.

  10. Solid Waste in Drainage Network of Rio do Meio Watershed, Florianópolis/SC

    Taiana Gava


    Full Text Available The urban drainage network is among the main pollution transport load factors. Researches on the identification of solid waste transported in the drainage network have been considered the allow evaluation of its impact. In this paper we analyze the main characteristics that influences the presence of solid wastes in the drainage network of the Rio do Meio basin, Florianópolis/SC. A metal net was installed in selected river section and monitored after each rain event. The results showed about 0.27 kg/ha.year of waste are carried in the drainage network. The majority being composed of plastics and building materials. Through the analysis of the data, it was possible to verify the presence of waste in the drainage network is due to poor packaging and to the lack of sweeping in some parts of the basin. It was also found that the total precipitation is directly proportional to the appearance of solid waste. It was concluded that the lack of an integrated management between the components of sanitary system leave unnoticed simple structural measures that ultimately decrease the amount of solid waste in the drainage basin, and that could eliminate this source of pollution.

  11. Strike slip faulting inferred from offsetting of drainages: Lower Narmada basin, western India

    Rachna Raj


    The detailed analysis of landforms,drainages and geology of the area between the rivers Amaravati and Karjan was carried out in order to understand the tectonic history of the lower Narmada basin. Movement along the various faults in the area was studied on the basis of the drainage offsetting. Horizontal offsetting of stream channels was found quite demonstrable along NNW –SSE trending transverse faults.Tectonic landforms including systematic de flection of stream channels and ridges, alignment of fault scarp and saddles and displacement in the basement rocks and alluvial deposits show that the area is undergoing active deformation driven by the NSF system.

  12. [Simple cholecystectomy without drainage. A dilemma?].

    Macellari, G; Baraldi, U; Giustina, A; David, P; Parigi, M; De Angelis, E


    A retrospective study was carried out to show the uselessness of the routine employment of the drainage after simple cholecystectomy. 1425 patients underwent cholecystectomy because for cholelithiasis; of these 164 (13%) were drained because of adhesions, concomitant pancreatitis, inadvertent damage, empiema, gangrena and perforation of the gallbladder. In no case of the 1261 patients without drainage it has been possible to demonstrate the presence of one of those complications for which the use of a drainage after simple cholecystectomy is commonly advised.

  13. Disaster characteristics and optimum cross-section design of drainage canal of debris flow in Ganlanba-sha Gully in the Baihetan reservoir area on the Jinsha River%金沙江白鹤滩水电站库区橄榄坝沙沟泥石流灾害及其排导槽的优化设计

    游勇; 柳金峰; 陈兴长


      The Ganlanba-sha gully is a right branch of the Jinsha River, with a catchment area of 6.98 km2 and a total length of 5.32km. The precipitation of the gully is concentrated from May to October ac⁃counting for 90% of the year. The composition of landform,geology and rainstorm provides favorable condi⁃tion for the formation of debris flow. Through field observation,the characteristics of the debris flow in Gan⁃lanba-sha Gully can be described as viscous debris flow. The density of the gully is 2.0~2.2t/m3. The type of debris flow in the gully can be defined as rainstorm valley type with high density,high viscosity and high frequency. The major activity characteristics of debris flow are as follows:(1) The loose solid ma⁃terial for debris flow is mainly supplied by the slope landslip;(2) the frequency of the debris flow is very high;(3) rapid damage,strong erosion and great damage. Based on the analysis of the disaster characteris⁃tics,the optimal cross-section design method for the“trapezoid-v”shaped debris flow drainage canal of the Ganlanba-sha gully is discussed. The depths (h1 and h2) of the cross-section of the“trapezoid-v”shaped drainage canal and the optimal cross-section parameters using these two measurements are defined. In addi⁃tion, several formulae for calculating the cross-section measurements are deduced under optimal hydraulic conditions when discharge (Q),debris grain composition (D50) and longitudinal ratio (I) are known. Final⁃ly,the optimal dimensions for the cross-section of the Ganlanba-sha gully debris flow canal are determined.%  金沙江白鹤滩水电站库区右岸橄榄坝沙沟的泥石流活动具有松散固体物质以坡面崩塌补给为主、泥石流活动频率高和成灾快,冲刷强烈,危害严重等特征。在分析泥石流危害及活动特征的基础上,对橄榄坝沙沟泥石流排导槽的最佳过流横断面进行了分析研究,在已知排导槽排泄流量、排导槽纵

  14. Drainage - Structure Correlation in tectonically active Regions: Case studies in the Bolivian and Colombian Andes

    Zeilinger, Gerold; Parra, Mauricio; Kober, Florian


    drainages oblique to the structural grain in the frontal ranges (SA and FR) highlights the alignment of tributaries and suggests an ongoing tectonic control on drainage orientation. We test the hypothesis whether the correlation between the direction of small order rivers and the direction of structures can be used as a proxy for relative tectonic activity, which might be relevant in questions on 1) dominance of tectonics over climate, 2) dynamics of deformation propagation in fault-and-thrust-belts and 3) occurrence of higher erosion rates despite "limited" relief or threshold slopes. Ongoing efforts will investigate the possibility to quantify or compare relative tectonic activity across sites.

  15. Drainage basin delineations for selected USGS streamflow-gaging stations in Virginia (Drainage_Basin)

    U.S. Geological Survey, Department of the Interior — The Drainage_Basin polygon feature class was created as a digital representation of drainage basins for more than 1,650 continuous-record streamflow-gaging stations,...

  16. Contaminants evaluation of the Solomon River drainage in Kansas

    US Fish and Wildlife Service, Department of the Interior — We detected low concentrations of the groups of agricultural chemicals and petroleum compounds in surface water analyzed with the kits. None of the groups of...

  17. How sulfate-rich mine drainage affected aquatic ecosystem degradation in northeastern China, and potential ecological risk.

    Zhao, Qian; Guo, Fen; Zhang, Yuan; Ma, Shuqin; Jia, Xiaobo; Meng, Wei


    Mining activity is an increasingly important stressor for freshwater ecosystems. However, the mechanism on how sulfate-rich mine drainage affects freshwater ecosystems is largely unknown, and its potential ecological risk has not been assessed so far. During 2009-2016, water and macroinvertebrate samples from 405 sample sites were collected along the mine drainage gradient from circum-neutral to alkaline waters in Hun-Tai River, Northeastern China. Results of linear regressions showed that sulfate-rich mine drainage was significantly positively correlated with the constituents typically derived from rock weathering (Ca(2+), Mg(2+) and HCO3(-)+CO3(2-)); the diversity of intolerant stream macroinvertebrates exhibited a steep decline along the gradient of sulfate-rich mine drainage. Meanwhile, stressor-response relationships between sulfate-rich mine drainage and macroinvertebrate communities were explored by two complementary statistical approaches in tandem (Threshold Indicator Taxa Analysis and the field-based method developed by USEPA). Results revealed that once stream sulfate concentrations in mine drainage exceeded 35mg/L, significant decline in the abundance of intolerant macroinvertebrate taxa occurred. An assessment of ecological risk posed by sulfate-rich mine drainage was conducted based on a tiered approach consisting of simple deterministic method (Hazard Quotient, HQ) to probabilistic method (Joint Probability Curve, JPC). Results indicated that sulfate-rich mine drainage posed a potential risk, and 64.62-84.88% of surface waters in Hun-Tai River exist serious risk while 5% threshold (HC05) and 1% threshold (HC01) were set up to protect macroinvertebrates, respectively. This study provided us a better understanding on the impacts of sulfate-rich mine drainage on freshwater ecosystems, and it would be helpful for future catchment management to protect streams from mining activity. Copyright © 2017. Published by Elsevier B.V.

  18. River history and tectonics.

    Vita-Finzi, C


    The analysis of crustal deformation by tectonic processes has gained much from the clues offered by drainage geometry and river behaviour, while the interpretation of channel patterns and sequences benefits from information on Earth movements before or during their development. The interplay between the two strands operates at many scales: themes which have already benefited from it include the possible role of mantle plumes in the breakup of Gondwana, the Cenozoic development of drainage systems in Africa and Australia, Himalayan uplift in response to erosion, alternating episodes of uplift and subsidence in the Mississippi delta, buckling of the Indian lithospheric plate, and changes in stream pattern and sinuosity along individual alluvial channels subject to localized deformation. Developments in remote sensing, isotopic dating and numerical modelling are starting to yield quantitative analyses of such effects, to the benefit of geodymamics as well as fluvial hydrology.

  19. 24 CFR 3285.604 - Drainage system.


    ... § 3285.604 Drainage system. (a) Crossovers. Multi-section homes with plumbing in more than one section require drainage system crossover connections to join all sections of the home. The crossover design requirements are located in, and must be designed in accordance with, § 3280.610 of this chapter. (b)...

  20. Agricultural drainage: Towards an integrated approach

    Abdeldayem, S.; Hoevenaars, J.; Mollinga, P.P.; Scheuman, W.; Slootweg, R.; Steenbergen, van F.


    Drainage needs to reclaim its rightful position as an indispensable element in the integrated management of land and water. An integrated approach to drainage can be developed by means of systematic mapping of the functions of natural resources systems (goods and services) and the values attributed

  1. An advanced distributed automated extraction of drainage network model on high-resolution DEM

    Y. Mao


    distributed automated extraction of drainage network model (Adam was proposed in the study. The Adam model has two features: (1 searching upward from outlet of basin instead of sink filling, (2 dividing sub-basins on low-resolution DEM, and then extracting drainage network on sub-basins of high-resolution DEM. The case study used elevation data of the Shuttle Radar Topography Mission (SRTM at 3 arc-second resolution in Zhujiang River basin, China. The results show Adam model can dramatically reduce the computation time. The extracting drainage network was continuous and more accurate than HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales.

  2. Global 30m Height Above the Nearest Drainage

    Donchyts, Gennadii; Winsemius, Hessel; Schellekens, Jaap; Erickson, Tyler; Gao, Hongkai; Savenije, Hubert; van de Giesen, Nick


    Variability of the Earth surface is the primary characteristics affecting the flow of surface and subsurface water. Digital elevation models, usually represented as height maps above some well-defined vertical datum, are used a lot to compute hydrologic parameters such as local flow directions, drainage area, drainage network pattern, and many others. Usually, it requires a significant effort to derive these parameters at a global scale. One hydrological characteristic introduced in the last decade is Height Above the Nearest Drainage (HAND): a digital elevation model normalized using nearest drainage. This parameter has been shown to be useful for many hydrological and more general purpose applications, such as landscape hazard mapping, landform classification, remote sensing and rainfall-runoff modeling. One of the essential characteristics of HAND is its ability to capture heterogeneities in local environments, difficult to measure or model otherwise. While many applications of HAND were published in the academic literature, no studies analyze its variability on a global scale, especially, using higher resolution DEMs, such as the new, one arc-second (approximately 30m) resolution version of SRTM. In this work, we will present the first global version of HAND computed using a mosaic of two DEMS: 30m SRTM and Viewfinderpanorama DEM (90m). The lower resolution DEM was used to cover latitudes above 60 degrees north and below 56 degrees south where SRTM is not available. We compute HAND using the unmodified version of the input DEMs to ensure consistency with the original elevation model. We have parallelized processing by generating a homogenized, equal-area version of HydroBASINS catchments. The resulting catchment boundaries were used to perform processing using 30m resolution DEM. To compute HAND, a new version of D8 local drainage directions as well as flow accumulation were calculated. The latter was used to estimate river head by incorporating fixed and

  3. Endoscopic ultrasound-guided drainage of pancreatic pseudocysts

    Saftoiu, Adrian; Vilmann, Andreas; Vilmann, Peter


    Pancreatic pseudocysts are fluid collections in the peripancreatic tissues associated with acute or chronic pancreatitis. Endoscopic ultrasound (EUS)-guided drainage has become an established indication, having better results as compared to percutaneous drainage, nonguided endoscopic drainage...

  4. Future permafrost conditions along environmental gradients in Zackenberg, Greenland

    Westermann, S.; Elberling, Bo; Pedersen, S. Højlund;


    The future development of ground temperatures in permafrost areas is determined by a number of factors varying on different spatial and temporal scales. For sound projections of impacts of permafrost thaw, scaling procedures are of paramount importance. We present numerical simulations of present...

  5. Utility of 222Rn as a passive tracer of subglacial distributed system drainage

    Linhoff, Benjamin S.; Charette, Matthew A.; Nienow, Peter W.; Wadham, Jemma L.; Tedstone, Andrew J.; Cowton, Thomas


    Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011 and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10-15 dpm L-1), decreasing by a factor of 2-5 (3-5 dpm L-1) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1-5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.

  6. Diatoms as an indicator for tile drainage flow in a German lowland catchment

    Wu, Naicheng; Faber, Claas; Ulrich, Uta; Schmalz, Britta; Fohrer, Nicola


    The separation of flow components within a model simulation is of great importance for a successful implementation of management measures. Tracers are commonly used to identify and assess runoff-generating processes and to detect sources of stream flow components within a target catchment. Diatoms could be an ideal tracer due to their diverse preferences to different aquatic habitats (van Dam et al. 1994, Pfister et al. 2009). As a part of a DFG (Deutsche Forschungsgemeinschaft) project, we collected diatom samples of 9 sites (4 tile drainage, and 5 river sites) weekly or biweekly from March to July 2013 in a German lowland catchment (the Kielstau catchment). First results showed that diatom species Achnanthes lanceolata, Fragilaria biceps and Navicula ingapirca dominated in tile drainage flow with relative abundances of 22.2%, 21.5% and 10.9%, respectively. For river sites, the most abundant species was Navicula cryptocephala (20.5%), followed by Fragilaria biceps (12.9%), Cyclotella meneghiniana (9.5%) and Achnanthes lanceolata (9.3%). Compared with river sites, tile drainage flow had lower diatom density, biomass, species richness and percentage of Aquatic/Riparian diatoms (AqRi%). However, the proportion of Riparian diatoms (RiZo%) increased at tile drainage flow. Indicator value method (IndVal) revealed that the two water types were characterized by different indicator species. Fifteen taxa (e.g. Cocconeis placentula, Cyclotella meneghiniana, Navicula cryptocephala and Fragilaria biceps) were significant indicators for river sites. Achnanthes lanceolata, Achnanthes minutissima and Navicula ingapirca were significant indicators for tile drainage flow. These results highlight the suitability of diatoms as an indicator for tile drainage flow. Spatial and temporal variations of diatom community should be considered in future surveys. Keywords: Diatoms, Flow components, Indicator value method, Tracer References: Pfister, L., J. J. McDonnell, S. Wrede, D. Hl

  7. Vascular riffle flora of Appalachian streams: the ecology and effects of acid mine drainage on Justificia americana (L. ) Vahl

    Koryak, M.; Reilly, R.J.


    Justicia americana is a stout-based colonial plant, abundant in most of the larger, low to moderate gradient streams of the upper Ohio River basin. The distribution of J. americana is related to acid drainage from bituminous coal mining operations in the upper Ohio River drainage basin. Possible fluvial and biological consequences of the colonization or absence of Justicia are considered. Luxuriant growths were noted on gravel bars and riffles of larger, unpolluted streams in the basin. Acid mine drainage severely depresses the growth of the plant, leaving gravel shoals and riffles in the acid streams either barren or dominated by other emergent species. Particular among these new species is Elecocharis acicularis. The elimination of J. americana from suitable habitat adversely affects channel morphology, substrate composition, general aesthetic quality and aquatic stream life in the region. 16 references, 2 figures, 3 tables.

  8. Subsurface old drainage detection and paleoenvironment analysis using spaceborne radar images in Alxa Plateau

    郭华东; 刘浩; 王心源; 邵芸; 孙岩


    For geological and environmental research in an arid area, a unique advantage of radar remote sensing is that radar wave can penetrate a certain layer of dry sand (a few centimeters to meters thick) to reach the buried bedrock. The penetration capability is able to reveal the subsurface geological structure and old drainage paths. Based on the analysis of SIR-A, SIR-B, SIR-C, Radarsat ScanSAR, Landsat MSS and Landsat TM images acquired on different dates and the investigations made in several field trips in Alxa Plateau of Inner Mongolia, a number of old river valley and lake basins buried by wind-blown sand were recognized. Two parallel old drainage systems in the north and middle of the study area are delineated. The study suggests that the moving sand belts mainly follow the old drainage courses. This study also establishes a preliminary drainage evolution model for an area of about 300 000 km2 since the Tertiary, and finds that the Alxa Plateau was once an area with many rivers and lakes with a warm

  9. Subsurface old drainage detection and paleoenvironment analysis using spaceborne radar images in Alxa Plateau


    For geological and environmental research in an arid area, a unique advantage of radar remote sensing is that radar wave can penetrate a certain layer of dry sand (a few centimeters to meters thick) to reach the buried bedrock. The penetration capability is able to reveal the subsurface geological structure and old drainage paths. Based on the analysis of SIR-A, SIR-B, SIR-C, Radarsat ScanSAR, Landsat MSS and Landsat TM images acquired on different dates and the investigations made in several field trips in Alxa Plateau of Inner Mongolia, a number of old river valley and lake basins buried by wind-blown sand were recognized. Two parallel old drainage systems in the north and middle of the study area are delineated. The study suggests that the moving sand belts mainly follow the old drainage courses. This study also establishes a preliminary drainage evolution model for an area of about 300 000 km2 since the Tertiary, and finds that the Alxa Plateau was once an area with many rivers and lakes with a warm and humid climate. The relief reversion caused by neotectonic movement since "Qinghai-Tibet movement" is also analyzed.

  10. Microbacter margulisiae gen. nov., sp. nov., a novel propionigenic bacterium isolated from sediments of an acid rock drainage pond

    Sanchez Andrea, I.; Luis Sanz, J.; Stams, A.J.M.


    A novel anaerobic propionigenic bacterium, strain ADRIT, was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4-0.6 x 1-1.7 µm), non-motile and non-spore forming rods. Cells possessed a Gram-negative cell wall structure and were vancomycin resista

  11. Environmental Inventory Report. East St. Louis and Vicinity, Cahokia Canal Drainage Area, Madison and St. Clair Counties, Illinois. Volume 4.


    coal in the present drainage area was found in 1807 by Trappist monks, who were then living at the Cahokia Mounds. They mined enough for their own...and Clark begin journey from Wood River 1807 Coal discovered in area by Trappist Monks 1809 Territory of Illinois established 1811 National Road begun

  12. Drainage network over the migrating front of dynamic uplift in Patagonia

    Jeandet, Louise; Robert, Xavier; Audin, Laurence; Husson, Laurent; Guillaume, Benjamin


    Dynamic topography disturbs the regional morphology at long wavelength and with very low topographic gradients. Nevertheless, fluvial erosion and the drainage pattern should respond to the spatial and temporal topographic variations. In Patagonia, the mid-Miocene, opening and northward migration of an asthenospheric window beneath the South American plate triggered a northward propagating wave of dynamic topography. Based on a morphometric analysis, we explore the long-wavelength response of the drainage system to the recent dynamics of the continental lithosphere. Our analysis of Patagonian rivers (stream profile analysis) and basins (R/Sr analysis) shows a transient state of the drainage network responding to a likely recent signal that prevails at the latitudes of the Chile Triple Junction in Argentina. Moreover, the distribution of the perturbation signal among the drainage network shows a South-to-North gradient, with the low Strahler order tributaries more affected with increasing latitudes. We interpret this observation as the differential timing of response to a Northward propagating signal of dynamic topography. We further use the geometry of the drainage network combined to numerical model predictions to infer the characteristic response time of the surface processes. While the main tributaries respond within ~1-3 Ma, the lower order remain disturbed for longer times. This observation is further supported by the persistently high mean elevation where incision is high, which we take as indicative of the fact that erosion has not yet thoroughly achieved its resurfacing action.

  13. Hydrologic connectivity: Quantitative assessments of hydrologic-enforced drainage structures in an elevation model

    Poppenga, Sandra; Worstell, Bruce B.


    Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation surface is needed for hydrodynamic modeling. In the Delaware River Basin, hydrologic-enforcement techniques were used to modify elevations to simulate how constructed drainage structures allow overland surface flow. By calculating residuals between unfilled and filled elevation surfaces, artificially pooled depressions that formed upstream of constructed drainage structure features were defined, and elevation values were adjusted by generating transects at the location of the drainage structures. An assessment of each hydrologically-enforced drainage structure was conducted using field-surveyed culvert and bridge coordinates obtained from numerous public agencies, but it was discovered the disparate drainage structure datasets were not comprehensive enough to assess all remotely located depressions in need of hydrologic-enforcement. Alternatively, orthoimagery was interpreted to define drainage structures near each depression, and these locations were used as reference points for a quantitative hydrologic-enforcement assessment. The orthoimagery-interpreted reference points resulted in a larger corresponding sample size than the assessment between hydrologic-enforced transects and field-surveyed data. This assessment demonstrates the viability of rules-based hydrologic-enforcement that is needed to achieve hydrologic connectivity, which is valuable for hydrodynamic models in sensitive coastal regions. Hydrologic-enforced elevation data are also essential for merging with topographic/bathymetric elevation data that extend over vulnerable urbanized areas and dynamic coastal

  14. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D


    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils.

  15. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B


    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  16. Gravity Drainage Kinetics of Papermaking Fibrous Suspensions

    Przybysz Piotr


    Full Text Available The study analyses application possibilities of filtration and thickening models in evaluation of papermaking suspension drainage rate. The authors proposed their own method to estimate the drainage rate on the basis of an existing Ergun capillary model of liquid flow through a granular material. The proposed model was less sensitive to porosity changes than the Ergun model. An empirical verification proved robustness of the proposed approach. Taking into account discrepancies in the published data concerning how the drainage velocity of papermaking suspension is defined, this study examines which of the commonly applied models matches experimental results the best.

  17. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins

    Pierson, Thomas C.; Major, Jon J.


    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  18. Drainage filter technologies to mitigate site-specific phosphorus losses in agricultural drainage discharge

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Canga, Eriona;

    Losses of phosphorus (P) in drainage waters contribute an estimated 33% to the total agricultural P load in Denmark. Mitigating agricultural P losses is challenging, as critical P losses comprise only a very small fraction of actual soil P contents and are not directly related to fertilizer P input...... in drainage. The Danish “SUPREME-TECH” project (2010-2016) ( aims at providing the scientific basis for developing cost-effective filter technologies for P in agricultural drainage waters. The project studies different approaches of implementing filter technologies including drainage well...... the occurrence of surface-induced precipitation processes. The P-retention efficiency of granular drainage filters and constructed wetlands was compared for treating drainage water, and a subcatchment analysis illustrated the potential of implementing such measures....

  19. Fractal Analysis of Drainage Basins on Mars

    Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.


    We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.

  20. Results of percutaneous transhepatic cholangiography drainages (PTCD)

    Schoenemann, J.; Willems, M.; Wolf, G.; Fromme, M.


    From September 1980 to December 1986, 72 percutaneous transhepatic cholangiography drainages (PTCD) were performed in 64 patients (58 palliative in malignant obstructions, 14 temporary). The median duration of drainage was 26.8 days (2-183 days). The median survival time in 37 patients with palliative tumour drainage was 55.3 days (7-473 days). 9/37 patients survived longer than 3 months (max. 15.5 months). Complications occurred in 29.5% (10.3% severe). 3/64 patients (4.7%) died. Patients with palliative transpapillary drainages (23), especially with endoprostheses (14), survived longer, and the complication rate was lower. Therefore, we prefer the endoscopic transpapillary approach. PTCD patients must be selected carefully.

  1. Fractal Analysis of Drainage Basins on Mars

    Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.


    We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.

  2. Quantifying modern and ancient drainage basin erosion with detrital thermochronology

    Ehlers, T. A.; Stock, G. M.; Rahl, J. M.; Farley, K. A.; van der Pluijm, B. A.


    Studies of drainage basin erosion and landform evolution are often limited by not knowing where sediment is sourced from and how erosion rates vary over different time scales. Detrital thermochronometer cooling ages collected from modern river sediments and basin deposits provide a promising tool to address these problems. We present two applications of detrital thermochronology to quantify: (1) spatial variations in erosion using modern river sediments; and (2) temporal variations in erosion calculated using syntectonic sedimentary deposits. In our first application, the elevation dependence of detrital apatite (U-Th)/He (AHe) ages is used to track the elevations where sediment is produced from bedrock. The ages are measured in river sediments from the mouth of two catchments in the Sierra Nevada, California, and used as sediment tracers to quantify spatial variations in erosion. We measured ~54 AHe single grain ages from each catchment. Measured AHe age probability density functions (PDFs) were compared with predicted PDFs, calculated by convolving catchment hypsometry with bedrock age-elevation relationships. Statistical comparison of the PDFs evaluates the spatial distribution of erosion in the catchments. Predicted and observed PDFs are statistically identical for the nonglaciated Inyo Creek catchment, indicating uniform erosion. However, a statistically significant lack of older ages is observed in the recently deglaciated Lone Pine catchment, suggesting sediment is derived from the lower half of the catchment; possibly due to sediment storage at higher elevations and/or enhanced erosion at intermediate elevations. Second, we evaluate the ability of detrital thermochronology to record transients in drainage basin erosion on million year time scales. A transient 1D thermal model is used to predict cooling ages in a syntectonic stratigraphic section where sediment is sourced from a region with temporally variable erosion. In simulations with transient erosion

  3. Percutaneous drainage of pelvic fluid collection

    Lee, Eun Young; Sohn, Cheol Ho [School of Medicine Keimyung University, Daegu (Korea, Republic of)


    To evaluate safe access route and success rate of percutaneous drainage of pelvic fluid collection. The 35 percutaneous drainages of pelvic fluid collection under the CT and fluorosocpic guidance were done in 32 patients. The anterior transabdominal approach was done in 20 patients, while the nine patients used the transgluteal approach through greater sciatic foramen. Three patients, who had septated or noncommunicating abscesses, underwent drainage using both approaches. The catheter was removed when the patient's symptom and laboratory data were improved or the amount of drainage and the size of fluid collection were markedly reduced. Success, partial success and failure were classified. The causes of fluid collection were complication of intraabdominal operation in 27 patient. The diagnosis after drainage included abscess (21), loculated ascites (6), and hematoma (4). The 27 cases (30 procedure) were treated successfully and the mean duration of catheter insertion was 10 days. The partial successes were two cases (2 procedures), which had palliative purpose. Three cases (3 procedures) were failed, which were multiple loculated ascites of pancreatic origin (2) and recurrent abscess (1). The significant complication during the procedure or drainage was not noted.

  4. 46 CFR 171.155 - Drainage of an open boat.


    ... PERTAINING TO VESSELS CARRYING PASSENGERS Drainage of Weather Decks § 171.155 Drainage of an open boat. The deck within the hull of an open boat must drain to the bilge. Overboard drainage of the deck is not... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of an open boat. 171.155 Section 171.155...

