Minimal SUSY SO(10) and Yukawa unification
International Nuclear Information System (INIS)
Okada, Nobuchika
2013-01-01
The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {10⊕126-bar} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y 126 ) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of β(10 14 GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - τ Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - τ Yukawa coupling unification is very accurate, the largest element in Y 126 can become β(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - τ Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.
Nucleon decay in a realistic SO(10) SUSY GUT
International Nuclear Information System (INIS)
Lucas, V.; Raby, S.
1997-01-01
In this paper, we calculate neutron and proton decay rates and branching ratios in a predictive SO(10) SUSY GUT which agrees well with low energy data. We show that the nucleon lifetimes are consistent with the experimental bounds. The nucleon decay rates are calculated using all one-loop chargino and gluino-dressed diagrams regardless of their chiral structure. We show that the four-fermion operator C jk (u R d jR )(d kL ν τL ), commonly neglected in previous nucleon decay calculations, not only contributes significantly to nucleon decay, but, for many values of the initial GUT parameters and for large tanβ, actually dominates the decay rate. As a consequence, we find that τ p /τ n is often substantially larger than the prediction obtained in small tanβ models. We also find that gluino-dressed diagrams, often neglected in nucleon decay calculations, contribute significantly to nucleon decay. In addition we find that the branching ratios obtained from this realistic SO(10) SUSY GUT differ significantly from the predictions obtained from open-quotes genericclose quotes SU(5) SUSY GUT close-quote s. Thus, nucleon decay branching ratios, when observed, can be used to test theories of fermion masses. copyright 1997 The American Physical Society
Symmetric neutrino mass matrix with two zeros in SUSY SO(10) GUT
International Nuclear Information System (INIS)
Bando, Masako; Kaneko, Satoru; Obara, Midori; Tanimoto, Morimitsu
2004-01-01
We study the symmetric 2-zero texture of lepton and quark mass matrix, for the SUSY SO(10) GUT model including the Pati-Salam symmetry. We show that our model can simultaneously explain the current neutrino experimental data, predicted rate of lepton flavor violating processes are safely below the experimental bounds and baryon asymmetry of the universe can be obtained through thermal leptogenesis. (author)
Leptogenesis in a Δ(27)×SO(10) SUSY GUT
Energy Technology Data Exchange (ETDEWEB)
Björkeroth, Fredrik [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Anda, Francisco J. de [Departamento de Física, CUCEI, Universidad de Guadalajara,Guadalajara (Mexico); Varzielas, Ivo de Medeiros; King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom)
2017-01-17
Although SO(10) Supersymmetric (SUSY) Grand Unification Theories (GUTs) are very attractive for neutrino mass and mixing, it is often quite difficult to achieve successful leptogenesis from the lightest right-handed neutrino N{sub 1} due to the strong relations between neutrino and up-type quark Yukawa couplings. We show that in a realistic model these constraints are relaxed, making N{sub 1} leptogenesis viable. To illustrate this, we calculate the baryon asymmetry of the Universe Y{sub B} from flavoured N{sub 1} leptogenesis in a recently proposed Δ(27)×SO(10) SUSY GUT. The flavoured Boltzmann equations are solved numerically, and comparison with the observed Y{sub B} places constraints on the allowed values of right-handed neutrino masses and neutrino Yukawa couplings. The flavoured SO(10) SUSY GUT is not only fairly complete and predictive in the lepton sector, but can also explain the BAU through leptogenesis with natural values in the lepton sector albeit with some tuning in the quark sector.
Dark matter and Bs→μ+μ- with minimal SO10 soft SUSY breaking
International Nuclear Information System (INIS)
Dermisek, R.; Roszkowski, L.; Ruiz de Austri, R.; Raby, S.
2003-01-01
CMSSM boundary conditions are usually used when calculating cosmological dark matter densities. In this paper we calculate the cosmological density of dark matter in the MSSM using minimal SO 10 soft SUSY breaking boundary conditions. These boundary conditions incorporate several attractive features: they are consistent with SO 10 Yukawa unification, they result in a 'natural' inverted scalar mass hierarchy and they reduce the dimension 5 operator contribution to the proton decay rate. With regards to dark matter, on the other hand, this is to a large extent an unexplored territory with large squark and slepton masses m 16 , large A 0 and small {μ,M 1/2 }. We find that in most regions of parameter space the cosmological density of dark matter is considerably less than required by the data. However there is a well-defined, narrow region of parameter space which provides the observed relic density of dark matter, as well as a good fit to precision electroweak data, including top, bottom and tau masses, and acceptable bounds on the branching fraction of B s →μ + μ - . We present predictions for Higgs and SUSY spectra, the dark matter detection cross section and the branching ratio BR(B s →μ + μ - ) in this region of parameter space. (author)
On the fine-tuning problem in minimal SO(10) SUSY-GUT
International Nuclear Information System (INIS)
Hempfling, R.
1994-05-01
In grand unified theories (GUT) based on SO(10) all fermions of one generation are embedded in a single representation. As a result, the top quark, the bottom quark, and the τ lepton have the same Yukawa coupling at the GUT scale. This implies a very large ratio of Higgs vacuum expectation values, tanβ≅m t /m b . In this letter we show that GUT threshold correction to the universal Higgs mass parameter can solve the fine-tuning problem associated with such large values of tan β. (orig.)
International Nuclear Information System (INIS)
Patra, Sudhanwa; Pritimita, Prativa
2014-01-01
''Post-sphaleron baryogenesis'', a fresh and profound mechanism of baryogenesis accounts for the matter-antimatter asymmetry of our present universe in a framework of Pati-Salam symmetry. We attempt here to embed this mechanism in a non-SUSY SO(10) grand unified theory by reviving a novel symmetry breaking chain with Pati-Salam symmetry as an intermediate symmetry breaking step and as well to address post-sphaleron baryogenesis and neutron-antineutron oscillation in a rational manner. The Pati-Salam symmetry based on the gauge group SU(2) L x SU(2) R x SU(4) C is realized in our model at 10 5 -10 6 GeV and the mixing time for the neutron-antineutron oscillation process having ΔB = 2 is found to be τ n- anti n ≅ 10 8 -10 10 s with the model parameters, which is within the reach of forthcoming experiments. Other novel features of the model include low scale right-handed W R ± , Z R gauge bosons, explanation for neutrino oscillation data via the gauged inverse (or extended) seesaw mechanism and most importantly TeV scale color sextet scalar particles responsible for an observable n- anti n oscillation which may be accessible to LHC. We also look after gauge coupling unification and an estimation of the proton lifetime with and without the addition of color sextet scalars. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Maekawa, Nobuhiro; Yamashita, Toshifumi
2003-08-14
This Letter demonstrates that, as in flipped SU(5) models, doublet-triplet splitting is accomplished by a missing partner mechanism in flipped SO(10) models. The gauge group SO(10){sub F}xU(1){sub V'{sub F}} includes SU(2){sub E} gauge symmetry, which plays an important role in solving the supersymmetric (SUSY) flavor problem by introducing non-abelian horizontal gauge symmetry and anomalous U(1){sub A} gauge symmetry. The gauge group can be broken into the standard model gauge group by VEVs of only spinor fields; such models may be easier to derive than E{sub 6} models from superstring theory.
Examining a renormalizable supersymmetric SO(10) model
Energy Technology Data Exchange (ETDEWEB)
Chen, Zhi-Yong; Zhang, Da-Xin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China)
2017-10-15
We examine a renormalizable SUSY SO(10) model without fine-tuning. We show how to construct MSSM doublets and to predict proton decay. We find that in the minimal set of Yukawa couplings the model is consistent with the experiments, while including 120{sub H} to fit the data there are inconsistencies. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Tamvakis, K.
1988-01-28
We construct an N=1 supersymmetric SO(10) GUT broken down to SU(3)c x SU(2)/sub L/ x U(1)/sub ..gamma../ with an intermediate flipped SU(5) x U(1)/sub chi/ gauge symmetry. A solution to the triplet-doublet mass-splitting problem is proposed in terms of a non-minimal missing-partner mechanism.
International Nuclear Information System (INIS)
Gu Peihong; Sarkar, Utpal
2008-01-01
Baryogenesis, through the decays of heavy bosons, was considered to be one of the major successes of the grand unified theories (GUTs). It was then realized that the sphaleron processes erased any baryon asymmetry from the GUT-baryogenesis at a later stage. In this Letter, we discuss the idea of resurrecting GUT-baryogenesis [M. Fukugita, T. Yanagida, Phys. Rev. Lett. 89 (2002) 131602] in a large class of SO(10) GUTs. Our analysis shows that fast lepton number violating but baryon number conserving processes can partially wash out the GUT-baryogenesis produced lepton and/or baryon asymmetry associated with or without the sphaleron and/or Yukawa interactions
International Nuclear Information System (INIS)
Milton, K.; Hama, S.; Nandi, S.; Tanaka, K.
1980-01-01
Neutrino mixing angles were computed in terms of upquark mass ratios in a grand unified field theory based on the gauge group SO(10) supplemented by a discrete symmetry. Only large ν/sub μ/ - ν/sub tau/ mixing were found
International Nuclear Information System (INIS)
Robinett, R.W.; Rosner, J.L.
1982-01-01
Models based on SO(10) are presented in which a second Z (''Z 2 '') can have a mass as low as 230 GeV/c 2 without appreciably distorting the lower-energy picture. In such models the lightest Z(''Z 1 '') is very close to the predicted mass in the standard picture, 1 greater than or equal to M(Z 1 )/M(Z 0 ) greater than or equal to 0.98. The major constraint preventing M(Z 2 ) from being even lower comes from experiments on parity violation in heavy atoms. Other properties of Z 2 , and ways to discover it, are discussed
LHC constraints on Yukawa unification in SO(10)
Energy Technology Data Exchange (ETDEWEB)
Badziak, Marcin [Cambridge Univ. (United Kingdom). Centre for Mathematical Sciences; Cambridge Univ. (United Kingdom). Cavendish Lab.; Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-12-15
LHC constraints on the recently proposed SUSY SO(10) GUT model with top-bottom-tau Yukawa uni cation are investigated. In this model, various phenomenological constraints are in concord with Yukawa uni cation thanks to the negative sign of {mu}, D-term splitting in the soft scalar masses and non-universal gaugino masses generated by non-zero F-term in a 24-dimensional representation of SU(5) is contained in SO(10). After discussing the impact of the CP-odd Higgs boson mass bound on this model, we provide a detailed analysis of the recent direct SUSY searches performed by ATLAS and investigate the constraints on this SO(10) model. At 95% confidence level, the lower limit on the gluino mass is found at 675 GeV. Assuming an integrated luminosity of 10 fb{sup -1}, this bound may be extended to 1.1 TeV if the right-handed down squark is lighter than about 1 TeV. (orig.)
Supersymmetric SO(10) models inspired by deconstruction
International Nuclear Information System (INIS)
Huang Chaoshang; Jiang Jing; Li Tianjun
2004-01-01
We consider 4-dimensional N=1 supersymmetric SO(10) models inspired by deconstruction of 5-dimensional N=1 supersymmetric orbifold SO(10) models and high-dimensional non-supersymmetric SO(10) models with Wilson line gauge symmetry breaking. We discuss the SO(10)xSO(10) models with bi-fundamental link fields where the gauge symmetry can be broken down to the Pati-Salam, SU(5)xU(1), flipped SU(5)xU(1)' or the Standard Model like gauge symmetry. We also propose an SO(10)xSO(6)xSO(4) model with bi-fundamental link fields where the gauge symmetry is broken down to the Pati-Salam gauge symmetry, and an SO(10)xSO(10) model with bi-spinor link fields where the gauge symmetry is broken down to the flipped SU(5)xU(1)' gauge symmetry. In these two models, the Pati-Salam and flipped SU(5)xU(1)' gauge symmetry can be further broken down to the Standard Model gauge symmetry, the doublet-triplet splittings can be obtained by the missing partner mechanism, and the proton decay problem can be solved. We also study the gauge coupling unification. We briefly comment on the interesting variation models with gauge groups SO(10)xSO(6) and SO(10)xflippedSU(5)xU(1)' in which the proton decay problem can be solved
Nath, Pran
1994-01-01
Analysis of the SUSY spectrum in supergravity unified models is given under the naturalness criterion that the universal scalar mass (m_0) and the gluino mass (m_{\\tilde g}) satisfy the constraint m_0, m_{\\tilde g} less than or equal to 1 TeV. The SUSY spectrum is analysed in four different scenarios: (1) minimal supergravity models ignoring proton decay from dimension five operators, (2) imposing proton stability constraint in supergravity models with SU(5) type embedding which allow proton decay via dimension five operators, (3) with inclusion of dark matter constraints in models of type (1), and (4) with inclusion of dark matter constraint in models of type (2). It is found that there is a very strong upper limit on the light chargino mass in models of type (4), i.e., the light chargino mass is less than or equals 120 GeV.
Cassel, S; Ross, G G
2010-01-01
If SUSY provides a solution to the hierarchy problem then supersymmetric states should not be too heavy. This requirement is quantified by the Barbieri-Giudice fine tuning measure that provides a quantitative test of SUSY as a solution to the hierarchy problem. The measure is useful in correlating the impact of the various experimental measurements relevant to the search for supersymmetry and also in identifying the most sensitive measurements for testing SUSY. In this paper we apply the measure to the CMSSM, computing it to two-loop order and taking account of current experimental limits and the constraint on dark matter abundance. Using this we determine the present limits on the CMSSM parameter space and identify the measurements at the LHC that are most significant in covering the remaining parameter space. Without imposing the LEP Higgs mass bound we show that the smallest fine tuning (1:14.5) consistent with a saturation of the relic density within the 1$\\sigma$ WMAP bounds corresponds to a Higgs mass o...
Two Higgs doublets in SO(10) model
International Nuclear Information System (INIS)
Asatryan, G.M.
1989-01-01
An SO(10) grand unification model is suggested with two light Higgs doublets, whose vacuum expectation values are connected with the SU(2) L xU(1) Y electroweak group breaking. Taking into account the naturality condition associated with absence of flavor changing neutral currents, a certain form of the quark mass matrices. As a result, the proton lifetime in the SO(10) model turns to be strongly restrained
Neutrino mass from M theory SO(10)
International Nuclear Information System (INIS)
Acharya, Bobby S.; Bożek, Krzysztof; Romão, Miguel Crispim; King, Stephen F.; Pongkitivanichkul, Chakrit
2016-01-01
We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G_2-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5)×U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.
Neutrino mass from M theory SO(10)
Energy Technology Data Exchange (ETDEWEB)
Acharya, Bobby S. [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom); International Centre for Theoretical Physics,I-34151 Trieste (Italy); Bożek, Krzysztof [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom); Romão, Miguel Crispim; King, Stephen F. [School of Physics and Astronomy, University of Southampton,SO17 1BJ, Southampton (United Kingdom); Pongkitivanichkul, Chakrit [Department of Physics, King’s College,WC2R 2LS, London (United Kingdom)
2016-11-29
We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G{sub 2}-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5)×U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.
No-scale SUGRA SO(10) Inflation
Indian Academy of Sciences (India)
Ila Garg
2017-10-09
Oct 9, 2017 ... In the present work, we study inflation in a renormal- izable grand unified theory based on the SO(10) gauge group with no-scale SUGRA. In this paper ..... This work was done in collaboration with Subhendra. Mohanty and is based on paper [29]. References. [1] A A Starobinsky, Phys. Lett. B 91, 99 (1980).
