Analytic model for the dynamic Z-pinch
Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B. [E. T. S. I. Industriales, CYTEMA, and Instituto de Investigaciones Energéticas (INEI), Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany)
2015-06-15
A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting cases of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis.
The Prospects for High-Yield ICF with a Z-Pinch Driven Dynamic Hohlraum
CHANDLER, GORDON A.; CHRIEN, R.; COOPER, GARY WAYNE; DERZON, MARK S.; DOUGLAS, MELISSA R.; HEBRON, DAVID E.; LASH, JOEL S.; LEEPER, RAMON J.; MATZEN, M. KEITH; MEHLHORN, THOMAS A.; NASH, THOMAS J.; OLSON, RICHARD E.; PETERSON, D.L.; RUIZ, CARLOS L.; SANFORD, THOMAS W. L.; SLUTZ, STEPHEN A.
1999-09-07
Recent success with the Sandia Z machine has renewed interest in utilizing fast z-pinenes for ICF. One promising concept places the ICF capsule internal to the imploding z-pinch. At machine parameters relevant to achieving high yield, the imploding z-pinch mass has sufficient opacity to trap radiation giving rise to a dynamic hohlraum. The concept utilizes a 12 MJ, 54 MA z-pinch driver producing a capsule drive temperature exceeding 300 eV to realize a 550 MJ thermonuclear yield. They present the current high-yield design and its development that supports high-yield ICF with a z-pinch driven dynamic hohlraum.
Plasma channel and Z-pinch dynamics for heavy ion transport
Ponce-Marquez, David [Univ. of California, Berkeley, CA (United States)
2002-01-01
A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of ~ 2 cm. Results also show that typical main bank discharge plasma densities reach 10^{17} cm^{-3} peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the
Plasma channel and Z-pinch dynamics for heavy ion transport
Ponce-Marquez, David
2002-07-09
A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of {approx} 2 cm. Results also show that typical main bank discharge plasma densities reach 10{sup 17} cm{sup -3} peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the
A simplified MHD model of capillary Z-Pinch compared with experiments
Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)
2016-11-15
The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Vikhrev, V. V.; Baronova, E. O.
2006-01-01
Pinch dynamics is described, which takes into account generation of turbulent magnetic fields. Turbulent/chaotic magnetic fields (TMF) appear due to MHD and kinetic instabilities. It is shown, that TMF arises near the moment of maximal compression and essentially affects plasma dynamics at the expansion stage.
Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator
Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Savage, M. E.; Rochau, G. A.; Bailey, J. E.; Nash, T. J.; Sceiford, M. E.; Struve, K. W.; Corcoran, P. A.; Whitney, B. A.
2010-01-01
A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D. H. McDaniel , in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002), p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator’s intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed.
O-d energetics scaling models for Z-pinch-driven hohlraums
CUNEO,MICHAEL E.; VESEY,ROGER A.; HAMMER,J.H.; PORTER,JOHN L.
2000-06-08
Wire array Z-pinches on the Z accelerator provide the most intense laboratory source of soft x-rays in the world. The unique combination of a highly-Planckian radiation source with high x-ray production efficiency (15% wall plug), large x-ray powers and energies ( >150 TW, {ge}1 MJ in 7 ns), large characteristic hohlraum volumes (0.5 to >10 cm{sup 3}), and long pulse-lengths (5 to 20 ns) may make Z-pinches a good match to the requirements for driving high-yield scale ICF capsules with adequate radiation symmetry and margin. The Z-pinch driven hohlraum approach of Hammer and Porter [Phys.Plasmas, 6, 2129(1999)] may provide a conservative and robust solution to the requirements for high yield, and is currently being studied on the Z accelerator. This paper describes a multiple region, 0-d hohlraum energetic model for Z-pinch driven hohlraums in four configurations. The authors observe consistency between the models and the measured x-ray powers and hohlraum wall temperatures to within {+-}20% in flux, for the four configurations.
Huang Xian-Bin; Chen Guang-Hua; Zhang Zheng-Wei; Ouyang Kai; Li Jun; Zhang Zhao-Hui; Zhou Rong-Guo; Wang Gui-Lin; Yang Li-Bing; Li Jing; Zhou Shao-Tong; Ren Xiao-Dong; Zhang Si-Qun; Dan Jia-Kun; Cai Hong-Chun; Duan Shu-Chao
2012-01-01
We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 M A and a rising time～90 ns.The arrays are made up of(8-32)x5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy～13 kJ and the energy conversion efficiency～9％(24x5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)x 107 cm/s.
Effect of Initial Conditions on Gas-Puff Z-Pinch Dynamics.
Peterson, Gus Gordon
This dissertation concerns the effects initial conditions have on the dynamics of an imploded, annular gas-puff z-pinch. The influence of axial magnetic fields, nozzle size and composition, different gases, pre-ionization, and electrode design on pinch quality and x-ray yield is investigated. The experiment uses a 5-kJ capacitor bank to deliver 0.35 MA to the pinch load in 1.4 mu rm s. This research establishes parameters important to increasing the x-ray yield of dense z-pinches. The initial stage of the implosion is diagnosed with a framing camera that photographs visible light emitted from z-pinch gas breakdown. Data from subsequent stages of the pinch is recorded with a B-dot probe, filtered x-ray diodes, an x-ray filtered pinhole camera, and a nitrogen laser interferometer. Applied axial magnetic fields of ~100 gauss increase average x-ray yield by more than 20%. A substantial increase of K-shell x -ray yield of more than 200% was obtained by increasing the energy delivered to the plasma by enlarging the nozzle diameter from 4 to 5 cm. The use of a Teflon outer-mantle for the nozzle resulted in less uniform gas breakdown as compared to graphite and copper outer-mantles, but x-ray yield and final state uniformity were not reduced. Lower Z gases showed poorer breakdown uniformity. Pre-ionization improved the uniformity of helium and neon breakdown but did not appear to affect subsequent dynamics. X-ray yield was significantly higher using a knife-edge annular anode, as opposed to a flat stainless steel honeycomb anode. Annular anodes with diameters more than a few millimeters different than the nozzle diameter produced low quality pinches with substantially lower x-ray yield.
Ablation dynamics in wire array Z-pinches under modifications on global magnetic field topology
Veloso, Felipe, E-mail: fveloso@fis.puc.cl; Muñoz-Cordovez, Gonzalo; Donoso-Tapia, Luis; Valenzuela-Villaseca, Vicente; Favre, Mario; Wyndham, Edmund [Instituto de Física, Pontificia Universidad Católica de Chile, Av Vicuña Mackenna 4860, Macul, Santiago (Chile); Suzuki-Vidal, Francisco; Swadling, George; Chittenden, Jeremy [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)
2015-07-15
The dynamics of ablation streams and precursor plasma in cylindrical wire array Z-pinches under temporal variations of the global magnetic field topology is investigated through experiments and numerical simulations. The wire arrays in these experiments are modified by replacing a pair of consecutive wires with wires of a larger diameter. This modification leads to two separate effects, both of which impact the dynamics of the precursor plasma; firstly, current is unevenly distributed between the wires and secondly, the thicker wires take longer to fully ablate. The uneven distribution of current is evidenced in the experiments by the drift of the precursor off axis due to a variation in the global magnetic field topology which modifies the direction of the ablation streams tracking the precursor position. The variation of the global magnetic field due to the presence of thick wires is studied with three-dimensional magnetohydrodynamic (MHD) simulations, showing that the global field changes from the expected toroidal field to a temporally variable topology after breakages appear in the thin wires. This leads to an observed acceleration of the precursor column towards the region closer to the thick wires and later, when thick wires also present breakages, it continues moving away from the original array position as a complicated and disperse object subject to MHD instabilities.
Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1
Meng, Shijian; Hu, Qingyuan; Ning, Jiaming; Ye, Fan; Huang, Zhanchang; Qin, Yi; Wang, Dong; Xu, Zeping; Xu, Rongkun
2017-01-01
Axial radiation properties in Z-pinch dynamic hohlraum is investigated experimentally for the first time at Julong-1 facility in China, employing a load that contains a cylindrical CHO foam placed at the central axis position of the nested tungsten wire array. Time-resolved axially radiating images indicate that the velocity of the radiating shock is 31.9 ± 5.6 cm/μs in shot 0181. At t = -6.5 ns with respect to the peak of radially radiated power at stagnation, the annular width is estimated to be ˜1 mm and the intensities distribution in the shock implies a good azimuthal symmetry of radiation pressure. Axial power is found to peak prior to the arrival of the shock to the axis, which is explained by the balance between shock heating and radiating cooling. Utilizing the end-on radiation images and axial power, the peak radiation temperature in dynamic hohlraum is obtained to be ˜65 eV.
Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability
Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin
2016-09-01
A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.
The Role of Magnetosonic Shocks in the Dynamics and Stability of the Staged Z-pinch
Rahman, Hafiz U.; Wessel, F. J.; Ruskov, E.; Ney, P.; Narkis, J.; Valenzuela, J.; Conti, F.; Beg, F.
2016-10-01
A Staged Z-pinch is comprised of a magnetized, high-Z liner compressing a low-Z target and is predicted to achieve high, final-energy-density through enhanced stability, shock heating, and flux compression. Magnetosonic waves propagate radially in the system producing a stable, current carrying shock front that heats the target plasma during run-in, prior to inertial-adiabatic compression by the liner. The propagation of nonlinear-magnetosonic waves is described analytically by the KdV-Burger's Equation, providing stable-stationary solutions. We include a finite resistivity in the energy equation and generalized Ohm's law. A radiation-hydrodynamic code is used to evaluate the dynamic shock behavior, energy coupling, and the stability of the pinch. During implosion the axial-magnetic field provides enhanced stability and thermal insulation between the liner and the target plasmas. At peak compression the large amplitude Bz traps the fusion products leading to ignition in a deuterium-tritium target mixture. Advanced Research Projects Agency - Energy, DE-AR0000569.
Zhu, Q; Yamada, J; Kishi, N; Watanabe, M; Okino, A; Horioka, K; Hotta, E, E-mail: zhu.q.ab@m.titech.ac.jp [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta 4259 J2-35, Midori-ku, Yokohama 226-8502 (Japan)
2011-04-13
Dynamics of the imploding plasma and its relations to the 13.5 nm EUV emissions have been experimentally investigated for a laser-assisted Sn based discharge-produced plasma EUV source. The behaviours and two-dimensional electron density distributions of the EUV-emitting plasma were obtained using the time-resolved shadowgraph and Nomarski interferometric techniques. Observation of the plasma piston in the prepinch phase justified the validity of the zero-dimensional thin-shell model, from which the ion charge state of the prepinch plasma in the cathode region was estimated. The sausage (m = 0) instability that usually enhances the EUV emission was observed, with the radial electron density distribution that displays a concave shape at the crest of the plasma and a bell shape at the neck; the maximum of the electron density is located at one peak of the concave distribution at the crest instead of the neck. Intense EUV emission was produced by the Z-pinch plasma with the electron density (2.0-3.0) x 10{sup 18} cm{sup -3}. Moreover, the shock waves generated in the anode region can also produce in-band EUV emission with the intensity of 30% of that from the Z-pinch plasma.
Implosion dynamics and x-ray generation in small-diameter wire-array Z pinches.
Ivanov, V V; Sotnikov, V I; Kindel, J M; Hakel, P; Mancini, R C; Astanovitskiy, A L; Haboub, A; Altemara, S D; Shevelko, A P; Kazakov, E D; Sasorov, P V
2009-05-01
It is known from experiments that the radiated x-ray energy appears to exceed the calculated implosion kinetic energy and Spitzer resistive heating [C. Deeney, Phys. Rev. A 44, 6762 (1991)] but possible mechanisms of the enhanced x-ray production are still being discussed. Enhanced plasma heating in small-diameter wire arrays with decreased calculated kinetic energy was investigated, and a review of experiments with cylindrical arrays of 1-16 mm in diameter on the 1 MA Zebra generator is presented in this paper. The implosion and x-ray generation in cylindrical wire arrays with different diameters were compared to find a transition from a regime where thermalization of the kinetic energy is the prevailing heating mechanism to regimes with other dominant mechanisms of plasma heating. Loads of 3-8 mm in diameter generate the highest x-ray power at the Zebra generator. The x-ray power falls in 1-2 mm loads which can be linked to the lower efficiency of plasma heating with the lack of kinetic energy. The electron temperature and density of the pinches also depend on the array diameter. In small-diameter arrays, 1-3 mm in diameter, ablating plasma accumulates in the inner volume much faster than in loads of 12-16 mm in diameter. Correlated bubblelike implosions were observed with multiframe shadowgraphy. Investigation of energy balance provides evidence for mechanisms of nonkinetic plasma heating in Z pinches. Formation and evolution of bright spots in Z pinches were studied with a time-gated pinhole camera. A comparison of x-ray images with shadowgrams shows that implosion bubbles can initiate bright spots in the pinch. Features of the implosions in small-diameter wire arrays are discussed to identify mechanisms of energy dissipation.
Ikuta, Kazunari
1988-02-01
This paper reconsiders the magneto-inertia confinement approach to fusion in dynamic z-pinch with a new method of generating a hot plasma using a frozen deuterium-tritium (D-T) tube as an initial condition. If modern pulsed power technology can induce the high current of the order of 10 MA along the tube, the dense z-pinch plasma formed from the electro-magnetical implosion of thin tubular D-T ice with a radius of about 1 mm can satisfy the Lawson criterion for its 1 cm length.
Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch
Schmidt, A., E-mail: schmidt36@llnl.gov; Ellsworth, J., E-mail: schmidt36@llnl.gov; Falabella, S., E-mail: schmidt36@llnl.gov; Link, A., E-mail: schmidt36@llnl.gov; McLean, H., E-mail: schmidt36@llnl.gov; Rusnak, B., E-mail: schmidt36@llnl.gov; Sears, J., E-mail: schmidt36@llnl.gov; Tang, V., E-mail: schmidt36@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Welch, D. [Voss Scientific, LLC, 418 Washington St SE, Albuquerque NM 87108 (United States)
2014-12-15
The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.
A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas
Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com; Yang, L. B., E-mail: s.duan@163.com; Xie, W. P., E-mail: s.duan@163.com; Duan, S. C., E-mail: s.duan@163.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)
2014-12-15
Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certain K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.
3D full circumference modelling of wire array Z-pinches
Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Jennings, C. A.; Ciardi, A.
2003-10-01
Resistive magneto-hydrodynamic simulations are used to evaluate the influence of 3D inhomogeneities on X-ray power production in wire array Z-pinches. An initial temperature perturbation is used to stimulate variations in core ablation rates which result in a highly non-uniform final implosion. Results indicate that X-ray power production is governed by the rate at which current can transfer to the axis through a 3D debris field which trails behind the main implosion. Three dominant sources of power input to the pinch, and hence X-ray production, are identified. The first is the implosion of a large fraction of the array mass at moderate velocity. The second is the later implosion of a smaller mass fraction at higher velocity which carries the majority of current. Finally the contribution of Ohmic heating to the power input becomes significant. The peak power is ultimately limited by the onset of MHD instabilities in the stagnated pinch. Mechanisms for the influence of wire number, material and nesting on X-ray power production are presented. This research was sponsored by the NNSA under DOE Cooperative Agreement DE-F03-02NA00057.
Valenzuela, J. C.; Krasheninnikov, I.; Beg, F. N.; Wessel, F.; Rahman, H.; Ney, P.; Presura, R.; McKee, E.; Darling, T.; Covington, A.
2015-11-01
Previous experimental work on staged Z-pinches demonstrated that gas liners can efficiently couple energy and implode uniformly a target-plasma. A 1.5 MA, 1 μs current driver was used to implode a magnetized, Kr liner onto a D + target, producing 1010 neutrons per shot and providing clear evidence of enhanced pinch stability. Time-of-flight data suggest that primary and secondary neutrons were produced. MHD simulations show that in Zebra, a 1.5MA and 100ns rise-time current driver, high fusion gain can be attained when the optimum liner and plasma target conditions are used. In this work we present the design and optimization of a liner-on-target nozzle to be fielded in Zebra and demonstrate high fusion gain at 1 MA current level. The nozzle is composed of an annular high atomic number gas-puff and an on-axis plasma gun that will deliver the ionized deuterium target. The nozzle optimization was carried out using the computational fluid dynamics (CFD) code fluent and the MHD code Mach2. The CFD simulation produces density and temperature profiles, as a function of the nozzle shapes and gas conditions, which are then used in Mach2 to find the optimum plasma liner implosion-pinch conditions. Funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.
Modeling of laser produced plasma and z-pinch x-ray lasers
Dunn, J; Frati, M; Gonzales, J J; Kalashnikov, M P; Marconi, M C; Moreno, C H; Nickels, P V; Osterheld, A L; Rocca, J J; Sandner, W; Shlyaptsev, V N
1999-02-07
In this work we describe our theoretical activities in two directions of interest. First, we discuss progress in modeling laser produced plasmas mostly related to transient collisional excitation scheme experiments with Ne- and recently with Ni-like ions. Calculations related to the delay between laser pulses, transient gain duration and hybrid laser/capillary approach are described in more detail. Second, the capillary discharge plasma research, extended to wider range of currents and rise-times has been outlined. We have systematically evaluated the major plasma and atomic kinetic properties by comparing near- and far-field X-ray laser output with that for the capillary Argon X-ray laser operating under typical current values. Consistent with the experiment insight was obtained for the 469{angstrom} X-ray laser shadowgraphy experiments with very small kiloamp currents. At higher currents, as much as {approximately}200 kA we evaluated plasma temperature, density and compared x-ray source size and emitted spectra.
Dynamics of a Z Pinch X Ray Source for Heating ICF Relevant Hohlraums to 120-160eV
SANFORD,THOMAS W. L.; OLSON,RICHARD E.; MOCK,RAYMOND CECIL; CHANDLER,GORDON A.; LEEPER,RAMON J.; NASH,THOMAS J.; RUGGLES,LAURENCE E.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; PETERSON,D.L.; BOWERS,R.L.; MATUSKA,W.
2000-07-10
A z-pinch radiation source has been developed that generates 60 {+-} 20 KJ of x-rays with a peak power of 13 {+-} 4 TW through a 4-mm diameter axial aperture on the Z facility. The source has heated NIF (National Ignition Facility)-scale (6-mm diameter by 7-mm high) hohlraums to 122 {+-} 6 eV and reduced-scale (4-mm diameter by 4-mm high) hohlraums to 155 {+-} 8 eV -- providing environments suitable for indirect-drive ICF (Inertial Confinement Fusion) studies. Eulerian-RMHC (radiation-hydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm{sup 3} CH{sub 2} fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by {approximately}40% with only a 3--5% decrease in peak temperature, in agreement with measurements.
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn; Wu, Jiming, E-mail: ding-ning@iapcm.ac.cn; Huang, Jun, E-mail: ding-ning@iapcm.ac.cn; Yin, Li, E-mail: ding-ning@iapcm.ac.cn; Sun, Shunkai, E-mail: ding-ning@iapcm.ac.cn; Xue, Chuang, E-mail: ding-ning@iapcm.ac.cn; Dai, Zihuan, E-mail: ding-ning@iapcm.ac.cn; Ning, Cheng, E-mail: ding-ning@iapcm.ac.cn; Shu, Xiaojian, E-mail: ding-ning@iapcm.ac.cn; Wang, Jianguo, E-mail: ding-ning@iapcm.ac.cn; Li, Hua, E-mail: ding-ning@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)
2014-12-15
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua
2014-12-01
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire
Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch
Ivanov, Vladimir V. [Univ. of Nevada, Reno, NV (United States)
2016-08-17
Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics, magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of stagnated
Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch
Ivanov, Vladimir V. [Univ. of Nevada, Reno, NV (United States)
2016-08-17
Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics, magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of stagnated plasma
Z-Pinch Fusion for Energy Applications
SPIELMAN,RICK B.
2000-01-01
Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.
Note: Infrared laser diagnostics for deuterium gas puff Z pinches
Ivanov, V. V.; McKee, E. S.; Hammel, B. D.; Darling, T. W.; Swanson, K. J.; Covington, A. M.
2017-07-01
Deuterium gas puff Z pinches have been used for generation of strong neutron fluxes on the MA class pulse power machines. Due to the low electron density of deuterium Z-pinch plasma, regular laser diagnostics in the visible range cannot be used for observation and study of the pinch. Laser probing at the wavelength of 1064 nm was used for visualization of deuterium plasma. Infrared schlieren and interferometry diagnostics showed the deuterium gas puff plasma dynamics, instabilities, and allowed for the reconstruction of the profile of the plasma density.
Overview of the Fusion Z-Pinch Experiment FuZE
Weber, T. R.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Team
2016-10-01
Previously, the ZaP device, at the University of Washington, demonstrated sheared flow stabilized (SFS) Z-pinch plasmas. Instabilities that have historically plagued Z-pinch plasma confinement were mitigated using sheared flows generated from a coaxial plasma gun of the Marshall type. Based on these results, a new SFS Z-pinch experiment, the Fusion Z-pinch Experiment (FuZE), has been constructed. FuZE is designed to investigate the scaling of SFS Z-pinch plasmas towards fusion conditions. The experiment will be supported by high fidelity physics modeling using kinetic and fluid simulations. Initial plans are in place for a pulsed fusion reactor following the results of FuZE. Notably, the design relies on proven commercial technologies, including a modest discharge current (1.5 MA) and voltage (40 kV), and liquid metal electrodes. Supported by DoE FES, NNSA, and ARPA-E ALPHA.
Jensen, T. H.; Chu, M. S.
1981-06-01
The 'bumpy Z-pinch' is a magnetic configuration with potential usefulness for fusion reactors. A conceptually simple version of the configuration is axisymmetric. It contains regions of closed and open field lines. In the region of closed field lines, the field line topology is much like that of a tokamak; these regions link the region of open field lines around the axis of symmetry. Assuming that the plasma spontaneously maintains an equilibrium as described by Taylor (1974), it is possible to maintain indefinitely the regions of closed field lines by driving an axial current through the plasma in the region of open field lines. The ratio between the total axial driven current and the total poloidal current in each of the tokamak-like regions can, in principle, be made arbitrarily small, which means that the load impedance can be arbitrarily large. In addition, the configuration has the inherent virtue similar to that of the spheromak that the tokamak-like part of the plasma does not link any material coils.
Instability heating of solid-fiber Z pinches
Riley, R.A. Jr.
1994-02-01
The Los Alamos High Density Z Pinch-II (HDZP-II) facility is used to study the dynamics of z-pinch plasmas generated from solid fibers of deuterated polyethylene CD{sub 2} with a range in radii of 3--60 {mu}m. HDZP-II is a pulsed-power generator that delivers a current that rises to 700 kA in 100 ns through an inductive load. A multiframe circular schlieren records the evolution of the shape and size of the plasma on seven images taken at 10-ns intervals. These circular-schlieren images show very strong m=0 instability at the onset of current and a rapid radial expansion of the plasma. No higher-order instabilities are observed. An interferometer is used to infer the electron density and electron line density, giving a measure of the fraction of plasma contained within the outline of the circular-schlieren image at one time during the multiframe sequence. A three-channel x-ray crystal-reflection spectrometer provides the time-resolved, spatially-averaged electron temperature. The magnitude of the x-ray emission at these energies also gives qualitative information about the electron temperature and density at late times. A lower bound on the ion temperature is inferred from the particle pressure needed to balance the magnetic field pressure. The ion temperature rose above that of the electrons, strongly suggesting an additional heating term that puts energy directly into the ions. An ion heating term is proposed to explain the observed rapid radial expansion and elevated ion temperatures. This heating term is based on the assumption that the observed m=0 instabilities reconnect, enclosing magnetic flux which degenerates into turbulence in the plasma. A 0-D simulation is developed to investigate the relevance of different physical models to the data presented.
RYUTOV,D.D.; DERZON,MARK S.; MATZEN,M. KEITH
1999-10-25
The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 36 figures and more than 300 references.
Ryutov, D.D. [Lawrence Livermore National Lab., CA (United States); Derzon, M.S.; Matzen, M.K. [Sandia National Labs., Albuquerque, NM (United States)
1998-07-01
The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizes the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z-pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 52 figures and nearly 300 references.
An Inertial-Fusion Z-Pinch Power Plant Concept
DERZON,MARK S.; ROCHAU,GARY E.; DEGROOT,J.; OLSON,CRAIG L.; PETERSON,P.; PETERSON,R.R.; SLUTZ,STEPHEN A.; ZAMORA,ANTONIO J.
2000-12-15
With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30
An Inertial-Fusion Z-Pinch Power Plant Concept
DERZON,MARK S.; ROCHAU,GARY E.; DEGROOT,J.; OLSON,CRAIG L.; PETERSON,P.; PETERSON,R.R.; SLUTZ,STEPHEN A.; ZAMORA,ANTONIO J.
2000-12-15
With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30
Optimized Minimal Inductance Transmission Line Configuration for Z-Pinch Experiments
Hurricane, O
2003-10-16
Successful dynamic Z-pinch experiments generally require good current delivery to the target load. Power flow losses through highly inductive transmission line configurations reduce the current available to the load. In this Brief Report, a variational calculus technique is used to determine the transmission line configuration that produces the least possible inductance and therefore the best possible current delivery for Z-pinch experiments.
Optimized Minimal Inductance Transmission Line Configuration for Z-Pinch Experiments
Hurricane, O
2003-10-16
Successful dynamic Z-pinch experiments generally require good current delivery to the target load. Power flow losses through highly inductive transmission line configurations reduce the current available to the load. In this Brief Report, a variational calculus technique is used to determine the transmission line configuration that produces the least possible inductance and therefore the best possible current delivery for Z-pinch experiments.
Self-similar oscillations of a Z pinch bounded by a magnetic multipole
Tendler, M.
1988-11-01
A new analytic, self-similar solution of the fluid equations with losses in a stabilized Z pinch is presented. A scaling is suggested for the net energy loss with plasma density and temperature typical for a Z pinch immersed in an external multipole magnetic field. The solution of the strongly nonlinear system of fluid equations is obtained by self-similar methods. Strongly aharmonic high frequency oscillations of the plasma parameters are found. It is emphasized that a static Z pinch cannot be stabilized by a stationary field of a magnetic multipole. Therefore the potentiality of these oscillations to affect the stability of Z pinches embedded in a magnetic multipole is investigated. The effect of the dynamic stabilization is considered by taking estimates.
Review of effects of dielectric coatings on electrical exploding wires and Z pinches
Wu, Jian; Li, Xingwen; Li, Mo; Li, Yang; Qiu, Aici
2017-10-01
As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications.
Performance of a Liner-on-Target Injector for Staged Z-Pinch Experiments
Conti, F.; Valenzuela, J. C.; Narkis, J.; Krasheninnikov, I.; Beg, F.; Wessel, F. J.; Ruskov, E.; Rahman, H. U.; McGee, E.
2016-10-01
We present the design and characterization of a compact liner-on-target injector, used in the Staged Z-pinch experiments conducted on the UNR-NTF Zebra Facility. Previous experiments and analysis indicate that high-Z gas liners produce a uniform and efficient implosion on a low-Z target plasma. The liner gas shell is produced by an annular solenoid valve and a converging-diverging nozzle designed to achieve a collimated, supersonic, Mach-5 flow. The on-axis target is produced by a coaxial plasma gun, where a high voltage pulse is applied to ionize neutral gas and accelerate the plasma by the J-> × B-> force. Measurements of the liner and target dynamics, resolved by interferometry in space and time, fast imaging, and collection of the emitted light, are presented. The results are compared to the predictions from Computational Fluid Dynamics and MHD simulations that model the injector. Optimization of the design parameters, for upcoming Staged Z-pinch experiments, will be discussed. Advanced Research Projects Agency - Energy, DE-AR0000569.
Qi, J.M., E-mail: qjm06@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Wang, Z., E-mail: wangz_es@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Chu, Y.Y., E-mail: chuyanyun@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Li, Z.H., E-mail: lee_march@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China)
2016-03-15
Highlights: • Z-FFR utilizes DT neutrons to drive a sub-critical fission blanket to produce energy. • A metal shell and Ar gas are employed in the fusion chamber for shock mitigation. • Massive materials can effectively mitigate the thermal heats on the chamber wall. • The W-coated Zr-alloy first wall exhibits good viability as a long-lived component. - Abstract: In a Z-pinch driven fusion–fission hybrid power reactor (Z-FFR), the fusion target will produce enormous energy of ∼1.5 GJ per pulse at a frequency of 0.1 Hz. Almost 20% of the fusion energy yield, approximately 300 MJ, is released in forms of pulsed X-rays. To prevent the first wall from fatal damages by the intense X-rays, a thin spherical metal shell and rare Ar buffer gas are introduced to mitigate the transient X-ray bursts. Radiation hydrodynamics in the fusion chamber were investigated by MULTI-1D simulations, and the corresponding thermal and mechanical loads on the first wall were also obtained. The simulations indicated that by optimizing the design parameters of the metal shell and Ar buffer gas, peak power flux of the thermal heats on the first wall could be mitigated to less than 10{sup 4} W/cm{sup 2} within a time scale of several milliseconds, while peak overpressures of the mechanical loads varying from 0.6 to 0.7 MPa. In addition, the thermomechanical response in a W–coated Zr-alloy first wall was performed by FWDR1D calculations using the derived thermal and mechanical loads as inputs. The temperature and stress fields were analyzed, and the corresponding elastic strains were conducted for primary lifetime estimations by using the Coffin–Manson relationships of both W and Zr-alloy. It was shown that the maximum temperature rises and stresses in the first wall were less than 50 K and 130 MPa respectively, and lifetime of the first wall would be in excess of 10{sup 9} cycles. The chamber exhibits good viability as a long-lived component to sustain the Z-FFR conceptual
High energy density Z-pinch plasmas using flow stabilization
Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)
2014-12-15
The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and
Increasing plasma parameters using sheared flow stabilization of a Z-pinch
Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Hughes, M. C.; Oberto, R. J.; Ross, M. P.; Weber, T. R.
2017-05-01
The ZaP and ZaP-HD Flow Z-pinch experiments at the University of Washington have successfully demonstrated that sheared plasma flows can be used as a stabilization mechanism over a range of parameters that has not previously been accessible to long-lived Z-pinch configurations. The stabilization is effective even when the plasma column is compressed to small radii, producing predicted increases in magnetic field and electron temperature. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression has increased the accessible plasma parameters and has generated stable plasmas with radii of 0.3 cm, as measured with a high resolution digital holographic interferometer. Compressing the plasma with higher pinch currents has produced high magnetic fields (8.5 T) and electron temperatures (1 keV) with an electron density of 2 ×1017 cm-3, while maintaining plasma stability for many Alfvén times (approximately 50 μs). The results suggest that sheared flow stabilization can be applied to extend Z-pinch plasma parameters to high energy densities.
ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization
Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.
2015-11-01
The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.
NRL capillary Z-pinch experiment
Sethian, J.D.; Gerber, K.A.; Robson, A.E. [Naval Research Lab., Washington, DC (United States); DeSilva, A.W. [Sachs/Freeman Associates, Inc., Landover, MD (United States)]|[Maryland Univ., College Park, MD (United States)
1984-12-31
The current renewed interest in the dense linear z-pinch is due in large part to a recent Los Alamos Study which concluded that a z- pinch based reactor could produce 4.4 KJ of fusion energy per pulse for the modest input of 140 kJ per pulse, if a straight pinch could be maintained for 2 {mu}sec. Early attempts to achieve suitable high density z-pinches were of the implosion type which produced hollow pressure profiles that quickly resulted in disruptive m = 0 instabilities. These instabilities are not found in the gas embedded pinch in which an initially small diameter plasma is kept in radial equilibrium by following a prescribed current waveform. Unfortunately, these pinches are prone to a rapid accretion of the surrounding gas during the early stages of formation. Our approach is to form the pinch inside small diameter quartz capillaries filled with neutral hydrogen. This fixes the line density. By driving currents through the pinch at a rate that exceeds that necessary for radial equilibrium, we expect the pinch to contract away from the walls and be subject to compressional, as well as ohmic heating. This contraction will, of course, produce a plasma between the pinch and the capillary wall, but we anticipate this ``corona`` will be kept at a low temperature (i.e., high resistance) by radiation and hence shunt only a small fraction of the pinch current. We also expect negligible impurities in the pinch as the classical mixing time will be much longer than the pinch duration at the densities (10{sup 21}- 10{sup 22} ions/cm{sup 3}) and magnetic fields (1 - 10 MG) involved. However, we do expect the presence of the dense corona to reduce the growth rate of the m = 1 instability. Our results demonstrate that a z-pinch can be formed inside a capillary, but our limited current rise rates and peak current have limited our test abilities. Planned improvements in electrical equipment should yield successful testing results.
Mitigation Effect of Finite Larmor Radius on Rayleigh-Taylor Instability in Z-Pinch Implosions
邱孝明; 黄林; 简广德
2002-01-01
Based on the framework of magnetohydrodynamic theory, a simple model is proposed to study the mitigation effect of finite Larmor radius on the Rayleigh-Taylor instability in Z-pinch implosions. In this model, taking account of Ti ≥ Te in Z-pinch implosions we believe that the magnetohydrodynamic plasma responds to a perturbation (～ exp [i (k. x - ωt)]) at frequency (ω + ik2⊥ρ2iΩi) instead of frequency ω, where k2⊥ρ2i is due to the finite Larmor radius effects expressed from the generalkinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include the finite Larmor radius effects. The calculations indicate that, in the wavenumber region of interest, the finite Larmor radius effects can mitigate the Rayleigh-Taylor instability in Z-pinch implosions.
Simulation of Wire-Array Z Pinches with ALEGRA
Chantrenne, Sophie; Bliss, David; Cochrane, Kyle; Coverdale, Christine; Deeney, Chris; Hall, Clint; Haill, Thomas; Jones, Brent; Lepell, Paul; Oliver, Bryan; Sinars, Daniel
2006-10-01
Wire-array z pinches provide the x-ray radiation drive for Inertial Confinement Fusion Experiments at Sandia National Laboratories. A physical understanding of the physics of wire-array z pinches is important in providing a future radiation source capable of driving high-yield fusion capsules. Modeling of wire-array implosions on the Z machine were performed using the 2-D radiation MHD code Alegra. These new calculations use more accurate initial conditions that are more representative of the experimental data, allowing us to model the implosion through stagnation, to avoid radiation collapse, and to generate a radiation pulse that compares well with data. Code predictions will be compared with tungsten & aluminum wire-array data from Z. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04- 94AL85000. a Ktech Corporation, 1300 Eubank Blvd. S.E., Albuquerque, NM 87123-3336
Z箍缩动态黑腔冲击波辐射图像诊断∗%Sho ck X-ray emission image measurement in Z-pinch dynamic hohlraum
蒙世坚; 黄展常; 甯家敏; 胡青元; 叶繁; 秦义; 许泽平; 徐荣昆
2016-01-01
在“聚龙一号”装置上开展了单层钨丝阵加载重泡沫的动态黑腔实验,初步研究了Z箍缩动态黑腔中冲击波传播和黑腔形成的物理过程.获得了冲击波辐射环的演化图像,分析了丝阵等离子体与泡沫的作用过程及动态黑腔内的辐射特性.测得冲击波的向心传播速度为(14.2±1.7) cm/µs,冲击波平均宽度为0.8—0.9 mm.冲击波辐射环的发光强度沿角向分布的标准偏差约为±10%,中心黑腔区的标准偏差约为±4.2%.%Owing to high eﬃciency for delivering thermal radiation from Z-pinch plasma to an inertial fusion capsule, Z-pinch dynamic hohlraum (ZPDH) is a promising indirect-drive inertial confinement fusion (ICF) approach. ZPDH is created by accelerating an annular tungsten Z-pinch plasma radially inward to an internal low density convertor. The collision launches a radiating shock traveling inward. Radiations emitted from the shock, after being trapped and thermalized by the optically thick tungsten plasma, drive the internal fusion capsule to implode. In our previous experiments, shock propagating process has never been imaged or even never been formed, due to low drive current (about 1.3 MA). In this paper, the ZPDH has a load of single tungsten wire array embedded in a cylindrical 16 mg/cm3 C15H20O6 foam, and the tungsten wire array is explored using JuLong-1 facility (also named PTS facility) driven by current with a peak value of 7–8 MA and rising time of 60–70 ns (from 10%to 90%). Several results are presented for improving the understanding of the physics of the shock propagating and hohlraum forming. For the high optical depth in tungsten plasmas around the foam, radially directly diagnosing hohlraum radiation distribution along axis is impossible. The most convenient way to diagnose the radiation symmetry and the shock evolution is to take the end-on X-ray images. The time-resolved X-ray images of annular radiating shock evolution, which are performed
Experimental astrophysics with high power lasers and Z pinches
Remington, B A; Drake, R P; Ryutov, D D
2004-12-10
With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.
SLUTZ,STEPHEN A.; OLSON,CRAIG L.; ROCHAU,GARY E.; DERZON,MARK S.; PETERSON,P.F.; DEGROOT,J.S.; JENSEN,N.; MILLER,G.
2000-05-30
The Z machine at Sandia National Laboratories (SNL) is the most powerful multi-module synchronized pulsed-power accelerator in the world. Rapid development of z-pinch loads on Z has led to outstanding progress in the last few years, resulting in radiative powers of up to 280 TW in 4 ns and a total radiated x-ray energy of 1.8 MJ. The present goal is to demonstrate single-shot, high-yield fusion capsules. Pulsed power is a robust and inexpensive technology, which should be well suited for Inertial Fusion Energy, but a rep-rated capability is needed. Recent developments have led to a viable conceptual approach for a rep-rated z-pinch power plant for IFE. This concept exploits the advantages of going to high yield (a few GJ) at low rep-rate ({approximately} 0.1 Hz), and using a Recyclable Transmission Line (RTL) to provide the necessary standoff between the fusion target and the power plant chamber. In this approach, a portion of the transmission line near the capsule is replaced after each shot. The RTL should be constructed of materials that can easily be separated from the liquid coolant stream and refabricated for a subsequent shots. One possibility is that most of the RTL is formed by casting FLiBe, a salt composed of fluorine, lithium, and beryllium, which is an attractive choice for the reactor coolant, with chemically compatible lead or tin on the surface to provide conductivity. The authors estimate that fusion yields greater than 1 GJ will be required for efficient generation of electricity. Calculations indicate that the first wall will have an acceptable lifetime with these high yields if blast mitigation techniques are used. Furthermore, yields above 5 GJ may allow the use of a compact blanket direct conversion scheme.
Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Medovshchikov, S. F.; Oleinik, G. M.; Rupasov, A. A.; Frolov, I. N.
2016-12-01
The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode- anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formation of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.
Aleksandrov, V. V. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Bolkhovitinov, E. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Volkov, G. S., E-mail: volkov@triniti.ru; Grabovski, E. V.; Gritsuk, A. N.; Medovshchikov, S. F.; Oleinik, G. M. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Rupasov, A. A., E-mail: rupasov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Frolov, I. N. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)
2016-12-15
The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formation of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.
Instability Control in a Staged Z-pinch
WESSEL, Frank J
2011-04-22
A \\Staged Z-Pinch is a fusion-energy concept in which stored-electric energy is first converted into plasma-liner-kinetic energy, and then transferred to a coaxialtarget plasma [H. U. Rahman, F. J. Wessel, and N. Rostoker, Phys. Rev. Lett. 74, p. 714(1996)]. Proper choice of the liner and target materials, and their initial radii and mass densities, leads to dynamic stabilization, current amplification, and shock heating of the target. Simulations suggest that this configuration has merit as a alternative inertial-confinement-fusion concept, and may provide an energy release exceeding thermonuclear break-even, if tested on one of many newer pulsed power systems, for example those located at Sandia National Laboratories.
Wavelets, Curvelets and Multiresolution Analysis Techniques in Fast Z Pinch Research
Afeyan, Bedros; Starck, Jean Luc; Cuneo, Michael
2012-01-01
Z pinches produce an X ray rich plasma environment where backlighting imaging of imploding targets can be quite challenging to analyze. What is required is a detailed understanding of the implosion dynamics by studying snapshot images of its in flight deformations away from a spherical shell. We have used wavelets, curvelets and multiresolution analysis techniques to address some of these difficulties and to establish the Shell Thickness Averaged Radius (STAR) of maximum density, r*(N, {\\theta}), where N is the percentage of the shell thickness over which we average. The non-uniformities of r*(N, {\\theta}) are quantified by a Legendre polynomial decomposition in angle, {\\theta}, and the identification of its largest coefficients. Undecimated wavelet decompositions outperform decimated ones in denoising and both are surpassed by the curvelet transform. In each case, hard thresholding based on noise modeling is used.
Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration
Tang, V; Adams, M L; Rusnak, B
2009-07-24
The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.
The Past, Present and Future of Z-pinches
Haines, M. G.