  5. Comparative Analysis between Early-planting and Summer-planting Flue-cured Tabocco in Drainage Area of Longchuan River of the Irrawaddy River Branch%伊洛瓦底江支流保山龙川江流域冬春季早植烤烟与夏烟两种生产时令的气象因子比较分析

    何晓健; 方志存; 杨野; 李佛琳; 杨焕文; 范业晨; 胡定邦; 邵维雄; 杨中义; 崔宇翔; 杨悦章


    In order to clarify the climatic characteristics discipline of early-planting flue-cured tobacco production of low thermal valley area in Baoshan, provide a basis for drawing up scientific and reasona-ble regulatory technical measures of high quality early-planting tobacco production, light, heat, rainfall condition etc natural climatic conditions of early-planting tobacco during field period from January to July and summer-planting tobacco from May to September in drainage area of Long chuan river of the Irrawaddy River branch were compared and analyzed. The results showed that; (1) Baoshan were characterized by typical low weft plateau monsoon climate. Its thermal was rich, especially sunshine and heat natural conditions of low thermal valley area in Baoshan were generally suitable for the annual high quality tobacco leaves production. (2) Heat and water conditions of summer-planting tobacco were better than conditions of early-planting tobacco, ≥10℃ active accumulated temperature, ≥10℃ effective accumulated temperature, average temperature, maximum temperature ( day temperature ) , minimum temperature ( night temperature) , rainfall, relative humidity of summer-planting tobacco were higher 7. 0% , 27. 5% ,4.4℃, 2.7℃. , 6.5℃, 27. 4% and 9% , respectively, while difference in day temperature, duration of sunshine during field period and sunshine rate of early-planting tobacco were higher 3. 9℃, 1. 6h/d and 17. 5% than summer-planting tobacco, respectively. Except rainfall of summer-planting tobacco of the third and the forth months during the whole field period was more, variation range of rainfall, air temperature, sunshine duration of other months changed stably, while early-planting tobacco changed greatly as time after transplanting, rainfall and air temperature gradually increased, sunshine duration gradually reduced. (3) Flue-cured tobacco production of early-planting tobacco in winter existed certain chilling injury low temperature etc risk

  6. [The value of wound drainage with or without suction].

    Schmidt, J; Hasselbach, A; Schnorr, W; Baranek, T; Letsch, R


    Even though the discussion for desisting from wound drainage has arisen, this is not reflected in the reality of surgical treatment. In more than 90% of all procedures wound drainage is used. It remains to be proven whether suction drainage actually is superior to gravity drainage in everyday use. In a random study with 200 patients it was proven that suction drainage shows no significant advantage in liquid quantum, haematoma and the frequency of complications. We conclude that the economically favourable gravity drainage can replace the more expensive suction drainage in most cases.

  7. Failures and complications of thoracic drainage

    Đorđević Ivana


    Full Text Available Background/Aim. Thoracic drainage is a surgical procedure for introducing a drain into the pleural space to drain its contents. Using this method, the pleura is discharged and set to the physiological state which enables the reexpansion of the lungs. The aim of the study was to prove that the use of modern principles and protocols of thoracic drainage significantly reduces the occurrence of failures and complications, rendering the treatment more efficient. Methods. The study included 967 patients treated by thoracic drainage within the period from January 1, 1989 to June 1, 2000. The studied patients were divided into 2 groups: group A of 463 patients treated in the period from January 1, 1989 to December 31, 1994 in whom 386 pleural drainage (83.36% were performed, and group B of 602 patients treated form January 1, 1995 to June 1, 2000 in whom 581 pleural drainage (96.51% were performed. The patients of the group A were drained using the classical standards of thoracic drainage by the general surgeons. The patients of the group B, however, were drained using the modern standards of thoracic drainage by the thoracic surgeons, and the general surgeons trained for this kind of the surgery. Results. The study showed that better results were achieved in the treatment of the patients from the group B. The total incidence of the failures and complications of thoracic drainage decreased from 36.52% (group A to 12.73% (group B. The mean length of hospitalization of the patients without complications in the group A was 19.5 days versus 10 days in the group B. The mean length of the treatment of the patients with failures and complications of the drainage in the group A was 33.5 days versus 17.5 days in the group B. Conclusion. The shorter length of hospitalization and the lower morbidity of the studied patients were considered to be the result of the correct treatment using modern principles of thoracic drainage, a suitable surgical technique, and a

  8. Nonlinear analysis of drainage systems to examine surface deformation: an example from Potwar Plateau (Northern Pakistan)

    Shahzad, F.; Mahmood, S. A.; Gloaguen, R.


    We devise a procedure in order to characterize the relative vulnerability of the Earth's surface to tectonic deformation using the geometrical characteristics of drainage systems. The present study focuses on the nonlinear analysis of drainage networks extracted from Digital Elevation Models in order to localize areas strongly influenced by tectonics. We test this approach on the Potwar Plateau in northern Pakistan. This area is regularly affected by damaging earthquakes. Conventional studies cannot pinpoint the zones at risk, as the whole region is characterized by a sparse and diffuse seismicity. Our approach is based on the fact that rivers tend to linearize under tectonic forcing. Thus, the low fractal dimensions of the Swan, Indus and Jehlum Rivers are attributed to neotectonic activity. A detailed textural analysis is carried out to investigate the linearization, heterogeneity and connectivity of the drainage patterns. These textural aspects are quantified using the fractal dimension, as well as lacunarity and succolarity analysis. These three methods are complimentary in nature, i.e. objects with similar fractal dimensions can be distinguished further with lacunarity and/or succolarity analysis. We generate maps of fractal dimensions, lacunarity and succolarity values using a sliding window of 2.5 arc minutes by 2.5 arc minutes (2.5'×2.5'). These maps are then interpreted in terms of land surface vulnerability to tectonics. This approach allowed us to localize several zones where the drainage system is highly structurally controlled on the Potwar Plateau. The region located between Muree and Muzaffarabad is found to be prone to destructive events whereas the area westward from the Indus seems relatively unaffected. We conclude that a nonlinear analysis of the drainage system is an efficient additional tool to locate areas likely to be affected by massive destructing events affecting the Earth's surface and therefore threaten human activities.

  9. Nonlinear analysis of drainage systems to examine surface deformation: an example from Potwar Plateau (Northern Pakistan

    F. Shahzad


    Full Text Available We devise a procedure in order to characterize the relative vulnerability of the Earth's surface to tectonic deformation using the geometrical characteristics of drainage systems. The present study focuses on the nonlinear analysis of drainage networks extracted from Digital Elevation Models in order to localize areas strongly influenced by tectonics. We test this approach on the Potwar Plateau in northern Pakistan. This area is regularly affected by damaging earthquakes. Conventional studies cannot pinpoint the zones at risk, as the whole region is characterized by a sparse and diffuse seismicity. Our approach is based on the fact that rivers tend to linearize under tectonic forcing. Thus, the low fractal dimensions of the Swan, Indus and Jehlum Rivers are attributed to neotectonic activity. A detailed textural analysis is carried out to investigate the linearization, heterogeneity and connectivity of the drainage patterns. These textural aspects are quantified using the fractal dimension, as well as lacunarity and succolarity analysis. These three methods are complimentary in nature, i.e. objects with similar fractal dimensions can be distinguished further with lacunarity and/or succolarity analysis. We generate maps of fractal dimensions, lacunarity and succolarity values using a sliding window of 2.5 arc minutes by 2.5 arc minutes (2.5'×2.5'. These maps are then interpreted in terms of land surface vulnerability to tectonics. This approach allowed us to localize several zones where the drainage system is highly structurally controlled on the Potwar Plateau. The region located between Muree and Muzaffarabad is found to be prone to destructive events whereas the area westward from the Indus seems relatively unaffected. We conclude that a nonlinear analysis of the drainage system is an efficient additional tool to locate areas likely to be affected by massive destructing events affecting the Earth's surface and therefore threaten human

  10. The "normal" elongation of river basins

    Castelltort, Sebastien


    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  11. Environmental contaminants in fish and wildlife of the Lower Gila River, Arizona

    US Fish and Wildlife Service, Department of the Interior — Levels and potential effects of pesticides and metals on fish and wildlife of the lower Gila River and associated agricultural drainage canals in Maricopa County,...

  12. Organochlorine pesticides in fishes and sediments from the Tensas River Basin, Lousiana

    US Fish and Wildlife Service, Department of the Interior — The aquatic habitats of the Tensas River Basin in northeastern Louisiana have been heavily impacted by sediment and agrichemical runoff due to intensive drainage,...

  13. Spring staging waterfowl on the Naknek River, Alaska Peninsula, Alaska, March-May 2005

    US Fish and Wildlife Service, Department of the Interior — A survey of spring staging waterfowl on the Naknek River in the Bristol Bay drainage, Alaska Peninsula, Alaska, was conducted from 17 March – 18 May, 2005....

  14. Trace elements and organic compounds in the Spring River Basin of southeastern Kansas in 1988

    US Fish and Wildlife Service, Department of the Interior — We sampled sediments and aquatic biota at five locations in the Spring River drainage in southeastern Kansas. The samples were analyzed for metals, organochlorine...

  15. Inferring tectonic activity using drainage network and RT model: an example from the western Himalayas, India

    Sahoo, Ramendra; Jain, Vikrant


    Morphology of the landscape and derived features are regarded to be an important tool for inferring about tectonic activity in an area, since surface exposures of these subsurface processes may not be available or may get eroded away over time. This has led to an extensive research in application of the non-planar morphological attributes like river long profile and hypsometry for tectonic studies, whereas drainage network as a proxy for tectonic activity has not been explored greatly. Though, significant work has been done on drainage network pattern which started in a qualitative manner and over the years, has evolved to incorporate more quantitative aspects, like studying the evolution of a network under the influence of external and internal controls. Random Topology (RT) model is one of these concepts, which elucidates the connection between evolution of a drainage network pattern and the entropy of the drainage system and it states that in absence of any geological controls, a natural population of channel networks will be topologically random. We have used the entropy maximization principle to provide a theoretical structure for the RT model. Furthermore, analysis was carried out on the drainage network structures around Jwalamukhi thrust in the Kangra reentrant in western Himalayas, India, to investigate the tectonic activity in the region. Around one thousand networks were extracted from the foot-wall (fw) and hanging-wall (hw) region of the thrust sheet and later categorized based on their magnitudes. We have adopted the goodness of fit test for comparing the network patterns in fw and hw drainage with those derived using the RT model. The null hypothesis for the test was, the drainage networks in the fw are statistically more similar than those on the hw, to the network patterns derived using the RT model for any given magnitude. The test results are favorable to our null hypothesis for networks with smaller magnitudes (< 9), whereas for larger

  16. Phylogeographic Analysis of Blastomyces dermatitidis and Blastomyces gilchristii Reveals an Association with North American Freshwater Drainage Basins.

    Lisa R McTaggart

    Full Text Available Blastomyces dermatitidis and Blastomyces gilchristii are dimorphic fungal pathogens that cause serious pulmonary and systemic infections in humans. Although their natural habitat is in the environment, little is known about their specific ecologic niche(s. Here, we analyzed 25 microsatellite loci from 169 strains collected from various regions throughout their known endemic range in North America, representing the largest and most geographically diverse collection of isolates studied to date. Genetic analysis of multilocus microsatellite data divided the strains into four populations of B. dermatitidis and four populations of B. gilchristii. B. dermatitidis isolates were recovered from areas throughout North America, while the B. gilchristii strains were restricted to Canada and some northern US states. Furthermore, the populations of both species were associated with major freshwater drainage basins. The four B. dermatitidis populations were partitioned among (1 the Nelson River drainage basin, (2 the St. Lawrence River and northeast Atlantic Ocean Seaboard drainage basins, (3 the Mississippi River System drainage basin, and (4 the Gulf of Mexico Seaboard and southeast Atlantic Ocean Seaboard drainage basins. A similar partitioning of the B. gilchristii populations was observed among the more northerly drainage basins only. These associations suggest that the ecologic niche where the sexual reproduction, growth, and dispersal of B. dermatitidis and B. gilchristii occur is intimately linked to freshwater systems. For most populations, sexual reproduction was rare enough to produce significant linkage disequilibrium among loci but frequent enough that mating-type idiomorphic ratios were not skewed from 1:1. Furthermore, the evolutionary divergence of B. dermatitidis and B. gilchristii was estimated at 1.9 MYA during the Pleistocene epoch. We suggest that repeated glaciations during the Pleistocene period and resulting biotic refugia may have

  17. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  18. Drainage integration and sediment dispersal in the actively extending central Italian Apennines

    Geurts, Anneleen H.; Cowie, Patience A.; Huismans, Ritske S.; Gawthorpe, Robert L.; Wedmore, Luke; Duclaux, Guillaume


    Evidence for re-organisation of river networks during crustal extension is observed in many (active and ancient) rifts around the world. In the actively extending central Italian Apennines, drainage integration is evidenced by the cessation of lake sedimentation in hangingwall basins and the development of drainage systems that extend from the interior of the mountain belt to the coast. We combine field data from this area on normal fault development and regional surface uplift within a landscape evolution model to investigate the process of drainage integration and its impact on regional sediment dispersal under a range of erosional conditions. We use the numerical model CASCADE (developed by Braun and Sambridge) for calculating fluvial erosion/deposition and lake filling in response to normal faulting. The fault-related topography is simulated by means of a linear elastic dislocation model, using a published map of active faults in the area. Regional surface uplift is constrained from published field observations of paleoshorelines and basin stratigraphy. Using this modeling approach we demonstrate the phenomenon of drainage integration, showing how it leads to the gradual disappearance of lakes and the transition to an inter-connected fluvial transport system. While headward erosion is often considered as the main underlying mechanism, our model results suggest a key role for basin over-filling and lake over-spilling and we discuss its implications for regional drainage network evolution. We also demonstrate how drainage integration leads to a sudden change in sediment dispersal patterns and the progressive removal of sediment from the rift interior. Overall, we use our numerical models to discuss the relative importance of tectonics and surface processes for long-term landscape evolution in the central Italian Apennines and put published field observations (e.g. local depositional patterns in rift basins) in a regional and long-term tectonic perspective.

  19. River engineering

    De Vries, M.


    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  20. Urban Drainage Modeling and Flood Risk Management

    Schmitt, Theo G.; Thomas, Martin

    The European research project in the EUREKA framework, RisUrSim (Σ!2255) has been worked out by a project consortium including industrial mathematics and water engineering research institutes, municipal drainage works as well as an insurance company. The overall objective has been the development of a simulation to allow flood risk analysis and cost-effective management for urban drainage systems. In view of the regulatory background of European Standard EN 752, the phenomenon of urban flooding caused by surcharged sewer systems in urban drainage systems is analyzed, leading to the necessity of dual drainage modeling. A detailed dual drainage simulation model is described based upon hydraulic flow routing procedures for surface flow and pipe flow. Special consideration is given to the interaction between surface and sewer flow in order to most accurately compute water levels above ground as a basis for further assessment of possible damage costs. The model application is presented for small case study in terms of data needs, model verification, and first simulation results.

  1. Geomorphological analysis of the drainage system on the active convergent system in Azerbaijan, NW Iran

    Kaveh Firouz, Amaneh; Burg, Jean-Pierre; Giachetta, Emanuele


    Rivers are important landforms to reconstruct recent tectonic history because they are sensitive to surface movements, especially uplift and tilting. The most important drainage basins of NW Iran are, from north to south, the Arax River, the Urmia Lake and the Ghezel Ozan River catchment. The morphology of the two adjacent catchments draining into the Caspian Sea, the Arax and Ghezel Ozan were studied to better understand the active tectonics and the effect of fault activity on morphology and erosion rate of NW Iran. We performed a quantitative analysis of channel steepness and concavity, from slope-area plots calculated from digital elevation model. This information has been combined with GPS velocity vectors and seismicity. Both catchments developed under uniform climate conditions. Results show that the two rivers are in morphological disequilibrium; they exhibit profiles with prominent convexities and knickpoints. The Arax River shows higher channel steepness and concavity index in downstream part of the profile. Distribution of knickpoints show scattered elevation between 700m and 3000m. GPS rates display shortening 10 ± 2 mma-1 and 14 ± 2 mma-1 in upstream and downstream, respectively. The river profiles of Ghezel Ozan River and its tributaries reveal more disequilibrium downstream where channel steepness and concavity index are higher than upstream. Most knickpoints occur between 1000m and 2000m. The amount of shortening by GPS measurement changes from upstream 13 ± 2 mma-1to downstream 14 ± 2 mma-1. Recorded earthquakes, such as Rudbar earthquake (Mw=7.3, 1990), are more frequent downstream. The Urmia Lake is surrounded by many small and large catchments. Only major catchments were considered for the analysis. One of the most active faults, the north Tabriz fault, corresponds to a major knickpoints on the Talkhe rud River. Concordance between river profile analysis, GPS and seismotectonic records suggests that the characteristics of the river profiles

  2. Evolution of drainage systems and its developing trend in connection with tectonic uplift of Eastern Kunlun Mt.


    The Eastern Kunlun Mt. had been subjected to uplift together with the Qinghai-Xizang (Tibet) Plateau before the Early Pleistocene, but yet the Mt. did not protrude out of the Plateau surface. During that period lakes spread all over the studied region, with the drainage systems being all short rivers flowing into the lakes. At the end of the Early Pleistocene, intensive tectonic uplift led to the rising of the Eastern Kunlun Mt. and made the Mt. protrude onto the Plateau surface. As a result, a fault depression valley formed extending nearly from west to east along the fault belt of the Southern Kunlun Mt. Lakes in this region died out, surface runoffs joined into the valley of the Southern Kunlun Mt. resulting in a large river streaming nearly from west to east. Around 150 kaBP, because of the strong differential movement, rivers, such as the Jialu River and the Golmud River, retrogressively eroded seriously, cutting through the Burhan Budai Mt. Then they pirated the large river and divided it into four portions. Owing to the uplift of the Eastern Kunlun Mt., strongly retrogressive erosion of the upper reaches of the Jialu River has made the watershed of the Buqingshan Mt. migrate 6-10 km southward since Holocene. At present, it still remains a stronger trend of retrogressive erosion developing upward to the basin of the Yellow River Source and it seems that the Jialu River is scrambling for the streamhead of the Yellow River.

  3. Autogenic Drainage in Children With Cystic Fibrosis.

    Corten, Lieselotte; Morrow, Brenda M


    Airway clearance is an essential part of the management of cystic fibrosis (CF) as it facilitates clearance of viscous pulmonary secretions. This review aimed to determine the effect of autogenic drainage (AD) and assisted autogenic drainage (AAD) compared with no, sham, or other types of airway clearance in children with CF. Two pediatric randomized cross-over trials were identified on the use of AD in children with CF; no studies were available on the use of AAD. In one study AD had a positive influence on the Huang score, and is preferred over postural drainage in this population. We could not determine the efficacy of AD and AAD in children with CF. We recommend the implementation of pediatric-specific randomized controlled trials with adequate sample sizes, appropriate clinical outcome measures, and analysis of adverse effects.

  4. [Methods of internal drainage of pancreatic pseudocysts].

    Starkov, Yu G; Solodinina, E N; Zamolodchikov, R D


    To present own experience of internal drainage and characteristics of its different variants which are applied in various countries. Endosonography-assisted internal drainage of pancreatic pseudocysts was performed in 25 patients. Plastic stents were implanted in one stage without change of instruments while metal stents - with change of instruments during manipulation. Intervention was successful in 24 patients. In 1 case bleeding developed during cystostomy that required open surgery. Plastic and metal stents were used in 11 and 12 patients respectively. 1 patient had two pancreatic pseudocysts. Therefore 2 stents of both types were used in this case. Clinical success was achieved in 91% of cases. Different variants of method resolve problem of surgical approach, stomy and choice of stent. However every technique is targeted to resolve separate problem while single method is not accepted. Further large comparative studies are necessary to define optimal technique of internal drainage.

  5. Percutaneous epidural drainage through a burr hole

    Priscila M Falsarella


    Full Text Available Intracranial extradural collection may cause an increase in intracranial pressure, requiring rapid emergency treatment to reduce morbidity and mortality. We described an alternative CT-guided percutaneous access for extradural collection drainage. We report a case of a patient with previous craniectomy for meningioma ressection who presented to the Emergency Department with symptoms of intracranial hypertension. Brains CT showed a extradural collection with subfalcine herniation. After multidisciplinary discussion a CT-guided percutaneous drainage through previous burr hole was performed. The patient was discharged after 36 hours of admission, without further symptoms. We describe a safe and effective alternative percutaneous access for extradural collection drainage in patients with previous burr hole.

  6. Curonian Lagoon drainage basin modelling and assessment of climate change impact

    Natalja Čerkasova


    Full Text Available The Curonian Lagoon, which is the largest European coastal lagoon with a surface area of 1578 km2 and a drainage area of 100,458 km2, is facing a severe eutrophication problem. With its increasing water management difficulties, the need for a sophisticated hydrological model of the Curonian Lagoon's drainage area arose, in order to assess possible changes resulting from local and global processes. In this study, we developed and calibrated a sophisticated hydrological model with the required accuracy, as an initial step for the future development of a modelling framework that aims to correctly predict the movement of pesticides, sediments or nutrients, and to evaluate water-management practices. The Soil and Water Assessment Tool was used to implement a model of the study area and to assess the impact of climate-change scenarios on the run-off of the Nemunas River and the Minija River, which are located in the Curonian Lagoons drainage basin. The models calibration and validation were performed using monthly streamflow data, and evaluated using the coefficient of determination (R2 and the Nash-Sutcliffe model efficiency coefficient (NSE. The calculated values of the R2 and NSE for the Nemunas and Minija Rivers stations were 0.81 and 0.79 for the calibration, and 0.679 and 0.602 for the validation period. Two potential climate-change scenarios were developed within the general patterns of near-term climate projections, as defined by the Intergovernmental Panel on Climate Change Fifth Assessment Report: both pessimistic (substantial changes in precipitation and temperature and optimistic (insubstantial changes in precipitation and temperature. Both simulations produce similar general patterns in river-discharge change: a strong increase (up to 22% in the winter months, especially in February, a decrease during the spring (up to 10% and summer (up to 18%, and a slight increase during the autumn (up to 10%.

  7. Complex Drainage Response To Migrating Tectonic Uplift: Example From The Northern California Coast Ranges

    Lock, J.; Furlong, K. P.

    Migration of the Mendocino triple junction in northern California produces rapid and dramatic changes in the processes and patterns of crustal deformation. In response to this tectonism, the river systems of the northern California Coast Ranges have devel- oped a complex drainage history and pattern. The tectonic response to this migrating triple junction is described by the Mendocino Crustal Conveyor model (MCC), which predicts a spatially and temporally varying pattern of crustal deformation and up- lift. We use a combination of geomorphic and geophysical observations, coupled with landscape evolution modeling to develop the links between the geomorphic observa- tions in the Coast Ranges and the uplift/subsidence pattern predicted by the MCC. In contrast to many previous landscape evolution studies that find that streams typically cut through or are diverted around growing structures, in the northern California Coast Ranges drainage reversal and stream capture appear to be the response to tectonism. Our landscape evolution modeling shows that the uplift predicted by the MCC pro- duces: (1) a topographic gradient that switches from trending northwest to southeast, causing streams that at first flow to the northwest to reverse and drain to the south- east, (2) drainage divides that migrate in concert with the triple junction, and (3) river evolution that will result in fish hooked drainage patterns, all characteristics similar to those observed in the Northern California Coast Ranges. The uplift/subsidence pat- tern in the northern Coast Ranges is further complicated by the interaction of a second tectonic driver - the Pioneer fragment. The Pioneer fragment migrates with the Pacific (south of the triple junction) and creates a mini-slab window, adjacent to the coast, to produce a superimposed secondary uplift/subsidence pattern. The effects of this Pioneer related uplift are recorded by the Eel River. Key to the complex evolution of river systems in northern

  8. Monitoring the mining effect at drainage basin level using geoinformation technologies

    Naydenova, Vanya; Roumenina, Eugenia


    One of the priority lines of modern regional policy with regard to mining is a territory's sustainable use. One of the key issues is the development of local level monitoring systems to assess and control territories that are subject to intensive anthropogenic activity. The current work proposes a developed geodatabase model for remote sensing and ground-based monitoring of the effects of coal mining at drainage level using geoinformation technologies. Based on this model, the Kutina geographic information system for the drainage basin of the Kutina River has been constructed. The geodatabase is open and may be updated and supplemented with other types of information. This is the first monitoring of coal mining's anthropogenic impact on the land cover and the Kutina Pyramids natural landmark carried out on the territory of the Kutina River drainage basin, Bulgaria. It may assist local level managerial decision-making, among others. Generation of landslide processes and self-ignition of coal layers has been identified as well. The recorded change in the hydrographic network resulting from the performed open coal extraction affects directly the change of the erosion basis. Its increase enhances lateral erosion at the expense of vertical, which is one of the major causes for the Kutina Pyramids natural landmark's degradation.

  9. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.


    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  10. Re-engineering the urban drainage system for resource recovery and protection of drinking water supplies.

    Gumbo, B


    The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.

  11. Gas drainage technology of high gas and thick coal seam

    HE Tian-cai; LI Hai-gui; ZHANG Hai-jun


    Gas drainage in Jincheng Mining Group Co., Ltd. was introduced briefly and the importance of gas drainage in gas control was analyzed. Combined with coal-bed gas oc-currence and gas emission, the double system of gas drainage was optimized and a pro-gressive gas drainage model was experimented on. For guaranteed drainage, excavation and mining and realization of safety production and reasonable exploitation of gas in coal seams, many drainage methods were adopted to solve the gas problem of the working face.

  12. Determination of uranium and {sup 2}10Po in the river Odiel to assess the radioactive impact of acid mine drainage; Determinacion de uranio y {sup 2}10Po en el rio Odiel para valorar el impacto radiactivo de los drenajes acidos mineros

    Manjon, G.; Lehritani, M.; Mantero, J.; Diaz Frances, I.; Garcia-Tenorio, R.


    Since 1986 this research group has been monitoring of radioactive environmental impact in the estuary of the river Odiel, generated by the factories of production of phosphoric acid from Huelva, that emitting NORM waste. Once closed factories, is observed a second source of contamination: mining drains. To verify this source have been studied concentration levels of natural radionuclides in the waters and sediments of the river Odiel, in areas that are incorporated drains. (Author)

  13. Drainage Characteristics of Tectonically Active Areas: An Example from Rajasthan, India



    Full Text Available The morphotectonic studies help in deciphering the role of tectonics and neotectonics in morphological evolution of drainage basins. On the basis of remote sensing technique, the relationship between morphology and tectonics have been investigated in Bundi-Indergarh sector of southeast Rajasthan. The area selected for present study is drained by Mej river and its tributaries and occupies the southeastern part of the Aravalli Mountain Range (AMR. The course of Mej river is mostly controlled by the Great Boundary Thrust (GBT and associated tectonic elements. GBT separates the folded, faulted and metamorphosed older rocks of the AMR in the west and relatively undeformed Vindhyan rocks in the east. This study has been carried out using digital and hard copy product of IRS 1C/1D LISS III geocoded FCC data. The morphometric and morphotectonic aspects have been studied for identification of present day tectonic activities in the area. The remote sensing data interpretation indicates that the landforms of the area are structurally controlled and mainly covered by linear and parallel strike ridges and valleys. These valleys indicate sign of stream rejuvenation and occasional presence of dynamic ravines. General morphometric parameters, bifurcation ratio, stream length and shape parameters have been computed. Longitudinal river profiles can be quantified by normalizing the elevation and the distance along rivers. Several parameters such as profile shape (concavity, gradient fluctuations, river grade and valley incision have been derived from longitudinal river profile. These quantified parameters and their interrelations are useful in comparing different drainage basins and also help drawing inferences on neotectonism. The computed values suggest that the area is covered by resistant rock and drainage network, affected by tectonic distur-bance. The valley floor ratio is very low, indicating channel down cutting vis-a-vis ground uplift. The gradient index

  14. Urban drainage models - making uncertainty analysis simple

    Vezzaro, Luca; Mikkelsen, Peter Steen; Deletic, Ana


    There is increasing awareness about uncertainties in modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modif...