Yukawa sector of minimal SO(10) unification
Energy Technology Data Exchange (ETDEWEB)
Babu, K.S. [Department of Physics, Oklahoma State University,Stillwater, OK, 74078 (United States); Bajc, Borut [Jožef Stefan Institute,Ljubljana, 1000 (Slovenia); Saad, Shaikh [Department of Physics, Oklahoma State University,Stillwater, OK, 74078 (United States)
2017-02-28
We show that in SO(10) models, a Yukawa sector consisting of a real 10{sub H}, a real 120{sub H} and a complex 126{sub H} of Higgs fields can provide a realistic fit to all fermion masses and mixings, including the neutrino sector. Although the group theory of SO(10) demands that the 10{sub H} and 120{sub H} be real, most constructions complexify these fields and impose symmetries exterior to SO(10) to achieve predictivity. The proposed new framework with real10{sub H} and real120{sub H} relies only on SO(10) gauge symmetry, and yet has a limited number of Yukawa parameters. Our analysis shows that while there are restrictions on the observables, a good fit to the entire fermion spectrum can be realized. Unification of gauge couplings is achieved with an intermediate scale Pati-Salam gauge symmetry. Proton decay branching ratios are calculable, with the leading decay modes being p→ν̄π{sup +} and p→e{sup +}π{sup 0}.
SO(10) - Grand unification and fermion masses
International Nuclear Information System (INIS)
Oezer, A.D.
2005-01-01
In this work, we study SO(10) grand unification in its full extent by using different explicit matrix representations which exhibit the structure of SO(10) in a very transparent way. Our approach consists mainly of two stages: We derive the explicit expressions of the mass-eigenvalues and mass-eigenstates of the physical gauge bosons from a mass squared-matrix that contains all the information about the mixing parameters among the gauge fields and the phases which are sources for CP violation. In the light of this analysis, we derive the explicit expressions for the interaction Lagrangians of the charged currents, the neutral currents and the charged and colored currents in SO(10). We present explicit expressions of the vector and axial-vector couplings of the two neutral currents in SO(10). We show how the baryon, lepton and baryon minus lepton number violating processes and their explicit CP violating phases are accommodated in the SO(10) theory. The Higgs potential that we use to implement in the Higgs mechanism is constructed in a most general fashion through a careful study of the Higgs fields of SO(10), where we give special emphasis on illustrating the explicit matrix representation of these Higgs fields. The potential part of the Higgs Lagrangian will give us the properties of the minimum of the vacuum, and the kinetic part will give us the mass-squared matrix of the gauge bosons via spontaneous symmetry breakdown. The same Higgs multiplets will be coupled to fermions through a democratic Yukawa matrix. Thereby, we derive explicit expressions for the fermion masses of the third family including Majorana and Dirac masses for neutrinos. We introduce a flavor-eigenbasis for neutrinos and find the mass-eigenstates and mass-eigenvalues of the neutrinos. Explicit expressions for CP violation in the neutrino sector are obtained. In the second stage of our work, we evaluate all the above mentioned quantities. In addition, we present the values of the physical
Natural gauge hierarchy in SO(10)
International Nuclear Information System (INIS)
Babu, K.S.; Barr, S.M.
1994-01-01
It is shown that a natural gauge hierarchy and doublet-triplet splitting can be achieved in SO(10) using the Dimopoulos-Wilczek mechanism. Artificial cancellations (fine-tuning) and arbitrary forms of the superpotential are avoided, the superpotential being the most general compatible with a symmetry. It is shown by example that the Dimopoulos-Wilczek mechanism can be protected against the effects of higher-dimension operators possibly induced by Planck-scale physics. Natural implementation of the mechanisms leads to an automatic Peccei-Quinn symmetry. The same local symmetries that would protect the gauge hierarchy against Planck-scale effects tend to protect the axion also. How realistic quark and lepton masses might arise in this framework is discussed. It is shown how the theory may remain perturbative up to the Planck scale. It is also argued that ''weak suppression'' of proton decay can be implemented more economically than can ''strong suppression,'' offering some grounds to hope [in the context of SO(10)] that proton decay could be seen at SuperKamiokande
No-scale SUGRA SO(10) inflation
International Nuclear Information System (INIS)
Garg, Ila
2017-01-01
We show that a renormalizable theory based on gauge group SO(10) and Higgs system 10⊕210⊕126⊕126 with no scale supergravity can lead to a Starobinsky kind of potential for inflation. Successful inflation is possible in cases where the potential during inflation corresponds to SU(3)_C×SU(2)_L×SU(2)_R×U(1)_B_−_L, SU(5)×U(1) and flipped SU(5) × U(1) symmetries with suitable choice of superpotential parameters. The reheating in such a scenario can occur via non-perturbative decay of inflaton, i.e. through ‘preheating’. After the end of reheating, when Universe cools down, the finite-temperature potential can have a minimum which corresponds to MSSM. (author)
SO(10) supersymmetric grand unified theories
Dermisek, Radovan
The origin of the fermion mass hierarchy is one of the most challenging problems in elementary particle physics. In the standard model fermion masses and mixing angles are free parameters. Supersymmetric grand unified theories provide a beautiful framework for physics beyond the standard model. In addition to gauge coupling unification these theories provide relations between quark and lepton masses within families, and with additional family symmetry the hierarchy between families can be generated. We present a predictive SO(10) supersymmetric grand unified model with D 3 x U(1) family symmetry. The hierarchy in fermion masses is generated by the family symmetry breaking D 3 x U(1) → ZN → nothing. This model fits the low energy data in the charged fermion sector quite well. We discuss the prediction of this model for the proton lifetime in light of recent SuperKamiokande results and present a clear picture of the allowed spectra of supersymmetric particles. Finally, the detailed discussion of the Yukawa coupling unification of the third generation particles is provided. We find a narrow region is consistent with t, b, tau Yukawa unification for mu > 0 (suggested by b → sgamma and the anomalous magnetic moment of the muon) with A0 ˜ -1.9m16, m10 ˜ 1.4m16, m16 ≳ 1200 GeV and mu, M1/2 ˜ 100--500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.
Flavor physics induced by light Z{sup ′} from SO(10) GUT
Energy Technology Data Exchange (ETDEWEB)
Hisano, Junji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan); Department of Physics,Nagoya University, Nagoya 464-8602 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Muramatsu, Yu [Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); School of Physics, KIAS,Seoul 130-722 (Korea, Republic of); Omura, Yuji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan); Shigekami, Yoshihiro [Department of Physics,Nagoya University, Nagoya 464-8602 (Japan)
2016-11-04
In this paper, we investigate predictions of the SO(10) Grand Unified Theory (GUT), where an extra U(1){sup ′} gauge symmetry remains up to the supersymmetry (SUSY) breaking scale. The minimal setup of SO(10) GUT unifies quarks and leptons into a 16-representational field in each generations. The setup, however, suffers from the realization of the realistic Yukawa couplings at the electroweak scale. In order to solve this problem, we introduce 10-representational matter fields, and then the two kinds of matter fields mix with each other at the SUSY breaking scale, where the extra U(1){sup ′} gauge symmetry breaks down radiatively. One crucial prediction is that the Standard Model quarks and leptons are given by the linear combinations of the fields with two different U(1){sup ′} charges. The mixing also depends on the flavor. Consequently, the U(1){sup ′} interaction becomes flavor violating, and the flavor physics is the smoking-gun signal of our GUT model. The flavor violating Z{sup ′} couplings are related to the fermion masses and the CKM matrix, so that we can derive some explicit predictions in flavor physics. We especially discuss K-K̄ mixing, B{sub (s)}- (B{sub (s)})-bar mixing, and the (semi)leptonic decays of K and B in our model. We also study the flavor violating μ and τ decays and discuss the correlations among the physical observables in this SO(10) GUT framework.
Antonella Del Rosso
2012-01-01
Recent information from the LHC experiments, the relatively low mass of the new boson and other data coming from experiments looking for dark matter worldwide are placing new constraints on the existence of supersymmetry (SUSY). However, there is a large community of scientists that still believes that SUSY particles are out there. Like lost keys at night, perhaps we have been looking for SUSY under the wrong lamp-posts… Can you work out this rebus? Source: Caroline Duc. So far, SUSY is “just” a theoretical physics model, which could solve problems beyond the Standard Model by accounting for dark matter and other phenomena in the Universe. However, SUSY has not been spotted so far, and might be hiding because of features different from what physicists previously expected. “Currently, there is no evidence for SUSY, but neither has any experimental data ruled it out. Many searches have focused on simplified versions of the theory but, given the recen...
Energy Technology Data Exchange (ETDEWEB)
Katz, Andrey [Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève,24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Pokorski, Stefan [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, PL-02-093 Warsaw (Poland); Redigolo, Diego [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,Tel-Aviv 69978 (Israel); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Ziegler, Robert [Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)
2017-01-31
We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.
Mamuzic, Judita; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and naturalness problem, gives a solution to the gauge coupling unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, and R-parity violation and long lived particles are being studied at the LHC. An overview of most recent SUSY searches results using the 13 TeV ATLAS RUN2 data will be presented.
International Nuclear Information System (INIS)
Dawson, S.
1997-01-01
In these lectures, the author discusses the theoretical motivation for supersymmetric theories and introduce the minimal low energy effective supersymmetric theory, (MSSM). I consider only the MSSM and its simplest grand unified extension here. Some of the other possible low-energy SUSY models are summarized. The particles and their interactions are examined in detail in the next sections and a grand unified SUSY model presented which gives additional motivation for pursuing supersymmetric theories
International Nuclear Information System (INIS)
Ross, G.G.
2014-01-01
Given that there is currently no direct evidence for supersymmetric particles at the LHC it is timely to re-evaluate the need for low scale supersymmetry and to ask whether it is likely to be discoverable by the LHC running at its full energy. We review the status of simple SUSY extensions of the Standard Model in the light of the Higgs discovery and the non-observation of evidence for SUSY at the LHC. The need for large radiative corrections to drive the Higgs mass up to 126 GeV and for the coloured SUSY states to be heavy to explain their non-observation introduces a little hierarchy problem and we discuss how to quantify the associated fine tuning. The requirement of low fine tuning requires non-minimal SUSY extensions and we discuss the nature and phenomenology of models which still have perfectly acceptable low fine tuning. A brief discussion of SUSY flavour-changing and CP-violation problems and their resolution is presented. (orig.)
International Nuclear Information System (INIS)
Berger, C.
2008-01-01
We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a thermal relic, i.e., the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC
Neutrino masses and the unification of the SO(10) families
International Nuclear Information System (INIS)
Maalampi, J.; Enqvist, K.
1980-01-01
We show that the unification of the SO(10) families in SO(10+m) group can offer a solution to the neutrino mass problem. For simplicity we have restricted our analysis to SO(11), which contains - aside from generation mixing -the main novel feature of the theories of this kind: fermions that couple by V+A charged weak currents. (author)
SUSY Unparticle and Conformal Sequestering
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yu; Nakayama, Yu
2007-07-17
We investigate unparticle physics with supersymmetry (SUSY). The SUSY breaking effects due to the gravity mediation induce soft masses for the SUSY unparticles and hence break the conformal invariance. The unparticle physics observable in near future experiments is only consistent if the SUSY breakingeffects from the hidden sector to the standard model sector are dominated by the gauge mediation, or if the SUSY breaking effects to the unparticle sector are sufficiently sequestered. We argue that the natural realization of the latter possibility is the conformal sequestering scenario.
International Nuclear Information System (INIS)
Kharchilava, A.
1997-01-01
One of the main motivations of experiments at the LHC is to search for SUSY particles. The talk is based on recent analyses, performed by CMS Collaboration, within the framework of the Supergravity motivated minimal SUSY extension of the Standard Model. The emphasis is put on leptonic channels. The strategies for obtaining experimental signatures for strongly and weakly interacting sparticles productions, as well as examples of determination of SUSY masses and model parameters are discussed. The domain of parameter space where SUSY can be discovered is investigated. Results show, that if SUSY is of relevance at Electro-Weak scale it could hardly escape detection at LHC. (author)
International Nuclear Information System (INIS)
Lucas, V.; Raby, S.
1996-01-01
We show that one-loop GUT scale threshold corrections to gauge couplings are a significant constraint on the GUT symmetry-breaking sector of the theory. The one-loop threshold corrections relate the prediction for α s (M Z ) to the proton lifetime. We have calculated these corrections in a new complete SO(10) SUSY GUT. The results are consistent with the low-energy measurement of α s (M Z ). We have also calculated the proton lifetime and branching ratios in this model. We show that proton decay rates provide a powerful test for theories of fermion masses. copyright 1996 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Anon.
1992-11-15
Supersymmetry, affectionately known as SUSY, is still the darling of theoretical particle physics. Invented some 20 years ago, the charismatic idea really took off at the beginning of the 1980s. At the time, a workshop at CERN reflected the youthful enthusiasm for these new ideas.
Xu, Da; The ATLAS collaboration
2018-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk gives an overview of the most recent SUSY searches in ATLAS and CMS experiments using 13 TeV ATLAS Run2 data.
International Nuclear Information System (INIS)
Raby, Stuart
2008-01-01
In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E 8 xE 8 heterotic string.
International Nuclear Information System (INIS)
Anon.
1992-01-01
Supersymmetry, affectionately known as SUSY, is still the darling of theoretical particle physics. Invented some 20 years ago, the charismatic idea really took off at the beginning of the 1980s. At the time, a workshop at CERN reflected the youthful enthusiasm for these new ideas
Superstring-inspired SO(10) GUT model with intermediate scale
Sasaki, Ken
1987-12-01
A new mechanism is proposed for the mixing of Weinberg-Salam Higgs fields in superstring-inspired SO(10) models with no SO(10) singlet fields. The higher-dimensional terms in the superpotential can generate both Higgs field mixing and a small mass for the physical neutrino. I would like to thank Professor C. Iso for hospitality extended to me at the Tokyo Institute of Technology.
Gauge hierarchy in an SO(10) supersymmetric grand unified model
International Nuclear Information System (INIS)
Zhiyong, Z.
1982-01-01
An SO(10) supersymmetric grand unified model is constructed in which the gauge hierarchy problem may be solved. Using Higgs superfields belonging to the SO(10) representations 16, 10 and 54, it is found that if SO(10) is broken down to SU(3)sub(c)xSU(2)sub(L)xU(1) via SO(6)xSO(4)approximately equal to SU(4)sub(c)xSU(2)sub(L)xSU(2)sub(R) at unification mass scales without supersymmetry breaking, the gauge hierarchy puzzle might be carried away. It is also shown that the colour-triplet Higgs, which mediates proton decay, is superheavy by an incredibly accurate, but 'natural' adjustment of parameters in the potential. (author)
Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups
Energy Technology Data Exchange (ETDEWEB)
Chou, Chih-Lung
2005-04-05
The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.
Energy Technology Data Exchange (ETDEWEB)
Papucci, Michele; Ruderman, Joshua T. [Lawrence Berkeley National Laboratory, CA (United States). Theoretical Physics Group; California Univ., Berkeley, CA (United States). Dept. of Physics; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.
