Prospects for Yukawa Unified SO(10) SUSY GUTs at the CERN LHC
Baer, Howard; Sekmen, Sezen; Summy, Heaya
2008-01-01
The requirement of t-b-\\tau Yukawa coupling unification is common in simple grand unified models based on the gauge group SO(10), and it also places a severe constraint on the expected spectrum of superpartners. For Yukawa-unified models with \\mu >0, the spectrum is characterized by three mass scales: {\\it i}). first and second generation scalars in the multi-TeV range, {\\it ii}). third generation scalars, \\mu and m_A in the few-TeV range and {\\it iii}). gluinos in the \\sim 350-500 GeV range with chargino masses around 100-160 GeV. In such a scenario, gluino pair production should occur at large rates at the CERN LHC, followed by gluino three-body decays into neutralinos or charginos. Discovery of Yukawa-unified SUSY at the LHC should hence be possible with only 1 fb^{-1} of integrated luminosity, by tagging multi-jet events with 2--3 isolated leptons, without relying on missing E_T. A characteristic dilepton mass edge should easily be apparent above Standard Model background. Combining dileptons with b-jets,...
Yukawa Unified Supersymmetric SO(10) Model Cosmology, Rare Decays and Collider Searches
Baer, Howard W; Díaz, M A; Ferrandis, J; Mercadante, P G; Quintana, P; Tata, Xerxes; Baer, Howard; Brhlik, Michal; Diaz, Marco A.; Ferrandis, Javier; Mercadante, Pedro; Quintana, Pam; Tata, Xerxes
2001-01-01
It has recently been pointed out that viable sparticle mass spectra can be generated in Yukawa unified SO(10) supersymmetric grand unified models consistent with radiative breaking of electroweak symmetry. Model solutions are obtained only if $\\tan\\beta \\sim 50$, $\\mu <0$ and positive $D$-term contributions to scalar masses from SO(10) gauge symmetry breaking are used. In this paper, we attempt to systematize the parameter space regions where solutions are obtained. We go on to calculate the relic density of neutralinos as a function of parameter space. No regions of the parameter space explored were actually cosmologically excluded, and very reasonable relic densities were found in much of parameter space. Direct neutralino detection rates could exceed 1 event/kg/day for a $^{73}$Ge detector, for low values of GUT scale gaugino mass $m_{1/2}$. We also calculate the branching fraction for $b\\to s \\gamma$ decays, and find that it is beyond the 95% CL experimental limits in much, but not all, of the paramete...
Higgs and Sparticle Masses from Yukawa Unified SO(10): A Snowmass White Paper
Ajaib, M Adeel; Shafi, Qaisar; Un, Cem Salih
2013-01-01
We discuss ways to probe t-b-tau Yukawa coupling unification condition at the Energy and Intensity frontiers. We consider non-universal soft supersymmetry breaking mass terms for gauginos related by the SO(10) grand unified theory (GUT). We have previously shown that t-b-tau Yukawa coupling unification prefers a mass of around 125 GeV for the Standard Model-like Higgs boson with all colored sparticle masses above 3 TeV. The well-known MSSM parameter tan(beta) is about 47-48 and neutralino-stau coannihilation yields the desired relic dark matter density.
A Predictive Yukawa Unified SO(10) Model: Higgs and Sparticle Masses
Ajaib, M Adeel; Shafi, Qaisar; Un, Cem Salih
2013-01-01
We revisit a class of supersymmetric SO(10) models with t-b-tau Yukawa coupling unification condition, with emphasis on the prediction of the Higgs mass. We discuss qualitative features in this model that lead to a Higgs mass prediction close to 125 GeV. We show this with two distinct computing packages, Isajet and SuSpect, and also show that they yield similar global features in the parameter space of this model. We find that t-b-tau Yukawa coupling unification prefers values of the CP-odd Higgs mass m_{A} to be around 600 GeV, with all colored sparticle masses above 3 TeV. We also briefly discuss prospects for testing this scenario with the ongoing and planned direct dark matter detection experiments. In this class of models with t-b-tau Yukawa unification, the neutralino dark matter particle is heavy (m_{\\tilde{\\chi}_1^{0}} \\gtrsim 400 \\rm \\ GeV), which coannihilates with a stau to yield the correct relic abundance.
Sparticle masses from transverse-mass kinks at the LHC: the case of Yukawa-unified SUSY GUTs
Choi, Kiwoon; Im, Sang Hui; Park, Chan Beom
2010-01-01
We explore, in a concrete example, to which extent new particle mass determinations are practicable with LHC data. Our chosen example is that of Yukawa-unified SUSY GUTs, whose viability has been recently studied for two general patterns of soft SUSY-breaking terms. We note that both patterns of SUSY spectra do not admit long decay chains, which would make it possible to determine the masses of the SUSY particles involved using endpoints or mass relations. We thus take the so-called mT2-kink method as our key strategy, since it does not rely on the presence of long decay chains. We then discuss a procedure allowing to determine the masses of the gluino, of the lightest chargino as well as of the first two neutralinos and, for the scenario where a stop is lighter than the gluino, the mass of the light stop too. Our worked example of Yukawa-unified SUSY GUTs may offer a useful playground for dealing with other theories which predict similar patterns of SUSY spectra.
Yukawa-unified natural supersymmetry
Baer, Howard; Kulkarni, Suchita
2012-01-01
Previous work on t-b-\\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\\sim125 GeV. As Yukawa unification requires large tan\\beta\\sim50, while EWFT requires rather light third generation squarks and low \\mu\\sim100-250 GeV, B-physics constraints from BR(B\\to X_s\\gamma) and BR(B_s\\to \\mu+\\mu-) can be severe. We are able to find models with EWFT \\Delta\\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be a...
Yukawa-unified natural supersymmetry
Baer, Howard; Kraml, Sabine; Kulkarni, Suchita
2012-12-01
Previous work on t - b - τ Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m h 125 GeV. As Yukawa unification requires large tan β 50, while EWFT requires rather light third generation squarks and low μ ≈ 100 - 250 GeV, B-physics constraints from BR( B → X s γ) and BR( B s → μ + μ -) can be severe. We are able to find models with EWFT Δ ≲ 50 - 100 (better than 1-2% EWFT) and with Yukawa unification as low as R yuk 1.2 (20% unification). The unification is lessened to R yuk 1.3 when B-physics constraints are imposed. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1 - 2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A → μ + μ - decay might allow a determination of tan β 50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e + e - collider with sqrt{s}˜ 0.5 TeV.
Gauge-Yukawa unification in SO(10) SUSY GUTs
Kubo, J. [Kanazawa Univ. (Japan). Coll. of Liberal Arts; Mondragon, M. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Shoda, S. [Kanazawa Univ. (Japan). Dept. of Physics; Zoupanos, G. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut
1996-06-10
We study supersymmetric unified models with three fermion generations based on the gauge group SO(10) and require gauge-Yukawa unification, i.e. a renormalization group invariant functional relationship among the gauge and Yukawa couplings of the third generation in the symmetric phase. In the case of the minimal model, we find that the predicted values for the top and bottom quark masses are in agreement with the present experimental data for a wide range of supersymmetry breaking scales. We also find that an experimental accuracy of less than 1% for the top quark mass could test the corresponding prediction of the gauge-Yukawa unified model. (orig.).
Cascade Textures and SUSY SO(10) GUT
Adulpravitchai, Adisorn; Takahashi, Ryo
2010-01-01
We give texture analyses of cascade hierarchical mass matrices in supersymmetric SO(10) grand unified theory. We embed cascade mass textures of the standard model fermion with right-handed neutrinos into the theory, which gives relations among the mass matrices of the fermions. The related phenomenologies, such as the lepton flavor violating processes and leptogenesis, are also investigated in addition to the PMNS mixing angles.
Fermion masses and SO(10) SUSY GUTs
Raby, S
1995-01-01
In this talk I summarize published work on a systematic operator analysis for fermion masses in a class of effective supersymmetric SO(10) GUTs\\cite{adhrs}~\\footnote{This work is in collaboration with G. Anderson, S. Dimopoulos, L.J. Hall, and G. Starkman.}. Given a minimal set of four operators at M_G, we have just 6 parameters in the fermion mass matrices. We thus make 8 predictions for the 14 low energy observables (9 quark and charged lepton masses, 4 quark mixing angles and \\tan \\beta). Several models, i.e. particular sets of dominant operators, are in quantitative agreement with the low energy data. In the second half of the talk I discuss the necessary ingredients for an SO(10) GUT valid below the Planck (or string) scale which reproduces one of our models. \\footnote{These are preliminary results of work in progress with Lawrence Hall.} This complete GUT should still be interpreted as an effective field theory, i.e. perhaps the low energy limit of a string theory.
SO(10) SUSY GUT's and fermion masses
Raby, S
1994-01-01
Abstract: In this talk~\\footnote{Talk presented at the IFT Workshop on Yukawa Couplings, Gainesville, FL, February 1994.} I summarize published work on a systematic operator analysis for fermion masses in a class of effective supersymmetric SO(10) GUTs \\cite{adhrs}~\\footnote{This work is in collaboration with G. Anderson, S. Dimopoulos, L.J. Hall, and G. Starkman.}. Given a minimal set of four operators at M_G, we have just 6 parameters in the fermion mass matrices. We thus make 8 predictions for the 14 low energy observables (9 quark and charged lepton masses, 4 quark mixing angles and \\tan \\beta). Several models, i.e. particular sets of dominant operators, are in quantitative agreement with the low energy data. In the second half of the talk I discuss the necessary ingredients for an SO(10) GUT valid below the Planck (or string) scale which reproduces one of our models. \\footnote{These are preliminary results of work in progress with Lawrence Hall.} This complete GUT should still be interpreted as an effect...
Phenomenology of the minimal $SO(10)$ SUSY model
Stuart Raby
2004-02-01
In this talk I define what I call the minimal $SO(10)$ SUSY model. I then discuss the phenomenological consequences of this theory, vis-a-vis gauge and Yukawa coupling unification, Higgs and super-particle masses, the anomalous magnetic moment of the muon, the decay $B_{s}→ ^{+}^{-}$ and dark matter.
Leptogenesis in a $\\Delta(27) \\times SO(10)$ SUSY GUT
Björkeroth, Fredrik; Varzielas, Ivo de Medeiros; King, Stephen F
2016-01-01
Although $SO(10)$ Supersymmetric (SUSY) Grand Unification Theories (GUTs) are very attractive for neutrino mass and mixing, it is often quite difficult to achieve successful leptogenesis from the lightest right-handed neutrino $N_1$ due to the strong relations between neutrino and up-type quark Yukawa couplings. We show that in a realistic model these constraints are relaxed, making $N_1$ leptogenesis viable. To illustrate this, we calculate the baryon asymmetry of the Universe $ Y_B $ from flavoured $ N_1 $ leptogenesis in a recently proposed $ \\Delta(27) \\times SO(10) $ SUSY GUT. The flavoured Boltzmann equations are solved numerically, and comparison with the observed $ Y_B $ places constraints on the allowed values of right-handed neutrino masses and neutrino Yukawa couplings. The flavoured $SO(10)$ SUSY GUT is not only fairly complete and predictive in the lepton sector, but can also explain the BAU through leptogenesis with natural values in the lepton sector albeit with some tuning in the quark sector.
New predictive framework for fermion masses in susy SO(10)
Berezhiani, Z G
1994-01-01
We present a new predictive approach based on SUSY SO(10) theory. The inter-family hierarchy is first generated in the sector of hypothetical superheavy fermions and then transfered inversely to ordinary quarks and leptons by means of the universal seesaw mechanism. The obtained mass matrices are simply parametrized by two small complex coefficients \\eps_u and \\eps_d, which can be given by the ratio of the GUT scale M_G\\simeq 10^{16} GeV and some higher scale M\\simeq 10^{17}-10^{18} GeV (presumably superstring scale). The model provides a possibility for doublet-triplet splitting without fine tuning and the Higgsino mediated d=5 operators for the proton decay are naturally suppressed. Our ansatz provides the correct {\\em qualitative} picture of fermion mass hierarchy and mixing pattern, provided that \\eps_d/\\eps_u\\sim 10. The running masses of the first family fermions: electron, u-quark and d-quark obey an approximate SO(10) symmetry limit. At GUT scale we have: u\\sim d\\simeq 3e, (\\frac{\\eps_u}{\\eps_d})c\\sim...
Flavor violating Z′ from SO(10 SUSY GUT in High-Scale SUSY
Junji Hisano
2015-05-01
Full Text Available We propose an SO(10 supersymmetric grand unified theory (SUSY GUT, where the SO(10 gauge symmetry breaks down to SU(3c×SU(2L×U(1Y×U(1X at the GUT scale and U(1X is radiatively broken at the SUSY-braking scale. In order to achieve the observed Higgs mass around 126 GeV and also to satisfy constraints on flavor- and/or CP-violating processes, we assume that the SUSY-breaking scale is O(100 TeV, so that the U(1X breaking scale is also O(100 TeV. One big issue in the SO(10 GUTs is how to realize realistic Yukawa couplings. In our model, not only 16-dimensional but also 10-dimensional matter fields are introduced to predict the observed fermion masses and mixings. The Standard-Model quarks and leptons are linear combinations of the 16- and 10-dimensional fields so that the U(1X gauge interaction may be flavor-violating. We investigate the current constraints on the flavor-violating Z′ interaction from the flavor physics and discuss prospects for future experiments.
A SUSY SO(10) model with large tan$\\beta$
Lazarides, G
1994-01-01
We construct a supersymmetric SO(10) model with the asymptotic relation tan\\beta \\simeq m_t/m_b automatically arising from its structure. The model retains the significant Minimal Supersymmetric Standard Model predictions for sin^2 \\theta_w and \\alpha_s and contains an automatic Z_2 matter parity. Proton decay through d=5 operators is sufficiently suppressed. It is remarkable that no global symmetries need to be imposed on the model.
Towards a complete $\\Delta(27) \\times SO(10)$ SUSY GUT
Björkeroth, Fredrik; Varzielas, Ivo de Medeiros; King, Stephen F
2015-01-01
We propose a renormalisable model based on $\\Delta(27)$ family symmetry with an $SO(10)$ grand unified theory (GUT) leading to a novel form of spontaneous geometrical CP violation. The symmetries, including $\\Delta(27)$ and $\\mathbb{Z}_{9} \\times \\mathbb{Z}_{12} \\times \\mathbb{Z}_{4}^{R}$, are broken close to the GUT breaking scale to yield the minimal supersymmetric standard model (MSSM) with the standard R-parity. $SO(10)$ is broken via $SU(5)$ with doublet-triplet splitting achieved by a version of the Dimopoulos-Wilczek (missing VEV) mechanism. Low-scale Yukawa structure is dictated by the coupling of matter to $ \\Delta(27) $ antitriplets $ \\bar{\\phi} $ whose VEVs are aligned in the CSD3 directions by the superpotential. Light physical Majorana neutrinos masses emerge from a specific implementation of the seesaw mechanism within $SO(10)$. The model predicts a normal neutrino mass hierarchy with the best-fit lightest neutrino mass $ m_1 = 0.13 $ meV and the PMNS mixing parameters $\\theta^l_{13} \\approx 8.3...
Relation between proton decay and PMNS phase in the minimal SUSY $SO(10)$ GUT
Fukuyama, Takeshi; Mimura, Yukihiro
2016-01-01
Proton decay is one of the most important predictions of the grand unified theory (GUT). In the supersymmetric (SUSY) GUT, proton decays via the dimension-five operators need to be suppressed. In the $SO(10)$ model where ${\\bf 10}+\\overline{\\bf 126}$ Higgs fields couple to fermions, neutrino oscillation parameters including the CP-violating Pontecorvo-Maki-Nakagawa-Sakata (PMNS) phase can be related to the Yukawa couplings to generate the dimension-five operators in the unified framework. We show how the suppressed proton decay depends on the PMNS phase, and stress the importance of the precise measurements of the PMNS phase as well as the neutrino 23-mixing angle. These become especially important if the SUSY particles are found around less than a few TeV at LHC and proton decays are observed at Hyper-Kamiokande and DUNE experiments in the near future.
Relation between proton decay and PMNS phase in the minimal SUSY SO(10) GUT
Fukuyama, Takeshi; Ichikawa, Koji; Mimura, Yukihiro
2017-01-01
Proton decay is one of the most important predictions of the grand unified theory (GUT). In the supersymmetric (SUSY) GUT, proton decays via the dimension-five operators need to be suppressed. In the SO (10) model where 10 + 126 ‾ Higgs fields couple to fermions, neutrino oscillation parameters including the CP-violating Pontecorvo-Maki-Nakagawa-Sakata (PMNS) phase can be related to the Yukawa couplings to generate the dimension-five operators in the unified framework. We show how the suppressed proton decay depends on the PMNS phase, and stress the importance of the precise measurements of the PMNS phase as well as the neutrino 23-mixing angle. These become especially important if the SUSY particles are found around less than a few TeV at LHC and proton decays are observed at Hyper-Kamiokande and DUNE experiments in the near future.
PAMELA's cosmic positron from decaying LSP in SO(10) SUSY GUT
Kyae, Bumseok
2010-01-01
We propose two viable scenarios explaining the recent observations on cosmic positron excess. In both scenarios, the present relic density in the Universe is assumed to be still supported by thermally produced WIMP or LSP (\\chi). One of the scenarios is based on two dark matter (DM) components (\\chi,X) scenario, and the other is on SO(10) SUSY GUT. In the two DM components scenario, extremely small amount of non-thermally produced meta-stable DM component [O(10^{-10}) < n_X /n_\\chi] explains the cosmic positron excess. In the SO(10) model, extremely small R-parity violation for LSP decay to e^\\pm is naturally achieved with a non-zero VEV of the superpartner of one right-handed neutrino (\\tilde{\
Two loop unification of non-SUSY SO(10) GUT with TeV scalars
Brennan, T. Daniel
2017-03-01
In this paper we examine gauge coupling unification of the non-SUSY SO(10) grand unified theory proposed by Babu and Mohapatra [Phys. Lett. B 715, 328 (2012), 10.1016/j.physletb.2012.08.006] at the two loop level. This theory breaks down to the standard model in a single step and has the distinguishing feature of TeV nonstandard model scalars. This leads to a plethora of interesting new physics at the TeV scale and the discovery of new particles at the LHC. This model gives rise to testable proton decay, neutron-antineutron oscillations, provides a mechanism for baryogenesis, and contains potential dark matter candidates. In this paper, we compute the two loop beta function and show that this model unifies to two loop order around 1 015 GeV . We then compute the proton lifetime, taking into account threshold effects and show that these effects place it above the Super-Kamiokande limit [K. Abe et al. (Super-Kamiokande Collaboration), Phys. Rev. D 95, 012004 (2017)., 10.1103/PhysRevD.95.012004].
Neutrino Oscillations in an SO(10) SUSY GUT with $U(2)xU(1)^{n}$ Family Symmetry
Blazek, T; Tobe, K
2000-01-01
In a previous paper we analyzed fermion masses (focusing on neutrino masses and mixing angles) in an SO(10) SUSY GUT with U(2)$\\timesU(1)^n$ family symmetry. The model is "natural" containing all operators in the Lagrangian consistent with the states and their charges. With minimal family symmetry breaking vevs the model is also predictive giving a unique solution to atmospheric (with maximal $\
Revisiting fermion mass and mixing fits in the minimal SUSY $SO(10)$ GUT
Fukuyama, Takeshi; Mimura, Yukihiro
2015-01-01
The supersymmetric $SO(10)$ grand unified models with renormalizable Yukawa couplings involving only ${\\bf 10}$ and $\\overline{\\bf 126}$ Higgs fields have been shown to realize the fermion masses and mixings economically. In previous works, the sum rule of the fermion mass matrices are given by inputting the quark matrices, and the neutrino mixings are predicted in the framework. Now the three neutrino mixings have been measured, and in this paper, we give the sum rule by inputing the lepton mass matrices, which makes clear to show the feature of the solution, especially if the vacuum expectation values of ${\\bf 126}+ \\overline{\\bf126}$ ($v_R$) are large and the right-handed neutrinos are heavy. We perform the $\\chi^2$ analyses to fit the fermion masses and mixings using the sum rule. In the previous works, the best fit appears at $v_R \\sim 10^{13}$ GeV, and the fit at the large $v_R$ scale ($\\sim 10^{16}$ GeV) has been less investigated. We discuss the possible low energy threshold correction of the sum rule...
Low energy phenomena in a model with symmetry group SUSY SO (10) ×△(48)×U(1)
周光召; 吴岳良
1996-01-01
Fermion masses and mixing angles including that of neutrinos are studied in a model with symmetry group SUSY S0(10) x4(48) xU(i). Universality of Yukawa coupling of superfields is assumed. The resulting texture of mass matrices in the low energy region depends only on a single coupling constant and VEVs caused by necessary symmetry breaking. 13 parameters involving masses and mixing angles in the quark and charged lepton sector are successfully described by only five parameters with two of them determined by the scales of U(1), SO (10) and SU(5) symmetry breaking compatible with the requirement of grand unification and proton decay. The neutrino masses and mixing angles in the leptonic sector are also determined with the addition of a Majorana coupling term. It is found that LSND, events, atmospheric neutrino deficit and the mass limit put by hot dark matter can be naturally explained. Solar neutrino puzzle can be solved only by introducing sterile neutrino with one additional parameter. More precise me
Exploring the Yukawa unified minimal supergravity model at the Tevatron, LEP II, and the LHC
Gunion, J F
1994-01-01
We explore the prospects for detection of sparticles and Higgs bosons at the Tevatron, LEP-200 and the LHC in the allowed parameter space of a "Yukawa unified" ($\\lambda_b(M_U)=\\lambda_{\\ tau}(M_U)$) minimal supergravity (YUMS) model, where the only non-zero unification scale soft-SUSY-breaking terms are a universal gaugino mass and a Higgs mixing term. In a bottom-up approach, just two weak scale parameters, $\\tanb$ and $\\mha$ (along with the sign of the Higgs mixing parameter $\\mu$) completely parameterize the model. Many interesting "special" situations regarding sparticle and Higgs discovery arise, such as the importance of the invisible $\\hl\\rta\\cnone\\cnone,\\snu\\ snubar$ decay modes.
A Nonminimal SO(10) x U(1)-F SUSY GUT model obtained from a bottom up approach
Albright, Carl H.
1996-08-01
Many of the ingredients are explored which are needed to develop a super- symmetric SO(10) x U(1)_F grand unified model based on the Yukawa structure of a model previously constructed in collaboration with S. Nandi to explain the quark and lepton masses and mixings in a particular neutrino scenario. The U(1)_F family symmetry can be made anomaly-free with the introduction of one conjugate pair of SO(10)-singlet neutrinos with the same U(1)_F charge. Due to a plethora of conjugate pairs of supermultiplets, the model develops a Landau singularity within a factor of 1.5 above the GUT scale. With the imposition of a Z_2 discrete symmetry and under certain conditions, all higgsino triplets can be made superheavy while just one pair of higgsino doublets remains light and results in mass matrix textures previously obtained from the bottom-up approach. Diametrically opposite splitting of the first and third family scalar quark and lepton masses away from the second family ones results from the nonuniversal D-term contributions.
Krauss, Manuel E; Staub, Florian
2013-01-01
We consider a supersymmetric model motivated by a SO(10) GUT theory: the gauge sector near the SUSY scale consists of SU(3)_c x SU(2)_L x U(1)_R x U(1)_{B-L}. We embed this model in minimal gauge mediation and incorporate neutrino data via an inverse seesaw mechanism. Also in this restricted model the additional D-terms can rise the light Higgs mass in a sizable way. Therefore, it is much easier to obtain m_h \\simeq 125 GeV without the need to push the SUSY spectrum to extremely large values as it happens in models with MSSM particle content only. We show that this model predicts a diphoton rate of the Higgs equal or smaller than the standard model expectation. We discuss briefly the collider phenomenology with a particular focus on the next to lightest supersymmetric particle where this model offers the sneutrino as an additional possiblity. Moreover we point out that also in this model variant supersymmetry can be discovered in Z' decays even in scenarios where the strongly interacting particles are too hea...
Parida, Mina K
2010-01-01
We explore the prospects of low-scale leptogenesis in a class of supersymmetric SO(10) models using singlet neutrinos and the Higgs representations $126_H \\oplus \\overline{126}_H$ as well as $16_H \\oplus \\overline{16}_H$. A singlet neutrino, which we show can be as light as 10^5-10^6 GeV, decays through its small mixings with right-handed (RH) neutrinos creating a lepton asymmetry which is explicitly shown to be flavor dependent. While the doublet vacuum expectation value (vev) in $\\overline{16}_H$ triggers the generation of desired mixings, it also induces a large RH triplet vev that breaks the left-right intermediate gauge symmetry and gives large right-handed neutrino masses. Manifest unification of gauge couplings and generation of heavy RH neutrino masses are achieved by purely renormalizable interactions. The canonical (Type-I) see-saw contributions to the light neutrino mass matrix cancel out while the Type-II see-saw contribution is negligible. Determining the parameters of the dominant inverse see-sa...
Fong, Chee Sheng; Meloni, Davide; Meroni, Aurora; Nardi, Enrico
2015-01-01
We consider SO(10) Grand Unified Theories (GUTs) with vacuum expectation values (vevs) for fermion masses in the representation. We show that the baryon asymmetry generated via leptogenesis is completely determined in terms of measured low energy observables and of one single high energy parameter related to the ratio of the 10 and SU(2) doublet vevs. We identify new decay channels for the heavy Majorana neutrinos into SU(2) singlet leptons e c which can sizeably affect the size of the resulting baryon asymmetry. We describe how to equip SO(10) fits to low energy data with the additional constraint of successful leptogenesis, and we apply this procedure to the fits carried out in ref. [1]. We show that a baryon asymmetry in perfect agreement with observations is obtained.
Fong, Chee Sheng; Meroni, Aurora; Nardi, Enrico
2014-01-01
We consider $SO(10)$ Grand Unified Theories (GUTs) with vacuum expectation values (vevs) for fermion masses in the $\\mathbf{10} + \\mathbf{\\overline{126}}$ representation. We show that the baryon asymmetry generated via leptogenesis is completely determined in terms of measured low energy observables and of one single high energy parameter related to the ratio of the $\\mathbf{10}$ and $\\mathbf{\\overline{126}}$ $SU(2)$ doublet vevs. We identify new decay channels for the heavy Majorana neutrinos into $SU(2)$ singlet leptons $e^c$ which can sizeably affect the size of the resulting baryon asymmetry. We describe how to equip $SO(10)$ fits to low energy data with the additional constraint of successful leptogenesis, and we apply this procedure to the fits carried out in ref.~\\cite{Dueck:2013gca}. We show that a baryon asymmetry in perfect agreement with observations is obtained.
Testing gauge-Yukawa-unified models by M{sub t}
Kubo, J. [Kanazawa Univ. (Japan). Coll. of Liberal Arts; Mondragon, M. [Institut fuer Theoretische Physik, Philosophenweg 16, D-69120 Heidelberg (Germany); Olechowski, M. [INFN Sezione di Torino and Dipartamento di Fisica Teorica, Universita di Torino, Via P. Giuria 1, 10125 Turin (Italy); Zoupanos, G. [Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, D-80805 Munich (Germany)
1996-11-11
Gauge-Yukawa unification (GYU) relates the gauge and Yukawa couplings, thereby going beyond the usual GUTs, and it is assumed that the GYU in the third fermion generation implies that its Yukawa couplings are of the same order as the unified gauge coupling at the GUT scale. We re-examine carefully the recent observation that the top-bottom mass hierarchy can be explained to a certain extent in supersymmetric GYU models. It is found that there are equiv-top-mass lines in the boundary conditions of the Yukawa couplings so that two different GYU models on the same line can not be distinguished by the top mass M{sub t} alone. If they are on different lines, they could be distinguished by M{sub t} in principle, provided that the predicted M{sub t}`s are well below the infrared value M{sub t}(IR). We find that the ratio M{sub t} (IR)/sin {beta} depends on tan {beta} for large tan {beta} and the lowest value of M{sub t}(IR) is {proportional_to}188 GeV. We focus our attention on the existing SU(5) GYU models, which are obtained by requiring finiteness and reduction of couplings. They, respectively, predict M{sub t}= (183+{delta}{sup MSSM} M{sub t}{+-}5) GeV and (181+{delta}{sup MSSM} M{sub t}{+-}3) GeV, where {delta}{sup MSSM} M{sub t} stands for the MSSM threshold correction and is {proportional_to}-2 GeV for the case that all the MSSM superpartners have the same mass M{sub SUSY} with {mu}{sub H}/M{sub SUSY} <<1. (orig.).
Non-Universal Gaugino Masses in Supersymmetric SO(10)
Chamoun, N; Liu, C; Wu, X H; Chamoun, Nidal; Huang, Chao-Shang; Liu, Chun; Wu, Xiao-Hong
2002-01-01
We consider SUSY SO(10) models in which SUSY breaking occurs via an F-term which does not transform as an SO(10) singlet. This results in non-universal GUT-scale gaugino masses leading to a different pattern of sparticle masses from what is expected in the minimal supergravity model (mSUGRA). We study three breaking chains of SO(10) down to the standard model through SU(4)$\\timesSU(2)\\times$SU(2), SU(2)$\\times$SO(7) and `flipped' SU(5) achieved by the representations ${\\bf 54}$ and ${\\bf 210}$ which appear in the symmetric product of two SO(10) adjoints. We examine the phenomenological implications of the different boundary conditions corresponding to the different breaking chains and present the sparticle spectrum.
Masses of Third Family Vector-like Quarks and Leptons in Yukawa-Unified $E_6$
Hebbar, Aditya; Shafi, Qaisar
2016-01-01
In supersymmetric $E_6$ the masses of the third family quarks and charged lepton, $t-b-\\tau$, as well as the masses of the vector-like quarks and leptons, $D-\\bar{D}$ and $ L-\\bar{L}$, may arise from the coupling $27_3$ x $27_3$ x $27_H$, where $27_3$ and $27_H$ denote the third family matter and Higgs multiplets respectively. We assume that the SO(10) singlet component in $27_H$ acquires a TeV scale VEV which spontaneously breaks U(1)$_\\psi$ and provides masses to the vector-like particles in $27_3$, while the MSSM doublets in $27_H$ provide masses to $ t, b$ and $\\tau$. Imposing Yukawa coupling unification $h_t=h_b=h_{\\tau}=h_D=h_L$ at $M_{GUT}$ and employing the ATLAS and CMS constraints on the $Z'_\\psi$ boson mass, we estimate the lower bounds on the third family vector-like particles $D-\\bar{D}$ and $L-\\bar{L}$ masses to be around 5.85 TeV and 2.9 TeV respectively. These bounds apply in the supersymmetric limit.
Recent MEG Results and Predictive SO(10) Models
Fukuyama, Takeshi
2011-01-01
Recent MEG results of a search for the lepton flavor violating (LFV) muon decay, $\\mu \\to e \\gamma$, show 3 events as the best value for the number of signals in the maximally likelihood fit. Although this result is still far from the evidence/discovery in statistical point of view, it might be a sign of a certain new physics beyond the Standard Model. As has been well-known, supersymmetric (SUSY) models can generate the $\\mu \\to e \\gamma$ decay rate within the search reach of the MEG experiment. A certain class of SUSY grand unified theory (GUT) models such as the minimal SUSY SO(10) model (we call this class of models "predictive SO(10) models") can unambiguously determine fermion Yukawa coupling matrices, in particular, the neutrino Dirac Yukawa matrix. Based on the universal boundary conditions for soft SUSY breaking parameters at the GUT scale, we calculate the rate of the $\\mu \\to e \\gamma$ process by using the completely determined Dirac Yukawa matrix in two examples of predictive SO(10) models. If we ...
SO(10)-GUT coherent baryogenesis
Garbrecht, Bjoern [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)]. E-mail: b.garbrecht@thphys.uni-heidelberg.de; Prokopec, Tomislav [Institute for Theoretical Physics (ITF) and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands)]. E-mail: t.prokopec@phys.uu.nl; Schmidt, Michael G. [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)]. E-mail: m.g.schmidt@thphys.uni-heidelberg.de
2006-02-20
A model for GUT baryogenesis, coherent baryogenesis within the framework of supersymmetric SO(10), is considered. In particular, we discuss the Barr-Raby model, where at the end of hybrid inflation charge asymmetries can be created through the time-dependent higgsino-gaugino mixing mass matrix. These asymmetries are processed to Standard Model matter through decays via nonrenormalizable (B-L)-violating operators. We find that a baryon asymmetry in accordance with observation can be generated. An appendix is devoted to provide useful formulas and concrete examples for calculations within SO(10)
Decrypting $SO(10)$-inspired leptogenesis
Di Bari, Pasquale; Fiorentin, Michele Re
2014-01-01
Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of $SO(10)$-inspired models and leptogenesis with hierarchical right-handed (RH) neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry $N^{\\rm p,i}_{B-L}$, the strong thermal (ST) condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the {\\rm ST}-$SO(10)$-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analy...
Decrypting SO(10-inspired leptogenesis
Pasquale Di Bari
2015-04-01
Full Text Available Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of SO(10-inspired models and leptogenesis with hierarchical right-handed (RH neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that it is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry NB−Lp,i, the strong thermal (ST condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the ST-SO(10-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analytical lower bound on the effective neutrino-less double beta decay neutrino mass, mee≳8 meV, for NB−Lp,i=10−3, testable with next generation experiments. This, in combination with an upper bound on the atmospheric mixing angle, necessarily in the first octant, forces the lightest neutrino mass within a narrow range m1≃(10–30 meV (corresponding to ∑imi≃(75–125 meV. We also show why the solution could correctly predict a non-vanishing reactor neutrino mixing angle and requires the Dirac phase to be in the fourth quadrant, implying sinδ (and JCP negative as hinted by current global analyses. Many of the analytical results presented (expressions for the orthogonal matrix, RH neutrino mixing matrix, masses and phases can have applications beyond leptogenesis.
Sparticle spectroscopy of the minimal SO(10) model
Fukuyama, Takeshi; Tran, Hieu Minh
2016-01-01
The supersymmetric (SUSY) minimal SO(10) model is a well-motivated grand unified theory, where the Standard Model (SM) fermions have Yukawa couplings with only one ${\\bf 10}$-plet and one $\\overline{\\bf 126}$-plet Higgs fields and it is highly non-trivial if the realistic quark and lepton mass matrices can be reproduced in this context. It has been known that the best fit for all the SM fermion mass matrices is achieved by a vacuum expectation value of the $\\overline{\\bf 126}$-plet Higgs field being at the intermediate scale of around ${\\cal O}(10^{13})$ GeV. Under the presence of the SO(10) symmetry breaking at the intermediate scale, the successful SM gauge coupling unification is at risk and likely to be spoiled. Recently, it has been shown that the low-energy fermion mass matrices, except for the down-quark mass predicted to be too low, are very well-fitted without the intermediate scale. In order to resolve the too-low down quark mass while keeping the other fittings intact, we consider SUSY threshold co...
Flavor physics induced by light $Z'$ from SO(10) GUT
Hisano, Junji; Omura, Yuji; Shigekami, Yoshihiro
2016-01-01
In this paper, we investigate predictions of the SO(10) Grand Unified Theory (GUT), where an extra U(1)$^\\prime$ gauge symmetry remains up to the supersymmetry (SUSY) breaking scale. The minimal setup of SO(10) GUT unifies quarks and leptons into a ${\\bf 16}$-representational field in each generations. The setup, however, suffers from the realization of the realistic Yukawa couplings at the electroweak scale. In order to solve this problem, we introduce ${\\bf 10}$-representational matter fields, and then the two kinds of matter fields mix each other at the SUSY breaking scale, where the extra U(1)$^\\prime$ gauge symmetry breaks down radiatively. One crucial prediction is that the Standard Model quarks and leptons are given by the linear combinations of the fields with two different U(1)$^\\prime$ charges. The mixing also depends on the flavor. Consequently, the U(1)$^\\prime$ interaction becomes flavor violating, and the flavor physics is the smoking-gun signal of our GUT model. The flavor violating $Z'$ coupli...
New minimal SO(10) GUT: A theory for all epochs
Charanjit S Aulakh
2016-02-01
The supersymmetric SO(10) theory (NMSO(10)GUT) based on the $210 + 126 + \\overline{126}$ Higgs system proposed in 1982 has evolved into a realistic theory capable of fitting the known low energy particle physics data besides providing a dark matter candidate and embedding inflationary cosmology. It dynamically resolves longstanding issues such as fast dimension five-operator mediated proton decay in SUSY GUTs by allowing explicit and complete calculation of crucial threshold effects at MSUSY and MGUT in terms of fundamental parameters. This shows that SO(10) Yukawas responsible for observed fermion masses as well as operator dimension-five-mediated proton decay can be highly suppressed on a ‘Higgs dissolution edge’ in the parameter space of GUTs with rich superheavy spectra. This novel and generically relevant result highlights the need for every realistic UV completion model with a large/infinite number of heavy fields coupled to the light Higgs doublets to explicitly account for the large wave function renormalization effects on emergent light Higgs fields. The NMSGUT predicts large-soft SUSY breaking trilinear couplings and distinctive sparticle spectra. Measurable or near measurable level of tensor perturbations – and thus large inflaton mass scale – may be accommodated within the NMSGUT by supersymmetric see-saw inflation based on an LHN flat direction inflaton if the Higgs component contains contributions from heavy Higgs components. Successful NMSGUT fits suggest a renormalizable Yukawon ultraminimal gauged theory of flavour based upon the NMSGUT Higgs structure.
Sparticle spectroscopy of the minimal SO(10) model
Fukuyama, Takeshi; Okada, Nobuchika; Tran, Hieu Minh
2017-04-01
The supersymmetric (SUSY) minimal SO(10) model is a well-motivated grand unified theory, where the Standard Model (SM) fermions have Yukawa couplings with only one 10-plet and one 126 ‾-plet Higgs fields and it is highly non-trivial if the realistic quark and lepton mass matrices can be reproduced in this context. It has been known that the best fit for all the SM fermion mass matrices is achieved by a vacuum expectation value of the 126 ‾-plet Higgs field being at the intermediate scale of around O (1013) GeV. Under the presence of the SO(10) symmetry breaking at the intermediate scale, the successful SM gauge coupling unification is at risk and likely to be spoiled. Recently, it has been shown that the low-energy fermion mass matrices, except for the down-quark mass predicted to be too low, are very well-fitted without the intermediate scale. In order to resolve the too-low down quark mass while keeping the other fittings intact, we consider SUSY threshold corrections to reproduce the right down quark mass. It turns out that this requires flavor-dependent soft parameters. Motivated by this fact, we calculate particle mass spectra at low energies with flavor-dependent sfermion masses at the grand unification scale. We present a benchmark particle mass spectrum which satisfies a variety of phenomenological constraints, in particular, the observed SM-like Higgs boson mass of around 125 GeV and the relic abundance of the neutralino dark matter as well as the experimental result of the muon anomalous magnetic moment. In the resultant mass spectrum, sleptons in the first and second generations, bino and winos are all light, and this scenario can be tested at the LHC Run-2 in the near future.
SO(10) GUT in Four and Five Dimensions: A Review
Fukuyama, Takeshi
2012-01-01
We review SO(10) grand unified theories (GUTs) in four and five dimensions (4D and 5D). The renormalizable minimal SO(10) SUSY GUT is the central theme of this review. It is very predictive and makes it possible to construct all mass matrices including those of the Dirac and heavy right-handed Majorana neutrinos. So it is not only able to reproduce all the low energy data, except for too larger $\\theta_{13}$ in the lepton mixing angles (which can be evaded without spoiling the basic ingredients), but also predicts almost all new physics beyond the standard model (SM) like neutrinoless double beta decay, the electric and magnetic dipole moments of the quark-lepton, lepton flavour violation, leptogenesis etc. To be very predictive, on the other hand, implies that predictions are unambiguous and they are always exposed to severe compatibilities with observations as well as to a conceptual consistency check. The explicit construction of the Higgs superpotential and the explicit display of a symmetry breaking patt...
Dark Matter at the Pseudoscalar Higgs Resonance in the pMSSM and SUSY GUTs
Anandakrishnan, Archana; Sinha, Kuver
2014-01-01
We study dark matter at the MSSM pseudoscalar Higgs resonance (A-funnel), which is one of the few remaining MSSM thermal dark matter candidates in the $100-1000$ GeV range safe from direct detection constraints. To illustrate the various factors at play, this study is performed in two contrasting set-ups: a bottom-up phenomenological MSSM (pMSSM) approach that allows significant freedom, and the top-down, highly constrained Yukawa unified $SO(10)$ GUT model. In the pMSSM, for $\\mu > 0$, the entire parameter space lies above the coherent neutrino background and mostly within reach of XENON1T and LZ, while blind spots exist at $m_A\\,> \\, 800\\,$GeV for $\\mu < 0$; the strongest constraints come from $A/H \\rightarrow \\tau \\tau$ searches at the LHC. For Yukawa unified models, the confluence of $B_s \\rightarrow \\mu^+ \\mu^-$ constraints, fits to the bottom quark and Higgs masses, and gluino mass bounds from the LHC result in a prediction: realizing the pseudoscalar resonance $requires$ gaugino mass non-universalit...
Asymmetric Dark Matter Models in SO(10)
Nagata, Natsumi; Zheng, Jiaming
2016-01-01
We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant $\\mathbb{Z}_2$ symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a ${\\bf 126}$ dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.
Fermion dark matter from SO(10)
Arbelaez, Carolina; Restrepo, Diego; Zapata, Oscar
2016-01-01
We construct and analyze non-supersymmetric SO(10) standard model extensions which explain dark matter (DM) through the fermionic Higgs portal. In these SO(10)-based models the DM particle is naturally stable since a $Z_2$ discrete symmetry, the matter parity, is left at the end of the symmetry breaking chain to the standard model. Potentially realistic models contain the $\\bf{10}$ and $\\bf{45}$ fermionic representations from which a neutralino-like mass matrix with arbitrary mixings can be obtained. Two different SO(10) breaking chains will be analyzed in light of gauge coupling unification: the standard path $\\text{SU}(5)\\times U(1)_{X}$ and the left-right symmetry intermediate chain. The former opens the possibility of a split supersymmetric-like spectrum with an additional (inert) scalar doublet, while the later requires additional exotic scalar representations associated to the breaking of the left-right symmetry.
Asymmetric dark matter models in SO(10)
Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming
2017-02-01
We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant Z2 symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a {126} dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.
SO(10) GUT in Four and Five Dimensions: a Review
Fukuyama, Takeshi
2013-04-01
We review SO(10) grand unified theories (GUTs) in four and five dimensions (4D and 5D). The renormalizable minimal SO(10) SUSY GUT is the central theme of this paper. It is very predictive and makes it possible to construct all mass matrices including those of the Dirac and heavy right-handed Majorana neutrinos. Its predictions covers all ranges of particle phenomena. The explicit construction of the Higgs superpotential and the explicit display of a symmetry breaking pattern from GUT to the SM show that the naive desert from the SM to GUT in the minimal supersymmetric standard model (MSSM) is a too simplified concept and we have many definitely determined intermediate energy scales in general. This situation destroys the naive gauge coupling unification in the MSSM scheme. Also the precise measurements of neutrino oscillation data have revealed several small but manifest mismatches with our predictions. Also there are arguments that it is impossible to construct a GUT theory in 4D with a finite number of multiplets that leads to the MSSM with a residual R symmetry. If we try to solve all these pathologies comprehensively, it is very attractive for us to go into extra dimensions. Extra dimension may be either warped or flat. The fifth dimension, for simplicity, is compactified on the S1/(Z2) (warped) or on the S1/(Z2×Z‧2) (flat) orbifold with two inequivalent branes at the orbifold fixed points. In the former warped case, intermediate energy scales are translated with the positions of Higgs fields in the bulk and the fundamental scheme of the MSSM is recovered. On the other hand, in the latter flat scenario, all matter and Higgs multiplets reside on the Pati-Salam (PS) brane where the PS symmetry is manifest. There the original renormalizability in Yukawa coupling is broken but its essential structures of mass matrices in minimal SO(10) GUT in 4D is promoted to the PS invariant action in 4D. In the gaugino mediation mechanism, the SO(10) gauge multiplet is
Neutrino mass from M theory SO(10)
Acharya, Bobby S. [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom); International Centre for Theoretical Physics,I-34151 Trieste (Italy); Bożek, Krzysztof [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom); Romão, Miguel Crispim; King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ, Southampton (United Kingdom); Pongkitivanichkul, Chakrit [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom)
2016-11-29
We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G{sub 2}-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5)×U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.
Neutrino mass from M Theory SO(10)
Acharya, Bobby S; Romão, Miguel Crispim; King, Stephen F; Pongkitivanichkul, Chakrit
2016-01-01
We study the origin of neutrino mass from $SO(10)$ arising from $M$ Theory compactified on a $G_2$-manifold. This is linked to the problem of the breaking of the extra $U(1)$ gauge group, in the $SU(5)\\times U(1)$ subgroup of $SO(10)$, which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.
A renormalizable supersymmetric SO(10) model
Chen, Ying-Kang
2015-01-01
A realistic grand unified model has never been constructed in the literature due to three major difficulties: the seesaw mechanism without spoiling gauge coupling unification, the doublet-triplet splitting and the proton decay suppression. We propose a renormalizable supersymmetric SO(10) model with all these difficulties solved naturally.
SO(10) Yukawa Unification with mu < 0
Gogoladze, Ilia; Un, Cem Salih
2011-01-01
We consider the low energy implications including particle spectroscopy of SO(10) inspired t-b-tau Yukawa coupling unification with mu 0. We find that t-b-tau Yukawa unification with mu 0 and universal gaugino masses in which the gluino is the lightest colored sparticle and the sqaurks of the first two families have masses in the multi-TeV range.
Simple SO(10) GUT in five dimensions
Fukuyama, Takeshi; Okada, Nobuchika
2008-07-01
A simple supersymmetric SO(10) grand unified theory (GUT) in five dimensions is considered. The fifth dimension is compactified on the S1/(Z2×Z2') orbifold possessing two inequivalent fixed points. In our setup, all matter and Higgs multiplets reside on one brane (PS brane) where the original SO(10) gauge group is broken down to the Pati-Salam (PS) gauge group, SU(4)c×SU(2)L×SU(2)R, by the orbifold boundary condition, while only the SO(10) gauge multiplet resides in the bulk. The further breaking of the PS symmetry to the standard model gauge group is realized by Higgs multiplets on the PS brane as usual in four-dimensional models. Proton decay is fully suppressed. In our simple setup, the gauge coupling unification is realized after incorporating threshold corrections of Kaluza-Klein modes. When supersymmetry is assumed to be broken on the other brane, supersymmetry breaking is transmitted to the PS brane through the gaugino mediation with the bulk gauge multiplet.