  15. 24 CFR 3280.610 - Drainage systems.


    ... designs the system for site assembly and also provides all materials and components, including piping... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Drainage systems. 3280.610 Section 3280.610 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued...

  16. Reality named endoscopic ultrasound biliary drainage

    Hugo; Gon?alo; Guedes; Roberto; Iglesias; Lopes; Joel; Fernandez; de; Oliveira; Everson; Luiz; de; Almeida; Artifon


    Endoscopic ultrasound(EUS) is used for diagnosis and evaluation of many diseases of the gastrointestinal (GI) tract. In the past, it was used to guide a cholangio-graphy, but nowadays it emerges as a powerful thera-peutic tool in biliary drainage. The aims of this review are: outline the rationale for endoscopic ultrasound-guided biliary drainage(EGBD); detail the procedural technique; evaluate the clinical outcomes and limitations of the method; and provide recommendations for the practicing clinician. In cases of failed endoscopic retro-grade cholangiopancreatography(ERCP), patients are usually referred for either percutaneous transhepatic biliary drainage(PTBD) or surgical bypass. Both these procedures have high rates of undesirable complications. EGBD is an attractive alternative to PTBD or surgery when ERCP fails. EGBD can be performed at two locations: transhepatic or extrahepatic, and the stent can be inserted in an antegrade or retrograde fashion. The drainage route can be transluminal, duodenal or trans-papillary, which, again, can be antegrade or retrograde [rendezvous(EUS-RV)]. Complications of all techniques combined include pneumoperitoneum, bleeding, bile leak/peritonitis and cholangitis. We recommend EGBD when bile duct access is not possible because of failed cannulation, altered upper GI tract anatomy, gastric outlet obstruction, a distorted ampulla or a periampullary diverticulum, as a minimally invasive alternative to surgery or radiology.

  17. [Artificial drainage devices--history, indications].

    Barac, Ileana Ramona; Pop, Monica


    Glaucoma is a degenerative optic neuropathy progressive, multifactorial, which can lead to blindness. Blindness in patients with glaucoma is defined as visual field reduction below 10 degrees. Artificial drainage systems are a solution for refractory to medication, laser treatment or conventional surgery. Used by over 100 years, improved with good surgical technique and careful patient follow-up surgery, postoperative results are satisfactory.

  18. Optimizing the closed suction surgical drainage system.

    Carruthers, Katherine H; Eisemann, Bradley S; Lamp, Susan; Kocak, Ergun


    Closed suction drains are indicated in a wide array of postoperative settings, with many distinct drainage systems available to the surgeon. The purpose of this study was to compare the suction gradients achieved using 2 different sizes of suction reservoirs and 2 different techniques for generating negative pressure. Drainage reservoirs of 100 and 400 ml were chosen to evaluate their ability to achieve suction. Suction was established in both sizes of drains by pressing the sides of the reservoir together or by pushing the bottom of the reservoir toward the top. Negative pressures were recorded with the reservoir empty, and after every 10-ml addition of saline. Averages were graphed to illustrate the applied suction over a range of drain volumes. The 100-ml drainage system reached a peak suction of -117.6 mmHg, while the 400-ml drainage system reached only a peak suction of -71.4 mmHg. Both of the maximum suction readings were achieved using the full-squeeze technique. The bottom-pushed-in technique did not result in any sustained measurable levels of suction using either of the reservoir volumes. Smaller drain reservoirs are more successful in generating a high initial suction than larger reservoirs, especially when the volume of fluid in the drain is relatively low. In all sizes of drains, compressing the sides of the reservoir is a far better technique for establishing negative pressure than pressing the bottom of the drain up toward the top.

  19. Selecting the drainage method for agricultural land

    Bos, M.G.


    To facilitate crop growth excess water should be drained from the rooting zone to allow root development of the crop and from the soil surface to facilitate access to the field. Basically, there are three drainage methods from which the designer can select being; surface drains, pumped tube wells an

  20. Drainage hydraulics of permeable friction courses

    Charbeneau, Randall J.; Barrett, Michael E.


    This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.

  1. Interventional radiology in the lacrimal drainage system

    Ilgit, Erhan T. [Department of Radiology, School of Medicine, Gazi University, Besevler 06510, Ankara (Turkey)]. E-mail:; Oenal, Baran [Department of Radiology, School of Medicine, Gazi University, Besevler 06510, Ankara (Turkey); Coskun, Bilgen [Department of Radiology, School of Medicine, Gazi University, Besevler 06510, Ankara (Turkey)


    This article presents a review of the interventional radiological procedures in the lacrimal drainage system. Balloon dacryocystoplasty and nasolacrimal polyurethane stent placement are the main fluoroscopically guided interventions for the treatment of epiphora by recanalizing the obstructed LDS. These procedures can also be used for dacryolith removal and lacrimal sac abscess treatment.

  2. Physical modeling of transverse drainage mechanisms

    Douglass, J. C.; Schmeeckle, M. W.


    Streams that incise across bedrock highlands such as anticlines, upwarps, cuestas, or horsts are termed transverse drainages. Their relevance today involves such diverse matters as highway and dam construction decisions, location of wildlife corridors, better-informed sediment budgets, and detailed studies into developmental histories of late Cenozoic landscapes. The transient conditions responsible for transverse drainage incision have been extensively studied on a case-by-case basis, and the dominate mechanisms proposed include: antecedence, superimposition, overflow, and piracy. Modeling efforts have been limited to antecedence, and such the specific erosional conditions required for transverse drainage incision, with respect to the individual mechanisms, remains poorly understood. In this study, fifteen experiments attempted to simulate the four mechanisms and constructed on a 9.15 m long, 2.1 m wide, and 0.45 m deep stream table. Experiments lasted between 50 and 220 minutes. The stream table was filled with seven tons of sediment consisting of a silt and clay (30%) and a fine to coarse sand (70%) mixture. The physical models highlighted the importance of downstream aggradation with regard to antecedent incision versus possible defeat and diversion. The overflow experiments indicate that retreating knickpoints across a basin outlet produce a high probability of downstream flooding when associated with a deep lake. Misters used in a couple of experiments illustrate a potential complication with regard to headward erosion driven piracy. Relatively level asymmetrically sloped ridges allow for the drainage divide across the ridge to retreat from headward erosion, but hindered when the ridge's apex undulates or when symmetrically sloped. Although these physical models cannot strictly simulate natural transverse drainages, the observed processes, their development over time, and resultant landforms roughly emulate their natural counterparts. Proposed originally from

  3. How integrated is river basin management?

    Downs, Peter W.; Gregory, Kenneth J.; Brookes, Andrew


    Land and water management is increasingly focused upon the drainage basin. Thirty-six terms recently used for schemes of “integrated basin management” include reference to the subject or area and to the aims of integrated river basin management, often without allusion to the multiobjective nature. Diversity in usage of terms has occurred because of the involvement of different disciplines, of the increasing coherence of the drainage basin approach, and the problems posed in particular parts of the world. The components included in 21 different approaches are analyzed, and, in addition to showing that components related broadly to water supply, river channel, land, and leisure aspects, it is concluded that there are essentially five interrelated facets of integrated basin management that involved water, channel, land, ecology, and human activity. Two aspects not fully included in many previous schemes concern river channel changes and the dynamic integrity of the fluvial system. To clarify the terminology used, it is suggested that the term comprehensive river basin management should be used where a wide range of components is involved, whereas integrated basin management can signify the interactions of components and the dominance of certain components in the particular area. Holistic river basin management is advocated as a term representing an approach that is both fully comprehensive and integrated but also embraces the energetics of the river system and consideration of changes of river channels and of human impacts throughout the river system. The paradigm of working with the river can be extended to one of working with the river in the holistic basin context.

  4. Exit and Paradise Creek Drainage Area Boundaries, Alaska, 2012

    U.S. Geological Survey, Department of the Interior — This dataset contains drainage area boundaries for Exit Creek and Paradise Creek in Kenai Fjords National Park, Alaska. A drainage area boundary identifies the land...

  5. Clinical outcome of routine drainage in simple laparoscopic cholecystectomy

    LIANG Zongchao


    Full Text Available ObjectiveTo retrospectively review outcomes of elective laparoscopic cholecystectomy (LC to evaluate the benefit of routine drainage in uncomplicated surgeries. MethodsTwo-hundred-and-ninety-five patients with cholecystolithiasis or gallbladder polyps who underwent LC with drainage (n=145 and or without drainage (n=150 between 2009 and 2011 were enrolled in the study. The decision for drainage was randomized. ResultsThe LC without drainage group had significantly shorter time to first flatus and shorter length of postoperative hospital stay than the LC with drainage group. One patient in the drainage group developed an intra-abdominal abscess, but there was no significant difference between the two LC groups with respect to overall postoperative complication rate. ConclusionApplication of a peritoneal drainage tube after simple elective, uncomplicated LC did not provide any clinical benefit to the patients, and should be considered according to the operating physician′s judgment on a case-by-case basis.

  6. A Theoretical Study of Subsurface Drainage Model Simulation of ...

    A Theoretical Study of Subsurface Drainage Model Simulation of Drainage Flow and ... of subsurface drain spacing, evapotranspiration and irrigation water quality on ... The study was carried out on a conceptual uniform homogenous irrigated ...

  7. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil



    Full Text Available Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil. Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8, and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  8. River Mileages and Drainage Areas for Illinois Streams. Volume 1. Illinois Except Illinois River Basin.



  9. Consolidation drainage and climate change may reduce Piping Plover habitat in the Great Plains

    McCauley, Lisa A.; Anteau, Michael J.; Post van der Burg, Max


    Many waterbird species utilize a diversity of aquatic habitats; however, with increasing anthropogenic needs to manage water regimes there is global concern over impacts to waterbird populations. The federally threatened Piping Plover (Charadrius melodus; hereafter plovers) is a shorebird that breeds in three habitat types in the Prairie Pothole Region of North Dakota, South Dakota, and Canada: riverine sandbars; reservoir shorelines; and prairie wetlands. Water surface areas of these habitats fluctuate in response to wet-dry periods; decreasing water surface areas expose shorelines that plovers utilize for nesting. Climate varies across the region so when other habitats are unavailable for plover nesting because of flooding, prairie wetlands may periodically provide habitat. Over the last century, many of the wetlands used by plovers in the Prairie Pothole Region have been modified to receive water from consolidation drainage (drainage of smaller wetlands into another wetland), which could eliminate shoreline nesting habitat. We evaluated whether consolidation drainage and fuller wetlands have decreased plover presence in 32 wetlands historically used by plovers. We found that wetlands with more consolidation drainage in their catchment and wetlands that were fuller had a lower probability of plover presence. These results suggest that plovers could have historically used prairie wetlands during the breeding season but consolidation drainage and/or climate change have reduced available shoreline habitat for plovers through increased water levels. Prairie wetlands, outside of some alkali wetlands in the western portion of the region, are less studied as habitat for plovers when compared to river and reservoir shorelines. Our study suggests that these wetlands may have played a larger role in plover ecology than previously thought. Wetland restoration and conservation, through the restoration of natural hydrology, may be required to ensure that adequate habitat

  10. 46 CFR 178.420 - Drainage of cockpit vessels.


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420... TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of cockpit vessels. (a) Except as follows, the cockpit on a cockpit vessel may be watertight: (1) A cockpit may...

  11. Reconstructing Glacial Lake Vitim and its cataclysmic drainage to the Arctic Ocean

    Margold, Martin; Jansen, John D.; Gurinov, Artem L.; Codilean, Alexandru T.; Preusser, Frank


    A large glacial lake (23500 km2/3000 km3) was formed when the River Vitim, one of the largest tributaries of the Lena River in Siberia, Russia, was blocked by glaciers from the Kodar Mountains. This lake, Glacial Lake Vitim, was subsequently drained in a large outburst flood that followed the rivers Vitim and Lena to the Arctic Ocean. Evidence of a cataclysmic drainage was first identified in the form of a large bedrock canyon in the area of the postulated ice dam. The enormous dimensions of this feature (6 x 2 x 0.3 km) suggest formation via a drainage event of extreme magnitude, and field inspection downstream revealed giant bars >100 m above the valley floor, similar to those described from cataclysmic floods elsewhere. We present chronological constraints for the duration of the ice dam and for the timing of the flood based on terrestrial cosmogenic nuclides and optically stimulated luminescence. Given that the volume of Glacial Lake Vitim was significantly larger than other well known lakes associated with cataclysmic outbursts-glacial lakes Missoula (northwestern USA) and Chuja-Kuray (Altai Mountains, Russia)-it is pertinent to assess the possible climatic consequences of Lake Vitim's drainage. The outburst flood from Glacial Lake Vitim is likely among the largest floods documented on Earth thus far. Possible impacts include rapid change of climate and precipitation patterns in the area of the former glacial lake, major disturbance along the flood course to the Arctic, and perhaps even regional-scale climatic feedbacks linked to altered sea ice dynamics in the Arctic Ocean.


    Kiran, V.; Dr. Bhimasen .S; E. Mastanaiah; A. Thiruppathi


    Background: Patients with COPD will have more amount of secretions. To clear the secretions by using of different bronchial hygiene techniques like postural drainage and autogenic drainage technique, manual hyperventilation technique ,active cycle breathing technique .Hence in this study to compare the short-term effects of postural drainage with clapping (PD) and autogenic drainage (AD) on level of oxygen saturation in blood, and amount of sputum recovery. Methodology: The study was done ...

  13. Institutional Arrangements for River Basin Management: A Case Study of Comparison between the United States and China

    ZHOU Gang-yan


    This note compares institutional arrangements for water resources management in two river basins, namely, those of the Susquehanna River in the United States and the Yangtze River in China. The Susquehanna River Basin Commission is composed of the US federal government and the three states of New York, Pennsylvania, and Maryland through which the Susquehanna River passes. Under the authority of the Susquehanna River Basin Compact, the Commission deals with water resources problems throughout its vast drainage area. In contrast, the Changjiang(Yangtze River) Water Resources Commission (CWRC) lacks relative effectiveness in mobilizing provincial governments in transboundary water resources management.

  14. Drainage Analysis of the South American Landscape and its Tectonic Implications

    Rodríguez Tribaldos, Verónica; White, Nicholas J.; Roberts, Gareth G.


    The majority of studies aimed at investigating topographic growth and landscape evolution have limited spatial coverage. Frequently, spot measurements of uplift and denudation are only available, which hampers spatial resolution of the growth of regional topographic features. This limitation can be overcome by quantitatively analysing substantial, continent-wide, drainage networks. The shapes of long wavelength longitudinal river profiles appear to be mainly controlled by regional uplift and moderated by erosional processes, both of which can vary as a function of space and time. By parametrizing erosional histories, it is feasible to develop inverse models that permit spatial and temporal patterns of regional uplift to be reliably retrieved. Here, a drainage inventory for South America consisting of 1827 rivers has been inverted. River profiles were extracted from the SRTM topographic dataset and modelled using a simplified version of the stream-power law, in which erosional processes are described using a linear advective formulation. The inverse problem is then solved by seeking smooth uplift rate histories that minimize the misfit between observed and calculated river profiles using a linearized, damped, non-negative, least squares algorithm. Calibration of erosional processes is achieved by inverting the complete drainage inventory and seeking a calculated uplift history that best honours independent geological observations from the Borborema Province of northeast Brazil. This province experienced regional Cenozoic uplift. Calculated uplift rate histories for South America suggest that the bulk of its topography developed during Cenozoic times. The model suggests, for instance, that the Andean mountain chain mostly arose in late Eocene-Oligocene (i.e. 40-28 Ma) times with an increase in elevation during Miocene times (i.e. the last 20 Ma). Uplift of the Central Andean Altiplano from an elevation of ~ 1 km to its present-day height of ~ 4 km occurred within the

  15. Two new species of Oxynoemacheilus from the Tigris drainage in Iraqi Kurdistan (Teleostei: Nemacheilidae).

    Freyhof, Jörg; Abdullah, Younis Sabir


    Two new species of Oxynoemacheilus are described from the Sirvan River drainage in Iraqi Kurdistan. Oxynoemacheilus gyndes, new species, is distinguished by having a very short lateral line, reaching behind the pectoral-fin base, no scales except on the posteriormost part of the caudal peduncle, a slightly emarginate caudal fin and no suborbital groove in males. Oxynoemacheilus hanae, new species, is distinguished by having a midlateral row of elongated blotches, isolated patches of dark-brown spots or blotches on lower flank, a deeply emarginate caudal fin and a suborbital groove in males.

  16. Water resources of the Pomme de Terre River Watershed, West-central Minnesota

    Cotter, R.D.; Bidwell, L.E.


    The watershed is underlain by water-bearing glacial drift, cretaceous rocks, and Precambrian crystalline rocks.  It is an elongate basin 92 miles long and has a drainage area of 977 square miles.  The Pomme de Terre River flows within an outwash valley discharging into the Minnesota River at Marsh Lake.

  17. Community-based restoration of desert wetlands: the case of the Colorado River delta

    Osvel Hinojosa-Huerta; Mark Briggs; Yamilett Carrillo-Guerroro; Edward P. Glenn; Miriam Lara-Flores; Martha Roman-Rodriguez


    Wetland areas have been drastically reduced through the Pacific Flyway and the Sonoran Desert, with severe consequences for avian populations. In the Colorado River delta, wetlands have been reduced by 80 percent due to water management practices in the Colorado River basin. However, excess flows and agricultural drainage water has restored some areas, providing...

  18. Numerical simulation of transient flow in horizontal drainage systems

    Ze-yu MAO; Han XIAO; Ying LIU; Ying-jun HU


    A numerical simulation model based on the characteristic-based finite-difference method with a time-line interpolation scheme was developed for predicting transient free surface flow in horizontal drainage systems. The fundamental accuracy of the numerical model was first clarified by comparison with the experimental results for a single drainage pipe. Boundary conditions for junctions and bends, which are often encountered in drainage systems, were studied both experimentally and numerically. The numerical model was applied to an actual drainage system. Comparison with a full-scale model experiment indicates that the model can be used to accurately predict flow characteristics in actual drainage networks.

  19. Decoding the role of tectonics, incision and lithology on drainage divide migration in the Mt. Alpi region, southern Apennines, Italy

    Buscher, J. T.; Ascione, A.; Valente, E.


    The proclivity of river networks to progressively carve mountain surfaces and preserve markers of landscape adjustments has made analyses of fluvial systems fundamental for understanding the topographic development of orogens. However, the transient nature of uplift and erosion has posed a challenge for inferring the roles that tectonics and/or climate have played on generating topographic relief. The Mt. Alpi region in the southern Apennines has a heterogeneous distribution of elevated topography, erosionally-resistant lithology and uplift, making the area optimal for conducting topographic and river analyses to better understand the landscape development of a transient orogen. Stream length-gradient, normalized channel steepness, stream convexity and first-order channel gradient indices from 10 m digital elevation data from the region exhibit stream profile inconsistencies along the current drainage divide and a dominance of high values subparallel but inboard of the primary chain axis irrespective of known transient landscape factors, suggesting that the current river network may be in a state of transition. The location of these stream profile anomalies both near the modern drainage divide and subparallel to an isolated swath of high topography away from catchment boundaries is thought to be the topographic expression of an imminent drainage divide migration driven primarily by the northeast-vergent extension of the western chain axis.

  20. Thermokarst lakes, drainage, and drained basins

    Grosse, G.; Jones, B.; Arp, C.; Shroder, John F.


    Thermokarst lakes and drained lake basins are widespread in Arctic and sub-Arctic permafrost lowlands with ice-rich sediments. Thermokarst lake formation is a dominant mode of permafrost degradation and is linked to surface disturbance, subsequent melting of ground ice, surface subsidence, water impoundment, and positive feedbacks between lake growth and permafrost thaw, whereas lake drainage generally results in local permafrost aggradation. Thermokarst lakes characteristically have unique limnological, morphological, and biogeochemical characteristics that are closely tied to cold-climate conditions and permafrost properties. Thermokarst lakes also have a tendency toward complete or partial drainage through permafrost degradation and erosion. Thermokarst lake dynamics strongly affect the development of landscape geomorphology, hydrology, and the habitat characteristic of permafrost lowlands.

  1. Autogenic drainage: efficacy of a simplified method.

    Lindemann, H; Boldt, A; Kieselmann, R


    A simplified and modified technique of the original autogenic drainage (AD) is described which is supplemented by breathing against an external flow resistance. The new method allows a better teaching and learning. It's efficacy is proven by means of a comparative trial of AD and PEP physiotherapy (i.e. expiration against a defined stenosis). The autogenic drainage (AD) was introduced by a Belgian working group (2). The basic idea was to support the elimination of mucus by deep breathing and by repressing the cough as long as possible. However, a rather sophisticated method impeded teaching and learning of AD (1). Thus, till now, there are only preliminary results which suggest the efficacy of AD (e.g. 3). Therefore, a simplified technique was developed and examined with regard to its sputum eliminating effect.

  2. Range of drainage effect of surface mines

    Sozanski, J.


    This paper discusses methods of calculating the range of effects of water drainage from surface coal mines and other surface mines. It is suggested that methods based on test pumping (water drainage) are time consuming, and the results can be distorted by atmospheric factors such as rain fall or dry period. So-called empirical formulae produce results which are often incorrect. The size of a cone shaped depression calculated on the basis of empirical formulae can be ten times smaller than the size of the real depression. It is suggested that using a formula based on the Dupuit formula is superior to other methods of depression calculation. According to the derived formulae the radius of the depresion cone is a function of parameters of the water bearing horizons, size of surface mine working and of water depression. The proposed formula also takes into account the influence of atmospheric factors (water influx caused by precipitation, etc.). (1 ref.) (In Polish)

  3. Contested Rivers

    Gorm Hansen, Louise Lyngfeldt

    explores translocal connections through ethnographic fieldwork at a global water conference and preliminary fieldwork at chosen locations on China's Nu River. The Nu River is one of the last undammed rivers in Asia and runs through China close to the Chinese-Burmese border, then flows into the Andaman Sea...

  4. Urban drainage models - making uncertainty analysis simple

    Vezzaro, Luca; Mikkelsen, Peter Steen; Deletic, Ana;


    There is increasing awareness about uncertainties in modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modif...... probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model using a dataset collected from Melbourne, Australia....

  5. Streaming potential during drainage and imbibition

    Zhang, Jiazuo; Vinogradov, Jan; Leinov, Eli; Jackson, M. D.


    The rock pore space in many subsurface settings is saturated with water and one or more immiscible fluid phases. Examples include nonaqueous phase liquids (NAPLs) in contaminated aquifers, supercritical CO2 during sequestration in deep saline aquifers, the vadose zone, and hydrocarbon reservoirs. Self-potential (SP) and seismoelectric (SE) methods have been proposed to monitor multiphase flow in such settings. However, to properly interpret and model these data requires an understanding of the saturation dependence of the streaming potential. This paper presents a methodology to determine the saturation dependence of the streaming potential coupling coefficient (C) and streaming current charge density (Qs) in unsteady state drainage and imbibition experiments and applies the method to published experimental data. Unsteady state experiments do not yield representative values of C and Qs (or other transport properties such as relative permeability and electrical conductivity) at partial saturation (Sw) because Sw within the sample is not uniform. An interpretation method is required to determine the saturation dependence of C and Qs within a representative elementary volume with uniform saturation. The proposed method makes no assumptions about the pore space geometry. Application of the method to published experimental data from two natural sandstone samples shows that C exhibits hysteresis between drainage and imbibition, can exhibit significant nonmonotonic variations with saturation, is nonzero at the irreducible water saturation, and can exceed the value observed at Sw = 1. Moreover, Qs increases with decreasing Sw but is not given by 1/Sw as is often assumed. The variation in Qs with Sw is very similar for a given sample and a given drainage or imbibition process, and the difference between samples is less than the difference between drainage and imbibition. The results presented here can be used to help interpret SP and SE measurements obtained in partially

  6. Factors influencing pleural drainage in parapneumonic effusions.

    Porcel, J M; Valencia, H; Bielsa, S


    The identification of parapneumonic effusions (PPE) requiring pleural drainage is challenging. We aimed to determine the diagnostic accuracy of radiological and pleural fluid findings in discriminating between PPE that need drainage (complicated PPE (CPPE)) and those that could be resolved with antibiotics only (uncomplicated PPE (UPPE)). A retrospective review of 641 consecutive PPE, of which 393 were categorized as CPPE and 248 as UPPE. Demographics, radiological (size and laterality on a chest radiograph) and pleural fluid parameters (pus, bacterial cultures, biochemistries) were compared among groups. Logistic regression was performed to determine variables useful for predicting chest drainage, and receiver-operating characteristic curves assisted in the selection of the best cutoff values. According to the likelihood ratios (LR), findings increasing the probability of chest tube usage the most were: effusions occupying ≥1/2 of the hemithorax (LR 13.5), pleural fluid pH ≤7.15 (LR 6.2), pleural fluid glucose ≤40mg/dL (LR 5.6), pus (LR 4.8), positive pleural fluid cultures (LR 3.6), and pleural fluid lactate dehydrogenase >2000U/L (LR 3.4). In the logistic regression analysis only the first two were selected as significant predictors of CPPE. In non-purulent effusions, the effusion's size and pleural fluid pH retained their discriminatory properties, in addition to a pleural fluid C-reactive protein (CRP) level >100mg/L. Large radiological effusions and a pleural fluid pH ≤7.15 were the best predictors for chest drainage in patients with PPE. In the subgroup of patients with non-purulent effusions, pleural fluid CRP also contributed to CPPE identification. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  7. 以DEM提取流域水系河源的最小误差分析%Analysis of Minimum Error at River Source to Extract River Network Based on DEM

    陈冬平; 陈莹; 陈兴伟


    With the development of hydrological model, extraction of river drainage network has been a hot topic in hydrology research. River drainage network was extracted based on topographic maps or drainage maps by digitization in the early years, but the result was influenced by data source resolution. There are presently two kinds of methods to extract river drainage network based on DEM. One is to overlay the extracted river drainage network based on DEM on the river digitalized maps which came from drainage maps or vector layer of river, to make the extract drainage network more similar to the actual river networks.But the accuracy of river drainage network depends on the resolution of drainage maps or vector layer of river. The other one is based on “inflection point” to extract river drainage network, however, the assumption of “inflection point” exists the problem of choice of scale-free interval. To solve the above problems, the river source minimum error (RSME) method was presented based on DEM in this paper. First,the relationship between the distance error of the actual river source and the extracted river network source and the size of grid was established; second, the minimum distance error was adopted as the principle to solve the problem of the uniqueness in watershed drainage network extraction, and then the river network was determined. Taking Jinjiang River as an example and using DEM with 30m resolution as data source, the RSME method was adopted to extract Jinjiang River drainage network on the platform of ArcGIS9.2. The result showed that the distance error between the river source and the extracted river network source is the smallest one when the grid numbers are up to 5814 and the minimum river length is 42m, the corresponding fractal dimension is 1. 389. Moreover, the result indicated that the proposed RSME method is reasonable to extract watershed drainage network.%目前,以水文模型提取流域水系已成为水文科学研究中的

  8. Geochemistry of the Birch Creek Drainage Basin, Idaho

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.


    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  9. Drainage and Stratification Kinetics of Foam Films

    Zhang, Yiran; Sharma, Vivek


    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  10. Drawdown behavior of gravity drainage wells

    Aasen, J.A.; Ramey, H.J. Jr.