1999-11-01
wires)-1/2 in agreement with a heuristic model. The Rayleigh-Taylor instability can be mitigated by having a second inner array, and at least three modes of behaviour have been identified. It is with a tungsten nested array on the Z-accelerator at Sandia that a record 280TW of power or 1.8MJ of soft x-rays have been produced. In the future, generators and hopefully x-ray yield will be enhanced. There are several hohlraum designs based on Z-pinches for high yield inertial confinement fusion, and already some ideas for going towards inertial fusion energy. Other applications include radiation-hydrodynamics, equation of state and opacity studies. It appears to have an exciting future.
Hamann, F
2003-12-15
This work estimates Z-pinch driven hohlraums capabilities to obtain high temperatures (>200 eV). Simple models are proposed to calculate the performances offered by currents of 5 to 100 MA in 100 ns. The one dimensional physics of the Z-pinch at the length scale of its thickness and the hydrodynamics instabilities are studied. Then the enhancement of hohlraums performances with double nested Z-pinches or the use of an axial magnetic field is analysed. Z-pinch direct drive approach for inertial confinement fusion is finally considered. All the presented results are based on theoretical and 2D numerical approach and on the analysis of experimental results which were obtained on the american 'Z' generator. Annexes recall radiation MHD equations and check their validity for Z-pinch implosion. (author)
A Multiple Z-Pinch Configuration for the Generation of High-Density, Magnetized Plasmas
Tarditi, Alfonso G.
2015-11-01
The z-pinch is arguably the most straightforward and economical approach for the generation and confinement of hot plasmas, with a long history of theoretical investigations and experimental developments. While most of the past studies were focused on countering the natural tendency of z-pinches to develop instabilities, this study attempts to take advantage of those unstable regimes to form a quasi-stable plasma, with higher density and temperature, possibly of interest for a fusion reactor concept. For this purpose, a configuration with four z-pinch discharges, with axis parallel to each other and symmetrically positioned, is considered. Electrodes for the generation of the discharges and magnetic coils are arranged to favor the formation of concave discharge patterns. The mutual attraction from the co-streaming discharge currents enhances this pattern, leading to bent plasma streams, all nearing towards the axis. This configuration is intended to excite and sustain a ``kink'' unstable mode for each z-pinch, eventually producing either plasmoid structures, detached from each discharge, or sustained kink patterns: both these cases appear to lead to plasmas merging in the central region. The feasibility of this approach in creating a higher density, hotter, meta-stable plasma regime is investigated computationally, addressing both the kink excitation phase and the dynamics of the converging plasma columns.
Bailey, James E.; Haines, Malcolm G. (Imperial College, London, United Kingdom); Chandler, Gordon Andrew; Bliss, David Emery; Olson, Richard Edward; Sanford, Thomas W. L.; Olson, Craig Lee; Nash, Thomas J.; Ruiz, Carlos L.; Matzen, Maurice Keith; Idzorek, George C. (Los Alamos National Laboratory, Los Alamos, NM); Stygar, William A.; Apruzese, John P. (Naval Research Laboratory, Washington DC); Cuneo, Michael Edward; Cooper, Gary Wayne (University of New Mexico, Albuquerque, NM); Chittenden, Jeremy Paul (Imperial College, London, United Kingdom); Chrien, Robert E. (Los Alamos National Laboratory, Los Alamos, NM); Slutz, Stephen A.; Mock, Raymond Cecil; Leeper, Ramon Joe; Sarkisov, Gennady Sergeevich (Ktech Corporation, Albuquerque, NM); Peterson, Darrell L. (Los Alamos National Laboratory, Los Alamos, NM); Lemke, Raymond William; Mehlhorn, Thomas Alan; Roderick, Norman Frederick (University of New Mexico, Albuquerque, NM); Watt, Robert G. (Los Alamos National Laboratory, Los Alamos, New MM)
2004-06-01
Progress in understanding the physics of dynamic-hohlraums is reviewed for a system capable of generating 13 TW of axial radiation for high temperature (>200 eV) radiation-flow experiments and ICF capsule implosions.
Scaling of the Sheared-Flow Stabilized Z-Pinch: The Fusion Z-Pinch Experiment ``FuZE''
Nelson, B. A.; Shumlak, U.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Collaboration
2016-10-01
The sheared flow stabilized (SFS) Z-pinch ZaP experiment was constructed based on calculations [1] showing stabilization of kink and sausage instabilities. ZaP experimentally demonstrated production and sustainment of an SFS Z-pinch for a wide range of plasma parameters, with densities up to n =1023 m-3 and a pinch radius of a = 1 cm. [2-4] The SFS Z-pinch is resistant to the instabilities of conventional Z-pinches, yet maintains the same favorable radial scaling, making it an energy-efficient way to achieve fusion-relevant conditions. The ZaP-HD (high density) experiment has demonstrated scaling of the SFS Z-pinch to 2-3 × smaller a and 10 × higher n. [5] Supported by ZaP and ZaP-HD, the Fusion Z-pinch Experiment (FuZE) project investigates scaling plasma parameters toward fusion conditions by decreasing a 2-3 × to 1 mm, and increasing n 10 × to 1025 m-3. The approach combines improved gas injection and flexible power supplies with the successful ZaP SFS Z-pinch formation. Detailed fluid and kinetic simulations complement the experimental studies to gain scientific insight into the plasma behavior and predict scaling to higher performance. Supported by DoE FES, NNSA, and ARPA-E ALPHA.
McCall, G.H.
1988-01-01
During the past few years techniques have been developed for producing pinches in solid deuterium. The conditions which exist in these plasmas are quiet different from those produced earlier. The pinch is formed from a fiber of solid deuterium rather than from a low density gas, and the current is driven by a low impedance, high voltage pulse generator. Because of the high initial density, it is not necessary to compress the pinch to reach thermonuclear conditions, and the confinement time required for energy production is much shorter than for a gas. The experimental results, which have been verified by experiments performed at higher current were quite surprising and encouraging. The pinch appeared to be stable for a time much longer than the Alfven radial transit time. In this paper, however, I argue that the pinch is not strictly stable, but it does not appear to disassemble in a catastrophic fashion. It appears that there may be a distinction between stability and confinement in the high density pinch. In the discussion below I will present the status of the high density Z-pinch experiments at laboratories around the world, and I will describe some of the calculational and experimental results. I will confine my remarks to recent work on the high density pinch. 17 refs. 10 figs.
Faraday Rotation Measurements on Z-Pinches Final Report
Greenley, J.B.
1998-10-01
The Campus Executive Program sponsored this research at Cornell University. The research was directed toward the implementation of laser-based diagnostics for wire-array Z-pinches. Under this contract we were able to carry out all the necessary preparations to setup the laser diagnostics to complement our x-ray backlighting measurements of the early phase of exploding wire z-pinch plasma formation.
Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Crawford, E. A.; Forbes, E. T.; den Hartog, D. J.; Holly, D. J.; Nagata, M.
2000-10-01
Linear analysis shows that a sheared axial plasma flow can stabilize the m=1 kink instability in Z-pinches. This threshold value of flow shear can be satisfied with a peak flow velocity which is less than the Alfven speed for wavelengths typically seen in Z-pinch plasmas. Nonlinear simulations support the stabilizing effect. The ZaP Flow Z-Pinch Project seeks to experimentally verify this theory by generating Z-pinch plasmas with an inherent axial flow. The experiment produces Z-pinch plasmas which are 50 cm in length by initiating the plasma with a one meter coaxial gun. The coaxial gun generates the axial plasma flows. After leaving the coaxial gun the plasma assembles along the axis to form a flow Z-pinch. Magnetic probes measure the acceleration and assembly process, as well as, the evolution of the azimuthal mode fluctuation level. Axial flow profiles are determined by measurements of the Doppler shifts of impurity lines. Time-dependent density measurements are made using a laser interferometer. Gross plasma motion is determined by using a fast framing camera to detect visible emission. Recent results show a period of diminished fluctuation level when the plasma flow velocity is large. An overview of the experimental program and results will be presented.
Wire-number effects on high-power annular z-pinches and some characteristics at high wire number
SANFORD,THOMAS W. L.
2000-05-23
Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.
Diagnostics for Z-pinch implosion experiments on PTS
Ren, X. D., E-mail: amosrxd@163.com; Huang, X. B., E-mail: amosrxd@163.com; Zhou, S. T., E-mail: amosrxd@163.com; Zhang, S. Q., E-mail: amosrxd@163.com; Dan, J. K., E-mail: amosrxd@163.com; Li, J., E-mail: amosrxd@163.com; Cai, H. C., E-mail: amosrxd@163.com; Wang, K. L., E-mail: amosrxd@163.com; Ouyang, K., E-mail: amosrxd@163.com; Xu, Q., E-mail: amosrxd@163.com; Duan, S. C., E-mail: amosrxd@163.com; Chen, G. H., E-mail: amosrxd@163.com; Wang, M., E-mail: amosrxd@163.com; Feng, S. P., E-mail: amosrxd@163.com; Yang, L. B., E-mail: amosrxd@163.com; Xie, W. P., E-mail: amosrxd@163.com; Deng, J. J., E-mail: amosrxd@163.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)
2014-12-15
The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.
Rotating plasma disks in dense Z-pinch experiments
Bennett, M. J., E-mail: m.bennett11@imperial.ac.uk, E-mail: s.lebedev@imperial.ac.uk; Lebedev, S. V., E-mail: m.bennett11@imperial.ac.uk, E-mail: s.lebedev@imperial.ac.uk; Suttle, L.; Burdiak, G.; Suzuki-Vidal, F.; Hare, J.; Swadling, G.; Patankar, S.; Bocchi, M.; Chittenden, J. P.; Smith, R. [Blackett Laboratory, Imperial College London (United Kingdom); Hall, G. N. [Blackett Laboratory, Imperial College London, UK and Lawrence Livermore National Laboratory (United States); Frank, A.; Blackman, E. [Department of Physics and Astronomy, University of Rochester (United States); Drake, R. P. [Department of Atmospheric, Oceanic and Space Science, University of Michigan (United States); Ciardi, A. [Universite Pierre et Marie Curie, Observatiore de Paris (France)
2014-12-15
We present data from the first z-pinch experiments aiming to simulate aspects of accretion disk physics in the laboratory. Using off axis ablation flows from a wire array z-pinch we demonstrate the formation of a hollow disk structure that rotates at 60 kms{sup −1} for 150 ns. By analysing the Thomson scattered spectrum we make estimates for the ion and electron temperatures as T{sub i} ∼ 60 eV and ZT{sub e} ∼ 150 to 200 eV.
Study of micro-pinches in wire-array Z pinches
Ivanov, V. V.; Papp, D.; Anderson, A. A.; Talbot, B. R.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Chittenden, J. P.; Niasse, N. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Pikuz, S. A.; Shelkovenko, T. A. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation)
2013-11-15
Bright and hot areas with a high plasma density and temperature are observed in all kinds of Z pinches. We studied bright radiating spots produced by micro-pinches in cylindrical and planar wire-arrays at the 1 MA Zebra pulsed power generator using an x-ray streak camera synchronized with laser diagnostics, x-ray time-gated pinhole camera, and spectroscopy. Hot spots with extremely dense and relatively hot plasma arise during the collapse of the micro-pinches. These hot spots radiate a continuum spectrum with energy >2.5 keV. Typical micro-pinches in Al wire arrays generate x-ray bursts with durations of 0.4–1 ns in the soft x-ray range and 0.1–0.4 ns in the keV range. UV two-frame shadowgraphy shows spatial correlation of hot spots with the collapse and explosion of micro-pinches. Micro-pinches typically occur at the necks of the Z pinch, but can demonstrate a variety of parameters and different dynamics. An analysis of x-ray streak images shows that micro-pinches can generate >20% of the x-ray energy in some types of wire-array Z pinches.
Cylindrical Liner Z-pinch Experiments on the MAGPIE Generator
Burdiak, Guy; Lebedev, Sergey V.; Harvey-Thompson, Adam J.; Swadling, George F.; Suzuki-Vidal, Francisco; Skidmore, Jonathan; Suttle, Lee; Khoory, Essa; Pickworth, Louisa; de Grouchy, Philip; Hall, Gareth N.; Bland, Simon N.; Weinwurm, Marcus; Chittenden, Jeremy P.
2012-10-01
Experimental data from gas-filled cylindrical liner z-pinch experiments is presented. The MAGPIE current (1.4 MA, 240 ns) is applied to a thin walled (80um) Al tube with a static gas-fill inside. The system is diagnosed axially using interferometry, optical streak photography and optical spectroscopy. We observe a series of cylindrically converging shock waves driven into the gas-fill from the inside liner surface. No bulk motion of the liner occurs. The timing of the shocks and their trajectories provide information on the shock launching mechanisms. This in turn allows a study of the response of the liner to the current pulse. Shock wave timing is compared to measurements of the liner resistance and optical images of the liner's outside surface. The system provides a useful, essentially 1D problem for testing MagLIF relevant MHD codes, particularly with regards to EOS, strength and resistivity models. This work may also be relevant to the study of shocks in astrophysical plasmas. The shocks launched into the gas radiatiate strongly; spatially resolved optical spectroscopy data and radial electron density profiles from interferometry images provide evidence for a radiative precursor ahead of the first shock. Instabilities are seen to develop in the downstream regions.
Z-pinch equilibrium and instability analysis with digital holographic interferometry
Ross, M. P.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Hughes, M. C.; Claveau, E. L.; Weed, J. R.; Forbes, E. G.; Doty, S. A.; Kim, B.
2015-11-01
The ZaP-HD Flow Z-Pinch project generates flow shear stabilized Z-pinches, providing a platform to explore how such plasmas could scale to HEDP and fusion reactor conditions. To scale up the plasma's density and temperature, it must be compressed to a smaller size making measurements more difficult. Digital holographic interferometry (DHI) employing a pulsed Nd:YAG laser and consumer DSLR camera can spatially resolve the plasma's electron density. The Fresnel reconstruction method allows expedient numerical data reconstruction. Obtaining electron density radial profiles relies on applying an Abel inversion to convert measured line-integrated density, and the inversion process provides an independent measure of plasma symmetry. Entire Z-pinch equilibria (n, P, T, and B profiles) can be computed by applying physical models to the density data. Tracking the time evolution of pressure and density can reveal the presence of non-adiabatic heating mechanisms. Imaging the size scales of instabilities enables relative measures of viscosity at different positions and times. Error estimation of measured density profiles is presented along with observed asymmetric instabilities. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.
Study of magnetic fields and current in the Z pinch at stagnation
Ivanov, V. V.; Anderson, A. A.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Papp, D. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); ELI-ALPS, ELI-Hu Nkft., H-6720 Szeged (Hungary)
2015-09-15
The structure of magnetic fields in wire-array Z pinches at stagnation was studied using a Faraday rotation diagnostic at the wavelength of 266 nm. The electron plasma density and the Faraday rotation angle in plasma were calculated from images of the three-channel polarimeter. The magnetic field was reconstructed with Abel transform, and the current was estimated using a simple model. Several shots with wire-array Z pinches at 0.5–1.5 MA were analyzed. The strength of the magnetic field measured in plasma of the stagnated pinch was in the range of 1–2 MG. The magnetic field and current profile in plasma near the neck on the pinch were reconstructed, and the size of the current-carrying plasma was estimated. It was found that current flowed in the large-size trailing plasma near the dense neck. Measurements of the magnetic field near the bulge on the pinch also showed current in trailing plasma. A distribution of current in the large-size trailing plasma can prevent the formation of multi-MG fields in the Z pinch.
MHD simulation studies of z-pinch shear flow stabilization
Paraschiv, I.; Bauer, B. S.; Sotnikov, V. I.; Makhin, V.; Siemon, R. E.
2003-10-01
The development of the m=0 instability in a z-pinch in the presence of sheared plasma flows is investigated with the aid of a two-dimensional magnetohydrodynamic (MHD) simulation code (MHRDR). The linear growth rates are compared to the results obtained by solving the ideal MHD linearized equations [1] and to the results obtained using a 3D hybrid simulation code [2]. The instability development is followed into the nonlinear regime where its growth and saturation are examined. [1] V.I. Sotnikov, I. Paraschiv, V. Makhin, B.S. Bauer, J.-N. Leboeuf, and J.M. Dawson, "Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid mode", Phys. Plasmas 9, 913 (2002). [2] V.I. Sotnikov, V. Makhin, B.S. Bauer, P. Hellinger, P. Travnicek, V. Fiala, J.-N. Leboeuf, "Hybrid Simulations of Current-Carrying Instabilities in Z-pinch Plasmas with Sheared Axial Flow", AIP Conference Proceedings, Volume 651, Dense Z-Pinches: 5th International Conference on Dense Z-Pinches, edited by J. Davis et al., page 396, June 2002.
9th International Conference on Dense Z-Pinches
Bott-Suzuki, Simon [Univ. of California, San Diego, CA (United States)
2015-08-31
DOE OFES supported the 9th International Conference on Z-Pinches (DZP 2014) held in Napa, CA in August 2014. Funds were used to support travel for several US students, and to disseminate information through the publication of a proceedings volume.
Magnetic Field Measurements in Wire-Array Z-Pinches
Syed, Wasif; Hammer, David; Lipson, Michal
2006-10-01
Understanding the evolution of the magnetic field topology and magnitude in the high energy density plasmas produced by wire-array Z-pinches is of critical importance for their ultimate application to stockpile stewardship and inertial confinement fusion^1. A method to determine the magnetic field profile in megampere level wire-array Z-pinches with high spatial and temporal resolution is under development. An ideal method would be passive and non-perturbing, such as Faraday rotation of laser light. We are developing a method involving temporally-resolved Faraday rotation through a sensing waveguide placed in the vicinity of, and eventually in, a wire-array Z-pinch^2. We present measurements of the magnetic field outside of a wire-array, and progress on measurements within the array. Our ideal device is a ``thin film waveguide'' coupled to an optical fiber system. While these sensing devices may not survive for long in a dense Z-pinch, they may provide useful information for a significant fraction of the current pulse. We present preliminary theoretical and experimental results. 1. M. Keith Matzen, M. A. Sweeney, R. G. Adams et al., Phys. Plasmas 12, 055503 (2005). 2. W. Syed, D. A. Hammer, M. Lipson, R. B. van Dover, AIP Proceedings of the 6th International Conference on Dense Z-Pinches, University of Oxford, UK, July 25-28, 2005. *This research was sponsored by the National Nuclear Security Administration under the Stockpile Stewardship Academic Alliances program through DOE Cooperative Agreement DE-F03-02NA00057.
Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments
Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.
2016-10-01
We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.
Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn
Sanford, T.W.L.; Humphreys, D.R.; Poukey, J.W.; Marder, B.M.; Halbleib, J.A.; Crow, J.T.; Spielman, R.B. [Sandia National Labs., Albuquerque, NM (United States); Mock, R.C. [Ktech Corp., Albuquerque, NM (United States)
1994-06-01
The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.
Seeding the m = 0 instability in dense plasma focus Z-pinches with a hollow anode
Liu, J X; McMahon, M; Tummel, K; Cooper, C; Higginson, D; Shaw, B; Povilus, A; Link, A; Schmidt, A
2016-01-01
The dense plasma focus (DPF) is a classic Z-pinch plasma device that has been studied for decades as a radiation source. The formation of the m = 0 plasma instability during the compression phase is linked to the generation of high-energy charged particle beams, which, when operated in deuterium, lead to beam-target fusion reactions and the generation of neutron yield. In this paper, we present a technique of seeding the m = 0 instability by employing a hollow in the anode. As the plasma sheath moves along the anode's hollow structure, a low density perturbation is formed and this creates a non-uniform plasma column which is highly unstable. Dynamics of the low density perturbation and preferential seeding of the m = 0 instability were studied in detail with fully kinetic plasma simulations performed in the Large Scale Plasma particle-in-cell code as well as with a simple snowplow model. The simulations showed that by employing an anode geometry with appropriate inner hollow radius, the neutron yield of the D...
Rosch, R. [CEA/DAM-Ile de France, Dept. de Conception et Realisation des Experimentations (DCRE), 91 - Bruyeres-le-Chatel (France)]|[Paris-11 Univ., 91 - Orsay (France)
1999-07-01
Previous experiments, at 0.1. TX level, have shown that stability and x-ray emission of fast Z-pinches, could be strongly increased by imploding an aluminium vapor jet onto a very thin coaxial wire. We present here first results of an aluminium Z-pinch, using a similar liner, but at mega-ampere level. The pinch is driven by AMBIORIX high-power facility, a 2 TW,0.5 {omega}, 2 MA, 50 ns pulse-line generator. We study the effect of an aluminium wire and its diameter (20-50 {mu}m) on the implosion dynamics, on x-ray yield on MHD stability of the column at stagnation. Analysis of A1 jet on A1 wire shots demonstrates that x-ray yield due to emission processes in the H- and He- like ionization stages (i.e. the K-shell) is significantly enhanced, relative to that of A1 jet only ones. The wire also leads to better symmetry of the implosion, and to better reproducibility of shots. X-ray signals exhibit two similar pulses, 10 ns in width, 15 ns spaced. To discern spectral origin of both pulses, experiments are realized with stainless steel wire (25 {mu}m in diameter). Results show that liner and wire radial simultaneously and contribute to both pulses. Analysis of a typical A1 jet on A1 wire shot, using detailed collisional-radiative equilibrium (CRE) model is also given in this thesis. View o the pinch at stagnation as a cola-dense core surrounded by a hot-low density corona reproduces all features of the X-ray data. (author)
Resolving microstructures in Z pinches with intensity interferometry
Apruzese, J. P. [Consultant to NRL through Engility Corp., Chantilly, Virginia 20151 (United States); Kroupp, E.; Maron, Y. [Weizmann Institute of Science, Rehovot 76100 (Israel); Giuliani, J. L.; Thornhill, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)
2014-03-15
Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the work of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.
Z-Pinch fusion-based nuclear propulsion
Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.
2013-02-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.
The ZaP Flow Z-Pinch Project - Final Technical Report
Shumlak, Uri [Univ. of Washington, Seattle, WA (United States); Nelson, Brian A. [Univ. of Washington, Seattle, WA (United States)
2013-12-31
The ZaP Flow Z-Pinch Project is a project to extend the performance of the flow Z-pinch experiment at the University of Washington to investigate and isolate the relevant physics of the stabilizing effect of plasma flow. Experimental plasmas have exhibited an enhanced stability under certain operating parameters which generate a flow state (axial flows in Z-pinches and VH mode in tokamaks). Flow has also been suggested as the stabilizing mechanism in astrophysical jets.
History of HERMES III diode to z-pinch breakthrough and beyond :
Sanford, Thomas Williamlou.
2013-04-01
HERMES III and Z are two flagship accelerators of Sandias pulsed-power program developed to generate intense -ray fields for the study of nuclear radiation effects, and to explore high energy-density physics (including the production of intense x-ray fields for Inertia Confinement Fusion [ICF]), respectively. A diode at the exit of HERMES III converts its 20-MeV electron beam into -rays. In contrast, at the center of Z, a z-pinch is used to convert its 20-MA current into an intense burst of x-rays. Here the history of how the HERMES III diode emerged from theoretical considerations to actual hardware is discussed. Next, the reverse process of how the experimental discovery of wire-array stabilization in a z-pinch, led to a better theory of wirearray implosions and its application to one of the ICF concepts on Z--the DH (Dynamic Hohlraum) is reviewed. Lastly, the report concludes with how the unexpected axial radiation asymmetry measured in the DH is understood. The first discussion illustrates the evolution of physics from theory-to-observationto- refinement. The second two illustrate the reverse process of observationto- theory-to refinement. The histories are discussed through the vehicle of my research at Sandia, illustrating the unique environment Sandia provides for personal growth and development into a scientific leader.
Accelerated Ions from a Laser Driven Z-pinch
Helle, Michael H; Kaganovich, Dmitri; Chen, Yu-hsin; Palastro, John P; Ting, Antonio
2015-01-01
Intense laser acceleration of ions is inherently difficult due to the velocity mismatch between laser pulses moving at the speed of light and slowly moving massive ions. Instead of directly accelerating the ions, current approaches rely on TV/m laser fields to ionize and drive out electrons. The ions are then accelerated by the resulting electrostatic fields from charge separation. Here we report experimental and numerical acceleration of ions by means of laser driven Z-pinch exiting a sharp plasma interface. This is achieved by first driving a plasma wakefield in the self-modulated bubble regime. Cold return currents are generated to maintain quasi-neutrality of the plasma. The opposite current repel and form an axial fast current and a cylindrical-shell cold return current with a large (100 MG) azithmuthal field in between. These conditions produce a Z-pinch that compresses the fast electrons and ions on axis. If this process is terminated at a sharp plasma interface, a beam of ions are then accelerated in ...
Intense neutron pulse generation in dense Z-pinch
Bystritskii, V. M.; Glusko, Yu. A.; Mesyats, G. A.; Ratakhin, N. A.
1989-12-01
The problem of intense neutron pulse generation with fast dense Z-pinches (ZP) is analyzed for a modified approach. The analysis pertains to the interaction of a High Power Deuterium Beam (HPDB) with hot (Te≂1 keV) deuterium target formed by a ZP. The considerable decrease of the Coulomb ion-electron scattering cross-sections gives a corresponding increase of the deuterium range and neutron yield in the hot target. The generation of HPDB and ZP formation takes place at the same terawatt accelerator, by using in series with the ZP a plasma opening switch (POS), which is at the same time the Ion Plasma Filled Diode (IPFD). During the front of the current pulse the stable z-pinch implosion heats the ZP up to the keV temperature range with several kJ of energy input. Near the end of the current front the energy flow is being switched to HPDB generation due to the opening of the POS. The HPDB is focused ballistically at the axis of the ZP and transported along it in the azimutal magnetic field, producing a neutron burst. The analysis of ZP formation and heating, HPDB generation, its transport and neutron production is given.
Architecture of petawatt-class z-pinch accelerators
W. A. Stygar
2007-03-01
Full Text Available We have developed an accelerator architecture that can serve as the basis of the design of petawatt-class z-pinch drivers. The architecture has been applied to the design of two z-pinch accelerators, each of which can be contained within a 104-m-diameter cylindrical tank. One accelerator is driven by slow (∼1 μs Marx generators, which are a mature technology but which necessitate significant pulse compression to achieve the short pulses (≪1 μs required to drive z pinches. The other is powered by linear transformer drivers (LTDs, which are less mature but produce much shorter pulses than conventional Marxes. Consequently, an LTD-driven accelerator promises to be (at a given pinch current and implosion time more efficient and reliable. The Marx-driven accelerator produces a peak electrical power of 500 TW and includes the following components: (i 300 Marx generators that comprise a total of 1.8×10^{4} capacitors, store 98 MJ, and erect to 5 MV; (ii 600 water-dielectric triplate intermediate-store transmission lines, which also serve as pulse-forming lines; (iii 600 5-MV laser-triggered gas switches; (iv three monolithic radial-transmission-line impedance transformers, with triplate geometries and exponential impedance profiles; (v a 6-level 5.5-m-diameter 15-MV vacuum insulator stack; (vi six magnetically insulated vacuum transmission lines (MITLs; and (vii a triple-post-hole vacuum convolute that adds the output currents of the six MITLs, and delivers the combined current to a z-pinch load. The accelerator delivers an effective peak current of 52 MA to a 10-mm-length z pinch that implodes in 95 ns, and 57 MA to a pinch that implodes in 120 ns. The LTD-driven accelerator includes monolithic radial transformers and a MITL system similar to those described above, but does not include intermediate-store transmission lines, multimegavolt gas switches, or a laser trigger system. Instead, this accelerator is driven by 210
Scaling Factor of the Operating Parameters of Z-pinch Liners
曾正中; 邱孟通; 蒯斌; 邱爱慈
2002-01-01
Imploding plasma liners in the Z-pinch scheme have been demonstrated to be capable of producing high power radiation in the soft X-ray waveband owing to the conversion of the kinetic energy of imploding liner into thermal energy which in turn is converted into X-ray energy. To obtain largest X-ray power for a certain pulsed-power driving- source, the liner should gain a kinetic energy as great as possible, which imposes an optimal scaling upon the operating parameters of liner in terms of getting largest kinetic energy. This work exposes, by means of numerical calculations based on zero-dimensional quasi-plasma-shell model, the large variation of the scaling factor, which connects the parameters of the initial liner and the driving current, with different driving current waveforms. Also solved in the work is the optimal scaling factor in the sense of producing maximum kinetic energy. Calculations show that maximum kinetic energy is obtained at the current maximum or a little time later. These results are in reasonable agreement with several experiments and will be of help to the design and experimental adjustment of Z-pinch liners.
Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept
Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. Magneto-Inertial Fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small fusion reactor/engine assembly (1). The Z-Pinch dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an estimated axial current of approximately 100 MA. Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4) (2). The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this is repeated over short timescales (10(exp -6) sec). This plasma formation is widely used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, as well as in fusion energy research. There is a wealth of literature characterizing Z-Pinch physics and existing models (3-5). In order to be useful in engineering analysis, a simplified Z-Pinch fusion thermodynamic model was developed to determine the quantity of plasma, plasma temperature, rate of expansion, energy production, etc. to calculate the parameters that characterize a propulsion system. The amount of nuclear fuel per pulse, mixture ratio of the D-T and nozzle liner propellant, and assumptions about the efficiency of the engine, enabled the sizing of the propulsion system and resulted in an estimate of the thrust and Isp of a Z-Pinch fusion propulsion system for the concept vehicle. MIF requires a magnetic nozzle to contain and direct the nuclear pulses, as well as a robust structure and radiation shielding. The structure
Analyses in Support of Z-Pinch IFE and Actinide Transmutation - LLNL Progress Report for FY-06
Meier, W R; Moir, R W; Abbott, R
2006-09-19
This report documents results of LLNL's work in support of two studies being conducted by Sandia National Laboratories (SNL): the development of the Z-pinch driven inertial fusion energy (Z-IFE), and the use of Z-pinch driven inertial fusion as a neutron source to destroy actinides from fission reactor spent fuel. LLNL's efforts in FY06 included: (1) Development of a systems code for Z-IFE and use of the code to examine the operating parameter space in terms of design variables such as the Z-pinch driver energy, the chamber pulse repetition rate, the number of chambers making up the power plant, and the total net electric power of the plant. This is covered in Section 3 with full documentation of the model in Appendix A. (2) Continued development of innovative concepts for the design and operation of the recyclable transmission line (RTL) and chamber for Z-IFE. The work, which builds on our FY04 and FY05 contributions, emphasizes design features that are likely to lead to a more attractive power plant including: liquid jets to protect all structures from direct exposure to neutrons, rapid insertion of the RTL to maximize the potential chamber rep-rate, and use of cast flibe for the RTL to reduce recycling and remanufacturing costs and power needs. See Section 4 and Appendix B. (3) Description of potential figures of merit (FOMs) for actinide transmutation technologies and a discussion of how these FOMs apply and can be used in the ongoing evaluation of the Z-pinch actinide burner, referred to as the In-Zinerator. See Section 5. (4) A critique of, and suggested improvements to, the In-Zinerator chamber design in response to the SNL design team's request for feedback on its preliminary design. This is covered in Section 6.
Conceptual Design of a Z-Pinch Fusion Propulsion System
Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Santarius, John; Percy, Thomas
2010-01-01
This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,
Neutron Signatures of Non-Thermal Ion Distributions in Z-Pinch Driven ICF Plasmas
Knapp, Patrick; Jennings, Christopher; Sinars, Daniel
2012-10-01
In preparation for upcoming ICF experiments on the 26 MA Z machine (e.g., D2 gas puff, MagLIF [1]), we are studying the neutron energy spectra produced by magnetically-driven loads beyond the archetypal single temperature, uniform plasma. Z-pinch sources frequently exhibit evidence of unusual neutron spectra [2], which can be attributed to three-dimensional turbulent motion, high-energy beams, and other phenomena leading to non-Maxwellian ion distributions. Understanding the nature of our plasma neutron sources is critical for understanding how they scale with increasing current. We will show Monte Carlo and analytic calculations for plausible scenarios and discuss the corresponding signatures for the existing set of time-of-flight diagnostics on Z.[4pt] [1] S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)[0pt] [2] V.V. Vikhrev and V.D. Korolev, Plasma Dynamics, Vol. 33, No. 5 (2007)
Behavior of a plasma in a high-density gas-embedded Z-pinch configuration
Shlachter, J.S.
1982-05-01
The theoretical analysis of a high density Z-pinch (HDZP) begins with an examination of the steady state energy balance between ohmic heating and bremsstrahlung radiation losses for a plasma column in pressure equilibrium. The model is then expanded to include the time-varying internal energy and results in a quasi-equilibrium prescription for the load current through a constant radius plasma channel. This set of current waveforms is useful in the design of experimental systems. The behavior of a plasma for physically realizable conditions is first examined by allowing adiabatic changes in the column radius. A more complete model is then developed by incorporating inertial effects into the momentum equation, and the resultant global MHD computational model is compared with more sophisticated, and costly, one- and two-dimensional computer simulations. These comparisons demonstrate the advantages of the global MHD description over previously developed zero-dimensional models.
The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle.
Smith, James Dean; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Rochau, Gary Eugene; Martin, William Joseph; Kamery, William (Hobart & William Smith College, Geneva, NY); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Cipiti, Benjamin B.; Wilson, Paul Philip Hood (University of Wisconsin, Madison, WI); Mehlhorn, Thomas Alan; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX)
2007-10-01
The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.
Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.
Stygar, W A; Cuneo, M E; Vesey, R A; Ives, H C; Mazarakis, M G; Chandler, G A; Fehl, D L; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Muron, D J; Olson, C L; Porter, J L; Ramirez, J J; Seamen, J F; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Waisman, E M; Wagoner, T C; Gilliland, T L
2005-08-01
We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA tau(i) tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the implosion time tau(i). For an accelerator coupled to a double-pinch-driven hohlraum that drives the implosion of an ICF fuel capsule, we find that the accelerator power and energy required to achieve high-yield fusion scale as tau(i)0.36 and tau(i)1.36, respectively. Thus the accelerator requirements decrease as the implosion time is decreased. However
Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments
Sheehey, Peter Trogdon [Univ. of California, Los Angeles, CA (United States)
1994-02-01
Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ``cold-start`` initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ``plasma-on-wire`` (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z-pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion-based approaches.
Polytropic scaling of a flow Z-pinch
Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.; Weed, J. R.
2015-11-01
The ZaP Flow Z-Pinch project investigates the use of velocity shear to mitigate MHD instabilities. The ZaP-HD experiment produces 50 cm long pinches of varying radii. The power to the experiment is split between the plasma formation and acceleration process and the pinch assembly and compression process. Once the pinch is formed, low magnetic fluctuations indicate a quiescent, long-lived pinch. The split power supply allows more control of the pinch current than previous machine iterations, with a designed range from 50 to 150 kA. Radial force balance leads to the Bennett relation which indicates that as the pinch compresses due to increasing currents, the plasma pressure and/or linear density must change. Through ion spectroscopy and digital holographic interferometry coupled with magnetic measurements of the pinch current, the components of the Bennett relation can be fully measured. A scaling relation is then assumed to follow a polytrope as the pinch pressure, initially approximately 250 kPa, increases from an initially formed state to much higher values, approaching 100 MPa. A preliminary analysis of pinch scaling is shown corroborating with other diagnostics on the machine along with extrapolations to required currents for an HEDLP machine. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.
Current redistribution and generation of kinetic energy in the stagnated Z pinch.
Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N
2013-07-01
The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%.
Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments
Zhou, Lin; Li, Zhenghong; Wang, Zhen; Liang, Chuan; Li, Mingjia; Qi, Jianmin; Chu, Yanyun
2016-03-01
The linear-transformer-driver (LTD) is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z -pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z -pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%-90%) can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32 cm /μ s when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%-30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.
Deuterium gas puff Z-pinch at currents of 2 to 3 mega-ampere
Klir, D.; Shishlov, A. V.; Kubes, P.; Rezac, K.; Fursov, F. I.; Kokshenev, V. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.
2012-03-01
Deuterium gas-puff experiments have been carried out on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The emphasis was put on the study of plasma dynamics and neutron production in double shell gas puffs. A linear mass density of deuterium (D2) varied between 50 and 85 μg/cm. Somewhat problematic was a spread of the D2 gas at a large diameter in the central anode-cathode region. The generator operated in two regimes, with and without a plasma opening switch (POS). When the POS was used, a current reached a peak of 2.7 MA with a 200 ns rise time. Without the POS, a current rise time approached 1500 ns. The influence of different current rise times on neutron production was researched. Obtained results were important for comparison of fast deuterium Z-pinches with plasma foci. Average DD neutron yields with and without the POS were about 1011. The neutron yield seems to be dependent on a peak voltage at the Z-pinch load. In all shots, the neutron emission started during stagnation. At the beginning of the neutron production, the neutron emission correlated with soft x-rays and a significant fraction of neutrons could be explained by the thermonuclear mechanism. Nevertheless, a peak of the neutron emission occurred 40 ns after a soft x-ray peak. At this very moment, hard x-rays above 1 MeV were detected and a rapid expansion with a velocity of 3×105 m/s was observed. In the case of the POS, 1 MeV widths of radial neutron spectra implied that there are deuterons with the energy above 200 keV moving in the radial direction. On the basis of D2 gas puff experiments in the 0.3-17 MA region, the neutron yield dependence on a current as Y∝I3.0±0.2 was proposed.
Radial and Azimuthal Velocity Profiles in Gas-Puff Z-Pinches
Rocco, Sophia; Engelbrecht, Joseph; Banasek, Jacob; de Grouchy, Philip; Qi, Niansheng; Hammer, David
2016-10-01
The dynamics of neon, argon, and krypton (either singly or in combination) gas puff z-pinch plasmas are studied on Cornell's 1MA, 100-200ns rise-time COBRA pulsed power generator. The triple-nozzle gas puff valve, consisting of two annular gas puffs and a central jet, allows radial tailoring of the gas puff mass-density profile and the use of 1, 2 or 3 different gases at different pressures. Interferometry supplies information on sheath thickness and electron density, variously filtered PCDs and silicon diodes measure hard and soft x-ray production, and multi frame visible and extreme UV imaging systems allow tracking of the morphology of the plasma. A 527nm, 10J Thomson scattering diagnostic system is used to determine radial and azimuthal velocities. Implosion velocities of 170km/s (Kr) and 300km/s (Ne/Ar) are observed. We are investigating the correlations between instability growth, plasma density profile, velocity partitioning as a function of radius, and radiation production. Research supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement No. DE-NA0001836.
Soft X-ray Images of Krypton Gas-Puff Z-Pinches
邱孟通; 蒯斌; 曾正中; 吕敏; 王奎禄; 邱爱慈; 张美; 罗建辉
2002-01-01
A series of experiments has been carried out on Qiang-guang Ⅰ generator to study the dynamics of krypton gas-puff Z-pinches. The generator was operated at a peak current of 1.5 MA with a rise-time of 80 ns. The specific linear mass of gas liner was about 20 μg/cm in these experiments. In the diagnostic system, a four-frame x-ray framing camera and a pinhole camera were employed. A novel feature of this camera is that it can give time-resolved x-ray images with four frames and energy-resolved x-ray images with two different filters and an array of 8 pinholes integrated into one compact assemble. As a typical experimental result, an averaged radial imploding velocity of 157 km/s over 14 ns near the late phase of implosion was measured from the time-resolved x-ray images. From the time-integrated x-ray image an averaged radial convergence of 0.072 times of the original size was measured. An averaged radial expansion velocity was 130 km/s and the maximum radial convergence of 0.04 times of the original size were measured from the time-resolved x-ray images. The dominant axial wavelengths of instabilities in the plasma were between 1 and 2 mm. The change in average photons energy was observed from energy spectrum- and time-resolved x-ray images.
Simulation of Z-Pinch Processes of Nested Tungsten Wire-Array on Angara-5-1 Facility
NING Cheng; DING Ning; LIU Quan; YANG Zhen-Hua; FAN Wen-Bin; ZHANG Yang
2006-01-01
@@ Based on the hydrodynamic shell-on-shell collision model, the Z-pinch processes of nested tungsten wire-array in Sino-Russian joint experiments on Angara-5-1 facility are simulated by means of our one-dimensional threetemperature radiation magneto-hydrodynamic code. The results show the evolutions of x-ray radiation burst,implosion trajectories of interfaces, current transfer in inner and outer wire-array plasmas, and the temporal and spatial changes of magnetic field and current density in the process. About 20% of the total driven current is transferred into the inner wire-array plasma by convection and diffusion of magnetic field when the two shells are pinched closest. Compared to the measured x-ray power, the simulated full width at half maximum and time at the strongest radiation agree approximately with the measured values. It is also demonstrated in our simulation that the radiation of nested wire-array Z-pinch is enhanced. The effects of fluctuations of driven current on yields of x-ray are also investigated.