Quasi-degenerate neutrinos in SO(10)
Joshipura, Anjan S
2010-01-01
Quark lepton universality inherent in grand unified theories based on $SO(10)$ gauge group generically leads to hierarchical neutrino masses. We propose a specific ansatz for the structure of Yukawa matrices in $SO(10)$ models which differ from this generic expectations and lead to quasi degenerate neutrinos through the type-I seesaw mechanism. Consistency of this ansatz is demonstrated through a detailed fits to fermion masses and mixing angles all of which can be explained with reasonable accuracy in a model which uses the Higgs fields transforming as $10,120$ and $\\overline{126}$ representations of $SO(10)$. The proposed ansatz is shown to follow from an extended model based on the three generations of the vector like fermions and an $O(3)$ flavour symmetry. Successful numerical fits are also discussed in earlier proposed models which used combination of the type-I and type-II seesaw mechanisms for obtaining quasi degenerate neutrinos. Large neutrino mixing angles emerge as a consequence of neutrino mass d...
Hidden flavor symmetries of SO(10 GUT
Borut Bajc
2016-08-01
Full Text Available The Yukawa interactions of the SO(10 GUT with fermions in 16-plets (as well as with singlets have certain intrinsic (“built-in” symmetries which do not depend on the model parameters. Thus, the symmetric Yukawa interactions of the 10 and 126 dimensional Higgses have intrinsic discrete Z2×Z2 symmetries, while the antisymmetric Yukawa interactions of the 120 dimensional Higgs have a continuous SU(2 symmetry. The couplings of SO(10 singlet fermions with fermionic 16-plets have U(13 symmetry. We consider a possibility that some elements of these intrinsic symmetries are the residual symmetries, which originate from the (spontaneous breaking of a larger symmetry group Gf. Such an embedding leads to the determination of certain elements of the relative mixing matrix U between the matrices of Yukawa couplings Y10, Y126, Y120, and consequently, to restrictions of masses and mixings of quarks and leptons. We explore the consequences of such embedding using the symmetry group conditions. We show how unitarity emerges from group properties and obtain the conditions it imposes on the parameters of embedding. We find that in some cases the predicted values of elements of U are compatible with the existing data fits. In the supersymmetric version of SO(10 such results are renormalization group invariant.
Hidden flavor symmetries of SO(10) GUT
Bajc, Borut; Smirnov, Alexei Yu.
2016-08-01
The Yukawa interactions of the SO(10) GUT with fermions in 16-plets (as well as with singlets) have certain intrinsic ("built-in") symmetries which do not depend on the model parameters. Thus, the symmetric Yukawa interactions of the 10 and 126 dimensional Higgses have intrinsic discrete Z2 ×Z2 symmetries, while the antisymmetric Yukawa interactions of the 120 dimensional Higgs have a continuous SU(2) symmetry. The couplings of SO(10) singlet fermions with fermionic 16-plets have U(1) 3 symmetry. We consider a possibility that some elements of these intrinsic symmetries are the residual symmetries, which originate from the (spontaneous) breaking of a larger symmetry group Gf. Such an embedding leads to the determination of certain elements of the relative mixing matrix U between the matrices of Yukawa couplings Y10, Y126, Y120, and consequently, to restrictions of masses and mixings of quarks and leptons. We explore the consequences of such embedding using the symmetry group conditions. We show how unitarity emerges from group properties and obtain the conditions it imposes on the parameters of embedding. We find that in some cases the predicted values of elements of U are compatible with the existing data fits. In the supersymmetric version of SO(10) such results are renormalization group invariant.
Hidden flavor symmetries of SO(10) GUT
Bajc, Borut
2016-01-01
The Yukawa interactions of the SO(10) GUT with fermions in 16-plets (as well as with singlets) have certain intrinsic ("built-in") symmetries which do not depend on the model parameters. Thus, the symmetric Yukawa interactions of the 10 and 126 dimensional Higgses have intrinsic discrete $Z_2\\times Z_2$ symmetries, while the antisymmetric Yukawa interactions of the 120 dimensional Higgs have a continuous SU(2) symmetry. The couplings of SO(10) singlet fermions with fermionic 16-plets have $U(1)^3$ symmetry. We consider a possibility that some elements of these intrinsic symmetries are the residual symmetries, which originate from the (spontaneous) breaking of a larger symmetry group $G_f$. Such an embedding leads to the determination of certain elements of the relative mixing matrix $U$ between the matrices of Yukawa couplings $Y_{10}$, $Y_{126}$, $Y_{120}$, and consequently, to restrictions of masses and mixings of quarks and leptons. We explore the consequences of such embedding using the symmetry group con...
Scattering off an SO(10) cosmic string
Davis, A C; Davis, A C; Jeannerot, R
1995-01-01
The scattering of fermions from the abelian string arising during the phase transition SO(10) \\rightarrow SU(5) \\times Z_2 induced by the Higgs in the 126 representation is studied. Elastic cross-sections and baryon number violating cross-sections due to the coupling to gauge fields in the core of the string are computed by both a first quantised method and a perturbative second quantised method. The elastic cross-sections are found to be Aharonov-Bohm type. However, there is a marked asymmetry between the scattering cross-sections for left and right handed fields. The catalysis cross-sections are small, depending on the grand unified scale. If cosmic strings were observed our results could help tie down the underlying gauge group.
Couplings in SO(10) Grand Unification
Syed, R M
1993-01-01
In this thesis, we develop techniques for the analysis of SO(2N) invariant couplings which allows a full exhibition of the SU(N) invariant content of the spinor and tensor representations. The techniques utilize a so called Basic Theorem which we first derive. Using this method an evaluation of the trilinear couplings of the 16 plet of matter and of the 16 and $\\bar{16}$ plets Higgs is given. In particular, we give a full determination of couplings in their SU(5) decomposed form, involving $16 16$ and the 10, 120 and $\\bar{126}$ tensor fields together with $\\bar{16} 16$ ($16 \\bar{16}$) and the 1, 45 and 210 tensor fields. We also compute the vector couplings of $16 16$ ($\\bar{16} \\bar{16}$) and the 1, 45, 210 gauge fields. Computation of dimension-5 operators formed from 16 and $\\bar {16}$ arising from the mediation of 1, 10, 45 and 210 plet of heavy Higgs, are also analyzed. Complete supersymmetric vector couplings belonging to the singlet and the adjoint representation of the SO(10) gauge group are computed...
Fermion Masses in SO(10) Models
Joshipura, Anjan S
2011-01-01
We examine many SO(10) models for their viability or otherwise in explaining all the fermion masses and mixing angles. This study is carried out for both supersymmetric and non-supersymmetric models and with minimal ($10+\\bar{126}$) and non-minimal ($10+\\bar{126}+120$) Higgs content. Extensive numerical fits to fermion masses and mixing are carried out in each case assuming dominance of type-II or type-I seesaw mechanism. Required scale of the B-L breaking is identified in each case. In supersymmetric case, several sets of data at the GUT scale with or without inclusion of finite supersymmetric corrections are used. All models studied provide quite good fits if the type-I seesaw mechanism dominates while many fail if the type-II seesaw dominates. This can be traced to the absence of the $b$-$\\tau$ unification at the GUT scale in these models. The minimal non-supersymmetric model with type-I seesaw dominance gives excellent fits. In the presence of a $45_H$ and an intermediate scale, the model can also account...
Study of baryon number and lepton flavour violation in the new minimal supersymmetric SO(10)GUT
Kaur, Charanjit
2015-01-01
We study the so-called new minimal supersymmetric SO(10) GUT(NMSGUT) where explicit spontaneous symmetry breaking allows determination of superheavy spectrum and thus threshold corrections to the effective MSSM couplings. This provides a generic mechanism to resolve the long standing super fast proton decay in Susy GUTs. We estimate lepton flavor violation associated with realistic charged fermion and (Type I seesaw) neutrino fit and show compatibility with baryon number and lepton flavour violation limits. We improve NMSGUT fits by including important loop corrections to sparticle spectra. Our fits use 5 GUT compatible soft supersymmetry breaking parameters of the Supergravity with Non-Universal Higgs Masses(SUGRY-NUHM) type. We calculate the full two loop NMSGUT gauge-Yukawa beta functions to study feasibility of the NUHM parameters via strong renormalization of SO(10) Higgs soft masses. Focus on MSSM Higgs allows formulation of a "Yukawonification" strategy for gauged flavour unification.
Antonella Del Rosso
2012-01-01
Recent information from the LHC experiments, the relatively low mass of the new boson and other data coming from experiments looking for dark matter worldwide are placing new constraints on the existence of supersymmetry (SUSY). However, there is a large community of scientists that still believes that SUSY particles are out there. Like lost keys at night, perhaps we have been looking for SUSY under the wrong lamp-posts… Can you work out this rebus? Source: Caroline Duc. So far, SUSY is “just” a theoretical physics model, which could solve problems beyond the Standard Model by accounting for dark matter and other phenomena in the Universe. However, SUSY has not been spotted so far, and might be hiding because of features different from what physicists previously expected. “Currently, there is no evidence for SUSY, but neither has any experimental data ruled it out. Many searches have focused on simplified versions of the theory but, given the recen...
On the doublet/triplet splitting and intermediate mass scales in locally supersymmetric SO(10)
Pulido, João
1985-01-01
In the light of the doublet/triplet splitting, the possibilities for an intermediate mass scale in locally supersymmetric SO(10) are analysed. It is found that the subgroup SU(4)c × SU(2)L × SU(2)R and more generally left-right symmetric models are unlikely to survive as intermediate symmetries since they imply too large values of the weak mixing angle. An alternative model using the subgroup SU(3)c × U(1)L × U(1)R is discussed. Requirements from global SUSY preservation impose an extra constraint and predictions for the grand unification and the intermediate masses are obtained at MX ~ 6 × 1015 GeV and MI ~ 1012 GeV. Address after March 1984: Centro de Fisica da Materia Condensada, Av. Prof. Gama Pinto, 2, 1699 Lisbon Codex, Portugal.
Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert
2016-01-01
We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.
Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert
2017-01-01
We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.
Mamuzic, Judita; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and naturalness problem, gives a solution to the gauge coupling unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, and R-parity violation and long lived particles are being studied at the LHC. An overview of most recent SUSY searches results using the 13 TeV ATLAS RUN2 data will be presented.
Katz, Andrey; Pokorski, Stefan; Redigolo, Diego; Ziegler, Robert
2017-01-31
We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.
SO(10) grand unification in a fuzzy setting
El Naschie, M.S. [King Abdul Aziz City of Science and Technology, Riyadh (Saudi Arabia)
2007-05-15
While the SU (5) unification is controlled by vertical bar SU(5) vertical bar = 24 charges, the SO(10) grand unification possesses vertical bar SO(10) vertical bar = 45 charges. The present work gives a partial reformulation of SO(10) unification in a fuzzy setting. In particular, it is argued that the geometrical picture behind the {l_brace}126{r_brace} representation of SO(10) is identical to the structure behind E-infinity and the transfinite E {sub 8} - E {sub 8} exceptional Lie group when we continue {l_brace}126{r_brace} transfinitely. It is conjectured that within the fuzzy setting, SU(5) and SO(10) are essentially various homeomorphisms approximating E-infinity theory.
ATLAS, C; The ATLAS collaboration
2014-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.
Dawson, S.
1997-01-13
In these lectures, the author discusses the theoretical motivation for supersymmetric theories and introduce the minimal low energy effective supersymmetric theory, (MSSM). I consider only the MSSM and its simplest grand unified extension here. Some of the other possible low-energy SUSY models are summarized. The particles and their interactions are examined in detail in the next sections and a grand unified SUSY model presented which gives additional motivation for pursuing supersymmetric theories.
Decaying LSP in SO(10) GUT and PAMELA's Cosmic Positron
Kyae, Bumseok
2009-01-01
We suppose that the lightest supersymmetric particle (LSP) in the minimal supersymmetric standard model (MSSM) is dark matter. The bino-like LSP can decay through the SO(10) gauge interactions, if one right-handed (RH) neutrino (\
On SUSY breaking from NL/L SUSY relation
Shima, Kazunari, E-mail: shima@sit.ac.j [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan); Tsuda, Motomu, E-mail: tsuda@sit.ac.j [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan)
2010-10-11
We show in two-dimensional space-time (d=2) the relation between an N=2 nonlinear supersymmetric (NLSUSY) model and an N=2 linear (L) SUSY Yang-Mills (SYM) theory with matter (N=2 LSUSY QCD theory). We give a new interpretation of four Nambu-Goldstone fermion (superon) contact terms, which emerge from an N=2 general SUSY QCD (composite) action, as mass terms for LSUSY supermultiplets and discuss the possible SUSY breaking mechanism in NL/L SUSY relation for SUSY gauge theories in d=2.
Simple 5D SO(10) GUT and sparticle masses
Fukuyama, Takeshi; Okada, Nobuchika
2008-12-01
Simple supersymmetric SO(10) grand unified theory in five dimensions is proposed, in which the fifth dimension is compactified on the S1/(Z2×Z2') orbifold with two inequivalent branes at the orbifold fixed points. In this model, all matter and Higgs multiplets reside on one brane (PS brane) where the Pati-Salam (PS) symmetry is manifest, while only the SO(10) gauge multiplet resides on the bulk. The supersymmetry breaking on the other brane [SO(10) brane] is transmitted to the PS brane through the gaugino mediation with the bulk gauge multiplet. We examine sparticle mass spectrum in this setup and show that the neutralino LSP as the dark matter candidate can be realized when the compactification scale of the fifth dimension is higher than the PS symmetry breaking scale, keeping the successful gauge coupling unification after incorporating threshold corrections of Kaluza-Klein modes of the bulk gauge multiplets.
Non-minimal quartic inflation in supersymmetric SO(10)
Leontaris, George K.; Okada, Nobuchika; Shafi, Qaisar
2017-02-01
We describe how quartic (λϕ4) inflation with non-minimal coupling to gravity is realized in realistic supersymmetric SO (10) models. In a well-motivated example the 16 - 16 ‾ Higgs multiplets, which break SO (10) to SU (5) and yield masses for the right-handed neutrinos, provide the inflaton field ϕ. Thus, leptogenesis is a natural outcome in this class of SO (10) models. Moreover, the adjoint (45-plet) Higgs also acquires a GUT scale value during inflation so that the monopole problem is evaded. The scalar spectral index ns is in good agreement with the observations and r, the tensor to scalar ratio, is predicted for realistic values of GUT parameters to be of order 10-3-10-2.
The quantum vacuum of the minimal SO(10) GUT
Bertolini, Stefano; Malinsky, Michal
2010-01-01
We reexamine the longstanding no-go excluding all potentially viable SO(10) -> SU(3)_c x SU(2)_L x U(1)_Y symmetry breaking patterns within the minimal renormalizable non-supersymmetric SO(10) GUT framework featuring the 45-dimensional adjoint representation in the Higgs sector. A simple symmetry argument indicates that quantum effects do change the vacuum structure of the model dramatically. A thorough analysis of the one-loop effective potential reveals that the phenomenologically favoured symmetry breaking chains passing through the SU(4)_C x SU(2)_L x U(1)_R or SU(3)_c x SU(2)_L x SU(2)_R x U(1)_B-L intermediate stages are, indeed, supported at the quantum level. This brings the class of minimal non-supersymmetric SO(10) GUTs back from oblivion, providing a new ground for a potentially realistic model building.
SO(10) models with flavour symmetries: classification and examples
Ivanov, I. P.; Lavoura, L.
2016-10-01
Renormalizable SO(10) grand unified theory (GUT) models equipped with flavour symmetries are a popular framework for addressing the flavour puzzle. Usually, the flavour symmetry group has been an ad hoc choice, and no general arguments limiting this choice were known. In this paper, we establish the full list of flavour symmetry groups which may be enforced, without producing any further accidental symmetry, on the Yukawa-coupling matrices of an SO(10) GUT with arbitrary numbers of scalar multiplets in the {{10}}, \\bar{{{126}}}, and {{120}} representations of SO(10). For each of the possible discrete non-Abelian symmetry groups, we present examples of minimal models which do not run into obvious contradiction with the phenomenological fermion masses and mixings.
Building SO$_{10}$- models with $\\mathbb{D}_{4}$ symmetry
Laamara, R Ahl; Saidi, E H
2015-01-01
Using characters of finite group representations and monodromy of matter curves in F-GUT, we complete partial results in literature by building SO$% _{10}$ models with dihedral $\\mathbb{D}_{4}$ discrete symmetry. We first revisit the $\\mathbb{S}_{4}$-and $\\mathbb{S}_{3}$-models from the discrete group character view, then we extend the construction to $\\mathbb{D}_{4}$.\\ We find that there are three types of $SO_{10}\\times \\mathbb{D}_{4}$ models depending on the ways the $\\mathbb{S}_{4}$-triplets break down in terms of irreducible $\\mathbb{D}_{4}$- representations: $\\left({\\alpha} \\right) $ as $\\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{-,+}};$ or $\\left({\\beta}\\right) \\boldsymbol{\\ 1}_{_{+,+}}\\oplus \\boldsymbol{1}_{_{+,-}}\\oplus \\boldsymbol{1}_{_{-,-}};$ or also $\\left({\\gamma}\\right) $ $\\mathbf{1}_{_{+,-}}\\oplus \\mathbf{2}_{_{0,0}}$. Superpotentials and other features are also given.
Building SO(10) models from F-theory
Antoniadis, I
2012-01-01
We revisit local F-theory SO(10) and SU(5) GUTs and analyze their properties within the framework of the maximal underlying E_8 symmetry in the elliptic fibration. We consider the symmetry enhancements along the intersections of seven-branes with the GUT surface and study in detail the embedding of the abelian factors undergoing monodromies in the covering gauge groups. We combine flux data from the successive breaking of SO(10) to SU(5) gauge symmetry and subsequently to the Standard Model one, and further constrain the parameters determining the models' particle spectra. In order to eliminate dangerous baryon number violating operators we propose ways to construct matter parity like symmetries from intrinsic geometric origin. We study implementations of the resulting constrained scenario in specific examples obtained for a variety of monodromies.
Building SO(10) models from F-theory
Antoniadis, I.; Leontaris, G. K.
2012-08-01
We revisit local F-theory SO(10) and SU(5) GUTs and analyze their properties within the framework of the maximal underlying E 8 symmetry in the elliptic fibration. We consider the symmetry enhancements along the intersections of seven-branes with the GUT surface and study in detail the embedding of the abelian factors undergoing monodromies in the covering gauge groups. We combine flux data from the successive breaking of SO(10) to SU(5) gauge symmetry and subsequently to the Standard Model one, and further constrain the parameters determining the models' particle spectra. In order to eliminate dangerous baryon number violating operators we propose ways to construct matter parity like symmetries from intrinsic geometric origin. We study implementations of the resulting constrained scenario in specific examples obtained for a variety of monodromies.
Neutrino Mass and Proton Decay in a Realistic Supersymmetric SO(10) Model
Severson, Matthew
2016-01-01
This work presents a complete analysis of fermion fitting and proton decay in a SUSY $SO(10)$ model previously suggested by Dutta, Mimura, and Mohapatra. A key question in any grand unified theory is whether it satisfies the experimental lower limits on proton partial lifetimes. In generic models, substantial fine-tuning is required among GUT-scale parameters to satisfy the limits. In the proposed model, the ${\\bf 10}$, $\\overline{\\bf{126}}$, and ${\\bf 120}$ Yukawa couplings contributing to fermion masses have restricted textures intended to give favorable results for proton lifetime, while still giving rise to a realistic fermion sector, without the need for fine-tuning, even for large $\\tan\\beta$, and for either type-I or type-II dominance in the neutrino mass matrix. In this thesis, I investigate the above hypothesis at a strict numerical level of scrutiny; I obtain a valid fit for the entire fermion sector for both types of seesaw dominance, including $\\theta_{13}$ in good agreement with the most recent d...
Stark, Giordon; The ATLAS collaboration
2016-01-01
In this talk, I present a discussion of techniques used in supersymmetry searches in papers published by the ATLAS Collaboration from late Run 1 to early Run 2. The goal is to highlight concepts the analyses have in common, why/how they work, and possible SUSY searches that could benefit from boosted studies. Theoretical background will be provided for reference to encourage participants to explore in depth on their own time.
Zhuang, Xuai; The ATLAS collaboration
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV using 2015+2016 data. The searches with final states including jets, missing transverse momentum, light leptons will be presented.
Papucci, Michele; Ruderman, Joshua T. [Lawrence Berkeley National Laboratory, CA (United States). Theoretical Physics Group; California Univ., Berkeley, CA (United States). Dept. of Physics; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.
2011-10-31
The first 1 fb{sup -1} of LHC searches have set impressive limits on new colored particles decaying to missing energy. We address the implication of these searches for naturalness in supersymmetry (SUSY). General bottom-up considerations of natural electroweak symmetry breaking show that higgsinos, stops, and the gluino should not be too far above the weak scale. The rest of the spectrum, including the squarks of the first two generations, can be heavier and beyond the current LHC reach. We have used collider simulations to determine the limits that all of the 1 fb{sup -1} searches pose on higgsinos, stops, and the gluino. We find that stops and the left-handed sbottom are starting to be constrained and must be heavier than about 200-300 GeV when decaying to higgsinos. The gluino must be heavier than about 600-800 GeV when it decays to stops and sbottoms. While these findings point toward scenarios with a lighter third generation split from the other squarks, we do find that moderately-tuned regions remain, where the gluino is just above 1 TeV and all the squarks are degenerate and light. Among all the searches, jets plus missing energy and same-sign dileptons often provide the most powerful probes of natural SUSY. Overall, our results indicate that natural SUSY has survived the first 1 fb{sup -1} of data. The LHC is now on the brink of exploring the most interesting region of SUSY parameter space. (orig.)
Baryon Asymmetry, Neutrino Mixing and Supersymmetric SO(10) Unification
Plümacher, Michael
1998-01-01
The baryon asymmetry of the universe can be explained by the out-of-equilibrium decays of heavy right-handed neutrinos. We analyse this mechanism in the framework of a supersymmetric extension of the Standard Model and show that lepton number violating scatterings are indispensable for baryogenesis, even though they may wash-out a generated asymmetry. By assuming a similar pattern of mixings and masses for neutrinos and up-type quarks, as suggested by SO(10) unification, we can generate the observed baryon asymmetry without any fine tuning, if (B-L) is broken at the unification scale preferred by the MSW solution to the solar neutrino deficit.
Diphoton resonance in F-theory inspired flipped SO(10)
Leontaris, George K. [Ioannina University, Physics Department, Theory Division, Ioannina (Greece); Shafi, Qaisar [University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE (United States)
2016-10-15
Motivated by the di-photon excess at 750 GeV reported by the ATLAS and CMS experiments, we present an F-theory inspired flipped SO(10) model embedded in E{sub 6}. The low energy spectrum includes the three MSSM chiral families, vector-like colour triplets, several pairs of charged SU(2){sub L} singlet fields (E{sup c}, anti E{sup c}), as well as MSSM singlets, one or more of which could contribute to the di-photon resonance. A total decay width in the multi-GeV range can arise from couplings involving the singlet and MSSM fields. (orig.)
SO(10) model of standard and dark matter
Khruschov, V V
2016-01-01
We consider a novel model for three standard families of left chiral states of quarks and leptons conjointly with a new family of dark matter fermionic particles and a sterile neutrino. It is suggested to use a SO(10) symmetry for description of these families for the first time. It is presented estimations of masses of dark matter particles and the sterile neutrino as well limitations for values of mixing parameters between the new family particles and active neutrinos. This model can be used for predictions and interpretations of results of experiments for sterile neutrino and dark matter particles search.
Towards classification of SO(10) heterotic string vacua
Rizos, J. [Theory Division, Physics Department, University of Ioannina (Greece)
2011-11-15
We report some recent progress towards classification of phenomenologically appealing heterotic string models in the Free Fermionic Formulation. We focus on a class of Z{sub 2} x Z{sub 2} models with SO(10) space-time gauge symmetry and study their main phenomenological aspects. We further consider reducing the gauge symmetry to the Pati-Salam gauge group SU(4) x SU(2)L x SU(2){sub R} and impose a series of phenomenological constraints including the existence of gauge symmetry breaking Higgs particles and the elimination of exotic fractionally charged states. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A light WR in SO(10) with split fermion representations
Maalampi, J.; Pulido, J.
1985-01-01
It has been previously shown that in SO(10) one can have a light right-handed vector boson WR (and ZR) provided the weak mixing angle is in the range sin2θw = (0.26-0.31. The recent UA1 results, however, indicate sin2θw = 0.226. We show that under these new circumstances a light WR (and ZR) is still possible, if mass split fermion multiplets (10, 16 and 16) are added to the model. Present address: Centro de Fisica da Matéria Condensada, Av. Prof. Gama Pinto, 2, 1699 Lisboa Codex, Portugal.
Wymant, Chris
2013-01-01
This doctoral thesis addresses aspects of Supersymmetry (Susy) phenomenology. In addition to previously published work, it contains introductions to the following topics: from classical mechanics to quantum field theory for the more casual reader, electroweak naturalness, the Higgs as a pseudo-Nambu-Goldstone boson, the MSSM and NMSSM, simple and less simple models of gauge-mediated Susy breaking (GMSB), collider searches for Susy and other new theories, transverse mass observables with missing energy, and Brazil-band plots. The previously published work is as follows. The optimally natural Higgs-stop sector in the MSSM in light of the 2012 discovery of a Higgs boson is derived, namely that of almost maximal mixing, with the scalar top partners almost as light as can be. The discovery is also interpreted numerically in the NMSSM, with greater emphasis placed on the visibility of the Higgs boson at the observed mass, i.e. on signal strengths. I investigate the role played by the mediation scale of GMSB: this i...
Probes of Yukawa unification in supersymmetric SO(10) models
Westhoff, Susanne
2009-10-23
This work is composed as follows: In Chapter 1, the disposed reader is made familiar with the foundations of flavourphysics and Grand Unification, including group-theoretical aspects of SO(10). In Chapter 2, we introduce a specific supersymmetric GUT model based on SO(10) and designed to probe down-quark-lepton Yukawa unification. Within this framework we explore the effects of large atmospheric neutrino mixing in bottom-strange transitions on the mass difference and CP phase in B{sub s}- anti B{sub s} meson mixing. Chapter 3 is devoted to corrections to Yukawa unification. We derive constraints on Yukawa corrections for light fermions from K- anti K and B{sub d}- anti B {sub d} mixing. As an application we study implications of neutrino mixing effects in CP-violating K and B{sub d} observables on the unitrity triangle. Finally, in Chapter 4, we discuss effects of large tan {beta} in B{yields}(D){tau}{nu} decays with respect to their potential to discover charged Higgs bosons and to discriminate between different GUT models of flavour.
The top quark mass in supersymmetric SO(10) unification
Hall, L J; Sarid, U; Lawrence J Hall; Riccardo Rattazzi; Uri Sarid
1994-01-01
The successful prediction of $\\sin^2\\theta_W$ suggests that the effective theory beneath the GUT scale is the two-Higgs MSSM. If we further assume that the unified gauge group contains SO(10), that the two light Higgs doublets lie mostly in a single irreducible SO(10) representation, and that the $t$, $b$ and $\\tau$ masses originate in renormalizable Yukawa interactions of the form $16_3 O 16_3$, then also the top quark mass can be predicted in terms of the MSSM parameters. To compute $m_t$ we present a precise analytic approximation to the solution of the 2-loop renormalization group equations, and study supersymmetric and GUT threshold corrections and the input value of the $b$ quark mass. The large ratio of top to bottom quark masses derives from a large ratio, $\\tan\\beta$, of Higgs vacuum expectation values. We point out that when $\\tan\\beta$ is large, so are certain corrections to the $b$ quark mass prediction, unless a particular hierarchy exists in the parameters of the model. With such a hierarchy, wh...
A Systematic SO(10) Operator Analysis for Fermion Masses
Anderson, G; Dimopoulos, Savas K; Hall, L J; Starkman, G
1994-01-01
A new approach for deducing the theory of fermion masses at the scale of grand unification is proposed. Combining SO(10) grand unification, family symmetries and supersymmetry with a systematic operator analysis, the minimal set of fermion mass operators consistent with low energy data is determined. Exploiting the full power of SO(10) to relate up, down and charged lepton mass matrices, we obtain predictions for 7 of the mass and mixing parameters. The assumptions upon which the operator search and resulting predictions are based are stressed, together with a discussion of how the predictions are affected by a relaxation of some of the assumptions.The masses of the heaviest generation, $m_t,m_b$ and $m_\\tau$, are generated from a single renormalizable Yukawa interaction, while the lighter masses and the mixing angles are generated by non-renormalizable operators of the grand unified theory. The hierarchy of masses and mixing angles is thereby related to the ratio of grand to Planck scales, $M_G / M_P$. An ex...
Successful type I Leptogenesis with SO(10)-inspired mass relations
Di Bari, Pasquale
2009-01-01
It is well-known that thermal leptogenesis through the decays of the lightest right-handed neutrinos encounters serious difficulties when SO(10)-inspired mass conditions are imposed on the Dirac neutrino mass matrix and light neutrino masses are generated through the type I see-saw mechanism. We show that these can be circumvented when the production from the next-to-lightest right-handed neutrinos and flavor effects are properly taken into account. Some conditions on the low energy parameters have to be satisfied in order for inverse processes involving the lightest right-handed neutrino not to wash-out the asymmetry. In particular we find m_1 \\gtrsim 0.001 eV, where m_1 is the mass of the lightest left-handed neutrino and that non-vanishing values of the mixing angle theta_13 are preferred in the case of a normal fully hierarchical spectrum of light neutrinos.
Flavour symmetries in a renormalizable SO(10) model
Ferreira, P M; Jurčiukonis, D; Lavoura, L
2015-01-01
In the context of a renormalizable supersymmetric SO(10) Grand Unified Theory, we consider the fermion mass matrices generated by the Yukawa couplings to a $\\mathbf{10} \\oplus \\mathbf{120} \\oplus \\overline{\\mathbf{126}}$ representation of scalars. We perform a complete investigation of the possibilities of imposing flavour symmetries in this scenario; the purpose is to reduce the number of Yukawa coupling constants in order to identify potentially predictive models. We have found that there are only 14 inequivalent cases of Yukawa coupling matrices, out of which 13 cases are generated by $Z_n$ symmetries, with suitable $n$, and one case is generated by a $Z_2 \\times Z_2$ symmetry. A numerical analysis of the 14 cases reveals that only two of them---dubbed A and B in the present paper---allow good fits to the experimentally known fermion masses and mixings.
Leptogenesis within a predictive G(224)/SO(10)-framework
Pati, Jogesh C
2002-09-23
A G(224)/SO(10)-framework has been proposed (a few years ago) that successfully describes the masses and mixings of all fermions including neutrinos. Baryogenesis via leptogenesis is considered within this framework by allowing for natural phases ({approx} 1/30-1/2) in the entries of the Dirac and Majorana mass-matrices. It is shown that the framework leads quite naturally to the desired magnitude for the baryon asymmetry, in full accord with the observed features of atmospheric and solar neutrino oscillations, as well as with those of quark and charged lepton masses and mixings. Hereby one obtains a unified description of fermion masses, neutrino oscillations and baryogenesis within a single predictive framework.
Bosonic structure of realistic SO(10) supersymmetric cosmic strings
Allys, Erwan
2016-05-01
We study the bosonic structure of F -term Nambu-Goto cosmic strings forming in a realistic SO(10) implementation, assuming standard hybrid inflation. We describe the supersymmetric grand unified theory, and its spontaneous symmetry breaking scheme in parallel with the inflationary process. We also write the explicit tensor formulation of its scalar sector, focusing on the subrepresentations singlet under the standard model, which is sufficient to describe the string structure. We then introduce an ansatz for Abelian cosmic strings, discussing in details the hypothesis, and write down the field equations and boundary conditions. Finally, after doing a perturbative study of the model, we present and discuss the results obtained with numerical solutions of the string structure.
Dova, MT; The ATLAS collaboration
2012-01-01
This is a talk on Search for SUSY at LHC (ATLAS + CMS) to be presented at SILAFAE2012 (IX Simposio Latinoamericano de Fisica de Altas Energías) to be held in Sao Paulo, Brazil (10-14 December) . The content of the slides is mainly with results presented at SUSY2012 with a few updates from HCP results.
The ATLAS Diboson Resonance in Non-Supersymmetric SO(10)
Evans, Jason L; Olive, Keith A; Zheng, Jiaming
2015-01-01
SO(10) grand unification accommodates intermediate gauge symmetries with which gauge coupling unification can be realized without supersymmetry. In this paper, we discuss the possibility that a new massive gauge boson associated with an intermediate gauge symmetry explains the excess observed in the diboson resonance search recently reported by the ATLAS experiment. The model we find has two intermediate symmetries, $SU(4)_C \\otimes SU(2)_L \\otimes SU(2)_R$ and $SU(3)_C \\otimes SU(2)_L \\otimes SU(2)_R \\otimes U(1)_{B-L}$, where the latter gauge group is broken at the TeV scale. This model achieves gauge coupling unification with a unification scale sufficiently high to avoid proton decay. In addition, this model provides a good dark matter candidates, whose stability is guaranteed by a $Z_2$ symmetry present after the spontaneous breaking of the intermediate gauge symmetries. We also discuss prospects for testing these models in the forthcoming LHC experiments and dark matter detection experiments.
A new family symmetry for SO(10) GUTs
King, Stephen F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)], E-mail: king@soton.ac.uk; Luhn, Christoph [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)], E-mail: christoph.luhn@soton.ac.uk
2009-10-11
We argue that the projective special linear group PSL{sub 2}(7), also known as {sigma}(168), has unique features which make it the most suitable discrete family symmetry for describing quark and lepton masses and mixing in the framework of SO(10) type unified models. In such models flavon fields in the sextet representation of PSL{sub 2}(7) play a crucial role both in obtaining tri-bimaximal neutrino mixing as well as in generating the third family charged fermion Yukawa couplings. In preparation for physical applications, we derive the triplet representation of PSL{sub 2}(7) in the basis S,T,U,V where S,T,U are the familiar triplet generators of S{sub 4} in the diagonal charged lepton basis where T is diagonal. We also derive an analogous basis for the real sextet representation and identify the vacuum alignments which lead to tri-bimaximal neutrino mixing and large third family charged fermion Yukawa couplings.
Testing SO(10)-inspired leptogenesis with low energy neutrino experiments
Di Bari, Pasquale
2011-01-01
We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N_2 dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ~ 10^10 GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m_1 \\simeq (1-5)\\times 10^-3 eV and m_1\\simeq (0.03-0.1) eV. For m_1\\lesssim 0.01 eV the allowed region in the plane theta_13-thet...
Berggren, Mikael
2013-08-15
At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.
Susi astus rektori kohalt tagasi / Sigrid Laev
Laev, Sigrid
2003-01-01
Concordia rektor Mart Susi ja prorektor Mari-Ann Susi astusid kooli juhtimisest tagasi ja kuulutasid välja Concordia Varahalduse OÜ pankroti. Concordia töötajate loodud ühing hakkas looma uut õppeasutust
Three point SUSY Ward identities without Ghosts
Walker, M L
2004-01-01
We utilise a non-local gauge transform which renders the entire action of SUSY QED invariant and respects the SUSY algebra modulo the gauge-fixing condition, to derive two- and three-point ghost-free SUSY Ward identities in SUSY QED. We use the cluster decomposition principle to find the Green's function Ward identities and then takes linear combinations of the latter to derive identities for the proper functions.
SUSY naturalness without prejudice
Ghilencea, D. M.
2014-05-01
Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale v at the quantum level and predict that v is a function of the TeV-valued SUSY parameters (γα) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation δχ2 (from χmin2 of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, provided that the EW scale v ˜mZ is indeed regarded as a function v =v(γ). It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among γα exist (due to GUT symmetries, etc.). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the δχ2 and the s-standard deviation confidence interval by using v =v(γ) and the theoretical approximation (loop order) considered for the calculation of the observables. This upper bound avoids subjective criteria for the "acceptable" level of EW fine-tuning for which the model is still "natural."
SUSY naturalness without prejudice
Ghilencea, D M
2014-01-01
Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale $v$ at the quantum level and {\\it predict} that $v$ is a function of the TeV-valued SUSY parameters ($\\gamma_\\alpha$) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation $\\delta\\chi^2$ (from $\\chi^2_{min}$ of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, {\\it provided that} the EW scale $v\\sim m_Z$ is indeed regarded as a function $v=v(\\gamma)$. It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among $\\gamma_\\alpha$ exist (due to GUT symmetries, etc). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the $\\delta\\chi^2$ and the s-standard deviation conf...
Lepton Flavor Violation in Predictive SUSY-GUT Models
Albright, Carl H.; /Northern Illinois U. /Fermilab; Chen, Mu-Chun; /UC, Irvine
2008-02-01
There have been many theoretical models constructed which aim to explain the neutrino masses and mixing patterns. While many of the models will be eliminated once more accurate determinations of the mixing parameters, especially sin{sup 2} 2{theta}{sub 13}, are obtained, charged lepton flavor violation (LFV) experiments are able to differentiate even further among the models. In this paper, they investigate various rare LFV processes, such as {ell}{sub i} {yields} {ell}{sub j} + {gamma} and {mu} - e conversion, in five predictive SUSY SO(10) models and their allowed soft SUSY breaking parameter space in the constrained minimal SUSY standard model (CMSSM). Utilizing the WMAP dark matter constraints, they obtain lower bounds on the branching ratios of these rare processes and find that at least three of the five models they consider give rise to predictions for {mu} {yields} e + {gamma} that will be tested by the MEG collaboration at PSI. in addition, the next generation {mu} - e conversion experiment has sensitivity to the predictions of all five models, making it an even more robust way to test these models. While generic studies have emphasized the dependence of the branching ratios of these rare processes on the reactor neutrino angle, {theta}{sub 13}, and the mass of the heaviest right-handed neutrino, M{sub 3}, they find very massive M{sub 3} is more significant than large {theta}{sub 13} in leading to branching ratios near to the present upper limits.
Understanding SUSY limits from LEP
Lipniacka, A
2003-01-01
LEP results have constrained heavily the Minimal Supersymmetric Standard Model, while providing hints for light Higgs boson and for "SUSY-assisted'' gauge coupling unification. In this paper the results obtained at LEP within two scenarios, the gravity-mediated MSSM framework and the minimal SUGRA scenario are presented. Model-dependence and coverage of LEP results is discussed.
MSSM Higgs : Window into Susy GUTs
Aulakh, Charanjit S
2015-01-01
The Minimal Supersymmetric SO(10) GUT has developed into a fully realistic theory in which not only are the gauge couplings unified but the known fermion spectrum and mixing matrices could fit accurately using the latitude introduced by inclusion of quantum corrections to the GUT-effective MSSM-SM matching conditions. The fits yield predictions about the nature of the sparticle spectrum on the basis of the required threshold corrections. This indicated a necessarily large value for $A_0$ in 2008 : well before Higgs discovery at 126 GeV made it a commonplace assumption. GUT scale threshold corrections to the normalization of the emergent effective MSSM Higgs ameliorate the long standing Susy GUT puzzle of fast dimension five operator mediated proton decay. Numerical investigation indicates that B-violation rates below or near the current experimental upper limits are feasible in fully realistic models. Our results imply that UV completion models with large numbers of fields, like Kaluza-Klein models or String ...
A Local Torelli's Theorem for SUSY curves
Codogni, Giulio
2014-01-01
SUSY curves, or super Riemann surfaces, are the generalization of Riemann surfaces in the context of super geometry. The main goal of this paper is to construct some explicit families of SUSY curves with odd moduli and compute their periods. By comparing our result with its classical analogue, we make an educated guess about the tangent space to the period domain and the differential of the Jacobian morphism for SUSY curves.
Mart Susi tegevust uurib keskkriminaalpolitsei / Sigrid Laev
Laev, Sigrid
2003-01-01
Keskkriminaalpolitsei algatas Concordia ülikooliga seotu uurimiseks kaks kriminaalasja, millest üks käsitleb endise rektori Mart Susi ja endise prorektori Mari-Ann Susi võimalikku ametiseisundi kuritarvitamist, teise sisuks on Concordia varade ilmne varjamine
Reconstruction of fundamental SUSY parameters
P. M. Zerwas et al.
2003-09-25
We summarize methods and expected accuracies in determining the basic low-energy SUSY parameters from experiments at future e{sup +}e{sup -} linear colliders in the TeV energy range, combined with results from LHC. In a second step we demonstrate how, based on this set of parameters, the fundamental supersymmetric theory can be reconstructed at high scales near the grand unification or Planck scale. These analyses have been carried out for minimal supergravity [confronted with GMSB for comparison], and for a string effective theory.
Squark and slepton masses as probes of supersymmetric SO(10) unification
Ananthanarayan, B
2004-01-01
We carry out an analysis of the non-universal supersymmetry breaking scalar masses arising in SO(10) supersymmetric unification. By considering patterns of squark and slepton masses, we derive a set of sum rules for the sfermion masses which are independent of the manner in which SO(10) breaks to the Standard Model gauge group via its SU(5) subgroups. The phenomenology arising from such non-universality is unaffected by the symmetry breaking pattern, so long as the breaking occurs via any of the SU(5) subgroups of the SO(10) group.
Arnouts, S; Cristiani, S; Zaggia, S R; Fontana, A; Giallongo, E
1999-01-01
We present a deep BVrI multicolor catalog of galaxies in a 5.62 sq.arcmin field 80 arcsec south of the high redshift (z=4.7) quasar BR 1202-0725, derived from observations with the direct CCD camera SUSI at the ESO NTT. The formal 5$\\sigma$ magnitude limits (in 2 x FWHM apertures) are 26.9, 26.5, 25.9 and 25.3 in B, V, r and I respectively. Counts, colors for the star and galaxy samples are discussed and a comparison with a deep HST image in the I band is presented. The percentage of merged or blended galaxies in the SUSI data to this magnitude limit is estimated to be not higher than 1%. At the same galactic latitude of the HDF but pointing toward the galactic center, the star density in this field is found to be ~3 times higher, with ~20% of the objects with V-I > 3.0. Reliable colors have been measured for galaxies selected down to r = 26. The choice of the optical filters has been optimized to define a robust multicolor selection of galaxies at 3.8 <= z <= 4.4. Within this interval the surface densi...
B-L violating proton decay modes and new baryogenesis scenario in SO(10).
Babu, K S; Mohapatra, R N
2012-08-31
We show that grand unified theories based on SO(10) generate quite naturally baryon number violating dimension seven operators that violate B-L, and lead to novel nucleon decay modes such as n→e(-)K(+), e(-)π(+) and p→νπ(+). We find that in two-step breaking schemes of nonsupersymmetric SO(10), the partial lifetimes for these modes can be within reach of experiments. The interactions responsible for these decay modes also provide a new way to understand the origin of matter in the Universe via the decays of grand unified theory (GUT) scale scalar bosons of SO(10). Their (B-L)-violating nature guarantees that the GUT scale induced baryon asymmetry is not washed out by the electroweak sphaleron interactions. In minimal SO(10) models this asymmetry is closely tied to the masses of quarks, leptons and the neutrinos.
Squark and slepton masses as probes of supersymmetric SO(10) unification
Balasubramanian Ananthanarayan; P. N. Pandita
2003-09-01
We carry out a detailed analysis of the non-universal supersymmetry breaking scalar masses arising in SO(10) supersymmetric unification. By considering patterns of squark and slepton masses, we show that a set of sum rules for the sfermion masses is independent of the manner in which SO(10) breaks. We discuss the reasons for this remarkable result. The phenomenology arising from such non-universality is shown to be practically unaffected by the symmetry breaking pattern.
New Constraints from Electric Dipole Moments on Parameters of the Supersymmetric SO(10) Model
Khriplovich, I. B.; Zyablyuk, K. N.
1996-01-01
We calculate the chromoelectric dipole moment (CEDM) of d- and s-quark in the supersymmetric SO(10) model. CEDM is more efficient than quark electric dipole moment (EDM), in inducing the neutron EDM. New, strict constraints on parameters of the supersymmetric SO(10) model follow in this way from the neutron dipole moment experiments. As strict bounds are derived from the upper limits on the dipole moment of odd isotope of mercury.
Shape invariance and SUSY separation of variables
Ioffe M.V.
2016-01-01
Full Text Available The main ingredients of conventional Supersymmetrical Quantum Mechanics (SUSY QM are presented. The generalization with supercharges of second order in derivatives - Second Order SUSY - is formulated, and the property of shape invariance is defined. The generalization to two-dimensional coordinate space, after using just these two elements of the modern SUSY QM approach, provides the opportunity to solve analytically some two-dimensional problems. Two different procedures of supersymmetrical separation of variables are formulated. They are illustrated by two-dimensional generalization of the Morse model.
SO(10) GUTs with large tensor representations on Noncommutative Space-time
Martin, C P
2013-01-01
We construct a noncommutative version of a general renormalizable SO(10) GUT with Higgses in the 210, $\\overline{126}, 45, 10$ and 120 irreps of SO(10) and a Peccei-Quinn symmetry. Thus, we formulate the noncommutative counterpart of a non-supersymmetric SO(10) GUT which has recently been shown to be consistent with all the physics below $M_{GUT}$. The simplicity of our construction --the simplicity of the Yukawa terms, in particular-- stems from the fact that the Higgses of our GUT can be viewed as elements of the Clifford algebra $\\mathbb{C}\\rm{l}_{10}(\\mathbb{C})$; elements on which the SO(10) gauge transformations act by conjugation. The noncommutative GUT we build contains tree-level interactions among different Higgs species that are absent in their ordinary counterpart as they are forbidden by SO(10) and Lorentz invariance. The existence of these interactions helps to clearly distinguish noncommutative Minkowski space-time from ordinary Minkowski space-time.
On Anomaly Mediated SUSY Breaking
de Alwis, S P
2008-01-01
A discrepancy between the Anomaly Mediated Supersymmetry Breaking (AMSB) gaugino mass calculated from the work of Kaplunovsky and Louis (hep-th/9402005) (KL) and other calculations in the literature is explained, and it is argued that the KL expression is the correct one relevant to the Wilsonian action. Furthermore it is argued that the AMSB contribution to the squark and slepton masses should be replaced by the contribution pointed out by Dine and Seiberg (DS) which has nothing to do with Weyl anomalies. This is not in general equivalent to the AMSB expression, and it is shown that there are models in which the usual AMSB expression would vanish but the DS one is non-zero. In fact the latter has aspects of both AMSB and gauge mediated SUSY breaking. In particular like the latter, it gives positive squared masses for sleptons.
SUSY Searches in the ATLAS Experiment
Lee JR, Lawrence; The ATLAS collaboration
2014-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.
SUSY Searches: Recent Results from ATLAS & CMS
Rammensee, Michael; The ATLAS collaboration
2015-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS and CMS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.
Overview of SUSY searches at ATLAS
Bianco, Michele; The ATLAS collaboration
2014-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.
RPV SUSY searches at ATLAS and CMS
Pettersson, Nora Emilia; The ATLAS collaboration
2015-01-01
Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence RPC is that it implies a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. This talk aims to summarise a few of the experimental searches for both prompt and long-lived RPV ...