    An analytical solution for drawdown in gravity drainage wells is developed. The free-surface flow is viewed as incompressible, and anisotropy effects are included. The well is a line source well, and the reservoir is infinitely large. The model is valid for small drawdowns. The uniform wellbore potential inner boundary condition is modelled using the proper Green`s function. The discontinuity at the wellbore is solved by introducing a finite skin radius, and the formulation produces a seepage face. The calculated wellbore flux distribution and wellbore pressures are in fair agreement with results obtained using a numerical gravity drainage simulator. Three distinct flow periods are observed. The wellbore storage period is caused by the moving liquid level, and the duration is short. During the long intermediate flow period, the wellbore pressure is nearly constant. In this period the free surface moves downwards, and the liquid is produced mainly by vertical drainage. At long times the semilog straight line appears. The confined liquid solutions by Theis (1935) and van Everdingen and Hurst (1949) may be used during the pseudoradial flow period if the flowrate is low. New type curves are presented that yield both vertical and horizontal permeabilities.

  11. Numerical Modeling of Trinity River Shoaling below Wallisville, Texas


    Authority (CWA) canal withdrawals ................................................................... 43 Boundary condition inflow uncertainties...m .. __ -- ERDC/CHL TR-15-1 6 Figure 2-2. Drainage basin for the Trinity River. Tides The tides in the study area propagate across...Notice the very large time lag in high water (HW) for Round Point in Trinity Bay, which shows the effect of the tide propagating against the river flow

  12. Treatment of severe acute pancreatitis through retroperitoneal laparoscopic drainage

    Chun Tang; Baolin Wang; Bing Xie; Hongming Liu; Ping Chen


    A treatment method based on drainage via retroperitoneal laparoscopy was adopted for 15 severe acute pancreatitis (SAP) patients to investigate the feasibility of the method.Ten patients received only drainage via retroperitoneai laparoscopy,four patients received drainage via both retroperitoneal and preperitoneal laparoscopy,and one patient received drainage via conversion to laparotomy.Thirteen patients exhibited a good drainage effect and were successfully cured without any other surgical treatment.Two patients had encapsulated effusions or pancreatic pseudocysts after surgery,but were successfully cured after lavage and B ultrasound-guided percutaneous catheter drainage.SAP treatment via retroperitoneal laparoscopic drainage is an effective surgical method,resulting in minor injury.

  13. Preoperative biliary drainage for periampullary tumors causing obstructive jaundice; DRainage vs. (direct OPeration (DROP-trial

    Sosef Meindert N


    Full Text Available Abstract Background Surgery in patients with obstructive jaundice caused by a periampullary (pancreas, papilla, distal bile duct tumor is associated with a higher risk of postoperative complications than in non-jaundiced patients. Preoperative biliary drainage was introduced in an attempt to improve the general condition and thus reduce postoperative morbidity and mortality. Early studies showed a reduction in morbidity. However, more recently the focus has shifted towards the negative effects of drainage, such as an increase of infectious complications. Whether biliary drainage should always be performed in jaundiced patients remains controversial. The randomized controlled multicenter DROP-trial (DRainage vs. Operation was conceived to compare the outcome of a 'preoperative biliary drainage strategy' (standard strategy with that of an 'early-surgery' strategy, with respect to the incidence of severe complications (primary-outcome measure, hospital stay, number of invasive diagnostic tests, costs, and quality of life. Methods/design Patients with obstructive jaundice due to a periampullary tumor, eligible for exploration after staging with CT scan, and scheduled to undergo a "curative" resection, will be randomized to either "early surgical treatment" (within one week or "preoperative biliary drainage" (for 4 weeks and subsequent surgical treatment (standard treatment. Primary outcome measure is the percentage of severe complications up to 90 days after surgery. The sample size calculation is based on the equivalence design for the primary outcome measure. If equivalence is found, the comparison of the secondary outcomes will be essential in selecting the preferred strategy. Based on a 40% complication rate for early surgical treatment and 48% for preoperative drainage, equivalence is taken to be demonstrated if the percentage of severe complications with early surgical treatment is not more than 10% higher compared to standard treatment

  14. Closed suction drainage versus closed simple drainage in the management of modified radical mastectomy wounds.

    Ezeome, E R; Adebamowo, C A


    To compare the outcomes of modified radical mastectomy wounds managed by closed wound drainage with suction and without suction. A prospective randomised trial was conducted at the University College Hospital in Ibadan, and the University of Nigeria Teaching Hospital in Enugu. Fifty women who required modified radical mastectomy for breast cancer were randomised to have closed wound drainage with suction (26 patients) and closed wound drainage without suction (24 patients). There was no significant difference in the intraoperative and postoperative variables. Suction drainage drained less volume of fluid and stayed for a shorter time in the wound, but the differences were not significant. There was no difference in the length of hospital stay, time to stitch removal, and number of dressing changes. More haematomas and wound infections occurred in the simple drain group while more seromas occurred in the suction drain group, but these were not significant. The suction drain was more difficult to manage and the cost was 15 times higher than the simple drainage system. Closed simple drains are not inferior to suction drains in mastectomy wounds and, considering the cost saving and simplicity of postoperative care, they are preferable to suction drains.

  15. From Shoestring Rills to Dendritic River Networks: Documenting the Evolution of River Basins Towards Geometric Similarity Through Divide Migration, Stream Capture and Lateral Branching

    Beeson, H. W.; McCoy, S. W.; Willett, S.


    Erosional river networks dissect much of Earth's surface into drainage basins. Global scaling laws such as Hack's Law suggest that river basins trend toward a particular scale-invariant shape. While erosional instabilities arising from competition between advective and diffusive processes can explain why headwaters branch, the erosional mechanics linking larger scale network branching with evolution towards a characteristic river basin shape remain poorly constrained. We map river steepness and a proxy for the steady-state elevation of river networks, χ, in simulated and real landscapes with a large range in spatial scale (102 -106 m) but with similar inclined, planar surfaces at the time of incipient network formation. We document that the evolution from narrow rill-like networks to dendritic, leaf-shaped river basins follows from drainage area differences between catchments. These serve as instabilities that grow, leading to divide migration, stream capture, lateral branching and network reorganization. As Horton hypothesized, incipient networks formed down gradient on an inclined, planar surface have an unequal distribution of drainage area and nonuniformity in response times such that larger basins erode more rapidly and branch laterally via capture of adjacent streams with lower erosion rates. Positive feedback owing to increase in drainage area furthers the process of branching at the expense of neighboring rivers. We show that drainage area exchange and the degree of network reorganization has a significant effect on river steepness in the Dragon's Back Pressure Ridge, CA, the Sierra Nevada, CA, and the Rocky Mountain High Plains, USA. Similarly, metrics of basin shape reveal that basins are evolving from narrow basins towards more common leaf shapes. Our results suggest that divide migration and stream capture driven by erosional disequilibrium could be fundamental processes by which river basins reach their characteristic geometry and dendritic form.

  16. Automated upscaling of river networks for macroscale hydrological modeling

    Wu, Huan; Kimball, John S.; Mantua, Nate; Stanford, Jack


    We developed a hierarchical dominant river tracing (DRT) algorithm for automated extraction and spatial upscaling of basin flow directions and river networks using fine-scale hydrography inputs (e.g., flow direction, river networks, and flow accumulation). In contrast with previous upscaling methods, the DRT algorithm utilizes information on global and local drainage patterns from baseline fine-scale hydrography to determine upscaled flow directions and other critical variables including upscaled basin area, basin shape, and river lengths. The DRT algorithm preserves the original baseline hierarchical drainage structure by tracing each entire flow path from headwater to river mouth at fine scale while prioritizing successively higher order basins and rivers for tracing. We applied the algorithm to produce a series of global hydrography data sets from 1/16° to 2° spatial scales in two geographic projections (WGS84 and Lambert azimuthal equal area). The DRT results were evaluated against other alternative upscaling methods and hydrography data sets for continental U.S. and global domains. These results show favorable DRT upscaling performance in preserving baseline fine-scale river network information including: (1) improved, automated extraction of flow directions and river networks at any spatial scale without the need for manual correction; (2) consistency of river network, basin shape, basin area, river length, and basin internal drainage structure between upscaled and baseline fine-scale hydrography; and (3) performance largely independent of spatial scale, geographic region, and projection. The results of this study include an initial set of DRT upscaled global hydrography maps derived from HYDRO1K baseline fine-scale hydrography inputs; these digital data are available online for public access at

  17. Fluoroscopy guided percutaneous catheter drainage of pneumothorax in good mid-term patency with tube drainage

    Park, Ga Young; Oh, Joo Hyung; Yoon, Yup; Sung, Dong Wook [Kyung Hee University Hospital, Seoul (Korea, Republic of)


    To evaluate efficacy and the safety of percutaneous catheter drainage in patients with pneumothorax that is difficult to treat with closed thoracotomy. We retrospectively reviewed effectiveness of percutaneous catheter drainage (PCD) in 10 patients with pneumothorax. The catheter was inserted under fluoroscopic guidance. Seven patients had spontaneous pneumothorax caused by tuberculosis (n =4), reptured bullae (n = 2), and histiocytosis-X (n = 1). Three patients had iatrogenic pneumothorax caused by trauma (n = 1) and surgery (n = 2). All procedures were performed by modified Seldinger's method by using 8F-20F catheter. All catheter were inserted successfully. In 9 of 10 patients, the procedure was curative without further therapy. Duration of catheter insertion ranged from 1 day to 26 days. In the remaining 1 patient in whom multiple pneumothorax occurred after operation, catheter insertion was performed twice. Percutaneous catheter drainage under fluoroscopic guidance is effective and safe procedure for treatment of pneumothorax in patients with failed closed thoracotomy.

  18. Morphometric analysis of the Koros drainage basin (Hungary/Romania) using historical topographic maps

    Petrovszki, J.


    The Körös River drainage basin is located in the eastern part of the Great Hungarian Plain, west of the Apuseni Mts., in the middle of the Pannonian Basin. The channels of the river and its tributaries are mostly meandering. The channel sinuosity of this river system is analyzed in order to draw conclusions on the neotectonic activity of this area. The meandering rivers can demonstrate changes, which occurred recently, and cannot be seen with other methods. The changing sinuosity indicates the location of the vertical movements of the surface. The sinuosity calculations were made on the natural, uncontrolled riverbeds. These beds were digitized from the maps of the Second Military Survey of the Habsburg Empire, which were measured before or during river control implementation. Digitized features were made on the geo-referred maps, which are in the Hungarian National Grid (EOV) coordinate system. The estimated accuracy of the map sheets to the modern system is 50-100 m, but the accuracy in Hungary remains under 30 m. In the study area, we identified several points of sinuosity change. To prove, that these are of neotectonic origin, seismic sections crossing the study area, were also analyzed. Five fault lines are indicated to be neotectonically active according to the river planform changes. Activity of two of these five faults, and the subsidence in-between them caused the formation of the Nagy-Sárrét marshland. A Romanian river section, characterized by anastomosed planform, instead of meandering, indicates recent activity of another fault.

  19. Fate and transport of metals in a natural wetland receiving mine drainage

    Pavlik, M.; Wildeman, T.; Kolm, K.; Emerick, J.; Robinson, R.


    The Forest Queen Wetland, adjacent to the Animas River near Silverton, Colorado receives acid mine drainage from the adit of the Forest Queen Mine. Because the pH of the mine drainage averages between 3 and 5 and the iron concentration averages 18 mg/L, it was thought that the wetland would naturally treat the water. One of the important contaminants to be treated is zinc which averages 0.60 mg/L in the adit water, while the aquatic criterion is 0.50 mg/L. In the study that was undertaken to determine whether metal removal was occurring, considerable effort was made to link the water and soil chemistry with the wetland hydrology. there are at least two water systems influencing the wetland; the mine drainage across the surface and ground water from the adjacent slope that typically grows under the wetland. These two are, for the most part, separated from each other by a layer of peat that is of low hydraulic conductivity and is over 1.8 meters deep in places. Because of the separated hydrologic systems, the Fe and Al is removed from the adit effluent when it flows across the surface. However, because the pH does not exceed 6.5 for the most part, Zn is not removed.

  20. Improving riparian wetland conditions based on infiltration and drainage behavior during and after controlled flooding

    Russo, Tess A.; Fisher, Andrew T.; Roche, James W.


    SummaryWe present results of an observational and modeling study of the hydrologic response of a riparian wetland to controlled flooding. The study site is located in Poopenaut Valley, Yosemite National Park (USA), adjacent to the Tuolumne River. This area is flooded periodically by releases from the Hetch Hetchy Reservoir, and was monitored during one flood sequence to assess the relative importance of inundation versus groundwater rise in establishing and maintaining riparian wetland conditions, defined on the basis of a minimum depth and duration of soil saturation, and to determine how restoration benefits might be achieved while reducing total flood discharge. Soil moisture data show how shallow soils were wetted by both inundation and a rising water table as the river hydrograph rose repeatedly during the controlled flood. The shallow groundwater aquifer under wetland areas responded quickly to conditions in the adjacent river, demonstrating a good connection between surface and subsurface regimes. The observed soil drainage response helped to calibrate a numerical model that was used to test scenarios for controlled flood releases. Modeling of this groundwater-wetland system suggests that inundation of surface soils is the most effective mechanism for developing wetland conditions, although an elevated water table helps to extend the duration of soil saturation. Achievement of wetland conditions can be achieved with a smaller total flood release, provided that repeated cycling of higher and lower river elevations is timed to benefit from the characteristic drainage behavior of wetland soils. These results are robust to modest variations in the initial water table elevation, as might result from wetter or dryer conditions prior to a flood. However, larger changes to initial water table elevation, as could be associated with long term climate change or drought conditions, would have a significant influence on wetland development. An ongoing controlled flooding

  1. Relations among geology, physiography, land use, and stream habitat conditions in the Buffalo and Current River Systems, Missouri and Arkansas

    Panfil, Maria S.; Jacobson, Robert B.


    This study investigated links between drainage-basin characteristics and stream habitat conditions in the Buffalo National River, Arkansas and the Ozark National Scenic Riverways, Missouri. It was designed as an associative study - the two parks were divided into their principle tributary drainage basins and then basin-scale and stream-habitat data sets were gathered and compared between them. Analyses explored the relative influence of different drainage-basin characteristics on stream habitat conditions. They also investigated whether a relation between land use and stream characteristics could be detected after accounting for geologic and physiographic differences among drainage basins. Data were collected for three spatial scales: tributary drainage basins, tributary stream reaches, and main-stem river segments of the Current and Buffalo Rivers. Tributary drainage-basin characteristics were inventoried using a Geographic Information System (GIS) and included aspects of drainage-basin physiography, geology, and land use. Reach-scale habitat surveys measured channel longitudinal and cross-sectional geometry, substrate particle size and embeddedness, and indicators of channel stability. Segment-scale aerial-photo based inventories measured gravel-bar area, an indicator of coarse sediment load, along main-stem rivers. Relations within and among data sets from each spatial scale were investigated using correlation analysis and multiple linear regression. Study basins encompassed physiographically distinct regions of the Ozarks. The Buffalo River system drains parts of the sandstone-dominated Boston Mountains and of the carbonate-dominated Springfield and Salem Plateaus. The Current River system is within the Salem Plateau. Analyses of drainage-basin variables highlighted the importance of these physiographic differences and demonstrated links among geology, physiography, and land-use patterns. Buffalo River tributaries have greater relief, steeper slopes, and more

  2. Enhancing the natural removal of As in a reactive fluvial confluence receiving acid drainage

    Abarca, M. I.; Arce, G.; Montecinos, M.; Guerra, P. A.; Pasten, P.


    Fluvial confluences are natural reactors that can determine the fate of contaminants in watersheds receiving acid drainage. Hydrological, hydrodynamic and chemical factors determine distinct conditions for the formation of suspended particles of iron and aluminum oxyhydroxides. The chemical and physical properties of these particle assemblages (e.g. particle size, chemical composition) can vary according to inflow mixing ratios, hydrodynamic velocity profiles, and chemical composition of the flows mixing at the confluence. Due to their capacity to sorb metals, it is important to identify the optimal conditions for removing metals from the aqueous phase, particularly arsenic, a contaminant frequently found in acid drainage. We studied a river confluence in the Lluta watershed, located in the arid Chilean Altiplano. We performed field measurements and laboratory studies to find optimal mixing ratio for arsenic sorption onto oxyhydroxide particles at the confluence between the Azufre (pH=2, As=2 mg/L) and the Caracarani river (pH=8, Asplants could be used to engineer such intervention.Acknowledgements: Proyecto Fondecyt 1130936 and Proyecto CONICYT FONDAP 15110020

  3. Recovery of water from acid mine drainage

    Mulopo, J


    Full Text Available acid mine drainage J Mulopo, SR Motaung , M Mashego and M Moalusi Natural Resources and the Environment, CSIR, P O Box 395, Pretoria, 0001, South Africa ConClusion The optimal region for the operation and design of a sulphate removal reactor... operating conditions results in a process with somehow large excess feed. Hence, one should not optimize the reactor configuration independently of the process in which the reactor is going to be used. Figure 1: Rate of Sulphate Removal at 25o...

  4. The Effects of Acid Rock Drainage (ARD) on Fluorescent Dissolved Organic Matter (DOM)

    Lee, R. H.; Gabor, R. S.; SanClements, M.; McKnight, D. M.


    Located in the Rocky Mountains of central Colorado, the catchments drained by the headwaters of the Snake River are dominated by metal- and sulfide-rich bedrock. The breakdown of these minerals results in acidic metal-rich waters in the Snake (pH ~3) that persist until the confluence with Deer Creek (pH ~7). Previous research has been conducted examining the interactions of acid-rock drainage (ARD) and dissolved organic matter (DOM), but the effects of ARD on DOM production is not as well understood. In a synoptic study, samples of creek water were collected at evenly spaced intervals along the length of a tributary to the Snake River which drains an area with ARD. At each sampling location, water samples were collected and pH, conductivity, and temperature were measured. Water samples were analyzed for metal chemistry, and the DOM was analyzed with UV-Vis and fluorescence spectroscopy. The character of the DOM was described using PARAFAC and index calculations. This work demonstrates that the introduction of acid and dissolved metal species has notable effects on DOM composition. Preliminary data suggests that the introduction of acid drainage is responsible for the formation of a fluorophore not accounted for in the Cory and McKnight PARAFAC model. Both high concentrations of heavy metals (e.g. zinc) and the novel fluorophore are present downstream from a mining site, which indicates it as a possible source of both species. The data suggest a link between the introduction of fluorophores in acidic waters and acidophile populations at the source of the acid rock drainage.

  5. Ultrasound-guided drainage of deep pelvic abscesses

    Lorentzen, Torben; Nolsøe, Christian; Skjoldbye, Bjørn


    The aim of this study was to demonstrate and evaluate the ultrasound-guided drainage of deep pelvic abscesses in which transabdominal percutaneous access could not be performed because of overlying structures. A retrospective analysis of 32 consecutive patients with 33 deep pelvic abscesses...... (median diameter 7 cm), 19 were treated with catheter drainage and 18 of these cases resulted in favorable clinical outcomes. Of the smaller abscesses (median diameter 4 cm), 14 were treated with needle drainage. In two of these cases, follow-up US showed that a repeat puncture and drainage was necessary...... and the subsequent in-dwelling catheter period, there were no serious complications related to the drainage procedures. We conclude that ultrasound-guided transrectal, transvaginal, transperineal and transgluteal drainage of deep pelvic abscesses are safe and effective treatment approaches. Based on our findings...

  6. Hydraulic Characteristics of the San Gregorio Creek Drainage Basin, California: a Preliminary Study.

    Davis, J. R.; Snow, M. K.; Pestrong, R.; Sklar, L. S.; Vavro, M.; Sawachi, A.; Talapian, E.; Bailey, E.


    Population pressures within the greater San Francisco Bay Area are forcing development into nearby rural communities, and are impacting local environments. This study of the San Gregorio Creek Watershed is designed as a baseline for evaluating the effect increasing development within the drainage basin has on its river system. We hope to provide evidence for that impact through laboratory and field studies that provide a snap-shot of this drainage basin's current characteristics. The San Gregorio Creek watershed, in the Coast Ranges, is located in the southwestern portion of San Mateo County, California. It drains the western slopes of the Santa Cruz Mountains, in the Coast Ranges into the Pacific Ocean at the town of San Gregorio. Most of its fingertip tributaries flow into the trunk from the north and west, with elevations as high as 2050 feet. The watershed includes an area of approximately 51.6 square miles and San Gregorio Creek, the trunk stream, is roughly 12 miles long. San Gregorio Creek is a fourth order perennial stream. It is fed by a number of major tributaries, the largest of which are Alpine, Mindego, and La Honda creeks. The U.S. Geological Survey maintains a stream gauging station for San Gregorio Creek at the town of San Gregorio, where it has been monitoring stream flows for more than 30 years through its Water Resources Department. The resulting data indicate a mean discharge of 36.4 cfs. Map studies of hydraulic geometry for the drainage basin reveal geometric characteristics for San Gregorio Creek that coincide with similar streams in comparable climatic and environmental settings. Stream table studies are used to further investigate fundamental stream processes. Field studies at selected reaches throughout the drainage basin will document hydraulic characteristics. The results of this study will contribute to more comprehensive studies demonstrateing channel response to changing environmental conditions.

  7. Acid mine-water and agriculture pollution in a river skirting the Donana National Park (Guadiamar River, South West Spain)

    Cabrera, F.; Toca, C.G.; Diaz, E.; De Arambarri, P.


    The Agrio river receives the drainage waters from Aznalcollar opencast-worked polymetallic sulfide deposits and the old mine spoil heaps. Some 7 km downstream, the Agrio river joins the Guadiamar river, which is the last tributary on the right of the Guadalquivir river. Drainage waters from the mine and old spoil heaps are the source of high concentrations of heavy metals in the water and sediments of the Agrio and Guadiamar rivers. When river flows increase because of heavy rains or reservoir discharges, sediments are resuspended and transported downstream. The presence of other effluents rich in organic matter with active chelating agents facilitates the dissolution and transport of the metals. Consequently, 30 km downstream from the mine heavy metal concentrations in Guadiamar river are still higher than those in other unpolluted rivers of this zone. Pollution by olive mill effluents (alpechines) is important during the grinding season, causing increases in the K, P and organic matter, and decreases in dissolved oxygen. Nitrogen and P fertilization of rice fields at present does not produce abnormal increases in the concentration of these elements in the water. Concentrations of herbicides in rice field canals and Donana National Park waters reach values considered as the limit of safety for aquatic life. 37 references, 8 figures, 7 tables.

  8. Preoperative biliary drainage for periampullary tumors causing obstructive jaundice; DRainage vs. (direct) OPeration (DROP-trial)

    N.A. van der Gaag (Niels); S.M.M. de Castro (Steve); E.A.J. Rauws (Erik); M.J. Bruno (Marco); C.H.J. van Eijck (Casper); E.J. Kuipers (Ernst); J.J.G.M. Gerritsen (Josephus); J.P. Rutten (Joost Paul); J.W. Greve; E.J. Hesselink (Eric); J.H. Klinkenbijl (Jean); I.H.M.B. Rinkes; D. Boerma (Djamila); B.A. Bonsing (Bert); C.J. van Laarhoven (Cees); F.J. Kubben; E. van der Harst (Erwin); M.N. Sosef (Meindert); K. Bosscha (Koop); I.H.J.T. de Hingh (Ignace); L. Th de Wit (Laurens); O.M. van Delden (Otto); O.R.C. Busch (Olivier); T.M. van Gulik (Thomas); P.M.M. Bossuyt (Patrick); D.J. Gouma (Dirk)


    textabstractBackground. Surgery in patients with obstructive jaundice caused by a periampullary (pancreas, papilla, distal bile duct) tumor is associated with a higher risk of postoperative complications than in non-jaundiced patients. Preoperative biliary drainage was introduced in an attempt to im

  9. Comparing twist-drill drainage with burr hole drainage for chronic subdural hematoma

    LIN Xin


    Full Text Available 【Abstract】Objective: The surgical management of chronic subdural hematoma (CSDH is still a controver- sial issue, and a standard therapy has not been established because of the unclear pathogenic mechanisms in CSDH. The intention of this paper is to find a simple and efficient surgical procedure for CSDH. Methods: A retrospective study of 448 patients with CSDH by surgical treatment during 2005 to 2009 was con- ducted in order to compare the efficiency between two dif- ferent primary surgical methods, i.e. twist-drill drainage with- out irrigation in Group A (n=178 and one burr-hole with irrigation in Group B (n=270. The results were statistically analyzed. Results: The reoperation rates in Group A and Group B were 7.9% and 11.9% respectively. The good outcome rate was 88.8% and 75.5%, the complication was 7.9% and 20.7% in Group A and Group B, respectively. Conclusions: The burr-hole drainage with irrigation of the hematoma cavity is not beneficial to the outcome and prognosis. Irrigation is not important in the surgical treat- ment for CSDH. Thus in initial treatment, twist-drill drainage without irrigation of the hematoma cavity is recommended because it is relatively safe, time-saving and cost-effective. Key words: Hematoma, subdural; Brain injury, chronic; Drainage

  10. Reuse of drainage water model : calculation method of drainage water and watertable depth

    Roest, C.W.J.; Rijtema, P.E.; Abdel Khalik, M.A.


    The main objective of the project is to assist the Ministry of Irrigation in Egypt in the planning of future watermanagement strategies incorporating reuse of drainage water practices. In order to achieve this main objective a comprehensive measurement programme has been initiated and a mathematical

  11. Assessment of agricultural drainage water quality for safe reuse in irrigation applications-a case study in Borg El-Arab, Alexandria

    Mahmoud Nasr


    Full Text Available Objective: To demonstrate the technical feasibility of the reuse of agricultural drainage water for irrigation. Methods: The agricultural drainage water near Banjar El-Sokar, Borg El-Arab City, Alexandria, Egypt was collected. The measured heavy metals in the drainage water were compared with the permissible levels stated in environmental regulations, Law No. 48 of 1982 concerning the protection of the Nile River and waterways from pollution. Results: Heavy metals and trace elements were detected in this agricultural drainage water as following: Al (1.64 mg/L, Ca (175.00 mg/L, Cd (1.87 mg/L, Co (2.23 mg/L, Cu (1.71 mg/L, Fe (1.64 mg/L, K (20.50 mg/L, and Pb (2.81 mg/L. According to allowable limits, item such as Fe is lower than permissible level of 3.00 mg/L, while Pb and Cu are higher than 0.10 mg/L and 1.00 mg/L, respectively. Conclusions: Vegetables irrigated with such drainage water are not safe for human and animal consumption. Accordingly, the study suggests and recommeds remediation of drainage water using physical, chemical and/or biological methods.

  12. Assessment of agricultural drainage water quality for safe reuse in irrigation applications-a case study in Borg El-Arab, Alexandria

    Mahmoud Nasr; Hoda Farouk Zahran


    Objective:To demonstrate the technical feasibility of the reuse of agricultural drainage water for irrigation. Methods: The agricultural drainage water near Banjar El-Sokar, Borg El-Arab City, Alexandria, Egypt was collected. The measured heavy metals in the drainage water were compared with the permissible levels stated in environmental regulations, Law No. 48 of 1982 concerning the protection of the Nile River and waterways from pollution. Results: Heavy metals and trace elements were detected in this agricultural drainage water as following: Al (1.64 mg/L), Ca (175.00 mg/L), Cd (1.87 mg/L), Co (2.23 mg/L), Cu (1.71 mg/L), Fe (1.64 mg/L), K (20.50 mg/L), and Pb (2.81 mg/L). According to allowable limits, item such as Fe is lower than permissible level of 3.00 mg/L, while Pb and Cu are higher than 0.10 mg/L and 1.00 mg/L, respectively. Conclusions: Vegetables irrigated with such drainage water are not safe for human and animal consumption. Accordingly, the study suggests and recommeds remediation of drainage water using physical, chemical and/or biological methods.