The Physics of Long-Pulse Wire Array Z-Pinch Implosions
DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; SPIELMAN,RICK B.; COVERDALE,CHRISTINE A.; RODERICK,N.F.; PETERSON,D.L.
1999-12-14
Recent improvements in z-pinch wire array load design at Sandia National Laboratories have led to a substantial increase in pinch performance as measured by radiated powers of up to 280 TW in 4 ns and 1.8 MJ of total radiated energy. Next generation, higher current machines will allow for larger mass arrays and comparable or higher velocity implosions to be reached, possibly extending these result.dis the current is pushed above 20 MA, conventional machine design based on a 100 ns implosion time results in higher voltages, hence higher cost and power flow risk. Another approach, which shifts the risk to the load configuration, is to increase the implosion time to minimize the voltage. This approach is being investigated in a series of experimental campaigns on the Saturn and Z machines. In this paper, both experimental and two dimensional computational modeling of the fist long implosion Z experiments will be presented. The experimental data shows broader pulses, lower powers, and larger pinch diameters compared to the corresponding short pulse data. By employing a nested array configuration, the pinch diameter was reduced by 50% with a corresponding increase in power of > 30%. Numerical simulations suggest load velocity is the dominating mechanism behind these results.
Effect of driver impedance on dense plasma focus Z-pinch neutron yield
Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Welch, Dale [Voss Scientific, Albuquerque, NM 87108 (United States)
2014-12-15
The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.
The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch
Navarro, Alejandro Banon; Jenko, Frank
2015-01-01
For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each...
Nanosecond CO2 laser interaction with a dense helium Z-pinch plasma
Voss, D. F.
A short pulse CO2 laser system was constructed to investigate the interaction of intense electromagnetic radiation with dense plasma. The laser was focused perpendicular to the axis of a linear helium Z-pinch plasma and properties of the transmitted beam were monitored. Transmitted beam intensity and spatial distribution were measured as functions of incident intensity and interaction time. The results of the experiments with the overdense plasma were found to be consistent with plasma hydrodynamic theory. A 40 nanosecond pulse was sufficiently long to burn through the plasma, but a 4 nanosecond pulse was not. The 4 nanosecond pulse was long enough to form a local density depression in the underdense plasma and density gradients steep enough to produce Fresnel diffraction, despite the absence of a critical surface. The resultant change in refractive index could cause thermal self-focusing. The transmission measurement was not found to be consistent with a simple model of inverse bremsstrahlung absorption. At an intensity of 10 to the 12th power W/cu/cm there was a sharp decrease in transmission. This suggests the possibility of either increased absorption due to enhanced ionization or increased reflection due to simulated Brillouin backscatter.
High-energy electron acceleration in the gas-puff Z-pinch plasma
Takasugi, Keiichi; Miyazaki, Takanori; Nishio, Mineyuki
2014-12-01
The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.
High-energy electron acceleration in the gas-puff Z-pinch plasma
Takasugi, Keiichi, E-mail: takasugi@phys.cst.nihon-u.ac.jp [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308 (Japan); Miyazaki, Takanori [Institute of Quantum Science, Nihon University, 1-8 Kanda-Surugadai, Chiyoda, Tokyo 101-8308, Japan and Dept. Innovation Systems Eng., Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan); Nishio, Mineyuki [Anan National College of Technology, 265 Aoki, Minobayashi, Anan, Tokushima 774-0017 (Japan)
2014-12-15
The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.
Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments
Zhou Lin
2016-03-01
Full Text Available The linear-transformer-driver (LTD is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z-pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z-pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%–90% can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32 cm/μs when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%–30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.
Zeng Zheng-Zhong; Qiu Ai-Ci
2004-01-01
Numerical computation based on a zero-dimensional thin-plasma-shell model has been carried out to study the scaling of the maximum kinetic energy per unit length, the current amplitude and the compression ratio for the imploding Z-pinch liner driven by peaked current pulses. A dimensionless scaling constant of 0.9 with an error less than 10% is extracted at the optimal choice of the current and liner parameters. Deviation of the chosen experimental parameter from the optimal exerts a minor influence on the kinetic energy for wider-shaped and slower-decaying pulses, but the influence becomes significant for narrower-shaped and faster-decaying pulses. The computation is in reasonable agreement with experimental data from the Z, Saturn, Blackjack 5 and Qiangguang-I liners.
Advances in experimental spectroscopy of Z-pinch plasmas and applications
Kantsyrev, V. L.; Safronova, A. S.; Safronova, U. I.; Shrestha, I.; Weller, M. E.; Osborne, G. C.; Shlyaptseva, V. V.; Wilcox, P. G.; Stafford, A.
2012-06-01
Recent advances in experimental work on plasma spectroscopy of Z-pinches are presented. The results of experiments on the 1.7 MA Z-pinch Zebra generator at UNR with wire arrays of various configurations and X-pinches are overviewed. A full x-ray and EUV diagnostic set for detailed spatial and temporal monitoring of such plasmas together with theoretical support from relativistic atomic structure and non-LTE kinetic codes used in the analysis are discussed. The use of a variety of wire materials in a broad range from Al to W provided an excellent opportunity to observe and study specific atomic and plasma spectroscopy features. In addition, the applications of such features to fusion and astrophysics will be considered.
Imploding process and x-ray emission of shotgun z-pinch plasma
Muto, Ryusuke [Nihon University, College of Science and Technology, Tokyo (Japan); Takasugi, Keiichi; Miyamoto, Tetsu [Nihon University, Atomic Energy Research Institute, Tokyo (Japan)
2001-09-01
Rayleigh-Taylor instability was observed on the surface of a contracting z-pinch plasma. Wavelength of the instability was analyzed from the envelope of the profile, and it increased with implosion. Analysis with finite Larmor radius effect shows that there is some acceleration of ions during the contraction process. A suggestion to obtain macroscopically uniform plasma is to increase plasma current without heating the plasma. (author)
Comparison of Staged Z-pinch Experiments at the NTF Zebra Facility with Mach2 simulations
Ruskov, E.; Wessel, F. J.; Rahman, H. U.; Ney, P.; Darling, T. W.; Johnson, Z.; McGee, E.; Covington, A.; Dutra, E.; Valenzuela, J. C.; Conti, F.; Narkis, J.; Beg, F.
2016-10-01
Staged Z-pinch experiments at the University of Nevada, Reno, 1MA Z-pinch Zebra facility were conducted. A hollow shell of argon gas liner is injected between 1 cm anode-cathode gap through a supersonic nozzle of 2.0 cm diameter with a throat gap of 240 microns. A deuterium plasma fill is injected inside the argon gas shell through a plasma gun as a fusible target plasma. An axial magnetic field is also applied throughout the pinch region. Experimental measurements such as pinch current, X-ray signal, neutron yield, and streak images are compared with MACH2 radiation hydrodynamic code simulations. The argon liner density profiles, obtained from the CFD (FLUENT), are used as an input to MACH2. The comparison suggests a fairly close agreement between the experimental measurements and the simulation results. This study not only helps to benchmark the code but also suggests the importance of the Z-pinch implosion time, optimizing both liner and target plasma density to obtain the maximum energy coupling between the circuit and the load. Advanced Research Projects Agency - Energy, DE-AR0000569.
Numerical simulations of annular wire-array z-pinches in (x,y), (r,{theta}), and (r,z) geometries
Marder, B.M.; Sanford, T.W.L.; Allshouse, G.O.
1997-12-01
The Total Immersion PIC (TIP) code has been used in several two-dimensional geometries to understand better the measured dynamics of annular, aluminum wire-array z-pinches. The areas investigated include the formation of the plasma sheath from current-induced individual wire explosions, the effects of wire number and symmetry on the implosion dynamics, and the dependence of the Rayleigh-Taylor instability growth on initial sheath thickness. A qualitative change in the dynamics with increasing wire number was observed, corresponding to a transition between a z-pinch composed of non-merging, self-pinching individual wires, and one characterized by the rapid formation and subsequent implosion of a continuous plasma sheath. A sharp increase in radiated power with increasing wire number has been observed experimentally near this calculated transition. Although two-dimensional codes have correctly simulated observed power pulse durations, there are indications that three dimensional effects are important in understanding the actual mechanism by which these pulse lengths are produced.
Generation and anisotropy of neutron emission from a condensed Z-pinch
Bakshaev, Yu. L.; Bryzgunov, V. A.; Vikhrev, V. V.; Volobuev, I. V.; Dan'ko, S. A.; Kazakov, E. D.; Korolev, V. D.; Klír, D.; Mironenko-Marenkov, A. D.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.
2014-06-01
The paper presents results of measurements of neutron emission generated in the constriction of a fast Z-pinch at the S-300 facility (2 MA, 100 ns). An increased energy concentration was achieved by using a combined load the central part of which was a microporous deuterated polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1-1.5 mm. The neck was placed between two 5-mm-diameter agar-agar cylinders. The characteristics of neutron emission in two axial and two radial directions were measured by the time-of-flight method. The neutron spectrum was recovered from the measured neutron signals by the Monte Carlo method. In all experiments, the spatiotemporal characteristics of plasma in the Z-pinch constriction were measured by means of the diagnostic complex of the S-300 facility, which includes frame photography in the optical, VUV, and soft X-ray (SXR) spectral regions; optical streak imaging; SXR detection; and time-integrated SXR photography. The formation of hot dense plasma in the Z-pinch constriction was accompanied by the generation of hard X-ray (with photon energies E > 30 keV), SXR (with photon energies E > 1 keV and duration of 2-4 ns), and neutron emission. Anisotropy of the neutron energy distribution in the axial direction was revealed. The mean neutron energies measured in four directions at angles of 0° (above the anode), 90°, 180° (under the cathode), and 270° with respect to the load axis were found to be of 2.1 ± 0.1, 2.5 ± 0.1, 2.6 ± 0.2, and 2.4 ± 0.1 MeV, respectively. For a 1-mm-diameter neck, the maximum integral neutron yield was 6 × 109 neutrons. The anisotropy of neutron emission for a Z-pinch with a power-law distribution of high-energy ions is calculated.
Interaction of CO2 laser radiation with a dense Z-pinch plasma
Neufeld, C. R.
1980-01-01
Results obtained when a TEA-CO2 laser pulse is radially incident on a dense hydrogen Z-pinch plasma are presented. Perturbations of the plasma column are visible on high-speed streak photographs. Spectral measurements indicate that stimulated Brillouin scattering in the underdense plasma regions is the dominant mechanism for the observed backscattering of laser radiation by the plasma column. The time behavior of the backscattered signal can be very complex, both prompt and delayed backscatter having been observed under ostensibly identical experimental conditions. The backscattered power is typically 1-2 percent of the incident laser power.
A high impedance mega-ampere generator for fiber z-pinch experiments
Mitchell, I. H.; Bayley, J. M.; Chittenden, J. P.; Worley, J. F.; Dangor, A. E.; Haines, M. G.; Choi, P.
1996-04-01
At Imperial College a mega-ampere generator for plasma implosion experiments has been designed, built, and commissioned. With a final line impedance of 1.25 Ω this terawatt class generator has been designed primarily to drive a maximum current of 1.8 MA with a rise time of 150 ns into high inductance z-pinch loads of interest to radiative collapse studies. This article describes the design and tests of the generator which has a novel configuration of lines and a new design of a magnetically insulated transmission line (MITL). In summary, the generator consists of four Marx generators each of the Hermes III type (2.4 MV, 84 kJ), each connected to 5 Ω pulse forming lines and trigatron gas switches. The power is fed into the matched 1.25 Ω vertical transfer line which feeds a diode stack and a short conical MITL in vacuum which concentrates the power into the z-pinch load. At 80% charge a current rising to 1.4 MA in 150 ns has been measured in a 15 nH inductive short. Similar results are obtained when using a plasma load.
Primary experimental results of wire-array Z-pinches on PTS
Huang, X. B., E-mail: caephxb2003@aliyun.com; Zhou, S. T., E-mail: caephxb2003@aliyun.com; Ren, X. D., E-mail: caephxb2003@aliyun.com; Dan, J. K., E-mail: caephxb2003@aliyun.com; Wang, K. L., E-mail: caephxb2003@aliyun.com; Zhang, S. Q., E-mail: caephxb2003@aliyun.com; Li, J., E-mail: caephxb2003@aliyun.com; Xu, Q., E-mail: caephxb2003@aliyun.com; Cai, H. C., E-mail: caephxb2003@aliyun.com; Duan, S. C., E-mail: caephxb2003@aliyun.com; Ouyang, K., E-mail: caephxb2003@aliyun.com; Chen, G. H., E-mail: caephxb2003@aliyun.com; Ji, C., E-mail: caephxb2003@aliyun.com; Wang, M., E-mail: caephxb2003@aliyun.com; Feng, S. P., E-mail: caephxb2003@aliyun.com; Yang, L. B., E-mail: caephxb2003@aliyun.com; Xie, W. P., E-mail: caephxb2003@aliyun.com; Deng, J. J., E-mail: caephxb2003@aliyun.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)
2014-12-15
The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132∼276 tungsten wires with 5∼10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ∼3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3∼5×10{sup 7} cm/s and the radial convergence ratio is between 10 and 20.
Diagnostics of Fast Axial Ions Produced in Deuterium Gas-Puff Z-Pinch
Rezac, K.; Klir, D.; Cikhardt, J.; Kubes, P.; Sila, O.; Kravarik, J.; Shishlov, A. V.; Labetsky, A. Yu.; Cherdizov, R. K.; Ratakhin, N. A.; Orcikova, H.; Turek, K.; Dudkin, N.; Padalko, V. N.; GIT-12 Team
2016-10-01
An unexpected advantage of some Z-pinch configurations is a possibility of an acceleration of ions to high energies. One of these configurations is a deuterium gas-puff with outer plasma shell, where hydrogen ions with energies up to 40 MeV has been observed during Z-pinch experiments on the GIT-12 generator since 2013. During the recent campaign in 2016, the source of high energetic ions and also parameters of ion pulses have been studied by various in-chamber diagnostics in 24 experimental shots on the current level below 3 MA. Principal aims were (i) to find a spatial distribution of ion sources, (ii) localization of ion sources on the z-axis and (iii) determine the ion energy spectra by an unfold technique. All of these has been done with the help of a new diagnostic setup consists of an ion pinhole camera, an ion 3-pinhole camera, a multi-pinhole camera and a detector of spatial ion beam profile. The ion diagnostics contained stacks with various absorbers, CR-39 track detectors, HD-V2 and EBT-3 radio-chromic films. One more aim, (iv) the study of a difference in production time of axial ion pulses with off-axis pulses, were accomplished by LiF samples and nTOF signals. This work was supported by the projects GACR 16-07036S, MSMT LD14089, CTU. SGS16/223/OHK3/3T/13, IAEA RC17088.
Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam
Winterberg, F.
1999-07-01
A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.
Rousculp, C. L.; Reass, W. A.; Oro, D. M.; Griego, J. R.; Turchi, P. J.; Reinovsky, R. E.; Saunders, A.; Mariam, F. G.; Morris, C.
2014-10-01
The first pulse-power driven, dynamic, liner-on-target experiment was successfully conducted at the Los Alamos proton radiography (pRad) facility. 100% data return was achieved on this experiment including a 21-image pRad movie. The experiment was driven with the PHELIX pulsed-power machine that utilizes a high-efficiency (k ~ 0.93) transformer to couple a small capacitor bank (U ~ 300 kJ) to a low inductance condensed-matter experimental load in a Z-pinch configuration. The current pulse (Ipeak = 3.7 MA, δt ~10 μs) was measured via a fiber optic Faraday rotation diagnostic. The experimental load consisted of a cylindrical Al liner (6 cm diam, 3 cm tall, 0.8 mm thick) and a cylindrical Al target (3 cm diam, 3 cm tall, 0.1 mm thick) that was coated with a thin (0.1 mm) uniform layer of tungsten powder (1 micron diam). It is observed that the shock-launched powder layer fully detaches from the target into a spatially correlated, radially converging (vr ~ 800 m/s) ring. The powder distribution is highly modulated in azimuth indicating particle interactions are significant. Results are compared to MHD simulations. Work supported by United States-DOE under Contract DE-AC52-06NA25396.
DERZON,MARK S.
2000-03-01
The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind.
Initial magnetic field compression studies using gas-puff Z-pinches and thin liners on COBRA
Gourdain, P.-A.; Concepcion, R. J.; Evans, M. T.; Greenly, J. B.; Hammer, D. A.; Hoyt, C. L.; Kroupp, E.; Kusse, B. R.; Maron, Y.; Novick, A. S.; Pikuz, S. A.; Qi, N.; Rondeau, G.; Rosenberg, E.; Schrafel, P. C.; Seyler, C. E.; Shelkovenko, T. C.
2013-08-01
This magnetic compression of cylindrical liners filled with DT gas has promise as an efficient way to achieve fusion burn using pulsed-power machines. However, to avoid rapid cooling of the fuel by transfer of heat to the liner an axial magnetic field is required. This field has to be compressed during the implosion since the thermal insulation is more demanding as the compressed DT plasma becomes hotter and its volume smaller. This compression of the magnetic field is driven both by the imploding liner and plasma. To highlight how this magnetic field compression by the plasma and liner evolves we have separately studied Z-pinch implosions generated by gas puff and liner loads. The masses of the gas puff and liner loads were adjusted to match COBRA's current rise times. Our results have shown that Ne gas-puff implosions are well described by a snowplow model where electrical currents are predominately localized to the outer surface of the imploding plasma and the magnetic field is external to the imploding plasma. Liner implosions are dominated by the plasma ablation process on the inside surface of the liner and the electrical currents and magnetic fields are advected into the inner plasma volume; the sharp radial gradient associated with the snowplow process is not present.
Extreme Ultraviolet Light Emission from Z-Pinch Discharge Plasma Source
Watanabe, Masato; Song, Inho; Sakamoto, Toshiro; Kobayashi, Yasunori; Okino, Akitoshi; Mohanty, Smruti R.; Horioka, Kazuhiko; Hotta, Eiki
2006-01-01
A capillary Z-pinch discharge light source for EUV lithography has been developed. Our device is equipped with a water-cooled ceramic capillary and electrodes, and a solid state pulsed power generator. A stacked static induction thyristors are used as switching elements, which enable high repetition rate operation of pulsed power supply. A magnetic switch is connected in series, which not only assists the semiconductor switch but also provides a preionization current. In the present study, EUV radiation emitted from pinching plasma in a xenon-filled capillary was quantitatively measured using an in-band calorimeter. Time-integrated in-band source image was also observed using a pinhole camera system. Furthermore, new electrode system using plasma jet has been developed.
Nano-scale ultra-dense Z-pinches formation from laser-irradiated nanowire arrays
Kaymak, Vural; Shlyaptsev, Vyacheslav N; Rocca, Jorge J
2016-01-01
We show that ulta-dense Z-pinches with nanoscale dimensions can be generated by irradiating aligned nanowires with femtosecond laser pulses of relativistic intensity. Using fully three-dimensional relativistic particle-in-cell simulations we demonstrate that the laser pulse drives a forward electron current in the area around the wires. This forward current induces return current densities of $\\sim$ 0.1 Giga-Amperes per $\\mu$m\\textsuperscript{2} through the wires. The resulting strong, quasi-static, self-generated azimuthal magnetic field pinches the nanowires into hot plasmas with a peak electron density of $> 9\\cdot 10^{24}$ cm\\textsuperscript{-3}, exceeding 1000 times the critical density. Arrays of these new ultra-dense nanopinches can be expected to lead to efficient micro-fusion and other applications.
The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches
Li, M., E-mail: limo@nint.ac.cn; Li, Y. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China); State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Sheng, L.; Wang, L. P.; Zhao, C.; Yuan, Y.; Zhang, X. J.; Zhang, M.; Peng, B. D.; Zhang, J. H.; Zhang, S. G.; Qiu, M. T. [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Li, X. W. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)
2015-12-15
This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and the x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.
Classification of the Z-Pinch Waste Stream as Low-Level Waste for Disposal
Singledecker, Steven John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-10
The purpose of this document is to describe the waste stream from Z-Pinch Residual Waste Project that due to worker safety concerns and operational efficiency is a candidate for blending Transuranic and low level waste together and can be safely packaged as low-level waste consistent with DOE Order 435.1 requirements and NRC guidance 10 CFR 61.42. This waste stream consists of the Pu-ICE post-shot containment systems, including plutonium targets, generated from the Z Machine experiments requested by LANL and conducted by SNL/NM. In the past, this TRU waste was shipped back to LANL after Sandia sends the TRU data package to LANL to certify the characterization (by CCP), transport and disposition at WIPP (CBFO) per LANL MOU-0066. The Low Level Waste is managed, characterized, shipped and disposed of at NNSS by SNL/NM per Sandia MOU # 11-S-560.
Non-thermal x-ray emission from wire array z-pinches
Ampleford, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jennings, Christopher Ashley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Webb, Timothy Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper-Slaboszewicz, V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Loisel, Guillaume Pascal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Timothy McGuire [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bell, Kate Suzanne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Brent M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Leroy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chittenden, Jeremy P. [Imperial College, London (United Kingdom); Sherlock, Mark [Imperial College, London (United Kingdom); Appelbe, Brian [Imperial College, London (United Kingdom); Giuliani, John [Naval Research Lab. (NRL), Washington, DC (United States); Ouart, Nicholas [Naval Research Lab. (NRL), Washington, DC (United States); Seely, John [Artep Inc., Ellicott City, MD (United States)
2015-12-01
We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.
X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches
Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.; Ciardi, A.
2004-12-01
Resistive magneto-hydrodynamic (MHD) simulations are used to evaluate the influence of three-dimensional inhomogeneities on x-ray power production in wire array Z-pinches. In particular, we concentrate on simulations of wire array Z-pinch experiments on the MAGPIE generator at Imperial College. An initial temperature perturbation is used to stimulate variations in wire core ablation rates that result in a highly non-uniform final implosion. Results indicate that x-ray power production is governed by the symmetry of the implosion surface and by the rate at which current can transfer to the axis through a three-dimensional debris field that trails behind the main implosion. The peak power is ultimately limited by the growth of MHD instabilities in the stagnated pinch. The individual contributions of the implosion kinetic energy, compression of the stagnated pinch, ohmic heating and MHD instabilities to the radiation yield are quantified. The onset of m = 1 instabilities is found to provide an efficient mechanism for dissipation of the magnetic energy surrounding the stagnated pinch. The formation of a helical plasma column not only allows the magnetic field to do work in driving an expansion of the helix but also enhances the ohmic heating by elongating the path of the current through the pinch. The effect of these energy sources combined is to increase the radiation yield to typically 3½ times the kinetic energy of the implosion. Simulations of arrays with different wire numbers, wire material and with nested arrays are used to examine the mechanisms that influence the peak soft x-ray power. In the simulations, peak power can be increased by: increasing the number of wires (which improves the implosion symmetry), by increasing the atomic number of the material (which increases the compressibility of the plasma) and by using a nested inner array (which brings the mass and the current to the axis more efficiently than a single array).
Ross, M. P.; Shumlak, U.
2016-10-01
The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 1020 m-2 with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.
A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch
McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.
2016-10-01
We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.
Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions
McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.
2015-11-01
We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch
Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.
2016-10-01
Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.
Quasi-steady accelerator operation on the ZAP flow Z-pinch
Hughes, M. C., E-mail: mchugs@uw.edu; Shumlak, U., E-mail: mchugs@uw.edu; Golingo, R. P., E-mail: mchugs@uw.edu; Nelson, B. A., E-mail: mchugs@uw.edu; Ross, M. P., E-mail: mchugs@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, WA 98195 (United States)
2014-12-15
The ZaP Flow Z-Pinch Experiment utilizes sheared flows to stabilize an otherwise unstable equilibrium. The sheared flows are maintained by streaming high velocity plasma parallel to the pinch. Previous operations of the machine show depletion of the accelerator’s neutral gas supply late in the pulse leading to pinch instability. The current distribution in the accelerator exhibits characteristic modes during this operation, which is corroborated by interferometric signals. The decrease in density precipitates a loss of plasma quiescence in the pinch, which occurs on a timescale related to the flow velocity from the plasma source. To abate the depletion, the geometry of the accelerator is altered to increase the neutral gas supply. The design creates a standing deflagration front in the accelerator that persists for the pulse duration. The new operating mode is characterized by the same diagnostics as the previous mode. The lessons learned in the accelerator operations have been applied to the design of a new experiment, ZaP-HD. This work was supported by grants from the Department of Energy and the National Nuclear Security Administration.
New compact hohlraum configuration research at the 1.7 MA Z-pinch generator
Kantsyrev, V. L., E-mail: victor@unr.edu; Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C. [Physics Department, University of Nevada, Reno, NV 89557 (United States); Chuvatin, A. S. [Laboratorie de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Rudakov, L. I. [Icarus Research Inc., P.O. Box 30780, Bethesda, MD 20824-0780 (United States); Velikovich, A. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Cuneo, M. E.; Jones, B.; Vesey, R. A. [Sandia National Laboratories, Albuquerque, NM 87110 (United States)
2014-12-15
A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.
Computational investigation of the limits to Pease-Braginskii collapse of a Z-pinch
Nielsen, P.D.
1981-06-01
This dissertation investigates the one-dimensional limits to such a radiation enhanced collapse through the use of a Lagrangian simulation code, LASNEX. The code includes the effects of a wide range of phenomena - opacity, ionization, experimentally determined equations of state, magnetic effects on transport coefficients, and external electrical circuits. Special attention was given to the magnetic field subroutines. They were revised to include ion acoustic and lower hybrid drift induced resistivity and to increase accuracy and efficiency. The magnetic pressure term was differenced in a manner that eliminates any influence of zone size, allowing large, low density zones outside the plasma column. In these large zones, magnetic flux and energy were determined by direct integration instead of summation to increase overall conservation. With these changes, the computational timesteps were determined by phenomena in the plasma instead of the Alfven velocity in the low density region. These modifications improved the accuracy of the code on Z-pinch problems by a factor of 10-100 depending on the minimum pinch radius reached.
High-Energy Ion Acceleration Mechanisms in a Dense Plasma Focus Z-Pinch
Higginson, D. P.; Link, A.; Schmidt, A.; Welch, D.
2016-10-01
The compression of a Z-pinch plasma, specifically in a dense plasma focus (DPF), is known to accelerate high-energy electrons, ions and, if using fusion-reactant ions (e.g. D, T), neutrons. The acceleration of particles is known to coincide with the peak constriction of the pinch, however, the exact physical mechanism responsible for the acceleration remains an area of debate and uncertainty. Recent work has suggested that this acceleration is linked to the growth of an m =0 (sausage) instability that evacuates a region of low-density, highly-magnetized plasma and creates a strong (>MV/cm) electric field. Using the fully kinetic particle-in-cell code LSP in 2D-3V, we simulate the compression of a 2 MA, 35 kV DPF plasma and investigate in detail the formation of the electric field. The electric field is found to be predominantly in the axial direction and driven via charge-separation effects related to the resistivity of the kinetic plasma. The strong electric and magnetic fields are shown to induce non-Maxwellian distributions in both the ions and electrons and lead to the acceleration of high-energy tails. We compare the results in the kinetic simulations to assumptions of magnetohydrodynamics (MHD). Prepared by LLNL under Contract DE-AC52-07NA27344.
Compact Z-pinch radiation source dedicated to broadband absorption measurements
Dunpin Hong
2016-05-01
Full Text Available In order to acquire a broadband absorption spectrum in a single shot, a compact radiation source was developed by using a Z-pinch type electric discharge. This paper presents the mechanical and electrical construction of the source, as well as its electrical and optical characteristics, including the intense continuum of radiation emitted by the source in the UV and visible spectral range. It also shows that the compactness of the source allows direct coupling with the probed medium, enabling broadband absorption measurement in the spectral range of 200–300 nm without use of an optical fiber which strongly attenuates the light in the short wavelength range. Concretely, thanks to this source, broadband spectral absorption of NO molecules around 210 nm and that of OH molecules around 310 nm were recorded in this direct coupling arrangement. Copper atom spectral absorption around 325 nm of the peripheral cold zones of an intense transient arc was also recorded.
Staged Z-pinch Simulations for the UNR, Nevada Terawatt Zebra Facility
Ney, Paul; Rahman, Hafiz; Wessel, Frank; Narkis, Jeff; Valenzuela, Julio; Beg, Farhat; Presura, Radu; Darling, Tim; McKee, Erik; Covington, Aaron
2015-11-01
We simulate a Staged Z-pinch imploded on the 1 MA, 130 ns, 100 kJ, Nevada Terawatt Zebra Facility. The load is a magnetized, cylindrical, double gas-puff, plasma liner imploding onto a plasma target. Simulations use the 2-1/2 D, radiation-MHD code, MACH2. Three different liner gases are evaluated: Ar, Kr, and Xe and the target is either: DD, or DT, with a liner-plasma radius of: 1.0 cm and 2.0 cm, and a 5.0-mm thickness. Initial conditions are optimized to produce the highest neutron yield. Shocks propagate at different speeds in the liner and target, leading to a shock front at the interface. Magnetosonic shock waves pre-heat the target plasma and provide a stable implosion. The shock front provides a secondary conduction channel which builds up during implosion. The axial magnetic field controls the MRT instability and traps α-particles, leading to ignition. Magnetic flux is compressed, and at peak parameters the magnetic field and current density exceed, by an order of magnitude, values outside the pinch, providing a magneto-inertial confinement. A smaller radius provides 102 -103 × higher neutron yield. Funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.
Deuterium Liner and Multiparameter Investigation of the Inverse Z-Pinch Formation Process
Bystritskii, Vyach M; Grebenyuk, V M; Parzhitsky, S S; Penkov, F M; Stolupin, V A; Boznyak, J; Gula, E; Dudkin, G N; Nechaev, B A; Padalko, V M; Mesyats, G A; Ratakhin, N A; Sorokin, S A
2001-01-01
A description of the methods and results of the measurements of the ion energy distribution of the deuterium liner accelerated in the inverse Z-pinch configuration are presented - the liner plasma is radially accelerated from the outward small radius. The knowledge of the experiment deuteron energy distribution is crucially important for correct interpretation of the results on the study of the dd-reaction at infralow collision energies using the liner plasma. Experiments were fulfilled in the HCEI (Tomsk, Russia) at a nanosecond pulsed high current generator (I=950 kA, pulse duration \\tau=80 ns). The hollow deuterium liner of 20 mm length was accelerated from the initial radius of \\sim 15 mm to 45 mm. Measurement of the liner characteristics was produced by means of the light detectors (detection of H_\\alpha and H_\\beta deuterium lines) and magnetic B-dot probes, placed on the various radii of the expanding liner. Besides, the measurement of the neutron radiation intensity due to reaction d+d\\to^{3}He+n was ...
Ross, Michael; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Hughes, Michal; Forbes, Eleanor; Paliwoda, Matt
2014-10-01
The ZaP-HD Flow Z-Pinch experiment investigates how flow shear stabilized Z-pinches scale to higher densities and temperatures. Determining how such plasmas scale up may reveal their utility as test beds for HEDP physics. Scaling towards HEDP conditions requires compressing the plasma to a smaller size with increased plasma current. Measuring the internal structure of a smaller, hotter plasma requires high-resolution diagnostics. To measure electron density profiles, the ZaP-HD team uses holographic interferometry with 30 micron resolution. A new Nd:YAG laser is employed in concert with a consumer digital camera to record holograms, which are numerically reconstructed to obtain the phase shift caused by the interaction of the laser with the plasma. The numerical reconstruction provides a two-dimensional map of chord-integrated electron density, which can be inverted to radial profiles under the assumption of axisymmetry. Measurements of Z-pinch density structure are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.
Initiation, ablation, precursor formation, and instability analysis of thin foil liner Z-pinches
Blesener, Isaac Curtis
This dissertation presents the results of mostly experimental work studying the early-time behavior of thin foil liners as compared to wire-array Z-pinches. It involves three studies, covering initiation, ablation and precursor formation, and instability analysis. Initiation was studied by observing the optical emission of various thickness (0.6-23.5 μm Cu) liners using a streak camera. It was found that thinner liners initiated sooner, more quickly, and more uniformly than thicker liners. This correlated well with both an increase in instantaneous dJ/dt at the time of first emission as well as the inductive voltage at the time of first emission. The threshold for uniform initiation was dJ/dt>3.5×1016Acm -2s-1. Uniform initiation is important for liners because nonuniformities could lead to enhanced instabilities and poor liner performance (compression, x-ray production, etc.). Ablation and precursor formation of wire-arrays (16x75 μm Cu) and liners (6 μm Cu) were studied using r-θ density maps and radial mass profiles created by an axial X pinch radiography diagnostic. These images show very strong differences in this stage of the Z-pinch. Wire-arrays develop complex, azimuthally varying ablation structures that lead to dense precursors. Liners, however, show significantly reduced and azimuthally uniform ablation leading to an order of magnitude less dense precursor on axis. This is likely due to the discrete versus continuous nature of wire-arrays versus liners. With wire-arrays, plasma that is created on the outside of the wires can reach the array axis by being swept through the gaps between the stationary wire cores. In contrast, liners have no “gaps” for plasma to flow through. Therefore, any plasma that is created on the outside of the liner is trapped there until the bulk of the liner moves with the implosion. Consequently, only the plasma that is created on the inside of the liner is able to contribute to precursor formation. This is an important
郭帆; 李永东; 王洪广; 刘纯亮; 呼义翔; 张鹏飞; 马萌
2011-01-01
采用电路模拟得到的柱孔结构处向外磁绝缘传输线传输的电压反射波来等效Z箍缩装置中的柱孔结构至丝阵负载部分,实现了Z箍缩装置四层外磁绝缘传输线的全尺寸粒子模拟.为了进一步提高柱孔结构和丝阵负载等效电路模型的精度,通过粒子模拟,对电路模拟得到的电压反射波进行了修正.PBFAZ装置四层外磁绝缘传输线部分的全尺寸粒子模拟结果表明,修正电压反射波后得到的绝缘堆处电压波形和电流波形比原有电路模拟结果更接近实验结果.另外,利用粒子模拟结果分析和解释了丝阵负载内爆对外磁绝缘传输线脉冲功率传输物理过程的影响.%In order to implement the particle-in-cell（PIC） simulation of four outer magnetically insulated transmission lines（MITL） of Z-pinch accelerator,we adopt the backward-going transmission line voltage wave at the double post-hole convolute（DHPC） travelling in the outer MITL direction,which is gained in circuit simulation to model the part from DHPC to Z-pinch load.For the purpose of enhancing the accuracy of equivalent circuit model of DHPC and Z-pinch load,the backward-going transmission line voltage wave that is computed by circuit simulation is rescaled by PIC simulation.The insulator voltage and current waves that are obtained in the PIC simulation of four outer MITLs of PBFA Z can match the electrical measurements better than those obtained by the circuit simulation.Moreover,the influence of Z-pinch load implosion on the process of pulsed power coupling in the outer MILT is analyzed and explained.
陈敬平; 王雄
2011-01-01
评述了快Z箍缩中子产生及诊断的最新进展,介绍了聚变裂变混合堆原理与结构.概述了混合堆界面的磁绝缘传输线(MITL)和碎片防护罩设计,提出了MITL电流压力建模思路,提出了PTS装置上MITL翻转柱孔汇流结构(PHC)及同轴延伸方式,这两种配置方式简便、易行.%The recent development of neutron generation and diagnostics of fast Z-pinch are reviewed. The principle and con-figuration of fusion and fission hybrid reactor are briefly introduced. Current and magnetic impulse modeling and the debris shield design are examined for the interface between Z-pinch driver and hybrid reactor. The conclusion of this work is that the interface of post hole convolute and extended coaxial magnetically insulated transmission line is feasible and easily operated at primary test stand(PTS).
Smith, David Lewis; Heames, Terence John (Alion Science and Technology, Albuquerque, NM); Parma, Edward J., Jr.; Peters, Curtis D.; Suo-Anttila, Ahti Jorma (Alion Science and Technology, Albuquerque, NM)
2007-09-01
This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public.
Smith, David Lewis; Heames, Terence John (Alion Science and Technology, Albuquerque, NM); Parma, Edward J., Jr.; Peters, Curtis D.; Suo-Anttila, Ahti Jorma (Alion Science and Technology, Albuquerque, NM)
2007-09-01
This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public.
Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Shrestha, I.; Ouart, N. D.; Yilmaz, M. F.; Wilcox, P. G.; Osborne, G. C.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Greenly, J. B.; McBride, R. D.; Knapp, P. F.; Blessener, I. C.; Bell, K. S.; Chalenski, D. A.; Hammer, D. A.; Kusse, B. R.
2009-01-01
The presented research focuses on investigation of Z-pinch plasma formation, implosion, and radiation characteristics as a function of the load configuration. The single planar and multi-planar wire arrays as well as compact cylindrical wire arrays were studied on the 1.3 MA UNR Zebra and 1 MA Cornell COBRA generators. The largest yields and powers were found for W and Mo double planar and compact wire arrays. A possibility of radiation pulse shaping was demonstrated. Two types of bright spots were observed in plasmas. A comparison of Mo double planar and compact wire array data indicates the possibility that the same heating mechanism operates during the final implosion and stagnation stages.
Table-top water-window soft X-ray microscope using a Z-pinching capillary discharge source
Nawaz, M. F.; Nevrkla, M.; Jancarek, A.; Torrisi, A.; Parkman, T.; Turnova, J.; Stolcova, L.; Vrbova, M.; Limpouch, J.; Pina, L.; Wachulak, P.
2016-07-01
The development and demonstration of a table-top transmission soft X-ray (SXR) microscope, using a laboratory incoherent capillary discharge source has been carried out. This Z-pinching capillary discharge water-window SXR source, is a first of its kind to be used for high spatial resolution microscopy at λ = 2.88 nm (430 eV) . A grazing incidence ellipsoidal condenser mirror is used for focusing of the SXR radiation at the sample plane. The Fresnel zone plate objective lens is used for imaging of the sample onto a back-illuminated (BI) CCD camera. The achieved half-pitch spatial resolution of the microscope approaches 100 nm, as demonstrated by the knife-edge test. Details about the source, and the construction of the microscope are presented and discussed. Additionally, the SXR images of various samples, proving applicability of such microscope for observation of objects in the nanoscale, are shown.
Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P. (Kurchatov Institute, Moscow, Russia); Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle " Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos
2007-01-01
Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is
Haines, Malcolm; Coverdale, Christine; Deeney, Chris; Lepell, P. David; Jones, Brent; Apruzese, J. P.
2006-10-01
Pulsed power driven Z-pinches yield large X-ray powers at stagnation, the energy of which can exceed by up to factors of 3 or 4, the estimated kinetic energy of the implosion. Furthermore, when electron temperatures are measured at stagnation similar in temperatures would not lead to pressure balance. These problems can be resolved by a theoretical model in which short wavelength (ka >> 1, and viscous Lundquist number ˜ 1), fast growing, m=O MHD instabilities reach a saturated amplitude, and the associated viscous dissipation of the vortices leads to ion heating. Equating this heating rate to the equipartition of energy to electrons leads to an estimate of the ion temperature and pinch radius at pressure balance. Extremely high ion temperatures in the range of 200-300 KeV are predicted from this model for stainless steel wire array experiments on Z at Sandia. These have been confirmed from time-resolved Doppler broadening spectroscopic measurements of the optically thin Fe He-δ line. This conversion of magnetic energy into ion thermal energy occurs on the nanosecond timescale, and can prevent radiative collapse. Any accompanying loss of magnetic flux in this highly conducting plasma can be explained by the occurrence of a large number of hot spots along the axis, with electron density and temperature variating not exactly in phase. This leads to a significant value of the integral of E.dl. Dl along the axis due to the grad Pe term in Ohm's law, analogous to the magnetic field generating term found in laser-plasma interactions. Ref 1. M.G. Haines, et al; Phys. Rev. Lett. 96, 075003 (2006) Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-ACO4-94AL85000.
Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA
Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.
2015-11-01
Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.
Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments
Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team
2013-10-01
Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.
Jun Shi; Shali Xiao; Hongjian Wang; Xianbin Huang; Libing Yang; Shenye Liu
2008-01-01
A wide variety of X-ray and extreme ultraviolet diagnostics are being developed to study on Yang acceler- ator. An elliptically bent crystal spectrometer is designed with a focal length of 1350 mm. A mica crystal with an interplanar spacing of 1.984 nm bent onto an elliptical substrate with eccentricity of 0.9485 is used. The crystal analyzer covers the Bragg angle range from 30° to 60°. The mica crystal can efficiently reflect radiation in multiple orders, covering the entire spectral range from 0.1 to 1.73 nm except for a gap from 0.86 to 1.0 nm. The application experiment is performed on Yang accelerator using the bent mica crystal analyzer. Spectra of neon-puff Z-pinch plasmas are recorded with a X-ray film, showing the H-like and the He-like lines of neon. Each spectrum has been identified and used for the wavelength calibration, and most of the line radiation is contained in the He-α and the L-α lines. The experimental results have demonstrated that the spectral resolution approximates 379.