2011-10-31
The first 1 fb{sup -1} of LHC searches have set impressive limits on new colored particles decaying to missing energy. We address the implication of these searches for naturalness in supersymmetry (SUSY). General bottom-up considerations of natural electroweak symmetry breaking show that higgsinos, stops, and the gluino should not be too far above the weak scale. The rest of the spectrum, including the squarks of the first two generations, can be heavier and beyond the current LHC reach. We have used collider simulations to determine the limits that all of the 1 fb{sup -1} searches pose on higgsinos, stops, and the gluino. We find that stops and the left-handed sbottom are starting to be constrained and must be heavier than about 200-300 GeV when decaying to higgsinos. The gluino must be heavier than about 600-800 GeV when it decays to stops and sbottoms. While these findings point toward scenarios with a lighter third generation split from the other squarks, we do find that moderately-tuned regions remain, where the gluino is just above 1 TeV and all the squarks are degenerate and light. Among all the searches, jets plus missing energy and same-sign dileptons often provide the most powerful probes of natural SUSY. Overall, our results indicate that natural SUSY has survived the first 1 fb{sup -1} of data. The LHC is now on the brink of exploring the most interesting region of SUSY parameter space. (orig.)
The vacuum of the minimal nonsupersymmetric SO(10) unification
International Nuclear Information System (INIS)
Bertolini, Stefano; Di Luzio, Luca; Malinsky, Michal
2010-01-01
We study a class of nonsupersymmetric SO(10) grand-unified scenarios where the first stage of the symmetry breaking is driven by the vacuum expectation values of the 45-dimensional adjoint representation. Three-decade-old results claim that such a Higgs setting may lead exclusively to the flipped SU(5) x U(1) intermediate stage. We show that this conclusion is actually an artifact of the tree-level potential. The study of the accidental global symmetries emerging in various limits of the scalar potential offers a simple understanding of the tree-level result and a rationale for the drastic impact of quantum corrections. We scrutinize in detail the simplest and paradigmatic case of the 45 H +16 H Higgs sector triggering the breaking of SO(10) to the standard electroweak model. We show that the minimization of the one-loop effective potential allows for intermediate SU(4) C x SU(2) L x U(1) R and SU(3) c x SU(2) L x SU(2) R x U(1) B-L symmetric stages as well. These are the options favored by gauge unification. Our results, that apply whenever the SO(10) breaking is triggered by H >, open the path for hunting the simplest realistic scenario of nonsupersymmetric SO(10) grand unification.
Antisymmetric Higgs representation in SO(10) for neutrinos
International Nuclear Information System (INIS)
Oshimo, Noriyuki
2002-01-01
A model based on SO(10) grand unified theory (GUT) and supersymmetry is presented to describe phenomena observed for neutrinos. The large mixing angles among different generations, together with the small masses, are attributed to the Higgs boson structure at the GUT energy scale. Quantitative discussions of these observables are given, taking into account their energy evolution
Operator analysis for quark and lepton masses in SO(10)
International Nuclear Information System (INIS)
Hall, L.J.
1993-01-01
A sequence of simple assumptions leads to a supersymmetric SO(10) theory with 8 predictions in addition to sin 2 θ: tanβ,M t ,kV cb ,M s M s /M d ,M d ,V ub and the amount of CP violation J. These predictions are presented, together with experiments which will test them
Cosmological implications of a class of SO(10) models
International Nuclear Information System (INIS)
Mangano, G.; Rosa, L.
1996-01-01
The cosmological implications of a class of SO(10) models are discussed. In particular we show how a good prediction for neutrino masses is obtained in order to fit with the MSW mechanism to explain the solar neutrino flux deficit and with the predicted amount of the dark matter hot component. A possible scenario for baryogenesis is also considered. (orig.)
The neutrino masses in SO(10) grand unified theory
International Nuclear Information System (INIS)
Leontaris, G.K.; Vergados, J.D.; Ioannina Univ.
1987-01-01
The neutrino masses and mixing are investigated in an SO(10) model in which the ten-dimensional and 126-dimensional representations are allowed to obtain vacuum expectation values. The parameters specifying the heavy Majorana neutrino mass matrix are constrained from the cosmological bound of light neutrino masses and the limits from ν μ ↔ ν τ oscillations. The implications of our model on 0ν-ββ decay and muon-number violating processes are explored. (orig.)
Dynamical symmetry breakdown in SU(5) and SO(10)
International Nuclear Information System (INIS)
Shellard, R.C.
1983-09-01
Some restrictions imposed upon Grand Unified Theories by dynamical symmetry breakdown are examined. It is observed in particular, that theories with SU(5) as symmetry group, with 3 or more fermion families undergo dynamical symmetry breakdown, and some of the fermions will acquire mass at the Grand Unified scale. On the other hand, the SO(10) group, with 3 families is free from this problem. (Author) [pt
Futility of high-precision SO(10) calculations
International Nuclear Information System (INIS)
Dixit, V.V.; Sher, M.
1989-01-01
In grand unified models, there are a large number of scalar bosons with masses of the order of the unification scale. Since the masses could be an order of magnitude or so above or below the vector-boson masses, they will affect the beta functions and thus low-energy predictions; the lack of knowledge of the masses translates into an uncertainty in these predictions. Although the effect is very small for a single scalar field, SO(10) models have hundreds of such fields, leading to very large uncertainties. We analyze this effect in SO(10) models with intermediate scales, and show that all such models have an additional uncertainty which can be as large as 4 orders of magnitude in the proton lifetime and as large as a factor of 0.02 in sin 2 θ w . In models with 210-dimensional representations, the weak mixing angle is uncertain by as much as 0.06. As a result, we argue that precise calculations in SO(10) models with intermediate scales may not be possible
Kaehler geometry and SUSY mechanics
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen
2001-01-01
We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed
Diphoton resonance in F-theory inspired flipped SO(10)
Energy Technology Data Exchange (ETDEWEB)
Leontaris, George K. [Ioannina University, Physics Department, Theory Division, Ioannina (Greece); Shafi, Qaisar [University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE (United States)
2016-10-15
Motivated by the di-photon excess at 750 GeV reported by the ATLAS and CMS experiments, we present an F-theory inspired flipped SO(10) model embedded in E{sub 6}. The low energy spectrum includes the three MSSM chiral families, vector-like colour triplets, several pairs of charged SU(2){sub L} singlet fields (E{sup c}, anti E{sup c}), as well as MSSM singlets, one or more of which could contribute to the di-photon resonance. A total decay width in the multi-GeV range can arise from couplings involving the singlet and MSSM fields. (orig.)
String flipped SO(10) model from Z4 orbifold
International Nuclear Information System (INIS)
Sato, H.; Shimojo, M.
1993-01-01
We search all possible string grand-unified-theory models obtained from heterotic superstrings compactified on a Z 4 orbifold with one Wilson line. It is shown that there is an essentially unique anomaly-free flipped SO(10) model with three generations plus one mirror conjugate generation of matter fields. We derive effective Yukawa interactions and examine the structure of mass matrices as well as a possible scenario of string coupling unification. The four-generation Z 4 orbifold model is a phenomenologically viable model beyond the minimal supersymmetric standard one
Naturalness, SUSY heavy higgses and flavor constraints
CERN. Geneva
2014-01-01
I will demonstrate that supersymmetric (SUSY) higgses provide an important diagnostic for electroweak naturalness in the SUSY paradigm. I first review the naturalness problem of the Standard Model (SM) and SUSY as one of its most promising solutions. I study the masses of heavy Higgses in SUSY theories under broad assumptions, and show how they are constrained by their role in Electroweak symmetry breaking. I then show how Flavor Physics severely constrains large parts of SUSY parameter space, otherwise favored by naturalness. If SUSY Higgses are not discovered at relatively low mass during the next LHC run, this tension will further increase, disfavoring naturalness from SUSY.
On the vacuum of the minimal nonsupersymmetric SO(10) unification
Bertolini, Stefano; Malinsky, Michal
2010-01-01
We study a class of nonsupersymmetric SO(10) grand unified scenarios where the first stage of the symmetry breaking is driven by the vacuum expectation values of the 45-dimensional adjoint representation. Three decade old results claim that such a Higgs setting may lead exclusively to the flipped SU(5) x U(1) intermediate stage. We show that this conclusion is actually an artifact of the tree level potential. The study of the accidental global symmetries emerging in various limits of the scalar potential offers a simple understanding of the tree level result and a rationale for the drastic impact of quantum corrections. We scrutinize in detail the simplest and paradigmatic case of the 45_{H} + 16_{H} Higgs sector triggering the breaking of SO(10) to the standard electroweak model. We show that the minimization of the one-loop effective potential allows for intermediate SU(4)_C x SU(2)_L x U(1)_R and SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L} symmetric stages as well. These are the options favoured by gauge unif...
The toric SO(10) F-theory landscape
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, W.; Dierigl, M.; Oehlmann, P.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ruehle, F. [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics
2017-09-15
Supergravity theories in more than four dimensions with grand unified gauge symmetries are an important intermediate step towards the ultraviolet completion of the Standard Model in string theory. Using toric geometry, we classify and analyze six-dimensional F-theory vacua with gauge group SO(10) taking into account Mordell-Weil U(1) and discrete gauge factors. We determine the full matter spectrum of these models, including charged and neutral SO(10) singlets. Based solely on the geometry, we compute all matter multiplicities and confirm the cancellation of gauge and gravitational anomalies independent of the base space. Particular emphasis is put on symmetry enhancements at the loci of matter fields and to the frequent appearance of superconformal points. They are linked to non-toric Kaehler deformations which contribute to the counting of degrees of freedom. We compute the anomaly coefficients for these theories as well by using a base-independent blow-up procedure and superconformal matter transitions. Finally, we identify six-dimensional supergravity models which can yield the Standard Model with high-scale supersymmetry by further compactification to four dimensions in an Abelian flux background.
Probes of Yukawa unification in supersymmetric SO(10) models
Energy Technology Data Exchange (ETDEWEB)
Westhoff, Susanne
2009-10-23
This work is composed as follows: In Chapter 1, the disposed reader is made familiar with the foundations of flavourphysics and Grand Unification, including group-theoretical aspects of SO(10). In Chapter 2, we introduce a specific supersymmetric GUT model based on SO(10) and designed to probe down-quark-lepton Yukawa unification. Within this framework we explore the effects of large atmospheric neutrino mixing in bottom-strange transitions on the mass difference and CP phase in B{sub s}- anti B{sub s} meson mixing. Chapter 3 is devoted to corrections to Yukawa unification. We derive constraints on Yukawa corrections for light fermions from K- anti K and B{sub d}- anti B {sub d} mixing. As an application we study implications of neutrino mixing effects in CP-violating K and B{sub d} observables on the unitrity triangle. Finally, in Chapter 4, we discuss effects of large tan {beta} in B{yields}(D){tau}{nu} decays with respect to their potential to discover charged Higgs bosons and to discriminate between different GUT models of flavour.
The toric SO(10) F-theory landscape
International Nuclear Information System (INIS)
Buchmuller, W.; Dierigl, M.; Oehlmann, P.K.; Ruehle, F.
2017-09-01
Supergravity theories in more than four dimensions with grand unified gauge symmetries are an important intermediate step towards the ultraviolet completion of the Standard Model in string theory. Using toric geometry, we classify and analyze six-dimensional F-theory vacua with gauge group SO(10) taking into account Mordell-Weil U(1) and discrete gauge factors. We determine the full matter spectrum of these models, including charged and neutral SO(10) singlets. Based solely on the geometry, we compute all matter multiplicities and confirm the cancellation of gauge and gravitational anomalies independent of the base space. Particular emphasis is put on symmetry enhancements at the loci of matter fields and to the frequent appearance of superconformal points. They are linked to non-toric Kaehler deformations which contribute to the counting of degrees of freedom. We compute the anomaly coefficients for these theories as well by using a base-independent blow-up procedure and superconformal matter transitions. Finally, we identify six-dimensional supergravity models which can yield the Standard Model with high-scale supersymmetry by further compactification to four dimensions in an Abelian flux background.
Yukawa couplings in SO(10) heterotic M-theory vacua
International Nuclear Information System (INIS)
Faraggi, Alon E.; Garavuso, Richard S.
2003-01-01
We demonstrate the existence of a class of N=1 supersymmetric nonperturbative vacua of Horava-Witten M-theory compactified on a torus fibered Calabi-Yau 3-fold Z with first homotopy group π 1 (Z)=Z 2 , having the following properties: (1) SO(10) grand unification group, (2) net number of three generations of chiral fermions in the observable sector, and (3) potentially viable matter Yukawa couplings. These vacua correspond to semistable holomorphic vector bundles V Z over Z having structure group SU(4) C , and generically contain M5-branes in the bulk space. The nontrivial first homotopy group allows Wilson line breaking of the SO(10) symmetry. Additionally, we propose how the 11-dimensional Horava-Witten M-theory framework may be used to extend the perturbative calculation of the top quark Yukawa coupling in the realistic free-fermionic models to the nonperturbative regime. The basic argument being that the relevant coupling couples twisted-twisted-untwisted states and can be calculated at the level of the Z 2 xZ 2 orbifold without resorting to the full three generation models
A new family symmetry for SO(10) GUTs
International Nuclear Information System (INIS)
King, Stephen F.; Luhn, Christoph
2009-01-01
We argue that the projective special linear group PSL 2 (7), also known as Σ(168), has unique features which make it the most suitable discrete family symmetry for describing quark and lepton masses and mixing in the framework of SO(10) type unified models. In such models flavon fields in the sextet representation of PSL 2 (7) play a crucial role both in obtaining tri-bimaximal neutrino mixing as well as in generating the third family charged fermion Yukawa couplings. In preparation for physical applications, we derive the triplet representation of PSL 2 (7) in the basis S,T,U,V where S,T,U are the familiar triplet generators of S 4 in the diagonal charged lepton basis where T is diagonal. We also derive an analogous basis for the real sextet representation and identify the vacuum alignments which lead to tri-bimaximal neutrino mixing and large third family charged fermion Yukawa couplings.
Supersymmetry and intermediate symmetry breaking in SO(10) superunification
International Nuclear Information System (INIS)
Asatryan, H.M.; Ioannisyan, A.N.
1985-01-01
A scheme of simultaneous breakdown of intermediate symmetry SO(10) → SU(3)sub(c) x U(1) x SU(2)sub(L) x SU(2)sub(R) and supersymmetry by means of a single scale parameter is suggested. This intermediate symmetry, which is preferable physically, owing to the broken supersymmetry has a minimum lying lower than SU(4) x SU(2)sub(L) x SU(2)sub(R). The intermediate symmetry is broken by the vacuum expectation value of the Higgs superfields. Owing to the quantum corrections the potential minimum turns out to correspond to breakdown of the intermediate symmetry up to the standard group SU(3)sub(c) x SU(2)sub(L) x U(1)sub(y). The value of the Weinberg angle is less than that in the supersymmetric SU(5) model and agrees with the experiment
Testing SO(10)-inspired leptogenesis with low energy neutrino experiments
Di Bari, Pasquale
2011-01-01
We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N_2 dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ~ 10^10 GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m_1 \\simeq (1-5)\\times 10^-3 eV and m_1\\simeq (0.03-0.1) eV. For m_1\\lesssim 0.01 eV the allowed region in the plane theta_13-thet...