  13. Seepage flow-stability analysis of the riverbank of Saigon river due to river water level fluctuation

    Oya, A; Hiraoka, N; Fujimoto, M; Fukagawa, R


    The Saigon River, which flows through the center of Ho Chi Minh City, is of critical importance for the development of the city as forms as the main water supply and drainage channel for the city. In recent years, riverbank erosion and failures have become more frequent along the Saigon River, causing flooding and damage to infrastructures near the river. A field investigation and numerical study has been undertaken by our research group to identify factors affecting the riverbank failure. In this paper, field investigation results obtained from multiple investigation points on the Saigon River are presented, followed by a comprehensive coupled finite element analysis of riverbank stability when subjected to river water level fluctuations. The river water level fluctuation has been identified as one of the main factors affecting the riverbank failure, i.e. removal of the balancing hydraulic forces acting on the riverbank during water drawdown.

  14. River nomads


    River nomads is a movie about people on the move. The documentary film explores the lifestyle of a group of nomadic fishermen whose mobility has been the recipe of success and troubles. Engaged in trade and travel, twice a year the river nomads form impressive convoys of majestic pirogues and set...... and liberated lifestyle and the breath-taking landscapes and vistas offered by the Niger River. River Nomads is also a personal account of the Kebbawa’s way of life and their current struggles as nomadic folk living in a world divided by borders and ruled by bureaucrats....

  15. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    Ebbehøj, N; Borly, L; Madsen, P


    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  16. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    Ebbehøj, N; Borly, L; Madsen, P


    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  17. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Anil M Pophare; Umesh S Balpande


    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order subbasins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the subsurface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the

  18. Environmental Ethics in River Water Management

    Ravichandran Moorthy


    Full Text Available Problem statement: Environmental ethics concerns human beings’ ethical relationship with the natural environment. The fundamental question regarding environmental ethics is basically-what moral obligations do we have concerning the natural environment? The main objective of this study is to examine the extent environmental ethics manifest in river management. The study employs the case study of Malaysia's Gombak River-one of the most polluted urban rivers that run through some heavily inhabited urban areas. The study examines how the Department of Environment (DOE, Drainage and Irrigation Department (DID and Selayang Municipal Council (MPS manage the problem of pollution in the Gombak River. Approach: This study uses both quantitative and qualitative analysis. A quantitative approach is employed to assess the water quality in several points along Gombak River. This is done by way of series of scientific testing to determine the level of pollution in the river. Secondly, a qualitative approach is applied on the data gathered through expert interviews on inter-agency coordination efforts to manage pollution problems. Results: The study firstly shows that the Gombak River is considerably polluted, with higher levels of pollution in upstream as compared to the downstream. The second finding suggests that notwithstanding several legislations that are already in place, there is sluggishness in the enforcement of pollution mitigation efforts as a result of ineffective inter-agency communication and coordination. Conclusion: The lack of concerted and coordinated efforts between river management agencies have been cited as one of the main factors contributing to river pollution. Therefore, the agencies concerned should embark on cohesive measures to ensure the rivers are managed well and its water quality controlled. This requires for a structured coordination mechanism between agencies to be put in place and such mechanism can be emulated in the

  19. Coupling between drainage and coarsening in wet foam

    S Saha; S Bhaumik; A Roy


    Drainage and coarsening are two coupled phenomena during the evolution of wet foam. We show the variation in the growth rate of bubble size, along the height in a column of Gillette shaving foam, by microscope imaging. Simultaneously, the drainage of liquid at the same heights has been investigated by Raman spectroscopic measurements. The observations made in these two sets of experiments indicate the coupling between drainage and coarsening in wet foam. We could explain the correlation between our observed data on drainage and coarsening by the empirical relation, proposed by others, in the literature.

  20. Bioreactor for acid mine drainage control

    Zaluski, Marek H.; Manchester, Kenneth R.


    A bioreactor for reacting an aqueous heavy metal and sulfate containing mine drainage solution with sulfate reducing bacteria to produce heavy metal sulfides and reduce the sulfuric acid content of the solution. The reactor is an elongated, horizontal trough defining an inlet section and a reaction section. An inlet manifold adjacent the inlet section distributes aqueous mine drainage solution into the inlet section for flow through the inlet section and reaction section. A sulfate reducing bacteria and bacteria nutrient composition in the inlet section provides sulfate reducing bacteria that with the sulfuric acid and heavy metals in the solution to form solid metal sulfides. The sulfate reducing bacteria and bacteria nutrient composition is retained in the cells of a honeycomb structure formed of cellular honeycomb panels mounted in the reactor inlet section. The honeycomb panels extend upwardly in the inlet section at an acute angle with respect to the horizontal. The cells defined in each panel are thereby offset with respect to the honeycomb cells in each adjacent panel in order to define a tortuous path for the flow of the aqueous solution.

  1. Extension of geographic distribution of Chrysobrycon hesperus and C. myersi (Characiformes, Characidae, Stevardiinae for several drainages flowing into the Amazon River Basin in Peru and Colombia Extensión de la distribución geográfica de Chrysobrycon hesperus y C. myersi (Characiformes, Characidae, Stevardiinae para varios drenajes fluyendo hacia la cuenca del Amazonas en Perú y Colombia

    James Anyelo Vanegas-Ríos


    Full Text Available The geographic distribution of Chrysobrycon hesperus (Böhlke and C. myersi Weitzman and Menezes is extended to new localities from the upper Amazon Basin in Peru and Colombia. Chrysobrycon hesperus is recorded for the first time for the Putumayo River Basin in Colombia.Se amplía la distribución geográfica de Chrysobrycon hesperus (Böhlke y C. myersi Weitzman y Menezes para nuevas localidades de la cuenca alta del Amazonas en Perú y Colombia. Chrysobrycon hesperus se registra por primera vez para la cuenca del río Putumayo en Colombia.

  2. Modelling river history and evolution.

    Coulthard, T J; Van de Wiel, M J


    Over the last few decades, a suite of numerical models has been developed for studying river history and evolution that is almost as diverse as the subject of river history itself. A distinction can be made between landscape evolution models (LEMs), alluvial architecture models, meander models, cellular models and computational fluid dynamics models. Although these models share some similarities, there also are notable differences between them, which make them more or less suitable for simulating particular aspects of river history and evolution. LEMs embrace entire drainage basins at the price of detail; alluvial architecture models simulate sedimentary facies but oversimplify flow characteristics; and computational fluid dynamics models have to assume a fixed channel form. While all these models have helped us to predict erosion and depositional processes as well as fluvial landscape evolution, some areas of prediction are likely to remain limited and short-term owing to the often nonlinear response of fluvial systems. Nevertheless, progress in model algorithms, computing and field data capture will lead to greater integration between these approaches and thus the ability to interpret river history more comprehensively.

  3. Isotopic composition of Lake Agassiz-Ojibway water just prior to final drainage

    Hillaire-Marcel, C.; Helie, J.; McKay, J.; Lalonde, A.


    Controversies persist with respect to the impact of the final drainage of Lake Agassiz-Ojibway on the thermohaline circulation of the North Atlantic, some 8.4 ka ago. The lack of response of planktic foraminifer isotope records, off Hudson Strait (i.e., at the outlet of the drainage channel) constitutes one of the most puzzling elements in this debate. However, data on the isotopic composition of drainage waters are needed to estimate the response of the 18-O-salinity relationship in NW Atlantic surface waters. In the literature, a large array of isotopic compositions have been suggested, notably for modeling experiment purposes. Scattered information about the isotopic composition of Lake Agassiz water does exist. It includes isotopic measurements of pore waters of lacustrine sediments [1], analyses of oxygen isotopes in cellulose from algal or plant remains [2], and stable isotope compositions of concretions from varves [3]. Whereas, relatively low oxygen isotope values (apx. -25 per mil vs. VSMOW) are inferred for Lake Agassiz waters during cold pulses of the deglaciation, most data suggest much higher values during the final stages of Lake Agassiz-Ojiway, just prior to its drainage. Calcareous concretions from Lake Ojibway varves (not necessarily contemporaneous to the lacustrine stage) yielded oxygen isotope compositions of about -10 per mil (vs. VPDB), suggesting values as high as -14 per mil (vs. VSMOW) for pore waters (assuming a 0-4 degrees C temperature range). Similar high values (as high as -8 per mil vs. VSMOW [1]) were also estimated from pore water analyses of contemporaneous Lake Agassiz sediments. Here, we used a core raised from Eastern Hudson Bay, off Great Whale River, to further document isotopic compositions of the lake waters prior to their drainage into the North Atlantic. The 7.40 m long core has an apx. 1.3 m-thick lacustrine layer at its base, including the drainage sub- layer. It is overlain by Tyrrell Sea clays. Scarce valves of Candona

  4. River diversions, avulsions and captures in the Tortuguero coastal plain

    Galve, Jorge Pedro; Alvarado, Guillermo; Pérez Peña, José Vicente; Azañón, José Miguel; Mora, Mauricio; Booth-Rea, Guillermo


    The Tortuguero area is a coastal plain that forms part of the North Limón sedimentary basin, the back-arc region of the Caribbean side of Costa Rica. This coastal plain is characterised by an abnormal drainage pattern with river captures, diversions and shifts in channel directions. We are analyzing this anomalous drainage network adopting a classical geomorphological approach combined with geomorphometric techniques. The SRTM DEM at 1 arc-second of resolution (~30 m) from NASA, topographic maps 1:50,000, satellital images and the digital cartography of the drainage network have been used for inventorying the channel pattern anomalies. River segments were categorized according to sinuosity, orientation, slope changes and incision using GIS tools. Initially, anomalies in the analyzed river courses suggested that buried thrust fronts could disrupt their natural pattern. However, we have not identified any evidence to link the activity of buried structures with the disruption of natural drainage. Blind thrusts detected through seismic subsurface exploration in the SE sector of the Tortuguero plain do not seem to produce changes in the sinuosity, orientation, slope and incision of rivers as those observed in the deeply studied tectonically active area of the Po Plain (Italy). The identified river pattern anomalies have been explained due to other alternative causes: (1) the migration of the mouths of Reventazón, Pacuare and Matina rivers is produced by sand sedimentation in the coast because of a successive ridge beach formation. This migration to the SE has the same direction than the main ocean currents those deposited the sand. (2) The anomalous course of Parismina river is most probably conditioned by the fracturation of the dissected volcanic apron of Turrialba volcano. (3) Channel migration and capture of Barbilla river by Matina river can be triggered by the tectonic tilting of the coastal plain towards the SE. The subsidence of the SE sector of the plain was

  5. A novel approach for acid mine drainage pollution biomonitoring using rare earth elements bioaccumulated in the freshwater clam Corbicula fluminea.

    Bonnail, Estefanía; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José Miguel; DelValls, T Ángel


    Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8μg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (EMREE=0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection. Copyright © 2017 Elsevier B.V. All rights reserved.




    We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the

  7. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    Taylor, George Fred


    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  8. Is ultrasonography-guided drainage a safe and effective alternative to incision and drainage for deep neck space abscesses?

    Dabirmoghaddam, P; Mohseni, A; Navvabi, Z; Sharifi, A; Bastaninezhad, S; Safaei, A


    Deep neck space abscesses are common head and neck surgery emergencies. Traditionally, surgical incision and drainage has been the main treatment for deep neck abscesses. Recently, it has been suggested that ultrasound-guided drainage of neck abscesses can be an effective and less invasive alternative to incision and drainage. Patients with deep neck space abscesses referred to the emergency department of Amiralam Hospital were assessed and enrolled to the study if they met the inclusion criteria. Patients were randomly assigned to incision and drainage or ultrasound-guided drainage groups using sealed envelopes. Sixty patients were evaluated, with 30 patients in each group. There was a significant difference (p < 0.001) in mean length of hospital stay between patients who underwent ultrasound-guided drainage (5.47 days) and those who underwent incision and drainage (9.70 days). Ultrasound-guided drainage is an effective and safe procedure, leading to shorter hospital stay, and thus may be a suitable alternative to incision and drainage of deep neck abscesses.

  9. Salmon River Habitat Enhancement, 1989 Annual Report.

    Rowe, Mike


    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  10. Sediment Yield Modeling in a Large Scale Drainage Basin

    Ali, K.; de Boer, D. H.


    This paper presents the findings of spatially distributed sediment yield modeling in the upper Indus River basin. Spatial erosion rates calculated by using the Thornes model at 1-kilometre spatial resolution and monthly time scale indicate that 87 % of the annual gross erosion takes place in the three summer months. The model predicts a total annual erosion rate of 868 million tons, which is approximately 4.5 times the long- term observed annual sediment yield of the basin. Sediment delivery ratios (SDR) are hypothesized to be a function of the travel time of surface runoff from catchment cells to the nearest downstream channel. Model results indicate that higher delivery ratios (SDR > 0.6) are found in 18 % of the basin area, mostly located in the high-relief sub-basins and in the areas around the Nanga Parbat Massif. The sediment delivery ratio is lower than 0.2 in 70 % of the basin area, predominantly in the low-relief sub-basins like the Shyok on the Tibetan Plateau. The predicted annual basin sediment yield is 244 million tons which compares reasonably to the measured value of 192.5 million tons. The average annual specific sediment yield in the basin is predicted as 1110 tons per square kilometre. Model evaluation based on accuracy statistics shows very good to satisfactory performance ratings for predicted monthly basin sediment yields and for mean annual sediment yields of 17 sub-basins. This modeling framework mainly requires global datasets, and hence can be used to predict erosion and sediment yield in other ungauged drainage basins.

  11. River Water Quality Zoning: A Case Study of Karoon and Dez River System

    M Karamouz, N Mahjouri, R Kerachian


    Full Text Available Karoon-Dez River basin, with an area of 67000 square kilometers, is located in southern part of Iran. This river system supplies the water demands of 16 cities, several villages, thousands hectares of agricultural lands, and several hydropower plants. The increasing water demands at the project development stage including agricultural networks, fish hatchery projects, and inter-basin water transfers, have caused a gloomy future for water quality of the Karoon and Dez Rivers. A good part of used agricultural water, which is about 8040 million cubic meters, is returned to the rivers through agricultural drainage systems or as non-point, return flows. River water quality zoning could provide essential information for developing river water quality management policies. In this paper, a methodology is presented for this purpose using methods of -mean crisp classification and a fuzzy clustering scheme. The efficiency of these clustering methods was evaluated using water quality data gathered from the monitoring sampling points along Karoon and Dez Rivers. The results show that the proposed methodology can provide valuable information to support decision-making and to help river water quality management in the region.

  12. River capture and sediment redistribution in northern Tunisia: The doom of Utica

    Booth-Rea, Guillermo; Camafort, Miquel; Pérez-Peña, J. Vicente; Melki, Fetheddine; Ranero, César; Azañón, José Miguel; Gracia, Eulalia; Ouadday, Mohamed


    Utica was a flourishing port city in northern Tunisia since the Phoenician times, 12-9th century B.C., until the 4th century A.D.. However, at present it is located 10 km from the coastline after very fast late Holocene progradation of the Mejerda River delta into the bay of Utica. This fast delta progradation occurred after Mejerda River captured Tine River increasing 140 % the river catchment area. Charcoal fragments present in the youngest Tine river terrace at the wind gap give a conventional radiocarbon age of 3240 +/- 30yr BP, indicating that the capture occurred after this date. Quaternary fluvial terraces located in the Tine River paleovalley have been folded and uplifted above a fold related to the active El Alia Tebousouk reverse fault (ETF). Continued uplift of the Tine River valley above the ETF favoured headward erosion of the Medjerda river tributaries creating a transverse drainage that captured Tine River. This capture produced an important change in sediment discharge along the northern Tunisia coast driving sediments to the Gulf of Tunis instead of feeding the Tyrrhenian Sea through the Ichkeul and Bizerte lakes. Although anthropogenic derived degradation of northern Tunisia land for agricultural purposes probably influenced the increase in sediment into the Utica bay, the main cause of rapid progradation of the Medjerda River delta during the late Holocene is related to its increase in drainage area after capturing the Tine River. This process was mostly driven by local contractive tectonics linked to the seismogenic Alia Tebousouk reverse fault.

  13. Exact solutions for nonlinear foam drainage equation

    Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani


    In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G) -expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.

  14. Exact solutions for nonlinear foam drainage equation

    Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani


    In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G)-expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.

  15. Integrated urban drainage, status and perspectives

    Harremoës, Poul


    This paper summarises the status of urban storm drainage as an integrated professional discipline, including the management-policy interface, by which the goals of society are implemented. The paper assesses the development of the discipline since the INTERURBA conference in 1992 and includes...... with a significant conservatism in the business. However, significant integrated analyses have been reported. Most of them deal with the sewer system and the treatment plant, while few incorporate the receiving water as anything but the object of the loads to be minimised by engineering measures up-stream. Important...... measures are local infiltration, source control, storage basins, local treatment and real time control. New paradigms have been introduced: risk of pollution due to system failure, technology for water reuse, sustainability, new architecture and greener up-stream solutions as opposed to down...

  16. Integrated urban drainage, status and perspectives

    Harremoës, Poul


    with a significant conservatism in the business. However, significant integrated analyses have been reported. Most of them deal with the sewer system and the treatment plant, while few incorporate the receiving water as anything but the object of the loads to be minimised by engineering measures up-stream. Important...... aspects of the papers presented at the INTERURBA-II conference in 2001 and the discussions during the conference. Tools for integrated analysis have been developed, but there is less implementation than could be expected. That is due to lack of adequate knowledge about important mechanisms, coupled......This paper summarises the status of urban storm drainage as an integrated professional discipline, including the management-policy interface, by which the goals of society are implemented. The paper assesses the development of the discipline since the INTERURBA conference in 1992 and includes...

  17. Distinguishing the Transition Reach between Torrent and River Using Longitudinal and Cross-Sectional Morphology in River Course

    Chu, F. Y.; Chen, S. C.; An, H. P.


    To distinguish a transition reach between river and torrent, this study designed a method to quantify the morphology of channel cross-section. The 5m DEM, which administered by central government, was used to obtain cross-sections from third and fourth order river of 10 main drainages in Taiwan with an interval of 140 to 150 m. We designed a Cross-Sectional Complex-Index (Ics) to determine the morphological complexity and quantify the degrees of wide-shallow for each sections. This index can be applied to define the location of notch, because it can be knew form river regime that a notch is defined as a narrow-deep cross-section and narrow-deep and relatively large slope to adjacent reach. Therefore, this study defined notch index (Inotch) as the gradient divided by cross-sectional complex-index, and applied it to present the distribution of notch-type sections in study drainages, and the results of field investigation in 22 site showed that a section can be defined as notch while Inotch is lager then 60. The distribution of notch in a drainage shown that the notch which conform our quantitative definitions almost concentrated into several reaches intersecting with some broad-shallow section, and the gradient of these reaches are between 2% to 3%. Therefore, we can define that these reaches are the transition reaches between river and torrent. There are 54 sites of transition reach in our study drainages, 80% of the sites had a watershed area within a range of 2000 to 6000 ha. It proof that our method can define transition reach effectively and consistently. In addition, because of the type of disaster is collapse and debris flow in torrent and flood damages in river. It can be found that type of disaster are derived from the river morphology. Therefore, our method and result can be applied to determine the disaster type and strategic planning of disaster prevention as a reference.

  18. Ecology and management of agricultural drainage ditches: a literature review

    Agricultural drainage ditches are headwater streams that have been modified or constructed for agricultural drainage, and are often used in conjunction with tile drains. These modified streams are a common landscape feature in Ohio, and constitute 25% of stream habitat within the state. Management o...

  19. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Hauri, James F.; Schaider, Laurel A.


    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  20. A synthesis and comparative evaluation of drainage water management

    Viable large-scale crop production in the United States requires artificial drainage in humid and poorly drained agricultural regions. Excess water removal is generally achieved by installing tile drains that export water to open ditches that eventually flow into streams. Drainage water management...

  1. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Hauri, James F.; Schaider, Laurel A.


    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  2. 49 CFR 192.189 - Vaults: Drainage and waterproofing.


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Vaults: Drainage and waterproofing. 192.189 Section 192.189 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Components § 192.189 Vaults: Drainage and waterproofing. (a) Each vault must be designed so as to...

  3. 7 CFR 1924.108 - Grading and drainage.


    .... In questionable or unsurveyed areas, the applicant or developer will provide an engineering report... affect the structure and show proposed solutions. Grading will promote drainage of surface water away from buildings and foundations, minimize earth settlement and erosion, and assure that drainage...

  4. Herbicide and nutrient transport from an irrigation district into the South Saskatchewan River.

    Cessna, A J; Elliott, J A; Tollefson, L; Nicholaichuk, W


    Pesticides and nutrients can be transported from treated agricultural land in irrigation runoff and thus can affect the quality of receiving waters. A 3-yr study was carried out to assess possible detrimental effects on the downstream water quality of the South Saskatchewan River due to herbicide and plant nutrient inputs via drainage water from an irrigation district. Automated water samplers and flow monitors were used to intensively sample the drainage water and to monitor daily flows in two major drainage ditches, which drained approximately 40% of the flood-irrigated land within the irrigation district. Over three years, there were no detectable inputs of ethalfluralin into the river and those of trifluralin were less than 0.002% of the amount applied to flood-irrigated fields. Inputs of MCPA, bromoxynil, dicamba and mecoprop were 0.06% or less of the amounts applied, whereas that for clopyralid was 0.31%. The relatively higher input (1.4%) of 2,4-D to the river was probably due its presence in the irrigation water. Corresponding inputs of P (as total P) and N (as nitrate plus ammonia) were 2.2 and 1.9% of applied fertilizer, respectively. Due to dilution of the drainage water in the river, maximum daily herbicide (with the exception of 2,4-D) and nutrient loadings to the river would not have resulted in significant concentration increases in the river water. There was no consistent remedial effect on herbicides entering the river due to passage of the drainage water through a natural wetland. In contrast, a considerable portion of the nutrients entering the river originated from the wetland.

  5. Information technology and decision support tools for stakeholder-driven river basin salinity management

    Quinn, N.W.T; Cozad, D.B.; Lee, G.


    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  6. On the effectiveness of dry drainage in soil salinity control

    WU JingWei; ZHAO LiRong; HUANG JieSheng; YANG JinZhong; VINCENT Bernard; BOUARFA Sami; VIDAL Alain


    Dry drainage is thought to be a potential approach to control soil salinity.This study took the Hetao Irrigation District as an example and evaluated the effectiveness of dry drainage by using remote sensing, a conceptual model and a field experiment.Archived remote sensing images from 1973-2006 were used to delineate the temporal and spatial change of soil salinity.The conceptual water and salt balance model was used to evaluate the role of dry drainage in removing excess salt from the irrigated land.The field experiment was performed to get field validation and give more accurate estimation.The results show that dry drainage did contribute to remove excess salt from the irrigated land and succeed in controlling soil salinity in the Hetao Irrigation can be taken as an alternative approach in (semi-)arid area where artificial drainage is not applicable.

  7. On the effectiveness of dry drainage in soil salinity control

    VINCENT; Bernard; BOUARFA; Sami; VIDAL; Alain


    Dry drainage is thought to be a potential approach to control soil salinity. This study took the Hetao Irrigation District as an example and evaluated the effectiveness of dry drainage by using remote sensing, a conceptual model and a field experiment. Archived remote sensing images from 1973―2006 were used to delineate the temporal and spatial change of soil salinity. The conceptual water and salt balance model was used to evaluate the role of dry drainage in removing excess salt from the irrigated land. The field experiment was performed to get field validation and give more accurate estimation. The results show that dry drainage did contribute to remove excess salt from the irrigated land and succeed in controlling soil salinity in the Hetao Irrigation District. It can be taken as an alternative approach in (semi-)arid area where artificial drainage is not applicable.

  8. Treatment of drainage solution from hydroponic greenhouse production with microalgae.

    Hultberg, Malin; Carlsson, Anders S; Gustafsson, Susanne


    This study investigated treatment of the drainage solution from greenhouse production with microalgae, through inoculation with Chlorella vulgaris or through growth of the indigenous microalgal community. A significant reduction in nitrogen, between 34.7 and 73.7 mg L(-1), and particularly in phosphorus concentration, between 15.4 and 15.9 mg L(-1), was observed in drainage solution collected from commercial greenhouse production. The large reduction in nutrients was achieved through growth of the indigenous microalgal community i.e., without pre-treatment of the drainage solution or inoculation with the fast growing green microalgae C. vulgaris. Analysis of the fatty acid composition of the algal biomass revealed that compared with a standard growth medium for green algae, the drainage solution was inferior for lipid production. Despite the biorefinery concept being less promising, microalgae-based treatment of drainage solution from greenhouse production is still of interest considering the urgent need for phosphorus recycling.

  9. Petrology and Bulk Chemistry of Modern Bed Load Sediments From Rivers Draining the Eastern Tibetan Plateau

    Borges, J. B.


    We studied river bed load petrology and bulk sediment chemistry of the headwaters of the Changjiang, Huang He and Red rivers in China and Vietnam. These rivers drain the eastern and southeastern parts of the Tibetan Plateau which includes part of the Indian-Eurasian suture zone. The eastern Tibetan Plateau is dominated by marine sedimentary rocks with a few scattered intrusive igneous outcrops, while the suture zone is characterized by a mixture of high-grade metamorphic, ultramafic, granitic, volcanic arc and marine sedimentary rocks. The arithmetic average for Qt: Ft: Rft along the suture zone varies from 56:2:42 along the Red River Fault (RRF) zone to 38:6:56 in the interior of the continent, while sands from rivers draining the plateau average 32:8:60. The sands analyzed in this study are relatively immature compared to most data available from most rivers in the tropics. The average Chemical Index of Alteration (CIA) for samples from the RRF suture zone (0.62) is similar to that of rivers draining other tropical regions like the Niger, Chao Phraya, Mekong, Ganges, Amazon and Brahmaputra. The CIA values from the RRF zone are also significantly different from the rest of the suture zone (0.36) and the plateau area (0.38). The difference can be attributed to the combined effect of relief and precipitation. The RRF lies in the Red River drainage and receives ˜1820 mm of precipitation annually, while the plateau area averages ˜620 mm annually. In the case of the Red River drainage, the relief combined with higher humidity can increase physical weathering and reduce the residence time of sediment in the river drainage, therefore, continuously replacing the sediment transported out of the drainage by freshly weathered immature materials. In the plateau area, lower precipitation and runoff may limit sediment transport and chemical weathering leading to sediment immaturity.

  10. Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management.