Simulations for a Staged Z-pinch and MagLIF at 26 MA, 130 ns, and 22 MJ
Rahman, Hafiz; Wessel, Frank; Ney, Paul; Narkis, Jeff; Valenzuela, Julio; Beg, Farhat; Presura, Radu
2015-11-01
Simulations for a Staged Z-pinch (SZP), using a 6-mm diameter, 100- μm thick Silver plasma shell, imploding onto a uniform (target) plasma fill of Deuterium, are compared to MagLIF, configured similarly, except with a 500 μm Beryllium solid liner. Both pinches are pre-magnetized with: Bz = 0, 3, 7, and 10 T and the driver parameters are: τ1 / 4 = 130 ns, Ipeak = 26 MA, Estored = 22 MJ; the simulation code is MACH2, a 2-1/2 D, radiation-MHD code. Solid-liner simulations reproduce well, experimental results. Plasma-liner simulations exhibit magnetosonic shocks in the liner and ordinary sonic shocks in the target, preheating the plasma. A conduction-channel, shock-front at the interface remains stable throughout compression, even as the liner's outer surface becomes RT unstable. At peak compression the target decelerates and interface instability appears, triggering ignition and a fusion yield of, Y > 200 MJ; that is, 10 × greater than Estored . The yield from the solid liner implosion is 4 orders-of-magnitude less, even though it is more stable than the SZP. Funded by the US Department of Energy, ARPA-E, Control Number 1184-1527.
Measurements of the parameters of a condensed deuterated Z-pinch on the angara-5-1 facility
Aleksandrov, V. V.; Bryzgunov, V. A.; Grabovski, E. V.; Gritsuk, A. N.; Volobuev, I. V.; Kazakov, E. D.; Kalinin, Yu. G.; Korolev, V. D.; Laukhin, Ya. I.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Frolov, I. N.
2016-04-01
Results are presented from measurements of the parameters of high-temperature plasma in the Z-pinch neck formed when a current of up to 3.5 MA flows through a low-density polymer load. To enhance the effect of energy concentration, a deuterated microporous polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1-1.3 mm was placed in the central part of the load. During the discharge current pulse, short-lived local hot plasma spots with typical dimensions of about 200-300 μm formed in the neck region. Their formation was accompanied by the generation of soft X-ray pulses with photon energies of E > 0.8 keV and durations of 3-4 ns. The plasma electron temperature in the vicinity of the hot spot was measured from the vacuum UV emission spectra of the iron diagnostic admixture and was found to be about 200-400 eV. The appearance of hot plasma spots was also accompanied by neutron emission with the maximum yield of 3 × 1010 neutrons/shot. The neutron energy spectra were studied by means of the time-of-flight method and were found to be anisotropic with respect to the direction of the discharge current.
ALEGRA-HEDP Multi-Dimensional Simulations of Z-pinch Related Physics
Garasi, Christopher J.
2003-10-01
The marriage of experimental diagnostics and computer simulations continues to enhance our understanding of the physics and dynamics associated with current-driven wire arrays. Early models that assumed the formation of an unstable, cylindrical shell of plasma due to wire merger have been replaced with a more complex picture involving wire material ablating non-uniformly along the wires, creating plasma pre-fill interior to the array before the bulk of the array collapses due to magnetic forces. Non-uniform wire ablation leads to wire breakup, which provides a mechanism for some wire material to be left behind as the bulk of the array stagnates onto the pre-fill. Once the bulk of the material has stagnated, electrical current can then shift back to the material left behind and cause it to stagnate onto the already collapsed bulk array mass. These complex effects impact the total radiation output from the wire array which is very important to application of that radiation for inertial confinement fusion. A detailed understanding of the formation and evolution of wire array perturbations is needed, especially for those which are three-dimensional in nature. Sandia National Laboratories has developed a multi-physics research code tailored to simulate high energy density physics (HEDP) environments. ALEGRA-HEDP has begun to simulate the evolution of wire arrays and has produced the highest fidelity, two-dimensional simulations of wire-array precursor ablation to date. Our three-dimensional code capability now provides us with the ability to solve for the magnetic field and current density distribution associated with the wire array and the evolution of three-dimensional effects seen experimentally. The insight obtained from these multi-dimensional simulations of wire arrays will be presented and specific simulations will be compared to experimental data.
Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation
Yu, Edmund
2015-11-01
Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.
2013-08-01
Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.
The wire array Z-pinch: an efficient x-ray source for ICF and a new ion heating mechanism
Haines, M. G.
2008-10-01
The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. Firstly, the wires heat and form a surrounding vapour which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapour cores the plasma temperature and Reynolds number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation, the ion kinetic energy is thermalized and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated by soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m= 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2-3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly, progress in capsule implosions and in application to inertial fusion energy is reported.
The Wire Array Z-Pinch AN Efficient X-Ray Source for Icf and a New Ion Heating Mechanism
Haines, M. G.
2009-07-01
The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. First, the wires heat and form a surrounding vapor which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapor cores the plasma temperature and Reynolds' number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation the ion kinetic energy is thermalised and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated as soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m = 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2 to 3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly progress in capsule implosions and in application to inertial fusion energy is reported.
Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines
Hagen, E. C. [National Security Technologies, LLC; Lowe, D. R. [National Security Technologies, LLC; O' Brien, R. [University of Nevada, Las Vegas; Meehan, B. T. [National Security Technologies, LLC
2013-06-18
Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.
X-ray observations of tungsten wire array Z-pinch implosions on QiangGuang-1 facility
Zhang Fa-Qiang; Ning Jia-Min; Wang Zhen; Xue Fei-Biao; Li Lin-Bo; Qin Yi; Ying Chun-Tong; Liu Guang-Jun; Li Zheng-Hong; Xu Ze-Ping; Xu Rong-Kun; Yang Jian-Lun; Guo Cun; Xia Guang-Xin; Chen Jin-Chuan; Song Feng-Jun
2006-01-01
Z-pinch experiments with two arrays consisting, respectively, of 32 4-μm- and 6-μm-diameter tungsten wires have been carried out on QiangGuang-1 facility with a current rising up to 1.5 MA in 80 ns. At early time of implosion,x-ray framing images show that the initial emission comes from the central part of arrays, and double clear emission rings, drifting to the anode and the cathode at 5×106 cm/s and 2.4×107 cm/s respectively, are often produced near the electrodes. Later, in a 4-μm-diameter tungsten wire array, filamentation caused by ohmic heating is prominent,and more than ten filaments have been observed. A radial inward shift of arrays starts at about 30 ns earlier than the occurrence of the x-ray peak power for both kinds of arrays, and the shrinkage rate of emission region is as high as 1.7×107 cm/s in a 4-μm-diameter tungsten wire array, which is two times higher than that in a 6-μm one. Emission from precursor plasmas is observed in implosion of 6-μm-diameter tungsten wire arrays, but not in implosion of a 4-μm-diameter tungsten wire array. Whereas, in a 4-μm-diameter tungsten wire array, the soft x-ray emission shows the growth of m=1 instability in the plasma column, which is caused by current. The reasons for the discrepancy between implosions of 4-μm- and 6-μm-diameter tungsten wire arrays are explained.
Study of Laser Ablation Plumes in 1-MA Z-Pinch Experiments
Anderson, Austin; Dutra, Eric; McKee, Erik; Beatty, Cuyler; Darling, Timothy; Ivanov, Vladimir; Wiewior, Piotr; Chalyy, Oleksandr; Asttanovitskiy, Alexey; Nalajala, Vidya; Dmitriev, Oleg; Covington, Aaron
2016-10-01
Laser ablation plumes have been explored as a vehicle for pinch experiments and pulsed neutron production at the NTF research facility. The laser ablation plume is generated by striking a target with a 20J, 0.8ns laser pulse from the Leopard laser. The plume is allowed to expand and then pinched by a 1 MA current generated by the Zebra pulsed power machine. The plume is compact and pre-ionized, offering an advantage over neutral gas puffs and wire arrays. When used with deuterated-polyethylene targets, pinched ablation plumes can generate a pulse of 1011 neutrons with a 35 ns pulse width. A laser-based 532 nm Mach-Zender interferometer and 16 frame imaging with 5 ns temporal resolution are used to characterize plasma density and observe implosion dynamics. Cathode activation was also measured post shot and has been used to determine the deuteron currents produced in the shots. Results and discussion are presented. This work was supported by the U.S. DOE NNSA Cooperative Agreement No. DE-NA0002075 and National Securities Technologies, LLC under Contract No. DE-AC52-06NA25946/subcontract No. 165819.
Axial characterization of particle beams emitted by conical wire array Z-pinches
Munoz-Cordovez, Gonzalo; Veloso, Felipe; Valenzuela-Villaseca, Vicente; Vescovi, Milenko; Favre, Mario; Wyndham, Edmund
2016-10-01
The dynamics of the plasma and the emission of particle beams from tungsten conical wire arrays are experimentally studied in the Llampudken generator (400 kA in 300 ns). Particles are detected axially using biased Faraday cups and silicon substrates located at tens of centimeters above the array at different heights. Several ion pulses with kinetic energy 90 eV preceded by an electron beam are measured using time of flight (ToF), whereas the deposition of tungsten on silicon substrates is observed. In addition, ToF indicates that the emission of the beam occurs during the formation of the precursor (i.e., during the implosion of the array) observed by time-resolved laser probing and XUV imaging. The results might indicate that outflows from conical wire arrays propagate much further away than the observations made after laser and XUV images from conical arrays suggesting densities below the detection limits of these diagnostics. G. Munoz-Cordovez acknowledges financial support from CONICYT Grant for doctoral studies.
Theory of formation of helical structures in a perfectly conducting, premagnetized Z-pinch liner
Yu, Edmund; Velikovich, Alexander; Peterson, Kyle
2014-10-01
The magnetized liner inertial fusion (MagLIF) concept uses an azimuthal magnetic field to collapse a thick metallic liner containing preheated fusion fuel. A critical component of the concept is an axial magnetic field, permeating both the fuel and surrounding liner, which reduces the compression necessary to achieve fusion conditions. Recent experiments demonstrate that a liner premagnetized with a 10 T axial field develops helical structures with a pitch significantly larger than an estimate of Bz /Bθ would suggest. The cause of the helical perturbations is still not understood. In this work, we present an analytic, linear theory in which we model the liner as a perfectly conducting metal, and study how bumps and divots on its surface redirect current flow, resulting in perturbations to B as well as j × B . We show that in the presence of axial and azimuthal magnetic field, the theory predicts divots will grow and deform at an angle determined by the magnetic field. We compare theoretical results with three dimensional, resistive MHD simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000.
Radiation from Ag high energy density Z-pinch plasmas and applications to lasing
Weller, M. E., E-mail: mweller@unr.edu; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Stafford, A.; Keim, S. F.; Shlyaptseva, V. V.; Osborne, G. C.; Petkov, E. E. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Apruzese, J. P.; Giuliani, J. L. [Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Chuvatin, A. S. [Ecole Polytechnique, 91128 Palaiseau (France)
2014-03-15
Silver (Ag) wire arrays were recently introduced as efficient x-ray radiators and have been shown to create L-shell plasmas that have the highest electron temperature (>1.8 keV) observed on the Zebra generator so far and upwards of 30 kJ of energy output. In this paper, results of single planar wire arrays and double planar wire arrays of Ag and mixed Ag and Al that were tested on the UNR Zebra generator are presented and compared. To further understand how L-shell Ag plasma evolves in time, a time-gated x-ray spectrometer was designed and fielded, which has a spectral range of approximately 3.5–5.0 Å. With this, L-shell Ag as well as cold L{sub α} and L{sub β} Ag lines was captured and analyzed along with photoconducting diode (PCD) signals (>0.8 keV). Along with PCD signals, other signals, such as filtered XRD (>0.2 keV) and Si-diodes (SiD) (>9 keV), are analyzed covering a broad range of energies from a few eV to greater than 53 keV. The observation and analysis of cold L{sub α} and L{sub β} lines show possible correlations with electron beams and SiD signals. Recently, an interesting issue regarding these Ag plasmas is whether lasing occurs in the Ne-like soft x-ray range, and if so, at what gains? To help answer this question, a non-local thermodynamic equilibrium (LTE) kinetic model was utilized to calculate theoretical lasing gains. It is shown that the Ag L-shell plasma conditions produced on the Zebra generator at 1.7 maximum current may be adequate to produce gains as high as 6 cm{sup −1} for various 3p → 3s transitions. Other potential lasing transitions, including higher Rydberg states, are also included in detail. The overall importance of Ag wire arrays and plasmas is discussed.
BOWERS,RICHARD; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSLKA,WALTER; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,CRAIG L.; PETERSON,BOB; PETERSON,DARRELL; RUGGLES,LAURENCE E.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; STRUVE,KENNETH W.; VESEY,ROGER A.
1999-11-01
Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch magnet on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {approx}85 eV for a duration of {approx}10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approx}122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approx}150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation T{approx}(P/A){sup 1/4}. P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.
Sandord, T.W.L.; Olson, R.E.; Chandler, G.A.; Hebron, D.E.; Mock, R.C.; Leeper, R.J.; Nash, T.J.; Ruggles, L.E.; Simpson, W.W.; Struve, K.W.; Vesey, R.A.; Bowers, R.L.; Matuska, W.; Peterson, D.L.; Peterson, R.R.
1999-08-25
Hohlraums of full ignition scale (6-mm diameter by 7-mm length) have been heated by x-rays from a z-pinch target on Z to a variety of temperatures and pulse shapes which can be used to simulate the early phases of the National Ignition Facility (NIF) temperature drive. The pulse shape is varied by changing the on-axis target of the z pinch in a static-wall-hohlraum geometry. A 2-{micro}m-thick walled Cu cylindrical target of 8-mm diameter filled with 10 mg/cm{sup 3} CH, for example, produces foot-pulse conditions of {minus}85 eV for a duration of {approximately} 10 ns, while a solid cylindrical target of 5-mm diameter and 14-mg/cm{sup 3} CH generates first-step-pulse conditions of {approximately} 122 eV for a duration of a few ns. Alternatively, reducing the hohlraum size (to 4-mm diameter by 4-mm length) with the latter target has increased the peak temperature to {approximately} 150 eV, which is characteristic of a second-step-pulse temperature. In general, the temperature T of these x-ray driven hohlraums is in agreement with the Planckian relation (T-(P/A){sup 1/4}). P is the measured x-ray input power and A is the surface area of the hohlraum. Fully-integrated 2-D radiation-hydrodynamic simulations of the z pinch and subsequent hohlraum heating show plasma densities within the useful volume of the hohlraums to be on the order of air or less.
Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun [Key Laboratory of Pulsed Power Technology, IFP, CAEP, Mianyang 621900 (China)
2015-11-15
Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.
Theoretical analysis of Z-pinch load desing on anode accelerator%“阳”加速器Z-pinch实验中负载方案的分析
杨震华
2001-01-01
During the past few years there has been extraordinary progress in developing fast Z-pinches for intense, high-energy density X-ray sources. The source is produced by converting the imploding Z-pinch material's kinetic energy into the radiation, as it stagnates on the axis of load. The Sandia Z machine in this configuration routinely produces 2MJ of soft X-ray with peak powers of about 200TW utilizing tungsten wire array loads. The theoretical analysis of the gas-puff Z-pinch load to produce dense plasma X-ray source on anode accelerator (about 1.2MV, 1.5MA, 120ns) is researched in this paper. The annular radius, gas density and another parameters of the Z-pinch load on anode accelerator are presented. These parameters are available for to design a Z-pinch load．%对“阳”加速器（1.2MV，1.5MA，120ns）上开展Z箍缩（Z-pinch）内爆等离子体实验产生强X光源的负载设计进行了基本的物理分析，在此基础上给出负载的结构尺寸, 气体种类、密度和相关的参数。这些结果对物理问题的分析是有帮助的。
Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.
2014-10-01
Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Z箍缩内爆产生的电磁脉冲辐射%Electromagnetic pulse emission produced by Z pinch implosions
但加坤; 计策; 何安; 夏明鹤; 丰树平; 王勐; 谢卫平; 任晓东; 黄显宾; 张思群; 周少彤; 段书超; 欧阳凯; 蔡红春; 卫兵
2013-01-01
讨论了Z箍缩内爆产生的低频电磁脉冲的辐射特性.Z箍缩驱动金属丝阵或固体套筒高速内爆,部分磁能通过与负载的运动耦合而向外辐射.理论结果表明,电磁脉冲辐射功率由电流和内爆轨迹共同决定.在中国工程物理研究院流体物理研究所的初级实验平台上开展了负载电流为7 MA,10%-90%上升时间65 ns的丝阵Z箍缩实验,根据实验测得的电流和内爆轨迹得到了电磁脉冲的辐射功率和频谱.电磁脉冲峰值功率约为1 GW,能量约为0.5 J,能量转换效率约为10-7；峰值频率位于20-70 MHz,具有较宽的辐射频谱.电磁脉冲辐射参数远小于软X射线辐射参数(峰值功率为50 TW,能量为0.5 MJ).在弱相对论条件下,电磁脉冲辐射功率近似地正比于电流的6次方,随电流急剧增大.软X射线辐射是丝阵Z箍缩过程中的主要能量转换形式,本文的研究结论表明,在更高的驱动电流下,电磁脉冲辐射将提供另一种重要的能量转换途径,势必会对诊断设备造成严重影响；此外,这类强电磁脉冲在其他领域也具有潜在的应用价值.%In this paper, we represent the radiation characteristics of electromagnetic pulse generated by Z pinch implosion. Magnetic energy which couples with motions of metallic wire arrays or solid liners driven by Z pinch can radiate away. Theoretical results indicate that the radiation power of electromagnetic pulse is determined by both load current and implosion trace. Experiments are carried on primary test stand facility at Institute of Fluid Physics where a current rising to 7 MA in (10%-90%) 65 ns is used to drive a wire array Z pinch. The measured load current and implosion trace show that the Z pinch can deliver about 1 GW, 10 ns full width, 20-70 MHz central frequency, broadband electromagnetic pulse with an energy conversion efficiency of 10-7 . Parameters of electromagnetic pulse are much smaller than those of X-ray with a power of 50 TW
Murayama, K.; Fukudome, I. [Yatsushiro National College of Technology, Dept. of Mechanical and Electrical Engineering, Yatsushiro, Kumamoto (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto Univ., Dept. of Electrical and Computer Engineering, Kumamoto (Japan)
2002-06-01
Gas-puff z-pinch plasmas are driven by an inductive voltage adder - inductive energy storage pulsed power generator ''ASO-X''. ASO-X has the performance of the maximum output voltage and current are 180 kV and 400 kA respectively and can provide a fast rise time current with operating POS. The stability of the plasma column, spectrum radiated from z-pinch plasmas and the spatial distribution of hot spots are investigated in the case with and without operating POS. By driving ASO-X with operating POS the kink instability is restrained and the stability of plasma column is improved about three times in regard to the average dispersion. Furthermore the duration of soft x-ray radiation is increased and the spatial distribution of hot spots is 50% improved with regard to kurtosis of the intensity profile of pinhole photographs compared to those without operating POS. (author)
邱孝明; 黄林; 简广德
2002-01-01
A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via а/аt → -i(ω + ik2⊥ρi2Ωi), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k2⊥ρ2i is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed massdensity and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber κ＞ 2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.
Awe, Thomas
2013-10-01
Magnetically driven implosions provide an energy-rich platform for inertial confinement fusion. The magnetized liner inertial fusion concept (MagLIF, Slutz et al., Phys. Plasmas 17, 056303 (2010)) uses a pulsed-power-driven metallic liner to compress and inertially confine preheated and premagnetized fusion fuel. The fuel is premagnetized with a uniform axial seed field Bz , 0 of 10 to 30 T, which is then compressed by the liner to nearly 1000 T. In the fuel, the ultra-high field reduces thermal conduction and enhances alpha-particle heating. Preheating the fuel to 100-300 eV eases requirements on liner-convergence; nonetheless, convergence ratios at stagnation of 20 or more may be necessary. The ability to maintain liner stability and uniformity through stagnation may ultimately determine the success of the MagLIF concept. The integrity of magnetically imploded liners is compromised both by electrode instabilities and by the magneto-Rayleigh Taylor (MRT) instability. Electrode instabilities form local perturbations that can mix liner material into the fuel prior to bulk compression. Recent experiments on the Z facility have shown that this instability is mitigated when the liner's ends implode onto a nylon ``cushion,'' which impedes local perturbation growth. Other recent experiments have, for the first time, studied the implosion dynamics of premagnetized (Bz , 0 > 0) MagLIF-type liners. When seeded with a 7 or 10 T axial field, these liners developed 3D-helix-like surface instabilities; such instabilities starkly contrast with the azimuthally-correlated MRT instabilities that have been consistently observed in many earlier unmagnetized (Bz , 0 = 0 T) experiments. Quite unexpectedly, the helical structure persisted throughout the implosion, even though the azimuthal drive field greatly exceeded the expected axial field at the liner surface for all but the earliest stages of the experiment. Thus far, no self-consistent model has reproduced this fundamentally 3D
Contrasting physics in wire array z pinch sources of 1-20 keV emission on the Z facilitya)
Ampleford, D. J.; Jones, B.; Jennings, C. A.; Hansen, S. B.; Cuneo, M. E.; Harvey-Thompson, A. J.; Rochau, G. A.; Coverdale, C. A.; Laspe, A. R.; Flanagan, T. M.; Moore, N. W.; Sinars, D. B.; Lamppa, D. C.; Harding, E. C.; Thornhill, J. W.; Giuliani, J. L.; Chong, Y.-K.; Apruzese, J. P.; Velikovich, A. L.; Dasgupta, A.; Ouart, N.; Sygar, W. A.; Savage, M. E.; Moore, J. K.; Focia, R.; Wagoner, T. C.; Killebrew, K. L.; Edens, A. D.; Dunham, G. S.; Jones, M. C.; Lake, P. W.; Nielsen, D. S.; Wu, M.; Carlson, A. L.; Kernahan, M. D.; Ball, C. R.; Scharberg, R. D.; Mulville, T. D.; Breden, E. W.; Speas, C. S.; Olivas, G.; Sullivan, M. A.; York, A. J.; Justus, D. W.; Cisneros, J. C.; Strizic, T.; Reneker, J.; Cleveland, M.; Vigil, M. P.; Robertson, G.; Sandoval, D.; Cox, C.; Maurer, A. J.; Graham, D. A.; Huynh, N. B.; Toledo, S.; Molina, L. P.; Lopez, M. R.; Long, F. W.; McKee, G. R.; Porter, J. L.; Herrmann, M. C.
2014-05-01
Imploding wire arrays on the 20 MA Z generator have recently provided some of the most powerful and energetic laboratory sources of multi-keV photons, including ∼375 kJ of Al K-shell emission (hν ∼ 1-2 keV), ∼80 kJ of stainless steel K-shell emission (hν ∼ 5-9 keV) and a kJ-level of Mo K-shell emission (hν ∼ 17 keV). While the global implosion dynamics of these different wire arrays are very similar, the physical process that dominates the emission from these x-ray sources fall into three broad categories. Al wire arrays produce a column of plasma with densities up to ∼3 × 1021 ions/cm3, where opacity inhibits the escape of K-shell photons. Significant structure from instabilities can reduce the density and increase the surface area, therefore increase the K-shell emission. In contrast, stainless steel wire arrays operate in a regime where achieving a high pinch temperature (achieved by thermalizing a high implosion kinetic energy) is critical and, while opacity is present, it has less impact on the pinch emissivity. At higher photon energies, line emission associated with inner shell ionization due to energetic electrons becomes important.
X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays
Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others
1996-03-01
Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.
贾清刚; 张天奎; 张凤娜; 胡华四
2013-01-01
开发了基于Geant4的Z箍缩中子编码成像系统模拟平台,实现聚变中子编码成像诊断系统各关键部件的完整模拟.获得了低中子产额(约1010量级)下,中子经编码孔编码后在闪烁体阵列中形成的发光分布图像.利用维纳滤波、Richardson-Lucy(RL)及遗传算法(GA)对低中子产额下获得的极低信噪比图像进行重建,并对信噪比、中子产额及重建效果进行了对比研究,结果表明:遗传算法对低信噪比中子编码图像的重建具有很强的鲁棒性;中子编码图像的信噪比与遗传算法重建结果的准确性呈正比.%The model of Z-pinch driven fusion imaging diagnosis system was set up by a Monte Carlo code based on the Geant4 simulation toolkit. All physical processes that the reality involves are taken into consideration in simulation. The light image of low neutron yield (about 1010) pill was obtained. Three types of image reconstruction algorithm, i. e. Richardson-Lucy, Wiener filtering and genetic algorithm were employed to reconstruct the neutron image with a low signal to noise ratio (SNR) and yield. The effects of neutron yields and the SNR on reconstruction performance were discussed. The results show that genetic algorithm is very robust for reconstructing neutron images with a low SNR. And the index of reconstruction performance and the image correlation coefficient using genetic algorithm, are proportional to the SNR of the neutron coded image.
Conceptual design of Z-pinch driven fusion-fission hybrid power reactor%Z箍缩驱动聚变-裂变混合堆总体概念研究进展
李正宏; 周林; 黄洪文; 王真; 陈晓军; 祁建敏; 郭海兵; 马纪敏; 肖成建; 褚衍运
2014-01-01
Z箍缩驱动聚变-裂变混合能源堆(Z-FFR)在核安全、经济、持久和环境友好等方面具有优良的品质，有望成为有效应对未来能源危机和环境、气候问题的新能源。从 Z箍缩驱动聚变方案与聚变靶设计、重复频率驱动器、次临界包层及产氚包层设计、燃料循环等关键问题方面，对Z-FFR工程概念总体研究情况进行了介绍。%The Z-pinch driven fusion-fission hybrid power reactor(Z-FFR)has remarkable advantages in nuclear security,e-conomy,permanence and environment-friendliness,it can promisingly be millennial energy source dealing effectively with future energy crisis and climate problem.This article introduces the status quo of the conceptual research on Z-FFR from aspects of fu-sion-target physics,low-repetitive Z-pinch driver development,sub-critical fission reactor design and fuel cycle analysis.
面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术%Super-power repetitive Z-pinch driver for fusion-fission reactor
邓建军; 陈林; 夏明鹤; 计策; 袁建强; 宋盛义; 黄显宾; 彭先觉; 王勐; 谢卫平; 周良骥; 邹文康; 郭帆; 章乐; 李逢; 丰树平
2014-01-01
According to the demands of Z-pinch driven fusion-fission reactor(Z-FFR),several possible technical schemes are analyzed and evaluated.A novel technical scheme named mixed-mode LTD is proposed.A conceptual design of Z-FFR driver is presented based on mixed-mode LTD scheme.The main directions for key technologies development are pointed out.A road-map is proposed for the super-power Z-pinch driver development.%针对Z箍缩驱动聚变裂变混合能源系统对驱动器的总体要求，对可能的技术路线进行了分析评述，结合当前在单脉冲超高功率Z箍缩驱动器和重复频率脉冲功率技术方面的研究基础，提出了混合模式直线变压驱动器概念设计思想，分析了主要的技术难点，明确了相应的关键技术攻关方向，同时对 Z 箍缩驱动器的总体发展计划提出了建议。
X-ray backlightings of single-wire and multi-wire Z-pinch%单丝及多丝Z箍缩的X射线背光成像
朱鑫磊; 张然; 罗海云; 赵屾; 邹晓兵; 王新新
2012-01-01
The development of single-wire and multi-wire Z-pinches was investigated by X-ray backlighting using X-pinch as soft X-ray source. The experiments were carried out on the pulsed power generator PPG- I (400 kA/500 kV/100 ns)developed by the Department of Electrical Engineering of Tsinghua University. The X-pinch acting as the X-ray source and the single-wire or multi-wire Z-pinch acting as the object were installed in the place of a current-return rod or the center between the anode and the cathode. The X-ray films of high resolution and high sensitivity were used to record the results. The current sensor and Rogowskicoil of our own design were used to monitor the current. In order to measure the mass ablation rate of the thin wire, the step wedge of micron-level thickness was designed. Through a large number of imaging experiments, the physical images of the plasma merging, the coronal plasma formation and the instabilities development of Z-pinch and some important parameters like mass ablation rate and core expansion rate were obtained.%基于X箍缩软X射线辐射点源对单丝及多丝Z箍缩发展过程进行了背光成像研究,实验平台为清华大学电机系研制的脉冲功率装置PPG-Ⅰ (500 kV/400 kA/100 ns).成像光路安排为:作为X射线源的X箍缩和作为目标物的单丝或多丝(双丝)Z箍缩分别安装在装置的输出主电极阴阳极之间或回流导电杆处,成像胶片采用高分辨力、高灵敏度的X射线胶片.利用自行设计的电流传感器和罗氏线圈对目标物实际流过的电流进行监测.为了测定目标物金属细丝的质量消融率,设计了μm级厚度的阶梯光楔.通过大量成像实验,获取了Z箍缩等离子体融合、先驱等离子体形成及不稳定性发展等过程的相关物理图像以及质量消融率、丝芯膨胀率等重要定量参数.
蒙世坚; 李正宏; 秦义; 叶繁; 徐荣昆
2011-01-01
Time-integrated X-ray continuum spectra measured with spherical bent quartz crystal and CCD in aluminum wire array Z-pinches, provide electron temperature by fitting the continuum slope.More data obtained for fitting and markedly reduced influence of line radiation by removing the data superimposed with line spectra, make the temperature in hot core region of plasma more reliable.In experiment of shot No.09076, the core temperature is around 250 eV, ranging from 241 eV to 258 eV at a 95％ confidence level.%用球面石英弯晶衍射、CCD记录测量铝丝阵Z箍缩中的时间积分X射线连续能谱,并由连续谱斜率拟合出电子温度.该法获得的拟合数据点多,能有效筛除含线辐射的数据,减弱线辐射的影响,求得更可靠的等离子体核心高温区的温度.以发次09076为例,核心温度约为250 eV,在95%的置信度范围里,其变化范围约241-258 eV.
Cai, HC; Chernenko, AC; Korolev, VD; Ustroev, GI; Ivanov, MI
2004-01-01
The dynamics of radiation spectra of fast Z-pinch plasmas was studied. The experiments were carried out on the S-300 pulsed power machine (4 MA, 0.15 Omega, 100 ns). By means of the polychromator, X-ray spectra of imploding wire arrays were measured in the range of 60 divided by 1500 eV, where the
Awe, T. J.; Jennings, C. A.; McBride, R. D.; Cuneo, M. E.; Lamppa, D. C.; Martin, M. R.; Rovang, D. C.; Sinars, D. B.; Slutz, S. A.; Owen, A. C.; Tomlinson, K.; Gomez, M. R.; Hansen, S. B.; Herrmann, M. C.; Jones, M. C.; McKenney, J. L.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Schroen, D. G.; Stygar, W. A.
2014-05-01
Recent experiments at the Sandia National Laboratories Z Facility have, for the first time, studied the implosion dynamics of magnetized liner inertial fusion (MagLIF) style liners that were pre-imposed with a uniform axial magnetic field. As reported [T. J. Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] when premagnetized with a 7 or 10 T axial field, these liners developed 3D-helix-like hydrodynamic instabilities; such instabilities starkly contrast with the azimuthally correlated magneto-Rayleigh-Taylor (MRT) instabilities that have been consistently observed in many earlier non-premagnetized experiments. The helical structure persisted throughout the implosion, even though the azimuthal drive field greatly exceeded the expected axial field at the liner's outer wall for all but the earliest stages of the experiment. Whether this modified instability structure has practical importance for magneto-inertial fusion concepts depends primarily on whether the modified instability structure is more stable than standard azimuthally correlated MRT instabilities. In this manuscript, we discuss the evolution of the helix-like instability observed on premagnetized liners. While a first principles explanation of this observation remains elusive, recent 3D simulations suggest that if a small amplitude helical perturbation can be seeded on the liner's outer surface, no further influence from the axial field is required for the instability to grow.
Optimization of the parameters of plasma liners with zero-dimensional models
Oreshkin, V. I.
2013-11-01
The efficiency of conversion of the energy stored in the capacitor bank of a high-current pulse generator into the kinetic energy of an imploding plasma liner is analyzed. The analysis is performed by using a model consisting of LC circuit equations and equations of motion of a cylindrical shell. It is shown that efficient energy conversion can be attained only with a low-inductance generator. The mode of an "ideal" load is considered where the load current at the final stage of implosion is close to zero. The advantages of this mode are, first, high efficiency of energy conversion (80%) and, second, improved stability of the shell implosion. In addition, for inertial confinement fusion realized by the scheme of a Z pinch dynamic hohlraum, not one but several fusion targets can be placed in the cavity on the pinch axis due to the large length of the liner.
Microfabricated wire arrays for Z-pinch.
Spahn, Olga Blum; Rowen, Adam M.; Cich, Michael Joseph; Peake, Gregory Merwin; Arrington, Christian L.; Nash, Thomas J.; Klem, John Frederick; Romero, Dustin Heinz
2008-10-01
Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.
20 MA/300 ns direct-driven Z-pinch Marx-based pulsed power driver%20MA/300ns Marx型直接驱动Z箍缩脉冲源
孙凤举; 邱爱慈; 姜晓峰; 呼义翔; 姚伟博
2012-01-01
基于金属外壳1.0 μF/40 nH/100 kV的电容器和±100 kV/200 kA气体开关,提出了电流20 MA、前沿300 ns Marx型直接驱动Z箍缩负载的脉冲功率源概念设想,共40路并联,每路为6个Marx并联驱动一条水介质传输线,Marx为18级串联.分析了关键单元(电容器和气体开关)的技术可行性,建立了PSpice电路模型,模拟计算了Marx建立时间分散性、水介质传输线阻抗对负载电流的影响,模拟结果表明:Marx建立时间分散件从10 ns增加到60 ns时,负载电流前沿从平均282 ns增加到287 ns,峰值从21.0 MA降低到19.8 MA.脉宽几乎不变；Marx建立时间分散性对负载电流的影响随着并联数目增加变小；采用4.2Ω等阻抗传输线,负载电流最大.%The conceptional design of a 20 MA/300 ns direct-driven Z-pinch pulsed power driver based on Marx generators is presented, whose Marx generators are composed of 18 series stages with 1. 0 μF/40 nH/100 kV metal shell capacitors and ±100 kV/200 kA gas switches. It has 40 modules in parallel, each consisting of six Marx generators driving the water transmission line. The circuit scheme of the pulsed power driver is set up through PSpice, and the influences of Marx erection jitter on load current are simulated. The results show that when the Marx erection jitter increases from 10 to 60 ns, the peak current varies from 21. 0 to 19. 8 MA. the rise time of load current is from 282 to 289 ns, while the full width at half magnitude of load current is constant. The effects of the Marx erection jitter on load current declines with the number of Marx generators in parallel increasing. The load current is of maximum when the water line impedance is 4. 2 Ω
Dynamic Latent Classification Model
Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre
as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...... in the process as well as modeling dependences between attributes....
Models for Dynamic Applications
2011-01-01
be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....
Andreasen, Martin Møller; Meldrum, Andrew
This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...
Salinelli, Ernesto
2014-01-01
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...
Ghanem, Bernard
2013-01-01
This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements (based on low-level image segmentation) and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real and synthetic video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data. © 2012 Elsevier Inc. All rights reserved.
Dynamic causal modelling revisited.
Friston, K J; Preller, Katrin H; Mathys, Chris; Cagnan, Hayriye; Heinzle, Jakob; Razi, Adeel; Zeidman, Peter
2017-02-17
This paper revisits the dynamic causal modelling of fMRI timeseries by replacing the usual (Taylor) approximation to neuronal dynamics with a neural mass model of the canonical microcircuit. This provides a generative or dynamic causal model of laminar specific responses that can generate haemodynamic and electrophysiological measurements. In principle, this allows the fusion of haemodynamic and (event related or induced) electrophysiological responses. Furthermore, it enables Bayesian model comparison of competing hypotheses about physiologically plausible synaptic effects; for example, does attentional modulation act on superficial or deep pyramidal cells - or both? In this technical note, we describe the resulting dynamic causal model and provide an illustrative application to the attention to visual motion dataset used in previous papers. Our focus here is on how to answer long-standing questions in fMRI; for example, do haemodynamic responses reflect extrinsic (afferent) input from distant cortical regions, or do they reflect intrinsic (recurrent) neuronal activity? To what extent do inhibitory interneurons contribute to neurovascular coupling? What is the relationship between haemodynamic responses and the frequency of induced neuronal activity? This paper does not pretend to answer these questions; rather it shows how they can be addressed using neural mass models of fMRI timeseries. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Malafeyev, O. A.; Nemnyugin, S. A.; Rylow, D.; Kolpak, E. P.; Awasthi, Achal
2017-07-01
The corruption dynamics is analyzed by means of the lattice model which is similar to the three-dimensional Ising model. Agents placed at nodes of the corrupt network periodically choose to perfom or not to perform the act of corruption at gain or loss while making decisions based on the process history. The gain value and its dynamics are defined by means of the Markov stochastic process modelling with parameters established in accordance with the influence of external and individual factors on the agent's gain. The model is formulated algorithmically and is studied by means of the computer simulation. Numerical results are obtained which demonstrate asymptotic behaviour of the corruption network under various conditions.
Sorin Dan ŞANDOR
2003-01-01
Full Text Available System Dynamics was introduced by Jay W. Forrester in the 1960s. Since then the methodology was adopted in many areas of natural or social sciences. This article tries to present briefly how this methodology works, both as Systems Thinking and as Modelling with Vensim computer software.
Dynamic modelling of windmills
Akhmatov, Vladislav; Knudsen, Hans
1999-01-01
An empirical dynamic model of windmills is set up based on analysis of measured Fourier spectra of the active electric power from a wind farm. The model is based on the assumption that eigenswings of the mechanical construction of the windmills excited by the phenomenon of vortex tower interaction...... will be transferred through the shaft to the electrical generator and result in disturbances of the active electric power supplied by the windmills. The results of the model are found to be in agreement with measurements in the frequency range of the model that is from 0.1 to 10 Hz....
Armbruster, Benjamin
2011-01-01
We analyze random networks that change over time. First we analyze a dynamic Erdos-Renyi model, whose edges change over time. We describe its stationary distribution, its convergence thereto, and the SI contact process on the network, which has relevance for connectivity and the spread of infections. Second, we analyze the effect of node turnover, when nodes enter and leave the network, which has relevance for network models incorporating births, deaths, aging, and other demographic factors.
Modal aerosol dynamics modeling
Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.
1991-02-01
The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.
Murawski, Jens; Kleine, Eckhard
2017-04-01
Sea ice remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed sea ice dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast ice remains to be a challenge. It is understood that ridging and the formation of grounded ice keels plays a role in the process. The ice dynamic model includes a parameterisation of the stress associated with grounded ice keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.
Dynamic wake meandering modeling
Larsen, Gunner C.; Aagaard Madsen, H.; Bingoel, F. (and others)
2007-06-15
We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by analytical as well as by numerical studies. The dynamic wake meandering philosophy has been verified by comparing model predictions with extensive full-scale measurements. These comparisons have demonstrated good agreement, both qualitatively and quantitatively, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as
Dynamic wake meandering modeling
Larsen, Gunner Chr.; Madsen Aagaard, Helge; Bingöl, Ferhat;
, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed......We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however......, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture...
Charpentier, Arthur; Durand, Marilou
2015-07-01
In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.
Structural dynamic modifications via models
T K Kundra
2000-06-01
Structural dynamic modification techniques attempt to reduce dynamic design time and can be implemented beginning with spatial models of structures, dynamic test data or updated models. The models assumed in this discussion are mathematical models, namely mass, stiffness, and damping matrices of the equations of motion of a structure. These models are identified/extracted from dynamic test data viz. frequency response functions (FRFs). Alternatively these models could have been obtained by adjusting or updating the finite element model of the structure in the light of the test data. The methods of structural modification for getting desired dynamic characteristics by using modifiers namely mass, beams and tuned absorbers are discussed.