Renormalization group running of fermion observables in an extended non-supersymmetric SO(10) model
Meloni, Davide; Ohlsson, Tommy; Riad, Stella
2017-03-01
We investigate the renormalization group evolution of fermion masses, mixings and quartic scalar Higgs self-couplings in an extended non-supersymmetric SO(10) model, where the Higgs sector contains the 10 H, 120 H, and 126 H representations. The group SO(10) is spontaneously broken at the GUT scale to the Pati-Salam group and subsequently to the Standard Model (SM) at an intermediate scale M I. We explicitly take into account the effects of the change of gauge groups in the evolution. In particular, we derive the renormalization group equations for the different Yukawa couplings. We find that the computed physical fermion observables can be successfully matched to the experimental measured values at the electroweak scale. Using the same Yukawa couplings at the GUT scale, the measured values of the fermion observables cannot be reproduced with a SM-like evolution, leading to differences in the numerical values up to around 80%. Furthermore, a similar evolution can be performed for a minimal SO(10) model, where the Higgs sector consists of the 10 H and 126 H representations only, showing an equally good potential to describe the low-energy fermion observables. Finally, for both the extended and the minimal SO(10) models, we present predictions for the three Dirac and Majorana CP-violating phases as well as three effective neutrino mass parameters.
B-L Violating Proton Decay Modes and New Baryogenesis Scenario in SO(10)
Babu, K S
2012-01-01
We show that grand unified theories based on SO(10) generate quite naturally baryon number violating dimension seven operators that violate (B-L), and lead to novel nucleon decay modes such as n \\to e^-K^+, e^- \\pi^+ and p \\to \
Susi, a negative regulator of Drosophila PI3-kinase.
Wittwer, Franz; Jaquenoud, Malika; Brogiolo, Walter; Zarske, Marcel; Wüstemann, Philipp; Fernandez, Rafael; Stocker, Hugo; Wymann, Matthias P; Hafen, Ernst
2005-06-01
The Phosphatidylinositol-3 kinase/Protein Kinase B (PI3K/PKB) signaling pathway controls growth, metabolism, and lifespan in animals, and deregulation of its activity is associated with diabetes and cancer in humans. Here, we describe Susi, a coiled-coil domain protein that acts as a negative regulator of insulin signaling in Drosophila. Whereas loss of Susi function increases body size, overexpression of Susi reduces growth. We provide genetic evidence that Susi negatively regulates dPI3K activity. Susi directly binds to dP60, the regulatory subunit of dPI3K. Since Susi has no overt similarity to known inhibitors of PI3K/PKB signaling, it defines a novel mechanism by which this signaling cascade is kept in check. The fact that Susi is expressed in a circadian rhythm, with highest levels during the night, suggests that Susi attenuates insulin signaling during the fasting period.
Searching for SUSY dark matter
Arnowitt, Richard Lewis; Nath, Pran
1994-01-01
{\\tenrm The possibility of detecting supersymmetric dark matter is examined within the framework of the minimal supergravity model (MSGM) where the \\tilde{Z}_{1} is the LSP for almost the entire parameter space. A brief discussion is given of experimental strategies for detecting dark matter. The relic density is constrained to obey 0.10 \\leq \\Omega_{\\tilde{Z}_{1}}h^2 \\leq0.35, consistent with COBE data. Expected event rates for an array of possible terrestrial detectors (^3He, CaF_2, Ge, GaAs, NaI and Pb) are examined. In general, detectors relying on coherrent \\tilde{Z}_{1}-nucleus scattering are more sensitive than detectors relying on incoherrent (spin-dependent) scattering. The dependence of the event rates as a function of the SUSY parameters are described. The detectors are generally most sensitive to the small m_0 and small m_{\\tilde{q}} and large tan\\beta part of the parameter space. The current b\\rightarrow s+\\gamma decay rate eliminates regions of large event rates for \\mu >0, but allows large even...
Fermion Masses and Neutrino Oscillations in SO(10) x SU(2)_{F}
Chen, M C; Chen, Mu-Chun
2005-01-01
We present in this talk a model based on SO(10) x SU(2)_{F} having symmetric mass textures with 5 zeros constructed by us recently. The symmetric mass textures arising from the left-right symmetry breaking chain of SO(10) give rise to good predictions for the masses, mixing angles and CP violation measures in the quark and lepton sectors (including the neutrinos), all in agreement with the most up-to-date experimental data within 1 sigma. Various lepton flavor violating decays in our model are also investigated. Unlike in models with lop-sided textures, our prediction for the decay rate of mu -> e gamma is much suppressed and yet it is large enough to be probed by the next generation of experiments. The observed baryonic asymmetry in the Universe can be accommodated in our model utilizing soft leptogenesis.
Neutrino-induced Electroweak Symmetry Breaking in Supersymmetric SO(10) Unification
Inoue, K; Yoshioka, K; Inoue, Kenzo; Kojima, Kentaro; Yoshioka, Koichi
2006-01-01
The radiative electroweak symmetry breaking, the unification of third-generation Yukawa couplings, and flavor-changing rare decay are investigated in two types of supersymmetric SO(10) scenarios taking into account of the effects of neutrino physics, i.e. the observed large generation mixing and tiny mass scale. The first scenario is minimal, including right-handed neutrinos at intermediate scale with the unification of third-generation Yukawa couplings. Another is the case that the large mixing of atmospheric neutrinos originates from the charged-lepton sector. Under the SO(10)-motivated boundary conditions for supersymmetry-breaking parameters, typical low-energy particle spectrum is discussed and the parameter space is identified which satisfies the conditions for successful radiative electroweak symmetry breaking and the experimental mass bounds of superparticles. In particular, the predictions of the bottom quark mass and the b \\to s gamma branching ratio are fully analyzed. In both two scenarios, new ty...
An explicit SO(10) x U(1)$_{F}$ model of the Yukawa interactions
Albright, Carl H; Albright, Carl H; Nandi, Satyanarayan
1995-01-01
We construct an explicit SO(10) \\times U(1)_F model of the Yukawa interactions by using as a guide previous phenomenological results obtained from a bottom-up approach to quark and lepton mass matrices. The global U(1)_F family symmetry group sets the textures for the Majorana and generic Dirac mass matrices by restricting the type and number of Higgs diagrams which can contribute to each matrix element, while the SO(10) group relates each particular element of the up, down, neutrino and charged lepton Dirac matrices. The Yukawa couplings and vacuum expectation values associated with pairs of {\\bf 1,~45, 10,} and {\\bf 126} Higgs representations successfully correlate all the quark and lepton masses and mixings in the scenario incorporating the nonadiabatic solar neutrino and atmospheric neutrino depletion effects.
Flavor Physics in SO(10) GUTs with Suppressed Proton decay Due to Gauged Discrete Symmetry
Azatov, Aleksandr
2011-12-01
Generic SO(10) GUT models suffer from the problem that Planck scale induced non-renormalizable proton decay operators require extreme suppression of their couplings to be compatible with present experimental upper limits. One way to resolve this problem is to supplement SO(10) by simple gauged discrete symmetries which can also simultaneously suppress the renormalizable R-parity violating interactions when they occur and make the theory "more natural". We then present an extended 16H model, with three 10 and three 45-Higgs, which is free of this problem. We propose this as a realistic and "natural" model for fermion unification and discuss the phenomenology of this model e.g. its predictions for neutrino mixings and lepton flavor violation.
Bounds for the mass of the heaviest right-handed neutrino in SO(10) theories
Buccella, F
2003-01-01
By relating the Dirac neutrino mass matrix to the mass of the charged fermions and assuming that the product of the masses of the two lightest left-handed neutrinos is of the order of $\\Delta m^2_{sol}$, we derive, within a leptogenesis scenario, a range of values for the mass of the heaviest right-handed neutrino, centered around the scale of $B-L$ symmetry breaking in the SO(10) theory with Pati-Salam intermediate symmetry.
Starobinsky-like inflation and neutrino masses in a no-scale SO(10) model
Ellis, John [Theoretical Particle Physics and Cosmology Group,Department of Physics, King’s College London, WC2R 2LS London (United Kingdom); Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Garcia, Marcos A.G. [Physics and Astronomy Department, Rice University,6100 Main Street, Houston, TX 77005 (United States); Nagata, Natsumi [Department of Physics, University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, 77843 Texas (United States); Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States)
2016-11-08
Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.
Starobinsky-Like Inflation and Neutrino Masses in a No-Scale SO(10) Model
Ellis, John
2016-01-01
Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.
Gauge Kinetic Mixing and Leptophobic Z' in $E_6$ and SO(10)
Rizzo, T G
1999-01-01
We examine the influence of gauge kinetic mixing on the couplings of a TeV scale Z' in both E_6 and SO(10) models. The strength of such mixing, which arises due to the existence of incomplete matter representations at low scale, can be described by a single parameter, $\\delta$. The value of this parameter can significantly influence the ability of both hadron and lepton colliders to detect a Z' using conventional search techniques. In addition, $\\delta \
Localization of scalar massless excitations in self-gravitating $SO(10)$ kinks
Chavez, Rafael; Rodriguez, R Omar
2016-01-01
Three self-gravitating $SO(10)$ kinks inducing asymptotically the breaking pattern $SO(10)\\rightarrow SU(5)$ are determined which can be distinguished by the unbroken group on each of them: $SO(10)$ for the first kink and $SO(6)\\times SU(2)\\times U(1)$ and $SU(4)\\times SO(2)\\times U(1)$ for the second and third kink respectively. The scenarios are perturbed by considering small excitations on the fields; in particular, the metric fluctuations are parameterized in terms of tensor, vector and scalar modes. All these modes as well as the perturbations of the scalar field are rewritten as gauge-invariant variables. With regarding the tensor and vector fluctuations, for a four dimensional observer, the standard results are obtained: while the massless graviton is localized on the wall the graviphotons propagate freely in the bulk. On the other hand, for the scalar excitations in correspondence with the symmetry on the kink, both along the broken generators and along the some unbroken generators, normalizable zero ...
Variety of SO(10) GUTs with Natural Doublet-Triplet Splitting via the Missing Partner Mechanism
Babu, K S; Nath, Pran; Syed, Raza M
2011-01-01
We present a new class of unified SO(10) models where the GUT symmetry breaking down to the standard model gauge group involves just one scale, in contrast to the conventional SO(10) models which require two scales. Further, the models we discuss possess a natural doublet-triplet splitting via the missing partner mechanism without fine tuning. Such models involve $560+\\ov{560}$ pair of heavy Higgs fields along with a set of light fields. The $560+\\ov{560}$ are the simplest representations of SO(10) besides the $126+\\ov{126}$ which contain an excess of color triplets over $SU(2)_L$ doublets. We discuss several possibilities for realizing the missing partner mechanism within these schemes. With the $126+\\ov{126}$ multiplets, three viable models are found with additional fields belonging to ${210 + 2 \\times 10 + 120}$, ${45 + 10 + 120}$, or ${210 + 16 + \\ov{16} + 10 + 120}$. With the $560+\\ov{560}$, a unique possibility arises for the missing partner mechanism, with additional ${2\\times 10+ 320}$ fields. These m...
Note on SUSY BF theory in (1+2) dimensions from SUSY algebra for vector-spinor field
Shima, Kazunari, E-mail: shima@sit.ac.jp [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan); Tsuda, Motomu, E-mail: tsuda@sit.ac.jp [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan)
2011-08-11
We show in (1+2) dimensions that supersymmetric (SUSY) BF action for a (minimal and off-shell) spin-(1,3/2 ) supermultiplet is a unique SUSY invariant one required from the closure property of commutator algebra for SUSY transformations.
Comments on interactions in the SUSY models
Upadhyay, Sudhakar; Mandal, Bhabani Prasad
2016-01-01
We consider the special supersymmetry (SUSY) transformations with $m$ generators $\\overleftarrow{s}_\\alpha,$ for some class of the models and study the physical consequences when making the Grassmann-odd transformations to form an Abelian supergroup with finite parameters and set of group-like elements with finite parameters being by a functionals of field variables. The SUSY-invariant path integral measure within conventional quantization scheme leads to appearance of the Jacobian under change of variables generated by such SUSY transformations, which is explicitly calculated. The Jacobian leads, first, to appearance of only trivial interactions in the transformed action, second, to the presence of modified Ward identity, which reduceds to the standard Ward identities for constant parameters. We examine the case of ${N}=1$, $N=2$ supersymmetric harmonic oscillator to illustrate the general concept on a free simple model with $(1,1)$ physical degrees of freedom. It is shown that the interaction terms, $U_{tr}...
Gurrola, Alfredo; Arnowitt, Richard; Dutta, Bhaskar; Kamon, Teruki; Kolev, Nikolay; Krislock, Abram; Simeon, Paul
2006-10-01
Supersymmetry (SUSY) is a very attractive theory of particle physics that could connect to cosmology and explain the early universe. With an assumption of the lightest supersymmetric neutral gauge boson (neutralino) to be a dark matter (DM), the recent measurement of the amount of DM of the universe with other experimental results constrains a SUSY parameter space where a mass difference between the supersymmetric tau lepton (stau) and the neutralino is very small (5 to 15 GeV). The Large Hadron Collider (LHC) will produce the SUSY events copiously and contain two or more tau leptons in the final state. We systematically study an experimental requirement of measuring the characteristic mass difference at the LHC. Within a benchmark framework of minimal supergravity, we confirm the conclusion in our previous publication that the tau lepton must be identified with a transverse energy above 20 GeV.
Strategy for early SUSY searches at ATLAS
Yamamoto, Shimpei
2008-01-01
The CERN Large Hadron Collider (LHC) is scheduled to commence operation in 2008 and inclusive searches for supersymmetry (SUSY) will be one of our primary tasks in the first days of LHC operation. It is certain that the final state of multijets plus missing transverse energy will provide a superior performance in SUSY searches. As yet, well-considered strategies for the understanding of instrumental effects of detectors and the realistic estimations of the Standard Model (SM) backgrounds would not be clear: they are urgent issues for the coming data. We describe the strategy for early SUSY searches at the ATLAS experiment using the fist data corresponding to the integrated luminosity up to 1fb^-1, which comprises many progresses in the data-driven technique for the SM background estimations.
Strategy for early SUSY searches at ATLAS
Yamamoto, S
2007-01-01
The CERN Large Hadron Collider (LHC) is scheduled to commence operation in 2008 and inclusive searches for supersymmetry (SUSY) will be one of our primary tasks in the first days of LHC operation. It is certain that the final state of âﾜmultijets + missing transverse energyâ will provide a superior performance in SUSY searches. As yet, well-considered strategies for the understanding of instrumental effects of detectors and the realistic estimations of the Standard Model (SM) backgrounds would not be clear: they are urgent issues for the coming data. We describe the strategy for early SUSY searches at the ATLAS experiment using the fist data corresponding to the integrated luminosity up to 1fbâ1, which comprises many progresses in the data-driven technique for the SM background estimations.
Strategy for early SUSY searches at ATLAS
Yamamoto, S
2007-01-01
The CERN Large Hadron Collider (LHC) is scheduled to commence operation in 2008 and inclusive searches for supersymmetry (SUSY) will be one of our primary tasks in the first days of LHC operation. It is certain that the final state of multijets plus missing transverse energy will provide a superior performance in SUSY searches. As yet, well-considered strategies for the understanding of instrumental effects of detectors and the realistic estimations of the Standard Model (SM) backgrounds would not be clear: they are urgent issues for the coming data. We describe the strategy for early SUSY searches at the ATLAS experiment using the fist data corresponding to the integrated luminosity up to 1fb^-1, which includes many progresses in the data-driven technique for the SM background estimations.
SUSY searches with the ATLAS detector
Bianchi, Riccardo-Maria; The ATLAS collaboration
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.
SUSY searches with the ATLAS detector
Bianchi, Riccardo-Maria; The ATLAS collaboration
2017-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 \\TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.
Giordano, Ferdinando
2016-01-01
After a period of maintenance the LHC was restarted in 2015 delivering p-p collision at a new center of mass energy of 13 TeV, this new achievement by the machine opened the phase space of many searches for physics beyond the standard model (BSM). In this talk a summary of the LHC searches for supersymmetry (SUSY) pursued by the ATLAS and CMS collaborations is presented, covering a broad number of models and scenarios. Even at this early stage the new searches greatly extend the reach of the previous Run1 analyses limiting the phase space for natural SUSY to exist.
How To Determine SUSY Mass Scales Now
Heinemeyer, S
2008-01-01
Currently available experimental data from electroweak precision observables (EWPO), B-physics observables (BPO) and cosmological data can be combined to extract the preferred value of SUSY mass scales. We review recent results on the predictions of the masses of supersymmetric particles and the indirect determination of the lightest Higgs boson mass. Special emphasis is put on models going beyond the Constrained Minimal Supersymmetric Standard Model (CMSSM), such as the Non-Universal Higgs Model type I (NUHM1), or gauge and anomaloy mediated SUSY breaking.
How To Determine SUSY Mass Scales Now
Heinemeyer, S.
2008-11-01
Currently available experimental data from electroweak precision observables (EWPO), B-physics observables (BPO) and cosmological data can be combined to extract the preferred value of SUSY mass scales. We review recent results on the predictions of the masses of supersymmetric particles and the indirect determination of the lightest Higgs boson mass. Special emphasis is put on models going beyond the Constrained Minimal Supersymmetric Standard Model (CMSSM), such as the Non-Universal Higgs Model type I (NUHM1), or gauge and anomaloy mediated SUSY breaking.
SUSY searches with the ATLAS detector
Ventura, Andrea; The ATLAS collaboration
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.
Viability of the exact tri-bimaximal mixing at M_{GUT} in SO(10)
Joshipura, Anjan S
2011-01-01
General structures of the charged lepton and the neutrino mixing matrices leading to tri-bimaximal leptonic mixing are determined. These are then integrated into an SO(10) model within which detailed fits to fermion masses and mixing angles are given. It is shown that one can obtain excellent fits to all the fermion masses and quark mixing angles keeping tri-bimaximal leptonic mixing intact. Various perturbations to tri-bimaximal mixing which can arise in the model are considered and their impact on the predictions of the reactor mixing angle \\theta_{13} is numerically discussed.
Viability of the exact tri-bimaximal mixing at M GUT in SO(10)
Joshipura, Anjan S.; Patel, Ketan M.
2011-09-01
General structures of the charged lepton and the neutrino mixing matrices leading to tri-bimaximal leptonic mixing are determined. These are then integrated into an SO(10) model within which detailed fits to fermion masses and mixing angles are given. It is shown that one can obtain excellent fits to all the fermion masses and quark mixing angles keeping tri-bimaximal leptonic mixing intact. Different perturbations to the basic structure are considered and those which can or which cannot account for the recent T2K and MINOS results on the reactor mixing angle θ 13 l are identified.
Kepribadian Dan Komunikasi Susi Pudjiastuti Dalam Membentuk Personal Branding
Stevani
2017-07-01
Full Text Available The life story of Susi Pudjiastuti is admired by many people for her hard work, until becoming successful by having so much company in the field of aviation and fisheries. Susi Pudjiastuti is also well known to the public for his work in the ministry. Good performance makes Susi Pudjiastuti popular among Jokowi's working cabinet. Currently, the Brand Name in humans is personal branding which is the trend of the formation of self-image and the creation of good perception from others to us. This research will discuss about personality, communication and personal branding Susi Pudjiastuti with qualitative research method. Good personality makes Susi Pudjiastuti has the ability to communicate well and liked by the community. Personality and communication can form a personal branding Susi Pudjiastuti a natural. By exposing the personality and communication of Susi Pudjiastuti in forming personal branding, then people will realize the importance of personality and Communication in forming a natural personal branding. Kisah hidup Susi Pudjiastuti banyak dikagumi oleh banyak orang atas kerja kerasnya hingga menjadi sukses dengan memiliki banyak perusahaan di bidang penerbangan dan perikanan. Susi Pudjiastuti juga dikenal baik oleh masyarakat akan kinerjanya dalam bekerja di kementerian. Kinerja yang baik menjadikan Susi Pudjiastuti popular diantara kabinet kerja Jokowi. Saat ini, Sebutan merek pada manusia adalah personal branding yang merupakan trend dari pembentukan pencitraan diri dan penciptaan persepsi yang baik dari orang lain kepada kita. Penelitian ini akan membahas mengenai kepribadian, komunikasi serta personal branding Susi Pudjiastuti dengan metode penelitian kualitatif. Kepribadian yang baik menjadikan Susi Pudjiastuti memiliki kemampuan berkomunikasi dengan baik dan disenangi oleh masyarakat. Kepribadian dan komunikasi tersebut dapat membentuk personal branding Susi Pudjiastuti yang alami. Dengan memaparkan kepribadian dan komunikasi Susi
Neutrino masses from SUSY breaking in radiative seesaw models
Figueiredo, Antonio J.R. [University of Lisbon, Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Lisbon (Portugal)
2015-03-01
Radiatively generated neutrino masses (m{sub ν}) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY{sub EWSB} contributions), and which are manifest from left angle F{sub H}{sup †} right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum {sub H} left angle H{sup †} x {sub H} H right angle ≠ 0, radiatively generated m{sub ν} can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY{sub EWS} contributions). We point out that recent literature overlooks pure-SUSY{sub EWSB} contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY{sub EWS}. We show that there exist realistic radiative seesaw models in which the leading order contribution to m{sub ν} is proportional to SUSY{sub EWS}. To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m{sub soft}/M{sup 3} or m{sub soft}{sup 2}/M{sup 3}. We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m{sub ν} can be quite small without conflicting with lower limits on the mass of new particles. (orig.)
Predicting the Sparticle Spectrum from GUTs via SUSY Threshold Corrections with SusyTC
Antusch, Stefan
2015-01-01
Grand Unified Theories (GUTs) can feature predictions for the ratios of quark and lepton Yukawa couplings at high energy, which can be tested with the increasingly precise results for the fermion masses, given at low energies. To perform such tests, the renormalization group (RG) running has to be performed with sufficient accuracy. In supersymmetric (SUSY) theories, the one-loop threshold corrections (TC) are of particular importance and, since they affect the quark-lepton mass relations, link a given GUT flavour model to the sparticle spectrum. To accurately study such predictions, we extend and generalize various formulas in the literature which are needed for a precision analysis of SUSY flavour GUT models. We introduce the new software tool SusyTC, a major extension to the Mathematica package REAP, where these formulas are implemented. SusyTC extends the functionality of REAP by a full inclusion of the (complex) MSSM SUSY sector and a careful calculation of the one-loop SUSY threshold corrections for the...
Vacuum Stability and Radiative Electroweak Symmetry Breaking in an SO(10) Dark Matter Model
Mambrini, Yann; Olive, Keith A; Zheng, Jiaming
2016-01-01
Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs negative at a renormalization scale of about $10^{10}$ GeV. We consider a non-supersymmetric SO(10) grand unification model for which gauge coupling unification is made possible through an intermediate scale gauge group, $G_{\\rm int}=\\text{SU}(3)_C\\otimes \\text{SU}(2)_L\\otimes \\text{SU}(2)_R \\otimes \\text{U}(1)_{B-L}$. $G_{\\rm int}$ is broken by the vacuum expectation value of a 126 of SO(10) which not only provides for neutrino masses through the see-saw mechanism, but also preserves a discrete $\\mathbb{Z}_2$ that can account for the stability of a dark matter candidate, here taken to be the Standard Model singlet component of a bosonic 16. We show that in addition to these features, the model insures the positivity of the Higgs quartic coupling through its interactions to the dark matter multiplet and 126. We also show that the Higgs mass-squared runs negative triggering electroweak symmetry breaking. Thus the vacu...
Weakly-Interacting Massive Particles in Non-supersymmetric SO(10) Grand Unified Models
Nagata, Natsumi; Zheng, Jiaming
2015-01-01
Non-supersymmetric SO(10) grand unified theories provide a framework in which the stability of dark matter is explained while gauge coupling unification is realized. In this work, we systematically study this possibility by classifying weakly interacting DM candidates in terms of their quantum numbers of $\\text{SU}(2)_L \\otimes \\text{U}(1)_Y$, $B-L$, and $\\text{SU}(2)_R$. We consider both scalar and fermion candidates. We show that the requirement of a sufficiently high unification scale to ensure a proton lifetime compatible with experimental constraints plays a strong role in selecting viable candidates. Among the scalar candidates originating from either a 16 or 144 of SO(10), only SU(2)$_L$ singlets with zero hypercharge or doublets with $Y=1/2$ satisfy all constraints for $\\text{SU}(4)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R$ and $\\text{SU}(3)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R \\otimes \\text{U}(1)_{B-L}$ intermediate scale gauge groups. Among fermion triplets with zero hypercharge, o...
Construction of an SO(10) x U(1)-F model of the Yukawa interactions
Albright, Carl H.; Nandi, Satyanarayan
1995-07-01
We construct a supersymmetric SO(10) \\times U(1)_F model of the Yukawa interactions at the grand unification scale from knowledge of a phenomenological set of mass matrices obtained by a previous bottom-up approach. The U(1)_F family symmetry determines the textures for the Majorana and generic Dirac mass matrices, while the SO(10) symmetry relates each particular element of the up, down, neutrino and charged lepton Dirac matrices. The dominant second and third family contributions in the Dirac sector are renormalizable, while the remaining contributions to the Dirac mass matrices are of higher order, restricted by the U(1)_F family symmetry to a small set of tree diagrams, and mainly complex-symmetric. The tree diagrams for the Majorana mass matrix are all non-renormalizable and of progressively higher-order, leading to a nearly geometrical structure. Pairs of {\\bf 1, 45, 10} and {\\bf 126} Higgs representations enter with those having large vacuum expectation values breaking the symmetry down to SU(3)_c \\times SU(2)_L \\times U(1)_Y near the grand unification scale. In terms of 12 parameters expressed as the Yukawa couplings times vacuum expectation values for the Higgs representations employed, a realistic set of 15 quark and lepton masses (including those for the 3 heavy righthanded Majorana neutrinos) and 8 mixing parameters emerges for the neutrino scenario involving the non-adiabatic conversion of solar neutrinos and the depletion of atmospheric muon-neutrinos through oscillations into tau-neutrinos.
Fermion Mass Generation in SO(10) with a Unified Higgs Sector
Babu, K S; Nath, P; Syed, R M; Gogoladze, Ilia; Nath, Pran; Syed, Raza M.
2006-01-01
An analysis of generating fermion masses via cubic couplings in SO(10) grand unification with a unified Higgs sector is given. The new framework utilizes a single pair of vector--spinor representation $144+\\bar{144}$ to break the gauge symmetry all the way to $SU(3)_C \\times U(1)_{em}$. Typically the matter--Higgs couplings in this framework are quartic and lead to naturally suppressed Yukawa couplings for the first two generations. Here we show that much larger third generation couplings naturally arise at the cubic level with additional matter in 10--plet and 45--plet representations of SO(10). Thus the physical third generation is a mixture of 16, 10 and 45--plet representations while the remaining components become superheavy and are removed from the low energy spectrum. In this scenario it is possible to understand the heaviness of the top in a natural way since the analysis generates a hierarchy in the Yukawa couplings so that $h_{\\textnormal {t}}/h_{\\textnormal {b}}>> 1$ where $h_{\\textnormal {t}} (h_{...
Flop Transitions in Cuprate and Color Superconductors From SO(5) to SO(10) Unification?
Chandrasekharan, S; Schlittgen, B; Wiese, U J
2001-01-01
The phase diagrams of cuprate superconductors and of QCD at non-zero baryon chemical potential are qualitatively similar. The Neel phase of the cuprates corresponds to the chirally broken phase of QCD, and the high-temperature superconducting phase corresponds to the color superconducting phase. In the SO(5) theory for the cuprates the $SO(3)_s$ spin rotational symmetry and the $U(1)_{em}$ gauge symmetry of electromagnetism are dynamically unified. This suggests that the $SU(2)_L \\otimes SU(2)_R \\otimes U(1)_B$ chiral symmetry of QCD and the $SU(3)_c$ color gauge symmetry may get unified to SO(10). Dynamical enhancement of symmetry from $SO(2)_s \\otimes \\Z(2)$ to $SO(3)_s$ is known to occur in anisotropic antiferromagnets. In these systems the staggered magnetization flops from an easy 3-axis into the 12-plane at a critical value of the external magnetic field. Similarly, the phase transitions in the SO(5) and SO(10) models are flop transitions of a ``superspin''. Despite this fact, a renormalization group fl...
Vacuum stability and radiative electroweak symmetry breaking in an SO(10) dark matter model
Mambrini, Yann; Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming
2016-06-01
Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs negative at a renormalization scale of about 1010 GeV . We consider a nonsupersymmetric SO(10) grand unification model for which gauge coupling unification is made possible through an intermediate scale gauge group, Gint=SU (3 )C⊗SU (2 )L⊗SU (2 )R⊗U (1 )B -L . Gint is broken by the vacuum expectation value of a 126 of SO(10) which not only provides for neutrino masses through the seesaw mechanism but also preserves a discrete Z2 that can account for the stability of a dark matter candidate, here taken to be the Standard Model singlet component of a bosonic 16 . We show that in addition to these features the model insures the positivity of the Higgs quartic coupling through its interactions to the dark matter multiplet and 126 . We also show that the Higgs mass squared runs negative, triggering electroweak symmetry breaking. Thus, the vacuum stability is achieved along with radiative electroweak symmetry breaking and captures two more important elements of supersymmetric models without low-energy supersymmetry. The conditions for perturbativity of quartic couplings and for radiative electroweak symmetry breaking lead to tight upper and lower limits on the dark matter mass, respectively, and this dark matter mass region (1.35-2 TeV) can be probed in future direct detection experiments.
A realistic pattern of fermion masses from a five-dimensional SO(10) model
Feruglio, Ferruccio; Vicino, Denise
2015-01-01
We provide a unified description of fermion masses and mixing angles in the framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa couplings of order unity. The space-time is five dimensional and the extra flat spatial dimension is compactified on the orbifold $S^1/(Z_2 \\times Z_2')$, leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions are localised. The gauge symmetry breaking is completed by means of a rather economic scalar sector, avoiding the doublet-triplet splitting problem. The matter fields live in the bulk and their massless modes get exponential profiles, which naturally explain the mass hierarchy of the different fermion generations. Quarks and leptons properties are naturally reproduced by a mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of bulk masses in terms of a single parameter. The model provides a realistic pattern of fermion masses and mixing angles for large values of $\\tan\\beta$. It favours normally ordered ...
Construction of an SO(10) x U(1)$_{F}$ model of the Yukawa interactions
Albright, Carl H; Albright, Carl H; Nandi, Satyanarayan
1996-01-01
We construct a supersymmetric SO(10) \\times U(1)_F model of the Yukawa interactions at the grand unification scale from knowledge of a phenomenological set of mass matrices obtained by a previous bottom-up approach. The U(1)_F family symmetry determines the textures for the Majorana and generic Dirac mass matrices, while the SO(10) symmetry relates each particular element of the up, down, neutrino and charged lepton Dirac matrices. The dominant second and third family contributions in the Dirac sector are renormalizable, while the remaining contributions to the Dirac mass matrices are of higher order, restricted by the U(1)_F family symmetry to a small set of tree diagrams, and mainly complex-symmetric. The tree diagrams for the Majorana mass matrix are all non-renormalizable and of progressively higher-order, leading to a nearly geometrical structure. Pairs of {\\bf 1, 45, 10} and {\\bf 126} Higgs representations enter with those having large vacuum expectation values breaking the symmetry down to SU(3)_c \\tim...
Yukawa coupling unification in SO(10) with positive \\mu\\ and a heavier gluino
Joshipura, Anjan S
2012-01-01
The t-b-tau unification with positive Higgs mass parameter \\mu\\ in the minimal supersymmetric standard model prefers "just so" Higgs splitting and a light gluino < 500 GeV which appears to be ruled out by the recent LHC searches. We reanalyze constraints on soft supersymmetry breaking parameters in this scenario allowing independent splittings among squarks and Higgs doublets at the grand unification scale and show that it is possible to obtain t-b-tau unification and satisfy experimental constraints on gluino mass without raising supersymmetry breaking scale to very high value ~ 20 TeV. We discuss the origin of independent squark and Higgs splittings in realistic SO(10) models. Just so Higgs splitting can be induced without significantly affecting the t-b-tau unification in SO(10) models containing Higgs fields transforming as 10+\\bar{126}+126+210. This splitting arises in the presence of non-universal boundary conditions from mixing between 10 and other Higgs fields. Similarly, if additional matter field...
Fermion Masses and Mixings in a $\\mu$-$\\tau$ symmetric SO(10)
Joshipura, Anjan S; Patel, Ketan M
2009-01-01
$\\mu$-$\\tau$ symmetry imposed on the neutrino mass matrix in the flavour basis is known to be quite predictive. We integrate this very specific neutrino symmetry into a more general framework based on the supersymmetric SO(10) grand unified theory. As in several other models, the fermion mass spectrum is determined by Hermitian mass matrices resulting from the renormalizable Yukawa couplings of the 16-plet of fermions with the Higgs fields transforming as $10, \\bar{126},120$ representations of the SO(10) group. The $\\mu$-$\\tau$ symmetry is spontaneously broken through the 120-plet. Consequences of this scheme are considered for fermion masses using both type-I and type-II seesaw mechanism. This scenario is shown to lead to a generalized CP invariance of the mass matrices and vanishing CP violating phases if the Yukawa couplings are invariant under the $\\mu$-$\\tau$ symmetry. Small explicit breaking of the $\\mu$-$\\tau$ symmetry is then shown to provide a very good understanding of all the fermion masses and mix...
One-loop pseudo-Goldstone masses in the minimal $SO(10)$ Higgs model
Gráf, Lukáš; Mede, Timon; Susič, Vasja
2016-01-01
We calculate the prominent perturbative contributions shaping the one-loop scalar spectrum of the minimal non-supersymmetric renormalizable $SO(10)$ Higgs model whose unified gauge symmetry is spontaneously broken by an adjoint scalar. Focusing on its potentially realistic $45\\oplus 126$ variant in which the rank is reduced by a VEV of the 5-index self-dual antisymmetric tensor, we provide a thorough analysis of the corresponding one-loop Coleman-Weinberg potential, paying particular attention to the masses of the potentially tachyonic pseudo-Goldstone bosons (PGBs) transforming as $(8,1,0)$ and $(1,3,0)$ under the Standard Model gauge group. The results confirm the assumed existence of extended regions in the parameter space supporting a locally stable SM-like quantum vacuum inaccessible at the tree-level. The effective potential (EP) tedium is compared to that encountered in the previously studied $45\\oplus 16$ $SO(10)$ Higgs model where the polynomial corrections to the relevant pseudo-Goldstone masses tur...
Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries
Chu, Xiaoyong
2016-01-01
We consider the neutrino masses and mixing in the framework of SO(10) GUTs with hidden sector consisting of fermionic and bosonic SO(10) singlets and flavor symmetries. The framework allows to disentangle the CKM physics responsible for the CKM mixing and different mass hierarchies of quarks and leptons and the neutrino new physics which produces smallness of neutrino masses and large lepton mixing. The framework leads naturally to the relation $U_{PMNS} \\sim V_{CKM}^{\\dagger} U_0$, where structure of $U_0$ is determined by the flavor symmetry. The key feature of the framework is that apart from the Dirac mass matrices $m_D$, the portal mass matrix $M_D$ and the mass matrix of singlets $M_S$ are also involved in generation of the lepton mixing. This opens up new possibilities to realize the flavor symmetries and explain the data. Using $A_4 \\times Z_4$ as the flavor group, we systematically explore the flavor structures which can be obtained in this framework depending on field content and symmetry assignment...
Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries
Chu, Xiaoyong; Smirnov, Alexei Yu.
2016-05-01
We consider the neutrino masses and mixing in the framework of SO(10) GUTs with hidden sector consisting of fermionic and bosonic SO(10) singlets and flavor symmetries. The framework allows to disentangle the CKM physics responsible for the CKM mixing and different mass hierarchies of quarks and leptons and the neutrino new physics which produces smallness of neutrino masses and large lepton mixing. The framework leads naturally to the relation U PMNS ˜ V CKM † U 0, where structure of U 0 is determined by the flavor symmetry. The key feature of the framework is that apart from the Dirac mass matrices m D , the portal mass matrix M D and the mass matrix of singlets M S are also involved in generation of the lepton mixing. This opens up new possibilities to realize the flavor symmetries and explain the data. Using A 4 × Z 4 as the flavor group, we systematically explore the flavor structures which can be obtained in this framework depending on field content and symmetry assignments. We formulate additional conditions which lead to U 0 ˜ U TBM or U BM. They include (i) equality (in general, proportionality) of the singlet flavons couplings, (ii) equality of their VEVs; (iii) correlation between VEVs of singlets and triplet, (iv) certain VEV alignment of flavon triplet(s). These features can follow from additional symmetries or be remnants of further unification. Phenomenologically viable schemes with minimal flavon content and minimal number of couplings are constructed.
SUSY Searches at ATLAS and CMS
Duarte-Campderros, Jorge; The ATLAS collaboration
2017-01-01
This talk summarises ATLAS and CMS recent results for searches for supersymmetric (SUSY) particles. The searches used proton-proton collisions at sqrt{s} = 13 TeV, and involved final states including jets, missing transverse momentum, light leptons as well as long-lived particle signatures.
Comments on interactions in the SUSY models
Upadhyay, Sudhaker; Mandal, Bhabani Prasad [Banaras Hindu University, Department of Physics, Varanasi (India); Reshetnyak, Alexander [Institute of Strength Physics and Materials Science of SB RAS, Tomsk (Russian Federation)
2016-07-15
We consider special supersymmetry (SUSY) transformations with m generators /leftarrow s{sub α}, for some class of models and study the physical consequences when making the Grassmann-odd transformations to form an Abelian supergroup with finite parameters and a set of group-like elements with finite parameters being functionals of the field variables. The SUSY-invariant path integral measure within conventional quantization scheme leads to the appearance of the Jacobian under a change of variables generated by such SUSY transformations, which is explicitly calculated. The Jacobian implies, first of all, the appearance of trivial interactions in the transformed action, and, second, the presence of a modified Ward identity which reduces to the standard Ward identities in the case of constant parameters. We examine the case of the N = 1 and N = 2 supersymmetric harmonic oscillators to illustrate the general concept by a simple free model with (1, 1) physical degrees of freedom. It is shown that the interaction terms U{sub tr} have a corresponding SUSY-exact form: U{sub tr} = (V{sub (1)} /leftarrow s; V{sub (2)} /leftarrow anti s /leftarrow s) generated naturally under such generalized formulation. We argue that the case of a non-trivial interaction cannot be obtained in such a way. (orig.)
Finite Theories and the SUSY Flavor Problem
Babu, K S; Kubo, J; Kobayashi, Tatsuo; Kubo, Jisuke
2003-01-01
We study a finite SU(5) grand unified model based on the non-Abelian discrete symmetry A_4. This model leads to the democratic structure of the mass matrices for the quarks and leptons. In the soft supersymmetry breaking sector, the scalar trilinear couplings are aligned and the soft scalar masses are degenerate, thus solving the SUSY flavor problem.
Susi lubab Concordiale investorit / Sigrid Laev
Laev, Sigrid
2003-01-01
Mart Susi teatas Concordia ülikoolile, et tal on kaks võimalikku investorit, kes on huvitatud kooli tegevuses osalemisest. Üks neist on Läti kõrgem ärikool Turiba, teine võimalik investor on Ameerika päritolu
Concordia soovib Susi lahkumist / Sigrid Laev
Laev, Sigrid
2003-01-01
Concordia eraülikooli töötajad andsid 5. märtsil pärast ametiühingu koosolekut rektor Mart Susile üle ametliku palve tagasi astuda. Plaanid rektori umbusaldamiseks algasid nädala eest, kui selgus M. Susi tegevus kooli ja oma isiklike varade ühendamisel
The Flipped SU(5) String Vacua Classification A Variation Of The SO(10) Breaking Basis Vector
Sonmez, Hasan
2016-01-01
In this paper, an extension of the classification of flipped SU(5) heterotic-string vacua from [1] with a variation of the SO(10) breaking $\\alpha$ basis vector is presented. A statistical sampling in the space of $2^{45}$ flipped SU(5) vacua is explored, where $10^{11}$ GGSO distinct configurations are scanned in comparison to the $10^{12}$ GGSO distinct coefficients scanned in the space of $2^{44}$ vacua in [1]. A JAVA code, akin to the one used for the classification in [1], was implemented to explore these. Results presented here indicate that no three generation exophobic vacua exist, which was also found to be the case in [1] as all odd generations were projected out. This paper will also study the details on the comparison between the two classifications achieved and then reflect on future directions in the quest for finding three generation exophobic flipped SU(5) heterotic-string models.
Upper bound on hot dark matter density from SO(10) Yukawa unification
Brignole, A; Rattazzi, Riccardo; Andrea Brignole; Hitoshi Murayama; Riccardo Rattazzi
1994-01-01
We study low-energy consequences of supersymmetric SO(10) models with Yukawa unification h_t = h_N and h_b = h_\\tau. We find that it is difficult to reproduce the observed m_b/m_\\tau ratio when the third-generation right-handed neutrino is at an intermediate scale, especially for small \\tan \\beta. We obtain a conservative lower bound on the mass of the right-handed neutrino M_N > 6 \\times 10^{13}~GeV for \\tan \\beta < 10. This bound translates into an upper bound on the \\tau-neutrino mass, and therefore on its contribution to the hot dark matter density of the present universe, \\Omega_\
Meloni, Davide; Riad, Stella
2014-01-01
In the context of non-supersymmetric SO(10) models, we analyze the renormalization group equations for the fermions (including neutrinos) from the GUT energy scale down to the electroweak energy scale, explicitly taking into account the effects of an intermediate energy scale induced by a Pati--Salam gauge group. To determine the renormalization group running, we use a numerical minimization procedure based on a nested sampling algorithm that randomly generates the values of 19 model parameters at the GUT scale, evolves them, and finally constructs the values of the physical observables and compares them to the existing experimental data at the electroweak scale. We show that the evolved fermion masses and mixings present sizable deviations from the values obtained without including the effects of the intermediate scale.
Non-thermal Leptogenesis in a simple 5D SO(10) GUT
Fukuyama, Takeshi
2010-01-01
We discuss the non-thermal leptogenesis in the scheme of 5D orbifold SO(10) GUT with the smooth hybrid inflation. With an unambiguously determined Dirac Yukawa couplings and an assumption for the neutrino mixing matrix of the tri-bimaximal from, we analyze baryon asymmetry of the universe via non-thermal leptogenesis in two typical cases for the light neutrino mass spectrum, the normal and inverted hierarchical cases. The resultant baryon asymmetry is obtained as a function of the lightest mass eigenvalue of the light neutrinos, and we find that a suitable amount of baryon asymmetry of the universe can be produced in the normal hierarchical case, while in the inverted hierarchical case the baryon asymmetry is too small to be consistent with the observation.
Meloni, Davide; Ohlsson, Tommy; Riad, Stella
2014-12-01
In the context of non-supersymmetric SO(10) models, we analyze the renormalization group equations for the fermions (including neutrinos) from the GUT energy scale down to the electroweak energy scale, explicitly taking into account the effects of an intermediate energy scale induced by a Pati-Salam gauge group. To determine the renormalization group running, we use a numerical minimization procedure based on a nested sampling algorithm that randomly generates the values of 19 model parameters at the GUT scale, evolves them, and finally constructs the values of the physical observables and compares them to the existing experimental data at the electroweak scale. We show that the evolved fermion masses and mixings present sizable deviations from the values obtained without including the effects of the intermediate scale.
Supersymmetric SO(10)-inspired leptogenesis and a new N2-dominated scenario
Di Bari, Pasquale; Re Fiorentin, Michele
2016-03-01
We study the supersymmetric extension of SO(10)-inspired thermal leptogenesis showing the constraints on neutrino parameters and on the reheat temperature TRH that derive from the condition of successful leptogenesis from next-to-lightest right handed (RH) neutrinos (N2) decays and the more stringent ones when independence of the initial conditions (strong thermal leptogenesis) is superimposed. In the latter case, the increase of the lightest right-handed neutrino (N1) decay parameters helps the wash-out of a pre-existing asymmetry and constraints relax compared to the non-supersymmetric case. We find significant changes especially in the case of large tanβ values (gtrsim 15). In particular, for normal ordering, the atmospheric mixing angle can now be also maximal. The lightest left-handed neutrino mass is still constrained within the range 010 lesssim m1/meV lesssim 3 (corresponding to 075lesssim ∑i mi/meV lesssim 12). Inverted ordering is still disfavoured, but an allowed region satisfying strong thermal leptogenesis opens up at large tanβ values. We also study in detail the lower bound on TRH finding TRHgtrsim 1 × 1010 GeV independently of the initial N2 abundance. Finally, we propose a new N2-dominated scenario where the N1 mass is lower than the sphaleron freeze-out temperature. In this case there is no N1 wash-out and we find TRH gtrsim 1× 109 GeV . These results indicate that SO(10)-inspired thermal leptogenesis can be made compatible with the upper bound from the gravitino problem, an important result in light of the role often played by supersymmetry in the quest of a realistic model of fermion masses.
A completely invariant SUSY transform of supersymmetric QED
Walker, M L [College of Natural Sciences and Department of Applied Physics, Kyung Hee University, Yong-In, KyongGi, 449-701 (Korea, Republic of)
2004-09-01
We study the SUSY breaking of the covariant gauge-fixing term in SUSY QED and consider its correspondence to a breaking of the Lorentz gauge condition by SUSY. Reasoning by analogy with SUSY's violation of the Wess-Zumino gauge, we argue that the SUSY transformation, already modified to preserve the Wess-Zumino gauge, should be further modified by another gauge transformation which restores the Lorentz gauge condition. We derive this modification and use the resulting transformation to derive a Ward identity relating the photon and photino propagators without using ghost fields. Our transformation also fulfils the SUSY algebra, modulo terms that vanish in the Lorentz gauge. We finish with a discussion of how to circumvent our transform's non-local, non-linear nature when deriving higher-order Green's function Ward identities.
A completely invariant SUSY transform of supersymmetric QED
Walker, M. L.
2004-09-01
We study the SUSY breaking of the covariant gauge-fixing term in SUSY QED and consider its correspondence to a breaking of the Lorentz gauge condition by SUSY. Reasoning by analogy with SUSY's violation of the Wess-Zumino gauge, we argue that the SUSY transformation, already modified to preserve the Wess-Zumino gauge, should be further modified by another gauge transformation which restores the Lorentz gauge condition. We derive this modification and use the resulting transformation to derive a Ward identity relating the photon and photino propagators without using ghost fields. Our transformation also fulfils the SUSY algebra, modulo terms that vanish in the Lorentz gauge. We finish with a discussion of how to circumvent our transform's non-local, non-linear nature when deriving higher-order Green's function Ward identities.
Neutralino Annihilation into Massive Quarks with SUSY-QCD Corrections
Herrmann, Björn; Kovarik, Karol
2009-01-01
We compute the full O(alpha_s) supersymmetric (SUSY) QCD corrections for neutralino annihilation into massive quarks through gauge or Higgs bosons and squarks in the Minimal Supersymmetric Standard Model (MSSM), including the known resummation of logarithmically enhanced terms. The numerical impact of the corrections on the extraction of SUSY mass parameters from cosmological data is analyzed for gravity-mediated SUSY breaking scenarios and shown to be sizable, so that these corrections must be included in common analysis tools.