    Schmidt, P J; Pintar, K D M; Fazil, A M; Flemming, C A; Lanthier, M; Laprade, N; Sunohara, M D; Simhon, A; Thomas, J L; Topp, E; Wilkes, G; Lapen, D R


    Human campylobacteriosis is the leading bacterial gastrointestinal illness in Canada; environmental transmission has been implicated in addition to transmission via consumption of contaminated food. Information about Campylobacter spp. occurrence at the watershed scale will enhance our understanding of the associated public health risks and the efficacy of source water protection strategies. The overriding purpose of this study is to provide a quantitative framework to assess and compare the relative public health significance of watershed microbial water quality associated with agricultural BMPs. A microbial monitoring program was expanded from fecal indicator analyses and Campylobacter spp. presence/absence tests to the development of a novel, 11-tube most probable number (MPN) method that targeted Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. These three types of data were used to make inferences about theoretical risks in a watershed in which controlled tile drainage is widely practiced, an adjacent watershed with conventional (uncontrolled) tile drainage, and reference sites elsewhere in the same river basin. E. coli concentrations (MPN and plate count) in the controlled tile drainage watershed were statistically higher (2008-11), relative to the uncontrolled tile drainage watershed, but yearly variation was high as well. Escherichia coli loading for years 2008-11 combined were statistically higher in the controlled watershed, relative to the uncontrolled tile drainage watershed, but Campylobacter spp. loads for 2010-11 were generally higher for the uncontrolled tile drainage watershed (but not statistically significant). Using MPN data and a Bayesian modelling approach, higher mean Campylobacter spp. concentrations were found in the controlled tile drainage watershed relative to the uncontrolled tile drainage watershed (2010, 2011). A second-order quantitative microbial risk assessment (QMRA) was used, in a relative way, to identify

  11. Characterize the hydraulic behaviour of grate inlet in urban drainage to prevent the urban's flooding

    Tellez Alvarez, Jackson David; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.


    One of the most important problems that have some cities is the urban floods because of poor drainage design. Therefore the systems the drainage do not have the capacity of capture the flow of discharge generated in a rain event and insert it into the drainage network. Even though the two problems that have caught the main attention are the evaluation of the volumes falling in the river basin because extreme rainfall events often lead to urban pluvial flooding being a hydrologic problem and the hydraulic design of the sewer network being a hydraulic problem to limiting capacity of the drainage system, there is an intermediate step between these two processes that is necessary to solve that is the hydraulic behavior of the grate inlet. We need to collect the runoff produced on the city surface and to introduce it in the sewer network. Normally foundry companies provide complete information about drainage grate structural capacity but provide nothing about their hydraulic capacity. This fact can be seen because at the moment does not exist any official regulation at national or international level in this field. It's obvious that, nowadays, there is a great gap in this field at the legislative level owing to the complexity of this field and the modernity of the urban hydrology as science [1]. In essence, we shows the relevance to know the inlet hydraulic interception capacity because surface drainage requires a satisfactory knowledge on storm frequency, gutter flow and above all inlet capacity. In addition, we development an important achievement is the invention and development of techniques for measurement of field velocities in hydraulics engineering applications. Hence knowledge the technological advances in digital cameras with high resolution and high speed found in the environmental, and the advances in image processing techniques, therefore now is a tremendous potential to obtain of behavior of the water surface flow [2]. A novel technique using particle

  12. Unilobar versus bilobar biliary drainage: effect on quality of life and bilirubin level reduction

    Shivanand Gamanagatti


    Conclusion: Percutaneous biliary drainage provides good palliation of malignant obstructive jaundice. Partial-liver drainage achieved results as good as those after complete liver drainage with significant improvements in QOL and reduction of the bilirubin level.

  13. Preliminary results from agricultural drainage water management CIG projects on Ohio

    Field demonstrations were monitored to compare the crop yields, drainage discharge, and nutrient loadings to streams from managed and unmanaged subsurface drainage systems. Paired drainage systems within the same field, under similar soil, area, cropping, and management conditions, were identified. ...

  14. The Valley Bottom Extraction Tool (V-BET): A GIS tool for delineating valley bottoms across entire drainage networks

    Gilbert, Jordan T.; Macfarlane, William W.; Wheaton, Joseph M.


    The shape, size and extent of a valley bottom dictates the form and function of the associated river or stream. Consequently, accurate, watershed-wide delineation of valley bottoms is increasingly recognized as a necessary component of watershed management. While many valley bottom delineation approaches exist, methods that can be effectively applied across entire drainage networks to produce reasonably accurate results are lacking. Most existing tools are designed to work using high resolution topography data (i.e. > 2 m resolution Digital Elevation Model (DEM)) and can only be applied over relatively short reach lengths due to computational or data availability limitations. When these precise mapping approaches are applied throughout drainage networks (i.e. 102-104 km), the computational techniques often either do not scale, or the algorithms perform inconsistently. Other tools that produce outputs at broader scale extents generally utilize coarser input topographic data to produce more poorly resolved valley bottom approximations. To fill this methodology gap and produce relatively accurate valley bottoms over large areas, we developed an algorithm that accepts terrain data from one to 10 m with slope and valley width parameters that scale based on drainage area, allowing for watershed-scale valley bottom delineation. We packaged this algorithm in the Valley Bottom Extraction Tool (V-BET) as an open-source ArcGIS toolbox for ease of use. To illustrate V-BET's scalability and test the tool's robustness across different physiographic settings, we delineated valley bottoms for the entire perennial drainage network of Utah as well as twelve watersheds across the interior Columbia River Basin (totaling 55,400 km) using 10 m DEMs. We found that even when driven with relatively coarse data (10 m DEMs), V-BET produced a relatively accurate approximation of valley bottoms across the entire watersheds of these diverse physiographic regions.

  15. Subsurface recharge to the Tesuque aquifer system from selected drainage basins along the western side of the Sangre de Cristo Mountains near Santa Fe, New Mexico

    Wasiolek, Maryann


    Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.

  16. Morphometric characterisation and classification of the Bobo river watershed in the Nariño department, Colombia

    Victoria Benavides Mora


    Full Text Available The object of this work was to make a morphometric characterization of the Bobo river watershed in the Nariño department in Colombia. A map was created from topographical maps (1:25.000 scale using the drainage network and the limit of each 2nd order microbasin as database. Dimensional, drainage network and relief morphometric parameters were evaluated for a later hy- drological study. The drainage area was 224.97 km2, having a 71.31 km perimeter. The Bobo river watershed is considered to be 6th order and has 176 2nd order drainage channels, 34 3rd order drainage channels, 9 4th order drainage channels and 3 5th order drainage channels. Average drainage density is 3.71km/km², reflecting its high density, having strong, dissected geological formation. The area has a typical Andean land-use pattern, having native wooded vegetation, traditional transitory potato and vegetable growing predominating.




    Full Text Available The flash floods analysis, representative for Niraj River between 1970-2008. The need to know the characteristics of the flash floods is derived from the number and the intensity of floods occurred in the drainage basin of the Niraj river. Therefore, there were analyzed only the flash floods representatives for the years: 1970, 1995, 1998, 2001, 2008.The classification of the floods was realized according to the genesis and the flash flood hydrograph shape for the period 1970-2008, before and after the completion of the drainage basin planning/management depending on climatic, morphometric and morphological factors.

  18. Mortality of centrarchid fishes in the Potomac drainage: Survey results and overview of potential contributing factors

    Blazer, Vicki; Iwanowicz, Luke R.; Starliper, Clifford E.; Zaugg, Steven D.; Burkhardt, Mark R.; Barbash, P.; Hedrick, J.D.; Reeser, S.J.; Mullican, J.E.; Kelble, J.


    Skin lesions and spring mortality events of smallmouth bass Micropterus dolomieu and selected other species were first noted in the South Branch of the Potomac River in 2002. Since that year morbidity and mortality have also been observed in the Shenandoah and Monocacy rivers. Despite much research, no single pathogen, parasite, or chemical cause for the lesions and mortality has been identified. Numerous parasites, most commonly trematode metacercariae and myxozoans; the bacterial pathogens Aeromonas hydrophila, Aeromonas salmonicida, and Flavobacterium columnare; and largemouth bass virus have all been observed. None have been consistently isolated or observed at all sites, however, nor has any consistent microscopic pathology of the lesions been observed. A variety of histological changes associated with exposure to environmental contaminants or stressors, including intersex (testicular oocytes), high numbers of macrophage aggregates, oxidative damage, gill lesions, and epidermal papillomas, were observed. The findings indicate that selected sensitive species may be stressed by multiple factors and constantly close to the threshold between a sustainable (healthy) and nonsustainable (unhealthy) condition. Fish health is often used as an indicator of aquatic ecosystem health, and these findings raise concerns about environmental degradation within the Potomac River drainage. Unfortunately, while much information has been gained from the studies conducted to date, due to the multiple state jurisdictions involved, competing interests, and other issues, there has been no coordinated approach to identifying and mitigating the stressors. This synthesis emphasizes the need for multiyear, interdisciplinary, integrative research to identify the underlying stressors and possible management actions to enhance ecosystem health.

  19. Comparison of Methane Drainage Methods Used in Polish Coal Mines

    Szlązak, Nikodem; Borowski, Marek; Obracaj, Dariusz; Swolkień, Justyna; Korzec, Marek


    Methane drainage is used in Polish coal mines in order to reduce mine methane emissions as well as to keep methane concentration in mine workings at safe levels. This article describes methods of methane drainage during mining used in Polish coal mines. The first method involves drilling boreholes from tailgate roadway to an unstressed zone in roof or floor layers of a mined seam. It is the main method used in Polish mining, where both the location of drilled boreholes as well as their parameters are dependent on mining and ventilation systems of longwalls. The second method is based on drilling overlying drainage galleries in seams situated under or over the mined seam. This article compares these methods with regard to their effectiveness under mining conditions in Polish mines. High effectiveness of methane drainage of longwalls with different ventilation and methane drainage systems has been proven. The highest effectiveness of methane drainage has been observed for the system with overlying drainage gallery and with the parallel tailgate roadways. In case of classic U ventilation system of longwall panel, boreholes drilled from the tailgate roadway behind the longwall front are lost.

  20. Systematic review comparing endoscopic, percutaneous and surgical pancreatic pseudocyst drainage

    Anthony Yuen Bun Teoh; Vinay Dhir; Zhen-Dong Jin; Mitsuhiro Kida; Dong Wan Seo; Khek Yu Ho


    AIM: To perform a systematic review comparing the outcomes of endoscopic, percutaneous and surgical pancreatic pseudocyst drainage.METHODS: Comparative studies published between January 1980 and May 2014 were identified on Pub Med, Embase and the Cochrane controlled trials register and assessed for suitability of inclusion. The primary outcome was the treatment success rate. Secondary outcomes included were the recurrence rates, re-interventions, length of hospital stay, adverse events and mortalities.RESULTS: Ten comparative studies were identified and 3 were randomized controlled trials. Four studies reported on the outcomes of percutaneous and surgical drainage. Based on a large-scale national study, surgical drainage appeared to reduce mortality and adverse events rate as compared to the percutaneous approach. Three studies reported on the outcomes of endoscopic ultrasound(EUS) and surgical drainage. Clinical success and adverse events rates appeared to be comparable but the EUS approach reduced hospital stay, cost and improved quality of life. Three other studies comparedEUS and esophagogastroduodenoscopy-guided drainage. Both approaches were feasible for pseudocyst drainage but the success rate of the EUS approach was better for non-bulging cyst and the approach conferred additional safety benefits.CONCLUSION: In patients with unfavorable anatomy, surgical cystojejunostomy or percutaneous drainage could be considered. Large randomized studies with current definitions of pseudocysts and longer-term follow-up are needed to assess the efficacy of the various modalities.

  1. Technology of gas drainage and utilization in Huaibei mining area

    LI Wei; XU Rui


    With the characteristics of coal seam geology and gas occurrence, a "ground-underground" integrated gas drainage method was formed, which can relieve gas pressure and increase permeability by mining the protection seams in conditional regions. After coal seam gas drainage, high gas outburst seam was converted to low gas safety seam. In the coal face mining process, safety and high efficient coal mining were realized by the measure of gas-suction over mining. In addition to the drainage gas for civil gas and gas power generation, the Huaibei Mining Group has actively carried out research on the utilization technology of methane drainage by ventilation. On the one hand, it can save precious energy; on the other hand, it can protect the environment for people's survival. In 2007, the amount of coal mine gas drainage was 120 hm3; the rate of coal mine gas drainage was 44%. Compared with the year 2002, the amount of coal mine gas drainage increased by two times. Meanwhile, the utilization rate of gas increased rapidly.

  2. Comparative experiments of gas drainage in different types of drillings

    LI Cheng-wu; WEI Shan-yang; WANG Chuan; GAO Tian-bao; FU Yu-kai


    Gas drainage effect is the utmost important factor for mining speed and mining safety.It has great meaning to study the effect of gas drainage.Comparative experiment of gas drainage in different types of drillings shows that the initial rate of gas natural emission by hydraulic loosed cross drilling is 1.5 times more than that of parallel drilling,and the drilling gas attenuation coefficients reduces to 0.78 times,the effect of gas drainage is good.The ultimate quantity of gas drainage of parallel drilling,cross drilling,hydraulic loosed cross drilling are 859.1,1 323.5 and 1 833.6 m3/100 m.The results of the measurement through these three kinds of drillings of 100 meters drilling is considered as following:cross drilling is 1.54 times more than that of parallel drillings,hydraulic loosed cross drilling are 2.13 times more than parallel drilling.The drainage rate of parallel drilling,cross drilling and hydraulic loosed cross drilling reached 10% to 15% in 3 months with the pre-draining time.Among these,the drainage effect of hydraulic loosed cross drilling increased by 46% than that of parallel drilling in three months.

  3. The cold air drainage model KLAM_21

    Kossmann, M.


    A brief description of the physics and numerical techniques of the cold air drainage model KLAM_21 is presented. The model has been developed by the Deutscher Wetterdienst (Sievers, 2005) for simulations of nocturnal airflow in hilly and mountainous terrain under dry fair weather conditions. The model has been widely used as an environmental consultancy tool. Typical model applications include frost protection (cold air ponding) and air quality (nocturnal ventilation). The single-layer model calculates the depth and the mean wind of a surface based stable layer that evolves from a neutrally stratified atmosphere during nighttime. The prediction of the velocity and direction of the cold air drainage is based on vertically averaged momentum tendency equations. Temporal changes in the total heat deficit in the cold air layer are calculated from a prescribed local heat loss rate (describing turbulent and radiative cooling) and advection (donor-cell algorithm). The depth of the cold air layer (depth of the surface based temperature inversion) is calculated diagnostically from the total heat loss deficit. The model is initialised with neutral stratification at sunset (onset time of nocturnal cooling). Optionally, effects of an ambient (regional) wind and/or the dispersion of a passive tracer can be simulated. Integration over time is carried out on a regular Arakawa C grid using dynamically calculated time steps. Spatial gradients are discretised using centred differential quotients. The standard size of the computational domains can reach up to 1500 x 1500 grid cells. Grid resolutions usually range between 10 m and 500 m. High resolution simulation can be limited to a nested inner grid domain, while the courser outer domain is covering the entire airshed of interest. A friendly user interface allows easy setup, control, and evaluation of model simulations. Some selected examples of KLAM_21 applications are shown to illustrate the features and capabilities of the model

  4. Environmental controls on drainage behavior of an ephemeral stream

    Blasch, K.W.; Ferre, T. P. A.; Vrugt, J.A.


    Streambed drainage was measured at the cessation of 26 ephemeral streamflow events in Rillito Creek, Tucson, Arizona from August 2000 to June 2002 using buried time domain reflectometry (TDR) probes. An unusual drainage response was identified, which was characterized by sharp drainage from saturation to near field capacity at each depth with an increased delay between depths. We simulated the drainage response using a variably saturated numerical flow model representing a two-layer system with a high permeability layer overlying a lower permeability layer. Both the observed data and the numerical simulation show a strong correlation between the drainage velocity and the temperature of the stream water. A linear combination of temperature and the no-flow period preceding flow explained about 90% of the measured variations in drainage velocity. Evaluation of this correlative relationship with the one-dimensional numerical flow model showed that the observed temperature fluctuations could not reproduce the magnitude of variation in the observed drainage velocity. Instead, the model results indicated that flow duration exerts the most control on drainage velocity, with the drainage velocity decreasing nonlinearly with increasing flow duration. These findings suggest flow duration is a primary control of water availability for plant uptake in near surface sediments of an ephemeral stream, an important finding for estimating the ecological risk of natural or engineered changes to streamflow patterns. Correlative analyses of soil moisture data, although easy and widely used, can result in erroneous conclusions of hydrologic cause—effect relationships, and demonstrating the need for joint physically-based numerical modeling and data synthesis for hypothesis testing to support quantitative risk analysis.

  5. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš


    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  6. Efficient removal of meltwater runoff through supraglacial streams and rivers on the southwestern Greenland Ice Sheet

    Smith, L. C.; Yang, K.; Pitcher, L. H.; Overstreet, B. T.; Rennermalm, A. K.; Chu, V. W.; Ryan, J.; Hubbard, A.; Cooper, M. G.; Tedesco, M.; Mote, T. L.; Young, K.; Behar, A.


    Supraglacial streams and rivers flowing on the Greenland Ice Sheet have received little physical study. We present remotely sensed (UAV, WorldView) and in situ (Acoustic Doppler Current Profiler, Lagrangian drifters) measurements of supraglacial river drainage pattern, hydraulic properties, and discharge in the Kangerlussuaq region. This area of the ice sheet is characterized by large, well-organized supraglacial stream/river networks that efficiently drain the ice surface with minimal retention of surface water, with river moulins being the the dominant physical mechanism by which surface meltwater enters the ice sheet. An intensive 2015 field campaign acquired novel datasets of watershed extent, drainage pattern, ablation rate, albedo and discharge for a ~70 km2 mid-elevation ice catchment ("Rio Behar"), including a continuous 72-hour record of discharge and water temperature in a supraglacial river upstream of its terminal moulin. We conclude that this area of the ice sheet is efficiently drained by supraglacial stream/river networks, that ice-surface DEMs alone cannot fully describe supraglacial drainage and its connection to subglacial systems; and that in situ measurements of supraglacial river discharge offer a unique opportunity to test runoff predictions of regional climate models.

  7. Aquatic invertebrates of the Ribnica and Lepenica Rivers: Composition of the community and water quality

    Jović Aleksandra


    Full Text Available Results of investigating the community of aquatic invertebrates in the Ribnica and Lepenica Rivers (Kolubara River drainage area are given in the present work. Forty-three taxa are recorded. In relation to other studied streams in Serbia, the investigated rivers are characterized by high diversity of macroinvertebrates. Cluster analysis indicates that the locality on the Lepenica stands apart from those on the Ribnica, which is a consequence of the difference of habitats found at them. Results of saprobiological analysis of the macrozoobenthos in the given rivers indicate that their waters belong to quality classes I and II.

  8. Foam drainage wave coalescing and its energy evolution

    SUN QiCheng; HUANG Jin; WANG GuangQian


    Liquid foam is a dense packing of gas bubbles in a small amount of surfactant solution. Liquid drains out of foams until equilibrium is reached due to the compromise between gravity and capillarity, which greatly affects the stability of foam. Based on a series of work on foam structure and drainage we conducted previously, this paper reports the results on coalescence of an original forced drainage wave at a low flow rate with subsequent drainage waves with higher flow rates. The evolutions of vis-cous energy and surface energy during the process of coalescence are theoretically analyzed.

  9. ANWR progress report number FY84-4: Population size, composition, and distribution of moose along the Canning and Kongakut Rivers within the Arctic National Wildlife Refuge, Alaska, fall 1983

    US Fish and Wildlife Service, Department of the Interior — Aerial surveys to determine the population size, composition, and distribution of moose (Alces alces) along the Canning and Kongakut River drainages were conducted...

  10. Long hole waterjet drilling for gas drainage

    Matt Stockwell; M. Gledhill; S. Hildebrand; S. Adam; Tim Meyer [CMTE (Australia)


    In-seam drilling for gas drainage is now an essential part of operations at many Australian underground coalmines. The objective of this project is to develop and trial a new drilling method for the accurate and efficient installation of long inseam boreholes (>1000 metres). This involves the integration of pure water-jet drilling technology (i.e. not water-jet assisted rotary drilling) developed by CMTE with conventional directional drilling technology. The system was similar to conventional directional drilling methods, but instead of relying on a down-hole-motor (DHM) rotating a mechanical drill bit for cutting, high pressure water-jets were used. The testing of the system did not achieve the full objectives set down in the project plan. A borehole greater than 1000 metres was not achieved. The first trial site had coal that was weathered, oxidized and dry. These conditions significantly affected the ability of the drilling tool to stay 'in-seam'. Due to the poor conditions at the first trial, many experimental objectives were forwarded to the second field trial. In the second trial drilling difficulties were experienced, this was due to the interaction between the confinement of the borehole and the dimensions of the down hole drilling assembly. This ultimately reduced the productivity of the system and the distance that could be drilled within the specified trial periods. Testing in the first field trial did not show any indication that the system would have this difficulty.


    Marina IOSUB


    Full Text Available Ozana drainage basin is located at the contact between large landscape units (the Carpathian mountains, the Subcarpathian area, and the plateau region. This placement determines the existence of a complex climate in the region. Despite being small in size, and its extension on an W-E direction, differences can be observed, especially of the way extreme phenomena take place. In the case of droughts, it had different intensities in the mountains, compared to the plateau region. In order to emphasize the different distribution on the territory, several climatic indexes have been calculated, regarding dryness (De Martonne Index, Hellman criterion. The analysis of these indexes at the same monitoring stations (Pluton, Leghin and Dumbrava emphasizes the growth of the drought periods in the plateau region and the fact that they shorten in the mountain area. In the mountainous area, where the land is very well forested, the values of the De Martonne index can reach 45.4, and in the plateau regions, where the forest associations are sparse, the values dropped to 30.6. According to the Hellman criterion, several differences can be emphasized, at basin level. In the mountainous region, there is only one month that, at a multi-annual level, has stood up among the rest, as being excessively droughty, while in the median /central region of the basin, three months have been identified, that have such potential, as well as five months, at Dumbrava.

  12. The relationship between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport processes

    Clubb, Fiona J.; Mudd, Simon M.; Attal, Mikaël.; Milodowski, David T.; Grieve, Stuart W. D.


    Drainage density is a fundamental landscape metric describing the extent of the fluvial network. We compare the relationship between drainage density (Dd) and erosion rate (E) using the Channel-Hillslope Integrated Landscape Development (CHILD) numerical model. We find that varying the channel slope exponent (n) in detachment-limited fluvial incision models controls the relationship between Dd and E, with n > 1 resulting in increasing Dd with E if all other parameters are held constant. This result is consistent when modeling both linear and nonlinear hillslope sediment flux. We also test the relationship between Dd and E in five soil-mantled landscapes throughout the USA: Feather River, CA; San Gabriel Mountains, CA; Boulder Creek, CO; Guadalupe Mountains, NM; and Bitterroot National Forest, ID. For two of these field sites we compare Dd to cosmogenic radionuclide (CRN)-derived erosion rates, and for each site we use mean hilltop curvature as a proxy for erosion rate where CRN-derived erosion rates are not available. We find that there is a significant positive relationship between Dd, E, and hilltop curvature across every site, with the exception of the San Gabriel Mountains, CA. This relationship is consistent with an n exponent greater than 1, suggesting that at higher erosion rates, the transition between advective and diffusive processes occurs at smaller contributing areas in soil-mantled landscapes.

  13. The Role of County Surveyors and County Drainage Boards in Addressing Water Quality

    Dunn, Mike; Mullendore, Nathan; de Jalon, Silvestre Garcia; Prokopy, Linda Stalker


    Water quality problems stemming from the Midwestern U.S. agricultural landscape have been widely recognized and documented. The Midwestern state of Indiana contains tens of thousands of miles of regulated drains that represent biotic communities that comprise the headwaters of the state's many rivers and creeks. Traditional management, however, reduces these waterways to their most basic function as conveyances, ignoring their role in the ecosystem as hosts for biotic and abiotic processes that actively regulate the fate and transport of nutrients and farm chemicals. Novel techniques and practices such as the two-stage ditch, denitrifying bioreactor, and constructed wetlands represent promising alternatives to traditional management approaches, yet many of these tools remain underutilized. To date, conservation efforts and research have focused on increasing the voluntary adoption of practices among agricultural producers. Comparatively little attention has been paid to the roles of the drainage professionals responsible for the management of waterways and regulated drains. To address this gap, we draw on survey responses from 39 county surveyors and 85 drainage board members operating in Indiana. By examining the backgrounds, attitudes, and actions of these individuals, we consider their role in advocating and implementing novel conservation practices.

  14. Bibliography for acid-rock drainage and selected acid-mine drainage issues related to acid-rock drainage from transportation activities

    Bradley, Michael W.; Worland, Scott C.


    Acid-rock drainage occurs through the interaction of rainfall on pyrite-bearing formations. When pyrite (FeS2) is exposed to oxygen and water in mine workings or roadcuts, the mineral decomposes and sulfur may react to form sulfuric acid, which often results in environmental problems and potential damage to the transportation infrastructure. The accelerated oxidation of pyrite and other sulfidic minerals generates low pH water with potentially high concentrations of trace metals. Much attention has been given to contamination arising from acid mine drainage, but studies related to acid-rock drainage from road construction are relatively limited. The U.S. Geological Survey, in cooperation with the Tennessee Department of Transportation, is conducting an investigation to evaluate the occurrence and processes controlling acid-rock drainage and contaminant transport from roadcuts in Tennessee. The basic components of acid-rock drainage resulting from transportation activities are described and a bibliography, organized by relevant categories (remediation, geochemical, microbial, biological impact, and secondary mineralization) is presented.

  15. Rules of the road: A qualitative and quantitative synthesis of large wood transport through drainage networks

    Kramer, Natalie; Wohl, Ellen


    To effectively manage wood in rivers, we need a better understanding of wood mobility within river networks. Here, we review primarily field-based (and some numerical) studies of wood transport. We distinguish small, medium, large, and great rivers based on wood piece dimensions relative to channel and flow dimensions and dominant controls on wood transport. We suggest further identification and designation of wood transport regimes as a useful way to characterize spatial-temporal network heterogeneity and to conceptualize the primary controls on wood mobility in diverse river segments. We draw analogies between wood and bedload transport, including distinguishing Eulerian and Lagrangian approaches, exploring transport capacity, and quantifying thresholds of wood mobility. We identify mobility envelopes for remobilization of wood with relation to increasing peak discharges, stream size, and dimensionless log lengths. Wood transport in natural channels exhibits high spatial and temporal variability, with discontinuities along the channel network at bankfull flow and when log lengths equal channel widths. Although median mobilization rates increase with increasing channel size, maximum mobilization rates are greatest in medium-sized channels. Most wood is transported during relatively infrequent high flows, but flows under bankfull can transport up to 30% of stored wood. We use conceptual models of dynamic equilibrium of wood in storage and of spiralling wood transport paths through drainage networks, as well as a metaphor of traffic on a road, to explore discontinuous wood movement through a river network. The primary limitations to describing wood transport are inappropriate time scales of observation and lack of sufficient data on mobility from diverse rivers. Improving models of wood flux requires better characterization of average step lengths within the lifetime travel path of a piece of wood. We suggest that future studies focus on: (i) continuous or high

  16. Hotspots within the Transboundary Selenga River Basin

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey


    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  17. 渭河下游某金矿排水渠附近土壤中Ag、Ni、Cd和Mo的污染分析%Analysis of soil contamination by Ag, Ni, Cd and Mo along a gold mine drainage canal down Weihe River



    The soil around a gold mine near Weihe River was chosen as the research object, and the contents of heavy metals were analyzed including silver, nickel, cadmium and molybdenum, so as to provide the theoretical basis for treating soil contamination and establishing the artificial ecological restoration system. The results show that the Nemerow comprehensive pollution indexes of the soil are all more than 3 in all sampling area and they are in gross pollution. The contents of silver, nickel, cadmium and molybdenum are all very high in all sample regions with the average contents in the descending order nickel > cadmium > silver > molybdenum. The descending order according to the single factor pollution index is cadmium > silver > molybdenum > nickel. The variation coefficients of all heavy metals are the highest in the fourth sample region, and the contents distribution of all heavy metals is inhomogeneous. It may be caused by other pollution sources. The main pollution sources may be caused by the irrigation and diffusion of waste water,the mineral waste residue dust and vehicle and so on in the mine area.%以渭河附近某金矿排水沟周边土壤为研究对象,对土壤中Ag、Ni、Cd和Mo 4种重金属含量进行分析,为渭河周围土壤污染治理及人工生态修复提供依据.实验结果表明,5个样区内梅罗综合污染指数均大于3,处于严重污染状态;Ag、Ni、Cd和Mo在5个样区中含量均很高,其平均值总体存在Ni> Cd> Ag>Mo;各重金属单项污染指数值总体存在Cd>Ag> Mo>Ni;第4样区重金属变异系数较大,各样点重金属含量分布不均一,外源污染严重.各样区污染主要来源于矿区废水排放与灌溉,以及废渣粉尘和车辆扬尘等.