Energy Technology Data Exchange (ETDEWEB)
Berggren, Mikael
2013-08-15
At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.
International Nuclear Information System (INIS)
Berggren, Mikael
2013-08-01
At the ILC, one has the possibility to search for SUSY in an model-independent way: The corner-stone of SUSY is that sparticles couple as particles. This is independent of the mechanism responsible for SUSY breaking. Any model will have one Lightest SUSY Particle (LSP), and one Next to Lightest SUSY Particle (NLSP). In models with conserved R-parity, the NLSP must decay solely to the LSP and the SM partner of the NLSP. Therefore, studying NLSP production and decay can be regarded as a ''simplified model without simplification'': Any SUSY model will have such a process. The NLSP could be any sparticle: a slepton, an electroweak-ino, or even a squark. However, since there are only a finite number of sparticles, one can systematically search for signals of all possible NLSP:s. This way, the entire space of models that have a kinematically reachable NLSP can be covered. For any NLSP, the ''worst case'' can be determined, since the SUSY principle allows to calculate the cross-section once the NLSP nature and mass are given. The region in the LSP-NLSP mass-plane where the ''worst case'' could be discovered or excluded experimentally can be found by estimating background and efficiency at each point in the plane. From experience at LEP, it is expected that the lower signal-to background ratio will indeed be found for models with conserved R-parity. In this document, we show that at the ILC, such a program is possible, as it was at LEP. No loop-holes are left, even for difficult or non-standard cases: whatever the NLSP is it will be detectable.
SUSY naturalness without prejudice
Ghilencea, D M
2014-01-01
Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale $v$ at the quantum level and {\\it predict} that $v$ is a function of the TeV-valued SUSY parameters ($\\gamma_\\alpha$) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation $\\delta\\chi^2$ (from $\\chi^2_{min}$ of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, {\\it provided that} the EW scale $v\\sim m_Z$ is indeed regarded as a function $v=v(\\gamma)$. It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among $\\gamma_\\alpha$ exist (due to GUT symmetries, etc). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the $\\delta\\chi^2$ and the s-standard deviation conf...
SUSY naturalness without prejudice
Ghilencea, D. M.
2014-05-01
Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale v at the quantum level and predict that v is a function of the TeV-valued SUSY parameters (γα) of the UV Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these parameters and the usual deviation δχ2 (from χmin2 of a model) automatically encode information about the "traditional" EW fine-tuning measuring this stability, provided that the EW scale v ˜mZ is indeed regarded as a function v =v(γ). It is known that large EW fine-tuning may signal an incomplete theory of soft terms and can be reduced when relations among γα exist (due to GUT symmetries, etc.). The global correlation coefficient of this matrix can help one investigate if such relations are present. An upper bound on the usual EW fine-tuning measure ("in quadrature") emerges from the analysis of the δχ2 and the s-standard deviation confidence interval by using v =v(γ) and the theoretical approximation (loop order) considered for the calculation of the observables. This upper bound avoids subjective criteria for the "acceptable" level of EW fine-tuning for which the model is still "natural."
Muon g−2 in anomaly mediated SUSY breaking
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Debtosh; Yokozaki, Norimi [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Rome (Italy)
2015-08-24
Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.
Muon g−2 in anomaly mediated SUSY breaking
International Nuclear Information System (INIS)
Chowdhury, Debtosh; Yokozaki, Norimi
2015-01-01
Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.
Mamuzic, Judita; The ATLAS collaboration
2018-01-01
Supersymmetry (SUSY) is considered one of the best motivated extensions of the Standard Model. It postulates a fundamental symmetry between fermions and bosons, and introduces a set of new supersymmetric particles at the electroweak scale. It addresses the hierarchy and natu- ralness problem, gives a solution to the gauge couplings unification, and offers a cold dark matter candidate. Different aspects of SUSY searches, using strong, electroweak, third generation production, R-parity violation models, and long lived particles are being studied at the LHC. An overview of most recent results in SUSY searches using Run 2 ATLAS data, at 13 TeV with 36.1 fb−1 of integrated luminosity, was presented.
A realistic extension of gauge-mediated SUSY-breaking model with superconformal hidden sector
International Nuclear Information System (INIS)
Asano, Masaki; Hisano, Junji; Okada, Takashi; Sugiyama, Shohei
2009-01-01
The sequestering of supersymmetry (SUSY) breaking parameters, which is induced by superconformal hidden sector, is one of the solutions for the μ/B μ problem in gauge-mediated SUSY-breaking scenario. However, it is found that the minimal messenger model does not derive the correct electroweak symmetry breaking. In this Letter we present a model which has the coupling of the messengers with the SO(10) GUT-symmetry breaking Higgs fields. The model is one of the realistic extensions of the gauge mediation model with superconformal hidden sector. It is shown that the extension is applicable for a broad range of conformality breaking scale
Status of SUSY searches at the LHC (including SUSY Higgs bosons)
Marshall, Zach; The ATLAS collaboration
2017-01-01
We review the status of SUSY searches at the LHC, including searches for SUSY Higgs Bosons. ATLAS and CMS have both prepared a large number of search results on the full 2015+2016 dataset, pushing the bounds on SUSY further than ever before.
Impact of the muon anomalous magnetic moment on supersymmetric models
International Nuclear Information System (INIS)
Baer, Howard; Balazs, Csaba; Ferrandis, Javier; Tata, Xerxes
2001-01-01
The recent measurement of a μ =(g μ -2)/2 by the E821 Collaboration at Brookhaven deviates from the quoted standard model (SM) central value prediction by 2.6σ. The difference between SM theory and experiment may be easily accounted for in a variety of particle physics models employing weak scale supersymmetry (SUSY). Other supersymmetric models are distinctly disfavored. We evaluate a μ for various supersymmetric models, including minimal supergravity, Yukawa unified SO(10) SUSY GUT's, models with inverted mass hierarchies, models with nonuniversal gaugino masses, gauge mediated SUSY breaking models, anomaly-mediated SUSY breaking models and models with gaugino mediated SUSY breaking. Models with Yukawa coupling unification or multi-TeV first and second generation scalars are disfavored by the a μ measurement
SUSY Searches at ATLAS and CMS
Urquijo, P; The ATLAS collaboration
2009-01-01
We review the current strategies to search for Supersymmetry (SUSY) with the ATLAS and CMS detectors at the LHC. The early data discovery potential will be presented for search channels based on missing transverse momentum from undetected neutralinos and multiple high transverse momentum jets. We describe the search for models of gauge-mediated SUSY breaking for which the next to lightest SUSY particle is a neutralino that decays into a photon and gravitino. Examples of measurement techniques that probe the SUSY mass scale in the first data, through reconstruction of kinematic endpoints, are also shown.
Finite and Gauge-Yukawa unified theories: Theory and predictions
International Nuclear Information System (INIS)
Kobayashi, T.; Kubo, J.; Mondragon, M.; Zoupanos, G.
1999-01-01
All-loop Finite Unified Theories (FUTs) are very interesting N=1 GUTs in which a complete reduction of couplings has been achieved. FUTs realize an old field theoretical dream and have remarkable predictive power. Reduction of dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exists RGI relations among dimensionless couplings that guarantee the vanishing of the β- functions in certain N=1 supersymmetric GUTS even to all orders. Recent developments in the soft supersymmetry breaking (SSB) sector of N=1 GUTs and FUTs lead to exact RGI relations also in this sector of the theories. Of particular interest is a RGI sum rule for the soft scalar masses holding to all orders. The characteristic features of SU(5) models that have been constructed based on the above tools are: a) the old agreement of the top quark prediction with the measured value remains unchanged, b) the lightest Higgs boson is predicted to be around 120 GeV, c) the s-spectrum starts above several hundreds of GeV
Radiative see-saw formula in nonsupersymmetric SO (10) with dark ...
Indian Academy of Sciences (India)
In the absence of supersymmetry, we show how experimentally verifiable radiative see-saw formula of Ma type is realized in non-SUSY (10) while fulfilling the twin objectives: precision gauge coupling unification and dark matter. This model is expected to have a dramatic impact on neutrino physics, dark matter and all ...
Phenomenological analysis of supersymmetric σ-models on coset spaces SO(10)/U(5) and E6/[SO(10)xU(1)
International Nuclear Information System (INIS)
Nyawelo, T.S.
2004-12-01
We discuss some phenomenological aspects of gauged supersymmetric σ-models on homogeneous coset-spaces E 6 /[SO(10)xU(1)] and SO(10)/U(5) which are some of the most interesting for phenomenology. We investigate in detail the vacuum configurations of these models, and study the resulting consequences for supersymmetry breaking and breaking of the internal symmetry. Some supersymmetric minima for both models with gauged full isometry groups E 6 and SO(10) are physically problematic as the Kaehler metric becomes singular ad hence the kinetic terms of the Goldstone boson multiplets vanish. This leads us to introduce recently proposed soft supersymmetry-breaking mass terms which displace the minimum away from the singulax point. A non-singular Kaehler metric breaks the linear subgroup SO(10)xU(1) of the E 6 model spontaneously. The particle spectrum of all these different models is computed. (author)
Susy seesaw inflation and NMSO(10)GUT
International Nuclear Information System (INIS)
Aulakh, Charanjit S.
2013-01-01
We show that Supersymmetric models with Type I seesaw neutrino masses support slow roll inflection point inflation. The inflaton is the D-flat direction labelled by the chiral invariant HLN composed of the Higgs(H), slepton(L) and conjugate sneutrino(N) superfields. The scale of inflation and fine tuning is set by the conjugate neutrino Majorana mass M ν c ∼ 10 6 - 10 12 GeV. The cubic term in the (quartic) inflaton potential is dominantly from superpotential (not soft Susy breaking) couplings. The tuning conditions are thus insensitive to soft supersymmetry breaking parameters and are generically much less stringent than for previous 'A-term' inflation scenarios controlled by mass scales ∼TeV. WMAP limits on the ratio of tensor to scalar perturbations limit the scale M controlling inflection point inflation: M 13 GeV. 'Instant preheating' is operative and dumps the inflaton energy into MSSM modes giving a high reheat temperature: T rh ≈M ν c (3/4) 10 6 GeV ∼ 10 11 - 10 15 GeV. A large gravitino mass > 50 TeV is therefore required to avoid over closure by reheat produced gravitinos. 'Instant preheating' and NLH inflaton facilitate production of right handed neutrinos during inflaton decay and thus non-thermal leptogenesis in addition to thermal leptogenesis. We show that the embedding in the fully realistic New Minimal Supersymmetric SO(10) GUT requires use of the heaviest righthanded neutrino mass as the controlling scale but the possibility of a measurable tensor scalar perturbation ratio seems marginal. We examine the parametric difficulties remaining.
A flipped SO(10) model from Z{sub 6}-I orbifold
Energy Technology Data Exchange (ETDEWEB)
Shimojo, Masafumi [Fukui National Coll. of Technology, Sabae (Japan)
1994-08-01
We look for flipped SO(10) and flipped SU(5) models obtained from heterotic superstrings compactified on Z{sub 6}-I orbifold with one Wilson line. We obtain twelve/fifteen independent Wilson lines which give SO(10)/SU(5) models. While we cannot construct an SU(5) model whose sum of X-charge vanishes, we find only one chiral and modular anomaly-free spectrum with three generations of sixteen dimensional representations of SU(10) which may be matter fields. For the SO(10) model, we derive effective Yukawa couplings and examine the structure of mass matrices. We also comment on the breaking mechanism of the gauge group SO(10).
International Nuclear Information System (INIS)
Gu, Pei-Hong
2014-01-01
We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar ') H scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar ') H scalar also mediates a U(1) em × U(1)' em kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice
Energy Technology Data Exchange (ETDEWEB)
Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)
2014-12-01
We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar '){sub H} scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar '){sub H} scalar also mediates a U(1){sub em} × U(1)'{sub em} kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice.
Natural SUSY dark matter model
International Nuclear Information System (INIS)
Mohanty, Subhendra; Rao, Soumya; Roy, D.P.
2013-01-01
The most natural region of cosmologically compatible dark matter relic density in terms of low fine-tuning in a minimal supersymmetric standard model with nonuniversal gaugino masses is the so called bulk annihilation region. We study this region in a simple and predictive SUSY- GUT model of nonuniversal gaugino masses, where the latter transform as a combination of singlet plus a nonsinglet representation of the GUTgroup SU(5). The model prediction for the direct dark matter detection rates is well below the present CDMS and XENON100 limits, but within the reach of a future 1Ton XENON experiment. The most interesting and robust model prediction is an indirect detection signal of hard positron events, which resembles closely the shape of the observed positron spectrum from the PAMELA experiment. (author)
Lifshitz-sector mediated SUSY breaking
Pospelov, MaximDepartment of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada; Tamarit, Carlos(Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada)
2014-01-01
We propose a novel mechanism of SUSY breaking by coupling a Lorentz-invariant supersymmetric matter sector to non-supersymmetric gravitational interactions with Lifshitz scaling. The improved UV properties of Lifshitz propagators moderate the otherwise uncontrollable ultraviolet divergences induced by gravitational loops. This ensures that both the amount of induced Lorentz violation and SUSY breaking in the matter sector are controlled by $ {{{\\Lambda_{\\mathrm{HL}}^2}} \\left/ {{M_P^2}} \\righ...
RPV SUSY searches at ATLAS and CMS
Pettersson, Nora Emilia; The ATLAS collaboration
2015-01-01
Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence RPC is that it implies a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. This talk aims to summarise a few of the experimental searches for both prompt and long-lived RPV ...
Squark and slepton masses as probes of supersymmetric SO(10) unification
Energy Technology Data Exchange (ETDEWEB)
Balasubramanian Ananthanarayan; P. N. Pandita
2003-09-01
We carry out a detailed analysis of the non-universal supersymmetry breaking scalar masses arising in SO(10) supersymmetric unification. By considering patterns of squark and slepton masses, we show that a set of sum rules for the sfermion masses is independent of the manner in which SO(10) breaks. We discuss the reasons for this remarkable result. The phenomenology arising from such non-universality is shown to be practically unaffected by the symmetry breaking pattern.
Predicting the sparticle spectrum from GUTs via SUSY threshold corrections with SusyTC
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Sluka, Constantin [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland)
2016-07-21
Grand Unified Theories (GUTs) can feature predictions for the ratios of quark and lepton Yukawa couplings at high energy, which can be tested with the increasingly precise results for the fermion masses, given at low energies. To perform such tests, the renormalization group (RG) running has to be performed with sufficient accuracy. In supersymmetric (SUSY) theories, the one-loop threshold corrections (TC) are of particular importance and, since they affect the quark-lepton mass relations, link a given GUT flavour model to the sparticle spectrum. To accurately study such predictions, we extend and generalize various formulas in the literature which are needed for a precision analysis of SUSY flavour GUT models. We introduce the new software tool SusyTC, a major extension to the Mathematica package REAP http://dx.doi.org/10.1088/1126-6708/2005/03/024, where these formulas are implemented. SusyTC extends the functionality of REAP by a full inclusion of the (complex) MSSM SUSY sector and a careful calculation of the one-loop SUSY threshold corrections for the full down-type quark, up-type quark and charged lepton Yukawa coupling matrices in the electroweak-unbroken phase. Among other useful features, SusyTC calculates the one-loop corrected pole mass of the charged (or the CP-odd) Higgs boson as well as provides output in SLHA conventions, i.e. the necessary input for external software, e.g. for performing a two-loop Higgs mass calculation. We apply SusyTC to study the predictions for the parameters of the CMSSM (mSUGRA) SUSY scenario from the set of GUT scale Yukawa relations ((y{sub e})/(y{sub d}))=−(1/2), ((y{sub μ})/(y{sub s}))=6, and ((y{sub τ})/(y{sub b}))=−(3/2), which has been proposed recently in the context of SUSY GUT flavour models.