Comparing different dynamic stall models
Holierhoek, J.G. [Unit Wind Energy, Energy research Centre of the Netherlands, ZG, Petten (Netherlands); De Vaal, J.B.; Van Zuijlen, A.H.; Bijl, H. [Aerospace Engineering, Delft University of Technology, Delft (Netherlands)
2012-07-16
The dynamic stall phenomenon and its importance for load calculations and aeroelastic simulations is well known. Different models exist to model the effect of dynamic stall; however, a systematic comparison is still lacking. To investigate if one is performing better than another, three models are used to simulate the Ohio State University measurements and a set of data from the National Aeronautics and Space Administration Ames experimental study of dynamic stall and compare results. These measurements were at conditions and for aerofoils that are typical for wind turbines, and the results are publicly available. The three selected dynamic stall models are the ONERA model, the Beddoes-Leishman model and the Snel model. The simulations show that there are still significant differences between measurements and models and that none of the models is significantly better in all cases than the other models. Especially in the deep stall regime, the accuracy of each of the dynamic stall models is limited.
Campagnoli, Patrizia; Petris, Giovanni
2009-01-01
State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.
Modelling dynamic roughness during floods
Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.
2007-01-01
In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most
Friston, K J; Harrison, L; Penny, W
2003-08-01
In this paper we present an approach to the identification of nonlinear input-state-output systems. By using a bilinear approximation to the dynamics of interactions among states, the parameters of the implicit causal model reduce to three sets. These comprise (1) parameters that mediate the influence of extrinsic inputs on the states, (2) parameters that mediate intrinsic coupling among the states, and (3) [bilinear] parameters that allow the inputs to modulate that coupling. Identification proceeds in a Bayesian framework given known, deterministic inputs and the observed responses of the system. We developed this approach for the analysis of effective connectivity using experimentally designed inputs and fMRI responses. In this context, the coupling parameters correspond to effective connectivity and the bilinear parameters reflect the changes in connectivity induced by inputs. The ensuing framework allows one to characterise fMRI experiments, conceptually, as an experimental manipulation of integration among brain regions (by contextual or trial-free inputs, like time or attentional set) that is revealed using evoked responses (to perturbations or trial-bound inputs, like stimuli). As with previous analyses of effective connectivity, the focus is on experimentally induced changes in coupling (cf., psychophysiologic interactions). However, unlike previous approaches in neuroimaging, the causal model ascribes responses to designed deterministic inputs, as opposed to treating inputs as unknown and stochastic.
Florian Ion Tiberiu Petrescu; Relly Victoria Virgil Petrescu
2016-01-01
Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Kinetic energy conservation shows angular speed variation (from the shaft) with inertial masses. One uses and elastic constant of...
Computer Modelling of Dynamic Processes
B. Rybakin
2000-10-01
Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.
Numerical Modeling of a Magnetic Flux Compression Experiment
Makhin, Volodymyr; Bauer, Bruno S.; Awe, Thomas J.; Fuelling, Stephan; Goodrich, Tasha; Lindemuth, Irvin R.; Siemon, Richard E.; Garanin, Sergei F.
2007-06-01
A possible plasma target for Magnetized Target Fusion (MTF) is a stable diffuse z-pinch in a toroidal cavity, like that in MAGO experiments. To examine key phenomena of such MTF systems, a magnetic flux compression experiment with this geometry is under design. The experiment is modeled with 3 codes: a slug model, the 1D Lagrangian RAVEN code, and the 1D or 2D Eulerian Magneto-Hydro-Radiative-Dynamics-Research (MHRDR) MHD simulation. Even without injection of plasma, high- Z wall plasma is generated by eddy-current Ohmic heating from MG fields. A significant fraction of the available liner kinetic energy goes into Ohmic heating and compression of liner and central-core material. Despite these losses, efficiency of liner compression, expressed as compressed magnetic energy relative to liner kinetic energy, can be close to 50%. With initial fluctuations (1%) imposed on the liner and central conductor density, 2D modeling manifests liner intrusions, caused by the m = 0 Rayleigh-Taylor instability during liner deceleration, and central conductor distortions, caused by the m = 0 curvature-driven MHD instability. At many locations, these modes reduce the gap between the liner and the central core by about a factor of two, to of order 1 mm, at the time of peak magnetic field.
Launch Vehicle Dynamics Demonstrator Model
1963-01-01
Launch Vehicle Dynamics Demonstrator Model. The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control. [Entire movie available on DVD from CASI as Doc ID 20070030984. Contact help@sti.nasa.gov
Generative models of conformational dynamics.
Langmead, Christopher James
2014-01-01
Atomistic simulations of the conformational dynamics of proteins can be performed using either Molecular Dynamics or Monte Carlo procedures. The ensembles of three-dimensional structures produced during simulation can be analyzed in a number of ways to elucidate the thermodynamic and kinetic properties of the system. The goal of this chapter is to review both traditional and emerging methods for learning generative models from atomistic simulation data. Here, the term 'generative' refers to a model of the joint probability distribution over the behaviors of the constituent atoms. In the context of molecular modeling, generative models reveal the correlation structure between the atoms, and may be used to predict how the system will respond to structural perturbations. We begin by discussing traditional methods, which produce multivariate Gaussian models. We then discuss GAMELAN (GRAPHICAL MODELS OF ENERGY LANDSCAPES), which produces generative models of complex, non-Gaussian conformational dynamics (e.g., allostery, binding, folding, etc.) from long timescale simulation data.
Fractal Models of Earthquake Dynamics
Bhattacharya, Pathikrit; Kamal,; Samanta, Debashis
2009-01-01
Our understanding of earthquakes is based on the theory of plate tectonics. Earthquake dynamics is the study of the interactions of plates (solid disjoint parts of the lithosphere) which produce seismic activity. Over the last about fifty years many models have come up which try to simulate seismic activity by mimicking plate plate interactions. The validity of a given model is subject to the compliance of the synthetic seismic activity it produces to the well known empirical laws which describe the statistical features of observed seismic activity. Here we present a review of two such models of earthquake dynamics with main focus on a relatively new model namely The Two Fractal Overlap Model.
Dynamic programming models and applications
Denardo, Eric V
2003-01-01
Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.
Building dynamic spatial environmental models
Karssenberg, D.J.
2003-01-01
An environmental model is a representation or imitation of complex natural phenomena that can be discerned by human cognitive processes. This thesis deals with the type of environmental models referred to as dynamic spatial environmental models. The word spatial refers to the geographic domain whi
Dynamical models of the Galaxy
McMillan P.J.
2012-02-01
Full Text Available I discuss the importance of dynamical models for exploiting survey data, focusing on the advantages of “torus” models. I summarize a number of applications of these models to the study of the Milky Way, including the determination of the peculiar Solar velocity and investigation of the Hyades moving group.
Knudsen, Torben
2011-01-01
The purpose with this deliverable 2.5 is to use fresh experimental data for validation and selection of a flow model to be used for control design in WP3-4. Initially the idea was to investigate the models developed in WP2. However, in the project it was agreed to include and focus on a additive...... model turns out not to be useful for prediction of the flow. Moreover, standard Box Jenkins model structures and multiple output auto regressive models proves to be superior as they can give useful predictions of the flow....
Predictive models of forest dynamics.
Purves, Drew; Pacala, Stephen
2008-06-13
Dynamic global vegetation models (DGVMs) have shown that forest dynamics could dramatically alter the response of the global climate system to increased atmospheric carbon dioxide over the next century. But there is little agreement between different DGVMs, making forest dynamics one of the greatest sources of uncertainty in predicting future climate. DGVM predictions could be strengthened by integrating the ecological realities of biodiversity and height-structured competition for light, facilitated by recent advances in the mathematics of forest modeling, ecological understanding of diverse forest communities, and the availability of forest inventory data.
Adams, Neil S.; Bollenbacher, Gary
1992-01-01
This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.
Berg, van den, Aad; Meester, R.; White, Damien
1997-01-01
Consider an ordinary Boolean model, that is, a homogeneous Poisson point process in Rd, where the points are all centres of random balls with i.i.d. radii. Now let these points move around according to i.i.d. stochastic processes. It is not hard to show that at each xed time t we again have a Boolean model with the original distribution. Hence if the original model is supercritical then, for any t, the probability of having an unbounded occupied component at time t equals 1. We show that unde...
Modelling group dynamic animal movement
Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.
2014-01-01
Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual...... makes its movement decisions relative to the group centroid. The basic idea is framed within the flexible class of hidden Markov models, extending previous work on modelling animal movement by means of multi-state random walks. While in simulation experiments parameter estimators exhibit some bias...
Gabora, Liane
2008-01-01
EVOC (for EVOlution of Culture) is a computer model of culture that enables us to investigate how various factors such as barriers to cultural diffusion, the presence and choice of leaders, or changes in the ratio of innovation to imitation affect the diversity and effectiveness of ideas. It consists of neural network based agents that invent ideas for actions, and imitate neighbors' actions. The model is based on a theory of culture according to which what evolves through culture is not memes or artifacts, but the internal models of the world that give rise to them, and they evolve not through a Darwinian process of competitive exclusion but a Lamarckian process involving exchange of innovation protocols. EVOC shows an increase in mean fitness of actions over time, and an increase and then decrease in the diversity of actions. Diversity of actions is positively correlated with population size and density, and with barriers between populations. Slowly eroding borders increase fitness without sacrificing diver...
Swimmers’ Collective Dynamics Modelization
Ferré Porta, Guillem
2011-01-01
English: We describe a new model in order to study the properties of collections of self-propelled particles swimming in a two-dimensional fluid. Our model consist in two types of particles, the first interacting with each other with a soft potential and thus representing the fluid while the second type are self-propelled particles of biological nature capable of changing its orientation following the velocity field of the fluid. The results of the simulations show how a super-diffusive regim...
Model of THz Magnetization Dynamics
Bocklage, Lars
2016-01-01
Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997
Modeling Internet Topology Dynamics
Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.
Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements, exist
The Los Alamos megamp fiber z-pinch experiment
Scudder, D.W.; Shlachter, J.S.; Hammel, J.E.; Venneri, F.; Chrien, R. (Los Alamos National Lab., NM (USA)); Lovberg, R.; Riley, R. (California Univ., San Diego, CA (USA))
1990-01-01
The HDZP-II experiment uses a 2 MV, 1.9 {Omega}, 1.2 MA, 100 ns risetime pulsed-power driver. Preliminary experiments have been performed at 600--800 kA (half the bank energy). Preliminary results show the plasma heating to several kilovolts (although a non-Maxwellian distribution is likely) while maintaining an overall straight and reasonably uniform axial configuration. However, interferograms and x-ray pinhole photographs show the column expanding rapidly with considerable small-scale structure, presumably due to m=0 activity. The neutron yield (typically 5 {times} 10{sup 9}) is consistent with thermonuclear reactions at the reduced density although detailed study of the neutron characteristics has not been performed. Preliminary isotropy measurements do not show significant neutron anisotropy. 10 refs.
A Faraday rotation diagnostic for Z pinch experiments
Gao, K. W.; Intrator, T. P.; Weber, T. E.; Yoo, C. B.; Klarenbeek, J.
2012-10-01
The MagLIF experiment is an approach to Magneto Inertial Fusion (MIF) that will compress a laser preheated magnetized plasma inside a small sub cm size beryllium capsule and the magnetic field inside. A good measurement of the compressed magnetic field will help us understand how the compression proceeds, and the time scale over which field diffuses out. We are working on a first step to the direct measurement of vacuum magnetic field (expected to be mostly Bz) compression time history, potentially space-resolved, without a plasma fill. A small magneto-active section of optical fiber can measure magnetic fields in the 1-1000 Tesla range. Directly measured vacuum Bz is an initial but important step towards validating the codes supporting MagLIF. The technology will use a Terbium doped optical fiber as a Faraday rotation medium. The optical path and hardware is simple, inexpensive, and small enough to fit inside a MagLIF capsule, and can be radiation hardened. Low noise, optically coupled magnetic field measurements will be possible for vacuum MagLIF shots.
Vehicle dynamics modeling and simulation
Schramm, Dieter; Bardini, Roberto
2014-01-01
The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.
Dynamic Characteristics and Models
Pedersen, Lars
2007-01-01
Vibration levels of flooring-systems are generally difficult to predict. Nevertheless an estimate may be needed for flooring-systems that are prone to vibrate to actions of humans in motion (e.g. grandstands, footbridges or long-span office floors). One reason for the difficulties...... and the paper therefore looks into this mechanism which is done by carrying out controlled modal identification tests on a test floor. The paper describes the experimental investigations and the basic principles adopted for modal identification. Since there is an interest in being able to model the scenario...
Pfeffer, A; Das, S; Lawless, D; Ng, B
2006-10-10
Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.
A dynamical model of terrorism
Firdaus Udwadia
2006-01-01
Full Text Available This paper develops a dynamical model of terrorism. We consider the population in a given region as being made up of three primary components: terrorists, those susceptible to both terrorist and pacifist propaganda, and nonsusceptibles, or pacifists. The dynamical behavior of these three populations is studied using a model that incorporates the effects of both direct military/police intervention to reduce the terrorist population, and nonviolent, persuasive intervention to influence the susceptibles to become pacifists. The paper proposes a new paradigm for studying terrorism, and looks at the long-term dynamical evolution in time of these three population components when such interventions are carried out. Many important features—some intuitive, others not nearly so—of the nature of terrorism emerge from the dynamical model proposed, and they lead to several important policy implications for the management of terrorism. The different circumstances in which nonviolent intervention and/or military/police intervention may be beneficial, and the specific conditions under which each mode of intervention, or a combination of both, may be useful, are obtained. The novelty of the model presented herein is that it deals with the time evolution of terrorist activity. It appears to be one of the few models that can be tested, evaluated, and improved upon, through the use of actual field data.
Experimental Modeling of Dynamic Systems
Knudsen, Morten Haack
2006-01-01
An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...
Nonlinear Dynamic Model Explains The Solar Dynamic
Kuman, Maria
Nonlinear mathematical model in torus representation describes the solar dynamic. Its graphic presentation shows that without perturbing force the orbits of the planets would be circles; only perturbing force could elongate the circular orbits into ellipses. Since the Hubble telescope found that the planetary orbits of other stars in the Milky Way are also ellipses, powerful perturbing force must be present in our galaxy. Such perturbing force is the Sagittarius Dwarf Galaxy with its heavy Black Hole and leftover stars, which we see orbiting around the center of our galaxy. Since observations of NASA's SDO found that magnetic fields rule the solar activity, we can expect when the planets align and their magnetic moments sum up, the already perturbed stars to reverse their magnetic parity (represented graphically as periodic looping through the hole of the torus). We predict that planets aligned on both sides of the Sun, when their magnetic moments sum-up, would induce more flares in the turbulent equatorial zone, which would bulge. When planets align only on one side of the Sun, the strong magnetic gradient of their asymmetric pull would flip the magnetic poles of the Sun. The Sun would elongate pole-to-pole, emit some energy through the poles, and the solar activity would cease. Similar reshaping and emission was observed in stars called magnetars and experimentally observed in super-liquid fast-spinning Helium nanodroplets. We are certain that NASA's SDO will confirm our predictions.
Florian Ion Tiberiu Petrescu
2016-03-01
Full Text Available Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. One uses then the Lagrange equation. Kinetic energy conservation shows angular speed variation (from the shaft with inertial masses. One uses and elastic constant of the crank shaft, k. Calculations should be made for an engine with a single cylinder. Finally it makes a dynamic analysis of the mechanism with discussion and conclusions. The ratio between the crank length r and the length of the connecting-rod l is noted with landa. When landa increases the mechanism dynamics is deteriorating. For a proper operation is necessary the reduction of the ratio landa, especially if we want to increase the engine speed. We can reduce the acceleration values by reducing the dimensions r and l.
Business model dynamics and innovation
Cavalcante, Sergio Andre; Kesting, Peter; Ulhøi, John Parm
2011-01-01
Purpose – This paper aims to discuss the need to dynamize the existing conceptualization of business model, and proposes a new typology to distinguish different types of business model change. Design/methodology/approach – The paper integrates basic insights of innovation, business process...... and routine research into the concept of business model. The main focus of the paper is on strategic and terminological issues. Findings – The paper offers a new, process-based conceptualization of business model, which recognizes and integrates the role of individual agency. Based on this, it distinguishes...... and specifies four different types of business model change: business model creation, extension, revision, and termination. Each type of business model change is associated with specific challenges. Practical implications – The proposed typology can serve as a basis for developing a management tool to evaluate...
DYNAMIC TEACHING RATIO PEDAGOGIC MODEL
Chen Jiaying
2010-11-01
Full Text Available This paper outlines an innovative pedagogic model, Dynamic Teaching Ratio (DTR Pedagogic Model, for learning design and teaching strategy aimed at the postsecondary technical education. The model draws on the theory of differential learning, which is widely recognized as an important tool for engaging students and addressing the individual needs of all students. The DTR model caters to the different abilities, interest or learning needs of students and provides different learning approaches based on a student’s learning ability. The model aims to improve students’ academic performance through increasing the lecturer-to-student ratio in the classroom setting. An experimental case study on the model was conducted and the outcome was favourable. Hence, a large-scale implementation was carried out upon the successful trial run. The paper discusses the methodology of the model and its application through the case study and the large-scale implementation.
DYNAMIC MODELING OF METAMORPHIC MECHANISM
无
2003-01-01
The concept of metamorphic mechanism is put forward according to the change of configurations from one state to another. Different configurations of metamorphic mechanism are described through the method of Huston lower body arrays. Kinematics analyses for metamorphic mechanism with generalized topological structure, including the velocity, angular velocity, acceleration and angular acceleration, are given. Dynamic equations for an arbitrary configuration, including close-loop constraints, are formed by using Kane's equations. For an arbitrary metamorphic mechanism, the transformation matrix of generalized speeds between configuration (*)and(*)+1 is obtained for the first time. Furthermore, configuration-complete dynamic modeling of metamorphic mechanism including all configurations is completely established.
Stochastic Model of Microtubule Dynamics
Hryniv, Ostap; Martínez Esteban, Antonio
2017-10-01
We introduce a continuous time stochastic process on strings made of two types of particle, whose dynamics mimics that of microtubules in a living cell. The long term behaviour of the system is described in terms of the velocity v of the string end. We show that v is an analytic function of its parameters and study its monotonicity properties. We give a complete characterisation of the phase diagram of the model and derive several criteria of the growth (v>0) and the shrinking (v<0) regimes of the dynamics.
Dynamical Modelling of Meteoroid Streams
Clark, David; Wiegert, P. A.
2012-10-01
Accurate simulations of meteoroid streams permit the prediction of stream interaction with Earth, and provide a measure of risk to Earth satellites and interplanetary spacecraft. Current cometary ejecta and meteoroid stream models have been somewhat successful in predicting some stream observations, but have required questionable assumptions and significant simplifications. Extending on the approach of Vaubaillon et al. (2005)1, we model dust ejection from the cometary nucleus, and generate sample particles representing bins of distinct dynamical evolution-regulating characteristics (size, density, direction, albedo). Ephemerides of the sample particles are integrated and recorded for later assignment of frequency based on model parameter changes. To assist in model analysis we are developing interactive software to permit the “turning of knobs” of model parameters, allowing for near-real-time 3D visualization of resulting stream structure. With this tool, we will revisit prior assumptions made, and will observe the impact of introducing non-uniform cometary surface attributes and temporal activity. The software uses a single model definition and implementation throughout model verification, sample particle bin generation and integration, and analysis. It supports the adjustment with feedback of both independent and independent model values, with the intent of providing an interface supporting multivariate analysis. Propagations of measurement uncertainties and model parameter precisions are tracked rigorously throughout. We maintain a separation of the model itself from the abstract concepts of model definition, parameter manipulation, and real-time analysis and visualization. Therefore we are able to quickly adapt to fundamental model changes. It is hoped the tool will also be of use in other solar system dynamics problems. 1 Vaubaillon, J.; Colas, F.; Jorda, L. (2005) A new method to predict meteor showers. I. Description of the model. Astronomy and
Dynamic Model of Mesoscale Eddies
Dubovikov, Mikhail S.
2003-04-01
Oceanic mesoscale eddies which are analogs of well known synoptic eddies (cyclones and anticyclones), are studied on the basis of the turbulence model originated by Dubovikov (Dubovikov, M.S., "Dynamical model of turbulent eddies", Int. J. Mod. Phys.B7, 4631-4645 (1993).) and further developed by Canuto and Dubovikov (Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: I. General formalism", Phys. Fluids8, 571-586 (1996a) (CD96a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: II. Sheardriven flows", Phys. Fluids8, 587-598 (1996b) (CD96b); Canuto, V.M., Dubovikov, M.S., Cheng, Y. and Dienstfrey, A., "A dynamical model for turbulence: III. Numerical results", Phys. Fluids8, 599-613 (1996c)(CD96c); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "A dynamical model for turbulence: IV. Buoyancy-driven flows", Phys. Fluids9, 2118-2131 (1997a) (CD97a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: V. The effect of rotation", Phys. Fluids9, 2132-2140 (1997b) (CD97b); Canuto, V.M., Dubovikov, M.S. and Wielaard, D.J., "A dynamical model for turbulence: VI. Two dimensional turbulence", Phys. Fluids9, 2141-2147 (1997c) (CD97c); Canuto, V.M. and Dubovikov, M.S., "Physical regimes and dimensional structure of rotating turbulence", Phys. Rev. Lett. 78, 666-669 (1997d) (CD97d); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "Turbulent convection in a spectral model", Phys. Rev. Lett. 78, 662-665 (1997e) (CD97e); Canuto, V.M. and Dubovikov, M.S., "A new approach to turbulence", Int. J. Mod. Phys.12, 3121-3152 (1997f) (CD97f); Canuto, V.M. and Dubovikov, M.S., "Two scaling regimes for rotating Raleigh-Benard convection", Phys. Rev. Letters78, 281-284, (1998) (CD98); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: VII. The five invariants for shear driven flows", Phys. Fluids11, 659-664 (1999a) (CD99a); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: VIII. IR and UV
Dynamic queuing transmission model for dynamic network loading
Raovic, Nevena; Nielsen, Otto Anker; Prato, Carlo Giacomo
2017-01-01
This paper presents a new macroscopic multi-class dynamic network loading model called Dynamic Queuing Transmission Model (DQTM). The model utilizes ‘good’ properties of the Dynamic Queuing Model (DQM) and the Link Transmission Model (LTM) by offering a DQM consistent with the kinematic wave theory...... and allowing for the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A case-study is investigated and the DQTM is compared...
Relating structure and dynamics in organisation models
Jonkers, C.M.; Treur, J.
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,
Dynamics Modeling of Heavy Special Driving Simulator
无
2008-01-01
Based on the dynamical characteristic parameters of the real vehicle, the modeling approach and procedure of dynamics of vehicles are expatiated. The layout of vehicle dynamics is proposed, and the sub-models of the diesel engine, drivetrain system and vehicle multi-body dynamics are introduced. Finally, the running characteristic data of the virtual and real vehicles are compared, which shows that the dynamics model is similar closely to the real vehicle system.
Models of ungulate population dynamics
L. L. Eberhardt
1991-10-01
Full Text Available A useful theory for analyzing ungulate population dynamics is available in the form of equations based on the work of A. J. Lotka. Because the Leslie matrix model yields identical results and is widely known, it is convenient to label the resulting equations as the "Lotka-Leslie" model. The approach is useful for assessing population trends and attempting to predict the outcomes of various management actions. A broad list of applications to large mammals, and two examples specific to caribou are presented with a simple spreadsheet approach to calculations.
Dynamical model of brushite precipitation
Oliveira, Cristina; Georgieva, Petia; Rocha, Fernando; Ferreira, António; Feyo de Azevedo, Sebastião
2007-07-01
The objectives of this work are twofold. From academic point of view the aim is to build a dynamical macro model to fit the material balance and explain the main kinetic mechanisms that govern the transformation of the hydroxyapatite (HAP) into brushite and the growth of brushite, based on laboratory experiments and collected database. From practical point of view, the aim is to design a reliable process simulator that can be easily imbedded in industrial software for model driven monitoring, optimization and control purposes. Based upon a databank of laboratory measurements of the calcium concentration in solution (on-line) and the particle size distribution (off-line) a reliable dynamical model of the dual nature of brushite particle formation for a range of initial concentrations of the reagents was derived as a system of ordinary differential equations of time. The performance of the model is tested with respect to the predicted evolution of mass of calcium in solution and the average (in mass) particle size along time. Results obtained demonstrate a good agreement between the model time trajectories and the available experimental data for a number of different initial concentrations of reagents.
Dynamic pricing models for electronic business
Y Narahari; C V L Raju; K Ravikumar; Sourabh Shah
2005-04-01
Dynamic pricing is the dynamic adjustment of prices to consumers depending upon the value these customers attribute to a product or service. Today’s digital economy is ready for dynamic pricing; however recent research has shown that the prices will have to be adjusted in fairly sophisticated ways, based on sound mathematical models, to derive the beneﬁts of dynamic pricing. This article attempts to survey different models that have been used in dynamic pricing. We ﬁrst motivate dynamic pricing and present underlying concepts, with several examples, and explain conditions under which dynamic pricing is likely to succeed. We then bring out the role of models in computing dynamic prices. The models surveyed include inventory-based models, data-driven models, auctions, and machine learning. We present a detailed example of an e-business market to show the use of reinforcement learning in dynamic pricing.
Modelling of the Manifold Filling Dynamics
Hendricks, Elbert; Chevalier, Alain Marie Roger; Jensen, Michael
1996-01-01
Mean Value Engine Models (MVEMs) are dynamic models which describe dynamic engine variable (or state) responses on time scales slightly longer than an engine event. This paper describes a new model of the intake manifold filling dynamics which is simple and easy to calibrate for use in engine con...
Multiscale modeling of pedestrian dynamics
Cristiani, Emiliano; Tosin, Andrea
2014-01-01
This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.
DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE
Trunev A. P.
2016-02-01
Full Text Available The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field have been investigated. Multi-dimensional transient numerical model describing the processes of establishment of electromagnetic oscillations in a cavity with the conducting wall was created Separately, the case of standing waves in the cavity with conducting walls been tested. It is shown that the oscillation mode in the conducting resonator different from that in an ideal resonator, both in the steady and unsteady processes. The mechanism of formation of traction for the changes in the space-time metric, the contribution of particle currents, the Yang-Mills and electromagnetic field proposed. It is shown that the effect of the Yang-Mills field calls change the dielectric properties of vacuum, which leads to a change in capacitance of the resonator. Developed a dynamic model, which enables optimal traction on a significant number of parameters. It was found that the thrust increases in the Yang-Mills field parameters near the main resonance frequency. In the presence of thermal fluctuations and the Yang-Mills field as well the traction force changes sign, indicating the presence of various oscillation modes
Eigenvalue dynamics for multimatrix models
de Mello Koch, Robert; Gossman, David; Nkumane, Lwazi; Tribelhorn, Laila
2017-07-01
By performing explicit computations of correlation functions, we find evidence that there is a sector of the two matrix model defined by the S U (2 ) sector of N =4 super Yang-Mills theory that can be reduced to eigenvalue dynamics. There is an interesting generalization of the usual Van der Monde determinant that plays a role. The observables we study are the Bogomol'nyi-Prasad-Sommerfield operators of the S U (2 ) sector and include traces of products of both matrices, which are genuine multimatrix observables. These operators are associated with supergravity solutions of string theory.
Eigenvalue Dynamics for Multimatrix Models
Koch, Robert de Mello; Nkumane, Lwazi; Tribelhorn, Laila
2016-01-01
By performing explicit computations of correlation functions, we find evidence that there is a sector of the two matrix model defined by the $SU(2)$ sector of ${\\cal N}=4$ super Yang-Mills theory, that can be reduced to eigenvalue dynamics. There is an interesting generalization of the usual Van der Monde determinant that plays a role. The observables we study are the BPS operators of the $SU(2)$ sector and include traces of products of both matrices, which are genuine multi matrix observables. These operators are associated to supergravity solutions of string theory.
Bayesian Estimation of Categorical Dynamic Factor Models
Zhang, Zhiyong; Nesselroade, John R.
2007-01-01
Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…
Emsellem, E; Bacon, R; Emsellem, Eric; Dejonghe, Herwig; Bacon, Roland
1998-01-01
We present new dynamical models of the S0 galaxy N3115, making use of the available published photometry and kinematics as well as of two-dimensional TIGER spectrography. We first examined the kinematics in the central 40 arcsec in the light of two integral f(E,J) models. Jeans equations were used to constrain the mass to light ratio, and the central dark mass whose existence was suggested by previous studies. The even part of the distribution function was then retrieved via the Hunter & Qian formalism. We thus confirmed that the velocity and dispersion profiles in the central region could be well fit with a two-integral model, given the presence of a central dark mass of ~10^9 Msun. However, no two integral model could fit the h_3 profile around a radius of 25 arcsec where the outer disc dominates the surface brightness distribution. Three integral analytical models were therefore built using a Quadratic Programming technique. These models showed that three integral components do indeed provide a reasona...
Cipiti, Benjamin B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-03-01
The Co-Decontamination (CoDCon) Demonstration project is designed to test the separation of a mixed U and Pu product from dissolved spent nuclear fuel. The primary purpose of the project is to quantify the accuracy and precision to which a U/Pu mass ratio can be achieved without removing a pure Pu product. The system includes an on-line monitoring system using spectroscopy to monitor the ratios throughout the process. A dynamic model of the CoDCon flowsheet and on-line monitoring system was developed in order to expand the range of scenarios that can be examined for process control and determine overall measurement uncertainty. The model development and initial results are presented here.
Characterizing and modeling citation dynamics
Eom, Young-Ho; 10.1371/journal.pone.0024926
2011-01-01
Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts...
Laboratory modeling of standing shocks and radiatively cooled jets with angular momentum
Ampleford, D J; Ciardi, A; Bland, S N; Bott, S C; Hall, G N; Naz, N; Jennings, C A; Sherlock, M; Chittenden, J P; Palmer, J B A; Frank, A; Blackman, E
2007-01-01
The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z-pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal velocities. By varying the twist angle of the array, the rotation velocity of the system can be controlled, with jet rotation velocities ~18% of the propagation velocity directly measured.
Dynamical Modeling of Mars' Paleoclimate
Richardson, Mark I.
2004-01-01
This report summarizes work undertaken under a one-year grant from the NASA Mars Fundamental Research Program. The goal of the project was to initiate studies of the response of the Martian climate to changes in planetary obliquity and orbital elements. This work was undertaken with a three-dimensional numerical climate model based on the Geophysical Fluid Dynamics Laboratory (GFDL) Skyhi General Circulation Model (GCM). The Mars GCM code was adapted to simulate various obliquity and orbital parameter states. Using a version of the model with a basic water cycle (ice caps, vapor, and clouds), we examined changes in atmospheric water abundances and in the distribution of water ice sheets on the surface. This work resulted in a paper published in the Journal of Geophysical Research - Planets. In addition, the project saw the initial incorporation of a regolith water transport and storage scheme into the model. This scheme allows for interaction between water in the pores of the near subsurface (<3m) and the atmosphere. This work was not complete by the end of the one-year grant, but is now continuing within the auspices of a three-year grant of the same title awarded by the Mars Fundamental Research Program in late 2003.
Wind Farm Decentralized Dynamic Modeling With Parameters
Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran;
2010-01-01
Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...
Dynamical model for virus spread
Camelo-Neto, G
1995-01-01
The steady state properties of the mean density population of infected cells in a viral spread is simulated by a general forest fire like cellular automaton model with two distinct populations of cells ( permissive and resistant ones) and studied in the framework of the mean field approximation. Stochastic dynamical ingredients are introduced in this model to mimic cells regeneration (with probability {\\it p}) and to consider infection processes by other means than contiguity (with probability {\\it f}). Simulations are carried on a L \\times L square lattice considering the eight first neighbors. The mean density population of infected cells (D_i) is measured as function of the regeneration probability {\\it p}, and analyzed for small values of the ratio {\\it f/p } and for distinct degrees of the cell resistance. The results obtained by a mean field like approach recovers the simulations results. The role of the resistant parameter R (R \\geq 2) on the steady state properties is investigated and discussed in com...
Characterizing and modeling citation dynamics.
Young-Ho Eom
Full Text Available Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.
D. V. Rose
2010-09-01
Full Text Available A 3D fully electromagnetic (EM model of the principal pulsed-power components of a high-current linear transformer driver (LTD has been developed. LTD systems are a relatively new modular and compact pulsed-power technology based on high-energy density capacitors and low-inductance switches located within a linear-induction cavity. We model 1-MA, 100-kV, 100-ns rise-time LTD cavities [A. A. Kim et al., Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402] which can be used to drive z-pinch and material dynamics experiments. The model simulates the generation and propagation of electromagnetic power from individual capacitors and triggered gas switches to a radially symmetric output line. Multiple cavities, combined to provide voltage addition, drive a water-filled coaxial transmission line. A 3D fully EM model of a single 1-MA 100-kV LTD cavity driving a simple resistive load is presented and compared to electrical measurements. A new model of the current loss through the ferromagnetic cores is developed for use both in circuit representations of an LTD cavity and in the 3D EM simulations. Good agreement between the measured core current, a simple circuit model, and the 3D simulation model is obtained. A 3D EM model of an idealized ten-cavity LTD accelerator is also developed. The model results demonstrate efficient voltage addition when driving a matched impedance load, in good agreement with an idealized circuit model.
Relating structure and dynamics in organisation models
Jonkers, C.M.; Treur, J.
2008-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on t
Modelling the dynamics of youth subcultures
Holme, P; Holme, Petter; Gronlund, Andreas
2005-01-01
What are the dynamics behind youth subcultures such as punk, hippie, or hip-hop cultures? How does the global dynamics of these subcultures relate to the individual's search for a personal identity? We propose a simple dynamical model to address these questions and find that only a few assumptions of the individual's behaviour are necessary to regenerate known features of youth culture.
Dynamic stall model for wind turbine airfoils
Larsen, J.W.; Nielsen, S.R.K.; Krenk, Steen
2007-01-01
A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift...... conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via...... during dynamic stall conditions. The proposed model is compared with five other dynamic stall models including, among others, the Beddoes-Leishman model and the ONERA model. It is demonstrated that the proposed model performs equally well or even better than more complicated models and that the included...
Model dynamics for quantum computing
Tabakin, Frank
2017-08-01
A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.
An immune based dynamic intrusion detection model
LI Tao
2005-01-01
With the dynamic description method for self and antigen, and the concept of dynamic immune tolerance for lymphocytes in network-security domain presented in this paper, a new immune based dynamic intrusion detection model (Idid) is proposed. In Idid, the dynamic models and the corresponding recursive equations of the lifecycle of mature lymphocytes, and the immune memory are built. Therefore, the problem of the dynamic description of self and nonself in computer immune systems is solved, and the defect of the low efficiency of mature lymphocyte generating in traditional computer immune systems is overcome. Simulations of this model are performed, and the comparison experiment results show that the proposed dynamic intrusion detection model has a better adaptability than the traditional methods.
Workflow-Based Dynamic Enterprise Modeling
黄双喜; 范玉顺; 罗海滨; 林慧萍
2002-01-01
Traditional systems for enterprise modeling and business process control are often static and cannot adapt to the changing environment. This paper presents a workflow-based method to dynamically execute the enterprise model. This method gives an explicit representation of the business process logic and the relationships between the elements involved in the process. An execution-oriented integrated enterprise modeling system is proposed in combination with other enterprise views. The enterprise model can be established and executed dynamically in the actual environment due to the dynamic properties of the workflow model.
Dynamical model of the kinesin protein motor
Nesterov, Alexander I; Ramírez, Mónica F
2016-01-01
We model and simulate the stepping dynamics of the kinesin motor including electric and mechanical forces, environmental noise, and the complicated potentials produced by tracking and neighboring protofilaments. Our dynamical model supports the hand-over-hand mechanism of the kinesin stepping. Our theoretical predictions and numerical simulations include the off-axis displacements of the kinesin heads while the steps are performed. The results obtained are in a good agreement with recent experiments on the kinesin dynamics.
A simplified model of software project dynamics
Ruiz Carreira, Mercedes; Ramos Román, Isabel; Toro Bonilla, Miguel
2001-01-01
The simulation of a dynamic model for software development projects (hereinafter SDPs) helps to investigate the impact of a technological change, of different management policies, and of maturity level of organisations over the whole project. In the beginning of the 1990s, with the appearance of the dynamic model for SDPs by Abdel-Hamid and Madnick [Software Project Dynamics: An Integrated Approach, Prentice-Hall, Englewood Cliffs, NJ, 1991], a significant advance took place in the field of p...
Explicit models for dynamic software
Bosloper, Ivor; Siljee, Johanneke; Nijhuis, Jos; Nord, R; Medvidovic, N; Krikhaar, R; Khrhaar, R; Stafford, J; Bosch, J
2006-01-01
A key aspect in creating autonomous dynamic software systems is the possibility of reasoning about properties of runtime variability and dynamic behavior, e.g. when and how to reconfigure the system. Currently these properties are often not made explicit in the software architecture. We argue that
Explicit models for dynamic software
Bosloper, Ivor; Siljee, Johanneke; Nijhuis, Jos; Nord, R; Medvidovic, N; Krikhaar, R; Khrhaar, R; Stafford, J; Bosch, J
2006-01-01
A key aspect in creating autonomous dynamic software systems is the possibility of reasoning about properties of runtime variability and dynamic behavior, e.g. when and how to reconfigure the system. Currently these properties are often not made explicit in the software architecture. We argue that h
Comparative dynamics in a health investment model.
Eisenring, C
1999-10-01
The method of comparative dynamics fully exploits the inter-temporal structure of optimal control models. I derive comparative dynamic results in a simplified demand for health model. The effect of a change in the depreciation rate on the optimal paths for health capital and investment in health is studied by use of a phase diagram.
Dynamic Heat Transfer Model of Refrigerated Foodstuff
Cai, Junping; Risum, Jørgen; Thybo, Claus
2006-01-01
their temperature relation. This paper discusses the dynamic heat transfer model of foodstuff inside the display cabinet, one-dimensional dynamic model is developed, and the Explicit Finite Difference Method is applied, to handle the unsteady heat transfer problem with phase change, as well as time varying boundary...
System dynamics modelling of situation awareness
Oosthuizen, R
2015-11-01
Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...
The Challenges to Coupling Dynamic Geospatial Models
Goldstein, N
2006-06-23
Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.
Hydration dynamics near a model protein surface
Russo, Daniela; Hura, Greg; Head-Gordon, Teresa
2003-09-01
The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.
Dynamic Factor Models for the Volatility Surface
van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van
The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...... features for representing the surface and its dynamics: a general dynamic factor model, restricted factor models designed to capture the key features of the surface along the moneyness and maturity dimensions, and in-between spline-based methods. Key findings are that: (i) the restricted and spline......-based models are both rejected against the general dynamic factor model, (ii) the factors driving the surface are highly persistent, (iii) for the restricted models option Delta is preferred over the more often used strike relative to spot price as measure for moneyness....
Comprehensive Survey on Dynamic Graph Models
Aya Zaki
2016-02-01
Full Text Available Most of the critical real-world networks are con-tinuously changing and evolving with time. Motivated by the growing importance and widespread impact of this type of networks, the dynamic nature of these networks have gained a lot of attention. Because of their intrinsic and special characteristics, these networks are best represented by dynamic graph models. To cope with their evolving nature, the representation model must keep the historical information of the network along with its temporal time. Storing such amount of data, poses many problems from the perspective of dynamic graph data management. This survey provides an in-depth overview on dynamic graph related problems. Novel categorization and classification of the state of the art dynamic graph models are also presented in a systematic and comprehensive way. Finally, we discuss dynamic graph processing including the output representation of its algorithms.
Modelling the dynamics of turbulent floods
Mei, Z; Li, Z; Li, Zhenquan
1999-01-01
Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows.
Flapping Wing Flight Dynamic Modeling
2011-08-22
von Karman, T. and Burgers, J. M., Gerneral Aerodynamic Theory - Perfect Fluids , Vol. II, Julius Springer , Berlin, 1935. [24] Pesavento, U. and Wang...L., Methods of Analytical Dynamics , McGraw-Hill Book Company, New York, 1970. [34] Deng, X., Schenato, L., Wu, W. C., and Sastry, S. S., Flapping...Micro air vehicle- motivated computational biomechanics in bio ights: aerodynamics, ight dynamics and maneuvering stability, Acta Mechanica
Modeling Mitochondrial Bioenergetics with Integrated Volume Dynamics
Bazil, Jason N.; Buzzard, Gregery T.; Ann E Rundell
2010-01-01
Author Summary Mathematically modeling biological systems challenges our current understanding of the physical and biochemical events contributing to the observed dynamics. It requires careful consideration of hypothesized mechanisms, model development assumptions and details regarding the experimental conditions. We have adopted a modeling approach to translate these factors that explicitly considers the thermodynamic constraints, biochemical states and reaction mechanisms during model devel...
Dynamical CP violation in composite Higgs models
Hashimoto, S.; Inagaki, Tomohiro; Muta, Taizo
1993-01-01
The dynamical origin of the CP violation in electroweak theory is investigated in composite Higgs models. The mechanism of the spontaneous CP violation proposed in other context by Dashen is adopted to construct simple models of the dynamical CP violation. Within the models the size of the neutron electric dipole moment is estimated and the constraint on the $\\varepsilon$-parameter in K-meson decays is discussed.