  18. Adaptive Drainage Slots for Acoustic Noise Attenuation Project

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG) demonstrated feasibility in the reduction of noise attributed to drainage slots in jet engine acoustic liners. This was...

  19. Monitoring and remediation technologies of organochlorine pesticides in drainage water

    Ismail Ahmed


    Full Text Available This study was carried out to monitor the presence of organochlorine in drainage water in Kafr-El-Sheikh Governorate, Egypt. Furthermore, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation for removing the most frequently detected compound (lindane in drainage water. The results showed the presence of several organochlorine pesticides in all sampling sites. Lindane was detected with high frequency relative to other detected organochlorine in drainage water. Nano photo-Fenton like reagent was the most effective treatment for lindane removal in drainage water. Bioremediation of lindane by effective microorganisms (EMs removed 100% of the lindane initial concentration. There is no remaining toxicity in lindane contaminated-water after remediation on treated rats relative to control with respect to histopathological changes in liver and kidney. Advanced oxidation processes especially with nanomaterials and bioremediation using effective microorganisms can be regarded as safe and effective remediation technologies of lindane in water.

  20. Recycling Facilities - Mine Drainage Treatment/Land Recycling Project Locations

    NSGIC GIS Inventory (aka Ramona) — Mine Drainage Treatment/Land Reclamation Locations are clean-up projects that are working to eliminate some form of abandoned mine. The following sub-facility types...

  1. Gravity Drainage of Activated Sludge on Reed Beds

    Christensen, Morten Lykkegaard; Dominiak, Dominik Marek; Keiding, Kristian;

    Activated sludge is a by-product from waste water treatment plants, and the water content in the sludge is high (> 90%). Among several methods to remove the water, sludge drying reed beds are often used to dewater the sludge by drainage. There is, however, no well-defined criterion for design...... has therefore been developed to measure relevant quality parameters: specific cake resistance, settling velocity and cake compressibility. It has been found that activated sludge form highly compressible cake even at the low compressive pressures obtained during drainage. Numerical simulation shows...... that the compressibility has a high influence on the drainage process especially during the start-up phases where the volumetric load on the sludge bed is critical. The load has to be low in order to ensure that the drainage properties of the bed are not destroyed. The data also shows that transport of activated sludge...

  2. Vegetation damage and recovery after Chiginagak Volcano Crater drainage event

    US Fish and Wildlife Service, Department of the Interior — From August 20 — 23, 2006, I revisited Chiginigak volcano to document vegetation recovery after the crater drainage event that severely damaged vegetation in May of...

  3. Adaptive Drainage Slots for Acoustic Noise Attenuation Project

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG), proposes to demonstrate feasibility in the reduction of noise attributed to drainage slots in jet engine acoustic liners....

  4. Shallow Melting and Underground Drainage in Utopia Planitia, Mars

    Costard, F.; Sejourne, A.; Kargel, J.; Soare, R.


    Based on the identification of sinuous and elongated pits in Utopia Planitia, we suggest that shallow melting and underground drainage are possible. We test that hypothesis using a thermal model that comprises a thick insulating dusty layer.

  5. 13 Morphometric Analysis of Ogunpa and Ogbere Drainage Basins ...


    Morphometric Analysis of Ogunpa and Ogbere Drainage Basins, Ibadan, Nigeria. *Ajibade ... complex rock in Southwestern Nigeria. .... This work was based on map analysis ..... Bs = VI/HE where Bs = Basin slope, VI = Vertical Interval and.

  6. The Martain drainage system and the origin of valley networks and fretted channels

    Carr, Michael H.


    Outflow channels provide strong evidence for abundant water near the Martian surface and an extensive groundwater system. Collapse of the surface into some channels suggests massive subsurface erosion and/or solution in addition to erosion by flow across the surface. Flat floors, steep walls, longitudinal striae and ridges, downstream deflection of striae from channel walls, and lack of river channels suggest that fretted channels form dominantly by mass wasting. A two-stage process is proposed. In the first stage, extension of valleys heads is favored by seepage of groundwater into debris shed from slopes. The debris moves downstream, aided by interstitial groundwater at the base of the debris, possibly with high pore pressures. In the second stage, because of climate change or a lower heat flow, groundwater can no longer seep into the debris flows in the valleys, their movement almost stops, and more viscous ice-lubricated debris aprons form. Almost all uplands at elevations greater than +1 km are dissected by valley networks, although the drainage densities are orders of magnitude less than is typical for the Earth. The valley networks resemble terrestrial river systems in planimetric shape, but U-shaped and rectangular-shaped cross sections, levee- like peripheral ridges, median ridges, patterns of branching and rejoining, and flat floors without river channels suggest that the networks may not be true analogs to terrestrial river valleys. It is proposed that they, like the fretted channels, formed mainly by mass wasting, aided by groundwater seepage into the mass-wasted debris. Movements of only millimeters to centimeters per year are needed to explain the channel lengths. Most valley formation ceased early at low latitudes because of progressive dehydration of the near surface, the result of sublimation of water and/or drainage of groundwater to regions of lower elevations. Valley formation persisted to later dates where aided by steep slopes, as on crater

  7. Greenhouse gases emission from the sewage draining rivers.

    Hu, Beibei; Wang, Dongqi; Zhou, Jun; Meng, Weiqing; Li, Chongwei; Sun, Zongbin; Guo, Xin; Wang, Zhongliang


    Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) concentration, saturation and fluxes in rivers (Beitang drainage river, Dagu drainage rive, Duliujianhe river, Yongdingxinhe river and Nanyunhe river) of Tianjin city (Haihe watershed) were investigated during July and October in 2014, and January and April in 2015 by static headspace gas chromatography method and the two-layer model of diffusive gas exchange. The influence of environmental variables on greenhouse gases (GHGs) concentration under the disturbance of anthropogenic activities was discussed by Spearman correlative analysis and multiple stepwise regression analysis. The results showed that the concentration and fluxes of CO2, CH4 and N2O were seasonally variable with >winter>fall>summer, spring>summer>winter>fall and summer>spring>winter>fall for concentrations and spring>summer>fall>winter, spring>summer>winter>fall and summer>spring>fall>winter for fluxes respectively. The GHGs concentration and saturation were higher in comprehensively polluted river sites and lower in lightly polluted river sites. The three GHGs emission fluxes in two sewage draining rivers of Tianjin were clearly higher than those of other rivers (natural rivers) and the spatial variation of CH4 was more obvious than the others. CO2 and N2O air-water interface emission fluxes of the sewage draining rivers in four seasons were about 1.20-2.41 times and 1.13-3.12 times of those in the natural rivers. The CH4 emission fluxes of the sewage draining rivers were 3.09 times in fall to 10.87 times in spring of those in the natural rivers in different season. The wind speed, water temperature and air temperature were related to GHGs concentrations. Nitrate and nitrite (NO3(-)+NO2(-)-N) and ammonia (NH4(+)-N) were positively correlated with CO2 concentration and CH4 concentration; and dissolved oxygen (DO) concentration was negatively correlated with CH4 concentration and N2O concentration. The effect of human activities on carbon

  8. Mercury mine drainage and processes that control its environmental impact

    Rytuba, J.J.


    Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the p

  9. Discharge estimation from planform characters of the Shedhi River, Gujarat alluvial plain: Present and past

    Alpa Sridhar


    In the absence of long-term hydrologic and streamflow records an understanding of river morphology (present and past) can help delineate changes in magnitudes of water and sediment discharges. The relict drainage system of Gujarat alluvial plain provides an opportunity to reconstruct the palaeochannel morphology-related discharge estimations. In this paper, based on the geomorphological evidence and channel geometry, an attempt has been made to reconstruct the palaeohydrological condition in the Shedhi River during the Holocene. A comparison of the present day channel of the Shedhi River with that of its palaeo counterpart reveals that the former was carrying much higher bankfull discharge (∼5500m3s−1) as compared to the present (∼200m3s−1). This is attributed to a larger drainage area and enhanced precipitation in the Shedhi River basin.

  10. The Amazon River reversal explained by tectonic and surface processes

    Sacek, V.


    The drainage pattern in Amazonia was expressively modified during the mountain building of central and northern Andes. In Early Miocene, the fluvial systems in western Amazonia flowed to the foreland basins and northward to the Caribbean. By Late Miocene the drainage reversal occurred and formed the transcontinental Amazon River, connecting the Andes and the equatorial Atlantic margin. This event is recorded in the stratigraphic evolution of the Foz do Amazonas Basin by the onset of Andean-derived sedimentation. Additionally, an abrupt increase in sedimentation rate after the reversal occurred in the Foz do Amazonas Basin. Based on three-dimensional numerical models that couple surface processes, flexural isostasy and crustal thickening due to orogeny, I concluded that the Miocene drainage reversal can be explained by the flexural and surface processes response to the Andes formation with no need to invoke dynamic topography induced by mantle convection, as previously proposed. I observed that the instant of drainage reversal is directly linked to the rate of crustal thickening in the orogeny, the rate of erosion and, mainly, the efficiency of sediment transport. Moreover, the numerical experiments were able to predict the increase in sedimentation rate in the Amazon fan after the drainage reversal of the Amazon River as observed in the Late Miocene-Pliocene sedimentary record. However, the present numerical model fails to fully reproduce the evolution of the Pebas system, a megawetland in western Amazonia that preceded the drainage reversal. Therefore, further investigation is necessary to evaluate the mechanisms that generated and sustained the Pebas system.

  11. Analysis of the Transport and Fate of Metals Released From the Gold King Mine in the Animas and San Juan Rivers

    This project’s objectives were to provide analysis of water quality following the release of acid mine drainage in the Animas and San Juan Rivers in a timely manner to 1) generate a comprehensive picture of the plume at the river system level, 2) help inform future monitoring eff...

  12. Airway physiology, autogenic drainage, and active cycle of breathing.

    Lapin, Craig D


    Airway clearance techniques are used to aid in mucus clearance in a variety of disease states. Autogenic drainage and active-cycle-of-breathing technique are 2 such modalities that rely heavily on basic airway physiology to enhance clearance. In this review I discuss the equal pressure point, huffing, and asynchronous and collateral ventilation, and review the literature and theory regarding autogenic drainage and active cycle of breathing. Selection of airway clearance techniques is discussed in the light of evidence-based medicine.

  13. Abdominal drainage following cholecystectomy: high, low, or no suction?

    McCormack, T T; Abel, P D; Collins, C. D.


    A prospective trial to assess the effect of suction in an abdominal drain following cholecystectomy was carried out. Three types of closed drainage system were compared: a simple tube drain, a low negative pressure drain, and a high negative pressure drain: 120 consecutive patients undergoing cholecystectomy were randomly allocated to one of the three drainage groups. There was no significant difference in postoperative pyrexia, wound infection, chest infection, or hospital stay. This study f...

  14. Infected Baerveldt Glaucoma Drainage Device by Aspergillus niger

    Nurul-Laila Salim


    Full Text Available Fungal endophthalmitis is rare but may complicate glaucoma drainage device surgery. Management is challenging as the symptoms and signs may be subtle at initial presentation and the visual prognosis is usually poor due to its resistant nature to treatment. At present there is lesser experience with intravitreal injection of voriconazole as compared to Amphotericin B. We present a case of successfully treated Aspergillus endophthalmitis following Baerveldt glaucoma drainage device implantation with intravitreal and topical voriconazole.

  15. Simulating the Fate and Transport of an Acid Mine Drainage Release Using the WASP model

    Knightes, C. D.; Kate, S.; Avant, B. K.; Cyterski, M.; Washington, J.; Prieto, L.


    On August 5, 2015, approximately 3 million gallons of acid mine drainage were released from the Gold King Mine into Cement Creek in the San Juan River watershed (CO, NM, UT). The release further mobilized additional metals, which resulted in a large mass of solids and dissolved metals entering Cement Creek. These metals were released into the Animas River. As the release acidity was neutralized, the metals precipitated and formed the visually noticeable "yellow boy," which flowed down the San Juan River. We applied the Water Quality Analysis Simulation Program (WASP) using empirically based parameterization to simulate and describe the movement of the plume and total and dissolved concentrations of all metals, including Arsenic, Copper, Lead, and Zinc. We estimated that the plume took between approximately 1 to 3 days to pass any given location. The peak concentration of the plume took about 2 hours to reach Silverton, CO (16 rkm), 1.5 days to reach Durango, CO (94 rkm), 2.9 days to reach Farmington, NM, (190 rkm) and 5.8 days to reach Mexican Hat, UT (422 km). Total metal concentration decreased rapidly going downstream, dropping 80% upon entering the Animas at Silverton, CO, and 99.5% entering the San Juan at Farmington. Metal concentrations decreased by dilution, settling, and dispersion. Modeling suggests that deposition occurred primarily in the upper Animas River near Silverton and near Durango, which was supported with empirical evidence. This work demonstrates the utility of a combined empirical and mechanistic modeling analysis. We additionally investigate long-term residual effects and potential exposure concentrations during storm and snowmelt high flow periods after the visible plume had traversed the system.

  16. Percutaneous transhepatic biliary drainage: analysis of 175 cases

    Suh, Kyung Jin; Lee, Sang Kwon; Kim, Tae Hun; Kim, Yong Joo; Kang, Duk Sik [College of Medicine, Kyungpook National Univ., Daegu (Korea, Republic of)


    Percutaneous transhepatic biliary drainage is a safe, effective and palliative means of treatment in biliary obstruction, especially in cases with malignant obstruction which are inoperable. 175 cases of transhepatic biliary drainage were performed on 119 patients with biliary obstruction from January 1985 to June 1989 at Kyung-pook National University Hospital. The causes of obstructive jaundice were 110 malignant diseases and 9 benign diseases. The most common indication for drainage was palliative intervention of obstruction secondary to malignant tumor in 89 cases. 86 cases of external drainage were performed including 3 cases of left duct approach, 29 cases of external-internal drainage and 60 cases of endoprosthesis. In external and external-internal drainages, immediate major complications (11.9%) occurred, including not restricted to, but sepsis, bile peritonitis and hemobilia. Delayed major complications (42.9%) were mainly catheter related. The delayed major complication of endoprosthesis resulted from obstruction of the internal stent. The mean time period to reobstruction of the internal stent was about 12 weeks. To improve management status, regular follow-up is required, as is education of both patients and their families as to when immediate clinical attention is mandated. Close communication amongst the varying medical specialities involved will be necessary to provide optional treatment for each patient.

  17. Percutaneous catheter drainage of intraabdominal abscesses and fluid

    Lee, Jong Tae; Kwon, Tae Hee; Yoo, Hyung Sik; Suh, Jung Ho [Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Young Ho [Cheil General Hospital, Seoul (Korea, Republic of)


    Percutaneous catheter drainage has been reported to be an effective method in the management of selected patients with abscess and fluid collection. Its high success rate and relatively low complications make the procedure an alternative to surgery in the individual cases. During past two years percutaneous catheter drainage in 25 patients with intraabdominal abscesses and fluid collection was performed at the Department of Radiology, Yonsei University College of medicine. Here the technique and author's results were summarized. 1. The total 25 patients who had percutaneous catheter drainage are 10 liver abscesses, 3 subphrenic, one subhepatic, 4 renal and perirenal, 2 pelvic, one psoas, one anterior pararenal fluid from acute pancreatitis, one pancreas pseudocyst and 2 malignant tumor necrosis. 2. The modified Seldinger technique used for all cases of abscess and fluid drainage under guidance of ultrasound scan. The used catheters were 10F. Pigtail and 14F. Malecot (Cook c/o) catheters. 3. The abscesses and fluid of 17 patients among 25 were cured by the percutaneous catheter drainage and 4 patients were clinically improved. The catheter drainage was failed in 2 patients and 3 complication were developed. 4. The success rate of this procedure was 91.3%, failure rate was 8.7% and complication rate was 12%.

  18. Effects of drainage salinity evolution on irrigation management

    Kan, Iddo


    A soil physics theory of solute movement through a drained saturated zone underlying agricultural land is introduced into a long-term economic analysis of farm-level irrigation management; this is an alternative to the immediate, homogeneous blending assumption employed in previous studies as a base for calculating changes in drainage salinity over time. Using data from California, the effect of drainage salinity evolution is analyzed through a year-by-year profit optimization under the requirement of on-farm drainage disposal. Paths of optimal land allocation among crop production with fresh surface water, saline drainage reuse and evaporation ponds appear to depend on the relative profitability of the first two; that of reuse is affected by the trend of drainage salinity. Tile spacing and environmental regulations associated with evaporation ponds affect the timing of evaporation pond construction. The system converges into a solution involving both drainage-disposal activities; this solution includes an outlet for salts and is therefore sustainable. Following this strategy, the system is asymptotically approaching a steady state that possesses both hydrological and salt balances. Economic implications associated with land retirement programs in California are discussed.

  19. A cost comparison of traditional drainage and SUDS in Scotland.

    Duffy, A; Jefferies, C; Waddell, G; Shanks, G; Blackwood, D; Watkins, A


    The Dunfermline Eastern Expansion (DEX) is a 350 ha mixed development which commenced in 1996. Downstream water quality and flooding issues necessitated a holistic approach to drainage planning and the site has become a European showcase for the application of Sustainable Urban Drainage Systems (SUDS). However, there is minimal data available regarding the real costs of operating and maintaining SUDS to ensure they continue to perform as per their design function. This remains one of the primary barriers to the uptake and adoption of SUDS. This paper reports on what is understood to be the only study in the UK where actual costs of constructing and maintaining SUDS have been compared to an equivalent traditional drainage solution. To compare SUDS costs with traditional drainage, capital and maintenance costs of underground storage chambers of analogous storage volumes were estimated. A whole life costing methodology was then applied to data gathered. The main objective was to produce a reliable and robust cost comparison between SUDS and traditional drainage. The cost analysis is supportive of SUDS and indicates that well designed and maintained SUDS are more cost effective to construct, and cost less to maintain than traditional drainage solutions which are unable to meet the environmental requirements of current legislation. (c) IWA Publishing 2008.

  20. Effects of acid rock drainage on stocked rainbow trout (Oncorhynchus mykiss): an in-situ, caged fish experiment.

    Todd, Andrew S; McKnight, Diane M; Jaros, Chris L; Marchitto, Thomas M


    In-situ caged rainbow trout (Oncorhynchus mykiss) studies reveal significant fish toxicity and fish stress in a river impacted by headwater acid rock drainage (ARD). Stocked trout survival and aqueous water chemistry were monitored for 10 days at 3 study sites in the Snake River watershed, Colorado, U.S.A. Trout mortality was positively correlated with concentrations of metals calculated to be approaching or exceeding conservative toxicity thresholds (Zn, Mn, Cu, Cd). Significant metal accumulation on the gills of fish stocked at ARD impacted study sites support an association between elevated metals and fish mortality. Observations of feeding behavior and significant differences in fish relative weights between study site and feeding treatment indicate feeding and metals-related fish stress. Together, these results demonstrate the utility of in-situ exposure studies for stream stakeholders in quantifying the relative role of aqueous contaminant exposures in limiting stocked fish survival.

  1. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    Zuliziana, S.; Tanuma, K.; Yoshimura, C.; Saavedra, O. C.


    Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash-Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  2. Distributed model of hydrological and sediment transport processes in large river basins in Southeast Asia

    S. Zuliziana


    Full Text Available Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2. In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2 and the Mekong River Basin (795 000 km2. The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE and average correlation coefficient (r between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k in the Chao Phraya River Basin and to soil detachability over land (Kf in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.

  3. Summary of biological investigations relating to surface-water quality in the Kentucky River basin, Kentucky

    Bradfield, A.D.; Porter, S.D.


    The Kentucky River basin, an area of approximately 7,000 sq mi, is divided into five hydrologic units that drain parts of three physiographic regions. Data on aquatic biological resources were collected and reviewed to assess conditions in the major streams for which data were available. The North, Middle, and South Forks of the Kentucky River are in the Eastern Coal Field physiographic region. Streams in this region are affected by drainage from coal mines and oil and gas operations, and many support only tolerant biotic stream forms. The Kentucky River from the confluence of the three forks to the Red River, is in the Knobs physiographic region. Oil and gas production operations and point discharges from municipalities have affected many streams in this region. The Red River, a Kentucky Wild River, supported a unique flora and fauna but accelerated sedimentation has eliminated many species of mussels. The Millers Creek drainage is affected by brines discharged from oil and gas operations, and some reaches support only halophilic algae and a few fish. The Kentucky River from the Red River to the Ohio River is in the Bluegrass physiographic region. Heavy sediment loads and sewage effluent from urban centers have limited the aquatic biota in this region. Silver Creek and South Elkhorn Creek have been particularly affected and aquatic communities in these streams are dominated by organisms tolerant of low dissolved oxygen concentrations. Biological data for other streams indicate that habitat and water quality conditions are favorable for most commonly occurring aquatic organisms. (USGS)

  4. Pseudobagrus emarginatus (Regan, 1913), a valid Chinese bagrid species from the upper Yangtze River drainage (Teleostei:Bagridae)%凹尾拟鲿(Pseudobagrus emarginatus)--长江上游中国鲇类一有效种(硬骨鱼纲:鲿科)

    程建丽; 张鹗; 张建强; 杨德国


    对中国鲿科鱼类系统分类学研究中发现,凹尾拟鲿为一不同于细体拟鲿(P. pratti)的有效种,仅分布于长江上游。凹尾拟鲿胸刺前缘光滑无锯齿,颌须较短,后伸不超过胸鳍起点,本属中同时具有这两个特征的还包括18个有效种。在这18个物种中,乌苏里拟鲿(P. ussuriensis)、长脂拟鲿(P. adiposalis)、短尾拟鲿(P. brevicaudatus)和越南拟鲿(P. kyphus)与凹尾拟鲿一样,具有中等分叉的尾鳍。凹尾拟鲿与乌苏里拟鲿和长脂拟鲿的区别在于游离脊椎骨数目和背刺长短等性状上,与短尾拟鲿和越南拟鲿在背刺后缘程度、枕骨棘与项背骨间的间距上存在差异。凹尾拟鲿与细体拟鲿在形态上最为相似,但在体高、背鳍前长、脂鳍高及尾柄高等性状上存在差别。同时,在颅骨、犁骨、项背骨及腰带等骨骼特征上也存在较大差异。%Pseudobagrus emarginatus is here regarded as a species distinct from P. pratti, and known only from the upper Yangtze River basin. It can be assigned to the species group comprising 18 species of Pseudobagrus characterized by having a smooth anterior margin of the pectoral-fin spine and short maxillary barbels not extending to the pectoral-fin insertion. It, along with P. ussuriensis, P. adiposalis, P. brevicaudatus, P. kyphus and P. pratti, differs from all congeners of the group in having a moderately forked caudal fin. Pseudobagrus emarginatus differs from P. ussuriensis and P. adiposalis in the number of vertebrae, dorsal-fin spine length, and P. brevicaudatus and P. kyphus in the structure of dorsal spine, and the presence or absence of the interspace between the supraoccipital process and the nuchal plate. It differs from P. pratti, in body depth, predorsal length, adipose-fin depth and caudal-peduncle depth. Both differ in many osteological characters related to the cranium, vomer, nuchal plate and pelvic girdle.

  5. 21 CFR 878.4200 - Introduction/drainage catheter and accessories.


    ... catheters (including dialysis), and other general surgical catheters. An introduction/drainage catheter... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Introduction/drainage catheter and accessories... Introduction/drainage catheter and accessories. (a) Identification. An introduction/drainage catheter is a...

  6. Drainage-Area Data for Wisconsin Streams


    Mich., 42 N 35 W SW1/4SE1/4 21 Iron 7 2.07 at mouth (Mich .) )4059903 Huff Creek near Tipler , at mouth 41 N 15 E NW1/4SE1/4 31 Florence 7 5 .52 )4059904...Chuks Creek near Tipler , at mouth 41 N 15 E NE1/4SE1/4 31 Florence 7 1 .98 )4059905 Duck Creek near Tipler , at mouth 41 N 15 E NW1/4SW1/4 32 Florence...7 3 .32 )4059906 Brule River near Tipler , State Highway 189 42 N 35 E NE1/4SW1/4 35 Iron 7 164 (Mich .) and State Highway 139 (Wis .) (Mich


    V. Moca


    Full Text Available The soil-climatic conditions from Baia Depression – the hydrographical basin from the extra-Carpathian area of the Moldova River - have frequently determined the presence, under different forms, intensities and periods, of temporary water excess from soil. The underground drainage, as a measure of water excess control, with stagnant character, caused mainly by rainfall amounts registered for 1-5 consecutive days, was firstly arranged in pilot-experimental fields during 1972-1978. We followed the behaviour in exploitation of underground drainage technical solutions, as concerns the functional efficiency of the means of water excess removal and of the improved soil favourableness and/or suitability for crop growing.In order to assess the long-term effects of ameliorating works, applied in 1978 in the drainage field of Baia, on an area of 3.50 ha, we have qualitatively classified and estimated the albic stagnic glossic Luvosoil (S.R.T.S. – 2003, improved and unimproved. Based on this study, we have estimated the present favourableness for crops of the improved soil, as compared to unimproved soil, used as natural grassland, after an exploitation cycle of 30 years (1978- 2008.

  8. On-site tests to estimate aquifer permeability of drainage area of south caisson anchorage construction of Taizhou Bridge

    Feng Zhaoxiang; Zhao Yanrong


    During the construction of the south caisson anchorage of Taizhou Bridge, the drainage area is located in the lower reaches of the Yangtze River and the permeability of stratums there is considerable. In order to maintain progress and guarantee safety during the sinking of the caisson, water should be drained in the initial period. Subsequently, detailed information about the aquifer permeability is required to make sure that the drainage will proceed successfully,which consequently necessitates the on-site estimation of the aquifer permeability in the drainage area. Therefore, the traditional pumping test and slug test are implemented respectively on site. The comparison of computational results of these two tests indicates that they are consistent overall. Notwithstanding, as slug test can be conducted with portable facilities in a short time and the manipulation is easy and few people need to be involved, the advantages of slug test is conspicuous compared with the traditional pumping test. It could be speculated that slug test will gain a prevalent application in the measurement of aquifer permeability in the future.