Supersymmetric $SO(10)$-inspired leptogenesis and a new $N_2$-dominated scenario
Di Bari, Pasquale
2015-01-01
We study the supersymmetric extension of $SO(10)$-inspired thermal leptogenesis showing the constraints on neutrino parameters and on the reheat temperature $T_{\\rm RH}$ that derive from the condition of successful leptogenesis from next-to-lightest right handed (RH) neutrinos ($N_2$) decays and the more stringent ones when independence of the initial conditions (strong thermal leptogenesis) is superimposed. In the latter case, the increase of the lightest right-handed neutrino ($N_1$) decay parameters helps the wash-out of a pre-existing asymmetry and constraints relax compared to the non-supersymmetric case. We find significant changes especially in the case of large $\\tan\\beta$ values $(\\gtrsim 15)$. In particular, for normal ordering, the atmospheric mixing angle can now be also maximal. The lightest (ordinary) neutrino mass is still constrained within the range $10 \\lesssim m_1/{\\rm meV} \\lesssim 30$ (corresponding to $75\\lesssim \\sum_i m_i/{\\rm meV} \\lesssim 120$). Inverted ordering is still disfavoured...
Babu, K S
2015-01-01
We present a minimal renormalizable non-supersymmetric SO(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54_H + 126_H + 10_H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 10^{35} yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of \\tau_p \\gtrsim 1.29 \\times 10^{34} yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, M_I \\approx (10...
Hilltop supernatural inflation and SUSY unified models
Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS KEK, and The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, 305-0801 (Japan); Lim, C.S. [Department of Mathematics, Tokyo Woman' s Christian University, Tokyo, 167-8585 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 (Japan); Mimura, Yukihiro, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp, E-mail: mimura@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, 10617 Taiwan (China)
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Hilltop supernatural inflation and SUSY unified models
Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Status of the SUSY Les Houches Accord II Project
Allanach, B.C.; Balazs, C.; Belanger, G.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; Guasch, J.; Guchait, M.; Heinemeyer, S.; Hugonie, C.; Hurth, T.; Kraml, S.; Lykken, J.; Mangano, M.; Moortgat, F.; Moretti, S.; Penaranda, S.; Porod, W.; /Fermilab
2005-05-01
Supersymmetric (SUSY) spectrum generators, decay packages, Monte-Carlo programs, dark matter evaluators, and SUSY fitting programs often need to communicate in the process of an analysis. The SUSY Les Houches Accord provides a common interface that conveys spectral and decay information between the various packages. Here, we propose extensions of the conventions of the first SUSY Les Houches Accord to include various generalizations: violation of CP, R-parity and flavor as well as the simplest next-to-minimal supersymmetric standard model (NMSSM).
The SSM with Suppressed SUSY Charge
John A. Dixon
2016-10-01
Full Text Available The concept of Suppressed SUSY Charge, introduced in a recent Letter, is used here to assemble a new version of the SSM. This new SSM has no need for Squarks or Sleptons. It does not need spontaneous breaking of SUSY, so that the cosmological constant problem does not arise (at least at tree level. It mimics the usual non-supersymmetric Standard Model very well, and the absence of large flavour changing neutral currents is natural. There is no need for a hidden sector, or a messenger sector, or explicit ‘soft’ breaking of SUSY. Spontaneous Gauge Symmetry Breaking from SU(3×SU(2×U(1 to SU(3×U(1 in the model assembled here implies the existence of two new very heavy Higgs Bosons with mass 13.4 TeV, slightly smaller than the energy of the LHC at 14 TeV. There is also a curious set of Gauginos and Higgsinos which have exactly the same masses as the Higgs and Gauge Bosons. These do not couple to the Quarks and Leptons, except through the Higgs and Gauge Bosons. As it stands, this model probably gives rise to too many W+ decays to be consistent with experiment. The Feynman loop expansion of this theory also needs further examination.
The SSM with Suppressed SUSY Charge
Dixon, John A.
2016-10-01
The concept of Suppressed SUSY Charge, introduced in a recent Letter, is used here to assemble a new version of the SSM. This new SSM has no need for Squarks or Sleptons. It does not need spontaneous breaking of SUSY, so that the cosmological constant problem does not arise (at least at tree level). It mimics the usual non-supersymmetric Standard Model very well, and the absence of large flavour changing neutral currents is natural. There is no need for a hidden sector, or a messenger sector, or explicit 'soft' breaking of SUSY. Spontaneous Gauge Symmetry Breaking from SU (3) × SU (2) × U (1) to SU (3) × U (1) in the model assembled here implies the existence of two new very heavy Higgs Bosons with mass 13.4 TeV, slightly smaller than the energy of the LHC at 14 TeV. There is also a curious set of Gauginos and Higgsinos which have exactly the same masses as the Higgs and Gauge Bosons. These do not couple to the Quarks and Leptons, except through the Higgs and Gauge Bosons. As it stands, this model probably gives rise to too many W+ decays to be consistent with experiment. The Feynman loop expansion of this theory also needs further examination.
Mari-Ann Susi õigustas ülikooli raha kasutamist
2003-01-01
M.-A. Susi eitas ülikooli palgaraha kasutamist isikliku mõisa ülalpidamiseks ning tahtlikult riigimaksudest kõrvalehoidmist, nende üks ideid oli Susi sõnul arendada mõis konverentsiturismi keskuseks, mis oleks majanduslikult kasu toonud ka ülikoolile
SUSY-QCD Corrections to B0-B0 Mixing
FENG TaiFu; LI XueQian; MA WenGan
2001-01-01
We study the SUSY-QCD corrections to B0-B0 mixing with a reasonable SUSY parameter space and find that contribution from gluino is proportional to log(m-g/μw) where μw is the weak interaction energy scale and by no means negligible.``
Maksuamet võtmas Susi vara / Sigrid Laev
Laev, Sigrid
2003-01-01
Maksuamet võib alustada pankrotiohus Concordia ülikooli ja selle rektori Mart Susi vara realiseerimist, sest kooli omanik Concordia Varahaldus OÜ pole maksuametile lubatud ajal raha üle kandnud. Väidetavalt maksis Susi õppejõududele palka offshore-firma kaudu. AS Audentes on valmis Concordiat ostma
The Kowalewski top in the SUSY quantum mechanics
Tsiganov, A V
1996-01-01
The Kowalewski top on Lie algebras o(4), e(3) and o(3,1) is embedded in the SUSY quantum mechanics. In two dimensions we give the new prescription for construction of the pairs of integrable systems by using a standard SUSY algebra. At the proposed scheme the Goryachev-Chapligin top is shown to be a natural partner of the Kowalewski top.
On inflation, cosmological constant, and SUSY breaking
Linde, Andrei
2016-01-01
We consider a broad class of inflationary models of two unconstrained chiral superfields, the stabilizer $S$ and the inflaton $\\Phi$, which can describe inflationary models with nearly arbitrary potentials. These models include, in particular, the recently introduced theories of cosmological attractors, which provide an excellent fit to the latest Planck data. We show that by adding to the superpotential of the fields $S$ and $\\Phi$ a small term depending on a nilpotent chiral superfield $P$ one can break SUSY and introduce a small cosmological constant without affecting main predictions of the original inflationary scenario.
SUSY CP problem in gauge mediation model
Moroi, Takeo [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); Yokozaki, Norimi, E-mail: yokozaki@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)
2011-07-27
SUSY CP problem in the gauge mediation supersymmetry breaking model is reconsidered. We pay particular attention to two sources of CP violating phases whose effects were not seriously studied before; one is the effect of the breaking of the GUT relation among the gaugino masses due to the field responsible for the GUT symmetry breaking, and the other is the supergravity effect on the supersymmetry breaking parameters, in particular, on the bi-linear supersymmetry breaking Higgs mass term. We show that both of them can induce too large electric dipole moments of electron, neutron, and so on, to be consistent with the experimental bounds.
Cosmological SUSY Breaking and the Pyramid Schemes
Banks, T
2014-01-01
I review the ideas of holographic space-time (HST), Cosmological SUSY breaking (CSB), and the Pyramid Schemes, which are the only known models of Tera-scale physics consistent with CSB, current particle data, and gauge coupling unification. There is considerable uncertainty in the estimate of the masses of supersymmetric partners of the standard model particles, but the model predicts that the gluino is probably out of reach of the LHC, squarks may be in reach, and the NLSP is a right handed slepton, which should be discovered soon.
SUSY Without Prejudice at Linear Colliders
Rizzo, Thomas G
2008-01-01
We explore the physics of the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all existing experimental and theoretical constraints assuming that the WIMP is the lightest neutralino. We scan this parameter space twice using both flat and log priors and compare the results which yield similar conclusions. Constraints from both LEP and the Tevatron play an important role in obtaining our final model samples. Implications for future TeV-scale $e^+e^-$ linear colliders(LC) are discussed.
Cosmological SUSY breaking and the pyramid scheme
Banks, Tom
2015-04-01
I review the ideas of holographic spacetime (HST), cosmological SUSY breaking (CSB), and the Pyramid Schemes, which are the only known models of Tera-scale physics consistent with CSB, current particle data, and gauge coupling unification. There is considerable uncertainty in the estimate of the masses of supersymmetric partners of the Standard Model particles, but the model predicts that the gluino is probably out of reach of the LHC, squarks may be in reach, and the NLSP is a right-handed slepton, which should be discovered soon.
Investigating Neutralino Annihilations Using DarkSUSY
Kamel, S.; eSilva, E.
2002-01-01
Physicists do not fully understand the nature of dark matter although we infer its existence from experimental observation. This project is part of the dark matter detection searches with the Gamma-Ray Large Area Space Telescope (GLAST). We are investigating one of the Weakly Interacting Massive Particles (WIMP) candidates called the neutralino, a particle predicted by the Minimal Supersymmetric Standard Model. In particular, we ran a computer simulation called DarkSUSY that predicts the signature that we expect to see in the data from GLAST that pertains to the detection of the neutralino in the galactic halo.
Barenboim, G.; Bernabeu, J.; Vives, O. [Universitat de Valencia, Departament de Fisica Teorica, Burjassot (Spain); Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain); Mitsou, V.A.; Romero, E. [Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain)
2016-02-15
Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E{sub T}{sup miss} > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m{sub g}
Eliaz, Latif; Gudnason, Sven Bjarke; Tsuk, Eitan
2013-01-01
In the framework of a gauge mediated quiver-like model, the standard model flavor texture can be naturally generated. The model - like the MSSM - has furthermore a region in parameter space where the lightest Higgs mass is fed by heavy stop loops, which in turn sets the average squark mass scale near 10-20 TeV. We perform a careful flavor analysis to check whether this type of mild-split SUSY passes all flavor constraints as easily as envisioned in the original type of split SUSY. Interestingly, it turns out to be on the border of several constraints, in particular, the branching ratio of mu -> e gamma and, if order one complex phases are assumed, also epsilon_K neutron and electron EDM. Furthermore, we consider unification as well as dark matter candidates, especially the gravitino. Finally, we provide a closed-form formula for the soft masses of matter in arbitrary representations of any of the gauge groups in a generic quiver-like model with a general messenger sector.
What is a Natural SUSY scenario?
Casas, J Alberto; Robles, Sandra; Rolbiecki, Krzysztof; Zaldivar, Bryan
2014-01-01
The idea of "Natural SUSY", understood as a supersymmetric scenario where the fine-tuning is as mild as possible, is a reasonable guide to explore supersymmetric phenomenology. In this paper, we re-examine this issue including several improvements, such as the mixing of the fine-tuning conditions for different soft terms and the presence of potential extra fine-tunings that must be combined with the electroweak one. We give tables and plots that allow to easily evaluate the fine-tuning and the corresponding naturalness bounds for any theoretical model defined at any high-energy (HE) scale. Then, we analyze in detail the complete fine-tuning bounds for the unconstrained MSSM, defined at any HE scale. We show that Natural SUSY does {\\em not} demand light stops. Actually, an average stop mass below 800~GeV is disfavored, though one of the stops might be very light. Regarding phenomenology, the most stringent upper bound from naturalness is the one on the gluino mass, which typically sets the present level fine-t...
Third generation SUSY searches in ATLAS
AUTHOR|(INSPIRE)INSPIRE-00354291; The ATLAS collaboration
2016-01-01
Supersymmetry (SUSY) is one of the most popular and promising extensions to the Standard Model (SM) of particle physics. It predicts partner particles for all SM particles with a spin difference of $1/2$. These SUSY partners, if they exist within a reachable energy scale, should be produced at the Large Hadron Collider (LHC). The events are usually characterized by high missing transverse energy and can have varying jet and lepton multiplicities, depending on the model used. Searches for partners of third generation squarks are of special interest because of their special event topologies.\\\\ Many searches have been performed in proton-proton collisions at $\\sqrt{s}=13$ TeV at the LHC with the ATLAS detector, using an integrated luminosity of $3.2$ fb$^{-1}$. Several of these will be presented in these proceedings.\\\\ No significant deviations from the SM expectations have been observed and exclusion limits have been set for the respective models. Most analysis already exceed the sensitivity achieved with Run1 ...
Exploring QCD uncertainties when setting limits on compressed SUSY spectra
Dreiner, Herbert; Tattersall, Jamie
2012-01-01
If Supersymmetry (SUSY) has a compressed spectrum the current limits from the LHC can be drastically reduced. We take possible `worst case' scenarios where combinations of the stop, squark and gluino masses are degenerate with the mass of the lightest SUSY particle. To accurately derive limits in the model, care must be taken when describing QCD radiation and we examine this in detail. Lower mass bounds are then produced by considering all the 7 TeV hadronic SUSY and monojet searches. The evolution of the limits as the mass splitting is varied is also presented.
Ram Lal Awasthi
2016-02-01
The grand unification theories based on SO(10) gauge group have been at the centre of attraction to beyond Standard Model phenomenology. The SO(10) gauge symmetry may pass through several intermediate symmetries before breaking to Standard Model. Therefore some higher symmetries may occur at the experimentally reachable scales. This feature flourishes easily in non-supersymmetric models compared to supersymmetric ones. We find that certain breaking chains give tremendous predictions for the physics being explored at various particle physics experiments. Explanation to neutrino masses through TeV scale inverse see-saw is the driving theme of the models studied.
Determining SUSY particle mixing with polarized hadron beams
Klasen, M
2010-01-01
While SUSY particles, if they exist at the TeV-scale, will be discovered at the Tevatron or the LHC, the determination of the SUSY-breaking scenario and its free parameters will require additional information, e.g. from a future International Linear Collider. We point out that such information, in particular on SUSY-particle mixing and the associated soft SUSY-breaking parameters, can also be obtained from measurements at existing or future polarized hadron colliders, since the polarization of initial-state quarks, transmitted through weak gauge bosons or squarks, can be strongly correlated with the helicity and gaugino/higgsino mixing of final-state sleptons, squarks, neutralinos and charginos.
Determining SUSY particle mixing with polarized hadron beams
Klasen, M.
While SUSY particles, if they exist at the TeV-scale, will be discovered at the Tevatron or the LHC, the determination of the SUSY-breaking scenario and its free parameters will require additional information, e.g. from a future International Linear Collider. We point out that such information, in particular on SUSY-particle mixing and the associated soft SUSY-breaking parameters, can also be obtained from measurements at existing or future polarized hadron colliders, since the polarization of initial-state quarks, transmitted through weak gauge bosons or squarks, can be strongly correlated with the helicity and gaugino/higgsino mixing of final-state sleptons, squarks, neutralinos and charginos.
Classical analog of extended phase space SUSY and its breaking
Ter-Kazarian, Gagik
2013-01-01
We derive the classical analog of the extended phase space quantum mechanics of the particle with odd degrees of freedom which gives rise to (N=2)-realization of supersymmetry (SUSY) algebra. By means of an iterative procedure, we find the approximate groundstate solutions to the extended Schr\\"{o}dinger-like equation and use these solutions further to calculate the parameters which measure the breaking of extended SUSY such as the groundstate energy. Consequently, we calculate a more practical measure for the SUSY breaking which is the expectation value of an auxiliary field. We analyze non-perturbative mechanism for extended phase space SUSY breaking in the instanton picture and show that this has resulted from tunneling between the classical vacua of the theory. Particular attention is given to the algebraic properties of shape invariance and spectrum generating algebra.
Chances for SUSY-GUT in the LHC Epoch
Berezhiani, Zurab; Chianese, Marco; Miele, Gennaro; Morisi, Stefano
2015-08-01
The magic couple of SUSY and GUT still appears the most elegant and predictive physics concept beyond the Standard Model. Since up to now LHC found no evidence for supersymmetric particles it becomes of particular relevance to determine an upper bound of the energy scale they have to show up. In particular, we have analyzed a generic SUSY-GUT model assuming one step unification like in SU(5), and adopting naturalness principles, we have obtained general bounds on the mass spectrum of SUSY particles. We claim that if a SUSY gauge coupling unification takes place, the lightest gluino or Higgsino cannot have a mass larger than ˜ 20 TeV. Such a limit is of interest for planning new accelerator machines.
Chances for SUSY-GUT in the LHC Epoch
Berezhiani, Zurab; Miele, Gennaro; Morisi, Stefano
2015-01-01
The magic couple of SUSY and GUT still appears the most elegant and predictive physics concept beyond the Standard Model. Since up to now LHC found no evidence for supersymmetric particles it becomes of particular relevance to determine an upper bound of the energy scale they have to show up. In particular, we have analyzed a generic SUSY-GUT model assuming one step unification like in SU(5), and adopting naturalness principles, we have obtained general bounds on the mass spectrum of SUSY particles. We claim that if a SUSY gauge coupling unification takes place, the lightest gluino or Higgsino cannot have a mass larger than about 20 TeV. Such a limit is of interest for planning new accelerator machines.
Precision Corrections to Fine Tuning in SUSY
Buckley, Matthew R; Shih, David
2016-01-01
Requiring that the contributions of supersymmetric particles to the Higgs mass are not highly tuned places upper limits on the masses of superpartners -- in particular the higgsino, stop, and gluino. We revisit the details of the tuning calculation and introduce a number of improvements, including RGE resummation, two-loop effects, a proper treatment of UV vs. IR masses, and threshold corrections. This improved calculation more accurately connects the tuning measure with the physical masses of the superpartners at LHC-accessible energies. After these refinements, the tuning bound on the stop is now also sensitive to the masses of the 1st and 2nd generation squarks, which limits how far these can be decoupled in Effective SUSY scenarios. We find that, for a fixed level of tuning, our bounds can allow for heavier gluinos and stops than previously considered. Despite this, the natural region of supersymmetry is under pressure from the LHC constraints, with high messenger scales particularly disfavored.
Results from GRACE/SUSY at one-loop
J Fujimoto; T Ishikawa; M Jimbo; T Kaneko; T Kon; Y kurihara; M Kuroda; Y Shimizu; Y Yasui
2007-11-01
We report the recent development on the SUSY calculations with the help of GRACE system. GRACE/SUSY/1LOOP is the computer code which can generate Feynman diagrams in the MSSM automatically and compute one-loop amplitudes in the numerical way. We present new results of various two-body decay widths and chargino pair production at ILC (international linear collider) at one-loop level.
SUSY flavor structure of generic 5D supergravity models
Abe, Hiroyuki; Sakamura, Yutaka; Yamada, Yusuke
2011-01-01
We perform a comprehensive and systematic analysis of the SUSY flavor structure of generic 5D supergravity models on $S^1/Z_2$ with multiple $Z_2$-odd vector multiplets that generate multiple moduli. The SUSY flavor problem can be avoided due to contact terms in the 4D effective K\\"ahler potential peculiar to the multi-moduli case. A detailed phenomenological analysis is provided based on an illustrative model.
Latest news on SUSY from the ATLAS experiment
CERN. Geneva
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk reports the latest ATLAS results for searches for supersymmetric (SUSY) particles, obtained with 13 to 18 fb-1 of 13 TeV data. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons.
Classical Analog of Extended Phase Space SUSY and Its Breaking
Gagik Ter-Kazarian
2013-01-01
We derive the classical analog of the extended phase space quantum mechanics of the particle with odd degrees of freedom which gives rise to (N=2)-realization of supersymmetry (SUSY) algebra. By means of an iterative procedure, we find the approximate groundstate solutions to the extended Schr\\"{o}dinger-like equation and use these solutions further to calculate the parameters which measure the breaking of extended SUSY such as the groundstate energy. Consequently, we calculate a more practic...
SUSY effects in Rb: Revisited under current experimental constraints
Su, Wei; Yang, Jin Min
2016-06-01
In this note we revisit the SUSY effects in Rb under current experimental constraints including the LHC Higgs data, the B-physics measurements, the dark matter relic density and direct detection limits, as well as the precision electroweak data. We first perform a scan to figure out the currently allowed parameter space and then display the SUSY effects in Rb. We find that although the SUSY parameter space has been severely restrained by current experimental data, both the general MSSM and the natural-SUSY scenario can still alter Rb with a magnitude sizable enough to be observed at future Z-factories (ILC, CEPC, FCC-ee, Super Z-factory) which produce 109-1012Z-bosons. To be specific, assuming a precise measurement δRb = 2.0 ×10-5 at FCC-ee, we can probe a right-handed stop up to 530 GeV through chargino-stop loops, probe a sbottom to 850 GeV through neutralino-sbottom loops and a charged Higgs to 770 GeV through the Higgs-top quark loops for a large tan β. The full one-loop SUSY correction to Rb can reach 1 ×10-4 in natural SUSY and 2 ×10-4 in the general MSSM.
R-Parity Violating SUSY Results from ATLAS and CMS
Pettersson, Nora Emilia; The ATLAS collaboration
2015-01-01
Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence of RPC is that it implies the existence of a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. A summarization a few of the experimental searches for both prompt and long-li...
A supersymmetric grand unified theory of flavour with PSL{sub 2}(7)xSO(10)
King, Stephen F., E-mail: king@soton.ac.u [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Luhn, Christoph, E-mail: christoph.luhn@soton.ac.u [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)
2010-06-11
We construct a realistic Supersymmetric Grand Unified Theory of Flavour based on PSL{sub 2}(7)xSO(10), where the quarks and leptons in the 16 of SO(10) are assigned to the complex triplet representation of PSL{sub 2}(7), while the flavons are assigned to a combination of sextets and anti-triplets of PSL{sub 2}(7). Using a D-term vacuum alignment mechanism, we require the flavon sextets of PSL{sub 2}(7) to be aligned along the 3-3 direction leading to the third family Yukawa couplings, while the flavon anti-triplets describe the remaining Yukawa couplings. Other sextets are aligned along the neutrino flavour symmetry preserving directions leading to tri-bimaximal neutrino mixing via a type II see-saw mechanism, with predictions for neutrinoless double beta decay and cosmology.
Awasthi, Ram Lal
2011-01-01
Recently realization of TeV scale inverse seesaw mechanism in supersymmetric SO(10) framework has led to a number of experimentally verifiable predictions including low-mass W_R and Z' gauge bosons and nonunitarity effects. Using nonsupersymmetric SO(10) grand unified theory, we show how a TeV scale inverse seesaw mechanism for neutrino masses is implemented with a low-mass Z' boson accessible to Large Hadron Collider. We derive renormalization group equations for fermion masses and mixings in the presence of the intermediate symmetries of the model and extract the Dirac neutrino mass matrix at the TeV scale from successful GUT-scale parameterization of fermion masses. We estimate leptonic nonunitarity effects measurable at neutrino factories and lepton flavor violating decays expected to be probed in near future. While our prediction on the nonunitarity matrix element $\\eta_{\\mu\\tau}$ for degenerate right-handed neutrinos is similar to the supersymmetric SO(10) case, we find new predictions with significantl...
Dark matter at the pseudoscalar Higgs resonance in the phenomenological MSSM and SUSY GUTs
Anandakrishnan, Archana; Shakya, Bibhushan; Sinha, Kuver
2015-02-01
We study dark matter at the MSSM pseudoscalar Higgs resonance (A funnel), which is one of the few remaining MSSM thermal dark matter candidates in the 100-1000 GeV range safe from direct detection constraints. To illustrate the various factors at play, this study is performed in two contrasting setups: a bottom-up phenomenological MSSM (pMSSM) approach that allows significant freedom and the top-down, highly constrained Yukawa unified S O (10 ) GUT model. In the pMSSM, for μ >0 , the entire parameter space lies above the coherent neutrino background and mostly within reach of XENON1T and LZ, while blind spots exist at mA>800 GeV for μ determined to within a small range.
Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets
Maimets, Andri, 1979-
2003-01-01
Concordia Ülikooli rektor Mart Susi esitas kohtule avalduse, milles taotleb ülikooli pidanud Concordia Varahalduse OÜ pankroti väljakuulutamist. Vt. samas: Mari-Ann Susi õigustas ülikooli raha kasutamist
Multiverse dark matter: SUSY or axions
D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio
2014-11-01
The observed values of the cosmological constant and the abundance of Dark Matter (DM) can be successfully understood, using certain measures, by imposing the anthropic requirement that density perturbations go non-linear and virialize to form halos. This requires a probability distribution favoring low amounts of DM, i.e. low values of the PQ scale f for the QCD axion and low values of the superpartner mass scale for LSP thermal relics. In theories with independent scanning of multiple DM components, there is a high probability for DM to be dominated by a single component. For example, with independent scanning of f and , TeV-scale LSP DM and an axion solution to the strong CP problem are unlikely to coexist. With thermal LSP DM, the scheme allows an understanding of a Little SUSY Hierarchy with multi-TeV superpartners. Alternatively, with axion DM, PQ breaking before (after) inflation leads to f typically below (below) the projected range of the current ADMX experiment of f = (3 - 30) × 1011 GeV, providing strong motivation to develop experimental techniques for probing lower f.
Multiverse Dark Matter: SUSY or Axions
D'Eramo, Francesco; Pappadopulo, Duccio
2014-01-01
The observed values of the cosmological constant {\\it and} the abundance of Dark Matter (DM) can be successfully understood, using certain measures, by imposing the anthropic requirement that density perturbations go non-linear and virialize to form halos. This requires a probability distribution favoring low amounts of DM, i.e. low values of the PQ scale $f$ for the QCD axion and low values of the superpartner mass scale $\\tilde{m}$ for LSP thermal relics. In theories with independent scanning of multiple DM components, there is a high probability for DM to be dominated by a single component. For example, with independent scanning of $f$ and $\\tilde{m}$, TeV-scale LSP DM and an axion solution to the strong CP problem are unlikely to coexist. With thermal LSP DM, the scheme allows an understanding of a Little SUSY Hierarchy with multi-TeV superpartners. Alternatively, with axion DM, PQ breaking before (after) inflation leads to $f$ typically below (below) the projected range of the current ADMX experiment of ...
Kersten, J.
2006-05-15
We study gaugino-mediated supersymmetry breaking in a six-dimensional SO(10) orbifold GUT model where quarks and leptons are mixtures of brane and bulk fields. The couplings of bulk matter fields to the supersymmetry breaking brane field have to be suppressed in order to avoid large FCNCs. We derive bounds on the soft supersymmetry breaking parameters and calculate the superparticle mass spectrum. If the gravitino is the LSP, the {tau}{sub 1} or the {nu}{sub {tau}}{sub L} turns out to be the NLSP, with characteristic signatures at future colliders and in cosmology. (Orig.)
Parida, M K; Satpathy, Rajesh; Awasthi, Ram Lal
2016-01-01
We discuss gauge coupling unification of the SM descending directly from SO(10) while providing solutions to the three outstanding problems: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry in the model calls for high-scale spontaneous symmetry breaking through ${126}_H$ Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. The seesaw formula predicts two distinct patterns of RH$\
A simple model of generating fermion mass hierarchy in N=1 supersymmetric 6D SO(10) GUT
Haba, N; Haba, Naoyuki; Shimizu, Yasuhiro
2003-01-01
We suggest simple models which produce the suitable fermion mass hierarchies and flavor mixing angles based on the 6 dimensional N=1 supersymmetric SO(10) grand unified theory compactified on a $T^2/(Z_2 \\times Z_2')$ orbifold. We introduce 6D and 5D matter fields, which contains the 1st and 2nd generation matter fields as the zero modes, respectively. The 3rd generation matter fields are located on a 4D brane. The Yukawa couplings for bulk fields are suppressed by volume factors from extra dimensions. The suitable fermion mass hierarchies and flavor mixings are generated by the volume suppression factors.
Radiative processes (tau -> mu gamma, mu -> e gamma and muon g-2) as probes of ESSM/SO(10)
Babu, K S; Pati, Jogesh C.
2003-01-01
The Extended Supersymmetric Standard Model (ESSM), motivated on several grounds, introduces two vectorlike families (16 + 16-bar) of SO(10)) with masses of order one TeV. It is noted that the successful predictions of prior work on fermion masses and mixings, based on MSSM embedded in SO(10), can be retained rather simply within the ESSM extension. These include an understanding of the smallness of V_{cb} ~ 0.04 and the largeness of nu_mu - nu_tau oscillation angle, sin^2 2 theta_{nu_mu nu_tau}^{osc} ~ 1. We analyze the new contributions arising through the exchange of the vectorlike families of ESSM to radiative processes including tau -> mu gamma, mu -> e gamma, b -> s gamma, EDM of the muon and the muon (g-2). We show that ESSM makes significant contributions especially to the decays tau -> mu gamma and mu -> e gamma and simultaneously to muon (g-2). For a large and plausible range of relevant parameters, we obtain: a_mu^{ESSM} ~ +(10-40) times 10^{-10}, with a correlated prediction that tau -> mu gamma sh...
Nucleon Decay and Neutrino Properties in a Mass Model based on an SO(10) Grand Unified Theory
Merten, C
2000-01-01
In this work a mass model based on a SO(10) GUT with a global U(1) familysymmetry is discussed which leads to an asymmetric Nearest NeighbourInteraction structure for the fermionic mass matrices. As a result of theanalysis one gets three solutions of the model which include several largeleft- and right-handed fermion mixings. Those mixings are not observable in theSM where only the CKM quark mixing matrix can be measured, but they havetestable effects on the branching ratios of nucleon decays in theories beyondthe SM. One finds that decay channels with positrons in the final state aresuppressed while channels with antimuons and antineutrinos are enhancedcompared to models with small mixings. The total nucleon lifetimes obtainedshould be observable by future experiments. The SO(10) model also predicts themasses and mixings of the light neutrinos. They are in the right range toexplain the anomalies of solar and atmospheric neutrinos by means ofoscillations, preferring the small angle MSW solution for the solar ...
Bhattacharya, Subhaditya
2009-01-01
We derive the non-universal gaugino mass ratios in a supergravity (SUGRA) framework where the higgs superfields belong to the non-singlet representations {\\bf 54} and {\\bf 770} in a SO(10) Grand Unified Theory (GUT). We evaluate the ratios for two intermediate breaking chains, namely, $SU(2) \\times SO(7)$ and $SU(4)_C \\times SU(2)_L \\times SU(2)_R (G_{224})$ assuming the breaking of the SO(10) GUT group to the intermediate gauge group and that to the Standard Model (SM) takes place at the GUT scale itself. After a full calculation of the gaugino mass ratios, correcting some mistakes in the earlier calculation for 54, we obtain some new interesting low scale phenomenology of such breaking patterns after running down by the renormalization group equations (RGE). We also study the collider signatures in multilepton channels at the Large Hadron Collider (LHC) experiment for some selected benchmark points allowed by the cold dark matter relic density constraint provided by the WMAP data.
Higgs, Binos and Gluinos: Split Susy Within Reach
Alves, Daniele S M; Wacker, Jay G
2011-01-01
Recent evidence from the LHC for the Higgs boson with mass between 142 GeV < m_h < 147GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 microns to 10 years range, are its imminent smoking gun signature. The 7 TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m_chi = 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.
SUSY Dark Matter in Universal and Nonuniversal Gaugino Mass Models
Roy, D P
2016-01-01
We review the phenomenology of SUSY dark matter in various versions of MSSM, with universal and nonuniversal gaugino masses at the GUT scale. We start with the universal case (CMSSM), where the cosmologically compatible dark matter relic density is achieved only over some narrow regions of parameter space, involving some fine-tuning. Moreover, most of these regions are seriously challenged by the constraints from collider and direct dark matter detection experiments. Then we consider some simple and predictive nonuniversal gaugino mass models, based on SU(5) GUT. Several of these models offer viable SUSY dark matter candidates, which are compatible with the cosmic dark matter relic density and the above mentioned experimental constraints. They can be probed at the present and future collider and dark matter search experiments. Finally, we consider the nonuniversal gaugino mass model arising from anomaly mediated SUSY breaking. In this case the cosmologically compatible dark matter relic density requires dark ...
Exact Finite and Gauge-Yukawa Unified Theories and Their Predictions
Kobayashi, T. [Department of Physics, High Energy Physics Division, University of Helsinki, Helsinki (Finland)]|[Helsinki Institute of Physics, Helsinki (Finland); Kubo, J. [Department of Physics, Kanazawa University, Kanazawa (Japan); Mondragon, M. [Inst. de Fisica, UNAM, Apdo. Mexico (Mexico); Zoupanos, G. [Physics Dept., Nat. Technical Univ., Athens (Greece)
1999-06-01
The recent developments in the soft supersymmetry breaking (SSB) sector of Gauge-Yukawa and Finite Unified Theories permit the derivation of exact renormalization group invariant results also in this sector of the theory. Of particular interest is a RGI sum rule for the soft scalar masses holding to all-orders in perturbation theory. In the case of Finite Unified Theories the sum rule ensures the all-loop finiteness also in their SSB sector and in this way are promoted to completely finite ones. Using the sum rule we investigate the minimal supersymmetric Gauge-Yukawa and two Finite-Gauge-Yukawa SU(5) models. The characteristic features of these models are: a) the old agreement of the top quark mass prediction remains unchanged, b) the lightest Higgs boson is predicted to be around 120 GeV, c) the s-spectrum starts above several hundreds of GeV. (author) 31 refs, 2 figs, 3 tabs
Heavy colored SUSY partners from deflected anomaly mediation
Wang, Fei; Yang, Jin Min; Zhang, Yang
2015-01-01
We propose a deflected anomaly mediation scenario from SUSY QCD which can lead to both positive and negative deflection parameters (there is a smooth transition between these two deflection parameter regions by adjusting certain couplings). Such a scenario can naturally give a SUSY spectrum in which all the colored sparticles are heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven $g_\\mu-2$ experiment and LHC data can be reconciled in this scenario. We also find that the parameter space for explaining the $g_\\mu-2$ anomaly at $1\\sigma$ level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.
A Bottom-Up Approach to SUSY Analyses
Horn, Claus; /SLAC
2009-08-03
This paper proposes a new way to perform event generation and analysis in searches for new physics at the LHC. An abstract notation is used to describe the new particles on a level which better corresponds to detector resolution of LHC experiments. In this way the SUSY discovery space can be decomposed into a small number of eigenmodes each with only a few parameters, which allows to investigate the SUSY parameter space in a model-independent way. By focusing on the experimental observables for each process investigated the Bottom-Up Approach allows to systematically study the boarders of the experimental efficiencies and thus to extend the sensitivity for new physics.
A Bottom-Up Approach to SUSY Analyses
Horn, Claus; /SLAC
2011-11-11
This paper proposes a new way to do event generation and analysis in searches for new physics at the LHC. An abstract notation is used to describe the new particles on a level which better corresponds to detector resolution of LHC experiments. In this way the SUSY discovery space can be decomposed into a small number of eigenmodes each with only a few parameters, which allows to investigate the SUSY parameter space in a model-independent way. By focusing on the experimental observables for each process investigated the Bottom-Up Approach allows to systematically study the boarders of the experimental efficiencies and thus to extend the sensitivity for new physics.
SUSY Tools for Dark Matter and at the Colliders
Boudjema, Fawzi; Gondolo, Paolo
2010-01-01
With present and upcoming SUSY searches both directly, indirectly and at accelerators, the need for accurate calculations is large. We will here go through some of the tools available both from a dark matter point of view and at accelerators. For natural reasons, we will focus on public tools, even though there are some rather sophisticated private tools as well.
N=2 SUSY gauge theories on S^4
Hosomichi, Kazuo
2016-01-01
We review exact results in N=2 supersymmetric gauge theories defined on S^4 and its deformation. We first summarize the construction of rigid SUSY theories on curved backgrounds based on off-shell supergravity, then explain how to apply localization principle to supersymmetric path integrals. Closed formulae for partition function as well as expectation values of non-local BPS observables are presented.
SUSY Studies with Snowmass Point 5 mSUGRA Parameters
Borjanovic, I; Popovic, D; Physics at LHC, Vienna, 13-17 July 2004
2004-01-01
Achievable precision of SUSY masses and kinematic endpoints measurements at ATLAS detector was estimated for mSUGRA Snowmass Point 5 parameters which give stop quark lighter than for any other mSUGRA point. Characterisitic decays of left squark and gluino were analyzed.
SUSY and BSM in the face of LHC-14
Casas, J Alberto
2015-01-01
In this talk I review the motivations for physics beyond the Standard Model at the TeV scale and the prospects for their detection in the second Run of LHC. Then I focus in the supersymmetric case, paying special attention to the formulation and implications of the Natural SUSY scenario.
Post LHC7 SUSY benchmark points for ILC physics
Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-05-15
We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first year of serious data taking at LHC with {radical}(s)=7 TeV and {proportional_to}5 fb{sup -1} of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m{sub h}{proportional_to}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m{sub A}, non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){proportional_to}0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.
F-Susy And The Three States Potts Model
Sedra, M B
2009-01-01
In view of its several involvements in various physical and mathematical contexts, 2D-fractional supersymmetry (F-susy) is once again considered in this work. We are, for instance, interested to study the three states Potts model $(k = 3)$ which represents with the tricritical Ising model $(k = 2)$ the two leading examples of more general spin $1/k$ fractional supersymmetric theories.
Parida, M. K.; Nayak, Bidyut Prava; Satpathy, Rajesh; Awasthi, Ram Lal
2017-04-01
We discuss gauge coupling unification of SU(3) C × SU(2) L × U(1) Y descending directly from non-supersymmetric SO(10) while providing solutions to the three out-standing problems of the standard model: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry for the stability and identification of dark matter in the model calls for high-scale spontaneous symmetry breaking through 126 H Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. Being quadratic in the Majorana coupling, the seesaw formula predicts two distinct patterns of right-handed neutrino masses, one hierarchical and another not so hierarchical (or compact), when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RH ν masses. A complete flavor analysis has been carried out to compute CP-asymmetries including washouts and solutions to Boltzmann equations have been utilised to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of right-handed neutrino masses. The SU(2) L triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation 45 F of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass ˜ 5 × 107 GeV to achieve precision gauge coupling unification at the GUT mass scale M U 0 = 1015.56 GeV. Threshold corrections due to superheavy components of 126H and other representations are estimated and found to be substantial. It is noted that the proton life
Post LHC8 SUSY benchmark points for ILC physics
Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with {proportional_to}5 fb{sup -1} of pp collisions at {radical}(s)=7 TeV and LHC8 with {proportional_to}20 fb{sup -1} at {radical}(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m{sub h}{approx_equal}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m{sub A}, a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, {tau}-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){approx_equal} 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.
King, Stephen F.; Malinsky, Michal [School of Physics and Astronomy, University of Southampton, Southampton SO16 1BJ (United Kingdom)
2006-11-15
We construct a complete 4d model of fermion masses and mixings in the Pati-Salam SU(4)xSU(2){sub L}xSU(2){sub R} framework governed by an SO(3) gauged Family Symmetry. The relevant low energy effective Yukawa operators are constructed so that the SO(3) flavons enter at the simplest possible one-flavon level, with couplings enforced by an additional U(1) x Z{sub 2} symmetry. The simplicity of the flavon sector allows the messenger sector to be fully specified, allowing the ultraviolet completion of the model at the 4d renormalizable level. The model predicts approximate tri-bimaximal lepton mixing via the see-saw mechanism with sequential dominance, and vacuum alignment of flavons, with calculable deviations described by the neutrino sum rule. We perform a numerical analysis of the emerging charged fermion spectra and mixings. The 4d model is shown to result from a 5d orbifold GUT model based on SO(3) x SO(10), where small flavon vacuum expectation values (VEVs) originate from bulk volume suppression.
SUSY see-saw and NMSO(10)GUT inflation after BICEP2
Ila Garg
2016-02-01
Supersymmetric see-saw slow roll inflection point inflation occurs along a MSSM -flat direction associated with gauge invariant combination of Higgs, slepton and right-handed sneutrino at a scale set by the right-handed neutrino mass c ∼ 106−1013 GeV. The tensor to scalar perturbation ratio ∼ 10−3 can be achieved in this scenario. However, this scenario faced difficulty in being embedded in the realistic new minimal supersymmetric SO(10) grand unified theory (NMSO(10)GUT). The recent discovery of B-mode polarization by BICEP2, changes the prospects of NMSO(10)GUT inflation. Inflection point models become strongly disfavoured, as the trilinear coupling of SUSY see-saw inflation potential gets suppressed relative to the mass parameter favoured by BICEP2. Large values of ≈ 0.2 can be achieved with super-Planck scale inflaton values and mass scales of inflaton ≥1013 GeV. In NMSO(10)GUT, this can be made possible with an admixture of heavy Higgs doublet fields, i.e., other than MSSM Higgs field, which are present and have masses of order GUT scale.
One loop effects of natural SUSY in third generation fermion production at the ILC
Kouda, Yusaku; Kurihara, Yoshimasa; Ishikawa, Tadashi; Jimbo, Masato; Kato, Kiyoshi; Kuroda, Masaaki
2016-01-01
We investigate the 1-loop effects of supersymmetric particles on the third-generation fermion-pair production at the ILC within the framework of the Minimal Supersymmetric Standard Model. Three sets of the SUSY parameters are proposed which are consistent with the observed Higgs mass, the muon $g$-$2$, the Dark Matter abundance, etc. We discuss on the possibility of discovering the signals consistent with SUSY as well as of experimentally distinguishing the proposed sets of SUSY parameters.
SUSY-QCD Corrections to Dark Matter Annihilation in the Higgs Funnel
Herrmann, B
2007-01-01
We compute the full O(alpha_s) SUSY-QCD corrections to dark matter annihilation in the Higgs-funnel, resumming potentially large mu tan beta and A_b contributions and keeping all finite O(m_b,s,1/tan^2 beta) terms. We demonstrate numerically that these corrections strongly influence the extraction of SUSY mass parameters from cosmological data and must therefore be included in common analysis tools such as DarkSUSY or micrOMEGAs.
The 750 GeV Diphoton Excess and SUSY
Heinemeyer, S.
The LHC experiments ATLAS and CMS have reported an excess in the diphoton spectrum at ˜750 GeV. At the same time the motivation for Supersymmetry (SUSY) remains unbowed. Consequently, we review briefly the proposals to explain this excess in SUSY, focusing on "pure" (N)MSSM solutions. We then review in more detail a proposal to realize this excess within the NMSSM. In this particular scenario a Higgs boson with mass around 750 GeV decays to two light pseudo-scalar Higgs bosons. Via mixing with the pion these pseudo-scalars decay into a pair of highly collimated photons, which are identified as one photon, thus resulting in the observed signal.
Restudy on Time-Evolution of SUSY Dark Matter
FENG Tai-Fu; LI Xue-Qian; MENG Qing-Wei; REN Zhen-Yu
2002-01-01
We restudy the Lee-Weinberg time-evolution equation including the R-parity violation. We carefullyanalyze the intluence of the boundary conditions, equation of state, SUSY parameters, especially the R-parity violation,and other factors on the time-evolution of the SUSY cold dark matter. Our numerical results show that without Rparity violation, only two ranges 20 ＜ mx01 ＜ 30 GeV and 75 ＜ mx01 ＜ 110 GeV can be consistent with data, if30 ＜ mx01 ＜ 75 GeV, there must be at least two kinds of heavy particles contributing to the cold dark matter. However,with the R-parity violation, the heavy neutralino can be dark matter constituent, but it must decay and the R-parityviolation parameter is constrained by the present data.
Analysis of SUSY Heavy Higgs events at CLIC
Quevillon, J
2009-01-01
This paper reports the results of a study of the supersymmetric neutral heavy Higgs boson production channel e+e− → H◦A◦ → bb ̄bb ̄ at √s = 3 TeV. Reconstruction of data simulated at generator level shows a significant degradation of SUSY Heavy Higgs signal caused by γγ to hadrons background at s = 3 TeV. The importance of analysis procedures such as event cuts and transversal momentum cuts during jet-clustering to reduce the impact of the hadron background is underlined. Reconstruction at both the generator level and at the level of a full detector simulation forces us to introduce cuts to improve the quality of the results. This note describes a preliminary study of SUSY Heavy Higgs at CLIC - a more detailed paper on an extended study is in preparation.
Integrable Structure in SUSY Gauge Theories, and String Duality
Nam, S
1996-01-01
There is a close relation between duality in $N=2$ SUSY gauge theories and integrable models. In particular, the quantum moduli space of vacua of $N=2$ SUSY $SU(3)$ gauge theories coupled to two flavors of massless quarks in the fundamental representation can be related to the spectral curve of the Goryachev-Chaplygin top. Generalizing this to the cases with {\\it massive} quarks, and $N_f = 0,1,2$, we find a corresponding integrable system in seven dimensional phase space where a hyperelliptic curve appears in the Painlevé test. To understand the stringy origin of the integrability of these theories we obtain exact nonperturbative point particle limit of type II string compactified on a Calabi-Yau manifold, which gives the hyperelliptic curve of $SU(2)$ QCD with $N_f =1$ hypermultiplet.
(Delta a) curiosities in some 4d susy RG flows
Amariti, Antonio
2012-01-01
We explore some curiosities in 4d susy RG flows. One issue is that the compelling candidate a-function, from a-maximization with Lagrange multipliers, has a `strange branch," with reversed RG flow properties, monotonically increasing instead of decreasing. The branch flip to the strange branch occurs where a double-trace deformation Delta W=O ^2 passes through marginality, reminiscent of the condition for the chiral symmetry breaking, out of the conformal window transition in non-susy gauge theories. The second issue arises from Higgsing vevs for IR-free fields, which sometimes superficially violate the a-theorem. The resolution is that some vevs trigger marginal or irrelevant interactions, leading to Delta a=0 and decoupled dilaton on a subspace of the moduli space of vacua. This is contrary to classical intuition about Higgsing. This phenomenon often (but not always) correlates with negative R-charge for the Higgsing chiral operator.
Cornering natural SUSY at LHC Run II and beyond
Buckley, Matthew R.; Feld, David; Macaluso, Sebastian; Monteux, Angelo; Shih, David
2017-08-01
We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with ˜ 15 fb-1 of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with R-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low ( motivated by this work.
SLAM, a Mathematica interface for SUSY spectrum generators
Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zerf, Nikolai [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics
2013-09-15
We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m{sub h}{sup max} and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.
SLAM, a Mathematica interface for SUSY spectrum generators
Marquard, Peter
2013-01-01
We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like Spheno, Softsusy or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or mh_max and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.
Soft SUSY Breaking, Stop-Scharm Mixing and Higgs Signatures
Díaz-Cruz, J L; Yuan, C P; He, Hong-Jian
2002-01-01
The three-family squark mass-matrix from MSSM soft breaking contains a rich flavor-mixing structure. We formulate the {\\it minimal} FCNC schemes for the squark mass-terms and scalar trilinear interactions consistent with existing precision data and charge-color breaking plus stability bounds, and find O(1) mixings among top- and charm-squarks are allowed. We demonstrate that this feature can be naturally realized in a class of new models with horizontal U(1)_H symmetry which also solves the SUSY \\mu-problem. Then, we analyze SUSY radiative corrections to H^+-b-c and h^0-t-c vertices without using mass-insertion approximation and show that the loop-induced flavor-mixing couplings can be significant to provide new discovery Higgs signatures at Tevatron and LHC.