Very Large System Dynamics Models - Lessons Learned
Jacob J. Jacobson; Leonard Malczynski
2008-10-01
This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.
Comparing models of Red Knot population dynamics
McGowan, Conor
2015-01-01
Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.
A Stochastic Cobweb Dynamical Model
Serena Brianzoni
2008-01-01
_,__0__1, and the forward predictor with probability (1−, so that the expected price at time is a random variable and consequently the dynamics describing the price evolution in time is governed by a stochastic dynamical system. The dynamical system becomes a Markov process when the memory rate vanishes. In particular, we study the Markov chain in the cases of discrete and continuous time. Using a mixture of analytical tools and numerical methods, we show that, when prices take discrete values, the corresponding Markov chain is asymptotically stable. In the case with continuous prices and nonnecessarily zero memory rate, numerical evidence of bounded price oscillations is shown. The role of the memory rate is studied through numerical experiments, this study confirms the stabilizing effects of the presence of resistant memory.
Modeling the Dynamics of an Information System
Jacek Unold
2003-11-01
Full Text Available The article concentrates on the nature of a social subsystem of an information system. It analyzes the nature of information processes of collectivity within an IS and introduces a model of IS dynamics. The model is based on the assumption that a social subsystem of an information system works as a nonlinear dynamic system. The model of IS dynamics is verified on the indexes of the stock market. It arises from the basic assumption of the technical analysis of the markets, that is, the index chart reflects the play of demand and supply, which in turn represents the crowd sentiment on the market.
Structural Dynamics Model of a Cartesian Robot
1985-10-01
34 D FILE COPY AD-A198 053 *.CC Technical Report 1009 Structural Dynamics Model of a Cartesian Robot "DTIC SELEC T E 0 Alfonso Garcia Reynoso MIT...COVERED Structural Dynamics Model of a Cartesian Robot technical report G. PERFORMING ORG. REPORT NUM9ER 7. AUTHO0R(@) S. CONTRACT On GRANT NUMSER...8217 %S S Structural Dynamics Model of a Cartesian Robot by Alfonso Garcia Reynoso BSME Instituto Tecnol6gico de Veracruz (1967) MSME Instituto Tecnol6gico
Equivalent dynamic model of DEMES rotary joint
Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong
2016-07-01
The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.
Modeling microbial growth and dynamics.
Esser, Daniel S; Leveau, Johan H J; Meyer, Katrin M
2015-11-01
Modeling has become an important tool for widening our understanding of microbial growth in the context of applied microbiology and related to such processes as safe food production, wastewater treatment, bioremediation, or microbe-mediated mining. Various modeling techniques, such as primary, secondary and tertiary mathematical models, phenomenological models, mechanistic or kinetic models, reactive transport models, Bayesian network models, artificial neural networks, as well as agent-, individual-, and particle-based models have been applied to model microbial growth and activity in many applied fields. In this mini-review, we summarize the basic concepts of these models using examples and applications from food safety and wastewater treatment systems. We further review recent developments in other applied fields focusing on models that explicitly include spatial relationships. Using these examples, we point out the conceptual similarities across fields of application and encourage the combined use of different modeling techniques in hybrid models as well as their cross-disciplinary exchange. For instance, pattern-oriented modeling has its origin in ecology but may be employed to parameterize microbial growth models when experimental data are scarce. Models could also be used as virtual laboratories to optimize experimental design analogous to the virtual ecologist approach. Future microbial growth models will likely become more complex to benefit from the rich toolbox that is now available to microbial growth modelers.
Nagayama, Taisuke
2013-10-01
Knowledge of the Sun is a foundation for other stars. However, after the solar abundance revision in 2005, standard solar models disagree with helioseismic measurements particularly at the solar convection zone base (CZB, r ~ 0 . 7 ×RSun) [Basu, et al., Physics Reports 457, 217 (2008)]. One possible explanation is an underestimate in the Fe opacity at the CZB [Bailey et al., Phys. Plasmas 16, 058101 (2009)]. Modeled opacities are important physics inputs for plasma simulations (e.g. standard solar models). However, modeled opacities are not experimentally validated at high temperatures because of three challenging criteria required for reliable opacity measurements: 1) smooth and strong backlighter, 2) plasma condition uniformity, and 3) simultaneous measurements of plasma condition and transmission. Fe opacity experiments are performed at the Sandia National Laboratories (SNL) Z-machine aiming at conditions close to those at the CZB (i.e. Te = 190 eV, ne = 1 ×1023 cm-3). To verify the quality of the experiments, it is critical to investigate how well the three requirements are satisfied. The smooth and strong backlighter is provided by the SNL Z-pinch dynamic hohlraum. Fe plasma condition is measured by mixing Mg into the Fe sample and employing Mg K-shell line transmission spectroscopy. Also, an experiment is designed and performed to measure the level of non-uniformity in the Fe plasma by mixing Al and Mg dopants on the opposite side of the Fe sample and analyzing their spectra. We will present quantitative results on these investigations as well as the comparison of the measured opacity to modeled opacities. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.
Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection
Bork, Lasse; Møller, Stig Vinther
2015-01-01
We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...
Phone Routing using the Dynamic Memory Model
Bendtsen, Claus Nicolaj; Krink, Thiemo
2002-01-01
In earlier studies a genetic algorithm (GA) extended with the dynamic memory model has shown remarkable performance on real-world-like problems. In this paper we experiment with routing in communication networks and show that the dynamic memory GA performs remarkable well compared to ant colony o...
System Dynamics Modelling for a Balanced Scorecard
Nielsen, Steen; Nielsen, Erland Hejn
2008-01-01
Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design/methodology...
Nonlinear dynamic phenomena in the beer model
Mosekilde, Erik; Laugesen, Jakob Lund
2007-01-01
The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we...
A new dynamics model for traffic flow
无
2001-01-01
As a study method of traffic flow, dynamics models were developedand applied in the last few decades. However, there exist some flaws in most existing models. In this note, a new dynamics model is proposed by using car-following theory and the usual connection method of micro-macro variables, which can overcome some ubiquitous problems in the existing models. Numerical results show that the new model can very well simulate traffic flow conditions, such as congestion, evacuation of congestion, stop-and-go phenomena and phantom jam.
MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS
CHAHINE Georges L.; HSIAO Chao-Tsung
2012-01-01
Controlling mierobubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge,which can be achieved only through a combination of experimental and numerical/analytical techniques.The present communication presents a multi-physics approach to study the dynamics combining viscousinviseid effects,liquid and structure dynamics,and multi bubble interaction.While complex numerical tools are developed and used,the study aims at identifying the key parameters influencing the dynamics,which need to be included in simpler models.
Airship dynamics modeling: A literature review
Li, Yuwen; Nahon, Meyer; Sharf, Inna
2011-04-01
The resurgence of airships has created a need for dynamics models and simulation capabilities adapted to these lighter-than-air vehicles. However, the modeling techniques for airship dynamics have lagged behind and are less systematic than those for fixed-wing aircraft. A state-of-the-art literature review is presented on airship dynamics modeling, aiming to provide a comprehensive description of the main problems in this area and a useful source of references for researchers and engineers interested in modern airship applications. The references are categorized according to the major topics in this area: aerodynamics, flight dynamics, incorporation of structural flexibility, incorporation of atmospheric turbulence, and effects of ballonets. Relevant analytical, numerical, and semi-empirical techniques are discussed, with a particular focus on how the main differences between lighter-than-air and heavier-than-air aircraft have been addressed in the modeling. Directions are suggested for future research on each of these topics.
Computational fluid dynamics modeling in yarn engineering
Patanaik, A
2011-07-01
Full Text Available This chapter deals with the application of computational fluid dynamics (CFD) modeling in reducing yarn hairiness during the ring spinning process and thereby “engineering” yarn with desired properties. Hairiness significantly affects the appearance...
Molecular dynamics model of dimethyl ether
Lin, B.; Halley, W.J. [Univ. of Minnesota, Minneapolis, MN (United States)
1995-11-02
We report a molecular dynamics model of the monomeric liquid dimethyl ether. The united atom approach is used to treat CH{sub 3} groups as point source centers. Partial charges are derived from the experimental dipole moment. Harmonic force constants are used for intramolecular interactions, and their values are so chosen that the model`s fundamental frequencies agree with experimental results. Because we are interested in solvation properties, the model contains flexible molecules, allowing molecular distortion and internal dynamical quantities. We report radial distribution functions and the static structure factors as well as some dynamical quantities such as the dynamical structure factor, infrared absorption, and Raman scattering spectra. Calculated results agree reasonably well with experimental and other simulation results. 25 refs., 8 figs., 1 tab.
Stochastic population dynamic models as probability networks
M.E. and D.C. Lee. Borsuk
2009-01-01
The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...
System Identification by Dynamic Factor Models
C. Heij (Christiaan); W. Scherrer; M. Destler
1996-01-01
textabstractThis paper concerns the modelling of stochastic processes by means of dynamic factor models. In such models the observed process is decomposed into a structured part called the latent process, and a remainder that is called noise. The observed variables are treated in a symmetric way, so
Damping mechanisms and models in structural dynamics
Krenk, Steen
2002-01-01
Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...
Bayesian semiparametric dynamic Nelson-Siegel model
C. Cakmakli
2011-01-01
This paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model where the density of the yield curve factors and thereby the density of the yields are estimated along with other model parameters. This is accomplished by modeling the error distributions of the factors according to a Diric
Probabilistic Modeling in Dynamic Information Retrieval
Sloan, M. C.
2016-01-01
Dynamic modeling is used to design systems that are adaptive to their changing environment and is currently poorly understood in information retrieval systems. Common elements in the information retrieval methodology, such as documents, relevance, users and tasks, are dynamic entities that may evolve over the course of several interactions, which is increasingly captured in search log datasets. Conventional frameworks and models in information retrieval treat these elements as static, or only...
Identification and Modelling of Linear Dynamic Systems
Stanislav Kocur
2006-01-01
Full Text Available System identification and modelling are very important parts of system control theory. System control is only as good as good is created model of system. So this article deals with identification and modelling problems. There are simple classification and evolution of identification methods, and then the modelling problem is described. Rest of paper is devoted to two most known and used models of linear dynamic systems.
A stochastic model of human gait dynamics
Ashkenazy, Yosef; M. Hausdorff, Jeffrey; Ch. Ivanov, Plamen; Eugene Stanley, H.
2002-12-01
We present a stochastic model of gait rhythm dynamics, based on transitions between different “neural centers”, that reproduces distinctive statistical properties of normal human walking. By tuning one model parameter, the transition (hopping) range, the model can describe alterations in gait dynamics from childhood to adulthood-including a decrease in the correlation and volatility exponents with maturation. The model also generates time series with multifractal spectra whose broadness depends only on this parameter. Moreover, we find that the volatility exponent increases monotonically as a function of the width of the multifractal spectrum, suggesting the possibility of a change in multifractality with maturation.
Integration of Dynamic Models in Range Operations
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
Long-term dynamics simulation: Modeling requirements
Morched, A.S.; Kar, P.K.; Rogers, G.J.; Morison, G.K. (Ontario Hydro, Toronto, ON (Canada))
1989-12-01
This report details the required performance and modelling capabilities of a computer program intended for the study of the long term dynamics of power systems. Following a general introduction which outlines the need for long term dynamic studies, the modelling requirements for the conduct of such studies is discussed in detail. Particular emphasis is placed on models for system elements not normally modelled in power system stability programs, which will have a significant impact in the long term time frame of minutes to hours following the initiating disturbance. The report concludes with a discussion of the special computational and programming requirements for a long term stability program. 43 refs., 36 figs.
Uncertainty and Sensitivity in Surface Dynamics Modeling
Kettner, Albert J.; Syvitski, James P. M.
2016-05-01
Papers for this special issue on 'Uncertainty and Sensitivity in Surface Dynamics Modeling' heralds from papers submitted after the 2014 annual meeting of the Community Surface Dynamics Modeling System or CSDMS. CSDMS facilitates a diverse community of experts (now in 68 countries) that collectively investigate the Earth's surface-the dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere, by promoting, developing, supporting and disseminating integrated open source software modules. By organizing more than 1500 researchers, CSDMS has the privilege of identifying community strengths and weaknesses in the practice of software development. We recognize, for example, that progress has been slow on identifying and quantifying uncertainty and sensitivity in numerical modeling of earth's surface dynamics. This special issue is meant to raise awareness for these important subjects and highlight state-of-the-art progress.
The future dynamic world model
Karr, Thomas J.
2014-10-01
Defense and security forces exploit sensor data by means of a model of the world. They use a world model to geolocate sensor data, fuse it with other data, navigate platforms, recognize features and feature changes, etc. However, their need for situational awareness today exceeds the capabilities of their current world model for defense operations, despite the great advances of sensing technology in recent decades. I review emerging technologies that may enable a great improvement in the spatial and spectral coverage, the timeliness, and the functional insight of their world model.
Brand Equity Evolution: a System Dynamics Model
Edson Crescitelli
2009-04-01
Full Text Available One of the greatest challenges in brand management lies in monitoring brand equity over time. This paper aimsto present a simulation model able to represent this evolution. The model was drawn on brand equity concepts developed by Aaker and Joachimsthaler (2000, using the system dynamics methodology. The use ofcomputational dynamic models aims to create new sources of information able to sensitize academics and managers alike to the dynamic implications of their brand management. As a result, an easily implementable model was generated, capable of executing continuous scenario simulations by surveying casual relations among the variables that explain brand equity. Moreover, the existence of a number of system modeling tools will allow extensive application of the concepts used in this study in practical situations, both in professional and educational settings
Dynamic stiffness model of spherical parallel robots
Cammarata, Alessandro; Caliò, Ivo; D`Urso, Domenico; Greco, Annalisa; Lacagnina, Michele; Fichera, Gabriele
2016-12-01
A novel approach to study the elastodynamics of Spherical Parallel Robots is described through an exact dynamic model. Timoshenko arches are used to simulate flexible curved links while the base and mobile platforms are modelled as rigid bodies. Spatial joints are inherently included into the model without Lagrangian multipliers. At first, the equivalent dynamic stiffness matrix of each leg, made up of curved links joined by spatial joints, is derived; then these matrices are assembled to obtain the Global Dynamic Stiffness Matrix of the robot at a given pose. Actuator stiffness is also included into the model to verify its influence on vibrations and modes. The latter are found by applying the Wittrick-Williams algorithm. Finally, numerical simulations and direct comparison to commercial FE results are used to validate the proposed model.
Stirling Engine Dynamic System Modeling
Nakis, Christopher G.
2004-01-01
The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.
Haptics-based dynamic implicit solid modeling.
Hua, Jing; Qin, Hong
2004-01-01
This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.
Synaptic dynamics: linear model and adaptation algorithm.
Yousefi, Ali; Dibazar, Alireza A; Berger, Theodore W
2014-08-01
In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and
Dynamics modeling and simulation of flexible airships
Li, Yuwen
The resurgence of airships has created a need for dynamics models and simulation capabilities of these lighter-than-air vehicles. The focus of this thesis is a theoretical framework that integrates the flight dynamics, structural dynamics, aerostatics and aerodynamics of flexible airships. The study begins with a dynamics model based on a rigid-body assumption. A comprehensive computation of aerodynamic effects is presented, where the aerodynamic forces and moments are categorized into various terms based on different physical effects. A series of prediction approaches for different aerodynamic effects are unified and applied to airships. The numerical results of aerodynamic derivatives and the simulated responses to control surface deflection inputs are verified by comparing to existing wind-tunnel and flight test data. With the validated aerodynamics and rigid-body modeling, the equations of motion of an elastic airship are derived by the Lagrangian formulation. The airship is modeled as a free-free Euler-Bernoulli beam and the bending deformations are represented by shape functions chosen as the free-free normal modes. In order to capture the coupling between the aerodynamic forces and the structural elasticity, local velocity on the deformed vehicle is used in the computation of aerodynamic forces. Finally, with the inertial, gravity, aerostatic and control forces incorporated, the dynamics model of a flexible airship is represented by a single set of nonlinear ordinary differential equations. The proposed model is implemented as a dynamics simulation program to analyze the dynamics characteristics of the Skyship-500 airship. Simulation results are presented to demonstrate the influence of structural deformation on the aerodynamic forces and the dynamics behavior of the airship. The nonlinear equations of motion are linearized numerically for the purpose of frequency domain analysis and for aeroelastic stability analysis. The results from the latter for the
Model Reduction of Nonlinear Fire Dynamics Models
Lattimer, Alan Martin
2016-01-01
Due to the complexity, multi-scale, and multi-physics nature of the mathematical models for fires, current numerical models require too much computational effort to be useful in design and real-time decision making, especially when dealing with fires over large domains. To reduce the computational time while retaining the complexity of the domain and physics, our research has focused on several reduced-order modeling techniques. Our contributions are improving wildland fire reduced-order mod...
Forecasting with Dynamic Regression Models
Pankratz, Alan
2012-01-01
One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.
Online Learning of Industrial Manipulators' Dynamics Models
Polydoros, Athanasios
2017-01-01
The robotics industry has introduced light-weight compliant manipulators to increase the safety during human-robot interaction. This characteristic is achieved by replacing the stiff actuators of the traditional robots with compliant ones which creates challenges in the analytical derivation...... of the dynamics models. Those mainly derive from physics-based methods and thus they are based on physical properties which are hard to be calculated. In this thesis, is presented, a novel online machine learning approach which is able to model both inverse and forward dynamics models of industrial manipulators...
A stochastic evolutionary model for survival dynamics
Fenner, Trevor; Loizou, George
2014-01-01
The recent interest in human dynamics has led researchers to investigate the stochastic processes that explain human behaviour in different contexts. Here we propose a generative model to capture the essential dynamics of survival analysis, traditionally employed in clinical trials and reliability analysis in engineering. In our model, the only implicit assumption made is that the longer an actor has been in the system, the more likely it is to have failed. We derive a power-law distribution for the process and provide preliminary empirical evidence for the validity of the model from two well-known survival analysis data sets.
Cellular automata modeling of pedestrian's crossing dynamics
张晋; 王慧; 李平
2004-01-01
Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian's crossing dynamics.A conception of "stop point" is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk.The model can be easily extended,is very efficient for simulation of pedestrian's crossing dynamics,can be integrated into traffic simulation software,and has been proved feasible by simulation experiments.
Dynamical modelling of coordinated multiple robot systems
Hayati, Samad
1987-01-01
The state of the art in the modeling of the dynamics of coordinated multiple robot manipulators is summarized and various problems related to this subject are discussed. It is recognized that dynamics modeling is a component used in the design of controllers for multiple cooperating robots. As such, the discussion addresses some problems related to the control of multiple robots. The techniques used to date in the modeling of closed kinematic chains are summarized. Various efforts made to date for the control of coordinated multiple manipulators is summarized.
Stochastic transition model for pedestrian dynamics
Schultz, Michael
2012-01-01
The proposed stochastic model for pedestrian dynamics is based on existing approaches using cellular automata, combined with substantial extensions, to compensate the deficiencies resulting of the discrete grid structure. This agent motion model is extended by both a grid-based path planning and mid-range agent interaction component. The stochastic model proves its capabilities for a quantitative reproduction of the characteristic shape of the common fundamental diagram of pedestrian dynamics. Moreover, effects of self-organizing behavior are successfully reproduced. The stochastic cellular automata approach is found to be adequate with respect to uncertainties in human motion patterns, a feature previously held by artificial noise terms alone.
Quantum Dynamics of the HMF Model
Plestid, Ryan; Mahon, Perry; O'Dell, Duncan
2016-01-01
We study the dynamics of the quantized Hamiltonian Mean Field (HMF) model assuming a gas of bosons in the large N limit. We characterize the full set of stationary states, and study the dynamics of the model numerically focussing on competition between classical and quantum effects. We make contact with the existing literature on the HMF model as a classical system, and stress universal features which can be inferred in the semi-classical limit.In particular we show that the characteristic ch...
Towards Disaggregate Dynamic Travel Forecasting Models
Moshe Ben-Akiva; Jon Bottom; Song Gao; Haris N. Koutsopoulos; Yang Wen
2007-01-01
The authors argue that travel forecasting models should be dynamic and disaggregate in their representation of demand, supply, and supply-demand interactions, and propose a framework for such models.The proposed framework consists of disaggregate activity-based representation of travel choices of individual motorists on the demand side integrated with disaggregate dynamic modeling of network performance,through vehicle-based traffic simulation models on the supply side. The demand model generates individual members of the population and assigns to them socioeconomic characteristics. The generated motorists maintain these characteristics when they are loaded on the network by the supply model. In an equilibrium setting, the framework lends itself to a fixed-point formulation to represent and resolve demand-supply interactions. The paper discusses some of the remaining development challenges and presents an example of an existing travel forecasting model system that incorporates many of the proposed elements.
Dynamical effects of overparametrization in nonlinear models
Aguirre, Luis Antonio; Billings, S. A.
1995-01-01
This paper is concemed with dynamical reconstruction for nonlinear systems. The effects of the driving function and of the complexity of a given representation on the bifurcation patter are investigated. It is shown that the use of different driving functions to excite the system may yield models with different bifurcation patterns. The complexity of the reconstructions considered is quantified by the embedding dimension and the number of estimated parameters. In this respect it appears that models which reproduce the original bifurcation behaviour are of limited complexity and that excessively complex models tend to induce ghost bifurcations and spurious dynamical regimes. Moreover, some results suggest that the effects of overparametrization on the global dynamical behaviour of a nonlinear model may be more deleterious than the presence of moderate noise levels. In order to precisely quantify the complexity of the reconstructions, global polynomials are used although the results are believed to apply to a much wider class of representations including neural networks.
Dynamic optimization deterministic and stochastic models
Hinderer, Karl; Stieglitz, Michael
2016-01-01
This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.
MODELS FOR NETWORK DYNAMICS - A MARKOVIAN FRAMEWORK
LEENDERS, RTAJ
1995-01-01
A question not very often addressed in social network analysis relates to network dynamics and focuses on how networks arise and change. It alludes to the idea that ties do not arise or vanish randomly, but (partly) as a consequence of human behavior and preferences. Statistical models for modeling
Dynamic modeling of the INAPRO aquaponic system
Karimanzira, Divas; Keesman, Karel J.; Kloas, Werner; Baganz, Daniela; Rauschenbach, Thomas
2016-01-01
The use of modeling techniques to analyze aquaponics systems is demonstrated with an example of dynamic modeling for the production of Nile tilapia (Oreochromis niloticus) and tomatoes (Solanum lycopersicon) using the innovative double recirculating aquaponic system ASTAF-PRO. For the management and
Dynamic spatial panels : models, methods, and inferences
Elhorst, J. Paul
This paper provides a survey of the existing literature on the specification and estimation of dynamic spatial panel data models, a collection of models for spatial panels extended to include one or more of the following variables and/or error terms: a dependent variable lagged in time, a dependent
A Discrete Dynamical Model of Signed Partitions
G. Chiaselotti
2013-01-01
Full Text Available We use a discrete dynamical model with three evolution rules in order to analyze the structure of a partially ordered set of signed integer partitions whose main properties are actually not known. This model is related to the study of some extremal combinatorial sum problems.
A system dynamics model for communications networks
Awcock, A. J.; King, T. E. G.
1985-09-01
An abstract model of a communications network in system dynamics terminology is developed as implementation of this model by a FORTRAN program package developed at RSRE is discussed. The result of this work is a high-level simulation package in which the performance of adaptive routing algorithms and other network controls may be assessed for a network of arbitrary topology.
Concept-Oriented Modeling of Dynamic Behavior
Breedveld, P.C.; Borutzky, Wolfgang
2011-01-01
This chapter introduces the reader to the concept-oriented approach to modeling that clearly separates ideal concepts from the physical components of a system when modeling its dynamic behavior for a specific problem context. This is done from a port-based point of view for which the domain-independ
A dynamical model for the Utricularia trap
Llorens, Coraline; Argentina, Médéric; Bouret, Yann; Marmottant, Philippe; Vincent, Olivier
2012-01-01
We propose a model that captures the dynamics of a carnivorous plant, Utricularia inflata. This plant possesses tiny traps for capturing small aquatic animals. Glands pump water out of the trap, yielding a negative pressure difference between the plant and its surroundings. The trap door is set into a meta-stable state and opens quickly as an extra pressure is generated by the displacement of a potential prey. As the door opens, the pressure difference sucks the animal into the trap. We write an ODE model that captures all the physics at play. We show that the dynamics of the plant is quite similar to neuronal dynamics and we analyse the effect of a white noise on the dynamics of the trap. PMID:22859569
Adaptation dynamics of the quasispecies model
Kavita Jain
2008-08-01
We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly focus on the Eigen’s model that describes the deterministic dynamics of an infinite number of self-replicating molecules. In the stationary state, for small mutation rates such a population forms a quasispecies which consists of the fittest genotype and its closely related mutants. The quasispecies dynamics on rugged fitness landscape follow a punctuated (or step-like) pattern in which a population jumps from a low fitness peak to a higher one, stays there for a considerable time before shifting the peak again and eventually reaches the global maximum of the fitness landscape. We calculate exactly several properties of this dynamical process within a simplified version of the quasispecies model.
Adaptation dynamics of the quasispecies model
Jain, Kavita
2009-02-01
We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly focus on the Eigen's model that describes the deterministic dynamics of an infinite number of self-replicating molecules. In the stationary state, for small mutation rates such a population forms a {\\it quasispecies} which consists of the fittest genotype and its closely related mutants. The quasispecies dynamics on rugged fitness landscape follow a punctuated (or step-like) pattern in which a population jumps from a low fitness peak to a higher one, stays there for a considerable time before shifting the peak again and eventually reaches the global maximum of the fitness landscape. We calculate exactly several properties of this dynamical process within a simplified version of the quasispecies model.
Replicator-dynamics models of sexual conflict.
Kimura, Mariko; Ihara, Yasuo
2009-09-07
Evolutionary conflict between the sexes has been studied in various taxa and in various contexts. When the sexes are in conflict over mating rates, natural selection favors both males that induce higher mating rates and females that are more successful at resisting mating attempts. Such sexual conflict may result in an escalating coevolutionary arms race between males and females. In this article, we develop simple replicator-dynamics models of sexual conflict in order to investigate its evolutionary dynamics. Two specific models of the dependence of a female's fitness on her number of matings are considered: in model 1, female fitness decreases linearly with increasing number of matings and in model 2, there is an optimal number of matings that maximizes female fitness. For each of these models, we obtain the conditions for a coevolutionary process to establish costly male and female traits and examine under what circumstances polymorphism is maintained at equilibrium. Then we discuss how assumptions in previous models of sexual conflict are translated to fit to our model framework and compare our results with those of the previous studies. The simplicity of our models allows us to consider sexual conflict in various contexts within a single framework. In addition, we find that our model 2 shows more complicated evolutionary dynamics than model 1. In particular, the population exhibits bistability, where the evolutionary outcome depends on the initial state, only in model 2.
Cosmological model with dynamical curvature
Stichel, Peter C
2016-01-01
We generalize the recently introduced relativistic Lagrangian darkon fluid model (EPJ C (2015) 75:9) by starting with a self-gravitating geodesic fluid whose energy-momentum tensor is dust-like with a nontrivial energy flow. The corresponding covariant propagation and constraint equations are considered in a shear-free nonrelativistic limit whose analytic solutions determine the 1st-order relativistic correction to the spatial curvature. This leads to a cosmological model where the accelerated expansion of the Universe is driven by a time-dependent spatial curvature without the need for introducing any kind of dark energy. We derive the differential equation to be satisfied by the area distance for this model.
Modeling hybrid perovskites by molecular dynamics.
Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia
2017-02-01
The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.
Modeling hybrid perovskites by molecular dynamics
Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia
2017-02-01
The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.
Dispersive models describing mosquitoes’ population dynamics
Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.
2016-08-01
The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.
Induction generator models in dynamic simulation tools
Knudsen, Hans; Akhmatov, Vladislav
1999-01-01
. It is found to be possible to include a transient model in dynamic stability tools and, then, obtain correct results also in dynamic tools. The representation of the rotating system influences on the voltage recovery shape which is an important observation in case of windmills, where a heavy mill is connected......For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...
Dynamics of the supermarket model
MacPhee, I M; Vachkovskaia, M
2010-01-01
We consider the long term behaviour of a Markov chain \\xi(t) on \\Z^N based on the N station supermarket model. Different routing policies for the supermarket model give different Markov chains. We show that for a general class of local routing policies, "join the least weighted queue" (JLW), the N one-dimensional components \\xi_i(t) can be partitioned into disjoint clusters C_k. Within each cluster C_k the "speed" of each component \\xi_j converges to a constant V_k and under certain conditions \\xi is recurrent in shape on each cluster. To establish these results we have assembled methods from two distinct areas of mathematics, semi-martingale techniques used for showing stability of Markov chains together with the theory of optimal flows in networks. As corollaries to our main result we obtain the stability classification of the supermarket model under any JLW policy and can explicitly compute the C_k and V_k for any instance of the model and specific JLW policy.
Intermittent rainfall in dynamic multimedia fate modeling.
Hertwich, E G
2001-03-01
It has been shown that steady-state multimedia models (level III fugacity models) lead to a substantial underestimate of air concentrations for chemicals with a low Henry's law constant (H multimedia models are used to estimate the spatial range or inhalation exposure. A dynamic model of pollutant fate is developed for conditions of intermittent rainfall to calculate the time profile of pollutant concentrations in different environmental compartments. The model utilizes a new, mathematically efficient approach to dynamic multimedia fate modeling that is based on the convolution of solutions to the initial conditions problem. For the first time, this approach is applied to intermittent conditions. The investigation indicates that the time-averaged pollutant concentrations under intermittent rainfall can be approximated by the appropriately weighted average of steady-state concentrations under conditions with and without rainfall.
Dynamic exponents for potts model cluster algorithms
Coddington, Paul D.; Baillie, Clive F.
We have studied the Swendsen-Wang and Wolff cluster update algorithms for the Ising model in 2, 3 and 4 dimensions. The data indicate simple relations between the specific heat and the Wolff autocorrelations, and between the magnetization and the Swendsen-Wang autocorrelations. This implies that the dynamic critical exponents are related to the static exponents of the Ising model. We also investigate the possibility of similar relationships for the Q-state Potts model.
The dynamic model of enterprise revenue management
Mitsel, A. A.; Kataev, M. Yu; Kozlov, S. V.; Korepanov, K. V.
2017-01-01
The article presents the dynamic model of enterprise revenue management. This model is based on the quadratic criterion and linear control law. The model is founded on multiple regression that links revenues with the financial performance of the enterprise. As a result, optimal management is obtained so as to provide the given enterprise revenue, namely, the values of financial indicators that ensure the planned profit of the organization are acquired.
Feature Extraction for Structural Dynamics Model Validation
Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield
2016-01-13
As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.
A Dynamic Model for Energy Structure Analysis
无
2006-01-01
Energy structure is a complicated system concerning economic development, natural resources, technological innovation, ecological balance, social progress and many other elements. It is not easy to explain clearly the developmental mechanism of an energy system and the mutual relations between the energy system and its related environments by the traditional methods. It is necessary to develop a suitable dynamic model, which can reflect the dynamic characteristics and the mutual relations of the energy system and its related environments. In this paper, the historical development of China's energy structure was analyzed. A new quantitative analysis model was developed based on system dynamics principles through analysis of energy resources, and the production and consumption of energy in China and comparison with the world. Finally, this model was used to predict China's future energy structures under different conditions.
Dynamic Model Identification for Industrial Robots
Ngoc Dung Vuong
2009-12-01
Full Text Available In this paper, a systematic procedure for identifying the dynamics of industrialrobots is presented. Since joint friction can be highly nonlinearwith time varyingcharacteristics in the low speed region,a simple and yet effective scheme has been used toidentify the boundary velocity that separates this “dynamic” friction region from its staticregion. The robot’s dynamic model is then identified in this static region, where thenonlinnear friction model is reduced to the linear-in-parameter form. To overcome thedrawbacks of the least squares estimator, which does not take in any constraints, anonlinear optimization problem is formulated to guarantee the physical feasibility of theidentified parameters. The proposed procedure has been demonstrated on the first fourlinks of the Mitsubishi PA10 manipulator, an improved dynamic model was obtained andthe the effectiveness of the proposed identification procedure is demonstrated.
Dynamic Model for Life History of Scyphozoa.
Congbo Xie
Full Text Available A two-state life history model governed by ODEs is formulated to elucidate the population dynamics of jellyfish and to illuminate the triggering mechanism of its blooms. The polyp-medusa model admits trichotomous global dynamic scenarios: extinction, polyps survival only, and both survival. The population dynamics sensitively depend on several biotic and abiotic limiting factors such as substrate, temperature, and predation. The combination of temperature increase, substrate expansion, and predator diminishment acts synergistically to create a habitat that is more favorable for jellyfishes. Reducing artificial marine constructions, aiding predator populations, and directly controlling the jellyfish population would help to manage the jellyfish blooms. The theoretical analyses and numerical experiments yield several insights into the nature underlying the model and shed some new light on the general control strategy for jellyfish.
Modeling Of Ballistic Missile Dynamics
Salih Mahmoud Attiya
2013-05-01
Full Text Available Aerodynamic modeling of ballistic missile in pitch plane is performed and the open-loop transfer function related to the jet deflector angle as input and pitch rate, normal acceleration as output has been derived with certain acceptable assumptions. For typical values of ballistic missile parameters such as mass, velocity, altitude, moment of inertia, thrust, moment and lift coefficient show that, the step time response and frequency response of the missile is unstable. The steady state gain, damping ratio and undraped natural frequency depend on the missile parameters. To stabilize the missile a lead compensator must be added to the forward loop.
Dynamic modeling of solar dynamic components and systems
Hochstein, John I.; Korakianitis, T.
1992-09-01
The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.
Dynamical properties of the Rabi model
Hu, Binglu; Zhou, Huili; Chen, Shujie; Xianlong, Gao; Wang, Kelin
2017-02-01
We study the dynamical properties of the quantum Rabi model using a systematic expansion method. Based on the observation that the parity symmetry of the Rabi model is kept during evolution of the states, we decompose the initial state and the time-dependent one into positive and negative parity parts expanded by superposition of the coherent states. The evolutions of the corresponding positive and the negative parities are obtained, in which the expansion coefficients in the dynamical equations are known from the derived recurrence relation.
Dynamical Model of Weak Pion Production Reactions
Sato, T; Lee, T S H
2003-01-01
The dynamical model of pion electroproduction has been extended to investigate the weak pion production reactions. The predicted cross sections of neutrino-induced pion production reactions are in good agreement with the existing data. We show that the renormalized(dressed) axial N-$\\Delta$ form factor contains large dynamical pion cloud effects and this renormalization effects are crucial in getting agreement with the data. We conclude that the N-$\\Delta$ transitions predicted by the constituent quark model are consistent with the existing neutrino induced pion production data in the $\\Delta$ region.
Research on nonlinear stochastic dynamical price model
Li Jiaorui [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); School of Statistics, Xi' an University of Finance and Economics, Xi' an 710061 (China)], E-mail: jiaoruili@mail.nwpu.edu.cn; Xu Wei; Xie Wenxian; Ren Zhengzheng [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)
2008-09-15
In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies.
Dynamic model for the popularity of websites
Lee, Chang-Yong; Kim, Seungwhan
2002-03-01
In this paper, we have studied a dynamic model to explain the observed characteristics of websites in the World Wide Web. The dynamic model consists of the self-growth term for each website and the external force term acting on the website. With simulations of the model, we can explain most of the important characteristics of websites. These characteristics include a power-law distribution of the number of visitors to websites, fluctuation in the fractional growth of individual websites, and the relationship between the age and the popularity of the websites. We also investigated a few variants of the model and showed that the ingredients included in the model adequately explain the behavior of the websites.
Modelling environmental dynamics. Advances in goematic solutions
Paegelow, Martin [Toulouse-2 Univ., 31 (France). GEODE UMR 5602 CNRS; Camacho Olmedo, Maria Teresa (eds.) [Granada Univ (Spain). Dpto. de Analisis Geografico Regional y Geografia Fisica
2008-07-01
Modelling environmental dynamics is critical to understanding and predicting the evolution of the environment in response to the large number of influences including urbanisation, climate change and deforestation. Simulation and modelling provide support for decision making in environmental management. The first chapter introduces terminology and provides an overview of methodological modelling approaches which may be applied to environmental and complex dynamics. Based on this introduction this book illustrates various models applied to a large variety of themes: deforestation in tropical regions, fire risk, natural reforestation in European mountains, agriculture, biodiversity, urbanism, climate change and land management for decision support, etc. These case studies, provided by a large international spectrum of researchers and presented in a uniform structure, focus particularly on methods and model validation so that this book is not only aimed at researchers and graduates but also at professionals. (orig.)
Modeling emotional dynamics : currency versus field.
Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago
2008-08-01
Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.
Modeling dynamic functional connectivity using a wishart mixture model
Nielsen, Søren Føns Vind; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard
2017-01-01
.e. the window length. In this work we use the Wishart Mixture Model (WMM) as a probabilistic model for dFC based on variational inference. The framework admits arbitrary window lengths and number of dynamic components and includes the static one-component model as a special case. We exploit that the WMM...
Modeling the dynamics of dissent
Lee, Eun; Lee, Sang Hoon
2016-01-01
We investigate opinion formation against authority in an authoritarian society composed of agents with different levels of authority. We explore a (symbolically) "right" opinion, held by lower-ranking, obedient, less authoritative people, spreading in an environment of a "wrong" opinion held by authoritative leaders. The mental picture would be that of a corrupt society where the ruled people revolts against authority, but it could be argued to hold in more general situations. In our model, agents can change their opinion depending on the relative authority to their neighbors and their own confidence level. In addition, with a certain probability, agents can override the authority to take the right opinion of a neighbor. Based on analytic derivation and numerical simulations, we observe that both the network structure and heterogeneity in authority, and their correlation significantly affect the possibility of the right opinion to spread in the population. In particular, the right opinion is suppressed when t...
Induction generator models in dynamic simulation tools
Knudsen, Hans; Akhmatov, Vladislav
1999-01-01
For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained. It is fo......For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained....... It is found to be possible to include a transient model in dynamic stability tools and, then, obtain correct results also in dynamic tools. The representation of the rotating system influences on the voltage recovery shape which is an important observation in case of windmills, where a heavy mill is connected...
Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam’s Window*
Onorante, Luca; Raftery, Adrian E.
2015-01-01
Bayesian model averaging has become a widely used approach to accounting for uncertainty about the structural form of the model generating the data. When data arrive sequentially and the generating model can change over time, Dynamic Model Averaging (DMA) extends model averaging to deal with this situation. Often in macroeconomics, however, many candidate explanatory variables are available and the number of possible models becomes too large for DMA to be applied in its original form. We propose a new method for this situation which allows us to perform DMA without considering the whole model space, but using a subset of models and dynamically optimizing the choice of models at each point in time. This yields a dynamic form of Occam’s window. We evaluate the method in the context of the problem of nowcasting GDP in the Euro area. We find that its forecasting performance compares well with that of other methods. PMID:26917859
Knowledge Map: Mathematical Model and Dynamic Behaviors
Hai Zhuge; Xiang-Feng Luo
2005-01-01
Knowledge representation and reasoning is a key issue of the Knowledge Grid. This paper proposes a Knowledge Map (KM) model for representing and reasoning causal knowledge as an overlay in the Knowledge Grid. It extends Fuzzy Cognitive Maps (FCMs) to represent and reason not only simple cause-effect relations, but also time-delay causal relations, conditional probabilistic causal relations and sequential relations. The mathematical model and dynamic behaviors of KM are presented. Experiments show that, under certain conditions, the dynamic behaviors of KM can translate between different states. Knowing this condition, experts can control or modify the constructed KM while its dynamic behaviors do not accord with their expectation. Simulations and applications show that KM is more powerful and natural than FCM in emulating real world.