  9. Use of Natural and Applied Tracers to Guide Targeted Remediation Efforts in an Acid Mine Drainage System, Colorado Rockies, USA

    Rory Cowie


    Full Text Available Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD, a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD to passive treatment ponds that discharge to the Dolores River. The mine workings are excavated into the hillslope on either side of a tributary stream with workings passing directly under the stream channel. There is a need to define hydrologic connections between surface water, groundwater, and mine workings to understand the source of both water and contaminants in the drainage tunnel discharge. Source identification will allow targeted remediation strategies to be developed. To identify hydrologic connections we employed a combination of natural and applied tracers including isotopes, ionic tracers, and fluorescent dyes. Stable water isotopes (δ18O/δD show a well-mixed hydrological system, while tritium levels in mine waters indicate a fast flow-through system with mean residence times of years not decades or longer. Addition of multiple independent tracers indicated that water is traveling through mine workings with minimal obstructions. The results from a simultaneous salt and dye tracer application demonstrated that both tracer types can be successfully used in acidic mine water conditions.

  10. Morphometric analysis of the drainage system and its hydrological implications in the rain shadow regions, Kerala, India



    The rain shadow regions requisite a comprehensive watershed development and management plan for sustainable water resources management.The Pambar River Basin (PRB) lies on the rain shadow region of the southern Western Ghats,India,where climate showed marked intra-basin variation.A morphometric analysis was done to evaluate the drainage characteristics of PRB using topographical maps and digital elevation data.PRB was divided into eighteen 4th order basins (SB1-SB18),distributed along various climatic gradients.Lower order streams mostly dominate PRB and drainage pattern is a function of relief and structure.The terrain is highly dissected and prone to soil erosion during heavy storms and the elongated shape of PRB enables easier flood management.The influence of climate on drainage characteristics was evidently emphasized in basin morphometry.Four distinctively different classes were identified based on the morphometric similarities.The significance of morphometric analysis on the hydrological characterization is discussed and the relevance of the present study in water harvesting has been explicated.

  11. Consequences of suppressing natural vegetation in drainage areas for freshwater ecosystem conservation: considerations on the new "Brazilian forest code"

    Marcelo Henrique Ongaro Pinheiro


    Full Text Available The input of particulate and dissolved organic matter (POM and DOM, respectively from terrestrial ecosystem drainage basins is an important energy and nutrient source in limnic food chains. Studies indicated that semi-deciduous seasonal forests located in drainage areas in Brazil have the potential to produce 7.5 - 10.3 Mg ha−1/year of POM. The global increase in vegetation destruction, such as forests, threatens this allochthonous resource and can have significant impacts on river and lake communities and food chains. Therefore, it is critical that exploitation and occupation protocols are updated to protect the transition areas between terrestrial and limnic ecosystems. This review highlights the existing knowledge of these ecosystem interactions and proposes responsible sustainable methods for converting the vegetation in drainage basins. This was based on Brazilian ecosystem data and the new "Brazilian Forest Code." This study also considers the importance of including flood tracks in permanently protected areas to improve Brazilian legislation and protect hydric resources.

  12. Surgical vs ultrasound-guided drainage of deep neck space abscesses: a randomized controlled trial: surgical vs ultrasound drainage


    Introduction Deep neck space abscesses (DNAs) are relatively common otolaryngology-head and neck surgery emergencies and can result in significant morbidity with potential mortality. Traditionally, surgical incision and drainage (I&D) with antibiotics has been the mainstay of treatment. Some reports have suggested that ultrasound-guided drainage (USD) is a less invasive and effective alternative in select cases. Objectives To compare I&D vs USD of well-defined DNAs, using a randomized control...

  13. Impact assessment of mine drainage water and municipal wastewater on the surface water in the vicinity of Bor

    Gardić Vojka R.


    impact on the environment. The study included the following sources of pollution: mining waste and drainage water originating from the active mine (Bor pit , field 1 Krivelj large tailings, flotation tailings in Bor RTH, metallurgical water, as well as the drainage water from the flotation tailings, which are no longer in operation (field 2 flotation tailings Great Krivelj, drainage water from the old Bor flotation tailings, the old inactive landfill mine gangue (Saraka landfill, Veliki planir - tailings from the old Bor mine, landfill mine gangue from mine RTH and the city - urban waste water, which are discharged without treatment directly into the watercourse Bor River. Wastewater directly pollute Bor River and Krivalj River.

  14. Sensitivity of drainage efficiency of cranberry fields to edaphic conditions

    Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.


    Water management on a cranberry farm requires intelligent irrigation and drainage strategies to sustain strong productivity and minimize environmental impact. For example, to avoid propagation of disease and meet evapotranspiration demand, it is imperative to maintain optimal moisture conditions in the root zone, which depends on an efficient drainage system. However, several drainage problems have been identified in cranberry fields. Most of these drainage problems are due to the presence of a restrictive layer in the soil profile (Gumiere et al., 2014). The objective of this work is to evaluate the effects of a restrictive layer on the drainage efficiency by the bias of a multi-local sensitivity analysis. We have tested the sensitivity of the drainage efficiency to different input parameters set of soil hydraulic properties, geometrical parameters and climatic conditions. Soil water flux dynamic for every input parameters set was simulated with finite element model Hydrus 1D (Simanek et al., 2008). Multi-local sensitivity was calculated with the Gâteaux directional derivatives with the procedure described by Cheviron et al. (2010). Results indicate that drainage efficiency is more sensitive to soil hydraulic properties than geometrical parameters and climatic conditions. Then, the geometrical parameters of the depth are more sensitive than the thickness. The drainage efficiency was very insensitive to the climatic conditions. Understanding the sensitivity of drainage efficiency according to soil hydraulic properties, geometrical and climatic conditions are essential for diagnosis drainage problems. However, it becomes important to identify the mechanisms involved in the genesis of anthropogenic soils cranberry to identify conditions that may lead to the formation of a restrictive layer. References: Cheviron, B., S.J. Gumiere, Y. Le Bissonnais, R. Moussa and D. Raclot. 2010. Sensitivity analysis of distributed erosion models: Framework. Water Resources Research

  15. Drainage pits in cohesionless materials: implications for surface of Phobos.

    Horstman, K C; Melosh, H J


    Viking orbiter images show grooves and chains of pits crossing the surface of Phobos, many of which converge toward the large crater Stickney or its antipode. Although it has been proposed that the pits and grooves are chains of secondary craters, their morphology and geometric relations suggest that they are the surface traces of fractures in the underlying solid body of Phobos. Several models have been proposed to explain the pits, of which the most plausible are gas venting and drainage of regolith into open fractures. the latter mechanism is best supported by the image data and is the mechanism studied in this investigation. Drainage pits and fissures are modeled experimentally by using two rigid substrate plates placed edge to edge and covered by uniform thicknesses of dry fragmental debris (simulated regolith). Fracture extension is simulated by drawing the plates apart, allowing drainage of regolith into the newly created void. A typical drainage experiment begins with a shallow depression on the surface of the regolith, above the open fissure. Increased drainage causes local drainage pits to form; continued drainage causes the pits to coalesce, forming a cuspate groove. The resulting experimental patterns of pits and grooves have pronounced similarities to those observed on Phobos. Characteristics such as lack of raised rims, linearity of grooves and chains of pits, uniform spacing of pits, and progression from discrete pits to cuspate grooves are the same in the experiments and on Phobos. In contrast, gas-venting pits occur in irregular chains and have raised rims. These experiments thus indicate that the Phobos grooves and pits formed as drainage structures. The pit spacing in an experiment is measured at the time that the maximum number of pits forms, prior to groove development. The average pit spacing is compared to the regolith thickness for each material. Regression line fits indicate that the average spacing of drainage pits in unconsolidated


    Dario Marić


    Full Text Available In this paper, a section of the Vuka River from its confluence with the Danube River in Vukovar to 3 + 630 rkm was modeled. The possibility and size of floods in the surrounding area were analyzed for different return periods (2, 5, 10, 50, and 100 yrs. Although the high-water levels of the Danube River are lower than the terrain elevation of Vukovar, they cause backwater in the Vuka River and in its tributary, the Bobotski canal. In that indirect way, the surrounding area is endangered and the efficiency of drainage systems is reduced. The existing riverbed of the analyzed Vuka River section was digitalized based on a digital terrain model using the geographic information system (GIS software ArcGIS and the HEC-GeoRAS toolbar. A mathematical model of the steady-state flow of the Vuka river section using the digitized riverbed was executed in the HEC-RAS software using different return periods. The obtained velocities and water levels were analyzed using HEC-RAS, and the sizes of the flooded areas were calculated and observed in ArcGIS.

  17. A Topological Phase Transition in Models of River Networks

    Oppenheim, Jacob; Magnasco, Marcelo


    The classical Scheidegger model of river network formation and evolution is investigated on non-Euclidean geometries, which model the effects of regions of convergent and divergent flows - as seen around lakes and drainage off mountains, respectively. These new models may be differentiated by the number of basins formed. Using the divergence as an order parameter, we see a phase transition in the number of distinct basins at the point of a flat landscape. This is a surprising property of the statistics of river networks and suggests significantly different properties for riverine networks in uneven topography and vascular networks of arteries versus those of veins among others.

  18. Links between river water acidity, land use and hydrology

    Saarinen, T.; Celebi, A.; Kloeve, B. [Oulu Univ. (Finland). Water Resources and Environmental Eng. Lab.], Email:


    In western Finland, acid leaching to watercourses is mainly due to drainage of acid sulphate (As) soils. This study examined how different land-use and land-cover types affect water acidity in the northwestern coastal region of Finland, which has abundant drained AS soils and peatlands. Sampling conducted in different hydrological conditions in studied river basins revealed two different catchment types: catchments dominated by drained forested peatlands and catchments used by agriculture. Low pH and high electric conductivity (EC) were typical in rivers affected by agriculture. In rivers dominated by forested peatlands and wetlands, EC was considerably lower. During spring and autumn high runoff events, water quality was poor and showed large spatial variation. Thus it is important to ensure that in river basin status assessment, sampling is carried out in different hydrological situations and in also water from some tributaries is sampled. (orig.)

  19. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.


    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  20. Occurrence of preservatives and antimicrobials in Japanese rivers.

    Kimura, Kumiko; Kameda, Yutaka; Yamamoto, Hiroshi; Nakada, Norihide; Tamura, Ikumi; Miyazaki, Motonobu; Masunaga, Shigeki


    We established a method for the simultaneous analysis of seven preservatives and five antimicrobials in water. These chemicals are widely used in cosmetics, and their presence in river water is of concern. We used the method to test 13 sites in Japanese rivers and streams contaminated by domestic wastewater, effluent, or industrial wastewater. 2-Phenoxyethanol (2-PE), isopropylmethylphenol, resorcinol, and triclosan were detected at most sites; the maximum concentration of 2-PE detected was 14000 ng L(-1). The results suggest that the major sources of 2-PE were cosmetics and household detergents. The ratio of methylparaben to n-propylparaben in river waters with direct wastewater drainage was similar to that in common cosmetics. This is the first research on levels of 2-PE, isopropylmethylphenol, and chlorphenesin in river water.

  1. Drainage filters and constructed wetlands to mitigate site-specific nutrient losses

    Kjærgaard, Charlotte; Hoffmann, Carl Christian; Iversen, Bo Vangsø

    options targeting subsurface drainage are lacking. An end-of-pipe drainage filter solution offers the benefits of a targeted measure typically applied to point sources. This calls for a shift of paradigm towards the development of new, cost-efficient technologies to mitigate site-specific nutrient losses...... drainage. The project studies different approaches of implementing the filter technologies including drainage well or drainage pipe filters as well as surface-flow and sub-surface flow constructed wetlands....

  2. The impact of global warming on river runoff

    Miller, James R.; Russell, Gary L.


    A global atmospheric model is used to calculate the annual river runoff for 33 of the world's major rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4 x 5 deg, but the runoff from each model grid box is quartered and added to the appropriate river drainage basin on a 2 x 2.5 deg resolution. The computed runoff depends on the model's precipitation, evapotranspiration, and soil moisture storage. For the doubled CO2 climate, the runoff increased for 25 of the 33 rivers, and in most cases the increases coincide with increased rainfall within the drainage basins. There were runoff increases in all rivers in high northern latitudes, with a maximum increase of 47 percent. At low latitudes there were both increases and decreases ranging from a 96 increase to a 43 percent decrease. The effect of the simplified model assumptions of land-atmosphere interactions on the results is discussed.

  3. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.


    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  4. The Mark Twain Lake/Salt River CEAP Project – Progress and Preliminary Findings

    The Mark Twain Lake collects drainage from approximately 6600 km2 of the Salt River basin, most of which represents the Midwest claypan major land resource area. Thus, it is likely the watershed most prone to surface runoff in the CEAP benchmark network. High surface runoff from agricultural land wi...

  5. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington

    Yang, Zhaoqing; Wang, Taiping


    A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.

  6. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.


    subglacial drainage network in the upper part of the glacier. At the Kuannersuit Glacier river on the island Qeqertarsuaq in west Greenland, the δ18O characteristics were examined after the major 1995-1998 glacier surge event. The mean annual δ18O was -19.47±0.55 ‰. Despite large spatial variations in the δ...

  7. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    W. A. Timms


    rainfall and large potential evapotranspiration, transient hydrological conditions after changes in land use and a thick clay dominated vadose zone.

    This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.

  8. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    W. A. Timms


    in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.

  9. Parameterizing sub-surface drainage with geology to improve modeling streamflow responses to climate in data limited environments

    C. L. Tague


    Full Text Available Hydrologic models are one of the core tools used to project how water resources may change under a warming climate. These models are typically applied over a range of scales, from headwater streams to higher order rivers, and for a variety of purposes, such as evaluating changes to aquatic habitat or reservoir operation. Most hydrologic models require streamflow data to calibrate subsurface drainage parameters. In many cases, long-term gage records may not be available for calibration, particularly when assessments are focused on low order stream reaches. Consequently, hydrologic modeling of climate change impacts is often performed in the absence of sufficient data to fully parameterize these hydrologic models. In this paper, we assess a geologic-based strategy for assigning drainage parameters. We examine the performance of this modeling strategy for the McKenzie River watershed in the US Oregon Cascades, a region where previous work has demonstrated sharp contrasts in hydrology based primarily on geological differences between the High and Western Cascades. Based on calibration and verification using existing streamflow data, we demonstrate that: (1 a set of streams ranging from 1st to 3rd order within the Western Cascade geologic region can share the same drainage parameter set, and (2 streams from the High Cascade geologic region, however, require a distinctive parameter set. Further, we show that a watershed comprised of a mixture of High and Western Cascade geology can be modeled without additional calibration by transferring parameters from these distinctive High and Western Cascade end-member parameter sets. Using this geologically-based parameter transfer scheme, our model predictions for all watersheds capture dominant historic streamflow patterns, and are sufficiently accurate to resolve geo-climatic differences in how these different watersheds are likely to respond to simple warming scenarios.

  10. Parameterizing sub-surface drainage with geology to improve modeling streamflow responses to climate in data limited environments

    C. L. Tague


    Full Text Available Hydrologic models are one of the core tools used to project how water resources may change under a warming climate. These models are typically applied over a range of scales, from headwater streams to higher order rivers, and for a variety of purposes, such as evaluating changes to aquatic habitat or reservoir operation. Most hydrologic models require streamflow data to calibrate subsurface drainage parameters. In many cases, long-term gage records may not be available for calibration, particularly when assessments are focused on low-order stream reaches. Consequently, hydrologic modeling of climate change impacts is often performed in the absence of sufficient data to fully parameterize these hydrologic models. In this paper, we assess a geologic-based strategy for assigning drainage parameters. We examine the performance of this modeling strategy for the McKenzie River watershed in the US Oregon Cascades, a region where previous work has demonstrated sharp contrasts in hydrology based primarily on geological differences between the High and Western Cascades. Based on calibration and verification using existing streamflow data, we demonstrate that: (1 a set of streams ranging from 1st to 3rd order within the Western Cascade geologic region can share the same drainage parameter set, while (2 streams from the High Cascade geologic region require a different parameter set. Further, we show that a watershed comprised of a mixture of High and Western Cascade geologies can be modeled without additional calibration by transferring parameters from these distinctive High and Western Cascade end-member parameter sets. More generally, we show that by defining a set of end-member parameters that reflect different geologic classes, we can more efficiently apply a hydrologic model over a geologically complex landscape and resolve geo-climatic differences in how different watersheds are likely to respond to simple warming scenarios.

  11. Influences of acid mine drainage and thermal enrichment on stream fish reproduction and larval survival

    Hafs, Andrew W.; Horn, C.D.; Mazik, P.M.; Hartman, K.J.


    Potential effects of acid mine drainage (AMD) and thermal enrichment on the reproduction of fishes were investigated through a larval-trapping survey in the Stony River watershed, Grant County, WV. Trapping was conducted at seven sites from 26 March to 2 July 2004. Overall larval catch was low (379 individuals in 220 hours of trapping). More larval White Suckers were captured than all other species. Vectors fitted to nonparametric multidimensional scaling ordinations suggested that temperature was highly correlated to fish communities captured at our sites. Survival of larval Fathead Minnows was examined in situ at six sites from 13 May to 11 June 2004 in the same system. Larval survival was lower, but not significantly different between sites directly downstream of AMD-impacted tributaries (40% survival) and non-AMD sites (52% survival). The lower survival was caused by a significant mortality event at one site that coincided with acute pH depression in an AMD tributary immediately upstream of the site. Results from a Cox proportional hazard test suggests that low pH is having a significant negative influence on larval fish survival in this system. The results from this research indicate that the combination of low pH events and elevated temperature are negatively influencing the larval fish populations of the Stony River watershed. Management actions that address these problems would have the potential to substantially increase both reproduction rates and larval survival, therefore greatly enhancing the fishery.

  12. Basin Geomorphology and Drainage Morphometry Parame-ters Used as Indicators for Groundwater Prospect:Insight from Geographical Information System (GIS) Technique

    Kumar Avinash; B Deepika; K S Jayappa


    Influence of structural and lithological controls of various drainage patterns and their stream orientations (for 2nd, 3rd and 4th order steams) were identified to evaluate the direction and controlling factors of drainage network. To investigate the prospect of groundwater, hydrogeomor-phological features of river basin viz. Mulki-Pavanje were identified and mapped. To evaluate the characteristics of the basin, different morphometric parameters (linear, areal and relief) were com-puted in sub-basin wise (SB-I to -VII). The linear parameters suggest drainage network is controlled by geomorphology. The form factor (Ff), elongation ratio (Re) and circularity ratio (Rc) suggest that the basin is in an elongated shape. The drainage density (Dd) indicates resistant/permeable strata un-der medium-dense vegetation with moderate relief. The areal parameters of the sub-basins (except SB-I and III) indicates moderate ground-slopes associated with moderately permeable rocks, which pro-mote moderate run-off and infiltration. Drainage texture (T) of the whole basin indicates coarse tex-ture while the SB-I, and III showing an intermediate texture. The relief parameters namely rugged-ness number (Rn) infers low basin relief and poor drainage density. To identify the most deficit/surplus zones of groundwater suitable weightages were assigned to the hydrogeomorphological units and morphometric parameters. The study reveal that the basin manifest that SB-III shall be most deficit zone of groundwater, whereas SB-VII, VI and V are found to show increase in groundwater potential-ity. Groundwater prospect area in this basin is estimated to be 7% area under poor, 44% area under moderate and 49% area under good to excellent. This paper demonstrated the potential application of geographical information system (GIS) techniques to evaluate the groundwater prospect in absence of traditional groundwater monitoring data.

  13. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: An example from the Ethiopian Highlands

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele


    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  14. Efficiency of lachrymal sac drainage in newborns with dacryocystocele

    Sakovich V.N.


    Full Text Available The article represents results of treatment of 14 newborns with unilateral dacryocystocele. Patients age was 7.2±0.5 days. In 9 newborns (64.3% dacryocystocele was complicated with lachrymal sac phlegmon; in 5 children (35.7% any complications were absent. Drainage of lachrymal sac through the lower lachrymal canaliculus, instillation of antibiotics, systemic antibiotic therapy in case of phlegmon were performed in all the children. Lachrymal sac washing was performed with a solution of the antibiotic ofloxacin till clear fluid evacuation. If necessary the drainage was repeated in 10 days. The drainage of lachrymal sac was successful in all the patients. 2-3 weeks after the drainage probing of nasolachrymal duct was perfomed in 4 children (28.6% including those 3 with lacrymal sac phlegmon. In 71.4% regression of dacryocystocele occurred itself. Any complications and side effects were not observed. Positive effect of the drainage, according to the authors, can be explained so that dilatation of lachrymal canaliculus before the procedure allows to eliminate Rosenmьller valve stenosis and evacuation of fluid, mucus and pus, being breeding ground for microorganisms from lachrymal sac, promotes inflammation subsiding. Authors also recommend to pay attention on prenatal diagnosis of dacryocystocele, using ultrasound investigation in the 3rd trimester of pregnancy.

  15. Bubble motion measurements during foam drainage and coarsening.

    Maurdev, G; Saint-Jalmes, A; Langevin, D


    We have studied bubble motion within a column of foam allowed to undergo free drainage. We have measured bubble motion upward with time and as a function of their initial positions. Depending on the gas used, which sets the coarsening and drainage rates, different bubble upward motion types have been identified (constant speed, acceleration or deceleration) and explained in relation with liquid downward flows. The proofs of the consistency between bubble upward motion and liquid downward flow are obtained both by comparing the bubble motion curves to the liquid drainage ones, and by comparing the time variations of the liquid fraction extracted from bubble motion to direct liquid fraction measurements by electrical conductimetry. The agreement between bubble position tracking and electrical conductivity shows in particular that it is possible to determine the drainage regime from such simple bubble motion measurements. This work also allowed us to demonstrate a special case of foam coarsening and expansion, occurring when the foam gas is less soluble than the outside one, caused by diffusion of this external gas into the foam. All these results allow us to build a picture of drainage and coarsening seen from the bubble point of view.

  16. Management of chest drainage tubes after lung surgery.

    Satoh, Yukitoshi


    Since chest tubes have been routinely used to drain the pleural space, particularly after lung surgery, the management of chest tubes is considered to be essential for the thoracic surgeon. The pleural drainage system requires effective drainage, suction, and water-sealing. Another key point of chest tube management is that a water seal is considered to be superior to suction for most air leaks. Nowadays, the most common pleural drainage device attached to the chest tube is the three-bottle system. An electronic chest drainage system has been developed that is effective in standardizing the postoperative management of chest tubes. More liberal use of digital drainage devices in the postoperative management of the pleural space is warranted. The removal of chest tubes is a common procedure occurring almost daily in hospitals throughout the world. Extraction of the tube is usually done at the end of full inspiration or at the end of full expiration. The tube removal technique is not as important as how it is done and the preparation for the procedure. The management of chest tubes must be based on careful observation, the patient's characteristics, and the operative procedures that had been performed.

  17. Basinsoft, a computer program to quantify drainage basin characteristics

    Harvey, Craig A.; Eash, David A.


    Surface water runoff is a function of many interrelated factors including climate, soils, landuse, and the physiography of the drainage basin. A practical and effective method to quantify drainage basin characteristics would allow analysis of the interrelations of these factors, leading to an improved understanding of the effects of drainage basin characteristics on surface-water runoff. Historically, the quantification of drainage basin characteristics has been a tedious and time-consuming process. Recent improvements in computer hardware and software technology have enabled the developers of a program called Basinsoft to automate this process. Basinsoft requires minimal preprocessing of data and provides an efficient, automated procedure for quantifying selected morphometric characteristics and the option to area-weight characteristics for a drainage basin. The user of Basinsoft is assumed to have a limited amount of experience in the use of ARC/INFO, a proprietary geographic information system (GIS). (The use of brand names in this chapter is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey [USGS].)

  18. Right Gastric Venous Drainage: Angiographic Analysis in 100 Patients

    Seong, Nak Jong [Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Chung, Jin Wook; Kim, Hyo Cheol; Park, Jae Hyung; Jae, Hwan Jun [Seoul National University Hospital, Seoul (Korea, Republic of); An, Sang Bu [National Cancer Center, Ilsan (Korea, Republic of); Cho, Baik Hwan [Chonbuk National University Hospital, Chonju (Korea, Republic of)


    To evaluate the pattern of right gastric venous drainage by use of digital subtraction angiography. A series of 100 consecutive patients who underwent right gastric arteriography during transcatheter arterial chemoembolization for hepatocellular carcinoma were included in this study. Angiographic findings were retrospectively analyzed with respect to the presence or absence of the right and aberrant gastric veins, multiplicity of draining veins, aberrant right gastric venous drainage sites, and the termination pattern of aberrant right gastric veins (ARGVs). We also compared the relative size of the right and left gastric veins. A total of 49 patients collectively had 66 ARGVs. The common drainage sites for the ARGVs included the hepatic segment IV (n = 35) and segment I (n = 15). The termination pattern of ARGV could be classified into 4 different types. The most common type was termination as a superficial parenchymal blush formation in small areas without demonstrable portal branches. A statistically significant difference was found for the dominance of the right gastric vein in gastric venous drainage between the two groups with or without ARGV (p < 0.05, Fisher's exact test). In the group of patients without ARGV (n = 51), the right gastric vein was equal to (n = 9) or larger than (n = 17) the left gastric vein in 26 patients (26 of 51, 51%). The incidence of ARGV is higher than expected with four distinct types in its termination pattern. The right gastric vein may play a dominant role in gastric venous drainage.

  19. Current status of preoperative drainage for distal biliary obstruction

    Harutoshi; Sugiyama; Toshio; Tsuyuguchi; Yuji; Sakai; Rintaro; Mikata; Shin; Yasui; Yuto; Watanabe; Dai; Sakamoto; Masato; Nakamura; Reina; Sasaki; Jun-ichi; Senoo; Yuko; Kusakabe; Masahiro; Hayashi; Osamu; Yokosuka


    Preoperative biliary drainage(PBD) was developed to improve obstructive jaundice, which affects a number of organs and physiological mechanisms in patients waiting for surgery. However, its role in patients who will undergo pancreaticoduodenectomy for biliary obstruction remains controversial. This article aims to review the current status of the use of preoperative drainage for distal biliary obstruction. Relevant articles published from 1980 to 2015 were identified by searching MEDLINE and Pub Med using the keywords "PBD", "pancreaticoduodenectomy", and "obstructive jaundice". Additional papers were identified by a manual search of the references from key articles. Current studies have demonstrated that PBD should not be routinely performed because of the postoperative complications. PBD should only be considered in carefully selected patients, particularly in cases where surgery had to be delayed. PBD may be needed in patients with severe jaundice, concomitant cholangitis, or severe malnutrition. The optimal method of biliary drainage has yet to be confirmed. PBD should be performed by endoscopic routes rather than by percutaneous routes to avoid metastatic tumor seeding. Endoscopic stenting or nasobiliary drainage can be selected. Although more expensive, the use of metallic stents remains a viable option to achieve effective drainage without cholangitis and reintervention.

  20. Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica

    Smith, Benjamin E.; Gourmelen, Noel; Huth, Alexander; Joughin, Ian


    We present conventional and swath altimetry data from CryoSat-2, revealing a system of subglacial lakes that drained between June 2013 and January 2014 under the central part of Thwaites Glacier, West Antarctica (TWG). Much of the drainage happened in less than 6 months, with an apparent connection between three lakes spanning more than 130 km. Hydro-potential analysis of the glacier bed shows a large number of small closed basins that should trap water produced by subglacial melt, although the observed large-scale motion of water suggests that water can sometimes locally move against the apparent potential gradient, at least during lake-drainage events. This shows that there are important limitations in the ability of hydro-potential maps to predict subglacial water flow. An interpretation based on a map of the melt rate suggests that lake drainages of this type should take place every 20-80 years, depending on the connectivity of the water flow at the bed. Although we observed an acceleration in the downstream part of TWG immediately before the start of the lake drainage, there is no clear connection between the drainage and any speed change of the glacier.