The 750 GeV diphoton excess and SUSY
Heinemeyer, S
2016-01-01
The LHC experiments ATLAS and CMS have reported an excess in the diphoton spectrum at \\sim 750 GeV. At the same time the motivation for Supersymmetry (SUSY) remains unbowed. Consequently, we review briefly the proposals to explain this excess in SUSY, focusing on "pure" (N)MSSM solutions. We then review in more detail a proposal to realize this excess within the NMSSM. In this particular scenario a Higgs boson with mass around 750 GeV decays to two light pseudo-scalar Higgs bosons. Via mixing with the pion these pseudo-scalars decay into a pair of highly collimated photons, which are identified as one photon, thus resulting in the observed signal.
Searches for BSM (non-SUSY) physics at the Tevatron
Gerberich, Heather K.; /Illinois U., Urbana
2005-11-01
As of July 2005, the Tevatron at Fermilab has delivered {approx} 1 fb{sup -1} of data to the CDF and D0 experiments. Each experiment has recorded more than 80% of the delivered luminosity. Results of searches for physics (non-SUSY and non-Higgs) beyond the Standard Model using 200 pb{sup -1} to 480 pb{sup -1} at D0 and CDF are presented.
pMSSM combination of SUSY searches at the LHC
Cervelli, Alberto; The ATLAS collaboration
2015-01-01
The results of supersymmetric searches at the LHC are usually presented in the context of simplified models, with a single specific production channel and decay mode for the supersymmetric particles. In full SUSY models, several production and decay channels are expected, and the limits on supersymmetric particle masses might be weaker. In the following we will presents the combination of the results from each of the ATLAS and CMS collaborations to place constraints on the 19-parameter phenomenological MSSM (pMSSM).
Non-susy exotics searches at the Tevatron
Pronko, Alexandre; /Fermilab
2008-05-01
The authors present results of searches for signs of physics beyond the Standard Model. The focus of this paper is on analyses not driven by SUSY models. Most of the presented results are based on {approx} 2 fb{sup -1} of data and obtained since summer of 2007. No significant excess of data over predicted background is observed. They report kinematic distributions, data and background counts, as well as limits on some parameters of selected models of new physics.
SUSY searches with Opposite Sign Dileptons at CMS
Chiorboli, M; Tricomi, A
2006-01-01
A full simulation study with the detector CMS is presented. The Leptons + Jets + Missing Energy (l = e,$\\mu$) final state for SUSY events is investigated at mSUGRA benchmark point LM1. The end point in the dilepton pair invariant mass distribution is reconstructed and a scan of the $\\left(m_{0},\\, m_{1/2}\\right)$ plane is performed in order to determine the observability reach.
SLAM, a Mathematica interface for SUSY spectrum generators
Marquard, Peter; Zerf, Nikolai
2014-03-01
We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY, SuSeFLAV or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or mhmax and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum. Catalogue identifier: AERX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERX_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4387 No. of bytes in distributed program, including test data, etc.: 37748 Distribution format: tar.gz Programming language: Mathematica. Computer: Any computer where Mathematica version 6 or higher is running providing bash and sed. Operating system: Linux. Classification: 11.1. External routines: A SUSY spectrum generator such as SPheno, SOFTSUSY, SuSeFLAV or SUSPECT Nature of problem: Interfacing published spectrum generators for automated creation, saving and loading of SUSY particle spectra. Solution method: SLAM automatically writes/reads SLHA spectrum generator input/output and is able to save/load generated data in/from a data base. Restrictions: No general restrictions, specific restrictions are given in the manuscript. Running time: A single spectrum calculation takes much less than one second on a modern PC.
Search for compressed SUSY scenarios with the ATLAS detector
Maurer, Julien; The ATLAS collaboration
2017-01-01
Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This contribution presented recent results of analyses explicitly targeting such ``compressed'' scenarios with a variety of experimental techniques. All results made use of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC.
Tiny neutrino mass from SUSY and lepton number breaking sector
Haba, Naoyuki [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Shindou, Tetsuo, E-mail: shindou@cc.kogakuin.ac.jp [Faculty of Engineering, Kogakuin University, Tokyo 163-8677 (Japan)
2011-07-04
We suggest a new setup where SUSY breaking spurion F-term possesses lepton number. This setup not only modifies sparticle mass spectra but also realizes several new models, where neutrino mass is naturally induced through radiative corrections. We here suggest two new models; the first one is (i): pseudo-Dirac/Schizophrenic neutrino model, and the second one is (ii): pure Majorana neutrino model. We will also show this setup can naturally apply to the supersymmetric Zee-Babu model.
Implications of low and high energy measurements on SUSY models
Jegerlehner, Fred [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2012-04-15
New Physics searches at the LHC have increased significantly lower bounds on unknown particle masses. This increases quite dramatically the tension in the interpretation of the data: low energy precision data which are predicted accurately by the SM (LEP observables like M{sub W} or loop induced rare processes like B {yields}X{sub s}{gamma} or B{sub s}{yields}{mu}{sup +}{mu}{sup -}) and quantities exhibiting an observed discrepancy between SM theory and experiment, most significantly found for the muon g-2 seem to be in conflict now. (g-2){sub {mu}} appears to be the most precisely understood observable which at the same time reveals a 3-4 {sigma} deviation between theory and experiment and thus requires a significant new physics contribution. The hints for a Higgs of mass about 125 GeV, which is precisely what SUSY extensions of the SM predict, seem to provide a strong indication for SUSY. At the same time it brings into serious trouble the interpretation of the (g-2){sub {mu}} deviation as a SUSY contribution.
Cornering Natural SUSY at LHC Run II and Beyond
Buckley, Matthew R; Macaluso, Sebastian; Monteux, Angelo; Shih, David
2016-01-01
We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with $\\sim 15$ fb$^{-1}$ of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with $R$-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low ($<100$ TeV). We conclude by considering the prospects for the high-luminosity LHC era, where we expect the current limits on particle masses to improve by up to $\\sim 1$ TeV, and discuss further model-building directions for natural SUSY that are motivated by this work.
Higgs, Binos and Gluinos: Split Susy within Reach
Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP
2012-09-14
Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.
SUSY Fits and their Implications for ILC and CLIC
Heinemeyer, S
2016-01-01
We review results from our frequentist analysis of the parameter space of the pMSSM10, in which the following 10 soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale Msusy = \\sqrt{M_stop1 M_stop2}: the gaugino masses M_{1,2,3}, the 1st-and 2nd-generation squark masses M_squ1 = M_squ2, the third-generation squark mass M_squ3, a common slepton mass M_slep and a common trilinear mixing parameter A, the Higgs mixing parameter mu, the pseudoscalar Higgs mass M_A and tan beta, the ratio of the two Higgs vacuum expectation values. We implemented the LHC searches for strongly- and electroweakly-interacting sparticles and light stops, so as to confront the pMSSM10 parameter space with all relevant SUSY searches. In addition, our analysis includes Higgs mass and rate measurements, SUSY Higgs exclusion bounds, the measurements of \\bmm, other B-physics observables, electroweak precision observables, the cold dark matter density and the searches for spin-independent dark matter scatt...
Precision Natural SUSY at CEPC, FCC-ee, and ILC
Fan, JiJi; Wang, Lian-Tao
2014-01-01
Testing the idea of naturalness is and will continue to be one of the most important goals of high energy physics experiments. It will play a central role in the physics program of future colliders. In this paper, we present projections of the reach of natural SUSY at future lepton colliders: CEPC, FCC-ee and ILC. We focus on the observables which give the strongest reach, the electroweak precision observables (for left-handed stops), and Higgs to gluon and photon decay rates (for both left- and right-handed stops). There is a "blind spot" when the stop mixing parameter Xt is approximately equal to the average stop mass. We argue that in natural scenarios, bounds on the heavy Higgs bosons from tree-level mixing effects that modify the bottom Yukawa coupling together with bounds from b to s gamma play a complementary role in probing the blind spot region. For specific natural SUSY scenarios such as folded SUSY in which the top partners do not carry Standard Model color charges, electroweak precision observable...
How low can SUSY go? Matching, monojets and compressed spectra
Dreiner, Herbi K
2012-01-01
If supersymmetry (SUSY) has a compressed spectrum then the current mass limits from the LHC can be drastically reduced. We consider a possible 'worst case' scenario where the gluino and/or squarks are degenerate with the lightest SUSY particle (LSP). The most sensitive searches for these compressed spectra are via the final state LSPs recoiling against initial state radiation (ISR). Therefore it is vital that the ISR is understood and possible uncertainties in the predictions are evaluated. We use both MLM (with Pythia 6) and CKKW- L (with Pythia 8) matching and vary matching scales and parton shower properties to accurately determine the theoretical uncertainties in the kinematic distributions. All current LHC SUSY and monojet analyses are employed and we find the most constraining limits come from the CMS Razor and CMS monojet searches. For a scenario of squarks degenerate with the LSP and decoupled gluinos we find $M_{\\tilde{q}}>340$ GeV. For gluinos degenerate with the LSP and decoupled squarks, $M_{\\tild...
The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models
Baer, Howard W; Krupovnickas, T; Tata, Xerxes; Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes
2002-01-01
In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass $m_{1/2}$ is the only soft SUSY breaking term to receive contributions at tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale $M_c$ beyond the GUT scale, and that additional renormalization group running takes place between $M_c$ and $M_{GUT}$ as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the inoMSB model, and compute the SUSY reach including cuts and triggers approriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. %either with or without %identified tau leptons. ...
Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models
Baer, Howard W; Krupovnickas, T; Tata, Xerxes; 10.1103/PhysRevD.65.075024
2002-01-01
In supersymmetric models with gaugino mediated SUSY breaking (gMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m/sub 1/2/ is the only soft SUSY breaking term to receive contributions at the tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale M/sub c/ beyond the GUT scale, and that additional renormalization group running takes place between M/sub c/ and M/sub GUT/ as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with gMSB. We use the Monte Carlo program ISAJET to simulate signals within the gMSB model, and compute the SUSY reach including cuts and triggers appropriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. At the CERN LHC, values of m/sub 1/2/=1000...
Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets
Maimets, Andri
2003-01-01
Concordia Ülikooli rektori kohast loobunud Mart Susi ning prorektori ametikohalt lahkunud Mari-Ann Susi taotlevad neile kuuluvat ülikooli pidanud miljonivõlgades firma pankrotti. Hiljuti loodi õppejõududest, tudengitest js töötajatest mittetulundusühing Concordia Akadeemiline Ühisus (CAU), selle nõukogu esimees on Hagi Šein
SUSY effects in $R_b$: revisited under current experimental constraints
Su, Wei
2016-01-01
In this note we revisit the effects of natural SUSY in $R_b$ under current experimental constraints including the LHC Higgs data, the $B$-physics measurements, the dark matter relic density and direct detection limits, as well as the precision electroweak data. We first perform a scan to figure out the currently allowed parameter space of natural SUSY and then display the SUSY effects in $R_b$. We find that although the SUSY parameter space has been severely restrained by current experimental data, natural SUSY can still alter $R_b$ with a magnitude sizable enough to be observed at future $Z$-factories (ILC, CEPC, FCC-ee, Super $Z$-factory) which produce $10^9-10^{12}$ $Z$-bosons.
Electroweak contributions to SUSY particle production processes at the LHC
Mirabella, Edoardo
2009-07-22
In this thesis we have computed the electroweak contributions of O({alpha}{sub s}{alpha}), O({alpha}{sup 2}) and O({alpha}{sub s}{sup 2}) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.
An extended phase-space SUSY quantum mechanics
Ter-Kazarian, G [Byurakan Astrophysical Observatory, Byurakan 378433, Aragatsotn District (Armenia)], E-mail: gago_50@yahoo.com
2009-02-06
In the present paper, we will concern ourselves with the extended phase-space quantum mechanics of particles which have both bosonic and fermionic degrees of freedom, i.e., the quantum field theory in (0 + 1) dimensions in q-(position) and p-(momentum) spaces, exhibiting supersymmetry. We present (N = 2) realization of extended supersymmetry algebra and discuss the vacuum energy and topology of super-potentials. Shape invariance of exactly solvable extended SUSY potentials allows us to obtain analytic expressions for the entire energy spectrum of an extended Hamiltonian with, for example, Scarf potential without ever referring to an underlying differential equation.
SUSY studies with ATLAS hadronic signatures and focus point
Lari, T
2004-01-01
In this report recent studies made to understand the capability to discover and measure properties of SUSY particles with the ATLAS detector at LHC are presented. The first part of the report discusses the reconstruction of gluino, right-handed squarks and third generation squarks, whose decays give rise to complex hadronic signatures, for some mSUGRA benchmark points. In the second part, the potential of the ATLAS experiment is discussed for the Focus Point region of the mSUGRA parameter space.
Effects of CP phases on the Phenomenology of SUSY Particles
Bartl, Alfred
2005-01-01
We review our recent studies on the effects of CP-violating supersymmetric (SUSY) parameters on the phenomenology of neutralinos, charginos and third generation squarks. The CP-even branching ratios of the squarks show a pronounced dependence on the phases of A_t, A_b, mu and M_1 in a large region of the supersymmetric parameter space, which can be used to get information on these phases. In addition we have studied CP-odd observables, like asymmetries based on triple product correlations. In neutralino and chargino production with subsequent three-body decays these asymmetries can be as large as 20%.
New ideas on SUSY searches at future linear colliders
Hesselbach, S. [Institut fuer Theoretische Physik, Universitaet Wien, A-1090 Vienna (Austria); Kittel, O. [Instituto de Fisica Corpuscular - C.S.I.C., Universitat de Valencia, E-46071 Valencia (Spain); Moortgat-Pick, G. [IPPP, University of Durham, Durham DH1 3LE (United Kingdom); Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Oeller, W. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, A-1050 Vienna (Austria)
2004-07-01
Several results obtained within the SUSY group of the ECFA/DESY linear collider study are presented: (i) a possibility to determine tan {beta} and the trilinear couplings A{sub f} via polarisation in sfermion decays, (ii) the impact of complex MSSM parameters on the third generation sfermion decays, (iii) determination of CP violation in the complex MSSM via T-odd asymmetries in neutralino production and decay, and (iv) an analysis of the chargino and neutralino mass parameters at one-loop level. (orig.)
CP-violation in SUSY cascades at the LHC
Tattersall, Jamie; Rolbiecki, Krzysztof [Durham Univ. (United Kingdom). IPPP; Moortgal-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2010-07-01
We study the potential to observe CP-violating effects in SUSY cascade decay chains at the LHC. Asymmetries composed by triple products of momenta of the final state particles are sensitive to CP-violating effects. Due to large boosts that dilute the asymmetries, these can be difficult to observe. Extending the methods of momentum reconstruction we show that the original size of these asymmetries may be measurable. A study is done at the hadronic level with backgrounds to estimate the expected sensitivity at the LHC. (orig.)
CP-violation in SUSY cascades at the LHC
Tattersall, Jamie; Rolbiecki, Krzysztof
2010-01-01
We study the potential to observe CP-violating effects in SUSY cascade decay chains at the LHC. Asymmetries composed by triple products of momenta of the final state particles are sensitive to CP-violating effects. Due to large boosts that dilute the asymmetries, these can be difficult to observe. Extending the methods of momentum reconstruction we show that the original size of these asymmetries may be measurable. A study is done at the hadronic level with backgrounds to estimate the expected sensitivity at the LHC.
THE SUSY-m PARTNER POTENTIAL OF THE MORSE POTENTIAL%Morse势的SUSY-m伴随势
肖宇玲
2002-01-01
将利用激发态产生和定义超势的方法应用于Morse势,得到Morse势瓣的SUSY伴随势系列.对给定的Morse势的第m个激发,它的SUSY-m伴随势可以表示为Morse势函数加上一有理函数,此有理函数为两相邻缔合拉革尔多项式的比的导函数.
Overview of SUSY results from the ATLAS experiment
Federico Brazzale Simone
2014-04-01
Full Text Available The search for Supersymmetric extensions of the Standard Model (SUSY remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson with mass of 125 GeV. Supersymmetric particles can cancel out the quadratically-divergent loop corrections to the Higgs boson mass and can explain presence of Dark Matter in the Universe. Moreover, SUSY can unify the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the super-symmetric particles are preferred to be lighter than one TeV and their discovery can thus be accessible at the LHC. The recent results from searches for Supersymmetry with the ATLAS experiment which utilized up to 21 fb−1 of proton-proton collisions at a center of mass energy of 8 TeV are presented. These searches are focused on inclusive production of squarks and gluinos, on production of third generations squarks, and on electroweak production of charginos and neutralinos. Searches for long-lived particles and R-parity violation are also summarized in the document.
Integrable Models, SUSY Gauge Theories, and String Theory
Nam, S
1996-01-01
We consider the close relation between duality in N=2 SUSY gauge theories and integrable models. Vario us integrable models ranging from Toda lattices, Calogero models, spinning tops, and spin chains are re lated to the quantum moduli space of vacua of N=2 SUSY gauge theories. In particular, SU(3) gauge t heories with two flavors of massless quarks in the fundamental representation can be related to the spec tral curve of the Goryachev-Chaplygin top, which is a Nahm's equation in disguise. This can be generaliz ed to the cases with massive quarks, and N_f = 0,1,2, where a system with seven dimensional phas e space has the relevant hyperelliptic curve appear in the Painlevé test. To understand the stringy o rigin of the integrability of these theories we obtain exact nonperturbative point particle limit of ty pe II string compactified on a Calabi-Yau manifold, which gives the hyperelliptic curve of SU(2) QCD w ith N_f =1 hypermultiplet.
Low-ℓ CMB from string-scale SUSY breaking?
Sagnotti, A.
2017-01-01
Models of inflation are instructive playgrounds for supersymmetry (SUSY) breaking in Supergravity and String Theory. In particular, combinations of branes and orientifolds that are not mutually BPS can lead to brane SUSY breaking, a phenomenon where nonlinear realizations are accompanied, in tachyon-free vacua, by the emergence of steep exponential potentials. When combined with milder terms, these exponentials can lead to slow-roll after a fast ascent and a turning point. This leaves behind distinctive patterns of scalar perturbations, where pre-inflationary peaks can lie well apart from an almost scale invariant profile. I review recent attempts to connect these power spectra to the low-ℓ cosmic microwave background (CMB), and a corresponding one-parameter extension of Lambda cold dark matter (ΛCDM) with a low-frequency cut Δ. A detailed likelihood analysis led to Δ = (0.351 ± 0.114) × 10-3Mpc-1, at 99.4% confidence level, in an extended Galactic mask with fsky = 39%, to be compared with a nearby value at 88.5% in the standard Planck 2015 mask with fsky = 94%. In these scenarios, one would be confronted, in the CMB, with relics of an epoch of deceleration that preceded the onset of slow-roll.
Hangout with CERN: All about SUSY (S03E09)
Kahle, Kate
2013-01-01
On 4th July 2012, CERN announced the discovery of a new boson later confirmed to be "a Higgs boson", but which one? Is it the Higgs boson predicted by the Standard Model of particle physics or one of the five Higgs bosons associated with "supersymmetry", a principle that attempts to fix the few remaining problems of the Standard Model?In this week's hangout we talk about supersymmetry, also known as "SUSY". What is it, why, and how does it link with the Higgs boson? Our host CMS physicist Freya Blekman is joined by SUSY theorist John Ellis, ATLAS physicist Xavier Portell Bueso and CMS physicist Josh Thompson, as well as student intern Jayendra Minakshisundar, with CMS physicist Seth Zenz monitoring social media.Find out more about supersymmetry by watching these videos by Don Lincoln from Fermilab: What is Supersymmetry? http://www.youtube.com/watch?v=0CeLRrBAI60 and Why Supersymmetry? http://www.youtube.com/watch?v=09VbAe9JZ8YRecorded live on 20th June 20...
Conciliating SUSY with the Z-peaked excess
Mitsou, Vasiliki A
2015-01-01
The ATLAS experiment observed an excess at the $3\\sigma$ level in the channel of $Z$ boson, jets and high missing transverse momentum in the full 2012 dataset at 8 TeV while searching for SUSY. The question arises whether the abundance and the kinematical features of this excess are compatible with the yet unconstrained supersymmetric realm, respecting at the same time the measured Higgs boson properties and dark matter density. By trying to explain this signal with SUSY we find that only relatively light gluinos together with a heavy neutralino NLSP decaying predominantly to a $Z$ boson plus a light gravitino could reproduce the excess. We construct an explicit general gauge mediation model able to match the observed signal. More sophisticated models could also reproduce the signal, as long as it features light gluinos, or heavy particles with a strong production cross section, producing at least one $Z$ boson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the ...
E6 inspired SUSY models with exact custodial symmetry
Nevzorov, R
2012-01-01
The breakdown of E_6 gauge symmetry at high energies may result in supersymmetric (SUSY) models based on the Standard Model (SM) gauge group together with extra U(1)_{\\psi} and U(1)_{\\chi} gauge symmetries. To ensure anomaly cancellation the particle content of these E_6 inspired models involves extra exotic states that can give rise to non--diagonal flavour transitions and rapid proton decay. We argue that a single discrete \\tilde{Z}^{H}_2 symmetry can be used to forbid tree--level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We present 5D and 6D orbifold GUT models that can lead to the E_6 inspired SUSY models of this type. The breakdown of U(1)_{\\psi} and U(1)_{\\chi} gauge symmetries that preserves E_6 matter parity assignment guarantees that the exotic states which originate from 27_i representations of E_6 as well as ordinary quark and lepton states survive to low energies. The considered E_6 inspired models contain at least two dark-matter candidates a...
Sensitivity of High-Scale SUSY in Low Energy Hadronic FCNC
Tanimoto, Morimitsu
2015-01-01
We discuss the sensitivity of the high-scale SUSY at $10$-$1000$ TeV in $B^0$, $B_s$, $K^0$ and $D$ meson systems together with the neutron EDM and the mercury EDM. In order to estimate the contribution of the squark flavor mixing to these FCNCs,we calculate the squark mass spectrum, which is consistent with the recent Higgs discovery. The SUSY contribution in $\\epsilon_K$ could be large, around 40% in the region of the SUSY scale $10$-$100$ TeV. The neutron EDM and the mercury EDM are also sensitive to the SUSY contribution induced by the gluino-squark interaction. The predicted EDMs are roughly proportional to $|\\epsilon_K^{\\rm SUSY}|$. If the SUSY contribution is the level of O(10%) for epsilon_K, the neutron EDM is expected to be discovered in the region of $10^{-28}$-$10^{-26}$ecm. The mercury EDM also gives a strong constraint for the gluino-squark interaction. The SUSY contribution of $\\Delta M_D$ is also discussed.
Sensitivity of High-Scale SUSY in Low Energy Hadronic FCNC
Morimitsu Tanimoto
2015-05-01
Full Text Available We discuss the sensitivity of the high-scale supersymmetry (SUSY at \\(10\\–\\(1000\\ TeV in \\(B^0\\, \\(B_s\\, \\(K^0\\ and \\(D\\ meson systems together with the neutron electric dipole moment (EDM and the mercury EDM. In order to estimate the contribution of the squark flavor mixing to these flavor changing neutral currents (FCNCs, we calculate the squark mass spectrum, which is consistent with the recent Higgs discovery. The SUSY contribution in \\(\\epsilon_K\\ could be large, around \\(40\\%\\ in the region of the SUSY scale \\(10\\–\\(100\\ TeV. The neutron EDM and the mercury EDM are also sensitive to the SUSY contribution induced by the gluino-squark interaction. The predicted EDMs are roughly proportional to \\(|\\epsilon_K^{\\rm SUSY}|\\. If the SUSY contribution is the level of \\({\\cal O}(10\\%\\ for \\(\\epsilon_K\\, the neutron EDM is expected to be discovered in the region of \\(10^{-28}\\–\\(10^{-26}\\ ecm. The mercury EDM also gives a strong constraint for the gluino-squark interaction. The SUSY contribution of \\(\\Delta M_D\\ is also discussed.
Non-decoupling SUSY in LFV Higgs decays: a window to new physics at the LHC
Arana-Catania, M; Herrero, M J
2013-01-01
The recent discovery of a SM-like Higgs boson at the LHC, with a mass around 125-126 GeV, together with the absence of results in the direct searches for supersymmetry, is pushing the SUSY scale ($m_\\text{SUSY}$) into the multi-TeV range. This discouraging situation from a low-energy SUSY point of view has its counterpart in indirect SUSY observables which present a non-decoupling behavior with $m_\\text{SUSY}$. This is the case of the one-loop lepton flavor violating Higgs decay rates induced by SUSY, which may remain constant or even increase as $m_\\text{SUSY}$ grows, depending on the class of intergenerational mixing in the slepton sector which are taken into account ($LL$, $LR$, $RL$ or $RR$). In this work we focus on the LFV decays of the three neutral MSSM Higgs bosons $h$, $H$, $A \\to \\tau \\mu$, considering the four types of slepton mixing ($\\delta_{23}^{LL}$, $\\delta_{23}^{LR}$, $\\delta_{23}^{RL}$, $\\delta_{23}^{RR}$), and show that all the three channels could be measurable at the LHC, being $h \\to \\t...
The Higgs boson mass and SUSY spectra in 10D SYM theory with magnetized extra dimensions
Hiroyuki Abe
2014-11-01
Full Text Available We study the Higgs boson mass and the spectrum of supersymmetric (SUSY particles in the well-motivated particle physics model derived from a ten-dimensional supersymmetric Yang–Mills theory compactified on three factorizable tori with magnetic fluxes. This model was proposed in a previous work, where the flavor structures of the standard model including the realistic Yukawa hierarchies are obtained from non-hierarchical input parameters on the magnetized background. Assuming moduli- and anomaly-mediated contributions dominate the soft SUSY breaking terms, we study the precise SUSY spectra and analyze the Higgs boson mass in this mode, which are compared with the latest experimental data.
SUSY Method for the Three-Dimensional Schr\\"odinger Equation with Effective Mass
Ioffe, M V; Nishnianidze, D N
2016-01-01
The three-dimensional Schr\\"odinger equation with a position-dependent (effective) mass is studied in the framework of Supersymmetrical (SUSY) Quantum Mechanics. The general solution of SUSY intertwining relations with first order supercharges is obtained without any preliminary constraints. Several forms of coefficient functions of the supercharges are investigated and analytical expressions for the mass function and partner potentials are found. As usual for SUSY Quantum Mechanics with nonsingular superpotentials, the spectra of intertwined Hamiltonians coincide up to zero modes of supercharges, and the corresponding wave functions are connected by intertwining relations. All models are partially integrable by construction: each of them has at least one second order symmetry operator.
Supersymmetric grand unified theories from quarks to strings via SUSY GUTs
Raby, Stuart
2017-01-01
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...
Searches for SUSY with other than jets + X + MET signature with the ATLAS detector
Kopeliansky, R; The ATLAS collaboration
2013-01-01
Searches for SUSY with other than jets + X + MET: EW production: Colored sparticles are heavy, the production is suppressed Gauginos & Sleptons assumed to be light enough to be produced Several scenarios including mainly
Curiel, A M; Temes, D; Curiel, Ana M.; Herrero, Maria J.; Temes, David
2003-01-01
We consider a plausible scenario in the Minimal Supersymmetric Standard Model (MSSM) where all the genuine supersymmetric (SUSY) particles are heavier than the electroweak scale. In this situation, indirect searches via their radiative corrections to low energy observables are complementary to direct searches, and they can be crucial if the SUSY masses are at the TeV energy range. We summarize the most relevant heavy SUSY radiative effects in Higgs boson physics and emphasize those that manifest a non-decoupling behaviour. We focus, in particular, on the SUSY-QCD non-decoupling effects in fermionic Higgs decays, flavour changing Higgs decays and Yukawa couplings. Some of their phenomenological implications at future colliders are also studied.
Interpretation of Higgs and SUSY searches in MSUGRA and GMSB models
De Vivie de Régie, J B
2000-01-01
Higgs and SUSY searches performed by the ALEPH experiment at LEP are interpreted in the framework of two constrained R-parity conserving models: minimal supergravity and minimal gauge mediated supersymmetry breaking. (4 refs).
SUSY QCD effective action in the large N/sub c/ limit
Slavnov, A.A.; Chekhov, L.O.; Krivoshchekov, V.K.
1987-08-06
A low energy effective action for supersymmetric quantum chromodynamics (SUSY QCD) including anomalous terms is constructed in the leading order of the 1/N expansion. The absence of dynamical supersymmetry breaking is explicitly demonstrated.
Lepton flavor violation in SUSY left-right symmetric theories
Vicente, Avelino
2010-01-01
The seesaw mechanism is the most popular explanation for the smallness of neutrino masses. However, its high scale makes direct tests impossible and only indirect signals at low energies are reachable for collider experiments. One of these indirect links with the high scale is lepton flavor violation (LFV). We discuss LFV decays of sleptons in the context of a SUSY left-right symmetric model that naturally incorporates the seesaw mechanism. This non-minimal embedding of the seesaw leads to observable LFV effects in the right-handed sleptons sector, contrary to minimal models where these are found to be totally negligible. Therefore, LFV observables can be used as a powerful tool to study physics right below the GUT scale.
Implication of Exact SUSY Gauge Couplings for QCD
Randall, Lisa; Shuryak, E V
1999-01-01
The phase structure of SUSY gauge theories can be very different from their nonsupersymmetric counterparts. Nonetheless, there is interesting information which might be gleaned from detailed investigation of these theories. In particular, we study the precise meaning of the strong interaction scale and also ask whether the study of supersymmetric theories can shed light on the apparent discrepancy between the perturbative scale $\\Lambda_{QCD}$ and the ``chiral lagrangian'' scale $\\Lambda_\\chi$. We show that in N=1 supersymmetric Yang Mills theory, ``naive dimensional analysis'' seems to work well, with evolved physical coupling becomes of order $4 \\pi$. We turn to N=2 theories to understand better the effect of instantons in accounting for the QCD discrepancy between scales. In N=2 supersymmetric SU(2) the instanton corrections are known to all orders from the Seiberg-Witten solution and give rise to a finite scale ratio between the scale at which the perturbatively evolved and ``nonperturbatively evolved'' c...
SUSY-inspired one-dimensional transformation optics
Miri, Mohammad-Ali; Christodoulides, Demetrios N
2014-01-01
Transformation optics aims to identify artificial materials and structures with desired electromagnetic properties by means of pertinent coordinate transformations. In general, such schemes are meant to appropriately tailor the constitutive parameters of metamaterials in order to control the trajectory of light in two and three dimensions. Here we introduce a new class of one-dimensional optical transformations that exploits the mathematical framework of supersymmetry (SUSY). This systematic approach can be utilized to synthesize photonic configurations with identical reflection and transmission characteristics, down to the phase, for all incident angles, thus rendering them perfectly indistinguishable to an external observer. Along these lines, low-contrast dielectric arrangements can be designed to fully mimic the behavior of a given high-contrast structure that would have been otherwise beyond the reach of available materials and existing fabrication techniques. Similar strategies can also be adopted to re...
Spontaneous parity violation and SUSY strong gauge theory
Haba, Naoyuki; Ohki, Hiroshi [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2012-07-27
We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest new models. Our models show confinement, so that we try to understand them by using a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. This structure has several advantages compared to the MSSM. The scale of the Higgs mass (left-right breaking scale) and that of VEVs are different, so the SUSY little hierarchy problems are absent. The second model also induces spontaneous supersymmetry breaking.
On SUSY Restoration in Single-Superfield Inflationary Models of Supergravity
Ketov, Sergei V
2016-01-01
We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the K\\"ahler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant.
Prospects for SUSY discovery based on inclusive searches with the ATLAS detector
Ventura, A
2008-01-01
The search for Supersymmetry (SUSY) among the possible scenarios of New Physics is one of the most relevant goals of the ATLAS experiment running at CERN's Large Hadron Collider. In the present work the expected prospects for discovering SUSY with the ATLAS detector are reviewed, and in particular for the first fb^-1 of collected integrated luminosity. All studies and results reported here are based on inclusive search analyses realized with Monte Carlo signal and background data simulated through the ATLAS apparatus.
On SUSY restoration in single-superfield inflationary models of supergravity
Ketov, Sergei V. [Tokyo Metropolitan University, Department of Physics, Hachioji-shi, Tokyo (Japan); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Chiba (Japan); Tomsk Polytechnic University, Institute of Physics and Technology, Tomsk (Russian Federation); Terada, Takahiro [Asia Pacific Center for Theoretical Physics, Pohang (Korea, Republic of)
2016-08-15
We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the Kaehler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant. (orig.)
SUSY breaking after inflation in supergravity with inflaton in a massive vector multiplet
Aldabergenov, Yermek
2016-01-01
We propose a limited class of models, describing interacting chiral multiplets with a non-minimal coupling to a vector multiplet, in curved superspace of $N=1$ supergravity. Those models are suitable for the inflationary model building in supergravity with inflaton assigned to a massive vector multiplet and spontaneous SUSY breaking in Minkowski vacuum after inflation, for any values of the inflationary parameters $n_s$ and $r$, and any scale of SUSY breaking.
Soft See-Saw: Radiative Origin of Neutrino Masses in SUSY Theories
Megrelidze, Luka
2016-01-01
Radiative neutrino mass generation within supersymmetric (SUSY) construction is studied. The mechanism is considered where the lepton number violation is originating from the soft SUSY breaking terms. This requires extensions of the MSSM with states around the TeV scale. We present several explicit realizations based on extensions either by MSSM singlet or SU(2)_w triplet states. Besides some novelties of the proposed scenarios, various phenomenological implications are also discussed.
On SUSY restoration in single-superfield inflationary models of supergravity
Ketov, Sergei V.; Terada, Takahiro
2016-08-01
We study the conditions of restoring supersymmetry (SUSY) after inflation in the supergravity-based cosmological models with a single chiral superfield and a quartic stabilization term in the Kähler potential. Some new, explicit, and viable inflationary models satisfying those conditions are found. The inflaton's scalar superpartner is dynamically stabilized during and after inflation. We also demonstrate a possibility of having small and adjustable SUSY breaking with a tiny cosmological constant.
Soft see-saw: Radiative origin of neutrino masses in SUSY theories
Luka Megrelidze
2017-01-01
Full Text Available Radiative neutrino mass generation within supersymmetric (SUSY construction is studied. The mechanism is considered where the lepton number violation is originating from the soft SUSY breaking terms. This requires MSSM extensions with states around the TeV scale. We present several explicit realizations based on extensions either by MSSM singlet or SU(2w triplet states. Besides some novelties of the proposed scenarios, various phenomenological implications are also discussed.
Donets, E. E.; Pashnev, A.; Juan Rosales, J.; Tsulaia, M. M.
2000-02-01
The multidimensional N=4 supersymmetric (SUSY) quantum mechanics (QM) is constructed using the superfield approach. As a result, the component form of the classical and quantum Lagrangian and Hamiltonian is obtained. In the SUSY QM considered, both classical and quantum N=4 algebras include central charges, and this opens various possibilities for partial supersymmetry breaking. It is shown that quantum-mechanical models with one-quarter, one-half, and three-quarters of unbroken (broken) supersymmetries can exist in the framework of the multidimensional N=4 SUSY QM, while the one-dimensional N=4 SUSY QM, constructed earlier, admits only one half or total supersymmetry breakdown. We illustrate the constructed general formalism, as well as all possible cases of partial SUSY breaking taking as an example a direct multidimensional generalization of the one-dimensional N=4 superconformal quantum-mechanical model. Some open questions and possible applications of the constructed multidimensional N=4 SUSY QM to the known exactly integrable systems and problems of quantum cosmology are briefly discussed.
Babu, K S; 10.1103/PhysRevD.68.035004
2003-01-01
The extended supersymmetric standard model (ESSM), motivated on several grounds, introduces two vectorlike families (16+16) of SO(10) with masses of the order of one TeV. It is noted that the successful predictions of prior work on fermion masses and mixings, based on the MSSM embedded in SO(10), can be retained rather simply within the ESSM extension. These include an understanding of the smallness of V /sub cb/ approximately=0.04 and the largeness of the nu /sub mu /- nu /sub tau / oscillation angle, sin/sup 2/2 theta /sub nu ( mu ) nu ( tau )//sup osc/ approximately=1. We analyze the new contributions arising through the exchange of the vectorlike families of the ESSM to radiative processes including tau to mu gamma , mu to e gamma , b to s gamma , the EDM of the muon and the muon (g-2). We show that the ESSM makes significant contributions especially to the decays tau to mu gamma and mu to e gamma and simultaneously to muon (g-2). For a large and plausible range of relevant parameters, we obtain a/sub mu ...
SUSY under siege from direct and indirect WIMP detection experiments
Baer, Howard; Barger, Vernon; Serce, Hasan
2016-12-01
We examine updated prospects for detecting WIMPs in supersymmetric models via direct and indirect dark matter search experiments. We examine several historical and also still viable scenarios: projections for well-tempered neutralinos (WTN), projections from the MasterCode (MC), BayesFits (BF) and Fittino (FO) collaborations, nonthermal wino dark matter (NThW) and finally mixed axion-Higgsino dark matter from SUSY with radiatively driven naturalness (RNS). The WTN is ruled out by recent limits from XENON and LUX collaborations. The NThW scenario, previously on tenuous ground due to gamma-line searches, appears also ruled out by recent combined Fermi-LAT/MAGIC limits combined with new HESS results from continuum gamma rays. Substantial portions of MC parameter space and 1 TeV Higgsino parameter space from BF group are ruled out. The 100-300 GeV Higgsino-like WIMP from RNS survives due to its possible depleted local abundance (where the axion may make up the bulk of dark matter). Projections from ton-scale noble liquid detectors should discover or rule out WIMPs from the remaining parameter space of these surviving models.
SUSY under siege from direct and indirect WIMP detection experiments
Baer, Howard; Serce, Hasan
2016-01-01
We examine updated prospects for detecting WIMPs in supersymmetric models via direct and indirect dark matter search experiments. We examine several historical and also still viable scenarios: projections for well-tempered neutralinos (WTN), projections from the MasterCode (MC) collaboration, projections from the BayesFits (BF) collaboration, non-thermal wino dark matter (NThW) and finally mixed axion-higgsino dark matter from SUSY with radiatively-driven naturalness (RNS). The WTN is ruled out by recent limits from XENON and LUX collaborations. The NThW scenario, previously on tenuous ground due to gamma-line searches, appears also ruled out by recent combined Fermi-LAT/MAGIC limits combined with new HESS results from continuum gamma rays. Substantial portions of MC parameter space and 1 TeV higgsino parameter space from BF group are ruled out. The 100-300 GeV higgsino-like WIMP from RNS survives due to its possible depleted local abundance (where the axion may make up the bulk of dark matter). Projections f...
b -> s Transitions A New Frontier for Indirect SUSY Searches
Ciuchini, M; Masiero, A; Silvestrini, L
2003-01-01
The present unitarity triangle fit, whose essential input is represented by the s to d and b to d transition processes, fully agrees with the SM. However, most of the phenomena involving b to s transitions are still largely unexplored and hence b to s phenomenology still constitutes a place for new physics manifestations, in spite of the tremendous experimental and theoretical progress on B to X_s gamma. We perform a systematic study of the CP conserving and violating SUSY contributions to b to s processes in a generic MSSM. We consider gluino exchange contributions including NLO QCD corrections and lattice hadronic matrix elements for Delta B = 2 and Delta B = 1 processes. We take into account all available experimental information on processes involving b to s transitions (B to X_s gamma, B to X_s l^+ l^- and the lower bound on the B_s - bar B_s mass difference Delta M_s). We study the correlations among the relevant observables under scrutiny at present or in a not too far future: Delta M_s and the amount ...
Radiative Neutrino Masses in a SUSY GUT Model
Koide, Y
2003-01-01
Radiatively-induced neutrino mass matrix is investigated within the framework of an SU(5) SUSY GUT model. The model has matter fields of three families \\bar{5}_{L(+)i}+5_{L(+)i} in addition to the ordinary matter fields \\bar{5}_{L(-)i}+10_{L(+)i} and Higgs fields H_{(+)}+\\bar{H}_{(0)}, where (+,0,-) denote the transformation properties (\\omega^{+1},\\omega^0,\\omega^{-1}) (\\omega^3=-1) under a discrete symmetry Z_3. R-parity violating terms are given by \\bar{5}_{L(+)} \\bar{5}_{L(+)} 10_{L(+)}, while the Yukawa interactions are given by \\bar{H}_{(0)} \\bar{5}_{L(-)} 10_{L(+)}, i.e. the \\bar{5}-fields in both are different from each other. The Z_3 symmetry is only broken by the terms \\bar{5}_{L(+)i}5_{L(+)i} softly, so that the \\bar{5}_{L(+)i}\\leftrightarrow \\bar{5}_{L(-)i} mixings appear at \\mu < M_X. Of the R-parity violating terms \\bar{5}_{L(+)} \\bar{5}_{L(+)} 10_{L(+)}, only the terms (e_L\
Natural SUSY with a bino- or wino-like LSP
Baer, Howard; Huang, Peisi; Mickelson, Dan; Padeffke-Kirkland, Maren; Tata, Xerxes
2015-01-01
In natural SUSY models higgsinos are always light because \\mu^2 cannot be much larger than M_Z^2, while squarks and gluinos may be very heavy. Unless gluinos are discovered at LHC13, the commonly assumed unification of gaugino mass parameters will imply correspondingly heavy winos and binos, resulting in a higgsino-like LSP and small inter-higgsino mass splittings. The small visible energy release in higgsino decays makes their pair production difficult to detect at the LHC. Relaxing gaugino mass universality allows for relatively light winos and binos without violating LHC gluino mass bounds and without affecting naturalness. In the case where the bino mass M_1<~ \\mu, then one obtains a mixed bino-higgsino LSP with instead sizable w_1-z_1 and z_2-z_1 mass gaps. The thermal neutralino abundance can match the measured dark matter density in contrast to models with a higgsino-like LSP where WIMPs (weakly interacting massive particles) are underproduced by factors of 10-15. If instead M_2<~ \\mu, then one o...
Wino cold dark matter from anomaly mediated SUSY breaking
Moroi, Takeo E-mail: moroi@ias.edu; Randall, Lisa E-mail: randall@feynman.princeton.edu
2000-03-20
The cosmological moduli problem is discussed in the framework of sequestered sector/anomaly mediated supersymmetry (SUSY) breaking. In this scheme, the gravitino mass (corresponding to the moduli masses) is naturally 10-100 TeV, and hence the lifetime of the moduli fields can be shorter than {approx}1 sec. As a result, the cosmological moduli fields should decay before big-bang nucleosynthesis starts. Furthermore, in the anomaly mediated scenario, the lightest superparticle (LSP) is the Wino-like neutralino. Although the large annihilation cross section means the thermal relic density of the Wino LSP is too small to be the dominant component of cold dark matter (CDM), moduli decays can produce Winos in sufficient abundance to constitute CDM. If Winos are indeed the dark matter, it will be highly advantageous from the point of view of detection. If the halo density is dominated by the Wino-like LSP, the detection rate of Wino CDM in Ge detectors can be as large as 0.1-0.01 event/kg/day, which is within the reach of the future CDM detection with Ge detector. Furthermore, there is a significant positron signal from pair annihilation of Winos in our galaxy which may give a spectacular signal at AMS.
The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning
Caron, Sascha [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands); Nikhef, Amsterdam (Netherlands); Kim, Jong Soo [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Stienen, Bob [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands)
2017-04-15
A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/. (orig.)
The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning
Caron, Sascha; Kim, Jong Soo; Rolbiecki, Krzysztof; de Austri, Roberto Ruiz; Stienen, Bob
2017-04-01
A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/.
Implications of a high mass light MSSM Higgs scalar for SUSY searches at the LHC
Baer, Howard; Huang, Peisi; Mustafayev, Azar
2011-01-01
The Atlas and CMS collaborations have both reported an excess of events in the WW\\star \\rightarrow \\ell+\\ell- + ETmiss search channel, which could be the first evidence for the Higgs boson. In the context of the MSSM, the lightest SUSY Higgs scalar h is expected to occur with mass mh = 135 GeV, depending on the range of SUSY parameters scanned over. Since the h \\rightarrow WW\\star branching fraction falls swiftly with decreasing mh, a signal in the WW\\star channel would favor an h at the high end of its predicted mass range. We scan over general GUT scale SUSY model parameters to find those which give rise to mh > 130 GeV. A value of m0 \\sim 10 - 20 TeV is favored, with A0 \\sim \\pm2m0, while the lower range of m1/2 < 1 TeV is also slightly favored. This gives rise to an "effective SUSY" type of sparticle mass spectrum. For low m1/2, gluino pair production followed by three-body gluino decay to top quarks may ultimately be accesible to LHC searches, while for higher m1/2 values, the SUSY spectra would likel...
Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model
Bae, Kyu Jung; Lessa, Andre; Serce, Hasan
2014-01-01
The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY mu problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases-- a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion (produced thermally (TH) and via coherent oscillations (CO)), saxion (TH- and CO-produced), axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in-- in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model-- resulting in thermal yields which are largely independent of the re-heat temperature. We find ...
Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects for the LHC
Baer, Howard; Givens, Kevin; Rajagopalan, Shibi; Summy, Heaya
2010-01-01
We examine the supersymmetry phenomenology of a novel scenario of supersymmetry (SUSY) breaking which we call Gaugino Anomaly Mediation, or inoAMSB. This is suggested by recent work on the phenomenology of flux compactified type IIB string theory. The essential features of this scenario are that the gaugino masses are of the anomaly-mediated SUSY breaking (AMSB) form, while scalar and trilinear soft SUSY breaking terms are highly suppressed. Renormalization group effects yield an allowable sparticle mass spectrum, while at the same time avoiding charged LSPs; the latter are common in models with negligible soft scalar masses, such as no-scale or gaugino mediation models. Since scalar and trilinear soft terms are highly suppressed, the SUSY induced flavor and CP-violating processes are also suppressed. The lightest SUSY particle is the neutral wino, while the heaviest is the gluino. In this model, there should be a strong multi-jet +etmiss signal from squark pair production at the LHC. We find a 100 fb^{-1} re...
Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua
Froggatt, C D; Nielsen, H B; Thomas, A W
2014-01-01
We argue that the measured value of the cosmological constant, as well as the small values of quartic Higgs self--coupling and the corresponding beta function at the Planck scale, which can be obtained by extrapolating the Standard Model (SM) couplings to high energies, can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2)_W\\times U(1)_Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than \\Lambda_{QCD} in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale.
Split-Family SUSY, U(2)^5 Flavour Symmetry and Neutrino Physics
Jones-Pérez, Joel
2014-01-01
In split-family SUSY, one can use a U(2)^3 symmetry to protect flavour observables in the quark sector from SUSY contributions. However, attempts to extend this procedure to the lepton sector by using an analogous U(2)^5 symmetry fail to reproduce the neutrino data without introducing some form of fine-tuning. In this work, we solve this problem by shifting the U(2)^2 symmetry acting on leptons towards the second and third generations. This allows neutrino data to be reproduced without much difficulties, as well as protecting the leptonic flavour observables from SUSY. Key signatures are a $\\mu\\to e\\gamma$ branching ratio possibly observable in the near future, as well as having selectrons as the lightest sleptons.