Dynamic landscape models of coevolutionary games
Richter, Hendrik
2016-01-01
Players of coevolutionary games may update not only their strategies but also their networks of interaction. Based on interpreting the payoff of players as fitness, dynamic landscape models are proposed. The modeling procedure is carried out for Prisoner's Dilemma (PD) and Snowdrift (SD) games that both use either birth-death (BD) or death-birth (DB) strategy updating. With the main focus on using dynamic fitness landscapes as an alternative tool for analyzing coevolutionary games, landscape measures such as modality, ruggedness and information content are computed and analyzed. In addition, fixation properties of the games and quantifiers characterizing the network of interaction are calculated numerically. Relations are established between landscape properties expressed by landscape measures and quantifiers of coevolutionary game dynamics such as fixation probabilities, fixation times and network properties
Hidden Symmetry of a Fluid Dynamical Model
Neves, C
2001-01-01
A connection between solutions of the relativistic d-brane system in (d+1) dimensions with the solutions of a Galileo invariant fluid in d-dimensions is by now well established. However, the physical nature of the light-cone gauge description of a relativistic membrane changes after the reduction to the fluid dynamical model since the gauge symmetry is lost. In this work we argue that the original gauge symmetry present in a relativistic d-brane system can be recovered after the reduction process to a d-dimensional fluid model. To this end we propose, without introducing Wess-Zumino fields, a gauge invariant theory of isentropic fluid dynamics and show that this symmetry corresponds to the invariance under local translation of the velocity potential in the fluid dynamics picture. We show that different but equivalent choices of the sympletic sector lead to distinct representations of the embedded gauge algebra.
Dynamics models of soil organic carbon
YANGLi-xia; PANJian-jun
2003-01-01
As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China.
Human Muscle Fatigue Model in Dynamic Motions
Ma, Ruina; Bennis, Fouad; Ma, Liang
2012-01-01
Human muscle fatigue is considered to be one of the main reasons for Musculoskeletal Disorder (MSD). Recent models have been introduced to define muscle fatigue for static postures. However, the main drawbacks of these models are that the dynamic effect of the human and the external load are not taken into account. In this paper, each human joint is assumed to be controlled by two muscle groups to generate motions such as push/pull. The joint torques are computed using Lagrange's formulation to evaluate the dynamic factors of the muscle fatigue model. An experiment is defined to validate this assumption and the result for one person confirms its feasibility. The evaluation of this model can predict the fatigue and MSD risk in industry production quickly.
System and mathematical modeling of quadrotor dynamics
Goodman, Jacob M.; Kim, Jinho; Gadsden, S. Andrew; Wilkerson, Stephen A.
2015-05-01
Unmanned aerial systems (UAS) are becoming increasingly visible in our daily lives; and range in operation from search and rescue, monitoring hazardous environments, and to the delivery of goods. One of the most popular UAS are based on a quad-rotor design. These are typically small devices that rely on four propellers for lift and movement. Quad-rotors are inherently unstable, and rely on advanced control methodologies to keep them operating safely and behaving in a predictable and desirable manner. The control of these devices can be enhanced and improved by making use of an accurate dynamic model. In this paper, we examine a simple quadrotor model, and note some of the additional dynamic considerations that were left out. We then compare simulation results of the simple model with that of another comprehensive model.
Contact force models for multibody dynamics
Flores, Paulo
2016-01-01
This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehens...
Record Dynamics in the Parking Lot Model
Sibani, Paolo; Boettcher, Stefan
2016-01-01
We study the aging dynamics in the parking lot model of granular relaxation with extensive numerical simulations. Our results reveal the log-Poisson statistics in the progression of intermittent events that lead to ever slower increases in the density. Defining clusters as domains of parked cars...
Modeling the Hydrogen Bond within Molecular Dynamics
Lykos, Peter
2004-01-01
The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.
The Dynamic Mundell-Fleming Model Reconsidered
金子, 邦彦; Kaneko, Kunihiko
2003-01-01
In this paper we reconsider the dynamic Mundell-Fleming model of Sarno and Taylor (2002) by incorporating one of the recent New Keynesian ingredients. In an extended framework, we reconfirm that their results on the effects of an expansionary fiscal policy are robust. However, we also show that their results on the effects of an expansionary monetary policy should be modified.
Nearly Unbiased Estimationin Dynamic Panel Data Models
M.A. Carree (Martin)
2002-01-01
textabstractThis paper introduces two easy to calculate estimators with desirable properties for the autoregressive parameter in dynamic panel data models. The estimators are (nearly) unbiased and perform satisfactorily even for small samples in either the time-series or cross-section dimension.
Object Oriented Modelling and Dynamical Simulation
Wagner, Falko Jens; Poulsen, Mikael Zebbelin
1998-01-01
This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...
Object Oriented Modelling and Dynamical Simulation
Wagner, Falko Jens; Poulsen, Mikael Zebbelin
1998-01-01
This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...... onduction simulation experiments....
A Flight Dynamic Model of Aircraft Spinning
1990-06-01
Australia, Library Australian Airlines, Library Qantas Airways Limited Hawker de Havilland Aust. Pty Ltd, Victoria, Library Hawker de Havilland Aust. Pty...3. MARTIN, C.A. ; Modelling Aircraft Dynamics. ARL-AERO-TECH- MEMO-400 July 1988 4. HULTBERG, R.S. ; Rotary Balance Data and Analysis for the
Advances in Inventory Management: Dynamic Models
C. Pinçe (Çerağ)
2010-01-01
textabstractIn this study, we develop and analyze models incorporating some of the dynamic aspects of inventory systems. In particular, we focus on two major themes to be analyzed separately: nonstationarity in demand rate and unfixed purchasing prices. In the first part of the study, we consider a
A Dynamic Distribution Model for Combat Logistics
1999-11-23
develop a heuristic algorithm for a similar problem, only capacity expansion can occur in any amount (modeled with continuous variables) while in...and Rutenberg (1977) solve it with a heuristic algorithm . Our problem is also related to the dynamic facility location problem. This problem seeks to
A Stochastic Dynamic Model of Computer Viruses
Chunming Zhang
2012-01-01
Full Text Available A stochastic computer virus spread model is proposed and its dynamic behavior is fully investigated. Specifically, we prove the existence and uniqueness of positive solutions, and the stability of the virus-free equilibrium and viral equilibrium by constructing Lyapunov functions and applying Ito's formula. Some numerical simulations are finally given to illustrate our main results.
Modeling of Reactor Kinetics and Dynamics
Matthew Johnson; Scott Lucas; Pavel Tsvetkov
2010-09-01
In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.
The quantum Rabi model: solution and dynamics
Xie, Qiongtao; Zhong, Honghua; Batchelor, Murray T.; Lee, Chaohong
2017-03-01
This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given.
The quantum Rabi model: solution and dynamics
Xie, Qiongtao; Batchelor, Murray T; Lee, Chaohong
2016-01-01
This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given.
Structural Equation Modeling of Travel Choice Dynamics
Golob, Thomas F.
1988-01-01
This research has two objectives. The first objective is to explore the use of the modeling tool called "latent structural equations" (structural equations with latent variables) in the general field of travel behavior analysis and the more specific field of dynamic analysis of travel behavior. The second objective is to apply a latent structural equation model in order to determine the causal relationships between income, car ownership, and mobility. Many transportation researchers ...
Dynamic inventory models: an illustrative case study
Adendorff, Kris
2014-10-01
Full Text Available The study revisits the subject matter of inventory control, a continual part of the activities of wide-ranging organisations internationally. The mathematical model is presented of a particular situation that deals with the regular acquisition of a material required for a production process in a volatile environment of varying demand and fluctuating price. The usual process dynamics are demonstrated against a background of diverse choices of probability density function. The model makes use of Normal and Weibull distributions.
Population mixture model for nonlinear telomere dynamics
Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl
2008-12-01
Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.
Feature extraction for structural dynamics model validation
Hemez, Francois [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Nishio, Mayuko [UNIV OF TOKYO; Worden, Keith [UNIV OF SHEFFIELD; Takeda, Nobuo [UNIV OF TOKYO
2010-11-08
This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.
Nonsmooth dynamics in spiking neuron models
Coombes, S.; Thul, R.; Wedgwood, K. C. A.
2012-11-01
Large scale studies of spiking neural networks are a key part of modern approaches to understanding the dynamics of biological neural tissue. One approach in computational neuroscience has been to consider the detailed electrophysiological properties of neurons and build vast computational compartmental models. An alternative has been to develop minimal models of spiking neurons with a reduction in the dimensionality of both parameter and variable space that facilitates more effective simulation studies. In this latter case the single neuron model of choice is often a variant of the classic integrate-and-fire model, which is described by a nonsmooth dynamical system. In this paper we review some of the more popular spiking models of this class and describe the types of spiking pattern that they can generate (ranging from tonic to burst firing). We show that a number of techniques originally developed for the study of impact oscillators are directly relevant to their analysis, particularly those for treating grazing bifurcations. Importantly we highlight one particular single neuron model, capable of generating realistic spike trains, that is both computationally cheap and analytically tractable. This is a planar nonlinear integrate-and-fire model with a piecewise linear vector field and a state dependent reset upon spiking. We call this the PWL-IF model and analyse it at both the single neuron and network level. The techniques and terminology of nonsmooth dynamical systems are used to flesh out the bifurcation structure of the single neuron model, as well as to develop the notion of Lyapunov exponents. We also show how to construct the phase response curve for this system, emphasising that techniques in mathematical neuroscience may also translate back to the field of nonsmooth dynamical systems. The stability of periodic spiking orbits is assessed using a linear stability analysis of spiking times. At the network level we consider linear coupling between voltage
Direct modeling for computational fluid dynamics
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct
Davtyan, Aram; Voth, Gregory A.; Andersen, Hans C.
2016-12-01
We recently developed a dynamic force matching technique for converting a coarse-grained (CG) model of a molecular system, with a CG potential energy function, into a dynamic CG model with realistic dynamics [A. Davtyan et al., J. Chem. Phys. 142, 154104 (2015)]. This is done by supplementing the model with additional degrees of freedom, called "fictitious particles." In that paper, we tested the method on CG models in which each molecule is coarse-grained into one CG point particle, with very satisfactory results. When the method was applied to a CG model of methanol that has two CG point particles per molecule, the results were encouraging but clearly required improvement. In this paper, we introduce a new type (called type-3) of fictitious particle that exerts forces on the center of mass of two CG sites. A CG model constructed using type-3 fictitious particles (as well as type-2 particles previously used) gives a much more satisfactory dynamic model for liquid methanol. In particular, we were able to construct a CG model that has the same self-diffusion coefficient and the same rotational relaxation time as an all-atom model of liquid methanol. Type-3 particles and generalizations of it are likely to be useful in converting more complicated CG models into dynamic CG models.
Dynamic Intellectual Capital Model in a Company
Vladimir Shatrevich
2015-06-01
Full Text Available The aim of this paper is to indicate the relations between company’s value added (VA and intangible assets. Authors declare that Intellectual capital (IC is one of the most relevant intangibles for a company, and the concept with measurement, and the relation with value creation is necessary for modern markets. Since relationship between IC elements and VA are complicated, this paper is aimed to create a usable dynamic model for building company’s value added through intellectual capital. The model is incorporating that outputs from IC elements are not homogeneously received and made some contributions to dynamic nature of IC relation and VA. Variables that will help companies to evaluate contribution of each element of IC are added to the model. This paper emphasizes the importance of a company’s IC and the positive interaction between them in generating profits for company.
Dynamic Circuit Model for Spintronic Devices
Alawein, Meshal
2017-01-09
In this work we propose a finite-difference scheme based circuit model of a general spintronic device and benchmark it with other models proposed for spintronic switching devices. Our model is based on the four-component spin circuit theory and utilizes the widely used coupled stochastic magnetization dynamics/spin transport framework. In addition to the steady-state analysis, this work offers a transient analysis of carrier transport. By discretizing the temporal and spatial derivatives to generate a linear system of equations, we derive new and simple finite-difference conductance matrices that can, to the first order, capture both static and dynamic behaviors of a spintronic device. We also discuss an extension of the spin modified nodal analysis (SMNA) for time-dependent situations based on the proposed scheme.
Traffic flow dynamics data, models and simulation
Treiber, Martin
2013-01-01
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...
Dynamical Models of Dyadic Interactions with Delay
Bielczyk, Natalia; Płatkowski, Tadeusz
2012-01-01
When interpersonal interactions between individuals are described by the (discrete or continuous) dynamical systems, the interactions are usually assumed to be instantaneous: the rates of change of the actual states of the actors at given instant of time are assumed to depend on their states at the same time. In reality the natural time delay should be included in the corresponding models. We investigate a general class of linear models of dyadic interactions with a constant discrete time delay. We prove that in such models the changes of stability of the stationary points from instability to stability or vice versa occur for various intervals of the parameters which determine the intensity of interactions. The conditions guaranteeing arbitrary number (zero, one ore more) of switches are formulated and the relevant theorems are proved. A systematic analysis of all generic cases is carried out. It is obvious that the dynamics of interactions depend both on the strength of reactions of partners on their own sta...
Indonesia’s Electricity Demand Dynamic Modelling
Sulistio, J.; Wirabhuana, A.; Wiratama, M. G.
2017-06-01
Electricity Systems modelling is one of the emerging area in the Global Energy policy studies recently. System Dynamics approach and Computer Simulation has become one the common methods used in energy systems planning and evaluation in many conditions. On the other hand, Indonesia experiencing several major issues in Electricity system such as fossil fuel domination, demand - supply imbalances, distribution inefficiency, and bio-devastation. This paper aims to explain the development of System Dynamics modelling approaches and computer simulation techniques in representing and predicting electricity demand in Indonesia. In addition, this paper also described the typical characteristics and relationship of commercial business sector, industrial sector, and family / domestic sector as electricity subsystems in Indonesia. Moreover, it will be also present direct structure, behavioural, and statistical test as model validation approach and ended by conclusions.
Modeling epidemics dynamics on heterogenous networks.
Ben-Zion, Yossi; Cohen, Yahel; Shnerb, Nadav M
2010-05-21
The dynamics of the SIS process on heterogenous networks, where different local communities are connected by airlines, is studied. We suggest a new modeling technique for travelers movement, in which the movement does not affect the demographic parameters characterizing the metapopulation. A solution to the deterministic reaction-diffusion equations that emerges from this model on a general network is presented. A typical example of a heterogenous network, the star structure, is studied in detail both analytically and using agent-based simulations. The interplay between demographic stochasticity, spatial heterogeneity and the infection dynamics is shown to produce some counterintuitive effects. In particular it was found that, while movement always increases the chance of an outbreak, it may decrease the steady-state fraction of sick individuals. The importance of the modeling technique in estimating the outcomes of a vaccination campaign is demonstrated.
A dynamical model of non regulated markets
Schaale, A
1999-01-01
The main focus of this work is to understand the dynamics of non regulated markets. The present model can describe the dynamics of any market where the pricing is based on supply and demand. It will be applied here, as an example, for the German stock market presented by the Deutscher Aktienindex (DAX), which is a measure for the market status. The duality of the present model consists of the superposition of the two components - the long and the short term behaviour of the market. The long term behaviour is characterised by a stable development which is following a trend for time periods of years or even decades. This long term growth (or decline) is based on the development of fundamental market figures. The short term behaviour is described as a dynamical evaluation (trading) of the market by the participants. The trading process is described as an exchange between supply and demand. In the framework of this model there the trading is modelled by a system of nonlinear differential equations. The model also...
Fully Equipped Dynamic Model of a Bus
I. Kowarska
2014-01-01
Full Text Available Nowadays, the time to market a new vehicle is crucial for every company as it is easier to meet the customers’ needs and expectations. However, designing a new vehicle is a long process which needs to take into account different performances. The most difficult is to predict a dynamic behavior of a vehicle especially when such a big vehicles as urban buses are considered. Therefore, there is a necessity to use a virtual model to investigate different performances. However, there is a lack of urban bus models that can fully reflect a dynamic behavior of the bus. This paper presents a fully equipped urban bus model which can be used to study a dynamic behavior of such vehicles. The model is based on innovative technique called cosimulation, which connects different modeling techniques (3D and 1D. Such a technique allows performing different analyses that require small deformations and large translations and rotations in shorter time and automatic way. The work has been carried out in a project EUREKA CHASING.
Fully three-dimensional simulation and modeling of a dense plasma focus
Meehan, B. T.; Niederhaus, J. H. J.
2014-10-01
A dense plasma focus (DPF) is a pulsed-power machine that electromagnetically accelerates and cylindrically compresses a shocked plasma in a Z-pinch. The pinch results in a brief (~ 100 ns) pulse of X-rays, and, for some working gases, also a pulse of neutrons. A great deal of experimental research has been done into the physics of DPF reactions, and there exist mathematical models describing its behavior during the different time phases of the reaction. Two of the phases, known as the inverse pinch and the rundown, are approximately governed by magnetohydrodynamics, and there are a number of well-established codes for simulating these phases in two dimensions or in three dimensions under the assumption of axial symmetry. There has been little success, however, in developing fully three-dimensional simulations. In this work we present three-dimensional simulations of DPF reactions and demonstrate that three-dimensional simulations predict qualitatively and quantitatively different behavior than their two-dimensional counterparts. One of the most important quantities to predict is the time duration between the formation of the gas shock and Z-pinch, and the three-dimensional simulations more faithfully represent experimental results for this time duration and are essential for accurate prediction of future experiments.
Analysing the temporal dynamics of model performance for hydrological models
Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.
2009-01-01
The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or m
Learning generative models of molecular dynamics.
Razavian, Narges Sharif; Kamisetty, Hetunandan; Langmead, Christopher J
2012-01-01
We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g., fluctuations, distances, angles, etc). L1 regularization is used to ensure sparse models and thus reduce the risk of over-fitting the data. The topology of the resulting model reveals important couplings between different parts of the protein, thus aiding in the analysis of molecular motions. The generative nature of the model makes it well-suited to making predictions about the global effects of local structural changes (e.g., the binding of an allosteric regulator). Additionally, the model can be used to sample new conformations. The second algorithm learns a time-varying graphical model where the topology and parameters change smoothly along the trajectory, revealing the conformational sub-states. The last algorithm learns a Markov Chain over undirected graphical models which can be used to study and simulate kinetics. We demonstrate our algorithms on multiple molecular dynamics trajectories.
Switched Dynamical Latent Force Models for Modelling Transcriptional Regulation
López-Lopera, Andrés F
2015-01-01
In order to develop statistical approaches for transcription networks, statistical community has proposed several methods to infer activity levels of proteins, from time-series measurements of targets' expression levels. A few number of approaches have been proposed in order to outperform the representation of fast switching time instants, but computational overheads are significant due to complex inference algorithms. Using the theory related to latent force models (LFM), the development of this project provide a switched dynamical hybrid model based on Gaussian processes (GPs). To deal with discontinuities in dynamical systems (or latent driving force), an extension of the single input motif approach is introduced, that switches between different protein concentrations, and different dynamical systems. This creates a versatile representation for transcription networks that can capture discrete changes and non-linearities in the dynamics. The proposed method is evaluated on both simulated data and real data,...
Global Langevin model of multidimensional biomolecular dynamics
Schaudinnus, Norbert; Lickert, Benjamin; Biswas, Mithun; Stock, Gerhard
2016-11-01
Molecular dynamics simulations of biomolecular processes are often discussed in terms of diffusive motion on a low-dimensional free energy landscape F ( 𝒙 ) . To provide a theoretical basis for this interpretation, one may invoke the system-bath ansatz á la Zwanzig. That is, by assuming a time scale separation between the slow motion along the system coordinate x and the fast fluctuations of the bath, a memory-free Langevin equation can be derived that describes the system's motion on the free energy landscape F ( 𝒙 ) , which is damped by a friction field and driven by a stochastic force that is related to the friction via the fluctuation-dissipation theorem. While the theoretical formulation of Zwanzig typically assumes a highly idealized form of the bath Hamiltonian and the system-bath coupling, one would like to extend the approach to realistic data-based biomolecular systems. Here a practical method is proposed to construct an analytically defined global model of structural dynamics. Given a molecular dynamics simulation and adequate collective coordinates, the approach employs an "empirical valence bond"-type model which is suitable to represent multidimensional free energy landscapes as well as an approximate description of the friction field. Adopting alanine dipeptide and a three-dimensional model of heptaalanine as simple examples, the resulting Langevin model is shown to reproduce the results of the underlying all-atom simulations. Because the Langevin equation can also be shown to satisfy the underlying assumptions of the theory (such as a delta-correlated Gaussian-distributed noise), the global model provides a correct, albeit empirical, realization of Zwanzig's formulation. As an application, the model can be used to investigate the dependence of the system on parameter changes and to predict the effect of site-selective mutations on the dynamics.
Model for Dynamic Multiple of CPPI Strategy
Guangyuan Xing
2014-01-01
Full Text Available Focusing on the parameter “Multiple” of CPPI strategy, this study proposes a dynamic setting model of multiple for gap risk management purpose. First, CPPI gap risk is measured as the probability that the value loss of active asset exceeds its allowed maximum drop determined by a given multiple setting. Moreover, according to the statistical estimation using SV-EVT approach, a dynamic choice of multiple is detailed as a function of time-varying asset volatility, expected loss, and the possibility of occurrence of extreme events in the active asset returns illustrated empirically on Shanghai composite index data. This study not only enriches the literature of dynamic proportion portfolio insurance, but also provides a practical reference for CPPI investors to choose a moderate risky exposure achieving gap risk management, which promotes CPPI’s application in emerging capital market.
An introduction to modeling neuronal dynamics
Börgers, Christoph
2017-01-01
This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book. .
Critical behavior of a dynamical percolation model
YU Mei-Ling; XU Ming-Mei; LIU Zheng-You; LIU Lian-Shou
2009-01-01
The critical behavior of the dynamical percolation model, which realizes the molecular-aggregation conception and describes the crossover between the hadronic phase and the partonic phase, is studied in detail. The critical percolation distance for this model is obtained by using the probability P∞ of the appearance of an infinite cluster. Utilizing the finite-size scaling method the critical exponents γ/v and T are extracted from the distribution of the average cluster size and cluster number density. The influences of two model related factors, I.e. The maximum bond number and the definition of the infinite cluster, on the critical behavior are found to be small.
Polarizable water model for Dissipative Particle Dynamics
Pivkin, Igor; Peter, Emanuel
2015-11-01
Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.
DYNAMICS IN A CLASS OF NEURON MODELS
Wang Junping; Ruan Jiong
2009-01-01
In this paper, we investigate the dynamics in a class of discrete-time neuron mo-dels. The neuron model we discussed, defined by such periodic input-output mapping as a sinusoidal function, has a remarkably larger memory capacity than the conven-tional association system with the monotonous function. Our results show that the orbit of the model takes a conventional bifurcation route, from stable equilibrium, to periodicity, even to chaotic region. And the theoretical analysis is verified by numerical simulations.
Five challenges in modelling interacting strain dynamics
Wikramaratna, Paul S; Kurcharski, Adam; Gupta, Sunetra
2015-01-01
Population epidemiological models where hosts can be infected sequentially by different strains have the potential to help us understand many important diseases. Researchers have in recent years started to develop and use such models, but the extra layer of complexity from multiple strains brings...... with it many technical challenges. It is therefore hard to build models which have realistic assumptions yet are tractable. Here we outline some of the main challenges in this area. First we begin with the fundamental question of how to translate from complex small-scale dynamics within a host to useful...... population models. Next we consider the nature of so-called “strain space”. We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity...
Amendment to Validated dynamic flow model
Knudsen, Torben
2011-01-01
The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...... excitations from the Thanet farm are used for trying to update some of the models discussed in D2.5. Because of very limited amount of data only simple dynamic transfer function models can be obtained. The three obtained data series are somewhat different. Only the first data set seems to have the front...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading....
Structural system identification: Structural dynamics model validation
Red-Horse, J.R.
1997-04-01
Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.
t-GIS AND ENVIRONMENTAL DYNAMIC MODELS
无
2000-01-01
Temporal geographic information system(t-GIS) is a kind of computer information system that can display,process and analyze the micro-format distribution of temporal-spatial information of real world.It includes both spatial geographic information and temporal information,and can analyze both the static geographic information and the dynamic geographic information.Three models based on t-GIS for environment dynamics,namely,the mechanism method,the experience method and the mixed method are given.t-GIS based on the environment dynamic model has more new functions than traditional GIS,such as fast I/O,inquiry,static/dynamic display and visible analysis of spatial and temporal sequence information,especially it can display the image of the evolution in the past,current and future environment through the extrapolation method within its defining region.The velocity for analogue display can be accelerated by setting up time-varying-area-function for position and attribute.Dynamic environmental information analysis systems based on t-GIS are applicable to almost all the fields related to management,display and analysis of local environmental dynamic information.For this reason,some considerations to construct distinct information systems have been enumerated in this paper,such as,the analysis information system for terrain evolution,the analysis information system for the condition of water and fertilizer of farmland,analysis and the evaluation information system for ecological environment,and the analysis information system for distribution changes of population of China,etc.
Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model
Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin
2016-04-01
Dynamic global vegetation models (DGVMs) are an important platform to study past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks (e.g. Sitch et al. 2008, Smith et al. 2001). However, very few attempts have been made to simulate peatlands using DGVMs (Kleinen et al. 2012, Tang et al. 2015, Wania et al. 2009a). In the present study, we have improved the peatland dynamics in the state-of-the-art dynamic vegetation model (LPJ-GUESS) in order to understand the long-term evolution of northern peatland ecosystems and to assess the effect of changing climate on peatland carbon balance. We combined a dynamic multi-layer approach (Frolking et al. 2010, Hilbert et al. 2000) with soil freezing-thawing functionality (Ekici et al. 2015, Wania et al. 2009a) in LPJ-GUESS. The new model is named LPJ-GUESS Peatland (LPJ-GUESS-P) (Chaudhary et al. in prep). The model was calibrated and tested at the sub-arctic mire in Stordalen, Sweden, and the model was able to capture the reported long-term vegetation dynamics and peat accumulation patterns in the mire (Kokfelt et al. 2010). For evaluation, the model was run at 13 grid points across a north to south transect in Europe. The modelled peat accumulation values were found to be consistent with the published data for each grid point (Loisel et al. 2014). Finally, a series of additional experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We find that the Stordalen mire will sequester more carbon in the future due to milder and wetter climate conditions, longer growing seasons, and the carbon fertilization effect. References: - Chaudhary et al. (in prep.). Modelling Holocene peatland and permafrost dynamics with the LPJ-GUESS dynamic vegetation model - Ekici A, et al. 2015. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. The Cryosphere 9: 1343
Modeling of intensified high dynamic star tracker.
Yan, Jinyun; Jiang, Jie; Zhang, Guangjun
2017-01-23
An intensified high dynamic star tracker (IHDST) is a photoelectric instrument and stably outputs three-axis attitude for a spacecraft at very high angular velocity. The IHDST uses an image intensifier to multiply the incident starlight. Thus, high sensitivity of the star detection is achieved under short exposure time such that extremely high dynamic performance is achieved. The IHDST differs from a traditional star tracker in terms of the imaging process. Therefore, we establish a quantum transfer model of IHDST based on stochastic process theory. By this model, the probability distribution of the output quantum number is obtained accurately. Then, we introduce two-dimensional Lorentz functions to describe the spatial spreading process of the IHDST. Considering the interaction of these two processes, a complete star imaging model of IHDST is provided. Using this model, the centroiding accuracy of the IHDST is analyzed in detail. Accordingly, a working parameter optimizing strategy is developed for high centroiding accuracy and improved dynamic performance. Finally, the laboratory tests and the night sky experiment support the conclusions.
Simple mathematical models of gene regulatory dynamics
Mackey, Michael C; Tyran-Kamińska, Marta; Zeron, Eduardo S
2016-01-01
This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduat...
A Typed Model for Dynamic Authorizations
Silvia Ghilezan
2016-02-01
Full Text Available Security requirements in distributed software systems are inherently dynamic. In the case of authorization policies, resources are meant to be accessed only by authorized parties, but the authorization to access a resource may be dynamically granted/yielded. We describe ongoing work on a model for specifying communication and dynamic authorization handling. We build upon the pi-calculus so as to enrich communication-based systems with authorization specification and delegation; here authorizations regard channel usage and delegation refers to the act of yielding an authorization to another party. Our model includes: (i a novel scoping construct for authorization, which allows to specify authorization boundaries, and (ii communication primitives for authorizations, which allow to pass around authorizations to act on a given channel. An authorization error may consist in, e.g., performing an action along a name which is not under an appropriate authorization scope. We introduce a typing discipline that ensures that processes never reduce to authorization errors, even when authorizations are dynamically delegated.
Dynamic description logic model for data integration
Guoshun HAO; Shilong MA; Yuefei SUI; Jianghua LV
2008-01-01
Data integration is the issue of retrieving and combining data residing at distributed and heterogeneous sources,and of providing users with transparent access without being aware of the details of the sources.Data integration is a very important issue because it deals with data infrastructure issues of coordinated computing systems.Despite its importance,the following key challenges make data integration one of the longest standing problems around:1) how to solve the system heterogeneity;2) how to build a global model;3) how to process queries automatically and correctly;and 4) how to solve semantic heterogeneity. This paper presents an extended dynamic description logic language to describe systems with dynamic actions.By this language,a-universal and unified model for relational database systems and a model for data integration are presented.This paper presents a universal and unified description logic model for relational databases.The model is universal because any relational database system can be automatically transformed to the model;it is unified because it integrates three essential components of relational databases together:description logic knowledge bases modeling the relational data,atomic modalities modeling the atomic relational operations,and combined modalities modeling the combined relational operations-queries. Furthermore,a description logic model for data integration is proposed which contains four layers of ontologies.Based on the model,a solution for each key challenge is proposed:a universal model eliminates system heterogeneity;a novel global model including three ontologies is proposed with some important benefits;a query process mechanism is provided by which user queries can be decomposed to queries over the sources;and for solving the semantic heterogeneity,this paper provides a framework under which semantic relations can be expressed and inferred. In summary,this paper presents a dynamic knowledge base framework by an extended
Dynamic mesh for TCAD modeling with ECORCE
Michez, A.; Boch, J.; Touboul, A.; Saigné, F.
2016-08-01
Mesh generation for TCAD modeling is challenging. Because densities of carriers can change by several orders of magnitude in thin areas, a significant change of the solution can be observed for two very similar meshes. The mesh must be defined at best to minimize this change. To address this issue, a criterion based on polynomial interpolation on adjacent nodes is proposed that adjusts accurately the mesh to the gradients of Degrees of Freedom. Furthermore, a dynamic mesh that follows changes of DF in DC and transient mode is a powerful tool for TCAD users. But, in transient modeling, adding nodes to a mesh induces oscillations in the solution that appears as spikes at the current collected at the contacts. This paper proposes two schemes that solve this problem. Examples show that using these techniques, the dynamic mesh generator of the TCAD tool ECORCE handle semiconductors devices in DC and transient mode.
Hamiltonian Dynamics of Cosmological Quintessence Models
Ivanov, Rossen I
2016-01-01
The time-evolution dynamics of two nonlinear cosmological real gas models has been reexamined in detail with methods from the theory of Hamiltonian dynamical systems. These examples are FRWL cosmologies, one based on a gas, satisfying the van der Waals equation and another one based on the virial expansion gas equation. The cosmological variables used are the expansion rate, given by the Hubble parameter, and the energy density. The analysis is aided by the existence of global first integral as well as several special (second) integrals in each case. In addition, the global first integral can serve as a Hamiltonian for a canonical Hamiltonian formulation of the evolution equations. The conserved quantities lead to the existence of stable periodic solutions (closed orbits) which are models of a cyclic Universe. The second integrals allow for explicit solutions as functions of time on some special trajectories and thus for a deeper understanding of the underlying physics. In particular, it is shown that any pos...
Multiscale Model Approach for Magnetization Dynamics Simulations
De Lucia, Andrea; Tretiakov, Oleg A; Kläui, Mathias
2016-01-01
Simulations of magnetization dynamics in a multiscale environment enable rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization and use either a micromagnetic or an atomistic model. To demonstrate the validity of the multiscale approach, we simulate the spin wave transmission across the regions simulated with the two different models and different discretizations. We find that the interface between the regions is fully transparent for spin waves with f...
Dynamic energy-demand models. A comparison
Yi, Feng [Department of Economics, Goeteborg University, Gothenburg (Sweden)
2000-04-01
This paper compares two second-generation dynamic energy demand models, a translog (TL) and a general Leontief (GL), in the study of price elasticities and factor substitutions of nine Swedish manufacturing industries: food, textiles, wood, paper, printing, chemicals, non-metallic minerals, base metals and machinery. Several model specifications are tested with likelihood ratio test. There is a disagreement on short-run adjustments; the TL model accepts putty-putty production technology of immediate adjustments, implying equal short- and long-run price elasticities of factors, while the GL model rejects immediate adjustments, giving out short-run elasticities quite different from the long-run. The two models also disagree in substitutability in many cases. 21 refs.
The dynamic radiation environment assimilation model (DREAM)
Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory
2010-01-01
The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.
Identification of helicopter rotor dynamic models
Molusis, J. A.; Bar-Shalom, Y.; Warmbrodt, W.
1983-01-01
A recursive, extended Kalman-filter approach is applied to the identifiction of rotor damping levels of representative helicopter dynamic systems. The general formulation of the approach is presented in the context of a typically posed stochastic estimation problem, and the method is analytically applied to determining the damping levels of a coupled rotor-body system. The identified damping covergence characteristics are studied for sensitivity to both constant-coefficient and periodic-coefficient measurement models, process-noise covariance levels, and specified initial estimates of the rotor-system damping. A second application of the method to identifying the plant model for a highly damped, isolated flapping blade with a constant-coefficient state model (hover) and a periodic-coefficient state model (forward flight) is also investigated. The parameter-identification capability is evaluated for the effect of periodicity on the plant model coefficients and the influence of different measurement noise levels.
Dynamical symmetries of the shell model
Van Isacker, P
2000-07-01
The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)
A Model for Nonstationary Market Dynamics with Nontrivial Dynamical Scaling
Liu, Min; Bassler, Kevin E.
2008-03-01
In a recent empirical analysis of the Euro/Dollar exchange rate [Bassler, et al., PNAS 104, 17287 (2007)] it was found that during certain periods of the day the market returns scale with Hurst exponents H that are significantly different from 1/2. In some of these periods it is less than 1/2, while in others it is greater than 1/2. In this talk we will propose a possible origin for this behavior and other stylized market facts, including short time negative autocorrelations of returns, in terms of a nonstationary compound Poisson process with a time-dependent intensity rate function that results from a changing bid-ask spread in the microscopic market. The model correctly describes the dynamic scaling behavior of a simple reaction-diffusion model of a limit-order book. That model, like the Euro/Dollar exchange rate, has nonstationary return increments and a Hurst exponent H not equal to 1/2.
Simple Models for the Dynamic Modeling of Rotating Tires
J.C. Delamotte
2008-01-01
Full Text Available Large Finite Element (FE models of tires are currently used to predict low frequency behavior and to obtain dynamic model coefficients used in multi-body models for riding and comfort. However, to predict higher frequency behavior, which may explain irregular wear, critical rotating speeds and noise radiation, FE models are not practical. Detailed FE models are not adequate for optimization and uncertainty predictions either, as in such applications the dynamic solution must be computed a number of times. Therefore, there is a need for simpler models that can capture the physics of the tire and be used to compute the dynamic response with a low computational cost. In this paper, the spectral (or continuous element approach is used to derive such a model. A circular beam spectral element that takes into account the string effect is derived, and a method to simulate the response to a rotating force is implemented in the frequency domain. The behavior of a circular ring under different internal pressures is investigated using modal and frequency/wavenumber representations. Experimental results obtained with a real untreaded truck tire are presented and qualitatively compared with the simple model predictions with good agreement. No attempt is made to obtain equivalent parameters for the simple model from the real tire results. On the other hand, the simple model fails to represent the correct variation of the quotient of the natural frequency by the number of circumferential wavelengths with the mode count. Nevertheless, some important features of the real tire dynamic behavior, such as the generation of standing waves and part of the frequency/wavenumber behavior, can be investigated using the proposed simplified model.
Dual-scale multimedia dynamic synchronization model
李乃祥
2009-01-01
Multimedia synchronization is the key technology in application of distributed multimedia.Solution of synchronization conflicts insides and among streams as well as that of user interaction,synchronization granularity refinement and synchronization precision improvement remain great challenges although great efforts have been invested by the academic circle.The construction method of a dual-scale dynamic synchronous model of multimedia presented in this article realizes multimedia synchronization on two sca...
Dynamic Modelling of a modular robot finger
2014-01-01
New generations of dexterous robotic hands with high degrees of freedom, integrated advanced sensors, improving power-to-weight ratio, have shown great potential for performing complex tasks beyond simple grasping such as manipulation and gaiting. With the help of control strategies such as impedance and compliance control, together with various compensation methods, researchers have achieved some success in performing dexterous tasks with robotic hands. However, the lack of a dynamic model o...
Modeling of glutamate-induced dynamical patterns
Faurby-Bentzen, Christian Krefeld; Zhabotinsky, A.M.; Laugesen, Jakob Lund
2009-01-01
Based on established physiological mechanisms, the paper presents a detailed computer model, which supports the hypothesis that temporal lobe epilepsy may be caused by failure of glutamate reuptake from the extracellular space. The elevated glutamate concentration causes an increased activation o...... of NMDA receptors in pyramidal neurons, which in turn leads to neuronal dynamics that is qualitatively identical to epileptiform activity. We identify by chaos analysis a surprising possibility that muscarinergic receptors can help the system out of a chaotic regime....
Molecular dynamics modelling of solidification in metals
Boercker, D.B.; Belak, J.; Glosli, J. [Lawrence Livermore National Lab., CA (United States)
1997-12-31
Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.
DYNAMIC FREE ENERGY HYSTERESIS MODEL IN MAGNETOSTRICTIVE ACTUATORS
无
2006-01-01
A dynamic free energy hysteresis model in magnetostrictive actuators is presented. It is the free energy hysteresis model coupled to an ordinary different equation in an unusual way. According to its special structure, numerical implementation method of the dynamic model is provided. The resistor parameter in the dynamic model changes according to different frequency ranges. This makes numerical implementation results reasonable in the discussed operating frequency range. The validity of the dynamic free energy model is illustrated by comparison with experimental data.
Stochastic dynamic model of SARS spreading
SHI Yaolin
2003-01-01
Based upon the simulation of the stochastic process of infection, onset and spreading of each SARS patient, a system dynamic model of SRAS spreading is constructed. Data from Vietnam is taken as an example for Monte Carlo test. The preliminary results indicate that the time-dependent infection rate is the most important control factor for SARS spreading. The model can be applied to prediction of the course with fluctuations of the epidemics, if the previous history of the epidemics and the future infection rate under control measures are known.
A dynamical model for bark beetle outbreaks.
Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew
2016-10-21
Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the
Conceptual Model of Dynamic Geographic Environment
Martínez-Rosales Miguel Alejandro
2014-04-01
Full Text Available In geographic environments, there are many and different types of geographic entities such as automobiles, trees, persons, buildings, storms, hurricanes, etc. These entities can be classified into two groups: geographic objects and geographic phenomena. By its nature, a geographic environment is dynamic, thus, it’s static modeling is not sufficient. Considering the dynamics of geographic environment, a new type of geographic entity called event is introduced. The primary target is a modeling of geographic environment as an event sequence, because in this case the semantic relations are much richer than in the case of static modeling. In this work, the conceptualization of this model is proposed. It is based on the idea to process each entity apart instead of processing the environment as a whole. After that, the so called history of each entity and its spatial relations to other entities are defined to describe the whole environment. The main goal is to model systems at a conceptual level that make use of spatial and temporal information, so that later it can serve as the semantic engine for such systems.
Directed network discovery with dynamic network modelling.
Anzellotti, Stefano; Kliemann, Dorit; Jacoby, Nir; Saxe, Rebecca
2017-05-01
Cognitive tasks recruit multiple brain regions. Understanding how these regions influence each other (the network structure) is an important step to characterize the neural basis of cognitive processes. Often, limited evidence is available to restrict the range of hypotheses a priori, and techniques that sift efficiently through a large number of possible network structures are needed (network discovery). This article introduces a novel modelling technique for network discovery (Dynamic Network Modelling or DNM) that builds on ideas from Granger Causality and Dynamic Causal Modelling introducing three key changes: (1) efficient network discovery is implemented with statistical tests on the consistency of model parameters across participants, (2) the tests take into account the magnitude and sign of each influence, and (3) variance explained in independent data is used as an absolute (rather than relative) measure of the quality of the network model. In this article, we outline the functioning of DNM, we validate DNM in simulated data for which the ground truth is known, and we report an example of its application to the investigation of influences between regions during emotion recognition, revealing top-down influences from brain regions encoding abstract representations of emotions (medial prefrontal cortex and superior temporal sulcus) onto regions engaged in the perceptual analysis of facial expressions (occipital face area and fusiform face area) when participants are asked to switch between reporting the emotional valence and the age of a face. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling the Dynamic Digestive System Microbiome
Anne M. Estes
2015-08-01
Full Text Available “Modeling the Dynamic Digestive System Microbiome” is a hands-on activity designed to demonstrate the dynamics of microbiome ecology using dried pasta and beans to model disturbance events in the human digestive system microbiome. This exercise demonstrates how microbiome diversity is influenced by: 1 niche availability and habitat space and 2 a major disturbance event, such as antibiotic use. Students use a pictorial key to examine prepared models of digestive system microbiomes to determine what the person with the microbiome “ate.” Students then model the effect of taking antibiotics by removing certain “antibiotic sensitive” pasta. Finally, they add in “environmental microbes” or “native microbes” to recolonize the digestive system, determine how resilient their model microbome community is to disturbance, and discuss the implications. Throughout the exercise, students discuss differences in the habitat space available and microbiome community diversity. This exercise can be modified to discuss changes in the microbiome due to diet shifts and the emergence of antibiotic resistance in more depth.