N-anti N oscillation in SO(10) and SU(6) supersymmetric grand unified models
International Nuclear Information System (INIS)
Fujimoto, Y.; Zhiyong, Z.
1982-06-01
N-anti N oscillation in SO(10) and SU(6) S.G.U.M. is considered. We find a new type of diagram leading to a faster oscillation rate than in non-supersymmetric case. It is also noted that in SO(10) S.G.U.M. with intermediate SU(4)sub(C)xSU(2)sub(L)xSU(2)sub(R) symmetry N-anti N oscillation would be highly suppressed, which may not necessarily be the case for SU(6) S.G.U.M. (author)
SUSY searches with the ATLAS detector
Ventura, Andrea; The ATLAS collaboration
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV. Strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, as well as long-lived particle signatures.
Renormalization group running of fermion observables in an extended non-supersymmetric SO(10) model
Energy Technology Data Exchange (ETDEWEB)
Meloni, Davide [Dipartimento di Matematica e Fisica, Università di Roma Tre,Via della Vasca Navale 84, 00146 Rome (Italy); Ohlsson, Tommy; Riad, Stella [Department of Physics, School of Engineering Sciences,KTH Royal Institute of Technology - AlbaNova University Center,Roslagstullsbacken 21, 106 91 Stockholm (Sweden)
2017-03-08
We investigate the renormalization group evolution of fermion masses, mixings and quartic scalar Higgs self-couplings in an extended non-supersymmetric SO(10) model, where the Higgs sector contains the 10{sub H}, 120{sub H}, and 126{sub H} representations. The group SO(10) is spontaneously broken at the GUT scale to the Pati-Salam group and subsequently to the Standard Model (SM) at an intermediate scale M{sub I}. We explicitly take into account the effects of the change of gauge groups in the evolution. In particular, we derive the renormalization group equations for the different Yukawa couplings. We find that the computed physical fermion observables can be successfully matched to the experimental measured values at the electroweak scale. Using the same Yukawa couplings at the GUT scale, the measured values of the fermion observables cannot be reproduced with a SM-like evolution, leading to differences in the numerical values up to around 80%. Furthermore, a similar evolution can be performed for a minimal SO(10) model, where the Higgs sector consists of the 10{sub H} and 126{sub H} representations only, showing an equally good potential to describe the low-energy fermion observables. Finally, for both the extended and the minimal SO(10) models, we present predictions for the three Dirac and Majorana CP-violating phases as well as three effective neutrino mass parameters.
Neutrino mixing and oscillation in a grand unified field theory SO(10)
International Nuclear Information System (INIS)
Tanaka, K.
1980-01-01
The investigation shows that it is very difficult to achieve neutrino mixing of other than the V/sub μ/-ν/sub tau/ type in any minimal SO(10) model in which neutrino masses are generated by the Gell-Mann-Ramond-Slansky mechanism, because of the severe constraints placed on the mass matrix by quark phenomenology
Recent results on SUSY searches from CMS
CERN. Geneva
2013-01-01
The latest results on searches for Supersymmetry from CMS are reviewed. We present searches for direct stop production, searches in final states with four W bosons and multiple b-quarks, and searches for R-Parity violating SUSY. The results use up to 20/fb of data from the 8 TeV LHC run of 2012.
Neutrino masses from SUSY breaking in radiative seesaw models
International Nuclear Information System (INIS)
Figueiredo, Antonio J.R.
2015-01-01
Radiatively generated neutrino masses (m ν ) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY EWSB contributions), and which are manifest from left angle F H † right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum H left angle H † x H H right angle ≠ 0, radiatively generated m ν can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY EWS contributions). We point out that recent literature overlooks pure-SUSY EWSB contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY EWS . We show that there exist realistic radiative seesaw models in which the leading order contribution to m ν is proportional to SUSY EWS . To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m soft /M 3 or m soft 2 /M 3 . We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m ν can be quite small without conflicting with lower limits on the mass of new particles. (orig.)
Kepribadian Dan Komunikasi Susi Pudjiastuti Dalam Membentuk Personal Branding
Directory of Open Access Journals (Sweden)
Stevani
2017-07-01
Full Text Available The life story of Susi Pudjiastuti is admired by many people for her hard work, until becoming successful by having so much company in the field of aviation and fisheries. Susi Pudjiastuti is also well known to the public for his work in the ministry. Good performance makes Susi Pudjiastuti popular among Jokowi's working cabinet. Currently, the Brand Name in humans is personal branding which is the trend of the formation of self-image and the creation of good perception from others to us. This research will discuss about personality, communication and personal branding Susi Pudjiastuti with qualitative research method. Good personality makes Susi Pudjiastuti has the ability to communicate well and liked by the community. Personality and communication can form a personal branding Susi Pudjiastuti a natural. By exposing the personality and communication of Susi Pudjiastuti in forming personal branding, then people will realize the importance of personality and Communication in forming a natural personal branding. Kisah hidup Susi Pudjiastuti banyak dikagumi oleh banyak orang atas kerja kerasnya hingga menjadi sukses dengan memiliki banyak perusahaan di bidang penerbangan dan perikanan. Susi Pudjiastuti juga dikenal baik oleh masyarakat akan kinerjanya dalam bekerja di kementerian. Kinerja yang baik menjadikan Susi Pudjiastuti popular diantara kabinet kerja Jokowi. Saat ini, Sebutan merek pada manusia adalah personal branding yang merupakan trend dari pembentukan pencitraan diri dan penciptaan persepsi yang baik dari orang lain kepada kita. Penelitian ini akan membahas mengenai kepribadian, komunikasi serta personal branding Susi Pudjiastuti dengan metode penelitian kualitatif. Kepribadian yang baik menjadikan Susi Pudjiastuti memiliki kemampuan berkomunikasi dengan baik dan disenangi oleh masyarakat. Kepribadian dan komunikasi tersebut dapat membentuk personal branding Susi Pudjiastuti yang alami. Dengan memaparkan kepribadian dan komunikasi Susi
A supersymmetric grand unified theory of flavour with PSL2(7)xSO(10)
International Nuclear Information System (INIS)
King, Stephen F.; Luhn, Christoph
2010-01-01
We construct a realistic Supersymmetric Grand Unified Theory of Flavour based on PSL 2 (7)xSO(10), where the quarks and leptons in the 16 of SO(10) are assigned to the complex triplet representation of PSL 2 (7), while the flavons are assigned to a combination of sextets and anti-triplets of PSL 2 (7). Using a D-term vacuum alignment mechanism, we require the flavon sextets of PSL 2 (7) to be aligned along the 3-3 direction leading to the third family Yukawa couplings, while the flavon anti-triplets describe the remaining Yukawa couplings. Other sextets are aligned along the neutrino flavour symmetry preserving directions leading to tri-bimaximal neutrino mixing via a type II see-saw mechanism, with predictions for neutrinoless double beta decay and cosmology.
Towards a complete Δ(27) × SO(10) GUT of flavour
Björkeroth, Fredrik
2017-09-01
We propose a renormalisable model based on Δ(27) family symmetry with an SO(10) grand unified theory (GUT) leading to a novel form of spontaneous geometrical CP violation. The symmetries are broken close to the GUT breaking scale to yield the minimal supersymmetric standard model with standard R-parity. Low-scale Yukawa structure is dictated by the coupling of matter to Δ(27) antitriplets \\bar φ whose vacuum expectation values are aligned in the CSD3 directions by the superpotential. Light physical Majorana neutrinos masses emerge from the seesaw mechanism within SO(10). The model predicts a normal neutrino mass hierarchy with the best-fit lightest neutrino mass m 1 ∼ 0.3 meV, CP-violating oscillation phase δl ≈ 280° and the remaining neutrino parameters all within 1σ of their best-fit experimental values.
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
Kitano, Ryuichiro; Li, Tianjun
2003-06-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group.
Ten dimensional SO(10) G.U.T. models with dynamical symmetry breaking
International Nuclear Information System (INIS)
Hanlon, B.E.; Joshi, G.C.
1993-01-01
To date, considerations on SO (10) models within Coset Space Dimensional Reduction (CSDR) have been diagonalized to the standard model or rely upon imaginative applications of Wilson lines so as to avoid the problem of the nonexistence of an intermediate Higgs mechanism. However, there is an alternative approach involving four fermion condensates, breaking symmetries by a dynamical mechanism. Indeed, dynamical symmetry breaking has been the direction taken in some SU(5) models within this framework in order to avoid the problems of electroweak symmetry breaking at the compactification scale. This paper presents realistic models which utilize this mechanism. It is shown that the appropriate fermionic representations can emerge from CSDR and the construction of such condensates within the constraints of this scheme is presented. By introducing discrete symmetries onto the internal manifold a strong breaking of the SO(10) G.U.T. is produced and, more importantly, eliminate Higgs fields of geometrical origin. 31 refs
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
International Nuclear Information System (INIS)
Kitano, Ryuichiro; Li Tianjun
2003-01-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group
Starobinsky-like inflation and neutrino masses in a no-scale SO(10) model
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [Theoretical Particle Physics and Cosmology Group,Department of Physics, King’s College London, WC2R 2LS London (United Kingdom); Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Garcia, Marcos A.G. [Physics and Astronomy Department, Rice University,6100 Main Street, Houston, TX 77005 (United States); Nagata, Natsumi [Department of Physics, University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, 77843 Texas (United States); Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States)
2016-11-08
Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.
Starobinsky-Like Inflation and Neutrino Masses in a No-Scale SO(10) Model
Ellis, John
2016-11-08
Using a no-scale supergravity framework, we construct an SO(10) model that makes predictions for cosmic microwave background observables similar to those of the Starobinsky model of inflation, and incorporates a double-seesaw model for neutrino masses consistent with oscillation experiments and late-time cosmology. We pay particular attention to the behaviour of the scalar fields during inflation and the subsequent reheating.
Symmetry breaking of SO(10) and constraints on Higgs potential, (1)
International Nuclear Information System (INIS)
Yasue, Masaki.
1980-08-01
The symmetry breaking of SO(10) is studied in the tree approximation of the potential for an adjoint (45) representation and a spinorial (16) representation. The potential can break SO(10) down to SU(3)sub(c) x SU(2)sub(L) x U(1). It is not allowed to break SO(10) down to SU(3)sub(c) x U(1)sub(em) via SU(3)sub(c) x SU(2)sub(L) x U(1) even in the presence of a cubic (16) (16*) (45) coupling. Instead, SU(3) x U(1) comes from SU(4) x U(1). The masses for the physical Higgs scalars are calculated in SU(3)sub(c) x SU(2)sub(L) x U(1). The dynamically allowed region of the vacuum expectation values of the (45) is found to be strongly restricted. As a result, SO(6) and SO(4) cannot show up in the course of the breaking. (author)
Flop transitions in cuprate and color superconductors: From SO(5) to SO(10) unification?
Energy Technology Data Exchange (ETDEWEB)
Chandrasekharan, S.; Chudnovsky, V.; Schlittgen, B.; Wiese, U.-J
2001-03-01
The phase diagrams of cuprate superconductors and of QCD at non-zero baryon chemical potential are qualitatively similar. The Neel phase of the cuprates corresponds to the chirally broken phase of QCD, and the high-temperature superconducting phase corresponds to the color superconducting phase. In the SO(5) theory for the cuprates the SO(3){sub s} spin rotational symmetry and the U(1){sub em} gauge symmetry of electromagnetism are dynamically unified. This suggests that the SU(2){sub L} x SU(2){sub R} x U(1){sub B} chiral symmetry of QCD and the SU(3){sub c} color gauge symmetry may get unified to SO(10). Dynamical enhancement of symmetry from SO(2){sub s} x Z(2) to SO(3){sub s} is known to occur in anisotropic antiferromagnets. In these systems the staggered magnetization flops from an easy 3-axis into the 12-plane at a critical value of the external magnetic field. Similarly, the phase transitions in the SO(5) and SO(10) models are flop transitions of a 'superspin'. Despite this fact, a renormalization group flow analysis in 4 -- {epsilon} dimensions indicates that a point with full SO(5) or SO(10) symmetry exists neither in the cuprates nor in QCD.
Flop transitions in cuprate and color superconductors: From SO(5) to SO(10) unification?
International Nuclear Information System (INIS)
Chandrasekharan, S.; Chudnovsky, V.; Schlittgen, B.; Wiese, U.-J.
2001-01-01
The phase diagrams of cuprate superconductors and of QCD at non-zero baryon chemical potential are qualitatively similar. The Neel phase of the cuprates corresponds to the chirally broken phase of QCD, and the high-temperature superconducting phase corresponds to the color superconducting phase. In the SO(5) theory for the cuprates the SO(3) s spin rotational symmetry and the U(1) em gauge symmetry of electromagnetism are dynamically unified. This suggests that the SU(2) L x SU(2) R x U(1) B chiral symmetry of QCD and the SU(3) c color gauge symmetry may get unified to SO(10). Dynamical enhancement of symmetry from SO(2) s x Z(2) to SO(3) s is known to occur in anisotropic antiferromagnets. In these systems the staggered magnetization flops from an easy 3-axis into the 12-plane at a critical value of the external magnetic field. Similarly, the phase transitions in the SO(5) and SO(10) models are flop transitions of a 'superspin'. Despite this fact, a renormalization group flow analysis in 4 -- ε dimensions indicates that a point with full SO(5) or SO(10) symmetry exists neither in the cuprates nor in QCD
Order and anarchy hand in hand in 5D SO(10)
International Nuclear Information System (INIS)
Vicino, D
2015-01-01
A mechanism to generate flavour hierarchy via 5D wave-function localization is revisited in the context of SO(10) grand unified theory. In an extra-dimension compactified on an orbifold, fermions (living in the same 16 representation of SO(10)) result having exponential zero-modes profiles, localized around one of the brane. The breaking of SO(10) down to SU(5) × U(1) x provides the key parameter that distinguishes the profiles of the different SU(5) components inside the same 16 representation. Utilizing a suitable set of scalar fields, a predictive model for fermion masses and mixing is constructed and shown to be viable with the current data through a detailed numerical analysis. The scalar field content of the model is also suitable to solve the doublet-triplet splitting problem through the missing partner mechanism. All the Yukawa couplings in the model are anarchical and of order unity, while the hierarchies among different fermions result only from zero-mode profiles. The naturalness of Anarchical Yukawa couplings is studied, showing a preference for a normal ordered neutrino spectrum; predictions for various observables in the lepton sector are also derived. (paper)
String flipped SO(10) model from [ital Z][sub 4] orbifold
Energy Technology Data Exchange (ETDEWEB)
Sato, H. (Department of Physics, Hyogo University of Education, Yashiro-cho, Hyogo 673-14 (Japan)); Shimojo, M. (Department of Electronics and Information Engineering, Fukui National College of Technology, Sabae, Fukui 916 (Japan))
1993-12-15
We search all possible string grand-unified-theory models obtained from heterotic superstrings compactified on a [ital Z][sub 4] orbifold with one Wilson line. It is shown that there is an essentially unique anomaly-free flipped SO(10) model with three generations plus one mirror conjugate generation of matter fields. We derive effective Yukawa interactions and examine the structure of mass matrices as well as a possible scenario of string coupling unification. The four-generation [ital Z][sub 4] orbifold model is a phenomenologically viable model beyond the minimal supersymmetric standard one.