Electroweakino pair production at the LHC: NLO SUSY-QCD corrections and parton-shower effects
Baglio, Julien; Kesenheimer, Matthias
2016-01-01
We present a set of NLO SUSY-QCD calculations for the pair production of neutralinos and charginos at the LHC, and their matching to parton-shower programs in the framework of the POWHEG-BOX program package. The code we have developed provides a SUSY Les Houches Accord interface for setting supersymmetric input parameters. Decays of the neutralinos and charginos and parton-shower effects can be simulated with PYTHIA. To illustrate the capabilities of our program, we present phenomenological results for a representative SUSY parameter point. We find that NLO-QCD corrections increase the production rates for neutralinos and charginos significantly. The impact of parton-shower effects on distributions of the weakinos is small, but non-negligible for jet distributions.
Search for SUSY in the AMSB scenario with the DELPHI detector
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M
2004-01-01
The DELPHI experiment at the LEP e+e- collider collected almost 700 pb^-1 at centre-of-mass energies above the Z0 mass pole and up to 208 GeV. Those data were used to search for SUSY in the Anomaly Mediated SUSY Breaking (AMSB) scenario with a flavour independent common sfermion mass parameter. The searches covered several possible signatures experimentally accessible at LEP, with either the neutralino, the sneutrino or the stau being the Lightest Supersymmetric Particle (LSP). They included: the search for nearly mass-degenerate chargino and neutralino, which is a typical feature of AMSB; the search for Standard-Model-like or invisibly decaying Higgs boson; the search for stable staus; the search for cascade decays of SUSY particles resulting in the LSP and a low multiplicity final state containing neutrinos. No evidence of a signal was found, and thus constraints were set in the space of the parameters of the model.
Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model
Bae, Kyu Jung; Baer, Howard; Serce, Hasan [Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks, Norman, OK 73019 (United States); Lessa, Andre, E-mail: bae@nhn.ou.edu, E-mail: baer@nhn.ou.edu, E-mail: lessa@fma.if.usp.br, E-mail: serce@ou.edu [Instituto de Física, Universidade de São Paulo, São Paulo – SP (Brazil)
2014-10-01
The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY μ-problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases—a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion, axion CO (produced via coherent oscillations), saxion, saxion CO, axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in—in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model—resulting in thermal yields which are largely independent of the re-heat temperature. We find the SUA case with suppressed saxion-axion couplings (ξ=0) only admits solutions for PQ breaking scale f{sub a}∼< 6× 10{sup 12} GeV where the bulk of parameter space tends to be axion-dominated. For SUA with allowed saxion-axion couplings (ξ =1), then f{sub a} values up to ∼ 10{sup 14} GeV are allowed. For the SOA case, almost all of SUSY DFSZ parameter space is disallowed by a combination of overproduction of dark matter, overproduction of dark radiation or violation of BBN constraints. An exception occurs at very large f{sub a}∼ 10{sup 15}–10{sup 16} GeV where large entropy dilution from CO-produced saxions leads to allowed models.
SUSY constraints from relic density: High sensitivity to pre-BBN expansion rate
Arbey, A. [Universite de Lyon, Lyon F-69000 (France); Universite Lyon 1, Villeurbanne F-69622 (France); Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon, 9 avenue Charles Andre, Saint-Genis Laval cedex F-69561 (France); CNRS, UMR 5574, Ecole Normale Superieure de Lyon, Lyon (France)], E-mail: arbey@obs.univ-lyon1.fr; Mahmoudi, F. [High Energy Physics, Uppsala University, Box 535, 75121 Uppsala (Sweden)
2008-10-30
The sensitivity of the lightest supersymmetric particle relic density calculation to the variation of the cosmological expansion rate before nucleosynthesis is discussed. Such a modification of the expansion rate, even extremely modest and with no consequence on the cosmological observations, can greatly enhance the calculated relic density, and therefore change the constraints on the SUSY parameter space drastically. We illustrate this variation in two examples of SUSY models, and show that it is unsafe to use the lower bound of the WMAP limits in order to constrain supersymmetry. We therefore suggest to use only the upper value {omega}{sub DM}h{sup 2}<0.135.
Long-lived and compressed SUSY searches at CMS and ATLAS
Barlow, Nick; The ATLAS collaboration
2015-01-01
Two challenging scenarios for SUSY searches at the LHC are when there are small mass differences between particles in the decay chain ("compressed" spectra) and where the SUSY particles have a non-negligible lifetime. The compressed case can be addressed by looking at events containing Initial State Radiation (ISR), while long-lifetimes can give rise to a wide range of possible detector signatures. This talk describes these diverse and interesting searches, performed by the ATLAS and CMS collaborations on the Run 1 LHC data.
Approaching Minimal Flavour Violation from an S4 x SU(5) SUSY GUT
Dimou, Maria; Luhn, Christoph
2015-01-01
We show how approximate Minimal Flavour Violation (MFV) can emerge from an SU(5) Supersymmetric Grand Unified Theory (SUSY GUT) supplemented by an S4 x U(1) family symmetry, which provides a good description of all quark and lepton (including neutrino) masses, mixings and CP violation. Assuming a SUSY breaking mechanism which respects the family symmetry, we calculate in full explicit detail the low energy mass insertion parameters in the super-CKM basis, including the effects of canonical normalisation and renormalisation group running. We find that the very simple family symmetry S4 x U(1) is sufficient to approximately reproduce the effects of low energy MFV.
SUSY in the Light of B Physics and Electroweak Precision Observables
Weiglein, Georg
2007-01-01
Indirect information about the possible scale of supersymmetry (SUSY) breaking can be obtained from the comparison of precisely measured observables (and also of exclusion limits) with accurate theory predictions incorporating SUSY loop corrections. Recent results are reviewed obtained from a combined analysis of the most sensitive electroweak precision observables (EWPO), M_W, sin^2_theta^eff, Gamma_Z, (g-2)_\\mu and M_h, and B-physics observables (BPO), BR(b -> s \\gamma), BR(B_s -> \\mu^+\\mu^-), BR(B_u -> \\tau \
SUSY discovery potential of the ATLAS detector at an upgraded LHC
Mullier, Geoffrey; The ATLAS collaboration
2016-01-01
The so-called high-luminosity upgrade of the LHC will impose new technological challenges to the ATLAS detector, requiring the partial upgrade of the detector. Scenarios of SUSY sparticle production, among others, have been used as benchmark to drive the design of the component upgrades, and to evaluate the sensitivity of the upgraded accelerator and detector. This talk will give an overview of the expected sensitivity that the ATLAS experiment will have to SUSY sparticle production with 3000 fb$^{-1}$ pf proton-proton collisions collected at a centre of mass energy of 14 TeV.
Low-energy R-parity violating SUSY with horizontal flavor symmetries
Monteux, Angelo
2013-01-01
In this talk, I will present the general structure of RPV couplings when a Froggatt-Nielsen horizontal symmetry is responsible for the flavor structure of both the SM and the MSSM. For sub-TeV ({\\it natural}) SUSY, lepton number must be an accidental symmetry, while low-energy SUSY is still allowed by baryonic RPV, which lowers the MET signature of superparticles decays. The largest RPV coupling involves the stop, and it is constrained between $10^{-3}$ (from FCNCs) and $10^{-9}$ (from LHC searches).
Nayak, Bidyut Prava
2013-01-01
Dominance of type-II seesaw mechanism for neutrino physics has attracted considerable attention because of a number of advantages. We show a novel approach to achieve this dominance through non-supersymmetric $SO(10)$ grand unification where a low mass $Z^{\\prime}$ boson and specific patterns of right handed neutrino masses are predicted within the accessible energy range of the Large Hadron Collider. In spite of the high value of the seesaw scale, $M_{\\Delta}\\simeq 10^9$ GeV, the model predicts new dominant contributions to neutrino-less double beta decay in the $W_L-W_L$ channel via exchanges of heavier singlet fermions used as essential ingredients of this model. We also derive an analytic formula for the half-life of the double beta decay as a function of the fermion masses and provide a new plot that gives the lightest of these masses to be $m_{S_1}\\ge 4\\pm 2$ GeV from the existing experimental data. The underlying non-unitarity effects lead to lepton flavor violating decay branching ratios within the re...
Nath, Pran
2015-01-01
Recently interest in GUT baryogenesis has been resurrected due to the observation that $\\mathsf{B}$-violating dimension seven operators that arise in grand unified theories that also violate $\\mathsf{B-L}$ produce baryon asymmetry that cannot be wiped out by sphaleron processes. While a general analysis of such higher dimensional operators from a bottom up approach exists in the literature, a full analysis of them derived from grand unification does not exist. In this work we present a complete analysis of ${\\mathsf{B-L}}=-2$ operators within a realistic $\\mathsf{SO(10)}$ grand unification where the doublet-triplet splitting is automatic via a missing partner mechanism. Specifically we compute all allowed dimension five, dimension seven and dimension nine operators arising from matter-Higgs interactions. The relative strength of all the allowed ${\\mathsf{B-L}}=-2$ operators is given. Such interactions are useful in the study of neutrino masses, baryogenesis, proton decay and $n-\\bar n$ oscillations within a c...
KL to pi0 nu nubar decay correlating with epsilonK in high-scale SUSY
Tanimoto, Morimitsu
2015-01-01
We have studied the contribution of the high-scale SUSY to the K_L to pi^0 nu{bar nu} and K^+ to pi^+ nu{bar nu} processes correlating with the CP violating parameter epsilon_K. Taking account of the recent LHC results for the Higgs discovery and the SUSY searches, we consider the high-scale SUSY at the 10-50 TeV scale in the framework of the non-minimal squark (slepton) flavor mixing. The Z penguin mediated the chargino dominates the SUSY contribution for these decays. At the 10 TeV scale of the SUSY, the chargino contribution can enhance the branching ratio of K_L to pi^0 nu{bar nu} in eight times compared with the SM predictions whereas the predicted branching ratio BR(K^+ to pi^+ nu {bar nu}) increases up to three times of the SM one. The gluino box diagram dominates the SUSY contribution of epsilon_K up to 30%. If the down-squark mixing is neglected compared with the up-squark mixing, the Z penguin mediated the chargino dominates both SUSY contributions of K_L to pi^0 nu {bar nu} and epsilon_K. Then, it ...
Nayak, Bidyut Prava; Parida, Mina Ketan [Siksha ' ' O' ' Anusandhan University, Centre of Excellence in Theoretical and Mathematical Sciences, Bhubaneswar, Odisha (India)
2015-05-15
The dominance of Type-II seesaw mechanism for the neutrino masses has attracted considerable attention because of a number of advantages. We show a novel approach to achieve Type-II seesaw dominance in nonsupersymmetric SO(10) grand unification where a low-mass Z' boson and specific patterns of right-handed neutrino masses are predicted within the accessible energy range of the Large Hadron Collider. In spite of the high value of the seesaw scale, M{sub Δ{sub L}} ≅ 10{sup 8}-10{sup 9} GeV, the model predicts new dominant contributions to neutrino-less double beta decay in the W{sub L}-W{sub L} channel close to the current experimental limits via exchanges of heavier singlet fermions used as essential ingredients of this model even when the light active neutrino masses are normally hierarchical or invertedly hierarchical. We obtain upper bounds on the lightest sterile neutrino mass m{sub s}
Decoupling limit and throat geometry of non-susy D3 brane
Nayek, Kuntal; Roy, Shibaji
2017-03-01
Recently it has been shown by us that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable-Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki and Reece, again confirming its gauge theory interpretation.
SUSY model and dark matter determination in the compressed-spectrum region at the ILC
Berggren, Mikael
2016-01-01
It is an appealing possibility that the observed dark matter density in the universe can be fully explained by SUSY. The current experimental knowledge indicates that this possibility strongly favors a co-annihilation scenario. In such scenarios, the mass difference between the next-to-lightest SUSY particle (the NLSP) and the lightest one (the LSP) is quite small, which assures that the annihilation cross-section is sufficient not to predict a too large abundance of dark matter. However, the small mass difference also means that observing SUSY becomes hard at hadron colliders, where the observation hinges on the tell-tale signature of missing transverse energy: if the mass difference NLSP-to-LSP is small, only little energy is carried away by the invisible LSP. This is also true even if several other SUSY particles are within the kinematic reach, since these states would to a large extent decay via cascades ending with an NLSP to LSP decay. A lepton collider does not have this problem. The clean environment ...
Non-CKM induced flavor violation in "minimal" SUSY SU(5) models
Borzumati, Francesca; Yamashita, Toshifumi
2007-01-01
Patterns of flavor violation induced by neutrino Yukawa couplings are discussed in realistic "minimal" SUSY SU(5) models, obtained by adding nonrenormalizable operators to the minimal one, in order to fix the fermion spectrum and suppress proton decay. Results are presented for the three possible implementations of the seesaw mechanisms, i.e. of Type I, II and III.
Searches for RPV SUSY and long-lived particles at the LHC
Liu, Minghui; The ATLAS collaboration
2015-01-01
Both the ATLAS and CMS collaboration have made great effort to search for RPV SUSY and LLP. Tens of models are used to perform studies, and all the observations seem to be in good agreement with background expectation. Most stringent limits up to date are put on these new models.
Searches for strongly produced SUSY particles including R-parity violating decays with ATLAS
Yamanaka, Takashi; The ATLAS collaboration
2017-01-01
Searches for strongly produced SUSY particles have been performed with the ATLAS detector at the centre-of-mass energy of 13 TeV. They include not only R-parity conservation models but also R-parity violating models. Results of searches using the integrated luminosity up to 18 fb$^{-1}$ are shown in various final states.
Decoupling limit and throat geometry of non-susy D3 brane
Nayek, Kuntal
2016-01-01
In a previous work, we have shown that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable-Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki a...
Susi takistab Concordia ülikooli tööd
2003-01-01
Concordia ülikooli endine rektor Mart Susi pole astunud konkreetseid samme õppetöö jätkuvuse tagamiseks ega oma volituste üleandmiseks, vaid üritab võimu taas enda kätte koondada ja on alates märtsi lõpust otsinud võimalusi pankrotiprotsessi peatamiseks
无
2009-01-01
究竟Susie Bubble是何许人也,我们在此谈论她有何意义？在全新的时尚媒体世界里,千千万万个像Susie一样的博客写手正在发挥越来越重要的作用。 作为网络世界中不折不扣的时尚名人，现年25岁的SusieLau（又名SusieBubble）在伦敦名为”StyleBubble”的时尚博客每天的访问量都会超过1．6万次．从Chanel到Gucci的几大设计师品牌都争相对她献殷勤。最近，SusieLau更是被英国《观察家报》（Observer）列入全球最具影响的50个博客写手之一。
Concordia ülikooli õppejõud nõuavad rektor Mart Susi lahkumist / Andri Maimets
Maimets, Andri
2003-01-01
Concordia Ülikooli õppejõud ja tudengid esitasid senisele rektorile Mart Susile palve oma kohalt lahkuda, nad ei pea õigeks, et ülikooli juhib ülikooli rahaga patustanud inimene. Susi väitis üliõpilaste ees peetud pressikonverentsil, et jutud ülikooli võlgadest ja tema enda ametikoha kuritarvitustest ei vasta tõele
Adinkras, 0-branes, Holoraumy and the SUSY QFT/QM Correspondence
Calkins, Mathew; Gates, S James; Stiffler, Kory
2015-01-01
We propose the recently defined "Holoraumy Tensor" to play a critical role in defining a metric to establish a correspondence between 4D, N-extended 0-brane-based valise supermultiplet representations and, correspondingly via "SUSY Holography," on the space of 1D, 4N-extended network-based adinkras.
Abel, S A; Jaeckel, J; Khoze, V V; Abel, Steven A.; Chu, Chong-Sun; Jaeckel, Joerg; Khoze, Valentin V.
2007-01-01
Supersymmetry breaking in a metastable vacuum is re-examined in a cosmological context. It is shown that thermal effects generically drive the Universe to the metastable minimum even if it begins in the supersymmetry-preserving one. This is a generic feature of the ISS models of metastable supersymmetry breaking due to the fact that SUSY preserving vacua contain fewer light degrees of freedom than the metastable ground state at the origin. These models of metastable SUSY breaking are thus placed on an equal footing with the more usual dynamical SUSY breaking scenarios.
Identifying fake leptons in ATLAS while hunting SUSY in 8 TeV proton-proton collisions
Gillam, Thomas P S
For several theoretically and experimentally motivated reasons, super- symmetry (SUSY) has for some time been identified as an interesting candidate for a theory of fundamental particle physics beyond the Stan- dard Model. The ATLAS collaboration, of which I am a member, possess a detector emplaced in the Large Hadron Collider experiment at CERN. If SUSY does in fact describe our universe, then it is hoped that evidence of it will be visible in data collected in the ATLAS detector. I present an analysis looking for a particular signature that could indicate the presence of SUSY; events containing two like-charge leptons (e or μ). This signature benefits from having both low Standard Model backgrounds as well as potential to observe several SUSY scenarios, par- ticularly those involving strong production processes. These include pair production of squarks and gluinos. The latter of these are particularly relevant for the analysis presented herein since gluinos are Majorana fermions; hence they can decay to...
狂野的艺术表现——Susie Couwan的首饰设计%Wild Artistic Expression——Susie Couwan's Jewelry Design
孙嘉英
2005-01-01
苏希（Susie Couwan）是一位漂亮，浪漫，充满艺术的天赋的美国女士，年轻时，她种爱舞蹈表演，喜欢自编自导现代舞，还经常参加在百老汇剧院里的表演：她喜欢东方艺术，曾去日本留学，学习日语。
Particle physics and cosmology with high-scale SUSY breaking in five-dimensional supergravity models
Otsuka, Hajime
2015-01-01
We discuss a high-scale SUSY breaking scenario with the wino dark matter in the five-dimensional supergravity model on $S^1/Z_2$. The extra U(1) symmetries broken by the orbifold projection control the flavor structure of soft SUSY-breaking parameters as well as the Yukawa couplings, and a scalar component of the one of moduli multiplets, which arise from extra-dimensional components of the U(1) vector multiplets, induces the slow-roll inflation. Because of the supersymmetric moduli stabilization as well as the moduli inflation, it is found that the correct dark matter relic abundance is non-thermally generated by the gravitino decaying into the wino.
Solving the SUSY flavour and CP problems with non-Abelian family symmetry and supergravity
Antusch, Stefan [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, D-80805 Muenchen (Germany)], E-mail: antusch@mppmu.mpg.de; King, Stephen F. [School of Physics and Astronomy, University of Southampton, SO16 1BJ Southampton (United Kingdom)], E-mail: sfk@hep.phys.soton.ac.uk; Malinsky, Michal [School of Physics and Astronomy, University of Southampton, SO16 1BJ Southampton (United Kingdom)], E-mail: malinsky@phys.soton.ac.uk; Ross, Graham G. [The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX13NP (United Kingdom)], E-mail: g.ross1@physics.ox.ac.uk
2009-01-05
Can a theory of flavour capable of describing the spectrum of fermion (including neutrino) masses and mixings also contain within it the seeds for a solution of the SUSY flavour and CP problems? We argue that supergravity together with a non-Abelian family symmetry can completely resolve the SUSY flavour and CP problems in a broad class of theories in which family symmetry and CP is spontaneously broken in the flavon sector. We show that a simple superpotential structure can suppress the F-terms of the flavons and GUT scale Higgs fields and that, if this mechanism is implemented, the resulting flavour and CP violation is suppressed and comfortably within the experimental limits. For illustration, we study a specific model based on SU(3) family symmetry, but similar models based on non-Abelian (continuous or discrete) family symmetry will lead to similar results.
$E_6$ Inspired SUSY Benchmarks, Dark Matter Relic Density and a 125 GeV Higgs
Athron, P; Nevzorov, R; Williams, A G
2015-01-01
We explore the relic density of dark matter and the particle spectrum within a constrained version of an $E_6$ inspired SUSY model with an extra $U(1)_N$ gauge symmetry. In this model a single exact custodial symmetry forbids tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We present a set of benchmark points showing scenarios that have a SM-like Higgs mass of 125 GeV and sparticle masses above the LHC limits. They lead to striking new physics signatures which may be observed during run II of the LHC and can distinguish this model from the simplest SUSY extensions of the SM. At the same time these benchmark scenarios are consistent with the measured dark matter abundance and necessarily lead to large dark matter direct detection cross sections close to current limits and observable soon at the XENON1T experiment.
The Higgs mass and the scale of SUSY breaking in the NMSSM
Zarate, Lucila
2016-07-01
In this letter we study the Higgs mass in the NMSSM with supersymmetry breaking at high scales M SS. With the Standard Model as the effective low energy theory, the computation of the Higgs mass relies on the matching condition of the quartic coupling λ at M SS. In the MSSM, the latter is fixed to a semi-positive value and, thus, sets an upper bound on the SUSY-breaking scale near M SS ≃ 1010 GeV. In the NMSSM, λ( M SS) receives an additional contribution induced by the singlet which allows for negative values of λ( M SS). In turn, for the measured value of the Higgs mass we find that M SS can take any value up to the GUT scale. Furthermore, the choice of universal soft terms favors SUSY-breaking scales close to the GUT scale.
The Higgs mass and the scale of SUSY breaking in the NMSSM
Zarate, Lucila
2016-01-01
In this letter we study the Higgs mass in the NMSSM with supersymmetry breaking at high scales $M_{SS}$. With the Standard Model as the effective low energy theory, the computation of the Higgs mass relies on the matching condition of the quartic coupling $\\lambda$ at $M_{SS}$. In the MSSM, the latter is fixed to a semi-positive value and, thus, sets an upper bound on the SUSY-breaking scale near $M_{SS}\\simeq 10^{10}\\text{GeV}$. In the NMSSM, $\\lambda(M_{SS})$ receives an additional contribution induced by the singlet which allows for negative values of $\\lambda(M_{SS})$. In turn, for the measured value of the Higgs mass we find that $M_{SS}$ can take any value up to the GUT scale. Furthermore, the choice of universal soft terms favors SUSY-breaking scales close to the GUT scale.
Reduction of couplings and heavy top quark in the minimal SUSY GUT
Kubo, Jisuke (Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, D-80805 Munich (Germany)); Mondragon, Myriam (Institut fuer Theoretische Physik, Philosophenweg 16, D-69120 Heidelberg (Germany)); Zoupanos, George (Max-Planck-Institut fuer Physik, Werner-Heisenberg-Institut, D-80805 Munich (Germany))
1994-08-08
Out of 256 independent reduction solutions that can be found within the minimal supersymmetric SU(5) GUT, there are exactly two asymptotically free solutions which can restrict the top quark mass m[sub t] and do not contradict the observed mass spectrum of the first two fermion generations. A numerical analysis shows that these two solutions lie on the same renormalization group invariant surface on which m[sub t] and the bottom quark mass m[sub b] assume relatively stable values for a given supersymmetry breaking scale m[sub SUSY]. For m[sub SUSY] =200 GeV with [alpha][sub S](M[sub Z])=0.12, [alpha][sub em](M[sub Z])=(127.9)[sup -1] and m[sub [tau
Phenomenological Implications of an S4 x SU(5) SUSY GUT of Flavour
Dimou, Maria; Luhn, Christoph
2015-01-01
We discuss the low energy phenomenological implications of an SU(5) Supersymmetric Grand Unified Theory (SUSY GUT) whose flavour structure is controlled by the family symmetry S4 x U(1), which provides a good description of all quark and lepton masses, mixings as well as CP violation. Although the model closely mimics Minimal Flavour Violation (MFV) as shown in arXiv:1511.07886, here we focus on the differences. We first present numerical estimates of the low energy mass insertion parameters, including canonical normalisation and renormalisation group running, for well-defined ranges of SUSY parameters and compare the naive model expectations to the numerical scans and the experimental bounds. Our results are then used to estimate the predictions for Electric Dipole Moments (EDMs), Lepton Flavour Violation (LFV), B and K meson mixing as well as rare B decays. The largest observable deviations from MFV come from the LFV process mu --> e gamma and the EDMs.
Benchmark models, planes lines and points for future SUSY searches at the LHC
AbdusSalam, S.S. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Allanach, B.C. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Dreiner, H.K. [Bonn Univ. (DE). Bethe Center for Theoretical Physics and Physikalisches Inst.] (and others)
2012-03-15
We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.
Phase-referenced Interferometry and Narrow-angle Astrometry with SUSI
Kok, Y; Tuthill, P G; Robertson, J G; Warrington, B A; Rizzuto, A C; Tango, W J
2013-01-01
The Sydney University Stellar Interferometer (SUSI) now incorporates a new beam combiner, called the Microarcsecond University of Sydney Companion Astrometry instrument (MUSCA), for the purpose of high precision differential astrometry of bright binary stars. Operating in the visible wavelength regime where photon-counting and post-processing fringe tracking is possible, MUSCA will be used in tandem with SUSI's primary beam combiner, Precision Astronomical Visible Observations (PAVO), to record high spatial resolution fringes and thereby measure the separation of fringe packets of binary stars. In its current phase of development, the dual beam combiner configuration has successfully demonstrated for the first time a dual-star phase-referencing operation in visible wavelengths. This paper describes the beam combiner optics and hardware, the network of metrology systems employed to measure every non-common path between the two beam combiners and also reports on a recent narrow-angle astrometric observation of ...
E6 inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs
Athron, Peter; Harries, Dylan; Nevzorov, Roman; Williams, Anthony G.
2016-09-01
We explore the relic density of dark matter and the particle spectrum within a constrained version of an E6 inspired SUSY model with an extra U(1)N gauge symmetry. In this model a single exact custodial symmetry forbids tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We present a set of benchmark points showing scenarios that have a SM-like Higgs mass of 125 GeV and sparticle masses above the LHC limits. They lead to striking new physics signatures which may be observed during run II of the LHC and can distinguish this model from the simplest SUSY extensions of the SM. At the same time these benchmark scenarios are consistent with the measured dark matter abundance and necessarily lead to large dark matter direct detection cross sections close to current limits and observable soon at the XENON1T experiment.
N=2 SUSY on an $SU(2)\\times U(1)$ Isometric Squashed $S^4$
Cabo-Bizet, Alejandro; Giraldo-Rivera, V I; Muteeb, M Nouman; Narain, K S
2014-01-01
We study N = 2 supersymmetric theory on a large family of squashed 4-spheres preserving $SU(2)\\times U(1)$ isometry and determine the conditions under which this background is supersymmetric. We then compute the partition function of this theory using localization technique. The results indicate that for N = 2 SUSY including both vector-multiplets and hypermultiplets, the partition function is independent of the arbitrary squashing functions as well as of the other supergravity background fields.
Neutrino Oscillations, SUSY See-Saw Mechanism and Charged Lepton Flavor Violation
Deppisch, F; Redelbach, A; Rückl, R; Shimizu, Y
2003-01-01
Neutrino oscillations give clear evidence for non-vanishing neutrino masses and lepton-flavor violation (LFV) in the neutrino sector. This provides strong motivation to search for signals of LFV also in the charged lepton sector, and to probe the SUSY see-saw mechanism. We compare the sensitivity of rare radiative decays on the right-handed Majorana mass scale M_R with the reach in slepton-pair production at a future linear collider.
Searches for R-Parity violating SUSY with the ATLAS detector
Hou, Suen; The ATLAS collaboration
2016-01-01
The violation of R-parity allows new signatures to be pursued in the search for supersymmetry at the LHC. This talk presents the latest results from the ATLAS experiment on searches for R-parity violating SUSY using data from pp collisions at a centre-of-mass energy of 13 TeV. The results presented are for dedicated searches for resonances, as well as a systematic analysis of the constraints placed on R-parity violating models.
Solving the SUSY CP problem with flavor breaking F-terms
Díaz-Cruz, J L; Ferrandis, Javier
2005-01-01
Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to solve the SUSY CP problem. We assume that the supersymmetric theory is flavor and CP-conserving. CP violating phases are associated to the vacuum expectation values of flavor violating susy-breaking fields. As a consequence, phases appear at tree level only in the soft supersymmetry breaking matrices. Using a U(2) flavor model as an example we show that it is possible to generate radiatively the first and second generation of quark masses and mixings as well as the CKM CP phase. The supersymmetric contributions to EDMs are automatically zero since all the relevant parameters in the lagrangian are flavor conserving and as a consequence real. The size of the flavor and CP mixing in the susy breaking sector is mostly determined by the fermion mass ratios and CKM elements. We calculate the contributions to epsilon, epsilon' and to the CP asymmetries in several B decays and study their respective constraints on ...
Solving the SUSY CP problem with flavor breaking F-terms
Diaz-Cruz, Lorenzo J.; Ferrandis, Javier
2005-05-11
Supersymmetric flavor models for the radiative generation of fermion masses offer an alternative way to solve the SUSY-CP problem. We assume that the supersymmetric theory is flavor and CP conserving. CP violating phases are associated to the vacuum expectation values of flavor violating susy-breaking fields. As a consequence, phases appear at tree level only in the soft supersymmetry breaking matrices. Using a U(2) flavor model as an example we show that it is possible to generate radiatively the first and second generation of quark masses and mixings as well as the CKM CP phase. The one-loop supersymmetric contributions to EDMs are automatically zero since all the relevant parameters in the lagrangian are flavor conserving and as a consequence real. The size of the flavor and CP mixing in the susy breaking sector is mostly determined by the fermion mass ratios and CKM elements. We calculate the contributions to {epsilon}, {epsilon}' and to the CP asymmetries in the B decays to {psi}K{sub s}, {phi}K{sub s}, {eta}'K{sub s} and X{sub s}{gamma}. We analyze a case study with maximal predictivity in the fermion sector. For this worst case scenario the measurements of {Delta}m{sub K}, {Delta}m{sub B} and {epsilon} constrain the model requiring extremely heavy squark spectra.
SUSI 62 A ROBUST AND SAFE PARACHUTE UAV WITH LONG FLIGHT TIME AND GOOD PAYLOAD
H. P. Thamm
2012-09-01
Full Text Available In many research areas in the geo-sciences (erosion, land use, land cover change, etc. or applications (e.g. forest management, mining, land management etc. there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for
Baer, Howard; Savoy, Michael
2015-01-01
More than 30 years ago, Arnowitt-Chamseddine-Nath (ACN) and others established the compelling framework of supergravity gauge theories (SUGRA) as a picture for the next step in beyond the Standard Model physics. We review the current SUGRA scenario in light of recent data from LHC8 collider searches and the Higgs boson discovery. While many SUSY and non-SUSY scenarios are highly disfavored or even excluded by LHC, the essential SUGRA scenario remains intact and as compelling as ever. For naturalness, some non-universality between matter and Higgs sector soft terms is required along with substantial trilinear soft terms. SUSY models with radiatively-driven naturalness (RNS) are found with high scale fine-tuning at a modest ~10%. In this case, natural SUSY might be discovered at LHC13 but could also easily elude sparticle search endeavors. A linear e^+e^- collider with \\sqrt{s}>2m(higgsino) is needed to provide the definitive search for the required light higgsino states which are the hallmark of natural SUSY. ...
Arbey, A. [Universite de Lyon, Universite Lyon 1, Villeurbanne Cedex (France); CERN, Geneva 23 (Switzerland); Ecole Normale Superieure de Lyon, Observatoire de Lyon, CNRS, UMR5574 CRAL, Saint-Genis Laval Cedex (France); Battaglia, M. [CERN, Geneva 23 (Switzerland); University of California, Santa Cruz Institute of Particle Physics, Santa Cruz, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Mahmoudi, F. [CERN, Geneva 23 (Switzerland); Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, BP 10448, Clermont-Ferrand (France)
2012-01-15
We study the implications of LHC searches on SUSY particle spectra using flat scans of the 19-parameter pMSSM phase space. We apply constraints from flavour physics, g{sub {mu}} -2, dark matter and earlier LEP and Tevatron searches. The sensitivity of the LHC SUSY searches with jets, leptons and missing energy is assessed by reproducing with fast simulation the recent CMS analyses after validation on benchmark points. We present results in terms of the fraction of pMSSM points compatible with all the constraints which are excluded by the LHC searches with 1 fb {sup -1} and 15 fb {sup -1} as a function of the mass of strongly and weakly interacting SUSY particles. We also discuss the suppression of Higgs production cross sections for the MSSM points not excluded and contrast the region of parameter space tested by the LHC data with the constraints from dark matter direct detection experiments. (orig.)
SUSY FLAVOR v2.5: a computational tool for FCNC and CP-violating processes in the MSSM
Rosiek, Janusz
2014-01-01
We present SUSY_FLAVOR version 2.5 - program that calculates over 30 low-energy flavor observables in the general $R$-parity conserving MSSM. Comparing to previous versions, in SUSY_FLAVOR v2.5 parameter initialization in SLHA2 formats has been significantly generalized, so that the program accepts most of the output files produced by other libraries analyzing the MSSM phenomenology. Number of bugs and inconsistencies have been fixed, based on users feedback. Calculations of several processes implemented in earlier versions have been corrected. New processes of rare decays of the top quark to Higgs boson have been included. Variables controlling inclusion of contributions from various MSSM sectors have been added. Full updated manual of SUSY_FLAVOR v2.5 integrating the details of the modifications listed below can be found at {\\tt arxiv.org/abs/arXiv:1203.5023}.
Probing the SUSY with $10$ TeV stop mass in rare decays and CP violation of Kaon
Tanimoto, Morimitsu
2016-01-01
We probe the SUSY with the stop mass of ${\\mathcal O}(10)$ TeV in the rare decays and the CP violation of kaon. We take the split-family model of the SUSY in which the third family of squarks/sleptons is heavy, ${\\cal O}(10)$ TeV, while the first and second ones of squarks/sleptons and the gauginos have relatively low masses ${\\cal O}(1)$ TeV. We also consider the high-scale SUSY model, in which all squarks/sleptons and the gauginos are at the ${\\cal O}(10)$ TeV scale. In both frameworks, we study $K_L \\to \\pi^0 \
Impact of SUSY-QCD corrections to neutralino-squark coannihilation on the dark matter relic density
Harz, Julia [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Herrmann, Bjoern [Laboratoire d' Annecy de Physique Theorique, Annecy-le-Vieux (France); Klasen, Michael [Institute for Theoretical Physics, University of Muenster (Germany); Kovarik, Karol [Karlsruhe Institute of Technology, Karlsruhe (Germany); Le Boulc' h, Quentin [Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France)
2012-07-01
A powerful method to constrain the parameter space of theories beyond the Standard Model is to compare the predicted dark matter relic density with data from cosmological precision measurements, in particular from the WMAP satellite. On the particle physics side, the main uncertainty on the relic density arises from the (co-)annihilation cross sections of the dark matter particle. After a motivation for including higher order corrections in the prediction of the relic density, the project DM rate at NLO is presented. This software package allows one to compute the neutralino (co-)annihilation cross sections including SUSY-QCD corrections at the one-loop level and to evaluate their effect on the relic density using a link to the public codes MicrOMEGAs and DarkSUSY. Recent results of the impact of SUSY-QCD corrections on the neutralino pair annihilation cross section are discussed, and first results on neutralino-squark coannihilation are shown.
Higgs, di-Higgs and tri-Higgs production via SUSY processes at the LHC with 14 TeV
Beekveld, Melissa van [Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science,Radboud University Nijmegen,Mailbox 79, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Nikhef,Science Park, Amsterdam (Netherlands); Beenakker, Wim [Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science,Radboud University Nijmegen,Mailbox 79, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Nikhef,Science Park, Amsterdam (Netherlands); Institute of Physics, University of Amsterdam,Science Park 904, 1018 XE Amsterdam (Netherlands); Caron, Sascha; Castelijn, Remco; Lanfermann, Marie; Struebig, Antonia [Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science,Radboud University Nijmegen,Mailbox 79, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Nikhef,Science Park, Amsterdam (Netherlands)
2015-05-08
We have systematically investigated the production of a Higgs boson with a mass of about 125 GeV in the decays of supersymmetric particles within the phenomenological MSSM (pMSSM). We find regions of parameter space that are consistent with all world data and that predict a sizeable rate of anomalous Higgs, di-Higgs and even tri-Higgs events at the 14 TeV LHC. All relevant SUSY production processes are investigated. We find that Higgs bosons can be produced in a large variety of SUSY processes, resulting in a large range of different detector signatures containing missing transverse momentum. Such Higgs events are outstanding signatures for new physics already for the early 14 TeV LHC data. SUSY processes are also important to interprete deviations found in upcoming Standard Model Higgs and di-Higgs production measurements.
E, Er-Deng-sang; Hang, Gai-ba-te-re; Ba, Tu; Duan, Yi-wen
2009-04-01
Trace elements in Mongolian medicine Susi-12 for cholecystitis and gallstones were analyzed in order to discuss the relation between Susi-12's drug action and the trace elements. The analysis was carried out using the pressure seal microwave digestion and inductive coupled plasma atomic emission spectrometry (ICP-AES). It was found that the medicine contained great amount of trace elements, especially human-body-needed trace elements, such as Ca, Al, Mg, Fe, Sr, Mn, Zn, Cu etc., whereas heavy metals are very little, e.g. the contents of Pb, Cb, As etc are below the country's limit. The recoveries of standard addition are in the range of 94.63%-106.40%. The relative standard deviation RSDSusi-12 can effectively control and cure cholecystitis and gallstones, and the effective rate reaches 91.2% to 100%. So the trace elements in Susi-12 must have a close connection with the drug action.
Models with quartic potential of dynamical SUSY breaking in meta-stable vacua
Hirano, Shinji
2007-05-01
We search for models of dynamical SUSY breaking in meta-stable vacua which might have dual string descriptions with a few brane probes. Two models with quartic superpotential are proposed: One of them might be closely related to the dual gauge theory to the flavored Maldacena-Nuñez geometry by Casero, Nuñez, and Paredes with a few additional brane probes corresponding to massive flavors. The other model might be dual to the Klebanov-Strassler geometry with one fractional D3-brane and a few D7-branes as probes.
Models with Quartic Potential of Dynamical SUSY Breaking in Meta-Stable Vacua
Hirano, Shinji
2007-01-01
We search for models of dynamical SUSY breaking in meta-stable vacua which might have dual string descriptions with a few brane probes. Two models with quartic superpotential are proposed: One of them might be closely related to the dual gauge theory to the flavored Maldacena-Nunez geometry by Casero, Nunez, and Paredes with a few additional brane probes corresponding to massive flavors. The other model might be dual to the Klebanov-Strassler geometry with one fractional D3-brane and a few D7-branes as probes.
Using Tau Polarization for Charged Higgs Boson and SUSY Searches at LHC
Guchait, Monoranjan
2008-01-01
The $\\tau$ polarization can be easily measured at LHC in the 1-prong hadronic $\\tau$ decay channel by measuring what fraction of the $\\tau$-jet momentum is carried by the charged track. A simple cut requiring this fraction to be >0.8 retains most of the polarization of $\\tau=$+1 $\\tau$-jet signal while suppressing the polarization of $\\tau=$-1 $\\tau$-jet background and practically eliminating the fake $\\tau$ background. This can be utilized to extract the charged Higgs signal. It can be also utilized to extract the SUSY signal in the stau NLSP region, and in particular the stau co-annihilaton region.
Susy-QCD corrections to neutrlino pair production in association with a jet
Cullen, Gavin [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas; Heinrich, Gudrun [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2012-12-15
We present the NLO Susy-QCD corrections to the production of a pair of the lightest neutralinos plus one jet at the LHC, appearing as a monojet signature in combination with missing energy. We fully include all non-resonant diagrams, i.e. we do not assume that production and decay factorise. We derive a parameter point based on the p19MSSM which is compatible with current experimental bounds and show distributions based on missing transverse energy and jet observables. Our results are produced with the program GoSam for automated one-loop calculations in combination with MadDipole/- MadGraph for the real radiation part.
Three Family N=1 SUSY Models from Z_n Orbifolded AdS/CFT
Kephart, T W; Kephart, Thomas W.
2001-01-01
We present an analysis of compactifications of the type IIB superstring on AdS_5 x S^5 / \\Gamma, where \\Gamma is an abelian cyclic group. Every \\Gamma =Z_n of order n<= 12 is considered. This results in 60 chiral models, and a systematic analysis with n<8 yields four containing the minimal SUSY standard model with three families. One of these models extends to an infinite sequence of three-family MSSMs. We also give a lower bound on the number of chiral models for all values of n.
SUSY Without Prejudice at the 7 and 8 TeV LHC: Gravitino LSPs
Cahill-Rowley, M W; Ismail, A; Rizzo, T G
2012-01-01
We have examined the capability of the LHC, running at both 7 and 8 TeV, to explore the 19(20)-dimensional parameter space of the pMSSM with neutralino(gravitino) LSPs and soft masses up to 4 TeV employing the ATLAS SUSY analysis suite. Here we present some preliminary results for the gravitino model set, following the ATLAS analyses whose data were publically available as of mid-September 2012. We find that the impact of the reduced MET, resulting from models with gravitino LSPs on sparticle searches is more than off-set by the detectability of the many possible long-lived NLSPs.
SUSY-QCD effects on neutralino dark matter annihilation beyond scalar or gaugino mass unification
Herrmann, Bjorn; Kovarik, Karol
2009-01-01
We describe in detail our calculation of the full supersymmetric (SUSY) QCD corrections to neutralino annihilation into heavy quarks and extend our numerical analysis of the resulting dark matter relic density to scenarios without scalar or gaugino mass unification. In these scenarios, the final state is often composed of top quarks and the annihilation proceeds through Z^0-boson or scalar top-quark exchanges. The impact of the corrections is again shown to be sizable, so that they must be taken into account systematically in global analyses of the supersymmetry parameter space.
Gaugino mass mixing in SUSY GUTs with two Abelian gauge groups
Braam, F. [Freiburg Univ. (Germany). Physikalisches Inst.; Reuter, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-08-15
Supersymmetric Grand Unified Theories often involve an additional Abelian group factor apart from the standard model hypercharge. Although in many cases there is a procedure to avoid loop-induced mixing of the gauge kinetic terms by choosing a suitable basis for the two U(1) groups in group space, a residual mixing in the soft SUSY breaking gaugino mass terms remains. In this letter we generalize the renormalization group equations for the gaugino mass terms to account for this effect. In a further calculation we also present the necessary adjustments in the renormalization group equations of the trilinear soft breaking couplings and the soft breaking scalar mass squares. (orig.)
A non-SUSY extension of the Poincar\\'e group
Laszlo, Andras
2015-01-01
In this paper a nontrivial extension of the Poincar\\'e group is presented, circumventing the Coleman-Mandula no-go theorem in a very different way than that of SUSY. The extended part can be identified with a gauge group, containing a U(1) component along with a nilpotent normal subgroup. The physical interpretation of the nilpotent normal subgroup is given in terms of a quantum field theory toy model. The presented mechanism could provide a unification of Standard Model gauge groups, as well as relating the gauge symmetries to spacetime symmetries.
One-loop stabilization of the fuzzy four-sphere via softly broken SUSY
Steinacker, Harold C
2015-01-01
We describe a stabilization mechanism for fuzzy $S^4_N$ in the Euclidean IIB matrix model in the presence of a positive mass term. The one-loop effective potential for the radius contains an attractive contribution attributed to supergravity, while the mass term induces a repulsive contribution for small radius due to SUSY breaking. This leads to a stabilization of the radius. The mechanism should be pertinent to recent results on the genesis of 3+1-dimensional space-time in the Minkowskian IIB model.
SUSY sine-Gordon theory as a perturbed conformal field theory and finite size effects
Bajnok, Z; Palla, L; Takács, G; Wagner, F
2004-01-01
We consider SUSY sine-Gordon theory in the framework of perturbed conformal field theory. Using an argument from Zamolodchikov, we obtain the vacuum structure and the kink adjacency diagram of the theory, which is cross-checked against the exact S matrix prediction, first-order perturbed conformal field theory (PCFT), the NLIE method and truncated conformal space approach. We provide evidence for consistency between the usual Lagrangian description and PCFT on the one hand, and between PCFT, NLIE and a massgap formula conjectured by Baseilhac and Fateev, on the other. In addition, we extend the NLIE description to all the vacua of the theory.
Decoupling relations and coefficient functions in SUSY-QCD to three loops
Kurz, Alexander; Steinhauser, Matthias; Zerf, Nikolai [TTP Karlsruhe (Germany)
2012-07-01
A method to calculate decoupling relations between parameters of SUSY-QCD and of QCD is presented. It allows the computation of the decoupling constant of the strong coupling up to O({alpha}{sub s}{sup 3}) which constitutes an important ingredient in the relation between {alpha}{sub s}(M{sub Z}) and {alpha}{sub s}(M{sub GUT}). With the help of a low-energy theorem the calculated decoupling constant can be related to the effective coupling of the scalar Higgs boson to gluons. Similar considerations for the electromagnetic coupling leads to the decay rate of a Higgs boson to photons.
Probing SUSY CP Violation in Two-Body Stop Decays at the LHC
Deppisch, Frank
2009-01-01
We study CP asymmetries in two-body decays of top squarks into neutralinos and sleptons at the LHC. These asymmetries are used to probe the CP phases possibly present in the stop and neutralino sector of the Minimal Supersymmetric Standard Model. Taking into account bounds from experimental electric dipole moment searches, we identify areas in the mSUGRA parameter space where CP asymmetries can be sizeable and discuss the feasibility of their observation at the LHC. As a result, potentially detectable CP asymmetries in stop decays at the LHC are found, motivating further detailed experimental studies for probing SUSY CP phases.
Probing SUSY CP violation in two-body stop decays at the LHC
Deppisch, Frank F.; Kittel, Olaf
2009-09-01
We study CP asymmetries in two-body decays of top squarks into neutralinos and sleptons at the LHC. These asymmetries are used to probe the CP phases possibly present in the stop and neutralino sector of the Minimal Supersymmetric Standard Model. Taking into account bounds from experimental electric dipole moment searches, we identify areas in the mSUGRA parameter space where CP asymmetries can be sizeable and discuss the feasibility of their observation at the LHC. As a result, potentially detectable CP asymmetries in stop decays at the LHC are found, motivating further detailed experimental studies for probing SUSY CP phases.
One-loop stabilization of the fuzzy four-sphere via softly broken SUSY
Steinacker, Harold C. [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)
2015-12-17
We describe a stabilization mechanism for fuzzy S{sub N}{sup 4} in the Euclidean IIB matrix model due to vacuum energy in the presence of a positive mass term. The one-loop effective potential for the radius contains an attractive contribution attributed to supergravity, while the mass term induces a repulsive contribution for small radius due to SUSY breaking. This leads to a stabilization of the radius. The mechanism should be pertinent to recent results on the genesis of 3+1-dimensional space-time in the Minkowskian IIB model.