Dynamic model for the internal combustion engine
Rizzoni, G.
1986-01-01
Over the last decade there has been increasing interest in the application of control theory to passenger vehicles: stringent governmental regulations constraining fuel consumption and exhaust emissions have required a shift to integrated electronics controls. Unfortunately, the lack of robust global models for the dynamics of the IC engine has limited the application of the tools of control theory in this areas. This dissertation is devoted to the formulation of a robust model for the dynamics of the IC engine. The engine is viewed as a system with inputs given by cylinder pressure and net engine torque, and output corresponding to crankshaft angular acceleration. The model is well suited to closed loop engine and transmission control applications. The deterministic model provides a powerful tool for estimating average and instantaneous net engine torque based on a noncontacting measurement of crankshaft acceleration. The stochastic model explains cyclic pressure variations by an additive Gaussian WSS vector noise process. Further, it demonstrates that by means of a suitable linear transformation-invariant with load and RPM-, the noise process may be expressed in terms of a three-dimensional uncorrelated vector random process.
A Multiscale Model for Virus Capsid Dynamics
Changjun Chen
2010-01-01
Full Text Available Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.
Dynamical models of happiness with fractional order
Song, Lei; Xu, Shiyun; Yang, Jianying
2010-03-01
This present study focuses on a dynamical model of happiness described through fractional-order differential equations. By categorizing people of different personality and different impact factor of memory (IFM) with different set of model parameters, it is demonstrated via numerical simulations that such fractional-order models could exhibit various behaviors with and without external circumstance. Moreover, control and synchronization problems of this model are discussed, which correspond to the control of emotion as well as emotion synchronization in real life. This study is an endeavor to combine the psychological knowledge with control problems and system theories, and some implications for psychotherapy as well as hints of a personal approach to life are both proposed.
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Plausible cloth animation using dynamic bending model
Chuan Zhou; Xiaogang Jin; Charlie C.L. Wang; Jieqing Feng
2008-01-01
Simulating the mechanical behavior of a cloth is a very challenging and important problem in computer animation. The models of bending in most existing cloth simulation approaches are taking the assumption that the cloth is little deformed from a plate shape.Therefore, based on the thin-plate theory, these bending models do not consider the condition that the current shape of the cloth under large deformations cannot be regarded as the approximation to that before deformation, which leads to an unreal static bending. [This paper introduces a dynamic bending model which is appropriate to describe large out-plane deformations such as cloth buckling and bending, and develops a compact implementation of the new model on spring-mass systems. Experimental results show that wrinkles and folds generated using this technique in cloth simulation, can appear and vanish in a more natural way than other approaches.
Computational model of cellular metabolic dynamics
Li, Yanjun; Solomon, Thomas; Haus, Jacob M
2010-01-01
: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase......Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively...... distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes...
Modeling of Carrier Dynamics in Electroabsorption Modulators
Højfeldt, Sune
2002-01-01
and a phenomenological model for the carrier sweep-out dynamics, we investigate all-optical wavelength conversion, all-optical signal regeneration, and all-optical demultiplexing. A detailed drift-diffusion type model for the sweerp-out of photo-excited carriers in electroabsorption modulators is presented. We use...... the model to calclulate absorption spectra and steady-state carrier distributions in different modulator structures. This allows us to investigate a number of important properties of electroabsorption modulators, such as the electroabsorption effect and th saturation properties. We also investigate...... the influence that carrier recapture has on the device properties, and we discuss the recapture process on a more fundamental level. The model is also used to investigate in detail the carrier sweep-out process in electroabsorption modulators. We investigate how the intrinsic-region width, the separate...
Random graph models for dynamic networks
Zhang, Xiao; Newman, M E J
2016-01-01
We propose generalizations of a number of standard network models, including the classic random graph, the configuration model, and the stochastic block model, to the case of time-varying networks. We assume that the presence and absence of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. In addition to computing equilibrium properties of these models, we demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data. This allows us, for instance, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate our methods with a selection of applications, both to computer-generated test networks and real-world examples.
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
Dynamic Modeling of the SMAP Rotating Flexible Antenna
Nayeri, Reza D.
2012-01-01
Dynamic model development in ADAMS for the SMAP project is explained: The main objective of the dynamic models are for pointing error assessment, and the control/stability margin requirement verifications
Dynamic Modeling of the SMAP Rotating Flexible Antenna
Nayeri, Reza D.
2012-01-01
Dynamic model development in ADAMS for the SMAP project is explained: The main objective of the dynamic models are for pointing error assessment, and the control/stability margin requirement verifications
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems.
Ogbunugafor, C Brandon; Robinson, Sean P
2016-01-01
Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs) by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of "ODEs and formalized flow diagrams" as OFFL.) Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler's behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features.
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems.
C Brandon Ogbunugafor
Full Text Available Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of "ODEs and formalized flow diagrams" as OFFL. Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler's behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features.
The Exactly Solvable Simplest Model for Queue Dynamics
Y. Sugiyama; Yamada, H.
1996-01-01
We present an exactly solvable model for queue dynamics. Our model is very simple but provides the essential property for such dynamics. As an example, the model has the traveling cluster solution as well as the homogeneous flow solution. The model is the limiting case of Optimal Velocity (OV) model, which is proposed for the car following model to induce traffic jam spontaneously.
A nonparametric dynamic additive regression model for longitudinal data
Martinussen, Torben; Scheike, Thomas H.
2000-01-01
dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models......dynamic linear models, estimating equations, least squares, longitudinal data, nonparametric methods, partly conditional mean models, time-varying-coefficient models...
Mathematical Modeling Social Responsibility for Dynamic Organizations
Farzaneh Chavoshbashi
2012-03-01
Full Text Available Dynamic organizations as accountable organizations, for transparency and accountability to its stakeholders to stakeholders for their toward performance there should express their commitment to social responsibility are through their values and ensure that this commitment throughout the organization are now and thus will have a social responsibility for their mutual benefit, so there is more and more coherent in their ethical approach takes advantage and the community and stakeholders and the organization will have better performance and strengths. Because of interest in social responsibility, in this paper dynamic model is presented for Corporate Social Responsibility of Bionic organization. Model presented a new model is inspired by chaos theory and natural systems theory based on bifurcation in creation to be all natural systems, realizing the value of responsibility as one of the fundamental values of social and institutional development that the relationship between business and work environment in the global market economy and range will be specified. First Social Responsibility factors identified, then experts and scholars determine the weight of the components and technical coefficient for modeling and paired comparison has been done using MATLAB mathematical Software.
Mathematical Model of Porous Medium Dynamics
Gerschuk, Peotr; Sapozhnikov, Anatoly
1999-06-01
Semiempirical model describing porous material strains under pulse mechanical and thermal loadings is proposed. Porous medium is considered as continuous one but with special form of pressure dependence upon strain. This model takes into account principal features of porous materials behavior which can be observed when the material is strained in dynamic and static experiments ( non-reversibility of large strains, nonconvexity of loading curve). Elastoplastic properties of porous medium, its damages when it is strained and dynamic fracture are also taken into account. Dispersion of unidirectional motion caused by medium heterogeneity (porousness) is taken into acount by introducing the physical viscosity depending upon pores size. It is supposed that at every moment of time pores are in equilibrium with pressure i.e. kinetic of pores collapse is not taken into account. The model is presented by the system of differential equations connecting pressure and energy of porous medium with its strain. These equations close system of equations of motion and continuity which then is integrated numerically. The proposed model has been tested on carbon materials and porous copper . Results of calculation of these materials shock compressing are in satisfactory agreement with experimental data. Results of calculation of thin plate with porous copper layer collision are given as an illustration.
MSMBuilder: Statistical Models for Biomolecular Dynamics.
Harrigan, Matthew P; Sultan, Mohammad M; Hernández, Carlos X; Husic, Brooke E; Eastman, Peter; Schwantes, Christian R; Beauchamp, Kyle A; McGibbon, Robert T; Pande, Vijay S
2017-01-10
MSMBuilder is a software package for building statistical models of high-dimensional time-series data. It is designed with a particular focus on the analysis of atomistic simulations of biomolecular dynamics such as protein folding and conformational change. MSMBuilder is named for its ability to construct Markov state models (MSMs), a class of models that has gained favor among computational biophysicists. In addition to both well-established and newer MSM methods, the package includes complementary algorithms for understanding time-series data such as hidden Markov models and time-structure based independent component analysis. MSMBuilder boasts an easy to use command-line interface, as well as clear and consistent abstractions through its Python application programming interface. MSMBuilder was developed with careful consideration for compatibility with the broader machine learning community by following the design of scikit-learn. The package is used primarily by practitioners of molecular dynamics, but is just as applicable to other computational or experimental time-series measurements. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A dynamic network model for interbank market
Xu, Tao; He, Jianmin; Li, Shouwei
2016-12-01
In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems
2016-01-01
Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs) by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of “ODEs and formalized flow diagrams” as OFFL.) Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler’s behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features. PMID:27270918
Dynamical model for Pion-Nucleon Bremsstrahlung
Mariano, A V
2000-01-01
A dynamical model based on effective Lagrangians is proposed to describe the bremsstrahlung reaction $ \\pi N \\to \\pi N \\gamma$ at low energies. The $\\Delta(1232)$ degrees of freedom are incorporated in a way consistent with both, electromagnetic gauge invariance and invariance under contact transformations. The model also includes the initial and final state rescattering of hadrons via a T-matrix with off-shell effects. The $\\pi N \\gamma$ differential cross sections are calculated using three different T-matrix models and the results are compared with the soft photon approximation, and with experimental data. The aim of this analysis is to test the off-shell behavior of the different T-matrices under consideration.
Dynamic model of Fast Breeder Test Reactor
Vaidyanathan, G., E-mail: vaidya@igcar.gov.i [Fast Reactor Technology Group, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Kasinathan, N.; Velusamy, K. [Fast Reactor Technology Group, Indira Gandhi Center for Atomic Research, Kalpakkam (India)
2010-04-15
Fast Breeder Test Reactor (FBTR) is a 40 M Wt/13.2 MWe sodium cooled reactor operating since 1985. It is a loop type reactor. As part of the safety analysis the response of the plant to various transients is needed. In this connection a computer code named DYNAM was developed to model the reactor core, the intermediate heat exchanger, steam generator, piping, etc. This paper deals with the mathematical model of the various components of FBTR, the numerical techniques to solve the model, and comparison of the predictions of the code with plant measurements. Also presented is the benign response of the plant to a station blackout condition, which brings out the role of the various reactivity feedback mechanisms combined with a gradual coast down of reactor sodium flow.
Modelling Market Dynamics with a "Market Game"
Katahira, Kei; Chen, Yu
In the financial market, traders, especially speculators, typically behave as to yield capital gains by the difference between selling and buying prices. Making use of the structure of Minority Game, we build a novel market toy model which takes account of such the speculative mind involving a round-trip trade to analyze the market dynamics as a system. Even though the micro-level behavioral rules of players in this new model is quite simple, its macroscopic aggregational output has the reproducibility of the well-known stylized facts such as volatility clustering and heavy tails. The proposed model may become a new alternative bottom-up approach in order to study the emerging mechanism of those stylized qualitative properties of asset returns.
Dynamics of a Stochastic Intraguild Predation Model
Zejing Xing
2016-04-01
Full Text Available Intraguild predation (IGP is a widespread ecological phenomenon which occurs when one predator species attacks another predator species with which it competes for a shared prey species. The objective of this paper is to study the dynamical properties of a stochastic intraguild predation model. We analyze stochastic persistence and extinction of the stochastic IGP model containing five cases and establish the sufficient criteria for global asymptotic stability of the positive solutions. This study shows that it is possible for the coexistence of three species under the influence of environmental noise, and that the noise may have a positive effect for IGP species. A stationary distribution of the stochastic IGP model is established and it has the ergodic property, suggesting that the time average of population size with the development of time is equal to the stationary distribution in space. Finally, we show that our results may be extended to two well-known biological systems: food chains and exploitative competition.
Agent-based modeling and network dynamics
Namatame, Akira
2016-01-01
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...
Dynamic Process of Money Transfer Models
Wang, Y; Wang, Yougui; Ding, Ning
2005-01-01
We have studied numerically the statistical mechanics of the dynamic phenomena, including money circulation and economic mobility, in some transfer models. The models on which our investigations were performed are the basic model proposed by A. Dragulescu and V. Yakovenko [1], the model with uniform saving rate developed by A. Chakraborti and B.K. Chakrabarti [2], and its extended model with diverse saving rate [3]. The velocity of circulation is found to be inversely related with the average holding time of money. In order to check the nature of money transferring process in these models, we demonstrated the probability distributions of holding time. In the model with uniform saving rate, the distribution obeys exponential law, which indicates money transfer here is a kind of Poisson process. But when the saving rate is set diversely, the holding time distribution follows a power law. The velocity can also be deduced from a typical individual's optimal choice. In this way, an approach for building the micro-...
Mineral vein dynamics modelling (FRACS II)
Urai, J.; Virgo, S.; Arndt, M. [RWTH Aachen (Germany); and others
2016-08-15
The Mineral Vein Dynamics Modeling group ''FRACS'' started out as a team of 7 research groups in its first phase and continued with a team of 5 research groups at the Universities of Aachen, Tuebingen, Karlsruhe, Mainz and Glasgow during its second phase ''FRACS 11''. The aim of the group was to develop an advanced understanding of the interplay between fracturing, fluid flow and fracture healing with a special emphasis on the comparison of field data and numerical models. Field areas comprised the Oman mountains in Oman (which where already studied in detail in the first phase), a siliciclastic sequence in the Internal Ligurian Units in Italy (closed to Sestri Levante) and cores of Zechstein carbonates from a Lean Gas reservoir in Northern Germany. Numerical models of fracturing, sealing and interaction with fluid that were developed in phase I where expanded in phase 11. They were used to model small scale fracture healing by crystal growth and the resulting influence on flow, medium scale fracture healing and its influence on successive fracturing and healing, as well as large scale dynamic fluid flow through opening and closing fractures and channels as a function of fluid overpressure. The numerical models were compared with structures in the field and we were able to identify first proxies for mechanical vein-hostrock properties and fluid overpressures versus tectonic stresses. Finally we propose a new classification of stylolites based on numerical models and observations in the Zechstein cores and continued to develop a new stress inversion tool to use stylolites to estimate depth of their formation.
A dynamic model of the wormhole and the Multiverse model
Shatskii, A A; Kardashev, N S [Astro-Space Centre of the P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Novikov, I D [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)
2008-05-31
An analytic solution methodology for general relativity (GR) equations describing the hypothetical phenomenon of wormholes is presented and the analysis of wormholes in terms of their physical properties is discussed. An analytic solution of the GR equations for static and dynamic spherically symmetric wormholes is given. The dynamic solution generally describes a 'traversable' wormhole, i.e., one allowing matter, energy, and information to pass through it. It is shown how the energy-momentum tensor of matter in a wormhole can be represented in a form allowing the GR equations to be solved analytically, which has a crucial methodological importance for analyzing the properties of the solution obtained. The energy-momentum tensor of wormhole matter is represented as a superposition of a spherically symmetric magnetic (or electric) field and negative-density dust matter, serving as exotic matter necessary for a 'traversable' wormhole to exist. The dynamics of the model are investigated. A similar model is considered (and analyzed in terms of inflation) for the Einstein equations with a {lambda} term. Superposing enough dust matter, a magnetic field, and a {lambda} term can produce a static solution, which turns out to be a spherical Multiverse model with an infinite number of wormhole-connected spherical universes. This Multiverse can have its total energy positive everywhere in space, and in addition can be out of equilibrium (i.e., dynamic). (methodological notes)
Modeling cell dynamics under mobile phone radiation.
Minelli, Tullio Antonio; Balduzzo, Maurizio; Milone, Francesco Ferro; Nofrate, Valentina
2007-04-01
Perturbations by pulse-modulated microwave radiation from GSM mobile phones on neuron cell membrane gating and calcium oscillations have been suggested as a possible mechanism underlying activation of brain states and electroencephalographic epiphenomena. As the employ of UMTS phones seems to reveal other symptoms, a unified phenomenological framework is needed. In order to explain possible effects of mobile phone radiation on cell oscillations, GSM and UMTS low-frequency envelopes have been detected, recorded and used as input in cell models. Dynamical systems endowed with contiguous regular and chaotic regimes suitable to produce stochastic resonance can both account for the perturbation of the neuro-electrical activity and even for the low intensity of the signal perceived by high sensitive subjects. Neuron models of this kind can be employed as a reductionist hint for the mentioned phenomenology. The Hindmarsh-Rose model exhibits frequency enhancement and regularization phenomena induced by weak GSM and UMTS. More realistic simulations of cell membrane gating and calcium oscillations have been performed with the help of an adaptation of the Chay-Keizer dynamical system. This scheme can explain the suspected subjective sensitivity to mobile phone signals under the thermal threshold, in terms of cell calcium regularity mechanisms. Concerning the two kinds of emission, the stronger occupation of the ELF band of last generation UMTS phones is compensated by lower power emitted.
Dynamical Vertex Approximation for the Hubbard Model
Toschi, Alessandro
A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.
Nonlocal Crowd Dynamics Models for several Populations
Colombo, Rinaldo M
2011-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models. Where well posedness was known only locally in time, it is here extended to all of $\\reali^+$. The results on the stability with respect to the equations are improved. Moreover, here the case of several populations is considered, obtaining the well posedness of systems of multi-D non-local conservation laws. The basic analytical tools are provided by the classical Kruzkov theory of scalar conservation laws in several space dimensions.
GE Rong-Chun; LI Chuan-Feng; GUO Guang-Can
2012-01-01
We investigate the dynamics of entanglement,quantum correlation and classical correlation for the one-dimensional XY model in a transverse magnetic field.With the initial state polarized along the z axis,we find that the first maximum of the classical correlation between the nearest neighbor sites peaks around the critical point for large anisotropy parameter.It may indicate the quantum phase transition.For all kinds of correlation,we find that their behaviors between the nearest neighbor sites are significantly different from those of the next-nearestneighbor sites.
Schwinger model simulations with dynamical overlap fermions
Bietenholz, W; Volkholz, J
2007-01-01
We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate Sigma vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain -- for the very light fermion masses -- values for $\\Sigma$ that follow closely the analytical predictions in the continuum.
Schwinger model simulations with dynamical overlap fermions
Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shcheredin, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2007-11-15
We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate {sigma} vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain - for the very light fermion masses - values for {sigma} that follow closely the analytical predictions in the continuum. (orig.)
A Model for Dynamic Adaptive Coscheduling
LU Sanglu; ZHOU Xiaobo; XIE Li
1999-01-01
This paper proposes a dynamic adaptive coscheduling modelDASIC to take advantage of excess available resources in anetwork of workstations (NOW). Besides coscheduling related subtasksdynamically, DASIC can scale up or down the process space dependingupon the number of available processors on an NOW. Based on thedynamic idle processor group (IPG), DASIC employs three modules: thecoscheduling module, the scalable scheduling module and the loadbalancing module, and uses six algorithms to achieve scalability. Asimplified DASIC was also implemented, and experimental results arepresented in this paper, which show that it can maximize systemutilization, and achieve task parallelism as much as possible.
NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS
Rinaldo M. Colombo; Magali Lécureux-Mercier
2012-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models.Where well posedness was known only locally in time,it is here extended to all of R+.The results on the stability with respect to the equations are improved.Moreover,here the case of several populations is considered,obtaining the well posedness of systems of multi-D non-local conservation laws.The basic analytical tools are provided by the classical Kru(z)kov theory of scalar conservation laws in several space dimensions.
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.
Dynamic HMM Model with Estimated Dynamic Property in Continuous Mandarin Speech Recognition
CHENFeili; ZHUJie
2003-01-01
A new dynamic HMM (hiddem Markov model) has been introduced in this paper, which describes the relationship between dynamic property and feature of space. The method to estimate the dynamic property is discussed in this paper, which makes the dynamic HMMmuch more practical in real time speech recognition. Ex-periment on large vocabulary continuous Mandarin speech recognition task has shown that the dynamic HMM model can achieve about 10% of error reduction both for tonal and toneless syllable. Estimated dynamic property can achieve nearly same (even better) performance than using extracted dynamic property.
Unsteady aerodynamics modeling for flight dynamics application
Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan
2012-02-01
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.
Complex networks repair strategies: Dynamic models
Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang
2017-09-01
Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree and enhances network invulnerability.
Unsteady aerodynamics modeling for flight dynamics application
Qing Wang; Kai-Feng He; Wei-Qi Qian; Tian-Jiao Zhang; Yan-Qing Cheng; Kai-Yuan Wu
2012-01-01
In view of engineering application,it is practicable to decompose the aerodynamics into three components:the static aerodynamics,the aerodynamic increment due to steady rotations,and the aerodynamic increment due to unsteady separated and vortical flow.The first and the second components can be presented in conventional forms,while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration,the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch,yaw,roll,and coupled yawroll large-amplitude oscillations.The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics,respectively.The results show that:(1) unsteady aerodynamics has no effect upon the existence of trim points,but affects their stability; (2) unsteady aerodynamics has great effects upon the existence,stability,and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously.Furthermore,the dynamic responses of the aircraft to elevator deflections are inspected.It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft.Finally,the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.
Modeling mitochondrial bioenergetics with integrated volume dynamics.
Jason N Bazil
2010-01-01
Full Text Available Mathematical models of mitochondrial bioenergetics provide powerful analytical tools to help interpret experimental data and facilitate experimental design for elucidating the supporting biochemical and physical processes. As a next step towards constructing a complete physiologically faithful mitochondrial bioenergetics model, a mathematical model was developed targeting the cardiac mitochondrial bioenergetic based upon previous efforts, and corroborated using both transient and steady state data. The model consists of several modified rate functions of mitochondrial bioenergetics, integrated calcium dynamics and a detailed description of the K(+-cycle and its effect on mitochondrial bioenergetics and matrix volume regulation. Model simulations were used to fit 42 adjustable parameters to four independent experimental data sets consisting of 32 data curves. During the model development, a certain network topology had to be in place and some assumptions about uncertain or unobserved experimental factors and conditions were explicitly constrained in order to faithfully reproduce all the data sets. These realizations are discussed, and their necessity helps contribute to the collective understanding of the mitochondrial bioenergetics.
Modeling mitochondrial bioenergetics with integrated volume dynamics.
Bazil, Jason N; Buzzard, Gregery T; Rundell, Ann E
2010-01-01
Mathematical models of mitochondrial bioenergetics provide powerful analytical tools to help interpret experimental data and facilitate experimental design for elucidating the supporting biochemical and physical processes. As a next step towards constructing a complete physiologically faithful mitochondrial bioenergetics model, a mathematical model was developed targeting the cardiac mitochondrial bioenergetic based upon previous efforts, and corroborated using both transient and steady state data. The model consists of several modified rate functions of mitochondrial bioenergetics, integrated calcium dynamics and a detailed description of the K(+)-cycle and its effect on mitochondrial bioenergetics and matrix volume regulation. Model simulations were used to fit 42 adjustable parameters to four independent experimental data sets consisting of 32 data curves. During the model development, a certain network topology had to be in place and some assumptions about uncertain or unobserved experimental factors and conditions were explicitly constrained in order to faithfully reproduce all the data sets. These realizations are discussed, and their necessity helps contribute to the collective understanding of the mitochondrial bioenergetics.
Computational social dynamic modeling of group recruitment.
Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken (Sandia National Laboratories, Albuquerque, NM); Smrcka, Julianne D. (Sandia National Laboratories, Albuquerque, NM); Ko, Teresa H.; Moy, Timothy David (Sandia National Laboratories, Albuquerque, NM); Wu, Benjamin C.
2004-01-01
The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.
Hybrid modeling and prediction of dynamical systems
Lloyd, Alun L.; Flores, Kevin B.
2017-01-01
Scientific analysis often relies on the ability to make accurate predictions of a system’s dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. At the other end of the spectrum exist nonparametric methods, which rely solely on data to build their predictions. While these nonparametric methods do not require a model of the system, their performance is strongly influenced by the amount and noisiness of the data. In this article, we consider a hybrid approach to modeling and prediction which merges recent advancements in nonparametric analysis with standard parametric methods. The general idea is to replace a subset of a mechanistic model’s equations with their corresponding nonparametric representations, resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid approach allows for more robust parameter estimation and improved short-term prediction in situations where there is a large uncertainty in model parameters. We demonstrate these advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose neurons before application to experimentally collected structured population data. PMID:28692642
Testing substellar models with dynamical mass measurements
Liu M.C.
2011-07-01
Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.
Dynamic Factor Method of Computing Dynamic Mathematical Model for System Simulation
老大中; 吴娟; 杨策; 蒋滋康
2003-01-01
The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of the dynamic mathematical model is researched. By means of theoretical analysis, the error formulas, the error sign criteria and the error relationship criterion of the implicit Euler method and the trapezoidal method are given, the dynamic factor affecting the computational accuracy has been found, the formula and the methods of computing the dynamic factor are given. The computational accuracy of the dynamic mathematical model like this can be improved by use of the dynamic factor.
Modeling Robot Dynamic Performance for Endpoint Force Control
1988-08-01
Task Dynamics 55 2.5.1 The Dynamic Workpiece Model 55 2.5.2 Adding Robot Dynamics 56 2.5.3 Adding Actuator Dynamics 56 Tabie I o iiau 6 2.6 Grip...motion control system. Robot dynamics couple with the task dynamics in a very complex way. When the robot makes contact with the environment, the impact...robot flexibility or actuator dynamics. 2.5.2 Adding Robot Dynamics Figure 2.29 shows the robot now represented by two lumped masses, as in the robot
A Simple General Model of Evolutionary Dynamics
Thurner, Stefan
Evolution is a process in which some variations that emerge within a population (of, e.g., biological species or industrial goods) get selected, survive, and proliferate, whereas others vanish. Survival probability, proliferation, or production rates are associated with the "fitness" of a particular variation. We argue that the notion of fitness is an a posteriori concept in the sense that one can assign higher fitness to species or goods that survive but one can generally not derive or predict fitness per se. Whereas proliferation rates can be measured, fitness landscapes, that is, the inter-dependence of proliferation rates, cannot. For this reason we think that in a physical theory of evolution such notions should be avoided. Here we review a recent quantitative formulation of evolutionary dynamics that provides a framework for the co-evolution of species and their fitness landscapes (Thurner et al., 2010, Physica A 389, 747; Thurner et al., 2010, New J. Phys. 12, 075029; Klimek et al., 2009, Phys. Rev. E 82, 011901 (2010). The corresponding model leads to a generic evolutionary dynamics characterized by phases of relative stability in terms of diversity, followed by phases of massive restructuring. These dynamical modes can be interpreted as punctuated equilibria in biology, or Schumpeterian business cycles (Schumpeter, 1939, Business Cycles, McGraw-Hill, London) in economics. We show that phase transitions that separate phases of high and low diversity can be approximated surprisingly well by mean-field methods. We demonstrate that the mathematical framework is suited to understand systemic properties of evolutionary systems, such as their proneness to collapse, or their potential for diversification. The framework suggests that evolutionary processes are naturally linked to self-organized criticality and to properties of production matrices, such as their eigenvalue spectra. Even though the model is phrased in general terms it is also practical in the sense
Radiative and dynamical modeling of Jupiter's atmosphere
Guerlet, Sandrine; Spiga, Aymeric
2016-04-01
Jupiter's atmosphere harbours a rich meteorology, with alternate westward and eastward zonal jets, waves signatures and long-living storms. Recent ground-based and spacecraft measurements have also revealed a rich stratospheric dynamics, with the observation of thermal signatures of planetary waves, puzzling meridional distribution of hydrocarbons at odds with predictions of photochemical models, and a periodic equatorial oscillation analogous to the Earth's quasi-biennal oscillation and Saturn's equatorial oscillation. These recent observations, along with the many unanswered questions (What drives and maintain the equatorial oscillations? How important is the seasonal forcing compared to the influence of internal heat? What is the large-scale stratospheric circulation of these giant planets?) motivated us to develop a complete 3D General Circulation Model (GCM) of Saturn and Jupiter. We aim at exploring the large-scale circulation, seasonal variability, and wave activity from the troposphere to the stratosphere of these giant planets. We will briefly present how we adapted our existing Saturn GCM to Jupiter. One of the main change is the addition of a stratospheric haze layer made of fractal aggregates in the auroral regions (poleward of 45S and 30N). This haze layer has a significant radiative impact by modifying the temperature up to +/- 15K in the middle stratosphere. We will then describe the results of radiative-convective simulations and how they compare to recent Cassini and ground-based temperature measurements. These simulations reproduce surprisingly well some of the observed thermal vertical and meridional gradients, but several important mismatches at low and high latitudes suggest that dynamics also plays an important role in shaping the temperature field. Finally, we will present full GCM simulations and discuss the main resulting features (waves and instabilities). We will also and discuss the impact of the choice of spatial resolution and
Quench dynamics of the anisotropic Heisenberg model.
Liu, Wenshuo; Andrei, Natan
2014-06-27
We develop an analytical approach for the study of the quench dynamics of the anisotropic Heisenberg model (XXZ model) on the infinite line. We present the exact time-dependent wave functions after a quench in an integral form for any initial state and for any anisotropy Δ by means of a generalized Yudson contour representation. We calculate the evolution of several observables from two particular initial states: starting from a local Néel state we calculate the time evolution of the antiferromagnetic order parameter-staggered magnetization; starting from a state with consecutive flipped spins (1) we calculate the evolution of the local magnetization and express it in terms of the propagation of magnons and bound state excitations, and (2) we predict the evolution of the induced spin currents. These predictions can be confronted with experiments in ultracold gases in optical lattices. We also show how the "string" solutions of Bethe ansatz equations emerge naturally from the contour approach.
Driven dynamics of simplified tribological models
Vanossi, A.; Braun, O. M.
2007-08-01
Over the last decade, remarkable developments in nanotechnology, notably the use of atomic and friction force microscopes (AFM/FFM), the surface-force apparatus (SFA) and the quartz-crystal microbalance (QCM), have provided the possibility to build experimental devices able to perform analysis on well-characterized materials at the nano- and microscale. Simultaneously, tremendous advances in computing hardware and methodology (molecular dynamics techniques and ab initio calculations) have dramatically increased the ability of theoreticians to simulate tribological processes, supplying very detailed information on the atomic scale for realistic sliding systems. This acceleration in experiments and computations, leading often to very detailed yet complex data, has deeply stimulated the search, rediscovery and implementation of simpler mathematical models such as the generalized Frenkel-Kontorova and Tomlinson models, capable of describing and interpreting, in a more immediate way, the essential physics involved in nonlinear sliding phenomena.
Organic production in a dynamic CGE model
Jacobsen, Lars Bo
2004-01-01
Concerns about the impact of modern agriculture on the environment have in recent years led to an interest in supporting the development of organic farming. In addition to environmental benefits, the aim is to encourage the provision of other “multifunctional” properties of organic farming...... such as rural amenities and rural development that are spillover benefit additional to the supply of food. In this paper we further develop an existing dynamic general equilibrium model of the Danish economy to specifically incorporate organic farming. In the model and input-output data each primary...... to illustrate the working of our theory by constructing a long term forecast for the development of the Danish economy. Moreover we simulate the effect of the recent agreed 2003 reform of the common agricultural policy....
Dynamic modelling of packaging material flow systems.
Tsiliyannis, Christos A
2005-04-01
A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data.
Nonsmooth mechanics models, dynamics and control
Brogliato, Bernard
2016-01-01
Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given in-depth exposition connected by a framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements and with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—incl...
Modeling quantum fluid dynamics at nonzero temperatures
Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.
2014-03-01
The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures.
A Model of Project and Organisational Dynamics
Jenny Leonard
2012-04-01
Full Text Available The strategic, transformational nature of many information systems projects is now widely understood. Large-scale implementations of systems are known to require significant management of organisational change in order to be successful. Moreover, projects are rarely executed in isolation – most organisations have a large programme of projects being implemented at any one time. However, project and value management methodologies provide ad hoc definitions of the relationship between a project and its environment. This limits the ability of an organisation to manage the larger dynamics between projects and organisations, over time, and between projects. The contribution of this paper, therefore, is to use literature on organisational theory to provide a more systematic understanding of this area. The organisational facilitators required to obtain value from a project are categorised, and the processes required to develop those facilitators are defined. This formalisation facilitates generalisation between projects and highlights any time and path dependencies required in developing organisational facilitators. The model therefore has the potential to contribute to the development of IS project management theory within dynamic organisational contexts. Six cases illustrate how this model could be used.
Modeling habitat dynamics accounting for possible misclassification
Veran, Sophie; Kleiner, Kevin J.; Choquet, Remi; Collazo, Jaime; Nichols, James D.
2012-01-01
Land cover data are widely used in ecology as land cover change is a major component of changes affecting ecological systems. Landscape change estimates are characterized by classification errors. Researchers have used error matrices to adjust estimates of areal extent, but estimation of land cover change is more difficult and more challenging, with error in classification being confused with change. We modeled land cover dynamics for a discrete set of habitat states. The approach accounts for state uncertainty to produce unbiased estimates of habitat transition probabilities using ground information to inform error rates. We consider the case when true and observed habitat states are available for the same geographic unit (pixel) and when true and observed states are obtained at one level of resolution, but transition probabilities estimated at a different level of resolution (aggregations of pixels). Simulation results showed a strong bias when estimating transition probabilities if misclassification was not accounted for. Scaling-up does not necessarily decrease the bias and can even increase it. Analyses of land cover data in the Southeast region of the USA showed that land change patterns appeared distorted if misclassification was not accounted for: rate of habitat turnover was artificially increased and habitat composition appeared more homogeneous. Not properly accounting for land cover misclassification can produce misleading inferences about habitat state and dynamics and also misleading predictions about species distributions based on habitat. Our models that explicitly account for state uncertainty should be useful in obtaining more accurate inferences about change from data that include errors.
Microscopic to Macroscopic Dynamical Models of Sociality
Solis Salas, Citlali; Woolley, Thomas; Pearce, Eiluned; Dunbar, Robin; Maini, Philip; Social; Evolutionary Neuroscience Research Group (Senrg) Collaboration
To help them survive, social animals, such as humans, need to share knowledge and responsibilities with other members of the species. The larger their social network, the bigger the pool of knowledge available to them. Since time is a limited resource, a way of optimising its use is meeting amongst individuals whilst fulfilling other necessities. In this sense it is useful to know how many, and how often, early humans could meet during a given period of time whilst performing other necessary tasks, such as food gathering. Using a simplified model of these dynamics, which comprehend encounter and memory, we aim at producing a lower-bound to the number of meetings hunter-gatherers could have during a year. We compare the stochastic agent-based model to its mean-field approximation and explore some of the features necessary for the difference between low population dynamics and its continuum limit. We observe an emergent property that could have an inference in the layered structure seen in each person's social organisation. This could give some insight into hunter-gatherer's lives and the development of the social layered structure we have today. With support from the Mexican Council for Science and Technology (CONACyT), the Public Education Secretariat (SEP), and the Mexican National Autonomous University's Foundation (Fundacion UNAM).
DYNAMIC MODELLING OF VIBRATIONS ASSISTED DRILLING
Mathieu LADONNE
2015-05-01
Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.
High Temperature Dynamic Hohlraums on the Pulsed Power Driver Z.
Nash, Thomas J.
1998-11-01
In the concept of the dynamic hohlraum an imploding z-pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision the radiation temperature may continue to increase due to ongoing PdV work done by the implosion. In principal the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 MA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 we imploded a nested tungsten wire array of 4 and 2 cm diameters with masses of 2 and 1 mg onto a 2.5 mg plastic annulus at 5 mm diameter. The current return can on this shot was slotted. We anticipate that the radiation temperature may be increased to over 200 eV by stabilizing the pinch with a solid current return can. A current return can with 9 slots imprints 9 filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diameter capsule situated inside this dynamic hohlraum of zp214 would see 50 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diameter. Dynamic hohlraum shots including pellets are scheduled to take place on Z in September of 1998. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the US-DOE under contract DE-AC04-94AL85000.
Partially dynamic vehicle routing - models and algorithms
Larsen, Allan; Madsen, Oli B.G.; Solomon, M.
2002-01-01
In this paper we propose a framework for dynamic routing systems based on their degree of dynamism. Next, we consider its impact on solution methodology and quality. Specifically, we introduce the Partially Dynamic Travelling Repairman Problem and describe several dynamic policies to minimize rou...
Dynamic hysteresis modeling including skin effect using diffusion equation model
Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader
2016-07-01
An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.
Dynamic hysteresis modeling including skin effect using diffusion equation model
Hamada, Souad, E-mail: souadhamada@yahoo.fr [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Louai, Fatima Zohra, E-mail: fz_louai@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Nait-Said, Nasreddine, E-mail: n_naitsaid@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Benabou, Abdelkader, E-mail: Abdelkader.Benabou@univ-lille1.fr [L2EP, Université de Lille1, 59655 Villeneuve d’Ascq (France)
2016-07-15
An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.
Modeling boreal fire and forest dynamics
de Groot, W. J.; McRae, D. J.; Cantin, A.
2009-04-01
The circumpolar boreal forest covers about 1.4 billion ha, representing 1/3 of global forest land. Approximately 2/3 of the boreal forest is located in Eurasia and the remainder in North America. Wildland fires annually burn an estimated 12-20 M ha across the entire boreal region, having a major influence on forest structure and composition. However, fire weather, fire behaviour, and fire ecology differ greatly between the boreal forests in eastern and western hemispheres, which have significant impact on tree survival, post-fire regeneration and forest succession. Every year, wildland fires in Canada and Alaska burn an average of 2-3 M ha, primarily by stand-replacing, high intensity crown fires. By comparison, Russian fires burn about 10-15 M ha annually, primarily by low to moderate intensity surface fires that cause minimal tree mortality. Fire weather conditions in the most fire prone regions of Russia are generally more severe than in similar regions of North America. Finally, the species composition of eastern and western boreal forests is also very different. Russian forests are dominated by larch (30%) and pine (28%) with lower components of spruce (14%) and poplar/birch hardwoods (18%) By contrast, Canadian forests are comprised mainly of spruce (35%), pine (22%), poplar/birch (16%), and fir (9%). All of these factors contribute to the variability in vegetation dynamics occurring within the circumpolar boreal region. This modeling study examines the interactions of fire weather, forest composition, fire behaviour, and fire ecology on forest vegetation dynamics within the boreal region. Similar active fire zones in western Canada and eastern Siberia were used as study sites. Historical weather data were collected for both locations and used to calculate fire weather data, which were used as primary driving variables for the Boreal Fire Effects model (BORFIRE). Fire behaviour was calculated in BORFIRE using data for major tree species at both study sites
Modelling Holocene peatland dynamics with an individual-based dynamic vegetation model
Chaudhary, Nitin; Miller, Paul A.; Smith, Benjamin
2017-05-01
Dynamic global vegetation models (DGVMs) are designed for the study of past, present and future vegetation patterns together with associated biogeochemical cycles and climate feedbacks. However, most DGVMs do not yet have detailed representations of permafrost and non-permafrost peatlands, which are an important store of carbon, particularly at high latitudes. We demonstrate a new implementation of peatland dynamics in a customized Arctic version of the LPJ-GUESS DGVM, simulating the long-term evolution of selected northern peatland ecosystems and assessing the effect of changing climate on peatland carbon balance. Our approach employs a dynamic multi-layer soil with representation of freeze-thaw processes and litter inputs from a dynamically varying mixture of the main peatland plant functional types: mosses, shrubs and graminoids. The model was calibrated and tested for a sub-Arctic mire in Stordalen, Sweden, and validated at a temperate bog site in Mer Bleue, Canada. A regional evaluation of simulated carbon fluxes, hydrology and vegetation dynamics encompassed additional locations spread across Scandinavia. Simulated peat accumulation was found to be generally consistent with published data and the model was able to capture reported long-term vegetation dynamics, water table position and carbon fluxes. A series of sensitivity experiments were carried out to investigate the vulnerability of high-latitude peatlands to climate change. We found that the Stordalen mire may be expected to sequester more carbon in the first half of the 21st century due to milder and wetter climate conditions, a longer growing season, and the CO2 fertilization effect, turning into a carbon source after mid-century because of higher decomposition rates in response to warming soils.