Neutrino masses in an SO(10) model with an intermediate stage of symmetry breaking
International Nuclear Information System (INIS)
Svetovoi, V.B.
1982-01-01
The effect on neutrino masses of an intermediate stage in symmetry breaking different from SU(5) is investigated in detail for the SO(10) model. There are two possibilities depending on the contents of the Higgs sector: i) m/sub ν/approx.m/sub f/(M/sub W//M 1 ); ii) m/sub ν/approx.m/sub f/(M/sub W//M 1 )(M/M 1 ), where M, M 1 and M/sub W/ are the scales of the breaking of the original SO(10) symmetry, the intermediate symmetry, and the standard SU/sub c/(3) x SU/sub L/(2) x U(1) symmetry, respectively, and m/sub f/ is a typical fermion mass. It is shown that a Majorana mass of the right-handed-neutrino (ν/sub R/) of a purely loop origin would result in too large a mass of the usual neutrinos, so a tree-graph contribution to the mass of ν/sub R/ is necessary. Numerical estimates for the neutrino masses are discussed
A neutrino mass-mixing sum rule from SO(10) and neutrinoless double beta decay
Energy Technology Data Exchange (ETDEWEB)
Buccella, F. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Chianese, M. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Mangano, G. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Miele, G.; Morisi, S.; Santorelli, P. [INFN, Sezione di Napoli,Complesso University Monte S. Angelo, I-80126 Napoli (Italy); Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II,Complesso University Monte S. Angelo, I-80126 Napoli (Italy)
2017-04-03
Minimal SO(10) grand unified models provide phenomenological predictions for neutrino mass patterns and mixing. These are the outcome of the interplay of several features, namely: i) the seesaw mechanism; ii) the presence of an intermediate scale where B-L gauge symmetry is broken and the right-handed neutrinos acquire a Majorana mass; iii) a symmetric Dirac neutrino mass matrix whose pattern is close to the up-type quark one. In this framework two natural characteristics emerge. Normal neutrino mass hierarchy is the only allowed, and there is an approximate relation involving both light-neutrino masses and mixing parameters. This differs from what occurring when horizontal flavour symmetries are invoked. In this case, in fact, neutrino mixing or mass relations have been separately obtained in literature. In this paper we discuss an example of such comprehensive mixing-mass relation in a specific realization of SO(10) and, in particular, analyse its impact on the expected neutrinoless double beta decay effective mass parameter 〈m{sub ee}〉, and on the neutrino mass scale. Remarkably a lower limit for the lightest neutrino mass is obtained (m{sub lightest}≳7.5×10{sup −4} eV, at 3 σ level).
Hierarchy of symmetry-breaking scales in SO(10) grand unification and particle masses
International Nuclear Information System (INIS)
Asatryan, G.M.; Ioannisyan, A.N.
1987-01-01
An SO(10) grand unification model is proposed in which the introduction of an additional discrete symmetry solves the problem of the quark mass spectrum arising in SO(10) breaking schemes with intermediate SU(4) x SU(2)/sub L/ x SU(2)/sub R/ or SU(3)/sub C/ x U(1)/sub B//sub -//sub L/ x SU(2)/sub L/ x SU(2)/sub R/ symmetry. When the breaking of this discrete symmetry is taken into account the condition that there exist only a single light Higgs boson leads to a relation between the b- and t-quark masses which makes it possible to fix the ratio of the grand unification scale M/sub X/ and the quark--lepton symmetry-breaking scale M/sub C/. The specific values of M/sub X/ and M/sub C/ and also the scale of the SU(2)/sub R/ symmetry breaking M/sub R/ depend on the experimental value of the Weinberg angle and are in agreement with the experimental data on proton decay
Complete Cubic and Quartic Couplings of 16 and $\\bar{16}$ in SO(10) Unification
Syed, R M; Nath, Pran; Syed, Raza M.
2001-01-01
A recently derived basic theorem on the decomposition of SO(2N) vertices is used to obtain a complete analytic determination of all SO(10) invariant cubic superpotential couplings involving $16_{\\pm}$ semispinors of SO(10) chirality $\\pm$ and tensor representations. In addition to the superpotential couplings computed previously using the basic theorem involving the 10, 120 and $\\bar{126}$ tensor representations we compute here couplings involving the 1, 45 and 210 dimensional tensor representations, i.e., we compute the $\\bar{16}_{\\mp}16_{\\pm}1$,$\\bar{16}_{\\mp}16_{\\pm}45$ and $\\bar{16}_{\\mp}16_{\\pm}210$ Higgs couplings in the superpotential. A complete determination of dimension five operators in the superpotential arising from the mediation of the 1, 45 and 210 dimensional representations is also given. The vector couplings $\\bar{16}_{\\pm}16_{\\pm}1$, $\\bar{16}_{\\pm}16_{\\pm}45$ and $\\bar{16}_{\\pm}16_{\\pm}210$ are also analyzed. The role of large tensor representations and the possible application of results ...
A non Supersymmetric SO(10) Grand Unified Model for All the Physics below $M_{GUT}$
Altarelli, Guido
2013-01-01
We present a renormalizable non supersymmetric Grand Unified SO(10) model which, at the price of a large fine tuning, is compatible with all compelling phenomenological requirements below the unification scale and thus realizes a minimal extension of the SM, unified in SO(10) and describing all known physics below $M_{GUT}$. These requirements include coupling unification at a large enough scale to be compatible with the bounds on proton decay; a Yukawa sector in agreement with all the data on quark and lepton masses and mixings and with leptogenesis as the origin of the baryon asymmetry of the Universe; an axion arising from the Higgs sector of the model, suitable to solve the strong CP problem and to account for the observed amount of Dark Matter. The above constraints imposed by the data are very stringent and single out a particular breaking chain with the Pati-Salam group at an intermediate scale $M_I\\sim10^{11}$ GeV.
Complete cubic and quartic couplings of 16 and 16-bar in SO(10) unification
International Nuclear Information System (INIS)
Nath, Pran; Syed, Raza M.
2001-01-01
A recently derived basic theorem on the decomposition of SO(2N) vertices is used to obtain a complete analytic determination of all SO(10)-invariant cubic superpotential couplings involving 16 ± semispinors of SO(10) chirality ± and tensor representations. In addition to the superpotential couplings computed previously using the basic theorem involving the 10, 120 and 126-bar tensor representations we compute here couplings involving the 1-, 45- and 210-dimensional tensor representations, i.e., we compute the 16-bar -+ 16 ± 1, 16-bar -+ 16 ± 45 and 16-bar -+ 16 ± 210 Higgs couplings in the superpotential. A complete determination of dimension five operators in the superpotential arising from the mediation of the 1-, 45- and 210-dimensional representations is also given. The vector couplings 16-bar ± 16 ± 1, 16-bar ± 16 ± 45 and 16-bar ± 16 ± 210 are also analyzed. The role of large tensor representations and the possible application of results derived here in model building are discussed
A realistic pattern of fermion masses from a five-dimensional SO(10) model
International Nuclear Information System (INIS)
Feruglio, Ferruccio; Patel, Ketan M.; Vicino, Denise
2015-01-01
We provide a unified description of fermion masses and mixing angles in the framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa couplings of order unity. The space-time is five dimensional and the extra flat spatial dimension is compactified on the orbifold S 1 /(Z 2 ×Z 2 ′ ), leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions are localised. The gauge symmetry breaking is completed by means of a rather economic scalar sector, avoiding the doublet-triplet splitting problem. The matter fields live in the bulk and their massless modes get exponential profiles, which naturally explain the mass hierarchy of the different fermion generations. Quarks and leptons properties are naturally reproduced by a mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of bulk masses in terms of a single parameter. The model provides a realistic pattern of fermion masses and mixing angles for large values of tan β. It favours normally ordered neutrino mass spectrum with the lightest neutrino mass below 0.01 eV and no preference for leptonic CP violating phases. The right handed neutrino mass spectrum is very hierarchical and does not allow for thermal leptogenesis. We analyse several variants of the basic framework and find that the results concerning the fermion spectrum are remarkably stable.
Hilltop supernatural inflation and SUSY unified models
Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Hilltop supernatural inflation and SUSY unified models
Energy Technology Data Exchange (ETDEWEB)
Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS KEK, and The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, 305-0801 (Japan); Lim, C.S. [Department of Mathematics, Tokyo Woman' s Christian University, Tokyo, 167-8585 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 (Japan); Mimura, Yukihiro, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp, E-mail: mimura@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, 10617 Taiwan (China)
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Unification of SUSY breaking and GUT breaking
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Tatsuo [Department of Physics, Hokkaido University,Sapporo 060-0810 (Japan); Omura, Yuji [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)
2015-02-18
We build explicit supersymmetric unification models where grand unified gauge symmetry breaking and supersymmetry (SUSY) breaking are caused by the same sector. Besides, the SM-charged particles are also predicted by the symmetry breaking sector, and they give the soft SUSY breaking terms through the so-called gauge mediation. We investigate the mass spectrums in an explicit model with SU(5) and additional gauge groups, and discuss its phenomenological aspects. Especially, nonzero A-term and B-term are generated at one-loop level according to the mediation via the vector superfields, so that the electro-weak symmetry breaking and 125 GeV Higgs mass may be achieved by the large B-term and A-term even if the stop mass is around 1 TeV.
Hilltop supernatural inflation and SUSY unified models
International Nuclear Information System (INIS)
Kohri, Kazunori; Lim, C.S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n s = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton
Extraction of the Susy and Higgs parameters
International Nuclear Information System (INIS)
Adam-Bourdarios, Claire
2010-01-01
If supersymmetry is discovered by the next generation of collider experiments, it will be crucial to determine its fundamental high-scale parameters. Three scenarios have been recently investigated by the SFitter collaboration : the case where the LHC 'only' measures a light Higgs like signal, the case where SUSY signal are discovered at the LHC, and the dream scenario, where LHC and ILC measurements can be combined.
Lifshitz-sector mediated SUSY breaking
International Nuclear Information System (INIS)
Pospelov, Maxim; Tamarit, Carlos
2014-01-01
We propose a novel mechanism of SUSY breaking by coupling a Lorentz-invariant supersymmetric matter sector to non-supersymmetric gravitational interactions with Lifshitz scaling. The improved UV properties of Lifshitz propagators moderate the otherwise uncontrollable ultraviolet divergences induced by gravitational loops. This ensures that both the amount of induced Lorentz violation and SUSY breaking in the matter sector are controlled by Λ HL 2 /M P 2 , the ratio of the Hořava-Lifshitz cross-over scale Λ HL to the Planck scale M P . This ratio can be kept very small, providing a novel way of explicitly breaking supersymmetry without reintroducing fine-tuning. We illustrate our idea by considering a model of scalar gravity with Hořava-Lifshitz scaling coupled to a supersymmetric Wess-Zumino matter sector, in which we compute the two-loop SUSY breaking corrections to the masses of the light scalars due to the gravitational interactions and the heavy fields
Status of the SUSY Les Houches Accord II Project
International Nuclear Information System (INIS)
Allanch, B.C.; Balazs, C.; Belanger, G.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; Guasch, J.; Guchait, M.; Heinemeyer, S.; Hugonie, C.; Hurth, T.; Kraml, S.; Lykken, J.; Mangano, M.; Moortgat, F.; Moretti, S.; Penaranda, S.; Porod, W.; Fermilab
2005-01-01
Supersymmetric (SUSY) spectrum generators, decay packages, Monte-Carlo programs, dark matter evaluators, and SUSY fitting programs often need to communicate in the process of an analysis. The SUSY Les Houches Accord provides a common interface that conveys spectral and decay information between the various packages. Here, we propose extensions of the conventions of the first SUSY Les Houches Accord to include various generalizations: violation of CP, R-parity and flavor as well as the simplest next-to-minimal supersymmetric standard model (NMSSM)
Successful leptogenesis in SO(10 unification with a left–right symmetric seesaw mechanism
Directory of Open Access Journals (Sweden)
Asmaa Abada
2009-03-01
Full Text Available We study thermal leptogenesis in a broad class of supersymmetric SO(10 models with a left–right symmetric seesaw mechanism, taking into account flavour effects and the contribution of the next-to-lightest right-handed neutrino supermultiplet. Assuming MD=Mu and a normal hierarchy of light neutrino masses, we show that four out of the eight right-handed neutrino mass spectra reconstructed from low-energy neutrino data can lead to successful leptogenesis with a reheating temperature in the (109–1010 GeV range. In the remaining four solutions, leptogenesis is dominated by N2 decays, as in the type I seesaw case. We find that some of these spectra can generate the observed baryon asymmetry for reheating temperatures above 1010 GeV, in contrast to the type I case. Together with flavour effects, an accurate description of charged fermion masses turns out to be a crucial ingredient in the analysis.
Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries
Energy Technology Data Exchange (ETDEWEB)
Chu, Xiaoyong [International Centre for Theoretical Physics,Strada Costiera 11, I-34100 Trieste (Italy); Smirnov, Alexei Yu. [Max-Planck-Institute for Nuclear Physics,Saupfercheckweg 1, D-69117 Heidelberg (Germany); International Centre for Theoretical Physics,Strada Costiera 11, I-34100 Trieste (Italy)
2016-05-23
We consider the neutrino masses and mixing in the framework of SO(10) GUTs with hidden sector consisting of fermionic and bosonic SO(10) singlets and flavor symmetries. The framework allows to disentangle the CKM physics responsible for the CKM mixing and different mass hierarchies of quarks and leptons and the neutrino new physics which produces smallness of neutrino masses and large lepton mixing. The framework leads naturally to the relation U{sub PMNS}∼V{sub CKM}{sup †}U{sub 0}, where structure of U{sub 0} is determined by the flavor symmetry. The key feature of the framework is that apart from the Dirac mass matrices m{sub D}, the portal mass matrix M{sub D} and the mass matrix of singlets M{sub S} are also involved in generation of the lepton mixing. This opens up new possibilities to realize the flavor symmetries and explain the data. Using A{sub 4}×Z{sub 4} as the flavor group, we systematically explore the flavor structures which can be obtained in this framework depending on field content and symmetry assignments. We formulate additional conditions which lead to U{sub 0}∼U{sub TBM} or U{sub BM}. They include (i) equality (in general, proportionality) of the singlet flavons couplings, (ii) equality of their VEVs; (iii) correlation between VEVs of singlets and triplet, (iv) certain VEV alignment of flavon triplet(s). These features can follow from additional symmetries or be remnants of further unification. Phenomenologically viable schemes with minimal flavon content and minimal number of couplings are constructed.