Testable SUSY spectra from GUTs at a 100 TeV pp collider
Antusch, Stefan; Sluka, Constantin
2016-10-01
Grand Unified Theories (GUTs) are attractive candidates for more fundamental elementary particle theories. They cannot only unify the Standard Model (SM) interactions but also different types of SM fermions, in particular quarks and leptons, in joint representations of the GUT gauge group. We discuss how comparing predictive supersymmetric GUT models with the experimental results for quark and charged lepton masses leads to constraints on the SUSY spectrum. We show an example from a recent analysis where the resulting superpartner masses where found just beyond the reach of LHC Run 1, but fully within the reach of a 100 TeV pp collider.
Testable SUSY spectra from GUTs at a 100 TeV pp collider
Antusch, Stefan
2016-01-01
Grand Unified Theories (GUTs) are attractive candidates for more fundamental elementary particle theories. They can not only unify the Standard Model (SM) interactions but also different types of SM fermions, in particular quarks and leptons, in joint representations of the GUT gauge group. We discuss how comparing predictive supersymmetric GUT models with the experimental results for quark and charged lepton masses leads to constraints on the SUSY spectrum. We show an example from a recent analysis where the resulting superpartner masses where found just beyond the reach of LHC run 1, but fully within the reach of a 100 TeV pp collider.
PySLHA: a Pythonic interface to SUSY Les Houches Accord data
Buckley, Andy
2013-01-01
This paper describes the PySLHA package, a Python language module and program collection for reading, writing and visualising SUSY model data in the SLHA format. PySLHA can read and write SLHA data in a very general way, including the official SLHA2 extension and user customisations, and with arbitrarily deep indexing of data block entries and a dedicated, intuitive interface for particle data and decay information. PySLHA can additionally read and write the legacy ISAWIG model format, and provides format conversion scripts. A publication-quality mass spectrum & decay chain plotting tool, slhaplot, is also included.
SUSY effects in Higgs production at high energy e+ e- colliders
Cao, Junjie; Han, Chengcheng; Ren, Jie; Wu, Lei; Yang, Jin-Min; Zhang, Yang
2016-11-01
Considering the constraints from collider experiments and dark matter detection, we investigate the SUSY effects in the Higgs production channels e+ e- → Zh at an e+ e- collider with a center-of-mass energy above 240 GeV and γγ → h → bb¯ at a photon collider with a center-of-mass energy above 125 GeV. In the parameter space allowed by current experiments, we find that the SUSY corrections to e+ e- → Zh can reach a few percent and the production rate of γγ → h → bb¯ can be enhanced by a factor of 1.2 over the SM prediction. We also calculate the exotic Higgs production e+ e-→ Zh1 in the next-to-minimal supersymmetric model (NMSSM) (h is the SM-like Higgs, h1 is the CP-even Higgs bosons which can be much lighter than h). We find that at a 250 GeV e+ e- collider the production rates of e+ e-→ Zh1 can reach 60 fb. Supported by National Natural Science Foundation of China (NNSFC)(10821504, 11222548, 11305049, 11135003), Program for New Century Excellent Talents in University, and ARC Center of Excellence for Particle Physics at Tera-scale. C. Han is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan
Rencontres de Moriond QCD 2012: Searches for Dark Matter, SUSY and other exotic particles
CERN Bulletin
2012-01-01
The fact that SUSY and other new physics signals do not seem to hide in “obvious” places is bringing a healthy excitement to Moriond. Yesterday’s presentations confirmed that, with the 2012 LHC data, experiments will concentrate on searches for exotic particles that might decay into yet unexplored modes. In the meantime, they are setting unprecedented boundaries to regions where new particles (not just SUSY) could exist. The limits of what particle accelerators can bring to enlighten the mystery of Dark Matter were also presented and discussed. Each bar on the picture represents a decay channel that the ATLAS Collaboration (top) and the CMS Collaborations (bottom) have analysed. The value indicated on the scale (or on the relevant bar) defines the maximum mass that the particle in that search cannot have. Not knowing what kind of new physics we should really expect, and given the fact that it does not seem to be hiding in any of the obvious places, e...
Running mass of the b-quark in QCD and SUSY QCD
Bednyakov, A V
2007-01-01
The running mass of the b-quark defined in DRbar-scheme is one of the important parameters of SUSY QCD. To find its value it should be related to some known experimental input. In this paper the b-quark running mass defined in nonsupersymmetric QCD is chosen for determination of corresponding parameter in SUSY QCD. The relation between these two quantities is found by considering five-flavor QCD as an effective theory obtained from its supersymmetric extension. A numerical analysis of the calculated two-loop relation and its impact on the MSSM spectrum is discussed. Since for nonsupersymmetric models MSbar-scheme is more natural than DRbar, we also propose a new procedure that allows one to calculate relations between MSbar- and DRbar-parameters. Unphysical epsilon-scalars that give rise to the difference between mentioned schemes are assumed to be heavy and decoupled in the same way as physical degrees of freedom. By means of this method it is possible to ``catch two rabbits'', i.e., decouple heavy particles...
Leaving no stone unturned in the hunt for SUSY naturalness: A Snowmass whitepaper
Baer, Howard; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Sreethawong, Warintorn; Tata, Xerxes
2013-01-01
Imposing electroweak scale naturalness constraints (low \\Delta_{EW}) on SUSY models leads to mass spectra characterized by light higgsinos ~100-300 GeV, highly mixed top-squarks and gluinos at the 1-5 TeV scale and allows for m_h ~125 GeV. First and second generation squarks can easily live at the 5-20 TeV scale, thus providing at least a partial solution to the SUSY flavor/CP problems. For such models at the LHC, gluino pair production is followed by cascade decays to t- and b-quark rich final states along with multileptons. The reach of LHC14 with 300 fb^{-1} is computed to be around m_{\\tg} 1.8 TeV. However, the small magnitude of the \\mu-parameter-- a necessary condition for naturalness-- leads to a unique hadronically quite same-sign diboson (W^\\pm W^\\pm) signature from wino pair production. In low \\Delta_{EW} models with unified gaugino masses, this signature yields a somewhat higher reach up to m_{\\tg} 2.1 TeV. The smallness of |\\mu| implies that the ILC should be a higgsino factory in addition to a Hi...
Probing Seesaw in an Adjoint SUSY SU(5) Model at LHC
Awasthi, Ram Lal; Mitra, Manimala
2010-01-01
The SU(5) GUT model extended with fermions in the adjoint $24_F$ representation predicts triplet fermions in the 100 GeV mass range, opening up the possibility of testing seesaw at LHC. However, once the model is supersymmerized, the triplet fermion mass is constrained to be close to the GUT scale for the gauge couplings to unify. We propose an extension of the SUSY SU(5) model where type II seesaw can be tested at LHC. In this model we add a matter chiral field in the adjoint $\\hat{24}_F$ representation and Higgs chiral superfields in the symmetric $\\hat{15}_H$ and $\\hat{\\bar{15}}_H$ representations. We call this the symmetric adjoint SUSY SU(5) model. The triplet scalar and triplet fermion masses in this model are predicted to be in the 100 GeV and $10^{13}$ GeV range respectively, while the mass of the singlet fermion remains unconstrained. This gives a type I plus type II plus type III seesaw mass term for the neutrinos. The triplet scalars with masses $\\sim 100$ GeV range can be produced at the LHC. We b...
Non-simplified SUSY. {tau}-coannihilation at LHC and ILC
Berggren, M.; Cakir, A.; Krueger, D.; List, J.; Lobanov, A.; Melzer-Pellmann, I.A.
2013-07-15
Simplified models have become a widely used and important tool to cover the more diverse phenomenology beyond constrained SUSY models. However, they come with a substantial number of caveats themselves, and great care needs to be taken when drawing conclusions from limits based on the simplified approach. To illustrate this issue with a concrete example, we examine the applicability of simplified model results to a series of full SUSY model points which all feature a small {tau} -LSP mass difference, and are compatible with electroweak and flavor precision observables as well as current LHC results. Various channels have been studied using the Snowmass Combined LHC detector implementation in the Delphes simulation package, as well as the Letter of Intent or Technical Design Report simulations of the ILD detector concept at the ILC. We investigated both the LHC and ILC capabilities for discovery, separation and identification of all parts of the spectrum. While parts of the spectrum would be discovered at the LHC, there is substantial room for further discoveries and property determination at the ILC.
Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam Model
Pallis, C
2012-01-01
We implement the mechanism of non-thermal leptogenesis in the framework of an inflationary model based on a supersymmetric (SUSY) Pati-Salam Grand Unified Theory (GUT). In particular, we show that inflation is driven by a quartic potential associated with the Higgs fields involved in the spontaneous GUT symmetry breaking, in the presence of a non-minimal coupling of the inflaton field to gravity. The inflationary model relies on renormalizable superpotential terms and does not lead to overproduction of magnetic monopoles. It is largely independent of one-loop radiative corrections, and it can be consistent with current observational data on the inflationary observables, with the GUT symmetry breaking scale assuming its SUSY value. Non-thermal leptogenesis is realized by the out-of-equilibrium decay of the two lightest right-handed (RH) neutrinos, which are produced by the inflaton decay. Confronting our scenario with the current observational data on light neutrinos, the GUT prediction for the heaviest Dirac ...
Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter
Bae, Kyu Jung [Department of Physics and Astronomy, University of Oklahoma,Norman, OK 73019 (United States); Department of Physics, University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Baer, Howard; Serce, Hasan; Zhang, Yi-Fan [Department of Physics and Astronomy, University of Oklahoma,Norman, OK 73019 (United States)
2016-01-07
Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ∼100–300 GeV. Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μ≪m{sub 3/2} may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T{sub R} vs. m{sub 3/2} plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f{sub a}. These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale f{sub a}∼10{sup 10}–10{sup 12} GeV which is also favored by naturalness: f{sub a}∼√(μM{sub P}/λ{sub μ})∼10{sup 10}–10{sup 12} GeV. These f{sub a} values correspond to axion masses somewhat above the projected ADMX search regions.
Mixed axion/gravitino dark matter from SUSY models with heavy axinos
Bae, Kyu Jung; Chun, Eung Jin; Shin, Chang Sub
2014-01-01
We examine dark matter production rates in supersymmetric axion models typified by the mass hierarchy m3/2 << m(neutralino) << m(axino). In such models, one expects the dark matter to be composed of an axion/gravitino admixture. After presenting motivation for how such a mass hierarchy might arise, we examine dark matter produc- tion in the SUSY KSVZ model, the SUSY DFSZ model and a hybrid model containing contributions from both KSVZ and DFSZ. Gravitinos can be produced thermally and also non-thermally from axino, saxion or neutralino decay. We obtain upper bounds on T_R due to overproduction of gravitinos including both the thermal and non-thermal processes. For T_R near the upper bound, then dark matter tends to be gravitino dominated, but for T_R well below the upper bounds, then axion domination is more typical although in many cases we find a comparable mixture of both axions and gravitinos. In this class of models, we ultimately expect detection of relic axions but no WIMP signal, although ...
Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter
Bae, Kyu Jung; Serce, Hasan; Zhang, Yi-Fan
2015-01-01
Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ~ 100-300 GeV. Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY mu problem and the Little Hierarchy \\mu << m_{3/2} may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T_R vs. m_{3/2} plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f_a. These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ...
The BSM-AI project: SUSY-AI - Generalizing LHC limits on Supersymmetry with Machine Learning
Caron, Sascha; Rolbiecki, Krzysztof; de Austri, Roberto Ruiz; Stienen, Bob
2016-01-01
A key research question at the Large Hadron Collider (LHC) is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: It requires the time consuming generation of scattering events, the simulation of the detector response, the event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiment. In the BSM-AI project we attack this challenge with a new approach. Machine learning tools are thought to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300,000 pMSSM model sets - each tested with 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93 percent. It ...
Tri-bimaximal Mixing and Cabibbo Angle in S4 Flavor Model with SUSY
Ishimori, Hajime; Shimizu, Yusuke; Tanimoto, Morimitsu
2010-01-01
We present a flavor model of quarks and leptons with the non-Abelian discrete symmetry S_4 in the framework of the SU(5) SUSY GUT. Three generations of $\\bar 5$-plets in SU(5) are assigned to ${\\bf 3}$ of $S_4$ while the first and second generations of 10-plets in SU(5) are assigned to ${\\bf 2}$ of $S_4$, and the third generation of 10-plet is assigned to ${\\bf 1}$ of $S_4$. Right-handed neutrinos are also assigned to ${\\bf 2}$ for the first and second generations and ${\\bf 1}'$ for the third generation, respectively. We predict the Cabibbo angle as well as the tri-bimaximal mixing of neutrino flavors. We also predict the non-vanishing $U_{e3}$ of the neutrino flavor mixing due to higher dimensional mass operators. Our predicted CKM mixing angles and the CP violation are consistent with experimental values. We also study SUSY breaking terms in the slepton sector. Our model leads to smaller values of flavor changing neutral currents than the present experimental bounds.
Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness
Bae, Kyu Jung; Nagata, Natsumi; Serce, Hasan
2015-01-01
In the post-LHC8 world-- where a Standard Model-like Higgs boson has been established but there is no sign of supersymmetry (SUSY)-- the detailed profiling of the Higgs boson properties has emerged as an important road towards discovery of new physics. We present calculations of the expected deviations in Higgs boson couplings $\\kappa_{\\tau ,b}$, $\\kappa_t$, $\\kappa_{W,Z}$, $\\kappa_g$ and $\\kappa_\\gamma$ versus the naturalness measure $\\Delta_{\\rm EW}$. Low values of $\\Delta_{\\rm EW}\\sim 10-30$ give rise to a natural Little Hierarchy characterized by light higgsinos with a mass of $\\mu\\sim m_Z$ while top squarks are highly mixed but lie in the several TeV range. For such models with radiatively-driven naturalness, one expects the Higgs boson $h$ to look very SM-like although deviations can occur. The more promising road to SUSY discovery requires direct higgsino pair production at a high energy $e^+e^-$ collider operating with the center-of-mass energy $\\sqrt{s}>2\\mu\\sim \\sqrt{2\\Delta_{\\rm EW}}m_Z$.
Arganda, E.; Penaranda, S. [Universidad de Zaragoza, Departamento de Fisica Teorica, Facultad de Ciencias, Zaragoza (Spain); Guasch, J. [Universitat de Barcelona, Departament de Fisica Fonamental, Barcelona, Catalonia (Spain); Universitat de Barcelona, Institut de Ciencies del Cosmos (ICC), Barcelona, Catalonia (Spain); Hollik, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2016-05-15
It is still an open question whether the new scalar particle discovered at the LHC with a mass of 125 GeV is the SM Higgs boson or belongs to models of new physics with an extended Higgs sector, as the MSSM or 2HDM. The ratio of branching fractions R = BR(H → b anti b)/BR(H → τ{sup +}τ{sup -}) of Higgs-boson decays is a powerful tool in distinguishing the MSSM Higgs sector from the SM or non-supersymmetric 2HDM. This ratio receives large renormalization-scheme independent radiative corrections in supersymmetric models at large tan β, which are insensitive to the SUSY mass scale and absent in the SM or 2HDM. Making use of the current LHC data and the upcoming new results on Higgs couplings to be reported by ATLAS and CMS collaborations and in a future linear collider, we develop a detailed and updated study of this ratio R which improves previous analyses and sets the level of accuracy needed to discriminate between models. (orig.)
Family of singular solutions in a SUSY bulk-boundary system
Ichinose, Shoichi; Murayama, Akihiro
2004-08-19
A set of classical solutions of a singular type is found in a 5D SUSY bulk-boundary system. The 'parallel' configuration, where the whole components of fields or branes are parallel in the iso-space, naturally appears. It has three free parameters related to the scale freedom in the choice of the brane-matter sources and the 'free' wave property of the extra component of the bulk-vector field. The solutions describe brane, anti-brane and brane-anti-brane configurations depending on the parameter choice. Some solutions describe the localization behaviour even after the non-compact limit of the extra space. Stableness is assured. Their meaning in the brane world physics is examined in relation to the stableness, localization, non-singular (kink) solution and the bulk Higgs mechanism.
SUSY S{sub 4} Multiplication-Sign SU(5) revisited
Hagedorn, Claudia, E-mail: hagedorn@pd.infn.it [Dipartimento di Fisica e Astronomia ' G. Galilei' , Universita di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua (Italy); King, Stephen F., E-mail: king@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Luhn, Christoph, E-mail: christoph.luhn@durham.ac.uk [Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE (United Kingdom)
2012-10-22
Following the recent results from Daya Bay and RENO, which measure the lepton mixing angle {theta}{sub 13}{sup l} Almost-Equal-To 0.15, we revisit a supersymmetric (SUSY) S{sub 4} Multiplication-Sign SU(5) model, which predicts tri-bimaximal (TB) mixing in the neutrino sector with {theta}{sub 13}{sup l} being too small in its original version. We show that introducing one additional S{sub 4} singlet flavon into the model gives rise to a sizable {theta}{sub 13}{sup l} via an operator which leads to the breaking of one of the two Z{sub 2} symmetries preserved in the neutrino sector at leading order (LO). The results of the original model for fermion masses, quark mixing and the solar mixing angle are maintained to good precision. The atmospheric and solar mixing angle deviations from TB mixing are subject to simple sum rule bounds.
BFKL Pomeron and Bern-Dixon-Smirnov amplitudes in N=4 SUSY
Lipatov, L.N. [Petersburg Nuclear Physics Institute (Russian Federation)]|[Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-10-15
We review the theoretical approaches for investigations of the high energy hadron-hadron scattering in the Regge kinematics. It is demonstrated, that the gluon in QCD is reggeized and the Pomeron is a composite state of the reggeized gluons. Remarkable properties of the BFKL equation for the Pomeron wave function in QCD and supersymmetric gauge theories are outlined. Due to the AdS/CFT correspondence the BFKL Pomeron is equivalent to the reggeized graviton in the extended N=4 SUSY. The properties of the maximal transcendentality and integrability are realized in this model. The BDS multi-gluon scattering amplitudes are investigated in the Regge limit. They do not contain the Mandelstam cuts and are not valid beyond one loop. It is shown, that the hamiltonian for these composite states coincides with the hamiltonian of an integrable open Heisenberg spin chain. (orig.)
Low-Energy Tau Identification for Probing SUSY-Cosmology at the LHC
Simeon, Paul; Arnowitt, Richard; Dutta, Bhaskar; Gurrola, Alfredo; Kamon, Teruki; Kolev, Nikolay; Krislock, Abram
2006-10-01
For probing supersymmetric cosmology at the LHC, both ATLAS and CMS experiments will have to identify tau leptons with a transverse energy above 20 GeV. The experimental first step before such SUSY search program is to observe tau-lepton pair from Z boson decay. This observation will guarantee the quality of the tau lepton identification (ID) at the LHC experiments. In order to design the tau ID, we study the hadronic decays of tau leptons in the Z bosons in the LHC envi-ronment using PYTHIA and TAUOLA Monte Carlo programs. Our preliminary study shows that the one-prong hadronic decay is most suitable for maximizing tau ID efficiency and minimizing misidentified taus.
Muon g-2 through a flavor structure on soft SUSY terms
Baez, F V Flores; Mondragon, M
2015-01-01
In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar Soft-Supersymmetric terms of the Lagranagian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavour mixing. The one-loop supersymmetric contributions to the leptonic flavour violating process $\\tau \\to \\mu\\gamma$ are calculated in the physical basis, instead of using the well known Mass Insertion Method. We present the regions in parameter space where the muon g-2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes.
The Higgs sector of the SUSY reduced 3-3-1 model
Ferreira, J G; da Silva, P S Rodrigues; Sampieri, A
2013-01-01
A supersymmetric version of the recently proposed reduced minimal 3-3-1 model is considered and its Higgs sector is investigated. We focus on the mass spectrum of the lightest scalars of the model. We show that Higgs mass of 125 GeV requires substantial radiative corrections. However, stops may develop small mixing and must have mass around TeV. Moreover, some soft SUSY breaking terms may lie at the electroweak scale, which alleviates some tension concerning fine tuning of the related parameters. The lightest doubly charged scalar may have mass around few hundreds of GeV, which can be probed at the LHC, while the remaining scalars of the model have masses at TeV scale.
Family of singular solutions in a SUSY bulk-boundary system
Ichinose, Shoichi; Murayama, Akihiro
2004-08-01
A set of classical solutions of a singular type is found in a 5D SUSY bulk-boundary system. The "parallel" configuration, where the whole components of fields or branes are parallel in the iso-space, naturally appears. It has three free parameters related to the scale freedom in the choice of the brane-matter sources and the "free" wave property of the extra component of the bulk-vector field. The solutions describe brane, anti-brane and brane-anti-brane configurations depending on the parameter choice. Some solutions describe the localization behaviour even after the non-compact limit of the extra space. Stableness is assured. Their meaning in the brane world physics is examined in relation to the stableness, localization, non-singular (kink) solution and the bulk Higgs mechanism.
Family of Singular Solutions in A SUSY Bulk-Boundary System
Ichinose, S; Ichinose, Shoichi; Murayama, Akihiro
2004-01-01
A set of classical solutions of a singular type is found in a 5D SUSY bulk-boundary system. The "parallel" configuration, where the whole components of fields or branes are parallel in the iso-space, naturally appears. It has three {\\it free} parameters related to the {\\it scale freedom} in the choice of the brane-matter sources and the {\\it "free" wave} property of the extra component of the bulk-vector field. The solutions describe brane, anti-brane and brane-anti-brane configurations depending on the parameter choice. Some solutions describe the localization behaviour even after the non-compact limit of the extra space. Stableness is assured. Their meaning in the brane world physics is examined in relation to the stableness, localization, non-singular (kink) solution and the bulk Higgs mechanism.
PySLHA: a Pythonic interface to SUSY Les Houches Accord data
Buckley, Andy
2015-10-01
This paper describes the PySLHA package, a Python language module and program collection for reading, writing and visualising SUSY model data in the SLHA format. PySLHA can read and write SLHA data in a very general way, including the official SLHA2 extension and user customisations, and with arbitrarily deep indexing of data block entries and a dedicated, intuitive interface for particle data and decay information. The draft SLHA3 XSECTION feature is also fully supported. PySLHA can additionally read and write the legacy ISAWIG model format, and provides format conversion scripts. A publication-quality mass spectrum and decay chain plotting tool, slhaplot, is included in the package.
PySLHA: a Pythonic interface to SUSY Les Houches accord data
Buckley, Andy [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom)
2015-10-15
This paper describes the PySLHA package, a Python language module and program collection for reading, writing and visualising SUSY model data in the SLHA format. PySLHA can read and write SLHA data in a very general way, including the official SLHA2 extension and user customisations, and with arbitrarily deep indexing of data block entries and a dedicated, intuitive interface for particle data and decay information. The draft SLHA3 XSECTION feature is also fully supported. PySLHA can additionally read and write the legacy ISAWIG model format, and provides format conversion scripts. A publication-quality mass spectrum and decay chain plotting tool, slhaplot, is included in the package. (orig.)
Deflected anomaly mediated SUSY breaking scenario with general messenger–matter interactions
Fei Wang
2015-12-01
Full Text Available We propose to introduce general messenger–matter interactions in the deflected anomaly mediated SUSY breaking scenario. The most general form for the resulting soft parameters is derived. New interference terms between the GMSB type and AMSB type contributions are the unique feature of this scenario. Messenger–matter interactions involving sleptons can be used to solve the tachyonic slepton problem and naturally lead to positive slepton masses regardless of the sign of deflection parameter. Besides, due to the new contributions, large |At| that will not trigger color-breaking stop VEV are also possible in this scenario, thus can easily give the 125 GeV higgs which was discovered by LHC. This type of deflected AMSB scenario need very few messenger species, thus can avoid possible non-perturbative gauge couplings below the GUT scale (or Landau pole below the Planck scale.
Novel scalar boson decays in SUSY with broken R-parity
De Campos, F; Joshipura, A S; Rosiek, J; Valle, José W F; de Campos, Fernando; Garc, M A; Joshipura, Anjan S; Rosiek, J; Valle, Jose W F
1995-01-01
R parity violation can induce mixing of the supersymmetric Higgs bosons with the sneutrinos at the tree level. We study the effect of this mixing on the decays of Higgs scalars as well as sneutrinos in an effective model where the violation of R parity is included in the minimal supersymmetric model through bilinear lepton number violating superpotential terms. We show that a small violation of R parity can lead to a sizeable branching ratio for the supersymmetric Higgs boson decay mode H \\rightarrow \\chi \\ell (where \\chi denotes a gaugino and \\ell is either a tau neutrino or a tau lepton). Relevant constraints on R parity violation as well as those coming from SUSY particle searches still allow the decay H \\rightarrow \\chi \\ell to compete with the conventional decay H\\ra b \\bar{b}, at least for some ranges of parameters of the model.
Sopczak, Andre; The ATLAS collaboration
2017-01-01
During the data-taking period at LHC (Run-II), several searches for supersymmetric particles were performed. The results from searches by the ATLAS collaborations are concisely reviewed. Model-independent and model-dependent limits on new particle production are set, and interpretations in supersymmetric models are given.
Large muon $(g-2)$ with TeV-scale SUSY masses for $\\tan\\beta\\to\\infty$
Bach, Markus; Stöckinger, Dominik; Stöckinger-Kim, Hyejung
2015-01-01
The muon anomalous magnetic moment $a_\\mu$ is investigated in the MSSM for $\\tan\\beta\\to\\infty$. This is an attractive example of radiative muon mass generation with completely different qualitative parameter dependence compared to the MSSM with the usual, finite $\\tan\\beta$. The observed, positive difference between the experimental and Standard Model value can only be explained if there are mass splittings, such that bino contributions dominate over wino ones. The two most promising cases are characterized either by large Higgsino mass $\\mu$ or by large left-handed smuon mass $m_L$. The required mass splittings and the resulting $a_\\mu^\\text{SUSY}$ are studied in detail. It is shown that the current discrepancy in $a_\\mu$ can be explained even in cases where all SUSY masses are at the TeV scale. The paper also presents useful analytical formulas, approximations for limiting cases, and benchmark points.
Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.
2016-11-01
The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential.
Approaching Minimal Flavour Violation from an SU(5)×S{sub 4}×U(1) SUSY GUT
Dimou, Maria; King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Luhn, Christoph [Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät, Universität Siegen,Walter-Flex-Straße 3, 57068 Siegen (Germany)
2016-02-18
We show how approximate Minimal Flavour Violation (MFV) can emerge from an SU(5) Supersymmetric Grand Unified Theory (SUSY GUT) supplemented by an S{sub 4}×U(1) family symmetry, which provides a good description of all quark and lepton (including neutrino) masses, mixings and CP violation. Assuming a SUSY breaking mechanism which respects the family symmetry, we calculate in full explicit detail the low energy mass insertion parameters in the super-CKM basis, including the effects of canonical normalisation and renormalisation group running. We find that the very simple family symmetry S{sub 4}×U(1) is sufficient to approximately reproduce the effects of low energy MFV.
Cannata, F; Nishnianidze, D N
2002-01-01
Two new methods for investigation of two-dimensional quantum systems, whose Hamiltonians are not amenable to separation of variables, are proposed. 1)The first one - $SUSY-$ separation of variables - is based on the intertwining relations of Higher order SUSY Quantum Mechanics (HSUSY QM) with supercharges allowing for separation of variables. 2)The second one is a generalization of shape invariance. While in one dimension shape invariance allows to solve algebraically a class of (exactly solvable) quantum problems, its generalization to higher dimensions has not been yet explored. Here we provide a formal framework in HSUSY QM for two-dimensional quantum mechanical systems for which shape invariance holds. Given the knowledge of one eigenvalue and eigenfunction, shape invariance allows to construct a chain of new eigenfunctions and eigenvalues. These methods are applied to a two-dimensional quantum system, and partial explicit solvability is achieved in the sense that only part of the spectrum is found analyt...
Large muon (g−2) with TeV-scale SUSY masses for tan β→∞
Bach, Markus [Institut für Kern- und Teilchenphysik, TU Dresden,Zellescher Weg 19, 01069 Dresden (Germany); Park, Jae-hyeon [Departament de Física Teòrica and IFIC, Universitat de València-CSIC,Carrer de Dr. Moliner 50, 46100 Burjassot (Spain); Stöckinger, Dominik; Stöckinger-Kim, Hyejung [Institut für Kern- und Teilchenphysik, TU Dresden,Zellescher Weg 19, 01069 Dresden (Germany)
2015-10-06
The muon anomalous magnetic moment a{sub μ} is investigated in the MSSM for tan β→∞. This is an attractive example of radiative muon mass generation with completely different qualitative parameter dependence compared to the MSSM with the usual, finite tan β. The observed, positive difference between the experimental and Standard Model values can only be explained if there are mass splittings, such that bino contributions dominate over wino ones. The two most promising cases are characterized either by large Higgsino mass μ or by large left-handed smuon mass m{sub L}. The required mass splittings and the resulting a{sub μ}{sup SUSY} are studied in detail. It is shown that the current discrepancy in a{sub μ} can be explained even in cases where all SUSY masses are at the TeV scale. The paper also presents useful analytical formulas, approximations for limiting cases, and benchmark points.
Ciafaloni, Paolo; Torrente-Lujan, Emilio; Urbano, Alfredo
2009-01-01
We address the problem of rationalizing the pattern of fermion masses and mixings by adding a nonabelian flavor symmetry in a grand unified framework. With this purpose, we include an A4 flavor symmetry into a unified renormalizable SUSY GUT SU(5) model. With the help of the "Type II Seesaw" mechanism we are able to obtain the pattern of observed neutrino mixings in a natural way, through the so called tribimaximal matrix.
Ciafaloni, Paolo; Torrente-Lujan, Emilio; Urbano, Alfredo
2009-01-01
We analyze all possible extensions of the recently proposed minimal renormalizable SUSY SU(5) grand unified model with the inclusion of an additional A4 flavor symmetry. We find that there are 5 possible Cases but only one of them is phenomenologically interesting. We develop in detail such Case and we show how the fermion masses and mixing angles come out. As prediction we obtain the neutrino masses of order of 0.1 eV with an inverted hierarchy.
Heidegger, Constantin
2017-01-01
This poster reports on the search for the production of charginos and neutralinos in events with either two leptons of the same charge or three or more leptons using the full 2016 proton-proton collision dataset of $35.9\\,\\mathrm{fb}^{-1}$ at $\\sqrt{s}=13\\,\\mathrm{TeV}$ collected by the CMS detector. Exclusion limits at $95\\,\\%$ confidence level range between $450-1100\\,\\mathrm{GeV}$ depending on the SUSY scenario.
The addition of the lower level to spectrums of matrix and scalar components of d=2 SUSY Hamiltonian
Leble, S B
1998-01-01
Supersymmetrical quantum--mechanical system is consider in the case of d=2. The problem of addition of the lower level to spectrums of matrix and scalar components of d=2 SUSY Hamiltonian is investigated. It is shown that in the case, the level E=0 may be degenerate. The multi--dimensional scalar Hamiltonians with energy spectra coinciding up to finite number of discrete levels are constructed.
Automated calculation of sinθ{sub W} and M{sub W} from muon decay within FlexibleSUSY
Bach, Markus; Stoeckinger, Dominik [IKTP, TU Dresden (Germany); Voigt, Alexander [DESY, Hamburg (Germany)
2016-07-01
The spectrum generator generator FlexibleSUSY can be utilized to investigate a variety of supersymmetric and non-supersymmetric models. We present an implementation which calculates the weak mixing angle from the precisely measured muon decay, especially taking vertex and box diagram corrections of the respective model into account. This framework also offers a prediction of the W boson mass which can be compared to the experimental value and thus used to exclude parameter regions.
An asymptotic solution of large-$N$ $QCD$, and of large-$N$ $\\mathcal{N}=1$ $SUSY$ $QCD$
Bochicchio, Marco
2014-01-01
We find an asymptotic solution for two- and three-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-$N$ $QCD$ (and of massless large-$N$ $\\cal{N}$ $=1$ $SUSY$ $QCD$), in terms of glueball and meson propagators (and of their $SUSY$ partners), by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap. The asymptotically-free bootstrap exploits the lowest-order conformal invariance of connected correlators of gauge invariant composite operators in perturbation theory, the renormalization-group improvement, and a recently-proved asymptotic structure theorem for glueball and meson propagators (and for their $SUSY$ partners), that involves the unknown particle spectrum and the anomalous dimension of operators for fixed spin. In principle the asymptotically-free bootstrap extends to all the higher-spin two- and three-point correlators whose lowest-order conformal limit is non-vanishing in perturbation theory, and by means of the o...
SUSY-QCD corrections to the (co)annihilation of neutralino dark matter within the MSSM
Meinecke, Moritz
2015-06-15
Based on experimental observations, it is nowadays assumed that a large component of the matter content in the universe is comprised of so-called cold dark matter. Furthermore, latest measurements of the temperature fluctuations of the cosmic microwave background provided an estimation of the dark matter relic density at a measurement error of one percent (concerning the experimental 1σ-error). The lightest neutralino χ 0{sub 1}, a particle which subsumes under the phenomenologically interesting category of weakly interacting massive particles, is a viable dark matter candidate for many supersymmetric (SUSY) models whose relic density Ω{sub χ} {sub 0{sub 1}} happens to lie quite naturally within the experimentally favored ballpark of dark matter. The high experimental precision can be used to constrain the SUSY parameter space to its cosmologically favored regions and to pin down phenomenologically interesting scenarios. However, to actually benefit from this progress on the experimental side it is also mandatory to minimize the theoretical uncertainties. An important quantity within the calculation of the neutralino relic density is the thermally averaged sum over different annihilation and coannihilation cross sections of the neutralino and further supersymmetric particles. It is now assumed and also partly proven that these cross sections can be subject to large loop corrections which can even shift the associated Ω{sub χ} {sub 0{sub 1}} by a factor larger than the current experimental error. However, most of these corrections are yet unknown. In this thesis, we calculate higher-order corrections for some of the most important (co)annihilation channels both within the framework of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) and investigate their impact on the final neutralino relic density Ω{sub χ} {sub 0{sub 1}}. More precisely, this work provides the full O(α{sub s}) corrections of supersymmetric quantum chromodynamics (SUSY
Borah, Debasish; Pritimita, Prativa
2014-01-01
We discuss a class of left-right symmetric models where the light neutrino masses originate dominantly from type I seesaw mechanism along with a sub-dominant type II seesaw contribution. The dominant type I seesaw gives rise to tri-bimaximal type neutrino mixing whereas sub-dominant type II seesaw acts as a small perturbation giving rise to non-zero $\\theta_{13}$ in our model which also has TeV scale right-handed neutrinos and $Z^\\prime$ gauge boson thereby making the model verifiable at current accelerator experiments. Sub-dominant type II and dominant type I seesaw can be naturally accommodated by allowing spontaneous breaking of D-parity and $SU(2)_R$ gauge symmetry at high scale and allowing TeV scale breaking of $U(1)_{R} \\times U(1)_{B-L}$ into $U(1)_Y$. We also embed the left-right model in a non-supersymmetric $SO(10)$ grand unified theory (GUT) with verifiable TeV scale $Z^\\prime$ gauge boson. Drawing it to an end, we scrutinize in detail the evaluation of one-loop renormalization group evolution for...
The Minimal SUSY $B-L$ Model: From the Unification Scale to the LHC
Ovrut, Burt A; Spinner, Sogee
2015-01-01
This paper introduces a random statistical scan over the high-energy initial parameter space of the minimal SUSY $B-L$ model--denoted as the $B-L$ MSSM. Each initial set of points is renormalization group evolved to the electroweak scale--being subjected, sequentially, to the requirement of radiative $B-L$ and electroweak symmetry breaking, the present experimental lower bounds on the $B-L$ vector boson and sparticle masses, as well as the lightest neutral Higgs mass of $\\sim$125 GeV. The subspace of initial parameters that satisfies all such constraints is presented, shown to be robust and to contain a wide range of different configurations of soft supersymmetry breaking masses. The low-energy predictions of each such "valid" point - such as the sparticle mass spectrum and, in particular, the LSP - are computed and then statistically analyzed over the full subspace of valid points. Finally, the amount of fine-tuning required is quantified and compared to the MSSM computed using an identical random scan. The ...
Muon g - 2 through a flavor structure on soft SUSY terms
Flores-Baez, F.V. [Universidad Autonoma de Nuevo Leon, UANL Ciudad Universitaria, FCFM, San Nicolas de los Garza, Nuevo Leon (Mexico); Gomez Bock, M. [Universidad de las Americas Puebla, UDLAP, Ex-Hacienda Sta. Catarina Martir, DAFM, Cholula, Puebla (Mexico); Mondragon, M. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Apdo. Postal 20-364, Mexico, D.F. (Mexico)
2016-10-15
In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton-flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar soft-supersymmetric terms of the Lagrangian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavor mixing. The one-loop supersymmetric contributions to the leptonic flavor violating process τ → μγ are calculated in the physical basis, instead of using the well-known mass-insertion method. The flavor violating processes BR(l{sub i} → l{sub j}γ) are also obtained, in particular τ → μγ is well within the experimental bounds. We present the regions in parameter space where the muon g - 2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes. (orig.)
SUSY SU(5) with singlet plus adjoint matter and A{sub 4} family symmetry
Cooper, Iain K., E-mail: ikc1g08@soton.ac.u [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); King, Stephen F., E-mail: sfk@hep.phys.soton.ac.u [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Luhn, Christoph, E-mail: christoph.luhn@soton.ac.u [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)
2010-06-28
We propose a supersymmetric (SUSY) SU(5) Grand Unified Theory (GUT) including a single right-handed neutrino singlet and an adjoint matter representation below the GUT scale and extend this model to include an A{sub 4} family symmetry and a gauged anomaly-free Abelian group. In our approach hierarchical neutrino masses result from a combined type I and type III seesaw mechanism, and the A{sub 4} symmetry leads to tri-bimaximal mixing which arises indirectly. The mixing between the single right-handed neutrino and the matter in the adjoint is forbidden by excluding an adjoint Higgs, leading to a diagonal heavy Majorana sector as required by constrained sequential dominance. The model also reproduces a realistic description of quark and charged lepton masses and quark mixings, including the Georgi-Jarlskog relations and the leptonic mixing sum rules s=rcos{delta} and a=-r{sup 2}/4 with r={theta}{sub C}/3.
The health of SUSY after the Higgs discovery and the XENON100 data
Cabrera, Maria Eugenia; de Austri, Roberto Ruiz
2012-01-01
We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach. This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1 TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detec...
Quasi-fixed point scenarios and the Higgs mass in the E6 inspired SUSY models
Nevzorov, R
2013-01-01
We analyse the renormalization group (RG) flow of the gauge and Yukawa couplings within the E6 inspired supersymmetric (SUSY) models with extra U(1)_{N} gauge symmetry under which right-handed neutrinos have zero charge. In these models single discrete \\tilde{Z}^{H}_2 symmetry forbids the tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We argue that the measured values of the SU(2)_W and U(1)_Y gauge couplings lie near the quasi-fixed points of the RG equations in these models. The solutions for the Yukawa couplings also approach the quasi-fixed points with increasing their values at the Grand Unification scale. We calculate the two-loop upper bounds on the lightest Higgs boson mass in the vicinity of these quasi-fixed points and compare the results of our analysis with the corresponding ones in the NMSSM. In all these cases the theoretical restrictions on the SM-like Higgs boson mass are rather close to 125 GeV.
PhD Thesis - Topics in SUSY Phenomenology at the LHC
Kadala, Roger H K
2012-01-01
This dissertation focuses on phenomenological studies for possible signals for supersymmetric events at the Large Hadron Collider (LHC). We have divided our endeavours into three separate projects. First, we consider SUSY models where the gluino production at the LHC should be rich in top and bottom quark jets. Requiring $b$-jets in addition to missing energy $\\eslt$ should, therefore, enhance the supersymmetry signal relative to Standard Model backgrounds. We quantify the increase in the supersymmetry reach of the LHC from $b$-tagging in a variety of well-motivated models of supersymmetry. We also explore $top$-tagging at the LHC. Second, we explore the prospects for detecting the direct production of third generation squarks in models with an inverted squark mass hierarchy. This is signalled by $b$-jets + $\\eslt$ events harder than in the Standard Model, but softer than those from the production of gluinos and heavier squarks. We find that these events can be readily separated from SM background (for third ...
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2016-01-01
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is t...
On the quantum stability of IIB orbifolds and orientifolds with Scherk-Schwarz SUSY breaking
Borunda, M; Trapletti, M
2003-01-01
We study the quantum stability of Type IIB orbifold and orientifold string models in various dimensions, including Melvin backgrounds, where supersymmetry (SUSY) is broken {\\it \\`a la} Scherk-Schwarz (SS) by twisting periodicity conditions along a circle of radius R. In particular, we compute the R-dependence of the one-loop induced vacuum energy density $\\rho(R)$, or cosmological constant. For SS twists different from Z2 we always find, for both orbifolds and orientifolds, a monotonic $\\rho(R)<0$, eventually driving the system to a tachyonic instability. For Z2 twists, orientifold models can have a different behavior, leading either to a runaway decompactification limit or to a negative minimum at a finite value R_0. The last possibility is obtained for a 4D chiral orientifold model where a more accurate but yet preliminary analysis seems to indicate that $R_0\\to \\infty$ or towards the tachyonic instability, as the dependence on the other geometric moduli is included.
The minimal SUSY B−L model: from the unification scale to the LHC
Ovrut, Burt A.; Purves, Austin; Spinner, Sogee [Department of Physics, University of Pennsylvania,Philadelphia, PA 19104-6396 (United States)
2015-06-26
This paper introduces a random statistical scan over the high-energy initial parameter space of the minimal SUSY B−L model — denoted as the B−L MSSM. Each initial set of points is renormalization group evolved to the electroweak scale — being subjected, sequentially, to the requirement of radiative B−L and electroweak symmetry breaking, the present experimental lower bounds on the B−L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ∼125 GeV. The subspace of initial parameters that satisfies all such constraints is presented, shown to be robust and to contain a wide range of different configurations of soft supersymmetry breaking masses. The low-energy predictions of each such “valid” point — such as the sparticle mass spectrum and, in particular, the LSP — are computed and then statistically analyzed over the full subspace of valid points. Finally, the amount of fine-tuning required is quantified and compared to the MSSM computed using an identical random scan. The B−L MSSM is shown to generically require less fine-tuninng.
The Minimal SUSY $B-L$ Model: Simultaneous Wilson Lines and String Thresholds
Deen, Rehan; Purves, Austin
2016-01-01
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY $B-L$ model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ${\\mathbb Z}_{3}\\times {\\mathbb Z}_{3}$ Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass $\\left$. The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects--particularly heavy string thresholds, which we calculate st...
Extended SUSY SU(5) predicting type-III seesaw testable at LHC
Awasthi, Ram Lal
2013-01-01
We propose an extension of the SUSY SU(5) which predicts LHC testable type-III seesaw. The supersymmetric SU(5) GUT model is extended by adding a 24-plet matter superfield along with a pair of $10_H$-plet and $\\bar{10}_H$-plet Higgs superfields. The 24-plet carries a triplet and a singlet fermion multiplet of SU(2)$_L$, which leads to type I+III seesaw. The additional $10_H$ (and $\\bar{10}_H$) multiplets help in achieving gauge coupling unification while keeping the triplet fermion mass in the TeV range, making them accessible at LHC. We study the phenomenology of this model in detail. Large lepton flavor violation predicted in this model puts severe constraints on the Yukawa couplings of the triplet fermion. We show that this smothers the possibility of observing the contribution of the heavy fermions in neutrinoless double beta decay experiments. The presence of the additional $10_H$ and $\\bar{10}_H$ in this model not only gives gauge coupling unification, it also leads to very large lepton flavor violation...
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-19
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is t...
\\gamma^2 Velorum: Orbital Solution and Fundamental Parameter Determination with SUSI
North, J R; Tango, W J; Davis, J
2007-01-01
The first complete orbital solution for the double-lined spectroscopic binary system \\gamma^2 Velorum, obtained from measurements with the Sydney University Stellar Interferometer (SUSI), is presented. This system contains the closest example of a Wolf-Rayet star and the promise of full characterisation of the basic properties of this exotic high-mass system has subjected it to intense study as an archetype for its class. In combination with the latest radial-velocity results, our orbital solution produces a distance of 336^{+8}_{-7} pc, significantly more distant than the Hipparcos estimation (Schaerer et al. 1997; van der Hucht 1997). The ability to fully specify the orbital parameters has enabled us to significantly reduce uncertainties and our result is consistent with the VLTI observational point (Millour et al. 2006), but not with their derived distance. Our new distance, which is an order of magnitude more precise than prior work, demands critical reassessment of all distance-dependent fundamental para...
Novel scalar boson decays in SUSY with broken R-parity
Campos, F. de [Valencia Univ. (Spain). Dept. de Fisica Teorica - IFIC/CSIC; Garcia-Jareno, M.A. [Valencia Univ. (Spain). Dept. de Fisica Teorica - IFIC/CSIC; Joshipura, A.S. [Valencia Univ. (Spain). Dept. de Fisica Teorica - IFIC/CSIC; Rosiek, J. [Valencia Univ. (Spain). Dept. de Fisica Teorica - IFIC/CSIC; Valle, J.W.F. [Valencia Univ. (Spain). Dept. de Fisica Teorica - IFIC/CSIC
1995-09-25
R-parity violation can induce mixing of the supersymmetric Higgs bosons with the sneutrinos at the tree level. We study the effect of this mixing on the decays of Higgs scalars as well as sneutrinos in an effective model where the violation of R-parity is included in the minimal supersymmetric model through bilinear lepton number violating superpotential terms. We show that a small violation of R-parity can lead to a sizeable branching ratio for the supersymmetric Higgs boson decay mode H {yields}{chi}l (where {chi} denotes an electroweak gaugino and l is either a tau neutrino or a tau lepton). Relevant constraints on R-parity violation as well as those coming from SUSY particle searches still allow the decay H {yields}{chi}l to compete with the conventional decay H{yields}bb, at least for some ranges of parameters of the model. Moreover, the tau sneutrino will have dominant R-parity violating decays to standard model fermions bb, {tau}{sup +} {tau}{sup -} or to the invisible mode {nu} anti {nu} whenever the phase space for R-parity conserving channels is closed. (orig.).
A Healthy Electron/Neutron EDM in D3/D7 mu-Split SUSY
Dhuria, Mansi
2013-01-01
Within the framework of N=1 gauged supergravity, using a phenomenological model which can be obtained locally as a Swiss-Cheese Calabi-Yau string-theoretic compactification with a mobile D3-brane localized on a nearly sLag three-cycle in the Calabi-Yau and fluxed stacks of wrapped D7-branes, and which provides a natural realization of mu-Split SUSY, we show that in addition to getting a significant value of electron/neutron EDM d_{e,n}/e at two-loop level, one can obtain a sizable contribution of d_{e,n}/e even at one-loop level. We obtain d_{e}/e ~ O(10^{-29}) cm from two-loop diagrams involving heavy sfermions and a light Higgs, and d_{e}/e ~ O(10^{-32}) cm from one-loop diagram involving heavy chargino and a light Higgs. Also, d_{n}/e ~ O(10^{-33}) cm from one-loop diagram involving SM-like quarks and Higgs. Next, by considering a Barr-Zee diagram involving W bosons and Higgs, and conjecturing that the CP-violating phase can appear from a linear combination of Higgs doublet obtained in the context of mu-sp...
2016-01-01
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...
Higgs branch, hyperkahler quotient and duality in SUSY N=2 Yang-Mills theories
Antoniadis, Ignatios
1996-01-01
Low--energy limits of N=2 supersymmetric field theories in the Higgs branch are described in terms of a non--linear 4--dimensional sigma--model on a \\hk target space, classically obtained as a \\hk quotient of the original flat hypermultiplet space by the gauge group. We review in a pedagogical way this construction, and illustrate it in various examples, with special attention given to the singularities emerging in the low--energy theory. In particular, we thoroughly study the Higgs branch singularity of Seiberg--Witten SU(2) theory with N_f flavors, interpreted by Witten as a small instanton singularity in the moduli space of one instanton on \\RR^4. By explicitly evaluating the metric, we show that this Higgs branch coincides with the Higgs branch of a U(1) N=2 SUSY theory with the number of flavors predicted by the singularity structure of Seiberg--Witten's theory in the Coulomb phase. We find another example of Higgs phase duality, namely between the Higgs phases of U(N_c)\\; N_f flavors and U(N_f-N_c)\\; N_...
Non-Simplified SUSY: Stau-Coannihilation at LHC and ILC
Berggren, M; Krücker, D; List, J; Melzer-Pellmann, I A; Samani, B Safarzadeh; Seitz, C; Wayand, S
2015-01-01
If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small stau_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis o...
Non-simplified SUSY. τ-coannihilation at LHC and ILC
Berggren, M.; Kruecker, D.; List, J.; Melzer-Pellmann, I.A.; Seitz, C. [DESY, Hamburg (Germany); Cakir, A. [DESY, Hamburg (Germany); Istanbul Technical University, Department of Physics Engineering, Istanbul (Turkey); Samani, B.S. [DESY, Hamburg (Germany); IPM, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Wayand, S. [KIT IEKP, Karlsruhe (Germany)
2016-04-15
If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small τ-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and the ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states. (orig.)
Top-squark in natural SUSY under current LHC run-2 data
Han, Chengcheng; Wu, Lei; Yang, Jin Min; Zhang, Mengchao
2016-01-01
We utilize the recent LHC-13 TeV data to study the lower mass bound on top-squark (stop) in natural supersymmetry. We recast the LHC sparticle inclusive search of $(\\ge 1){\\rm jets} + E^{miss}_T$ with $\\alpha_T$ variable, the direct stop pair search (1-lepton channel and all-hadronic channel) and the monojet analyses. We find that these searches are complementary depending on stop and higgsino masses: for a heavy stop the all-hadronic stop pair search provides the strongest bound, for an intermediate stop the inclusive SUSY analysis with $\\alpha_T$ variable is most efficient, while for a compressed stop-higgsino scenario the monojet search plays the key role. Finally, the lower mass bound on a stop is: (i) 320 GeV for compressed stop-higgsino scenario (mass splitting less than 20 GeV); (ii) 765 (860) GeV for higgsinos lighter than 300 (100) GeV.
Viable and testable SUSY GUTs with Yukawa unification the case of split trilinears
Guadagnoli, Diego; Straub, David M
2009-01-01
We explore general SUSY GUT models with exact third-generation Yukawa unification, but where the requirement of universal soft terms at the GUT scale is relaxed. We consider the scenario in which the breaking of universality inherits from the Yukawa couplings, i.e. is of minimal flavor violating (MFV) type. In particular, the MFV principle allows for a splitting between the up-type and the down-type soft trilinear couplings. We explore the viability of this trilinear splitting scenario by means of a fitting procedure to electroweak observables, quark masses as well as flavor-changing neutral current processes. Phenomenological viability singles out one main scenario. This scenario is characterized by a sizable splitting between the trilinear soft terms and a large mu term. Remarkably, this scenario does not invoke a partial decoupling of the sparticle spectrum, as in the case of universal soft terms, but instead it requires part of the spectrum, notably the lightest stop, the gluino and the lightest charginos...
The minimal SUSY B - L model: simultaneous Wilson lines and string thresholds
Deen, Rehan; Ovrut, Burt A.; Purves, Austin
2016-07-01
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B - L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two Z_3× Z_3 Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass . The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from to the electroweak scale — being subjected, sequentially, to the requirement of radiative B - L and electroweak symmetry breaking, the present experimental lower bounds on the B - L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ˜125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.
Cari, C.; Suparmi, A.; Yunianto, M.; Pratiwi, B. N.
2016-08-01
The Dirac equation of q-deformed hyperbolic Manning Rosen potential in D dimension was solved by using Supersymmetric Quantum Mechanics (SUSY QM). The D dimensional relativistic energy spectra were obtained by using SUSY QM and shape invariant properties and D dimensional wave functions of q-deformed hyperbolic Manning Rosen potential were obtained by using the SUSY raising and lowering operators. In the nonrelativistic limit, the relativistic energy spectra for exact spin symmetry case reduced into nonrelativistic energy spectra and so for the wave functions. In the classical regime, the partition function, the vibrational specific heat, and the vibrational mean energy of some diatomic molecules were calculated from the non-relativistic energy spectra with the help of error function and imaginary error function.
Liu, Yang; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is a well motivated extension of the Standard Model (SM) that postulates the existence of a superpartner for each SM particle. A search for strongly produced SUSY particles decaying to a pair of two isolated \\textbf{same-sign leptons (SS)} or \\textbf{three leptons (3L)} has been carried out using the complete data set collected by the ATLAS experiment in 2015-16 at 13 TeV ($36.5 fb^{-1}$). The analysis benefits from a low SM background and uses looser kinematic requirements compared to other beyond the SM (BSM) searches which increases its sensitivity to scenarios with small mass differences between the SUSY particles, or in which R-parity is not conserved. The results are interpreted in the context of \\textbf{R-parity conserving (RPC)} or \\textbf{R-parity violating (RPV)} simplified signal models
Suparmi
2014-12-01
Full Text Available The bound state solution of the Dirac equation for generalized PöschlTeller and trigonometric Pöschl-Teller non-central potentials was obtained using SUSY quantum mechanics and the idea of shape invariance potential. The approximate relativistic energy spectrum was expressed in the closed form. The radial and polar wave functions were obtained using raising and lowering of radial and polar operators. The orbital quantum numbers were found from the polar Dirac equation, which was solved using SUSY quantum mechanics and the idea of shape invariance.
Yetkin, T
2007-01-01
An inclusive analysis strategy for SUSY searches in pp collisions at sqrt(s)=14 TeV with the CMS detector is discussed. The missing transverse energy plus multijets canonical signature is used. Emphasis is put in methods to normalize the backgrounds using the data and in understanding the experimental systematic uncertainties. A 5 sigma excess can be observed with O(pb^-1) at a particular low mass SUSY point. The 5 sigma discovery reach contours in the mSUGRA parameter space for 1 and 10 fb^-1 are obtained.
Alemgadmi, Khaled I. K., E-mail: azozkied@yahoo.com; Suparmi; Cari [Department of Physics, the State University of Surabaya (Unesa), Jl. Ketintang, Surabaya 60231 (Indonesia); Deta, U. A., E-mail: utamaalan@yahoo.co.id [Departmet of Physics, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126 (Indonesia)
2015-09-30
The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.
Search for beyond standard model physics (non-SUSY) in final states with photons at the Tevatron
Palencia, Jose Enrique; /Fermilab
2009-01-01
We present the results of searches for non-standard model phenomena in photon final states. These searches use data from integrated luminosities of {approx} 1-4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several BSM models (excluding SUSY) for events containing photons.
High scale parity invariance as a solution to the SUSY CP problem and an explanation of small '/*
R N Mohapatra
2000-07-01
It is shown that if the supersymmetric Standard Model (MSSM) emerges as the low energy limit of a high scale left–right symmetric gauge structure, the number of uncontrollable CP violating phases of MSSM are drastically reduced. In particular it guarantees the vanishing of the dangerous phases that were at the root of the so called SUSY CP problem. Such a symmetric gauge structure is independently motivated by the smallness of neutrino masses that arise via seesaw mechanism automatic in the theory. The minimal version of this theory also provides an explanation of the smallness of '/ as a consequence of the high scale parity invariance.
The minimal SUSY B−L model: simultaneous Wilson lines and string thresholds
Deen, Rehan; Ovrut, Burt A. [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Purves, Austin [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Department of Physics, Manhattanville College,2900 Purchase Street, Purchase, NY 10577 (United States)
2016-07-08
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B−L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ℤ{sub 3}×ℤ{sub 3} Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional “left-right” sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an “average unification” mass 〈M{sub U}〉. The present analysis is 1) more “natural” than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from 〈M{sub U}〉 to the electroweak scale — being subjected, sequentially, to the requirement of radiative B−L and electroweak symmetry breaking, the present experimental lower bounds on the B−L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ∼125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.
Medina, Anibal D.; Schmidt, Michael A.
2017-08-01
In the Minimal Supersymmetric Standard Model (MSSM) searches for the heaviest CP-even and CP-odd Higgs H, A to tau-lepton pairs severely constrain the parameter region for large values of tan β and light Higgs bosons H, A. We demonstrate how the experimental constraint can be avoided by new decays to light third-generation sfermions, whose left-right couplings to H can be maximised in regions of large trilinear couplings A b , A τ for sbottoms and staus, or large supersymmetric (SUSY) Higgs mass μ for stops. Due to the tan β-enhancement in the production cross-sections via gluon-fusion and in association with bottom-quark pairs for H and A, we find that down-type sfermions, in particular, sbottoms perform a better job in allowing more parameter space than up-type sfermions such as stops, which require much larger values of μ to compensate for tan β. Vacuum stability as well as flavour observables constraints and direct searches for SUSY particles are imposed. We also associate the lightest CP-even Higgs with the observed 125 GeV SM-like Higgs and impose the experimental constraints from the LHC.
Foltran, Francesca; Passali, Francesco Maria; Berchialla, Paola; Gregori, Dario; Pitkäranta, Anne; Slapak, Ivo; Jakubíková, Janka; Franchin, Laura; Ballali, Simonetta; Passali, Giulio Cesare; Bellussi, Luisa; Passali, Desiderio
2012-05-14
Foreign body (FB) inhalation, aspiration or ingestion are relatively common events in children. Despite many efforts made in several countries to achieve acceptable safety levels for consumer products devoted to children, small toys or toy parts are still frequently mentioned among risky foreign bodies. The aim of the present study is to characterize the risk of complications and prolonged hospitalization due to toys inhalation, aspiration or ingestion according to age and gender of patients, FB characteristics, circumstances of the accident, as emerging from the Susy Safe Registry. The Susy Safe Registry started in the 2005 to collect data to serve as a basis for a knowledge-based consumer protection activity. It is actually one of the wider databases collecting foreign body injuries in the upper aero-digestive tract in pediatric patients. It is distinguished by a deep characterization of objects which caused the injuries and a multi-step quality control procedure which assures its reliability. Preventive strategies imposing a regulation of industrial production, even if fundamental, are not sufficient and need to be integrated along with other intervention addressed to make aware caregivers toward a proper surveillance of children.
Kaminska, Anna [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ross, Graham G. [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Schmidt-Hoberg, Kai [European Lab. for Particle Physics (CERN), Geneva (Switzerland)
2013-08-15
For the case of the MSSM and the most general form of the NMSSM (GNMSSM) we determine the reduction in the fine tuning that follows from allowing gaugino masses to be non-degenerate at the unification scale, taking account of the LHC8 bounds on SUSY masses, the Higgs mass bound, gauge coupling unification and the requirement of an acceptable dark matter density. We show that low-fine tuned points fall in the region of gaugino mass ratios predicted by specific unified and string models. For the case of the MSSM the minimum fine tuning is still large, approximately 1:60 allowing for a 3 GeV uncertainty in the Higgs mass (1:500 for the central value), but for the GNMSSM it is below 1:20. We find that the spectrum of SUSY states corresponding to the low-fine tuned points in the GNMSSM is often compressed, weakening the LHC bounds on coloured states. The prospect for testing the remaining low-fine-tuned regions at LHC14 is discussed.
Schulte, Jan-Frederik
2017-01-01
Searches for Supersymmetry (SUSY) in events with two opposite-sign same-flavour leptons offer sensitivity to the production of sleptons or Z bosons in the cascade decays of initially produced heavy SUSY particles. In the considered models, this signature is accompanied by the presence of several jets and high missing transverse energy. Analysing their respective datasets recorded at √ s = 8 TeV, the ATLAS and CMS collaborations previously reported deviations from the pre- dicted Standard Model backgrounds in this final state, with significances between 2.6 and 3.0 σ . However, these excesses had been observed in different regions of the dilepton invariant mass. The dataset recorded with the CMS detector at √ s = 13 TeV in 2015, corresponding to 2.3 fb − 1 , offers the opportunity to substantiate or refute these interesting hints for new phenomena. Unfor- tunately, no significant deviation from the background estimates are observed in either of the two selections which had shown excesses in the √ s = ...
Phenomenological implications of an S U (5 )×S4×U (1 ) SUSY GUT of flavor
Dimou, Maria; King, Stephen F.; Luhn, Christoph
2016-04-01
We discuss the characteristic low energy phenomenological implications of an S U (5 ) supersymmetric (SUSY) grand unified theory whose flavor structure is controlled by the family symmetry S4×U (1 ), which provides a good description of all quark and lepton masses, mixings as well as charge parity violation. Although the model closely mimics minimal flavor violation (MFV) as shown in M. Dimou, S. F. King, and C. Luhn, J. High Energy Phys. 02 (2016) 118., here we focus on the differences. We first present numerical estimates of the low energy mass insertion parameters, including canonical normalization and renormalization group running, for well-defined ranges of SUSY parameters and compare the naive model expectations to the numerical scans and the experimental bounds. Our results are then used to estimate the model-specific predictions for electric dipole moments (EDMs), lepton flavor violation (LFV), B and K meson mixing as well as rare B decays. The largest observable deviations from MFV come from the LFV process μ →e γ and the electron EDM.
Steiner, Janine
2005-01-01
Full Text Available Three possible constructions of adverbially complemented noun phrases are attested in Swiss German. In (1, the indefinite article is doubled, whereas in (2 and (3 the article appears only once; it precedes or follows the adverb, respectively:(1 Also d' Susi wär e ganz e liebi Frau für de Markus! So the Susi would_be Art really Art lovely wife for the Markus! 'Susi would be a really lovely wife for Markus!' (2 Also d' Susi wär ganz e liebi Frau für de Markus! So the Susi would_be really Art lovely wife for the Markus! 'Susi would be a really lovely wife for Markus!' (3 Also d' Susi wär e ganz liebi Frau für de Markus! So the Susi would_be Art really lovely wife for the Markus! 'Susi would be a really lovely wife for Markus!' Doubling of the indefinite article is quite often mentioned in dialectological literature. Unfortunately there is nothing to be found about regional differences, frequency or possible contexts for a doubling in most standard works of Swiss German dialectology. The present paper now fills in some of these gaps in research on the adverbially complemented noun phrase in Swiss German:In a quantitative analysis will be shown that the construction with the article between adverb and adjective (2 is the one given the highest acceptance and preference rates by the informants. Furthermore the paper also shows that the doubling-construction (1 is more prominent in some Swiss German speaking-areas than in others. An apparent time analysis reveals ongoing language change and, last but not least, it shows that sociolinguistic parameters have an impact on the adverbially complemented noun phrase as well.
Testing No-Scale F-SU(5): A 125 GeV Higgs Boson and SUSY at the 8 TeV LHC
Li, Tianjun; Nanopoulos, Dimitri V; Walker, Joel W
2012-01-01
We celebrate the recent Higgs discovery announcement with our experimental colleagues at the LHC and look forward to the implications that this success will bring to bear upon the continuing search for supersymmetry (SUSY). The model framework named No-Scale F-SU(5) possesses the rather unique capacity to provide a light CP-even Higgs boson mass in the favored 124-126 GeV window while simultaneously retaining a testably light SUSY spectrum that is consistent with emerging low-statistics excesses beyond the Standard Model expectation in the ATLAS and CMS multijet data. In this letter we review the distinctive F-SU(5) mechanism that forges the physical 125 GeV Higgs boson and make a specific assessment of the ATLAS multijet SUSY search observables that may be expected for an initial 6\\fb delivery of 8 TeV data in this model context. Based on our Monte Carlo study, we anticipate that the enticing hints of a SUSY signal observed in the 7 TeV data could be substantially amplified in the first 8 TeV results. Moreov...
Merryman Boncori, John Peter; Dall, Jørgen; Ahlstrøm, A. P.;
2010-01-01
This paper describes the validation of an ice-motion processing chain developed for the PROMICE project – a long-term program funded by the Danish ministry of Climate and Energy to monitor the mass budget of the Greenland ice-sheet. The processor, named SUSIE, (Scripts and Utilities for SAR Ice...
Mart Susi müüb Concordia ülikooli hüvanguks Kolu mõisa / Sigrid Laev
Laev, Sigrid
2003-01-01
Concordia ülikooli rektor Mart Susi pani müüki endale kuuluva Kolu mõisa, et sellest saadava rahaga katta ülikooli vajadusi. Tallinna Pedagoogikaülikool on Concordia ostmisest huvitatud. Concordia ülikooli tudengid on teinud üleskutse ühinemiseks, et kooli tuleviku suhtes kaasa rääkida
[Zvonimir Susić--doyen of Croatian neuropsychiatry in the 20th century].
Sepcić, Juraj; Pavlović, Eduard; Perković, Olivio; Skrobonja, Ante
2008-01-01
There are three distinct phases in the life of Zvonimir Susić--neurologist, psychiatrist, forensic expert, educator, teacher, translator, and erudite of general and professional knowledge--Zagreb, Rijeka and Zadar phase. In Zagreb (1926-1946) he was promoted to physician (1932), there he was a student tutor, then the assistant at the Physiology Institute of the Medical Faculty; volunteer, hospital doctor (he got the specialization in 1938), assistant and head doctor of the Hospital for Mental Diseases in Vrapce, and the assistant professor (1941) at the Neuropsychiatric Department of the Zagreb University. In Rijeka (1947-1959) he reorganized Psychiatric and established the Neurology Department of the General Hospital "Brothers Dr. Sobol" and, at first, he was the honorary professor, then assistant professor and associate professor of neurology and psychiatry at the Medical Faculty of Rijeka. In Zadar (1960-1968) he was the manager of the Ugljan Hospital. He published approximately 100 works in the field of clinical neurology, neuropathology, psychiatry, and forensic psychiatry, His works on cortical presentation of the body scheme, hallucinations, tuberous sclerosis, pregnancy and multiple sclerosis, pathohistology of demyelisation, toxic neuritis, epilepsies, nervous manifestations of Malta fever, herpetic infections, pathogenesis of convulsive syndromes, psychiatric terminology, therapies of Parkinson disease and schizophrenia, ability of making will, organization of the psychiatric service, were published in national and prestigious European journals, and often cited. He wrote chapters in psychiatric handbooks and special notes in encyclopedic editions. Together with Stanislav Zupić he was the author of the first and only psychodrama in Croatia. He was one of the pioneers of neuropathology in Croatia because he founded the Neuropathology Laboratory in Vrapce Hospital in 1936. He had a remarkable preciseness in examining the patient. He was frequent and
Search for Gauge-Mediated SUSY Breaking Topologies at $\\sqrt{s}\\sim{189}$ GeV
Barate, R; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Davies, G; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kado, M; Leroy, O; Maley, P; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Valassi, Andrea; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Swynghedauw, M; Tanaka, R; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Chalmers, M; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Räven, B; Smith, D; Teixeira-Dias, P; Thompson, A S; Ward, J J; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Leibenguth, G; Putzer, A; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Przysiezniak, H; Sciabà, A; Sedgbeer, J K; Thompson, J C; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Smizanska, M; Williams, M I; Giehl, I; Hölldorfer, F; Jakobs, K; Kleinknecht, K; Kröcker, M; Müller, A S; Nürnberger, H A; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Tilquin, A; Aleppo, M; Antonelli, M; Gilardoni, S S; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Serin, L; Veillet, J J; Videau, I; De Vivie de Régie, J B; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Coles, J; Cowan, G D; Green, M G; Hutchcroft, D E; Jones, L T; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Seager, P; Trabelsi, A; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Loomis, C; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Borean, C; Giannini, G; Gobbo, B; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G
2001-01-01
Searches for topologies characteristic of Gauge Mediated SUSY Breaking models (GMSB) are performed by analysing 173.6 pb^-1 of data collected at Ecm = 188.6~GeV with the ALEPH detector.These topologies include acoplanar photons, non-pointing single photon, acoplanar leptons, large impact parameter leptons, detached slepton decay vertices, heavy stable charged sleptons and four leptons plus missing energy final states.No evidence for these new phenomena is observed and limits on production cross sections and sparticle masses are derived. A scan of a minimal GMSB parameter space is performed and model dependent lower limits of about 45 GeV/c^2 on the next-to-lightest supersymmetric particle (NLSP) mass and of about 9 TeV on the mass scale parameter Lambda are derived, independently of the NLSP lifetime.
Kato, J; Miyake, A; Kato, Junji; Kawamoto, Noboru; Miyake, Akiko
2005-01-01
We propose N=4 twisted superspace formalism in four dimensions by introducing Dirac-Kahler twist. In addition to the BRST charge as a scalar counter part of twisted supercharge we find vector and tensor twisted supercharges. By introducing twisted chiral superfield we explicitly construct off-shell twisted N=4 SUSY invariant action. We can propose variety of supergauge invariant actions by introducing twisted vector superfield. We may, however, need to find further constraints to identify twisted N=4 super Yang-Mills action. We propose a superconnection formalism of twisted superspace where constraints play a crucial role. It turns out that N=4 superalgebra of Dirac-Kahler twist can be decomposed into N=2 sectors. We can then construct twisted N=2 super Yang-Mills actions by the superconnection formalism of twisted superspace in two and four dimensions.
Non-decoupling SUSY Quantum Effects in Higgs-Boson Production p p -> b h+X
Cao, J; Su, Y; Yang, J M; Cao, Junjie; Gao, Guangping; Su, Yuling; Yang, Jin Min
2003-01-01
The Higgs boson production $p p (or p p_bar) -> b h +X$ via subprocess $b g -> b h$ at hadron colliders, which is an important channel for testing Higgs Yukawa coupling to bottom quark, is subject to large supersymmetric quantum corrections. We in this work studied the SUSY-QCD corrections to this process and found such corrections are so large in some parameter space that they must be included in the prediction. We also studied the decoupling behavior of the corrections. The analytic expression of the corrections in the heavy limit of sparticle masses is derived explicitly. We found that in some scenarios the corrections do not vanish in the decoupling limit. Such non-decoupling quantum effects will play an important role in the indirect test of supersymmetry, especially in case that the sparticles are too heavy (above TeV) to be directly discovered at the LHC.
张洪君
2004-01-01
笔者参加第六次国际护理学术会，留下印象较深的是各国护理专家们对心身护理(Mind and Body)的深入研究，从中也认识到我国在整体护理观念和护理模式上与世界护理发展较快的国家之间的差距。尤其是韩国Ewha女子大学护理学院Susie Kim教授在本次大会上所交流的题目为“从精神的观点看心身的概念”(Mind and Body in Spiritual Perspectives)，使
Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5 GUTs
Borut Bajc
2016-09-01
Full Text Available We calculate the high and low scale threshold corrections to the D=6 proton decay mode in supersymmetric SU(5 grand unified theories with higher-dimensional representation Higgs multiplets. In particular, we focus on a missing-partner model in which the grand unified group is spontaneously broken by the 75-dimensional Higgs multiplet and the doublet–triplet splitting problem is solved. We find that in the missing-partner model the D=6 proton decay rate gets suppressed by about 60%, mainly due to the threshold effect at the GUT scale, while the SUSY-scale threshold corrections are found to be less prominent when sfermions are heavy.
Calculating the renormalisation group equations of a SUSY model with Susyno
Fonseca, Renato M.
2012-10-01
Susyno is a Mathematica package dedicated to the computation of the 2-loop renormalisation group equations of a supersymmetric model based on any gauge group (the only exception being multiple U(1) groups) and for any field content. Program summary Program title: Susyno Catalogue identifier: AEMX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30829 No. of bytes in distributed program, including test data, etc.: 650170 Distribution format: tar.gz Programming language: Mathematica 7 or higher. Computer: All systems that Mathematica 7+ is available for (PC, Mac). Operating system: Any platform supporting Mathematica 7+ (Windows, Linux, Mac OS). Classification: 4.2, 5, 11.1. Nature of problem: Calculating the renormalisation group equations of a supersymmetric model involves using long and complicated general formulae [1, 2]. In addition, to apply them it is necessary to know the Lagrangian in its full form. Building the complete Lagrangian of models with small representations of SU(2) and SU(3) might be easy but in the general case of arbitrary representations of an arbitrary gauge group, this task can be hard, lengthy and error prone. Solution method: The Susyno package uses group theoretical functions to calculate the super-potential and the soft-SUSY-breaking Lagrangian of a supersymmetric model, and calculates the two-loop RGEs of the model using the general equations of [1, 2]. Susyno works for models based on any representation(s) of any gauge group (the only exception being multiple U(1) groups). Restrictions: As the program is based on the formalism of [1, 2], it shares its limitations. Running time can also be a significant restriction, in particular for models with many fields. Unusual features
Harz, Julia [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Herrmann, Bjoern [Laboratoire d' Annecy de Physique Theorique, Annecy-le-Vieux (France); Klasen, Michael; Meinecke, Moritz; Steppeler, Patrick [Institute of Theoretical Physics Muenster (Germany); Kovarik, Karol [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Le Boulc' h, Quentin [Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France)
2013-07-01
A powerful method to constrain the parameter space of theories beyond the Standard Model is to compare the predicted dark matter relic density with cosmological precision measurements, in particular with WMAP- and the upcoming Planck-data. On the particle physics side, the main uncertainty on the relic density arises from the (co-)annihilation cross sections of the dark matter particle. After a motivation for including higher order corrections in the prediction of the relic density, the DM rate at NLO-project will be presented, a software package that allows for the computation of the neutralino (co-)annihilation cross sections including SUSY-QCD corrections at the one-loop level and the evaluation of their effect on the relic density using a link to the public codes MicrOMEGAs and DarkSUSY. Recent results of the impact of SUSY-QCD corrections on the neutralino (co-)annihilation cross section as well as further ongoing projects in the context of the DM rate at NLO-project are discussed.
Q{sub 6} as the flavor symmetry in a non-minimal SUSY SU(5) model
Gomez-Izquierdo, J.C.; Mondragon, M [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico, DF (Mexico); Gonzalez-Canales, F. [Benemerita Universidad Autonoma, Facultad de Ciencias de la Electronica, Puebla, Puebla (Mexico); Instituto de Fisica Corpuscular-CSIC/Universitat de Valencia, AHEP Group, Paterna, Valencia (Spain)
2015-05-15
We present a non-minimal renormalizable SUSY SU(5) model, with extended Higgs sector and right-handed neutrinos, where the flavor sector exhibits a Q{sub 6} flavor symmetry. We analyzed the simplest version of this model, in which R-parity is conserved and the right-handed neutrino masses in the flavor doublet are considered with and without degeneracy. We find the generic form of the mass matrices both in the quark and lepton sectors. We reproduce, according to current data, the mixing in the CKM matrix. In the leptonic sector, in the general case where the right-handed neutrino masses are not degenerate, we find that the values for the solar, atmospheric, and reactor mixing angles are in very good agreement with the experimental data, both for a normal and an inverted hierarchy. In the particular case where the right-handed neutrinos masses are degenerate, the model predicts a strong inverted hierarchy spectrum and a sum rule among the neutrino masses. In this case the atmospheric and solar angles are in very good agreement with experimental data, and the reactor one is different from zero, albeit too small (θ{sub 13}{sup l{sup t{sup h}}}). This value constitutes a lower bound for θ{sub 13} in the general case.We also find the range of the values for the neutrino masses in each case. (orig.)
Gosdzik, Bjorn
In November 2009 the ATLAS experiment started operation at the Large Hadron Collider (LHC) at CERN. The detector is optimized to search for the Higgs Boson and new physics at the TeV scale. Until the end of the data-taking period with proton-proton collisions on November 3rd, 2010, the ATLAS detector recorded an integrated luminosity of 45.0 pb-1 at a center-of-mass energy of p s =7 TeV. In many signals of the Standard Model and new physics (e.g. SUSY and Higgs) -leptons play an important role. A cut-based approach for the identification of hadronically decaying -leptons is being used, particularly for the first data-taking period. Using Monte Carlo Data, the development of a cutbased identification method for hadronically decaying -lepton with the ATLAS detector at the Large Hadron Collider (LHC) with a center-of-mass energy of p s = 14 TeV is presented. The separation of signal and the large QCD jet background is a challenge to the identification of hadronically decaying -lepton. The identification is s...
Q{sub 6} as the flavor symmetry in a non-minimal SUSY SU(5) model
Gómez-Izquierdo, J. C., E-mail: jcgizquierdo1979@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, 01000, Mexico, DF (Mexico); González-Canales, F., E-mail: felix.gonzalez@ific.uv.es [Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma, de Puebla, Apdo. Postal 157, 72570, Puebla, Puebla (Mexico); AHEP Group, Instituto de Física Corpuscular-CSIC/Universitat de Valencia, Parc Cientific de Paterna, C/Catedrático José Beltrán, 2, 46980, Paterna, Valencia (Spain); Mondragon, M, E-mail: myriam@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, 01000, Mexico, DF (Mexico)
2015-05-21
We present a non-minimal renormalizable SUSY SU(5) model, with extended Higgs sector and right-handed neutrinos, where the flavor sector exhibits a Q{sub 6} flavor symmetry. We analyzed the simplest version of this model, in which R-parity is conserved and the right-handed neutrino masses in the flavor doublet are considered with and without degeneracy. We find the generic form of the mass matrices both in the quark and lepton sectors. We reproduce, according to current data, the mixing in the CKM matrix. In the leptonic sector, in the general case where the right-handed neutrino masses are not degenerate, we find that the values for the solar, atmospheric, and reactor mixing angles are in very good agreement with the experimental data, both for a normal and an inverted hierarchy. In the particular case where the right-handed neutrinos masses are degenerate, the model predicts a strong inverted hierarchy spectrum and a sum rule among the neutrino masses. In this case the atmospheric and solar angles are in very good agreement with experimental data, and the reactor one is different from zero, albeit too small (θ{sub 13}{sup ℓ{sup t{sup h}}}∼3.38{sup ∘}). This value constitutes a lower bound for θ{sub 13} in the general case. We also find the range of the values for the neutrino masses in each case.
Besjes, Geert Jan; Caron, Sascha
In this thesis, a search for new elementary particles predicted by a theory called supersymmetry (SUSY), which attempts to address shortcomings in our current description of particle physics, the Standard Model, is presented. No events incompatible with the Standard Model are observed, however. The results obtained in this search are also used in fits to a larger supersymmetric model, and combined with different analyses to obtain improved limits on simplified models. In addition, prospects for a similar search at the proposed high-luminosity LHC are discussed. Finally, HistFitter is presented, a program developed to perform searches in high-energy physics. Supersymmetry is searched for in a decay channel with 2 to 6 jets, missing energy, and no leptons in the final state. The coupling of squarks and gluinos to the strong force leads to a final state with many jets, in which the lightest supersymmetric particle produced in the cascade decay escapes the detector unseen. The analysis is designed using 15 signa...
Search for Higgs Bosons in SUSY Cascades in CMS and Dark Matter with Non-universal Gaugino Masses
Huitu, Katri; Laamanen, Jari; Lehti, Sami; Roy, Sourov; Salminen, Tapio
2008-01-01
In grand unified theories (GUT), non-universal boundary conditions for the gaugino masses may arise at the unification scale, and affect the observability of the neutral MSSM Higgs bosons (h/H/A) at the LHC. The implications of such non-universal gaugino masses are investigated for the Higgs boson production in the SUSY cascade decay chain gluino --> squark quark, squark --> neutralino_2 quark, neutralino_2 --> neutralino_1 h/H/A, h/H/A --> b b-bar produced in pp interactions. In the singlet representation with universal gaugino masses only the light Higgs boson can be produced in this cascade with the parameter region of interest for us, while with non-universal gaugino masses heavy neutral MSSM Higgs boson production may dominate. The allowed parameter space in the light of the WMAP constraints on the cold dark matter relic density is investigated in the above scenarios for gaugino mass parameters. We also demonstrate that combination of representations can give the required amount of dark matter in any poi...
The 14 TeV LHC Takes Aim at SUSY: A No-Scale Supergravity Model for LHC Run 2
Li, Tianjun; Nanopoulos, Dimitri V; Walker, Joel W
2015-01-01
The Supergravity model named No-Scale ${\\cal F}$-$SU(5)$, which is based upon the flipped $SU$(5) Grand Unified Theory (GUT) with additional TeV-scale vector-like flippon multiplets, has been partially probed during the LHC Run 1 at 7-8 TeV, though the majority of its model space remains viable and should be accessible by the 13-14 TeV LHC during Run 2. The model framework possesses the rather unique capacity to provide a light CP-even Higgs boson mass in the favored 124-126 GeV window while simultaneously retaining a testably light supersymmetry (SUSY) spectrum. We summarize the outlook for No-Scale ${\\cal F}$-$SU(5)$ at the 13-14 TeV LHC and review a promising methodology for the discrimination of its long-chain cascade decay signature. We further show that proportional dependence of all model scales upon the unified gaugino mass $M_{1/2}$ minimizes electroweak fine-tuning, allowing the $Z$-boson mass $M_Z$ to be expressed as an explicit function of $M_{1/2}$, $M_Z^2 = M_Z^2 (M_{1/2}^2)$, with implicit depe...
Curcó, David; Alemán, Carlos
2004-04-30
The performance of a recently developed method to generate representative atomistic models of amorphous polymers has been investigated. This method, which is denoted SuSi, can be defined as a random generator of energy minima. The effects produced by different parameters used to define the size of the system and the characteristics of the generation algorithm have been examined. Calculations have been performed on poly(L,D-lactic) acid (rho = 1.25 g/cm3) and nylon 6 (rho = 1.084 g/cm(3)), which are important commercial polymers.
1-D SUSY Quantum System and Quasi-exact Solvable Problems%一维SUSY量子系统与拟精确可解问题
周卓微
2001-01-01
介绍了一维超对称性(SUSY)量子系统的超势函数和与之对应的Hamilton量算符,利用一类势函数族, 讨论了在SUSY框架中是否存在一类新的拟精确可解系统的问题,得到u 与v+ 同能谱但与 v-不同能谱的结果.基于Darboux定理,分析了与同能谱和不同能谱相关的条件.
Misra, Aalok; Shukla, Pramod
2010-03-01
We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the “big” divisor ΣB (as opposed to the “small” divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of [1] (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of [1] (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.
Arbey, A. [Observatoire de Lyon, Centre de Recherche Astrophysique de Lyon, Saint-Genis Laval Cedex (France); Ecole Normale Superieure de Lyon, CNRS, UMR 5574, Lyon (France); Universite de Lyon France, Villeurbanne Cedex (France); CERN, Geneva 23 (Switzerland); Battaglia, M. [CERN, Geneva 23 (Switzerland); University of California, Santa Cruz Institute of Particle Physics, Santa Cruz, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Mahmoudi, F. [CERN, Geneva 23 (Switzerland); LPC, Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, BP 10448, Clermont-Ferrand (France)
2012-10-15
Three dark matter direct detection experiments have reported possible signals which can be interpreted as due to the interaction of light WIMPs with large scattering cross section. In this paper we investigate the viability of SUSY scenarios with light neutralino using high statistics scans in the pMSSM. We identify several scenarios which give rise to very light neutralinos with large direct detection scattering cross sections. We apply constraints from dark matter relic density, direct detection, indirect detection, as well as flavour physics, electroweak precision tests, LEP and Tevatron limits, LHC limits on SUSY, Higgs and monojet searches. In particular we require the Higgs boson mass to be in the range 122.5
Cosmological problems of the string axion alleviated by high scale SUSY of m3/2≃10–100 TeV
Masahiro Kawasaki
2016-02-01
Full Text Available The string axion may provide the most attractive solution to the strong CP problem in QCD. However, the axion energy density easily exceeds the dark matter density in the present universe due to a large decay constant around 1016 GeV, unless the initial value of the axion field is finely tuned. We show that this problem is alleviated if and only if the SUSY particle mass scale is 10–100 TeV, since the decay of the saxion can produce a large enough amount of entropy after the QCD phase transition, not disturbing the BBN prediction. The saxion decay also produces a large number of the lightest SUSY particles (LSPs. As a consequence, R-parity needs to be violated to avoid the overproduction of the LSPs. The saxion field can be stabilized with relatively simple Kähler potentials, not inducing a too large axion dark radiation. Despite the large entropy production, the observed baryon number is explained by the Affleck–Dine mechanism. Furthermore, the constraint from isocurvature perturbations is relaxed, and the Hubble constant during inflation can be as large as several ×1010 GeV.
Kawasaki, Masahiro; Yokozaki, Norimi
2015-01-01
The sting axion may provide the most attractive solution to the strong CP problem in QCD. However, the axion energy density easily exceeds the dark matter density in the present universe due to a large decay constant around $10^{16}$ GeV, unless the initial value of the axion field is finely tuned. We show that this problem is alleviated if and only if the SUSY particle mass scale is 10-100 TeV, since the decay of saxion can produce a large enough amount of entropy after the QCD phase transition, not disturbing the BBN prediction. The saxion decay also produces a large number of the lightest SUSY particles (LSPs). As a consequence, $R$-parity needs to be violated to avoid the overproduction of the LSPs. The saxion field can be stabilized with relatively simple Kahler potentials, not inducing a too large axion dark radiation. Despite the large entropy production, the observed baryon number is explained by the Affleck-Dine mechanism. Furthermore, the constraint from isocurvature perturbations is relaxed, and th...
Tornambe, Peter; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is one of the most studied theories to extend the Standard Model (SM) beyond the electroweak scale. If R-parity is conserved, SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP), which is typically the lightest neutrino $\\tilde{\\chi}_1^0$, is stable. In many models the LSP can be a suitable candidate for dark matter. This poster presents a search for supersymmetric phenomena in final states with two leptons (electrons or muons) of the same electric charge or three leptons, jets and missing transverse energy. While the same-sign or three leptons signature is present in many SUSY scenarios, SM processes leading to such events have very small cross-sections. Therefore, this analysis benefits from a small SM background in the signal regions leading to a good sensitivity especially in SUSY scenarios with compressed mass spectra or in which the R-parity is not conserved. Except from the prompt production of same-sign lepton pairs or three leptons, the main source...
Heister, A.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Halley, A.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.
2002-01-01
A total of 628$\\invpb$ of data collected with the ALEPH detector at centre-of-mass energies from 189 to 209\\,GeV is analysed in the search for gauge mediated SUSY breaking (GMSB) topologies. These topologies include two acoplanar photons, non-pointing single photons, acoplanar leptons, large impact parameter leptons, detached slepton decay vertices, heavy stable charged sleptons and multi-leptons plus missing energy final states. No evidence is found for new phenomena, and lower limits on masses of supersymmetric particles are derived. A scan of a minimal GMSB parameter space is performed and lower limits are set for the next-to-lightest supersymmetric particle (NLSP) mass at 54$\\gevcc$ and for the mass scale parameter $\\Lambda$ at 10$\\tevcc$, independently of the NLSP lifetime. Including the results from the neutral Higgs boson searches, a NLSP mass limit of 77$\\gevcc$ is obtained and values of $\\Lambda$ up to 16$\\tevcc$ are excluded.
JIA Wen-Zhi; WANG Shun-Jin
2008-01-01
We find that in a supersymmetric quantum mechanics (SUSY QM) system, in addition to supersymmetric algebra, an associated SU(2) algebra can be obtained by using semiunitary (SUT) operator and projection operator, and the relevant constants of motion can be constructed. Two typical quantum systems are investigated as examples to demonstrate the above finding. The first example is the quantum system of a nonrelativistic charged particle moving in x-y plane and coupled to a magnetic field along z-axis. The second example is provided with the Dirac particle in a magnetic field. Similarly there exists an SUτ(2) SUσ(2) symmetry in the context of the relativistic Pauli Hamiltonian squared. We show that there exists also an SU(2) symmetry associated with the supersymmetry of the Dirac particle.
Sánchez Cruz, Sergio
A search is presented for physics beyond the standard model in events with two opposite-sign, same-flavor leptons, jets and missing transverse momentum in the final state. The search is performed in a dataset of 35.9 $\\mathrm{fb}^{-1}$ of $\\sqrt{s} = $ 13 TeV pp collisions recorded by the CMS experiment in the year 2016. The search targets models in which a colored particle is produced. Models are considered, in which a kinematic edge is observed in the dilepton invariant mass distribution and models in which a Z boson arises in the decay chain of the SUSY particles. Such searches have been performed in 8 TeV pp collisions as well as 13 TeV collisions. This version of the search adds additional event categories as well as improved background estimation procedures substantially increasing the sensitivity of the search. The results are interpreted in the context of simplified models of Supersymmetry.
Gosdzik, Bjoern
2011-03-15
In November 2009 the ATLAS experiment started operation at the Large Hadron Collider (LHC) at CERN. The detector is optimized to search for the Higgs Boson and new physics at the TeV scale. Until the end of the data-taking period with proton-proton collisions on November 3rd, 2010, the ATLAS detector recorded an integrated luminosity of 45.0 pb{sup -1} at a center-of-mass energy of {radical}(s) = 7 TeV. In many signals of the Standard Model and new physics (e.g. SUSY and Higgs) {tau}-leptons play an important role. A cut-based approach for the identification of hadronically decaying {tau}-leptons is being used, particularly for the first data-taking period. Using Monte Carlo Data, the development of a cut-based identification method for hadronically decaying {tau}-lepton with the ATLAS detector at the Large Hadron Collider (LHC) with a center-of-mass energy of {radical}(s) = 14 TeV is presented. The separation of signal and the large QCD jet background is a challenge to the identification of hadronically decaying {tau}-lepton. The identification is separated into two methods: the calorimeter-based method uses exclusive calorimeter information, while the calorimeter+track-based method combines calorimeter and tracking information. The cut optimization is separately accomplished for {tau} candidates with one charged decay product (1-prong) and {tau} candidates with three charged decay products (3-prong). Additionally the optimisation is split into bins of the visible transverse energy of the {tau} candidate (E{sub T}{sup vis}). First of all the optimization is presented and afterwards the performance of the cut-based identification method is discussed. The reconstruction efficiency for {tau}-leptons is determined by comparing first data corresponding to an integrated luminosity of 244 nb{sup -1} and Monte Carlo simulation. The effect of systematic uncertainties is investigated. The CP violation predicted by the Standard Model is not sufficient to explain the matter
Plume, R.W.
1995-01-01
The basins of Maggie, Marys, and Susie Creeks in northeastern Nevada are along the Carline trend, an area of large, low-grade gold deposits. Pumping of ground water, mostly for pit dewatering at one of the mines, will reach maximum rates of about 70,000 acre-ft/yr (acre-feet per year) around the year 2000. This pumping is expected to affect ground-water levels, streamflow, and possibly the flow of Carlin spring, which is the water supply for the town of Carlin, Nev. Ground water in the upper Maggie Creek Basin moves from recharge areas in mountain ranges toward the basin axis and discharges as evapotranspiration and as inflow to the stream channel. Ground water in the lower Maggie, Marys, and Susie Creek Basins moves southward from recharge areas in mountain ranges and along the channel of lower Maggie Creek to the discharge area along the Humboldt River. Ground-water underflow between basins is through permeable bedrock of Schroeder Mountain from the upper Maggie Creek Basin to the lower Maggie Creek Basin and through permeable volcanic rocks from lower Maggie Creek to Carlin spring in the Marys Creek Basin. The only source of water to the combined area of the three basins is an estimated 420,000 acre-ft/yr of precipitation. Water leaves as runoff (38,000 acre-ft/yr) and evapotranspiration of soil moisture and ground water (380,000 acre-ft/yr). A small part of annual precipitation (about 25,000 acre-ft/yr) infiltrates the soil zone and becomes ground-water recharge. This ground water eventually is discharged as evapotranspiration (11,000 acre-ft/yr) and as inflow to the Humboldt River channel and nearby springflow (7,000 acre-ft/yr). Total discharge is estimated to be 18,000 acre-ft/yr.
Röthlein, Brigitte
2003-01-01
Ratinality and Spirituality, two poles of the Thought that don't exclude each other. That's why since three years now, the "Autumn school for high energy physics" is held in the Benedictine cloister Maria Laach (3 pages)
Theoretical Developments in SUSY
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.
Theoretical developments in SUSY
Shifman, M. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)
2009-01-15
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)
Kim, J. S.; Rolbiecki, K.; Ruiz, R.; Tattersall, J.; Weber, T.
2016-11-01
As we anticipate the first results of the 2016 run, we assess the discovery potential of the LHC to "natural supersymmetry." To begin with, we explore the region of the model parameter space that can be excluded with various center-of-mass energies (13 TeV and 14 TeV) and different luminosities (20 fb-1 , 100 fb-1 , 300 fb-1 and 3000 fb-1 ). We find that the bounds at 95% C.L. on stops vary from mt˜1≳800 GeV expected this summer to mt˜1≳1500 GeV at the end of the high luminosity run, while gluino bounds are expected to range from mg ˜≳1700 GeV to mg ˜≳2500 GeV over the same time period. However, more pessimistically, we find that if no signal begins to appear this summer, only a very small region of parameter space can be discovered with 5 σ significance. For this conclusion to change, we find that both theoretical and systematic uncertainties will need to be significantly reduced.
Tornambe, Peter; The ATLAS collaboration
2017-01-01
This proceeding summarizes a search for supersymmetric phenomena in final states with two leptons (electrons or muons) of the same electric charge or three leptons, jets and missing transverse energy. While the same-sign or three leptons signature is present in many SUSY scenarios, SM processes leading to such events have very small cross-sections. Therefore, this analysis benefits from a small SM background in the signal regions leading to a good sensitivity especially in SUSY scenarios with compressed mass spectra or in which the R-parity is not conserved. The search was performed with the full dataset recorded with the ATLAS detector during the year 2015 and 2016 corresponding to a total integrated luminosity of 36.1 fb$^{-1}$. No significant excess above the Standard Model expectations is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches.
Bhattacharya, Saptaparna
2015-01-01
The Large Hadron Collider (LHC) has had a very successful data-taking phase with Run 1. After the discovery of the Higgs, confirming the predictions of the Standard Model (SM), the focus is on finding new physics, especially in the context of supersymmetry (SUSY). One of the potential hiding places of natural SUSY is in models with compressed spectra, that is, models where the mass difference between the parent SUSY particle and the Lightest Supersymmetric Particle (LSP) is small. Such signals are characterized by low transverse momentum (p${_T}$) objects, low hadronic activity and missing transverse energy (MET). In this analysis, we focus on di-lepton final states, specifically in the low p${_T}$ regime. We use 7.4 fb$^{-1}$ of parked data collected at $\\sqrt{s}$ = 8 TeV. The analysis is enabled by the use of triggers that place no restrictions on the di-lepton p${_T}$, instead relying on methods like Initial State Radiation (ISR) tagging by triggering on a high p${_T}$ photon, to reduce the trigger rate....