Results from GRACE/SUSY at one-loop
Indian Academy of Sciences (India)
We report the recent development on the SUSY calculations with the help of GRACE system. GRACE/SUSY/1LOOP is the computer code which can generate Feynman diagrams in the MSSM automatically and compute one-loop amplitudes in the numerical way. We present new results of various two-body decay widths ...
Searches for Electroweak SUSY by ATLAS and CMS
Khoo, Teng Jian; The ATLAS collaboration
2018-01-01
While strongly-produced SUSY and third-generation squark searches have already breached the TeV mass range, direct production of electroweak gauginos is less tightly constrained. New searches are presented, showcasing novel strategies for filling in the gaps in sensitivity to electroweak SUSY at ATLAS and CMS.
Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting
Energy Technology Data Exchange (ETDEWEB)
Babu, K.S.; /Oklahoma State U.; Pati, Jogesh C.; /SLAC; Tavartkiladze, Zurab; /Oklahoma State U. /Tbilisi, Inst. Phys.
2011-06-28
We present a class of realistic unified models based on supersymmetric SO(10) wherein issues related to natural doublet-triplet (DT) splitting are fully resolved. Using a minimal set of low dimensional Higgs fields which includes a single adjoint, we show that the Dimopoulos-Wilzcek mechanism for DT splitting can be made stable in the presence of all higher order operators without having pseudo-Goldstone bosons and flat directions. The {mu} term of order TeV is found to be naturally induced. A Z{sub 2}-assisted anomalous U(1){sub A} gauge symmetry plays a crucial role in achieving these results. The threshold corrections to {alpha}{sub 3}(M{sub Z}), somewhat surprisingly, are found to be controlled by only a few effective parameters. This leads to a very predictive scenario for proton decay. As a novel feature, we find an interesting correlation between the d = 6 (p {yields} e{sup +}{pi}{sup 0}) and d = 5 (p {yields} {bar {nu}}K{sup +}) decay amplitudes which allows us to derive a constrained upper limit on the inverse rate of the e{sup +}{pi}{sup 0} mode. Our results show that both modes should be observed with an improvement in the current sensitivity by about a factor of five to ten.
Two-loop renormalization group analysis of supersymmetric SO(10) models with an intermediate scale
International Nuclear Information System (INIS)
Bastero-Gil, M.; Brahmachari, B.
1996-03-01
Two-loop evolutions of the gauge couplings in a class of intermediate scale supersymmetric SO(10) models including the effect of third generation Yukawa couplings are studied. The unification scale, the intermediate scale and the value of the unification gauge coupling in these models are calculated and the gauge boson mediated proton decay rates are estimated. In some cases the predicted proton lifetime turns out to be in the border-line of experimental limit. The predictions of the top quark mass, the mass ratio m b (m b )/m τ (m τ ) from the two-loop evolution of Yukawa couplings and the mass of the left handed neutrino via see-saw mechanism are summarized. The lower bounds on the ratio of the VEVs of the two low energy doublets (tan β) from the requirement of the perturbative unitarity of the top quark Yukawa coupling up to the grand unification scale are also presented. All the predictions have been compared with those of the one-step unified theory. (author). 33 refs, 5 figs, 1 tab
Neutrino masses in the SO(10) model with intermediate stage of the symmetry breaking
International Nuclear Information System (INIS)
Svetovoj, V.B.
1982-01-01
An effect for the neutrino masses of an intermediate stage in the symmetry spontaneous breaking, different from SU(5), is investigated in some detail for the SO(1O) model. There are two possibilities depending on the composition of the Higgs sector: i) msub(ν) approximately msub(f)(Msub(W)/Msub(1)); ii) msub(ν) approximately msub(f)sub(b)/Msub(1))(M/Msub(1)), where M, M 1 and Msub) are the scales of the breaking of the original SO(10) simmetry, the intermediate symmetry, and the standard SUsub(c)(3)xSUsub(L)(2)xU(1) symmetry, respectively, and msub(f) is a typical fermion mass. It as shown that a Majorana mass of the right neutrino (νsub(R)) of a purely loop origin would result in a too large mass of the usual neutrinos, so a tree-graph contribution to the mass of νsub(R) is necessary. Numerical estimates for the neutrino masses are discussed [ru
Mixing of ν/sub e/ and ν/sub μ/ in SO(10) models
International Nuclear Information System (INIS)
Milton, K.; Nandi, S.; Tanaka, K.
1982-01-01
We found previously in SO(10) grand unified theories that if the neutrinos have a Dirac mass and a right-handed Majorana mass (approx.10 15 GeV) but no left-handed Majorana mass, there is small ν/sub e/ mixing but ν/sub μ/-ν/sub tau/ mixing can be substantial. We reexamine this problem on the basis of a formalism that assumes that the up, down, lepton, and neutrino mass matrices arise from a single complex 10 and a single 126 Higgs boson. This formalism determines the Majorana mass matrix in terms of quark mass matrices. Adopting three different sets of quark mass matrices that produce acceptable fermion mass ratios and Cabbibo mixing, we obtain results consistent with the above; however, in the optimum case, ν/sub e/-ν/sub μ/ mixing can be of the order of the Cabbibo angle. In an extension of this model wherein the Witten mechanism generates the Majorana mass, we illustrate quantitatively how the parameter characterizing the Majorana sector must be tuned in order to achieve large ν/sub e/-ν/sub μ/ mixing
What is a natural SUSY scenario?
Energy Technology Data Exchange (ETDEWEB)
Casas, J. Alberto; Moreno, Jesús M.; Robles, Sandra; Rolbiecki, Krzysztof [Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Zaldívar, Bryan [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)
2015-06-11
The idea of “Natural SUSY', understood as a supersymmetric scenario where the fine-tuning is as mild as possible, is a reasonable guide to explore supersymmetric phenomenology. In this paper, we re-examine this issue in the context of the MSSM including several improvements, such as the mixing of the fine-tuning conditions for different soft terms and the presence of potential extra fine-tunings that must be combined with the electroweak one. We give tables and plots that allow to easily evaluate the fine-tuning and the corresponding naturalness bounds for any theoretical model defined at any high-energy (HE) scale. Then, we analyze in detail the complete fine-tuning bounds for the unconstrained MSSM, defined at any HE scale. We show that Natural SUSY does not demand light stops. Actually, an average stop mass below 800 GeV is disfavored, though one of the stops might be very light. Regarding phenomenology, the most stringent upper bound from naturalness is the one on the gluino mass, which typically sets the present level fine-tuning at O(1%). However, this result presents a strong dependence on the HE scale. E.g. if the latter is 10{sup 7} GeV the level of fine-tuning is ∼ four times less severe. Finally, the most robust result of Natural SUSY is by far that Higgsinos should be rather light, certainly below 700 GeV for a fine-tuning of O(1%) or milder. Incidentally, this upper bound is not far from ≃1 TeV, which is the value required if dark matter is made of Higgsinos.
SUSY searches in early CMS data
International Nuclear Information System (INIS)
Tricomi, A
2008-01-01
In the first year of data taking at LHC, the CMS experiment expects to collect about 1 fb -1 of data, which make possible the first searches for new phenomena. All such searches require however the measurement of the SM background and a detailed understanding of the detector performance, reconstruction algorithms and triggering. The CMS efforts are hence addressed to designing a realistic analysis plan in preparation to the data taking. In this paper, the CMS perspectives and analysis strategies for Supersymmetry (SUSY) discovery with early data are presented
SUSY Without Prejudice at Linear Colliders
International Nuclear Information System (INIS)
Rizzo, T.
2008-01-01
We explore the physics of the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all existing experimental and theoretical constraints assuming that the WIMP is the lightest neutralino. We scan this parameter space twice using both flat and log priors and compare the results which yield similar conclusions. Constraints from both LEP and the Tevatron play an important role in obtaining our final model samples. Implications for future TeV-scale e + e - linear colliders (LC) are discussed
Energy Technology Data Exchange (ETDEWEB)
Barenboim, G.; Bernabeu, J.; Vives, O. [Universitat de Valencia, Departament de Fisica Teorica, Burjassot (Spain); Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain); Mitsou, V.A.; Romero, E. [Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain)
2016-02-15
Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E{sub T}{sup miss} > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m{sub g}
International Nuclear Information System (INIS)
Barenboim, G.; Bernabeu, J.; Vives, O.; Mitsou, V.A.; Romero, E.
2016-01-01
Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E T miss > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m g
Spontaneous SUSY breaking without R symmetry in supergravity
Maekawa, Nobuhiro; Omura, Yuji; Shigekami, Yoshihiro; Yoshida, Manabu
2018-03-01
We discuss spontaneous supersymmetry (SUSY) breaking in a model with an anomalous U (1 )A symmetry. In this model, the size of the each term in the superpotential is controlled by the U (1 )A charge assignment and SUSY is spontaneously broken via the Fayet-Iliopoulos of U (1 )A at the metastable vacuum. In the global SUSY analysis, the gaugino masses become much smaller than the sfermion masses, because an approximate R symmetry appears at the SUSY breaking vacuum. In this paper, we show that gaugino masses can be as large as gravitino mass, taking the supergravity effect into consideration. This is because the R symmetry is not imposed so that the constant term in the superpotential, which is irrelevant to the global SUSY analysis, largely contributes to the soft SUSY breaking terms in the supergravity. As the mediation mechanism, we introduce the contributions of the field not charged under U (1 )A and the moduli field to cancel the anomaly of U (1 )A. We comment on the application of our SUSY breaking scenario to the grand unified theory.
Finite N=1 SUSY gauge field theories
International Nuclear Information System (INIS)
Kazakov, D.I.
1986-01-01
The authors give a detailed description of the method to construct finite N=1 SUSY gauge field theories in the framework of N=1 superfields within dimensional regularization. The finiteness of all Green functions is based on supersymmetry and gauge invariance and is achieved by a proper choice of matter content of the theory and Yukawa couplings in the form Y i =f i (ε)g, where g is the gauge coupling, and the function f i (ε) is regular at ε=0 and is calculated in perturbation theory. Necessary and sufficient conditions for finiteness are determined already in the one-loop approximation. The correspondence with an earlier proposed approach to construct finite theories based on aigenvalue solutions of renormalization-group equations is established
Concordia elas tuleviku arvelt / Mart Susi ; interv. Krister Kivi
Susi, Mart, 1965-
2003-01-01
Ilmunud ka: Infopress 21. märts nr. 12 lk. 30-31. Concordia Ülikooli rektor Mart Susi räägib kooli senisest juhtimisest ning asjaoludest, mis on põhjustanud pankroti. Tabel: Concordia kronoloogia
Search for non-standard SUSY signatures in CMS
International Nuclear Information System (INIS)
Teyssier, Daniel
2008-01-01
New studies of the CMS collaboration are presented on the sensitivity to searches for non-standard signatures of particular SUSY scenarios. These signatures include non-pointing photons as well as pairs of prompt photons as expected GMSB SUSY models, as well as heavy stable charged particles produced in split supersymmetry models, long lived staus from GMSB SUSY and long lived stops in other SUSY scenarios. Detailed detector simulation is used for the study, and all relevant Standard Model background and detector effects that can mimic these special signatures are included. It is shown that with already with less than 100 pb -1 the CMS sensitivity will probe an interesting as yet by data unexplored parameter range of these models.
Yukawa unification in moduli-dominant SUSY breaking
International Nuclear Information System (INIS)
Khalil, S.; Tatsuo Kobayashi
1997-07-01
We study Yukawa in string models with moduli-dominant SUSY breaking. This type of SUSY breaking in general leads to non-universal soft masses, i.e. soft scalar masses and gaugino masses. Such non-universality is important for phenomenological aspects of Yukawa unification, i.e., successful electroweak breaking, SUSY corrections to the bottom mass and the branching ratio of b → sγ. We show three regions in the whole parameter space which lead to successful electroweak breaking and allow small SUSY corrections to the bottom mass. For these three regions we investigated the b → sγ decay and mass spectra. (author). 26 refs, 6 figs
Electroweak SUSY production searches at ATLAS and CMS
Flowerdew, M; The ATLAS collaboration
2014-01-01
The discovery of weak-scale supersymmetric (SUSY) particles is one of the primary goals of the Large Hadron Collider experiments. Depending on the mechanism of SUSY breaking, it could be that strongly interacting squarks and gluinos are too massive to produce at the LHC. In this case, the primary SUSY production mode is of charginos, neutralinos and sleptons, mediated by electroweak interactions. However, the experimental signatures for discovery vary widely, depending on the mass hierarchy, SUSY particle mixing parameters and conservation/violation of R-parity, necessitating a large and complex suite of experimental search strategies. These strategies include searching for events with multiple charged leptons, photons, reconstructed higgs bosons or new long-lived particles. In this presentation, the latest ATLAS and CMS search results in these channels are presented, based mainly on $20~$fb$^{-1}$ of $pp$ collisions at $\\sqrt{s} = 8~$TeV collected in 2012. The resulting constraints on the parameter spaces of...
EW SUSY production searches at ATLAS and CMS
Flowerdew, MJ; The ATLAS collaboration
2014-01-01
The discovery of weak-scale supersymmetric (SUSY) particles is one of the primary goals of the Large Hadron Collider experiments. Depending on the mechanism of SUSY breaking, it could be that strongly interacting squarks and gluinos are too massive to produce at the LHC. In this case, the primary SUSY production mode is of charginos, neutralinos and sleptons, mediated by electroweak interactions. However, the experimental signatures for discovery vary widely, depending on the mass hierarchy, SUSY particle mixing parameters and conservation/violation of R-parity, necessitating a large and complex suite of experimental search strategies. These strategies include searching for events with multiple charged leptons, photons, reconstructed higgs bosons or new long-lived particles. In this presentation, the latest ATLAS and CMS search results in these channels are presented, based mainly on 20 fb$^{-1}$ of pp collisions at $\\sqrt{s} = 8$ TeV collected in 2012. The resulting constraints on the parameter spaces of var...
Results from GRACE/SUSY at one-loop
International Nuclear Information System (INIS)
Fujimoto, J.; Ishikawa, T.; Kurihara, Y.; Jimbo, M.; Yasui, Y.; Kaneko, T.; Kon, T.; Kuroda, M.; Shimizu, Y.
2007-01-01
We report the recent development on the SUSY calculations with the help of GRACE system. GRACE/SUSY/1LOOP is the computer code which can generate Feynman diagrams in the MSSM automatically and compute one-loop amplitudes in the numerical way. We present new results of various two-body widths and chargino pair production at ILC (international linear collider) at one-loop level. (author)
R-symmetry violation in N=2 SUSY
International Nuclear Information System (INIS)
Volkov, G.G.; Maslikov, A.A.
1990-01-01
The present paper discusses the spontaneous R-symmetry violation in the N=2 SUSY SU(4)xU(1) model with soft SUSY breaking terms preserving finiteness. (In this case an invisible axion appears). In particular, the mechanism producting a light photino mass up to some GeV is suggested. In R-odd version of this model the mechanisms of enhancement of the neutrino decay is discussed. 10 refs.; 3 figs
Latest news on SUSY from the ATLAS experiment
CERN. Geneva
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk reports the latest ATLAS results for searches for supersymmetric (SUSY) particles, obtained with 13 to 18 fb-1 of 13 TeV data. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons.
R-Parity Violating SUSY Results from ATLAS and CMS
AUTHOR|(INSPIRE)INSPIRE-00360876; The ATLAS collaboration
2016-01-01
Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence of RPC is that it implies the existence of a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. A summarization a few of the experimental searches for both prompt and long-li...
Supersimplicity: a Remarkable High Energy SUSY Property
International Nuclear Information System (INIS)
Gounaris, G.J.; Renard, F.M.
2011-01-01
It is known that for any 2-to-2 process in MSSM, only the helicity conserving (HC) amplitudes survive asymptotically. Studying many such processes, at the 1-loop Electroweak (EW) order, it is found that their high energy HC amplitudes are determined by just three forms: a log-squared function of the ratio of two of the (s, t, u) variables, to which a π 2 is added; and two Sudakov-like ln- and ln 2 -terms accompanied by respective mass-dependent constants. Apart from a possible additional residual constant (which is also discussed), these HC amplitudes, may be expressed as linear combinations of the above three forms, with coefficients being rational functions of the (s, t, u) variables. This 1-loop property, called supersimplicity, is of course claimed for the 2-to-2 processes considered; but no violating examples are known at present. For ug → dW, supersimplicity is found to be a very good approximation at LHC energies, provided the SUSY scale is not too high. SM processes are also discussed, and their differences are explored. (authors)
On SUSY inspired minimal lepton number violation
International Nuclear Information System (INIS)
Chkareuli, J.L.; Gogoladze, I.G.; Green, M.G.; Hutchroft, D.E.; Kobakhidze, A.B.
2000-03-01
A minimal lepton number violation (LNV) is proposed which could naturally appear in SUSY theories, if Yukawa and LNV couplings had a common origin. According to this idea properly implemented into MSSM with an additional abelian flavor symmetry the prototype LNV appears due to a mixing of leptons with superheavy Higgs doublet mediating Yukawa couplings. As a result, all significant physical manifestations of LNV reduce to those of the effective trilinear couplings LLE-bar and LQD-bar aligned, by magnitude and orientation in a flavor space, with the down fermion (charged lepton and down quark) effective Yukawa couplings, while the effective bilinear terms appear generically suppressed relative to an ordinary μ-term of MSSM. Detailed phenomenology of the model related to the flavor-changing processes both in quark and lepton sectors, radiatively induced neutrino masses and decays of the LSP is presented. Remarkably, the model can straightforwardly be extended to a Grand Unified framework and an explicit example with SU(7) GUT is thoroughly discussed. (author)
Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets
Maimets, Andri, 1979-
2003-01-01
Concordia Ülikooli rektor Mart Susi esitas kohtule avalduse, milles taotleb ülikooli pidanud Concordia Varahalduse OÜ pankroti väljakuulutamist. Vt. samas: Mari-Ann Susi õigustas ülikooli raha kasutamist
Post LHC8 SUSY benchmark points for ILC physics
International Nuclear Information System (INIS)
Baer, Howard; List, Jenny
2013-07-01
We re-evaluate prospects for supersymmetry at the proposed International Linear e + e - Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with ∝5 fb -1 of pp collisions at √(s)=7 TeV and LHC8 with ∝20 fb -1 at √(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m h ≅125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m A , a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, τ-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at √(s)≅ 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.
FlexibleSUSY-A spectrum generator generator for supersymmetric models
Athron, Peter; Park, Jae-hyeon; Stöckinger, Dominik; Voigt, Alexander
2015-05-01
We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E6SSM, USSM, R-symmetric models and models with right-handed neutrinos.
International Nuclear Information System (INIS)
Deshpande, N.G.; Keith, E.; Pal, P.B.
1993-01-01
We consider the breaking of the grand unification group SO(10) to the standard model gauge group through several chains containing two intermediate stages. Using the values of the gauge coupling constants at a scale M Z derived from recent data from the CERN e + e- collider LEP, we determine the range of their intermediate and unification scales. In particular, we identify those chains that permit new gauge structure at relatively low energy (∼1 TeV)
Coupling between scattering channels with SUSY transformations for equal thresholds
International Nuclear Information System (INIS)
Pupasov, Andrey M; Samsonov, Boris F; Sparenberg, Jean-Marc; Baye, Daniel
2009-01-01
Supersymmetric (SUSY) transformations of the multichannel Schroedinger equation with equal thresholds and arbitrary partial waves in all channels are studied. The structures of the transformation function and the superpotential are analysed. Relations between Jost and scattering matrices of superpartner potentials are obtained. In particular, we show that a special type of SUSY transformation allows us to introduce a coupling between scattering channels starting from a potential with an uncoupled scattering matrix. The possibility for this coupling to be trivial is discussed. We show that the transformation introduces bound and virtual states with a definite degeneracy at the factorization energy. A detailed study of the potential and scattering matrices is given for the 2 x 2 case. The possibility of inverting coupled-channel scattering data by such a SUSY transformation is demonstrated by several examples (s-s, s-p and s-d partial waves)
Cornering natural SUSY at LHC Run II and beyond
Buckley, Matthew R.; Feld, David; Macaluso, Sebastian; Monteux, Angelo; Shih, David
2017-08-01
We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with ˜ 15 fb-1 of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with R-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low ( model-building directions for natural SUSY that are motivated by this work.
The SUSY oscillator from local geometry: Dynamics and coherent states
International Nuclear Information System (INIS)
Thienel, H.P.
1994-01-01
The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)
Non-universal SUSY breaking, hierarchy and squark degeneracty
International Nuclear Information System (INIS)
Murayama, Hitoshi.
1995-01-01
I discuss non-trivial effects in the soft SUSY breaking terms which appear when one integrates out heavy fields. The effects exist only when the SUSY breaking terms are non-universal. They may spoil (1) the hierarchy between the weak and high-energy scales, or (2) degeneracy among the squark masses even in the presense of a horizontal symmetry. I argue, in the end, that such new effects may be useful in probing physics at high-energy scales from TeV-scale experiments
A Bottom-Up Approach to SUSY Analyses
Energy Technology Data Exchange (ETDEWEB)
Horn, Claus; /SLAC
2011-11-11
This paper proposes a new way to do event generation and analysis in searches for new physics at the LHC. An abstract notation is used to describe the new particles on a level which better corresponds to detector resolution of LHC experiments. In this way the SUSY discovery space can be decomposed into a small number of eigenmodes each with only a few parameters, which allows to investigate the SUSY parameter space in a model-independent way. By focusing on the experimental observables for each process investigated the Bottom-Up Approach allows to systematically study the boarders of the experimental efficiencies and thus to extend the sensitivity for new physics.
Reconstruction of tau leptons and prospects for SUSY in ATLAS
International Nuclear Information System (INIS)
Zendler, Carolin
2010-01-01
Final states with tau leptons may play a special role among the broad variety of signatures for the production of supersymmetric particles at the LHC. The algorithms for tau reconstruction and identification are discussed, which are essential ingredients to reject the huge background from QCD processes. The status of analyses of SUSY tau lepton final states within the ATLAS experiment at the LHC are presented, which range from a study of semi-inclusive discovery prospects to more exclusive processes with two tau leptons from χ-tilde 2 0 decays and their implications for the determination of SUSY parameters. Also, the prospects for exploiting tau lepton polarization are discussed.
Energy Technology Data Exchange (ETDEWEB)
Kersten, J.
2006-05-15
We study gaugino-mediated supersymmetry breaking in a six-dimensional SO(10) orbifold GUT model where quarks and leptons are mixtures of brane and bulk fields. The couplings of bulk matter fields to the supersymmetry breaking brane field have to be suppressed in order to avoid large FCNCs. We derive bounds on the soft supersymmetry breaking parameters and calculate the superparticle mass spectrum. If the gravitino is the LSP, the {tau}{sub 1} or the {nu}{sub {tau}}{sub L} turns out to be the NLSP, with characteristic signatures at future colliders and in cosmology. (Orig.)
SUSY formalism for the symmetric double well potential
Indian Academy of Sciences (India)
symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique. Keywords. SUSY; moving boundary condition; exactly solvable; symmetric double well; NH3 molecule. PACS Nos 02.30.Ik; 03.50.
Post LHC7 SUSY benchmark points for ILC physics
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-05-15
We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first year of serious data taking at LHC with {radical}(s)=7 TeV and {proportional_to}5 fb{sup -1} of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m{sub h}{proportional_to}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m{sub A}, non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){proportional_to}0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.
Post LHC7 SUSY benchmark points for ILC physics
International Nuclear Information System (INIS)
Baer, Howard; List, Jenny
2012-05-01
We re-evaluate prospects for supersymmetry at the proposed International Linear e + e - Collider (ILC) in light of the first year of serious data taking at LHC with √(s)=7 TeV and ∝5 fb -1 of pp collisions (LHC7). Strong new limits from LHC SUSY searches, along with a hint of a Higgs boson signal around m h ∝125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. We present a variety of new ILC benchmark models, including: natural SUSY, hidden SUSY, NUHM2 with low m A , non-universal gaugino mass (NUGM) model, pMSSM, Kallosh-Linde model, Bruemmer-Buchmueller model, normal scalar mass hierarchy (NMH) plus one surviving case from mSUGRA/CMSSM in the far focus point region. While all these models at present elude the latest LHC limits, they do offer intriguing case study possibilities for ILC operating at √(s)∝0.25-1 TeV, and present a view of some of the diverse SUSY phenomena which might be expected at both LHC and ILC in the post LHC7 era.
Vast antimatter regions and SUSY-condensate baryogenesis
International Nuclear Information System (INIS)
Kirilova, D.; Panayotova, M.; Valchanov, T.
2002-10-01
Natural and abundant creation of antimatter in the Universe in a SUSY baryogenesis model is described. The scenario predicts vast quantities of antimatter, corresponding to galaxy and galaxy cluster scales, separated from the matter ones by baryonically empty voids. Observational constraints on such antimatter regions are discussed. (author)
Improved GUT and SUSY breaking by the same field
International Nuclear Information System (INIS)
Agashe, Kaustubh
2000-01-01
In a previous paper [hep-ph/9809421; Phys. Lett. B 444 (1998) 61], we presented a model in which the same modulus field breaks SUSY and a simple GUT gauge group, and which has dynamical origins for both SUSY breaking and GUT scales. In this model, the supergravity (SUGRA) and gauge mediated contributions to MSSM scalar and gaugino masses are comparable -- this enables a realistic spectrum to be attained since the gauge mediated contribution to the right-handed (RH) slepton (mass) 2 (at the weak scale) by itself (i.e., neglecting SUGRA contribution to sfermion and gaugino masses) is negative. But, in general, the SUGRA contribution to sfermion masses (from non-renormalizable contact Kaehler terms) leads to flavor violation. In this paper, we use the recently proposed idea of gaugino mediated SUSY breaking ( g-tilde MSB) to improve the above model. With MSSM matter and SUSY breaking fields localized on separate branes in an extra dimension of size R∼5M -1 Pl (in which gauge fields propagate), the SUGRA contribution to sfermion masses (which violates flavor) is suppressed. As in 4 dimensions, MSSM gauginos acquire non-universal masses from both SUGRA and gauge mediation - gaugino masses (in particular the SUGRA contribution to gaugino masses), in turn, generate acceptable sfermion masses through renormalization group evolution; the phenomenology is discussed briefly. We also point out that (a) in models where SUSY is broken by a GUT non-singlet field, there is, in general, a contribution to MSSM gaugino (and scalar) masses from the coupling to heavy gauge multiplet which might be comparable to the SUGRA contribution and (b) models of gauge mediation proposed earlier which also have negative RH slepton (mass) 2 can be rendered viable using the g-tilde MSB idea
Post LHC8 SUSY benchmark points for ILC physics
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard [Oklahoma Univ., Norman, OK (United States); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
We re-evaluate prospects for supersymmetry at the proposed International Linear e{sup +}e{sup -} Collider (ILC) in light of the first two years of serious data taking at LHC: LHC7 with {proportional_to}5 fb{sup -1} of pp collisions at {radical}(s)=7 TeV and LHC8 with {proportional_to}20 fb{sup -1} at {radical}(s)=8 TeV. Strong new limits from LHC8 SUSY searches, along with the discovery of a Higgs boson with m{sub h}{approx_equal}125 GeV, suggest a paradigm shift from previously popular models to ones with new and compelling signatures. After a review of the current status of supersymmetry, we present a variety of new ILC benchmark models, including: natural SUSY, radiatively-driven natural SUSY (RNS), NUHM2 with low m{sub A}, a focus point case from mSUGRA/CMSSM, non-universal gaugino mass (NUGM) model, {tau}-coannihilation, Kallosh-Linde/spread SUSY model, mixed gauge-gravity mediation, normal scalar mass hierarchy (NMH), and one example with the recently discovered Higgs boson being the heavy CP-even state H. While all these models at present elude the latest LHC8 limits, they do offer intriguing case study possibilities for ILC operating at {radical}(s){approx_equal} 0.25-1 TeV. The benchmark points also present a view of the widely diverse SUSY phenomena which might still be expected in the post LHC8 era at both LHC and ILC.
International Nuclear Information System (INIS)
Kynshi, M.L.; Parida, M.K.
1993-01-01
We find that the presence of a real scalar in the grand desert transforming as ζ(3,0,8) under SU(2) L xU(1) Y xSU(3) C ensures the agreement of the GUT predictions with the data from CERN LEP and proton lifetime (τ p ). The mass of ζ is predicted to be close to the Peccei-Quinn symmetry-breaking scale. The computation of the threshold effects in SU(5) with Higgs representations 24, 5, and 75 shows that the maximum allowed τ p for reasonable superheavy Higgs boson masses is accessible to experimental tests at low energies. The additional predictions in SO(10) are small neutrino masses compatible with solutions to the solar-neutrino problem and the dark matter of the Universe
SUSY see-saw and NMSO(10)GUT inflation after BICEP2
International Nuclear Information System (INIS)
Garg, Ila
2016-01-01
Supersymmetric see-saw slow roll inflection point inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, s lepton and right-handed s neutrino at a scale set by the right-handed neutrino mass M vc ∼ 10 6 -10 13 GeV. The tensor to scalar perturbation ratio r ∼ 10 -3 can be achieved in this scenario. However, this scenario faced difficulty in being embedded in the realistic new minimal supersymmetric SO(10) grand unified theory (NMSO(10)GUT). The recent discovery of B-mode polarization by BICEP2, changes the prospects of NMSO(10) GUT inflation. Inflection point models become strongly disfavoured, as the trilinear coupling of SUSY see-saw inflation potential gets suppressed relative to the mass parameter favoured by BICEP2. Large values of r ≈ 0.2 can be achieved with super-Planck scale inflaton values and mass scales of inflaton ≥10 13 GeV. In NMSO(10)GUT, this can be made possible with an admixture of heavy Higgs doublet fields, i.e., other than MSSM Higgs field, which are present and have masses of order GUT scale. (author)
Neutrino oscillations in a predictive SUSY GUT
International Nuclear Information System (INIS)
Blazek, T.; Raby, S.; Tobe, K.
1999-01-01
In this paper we present a predictive SO(10) supersymmetric grand unified theory with the family symmetry U(2)xU(1) which has several nice features. We are able to fit fermion masses and mixing angles, including recent neutrino data, with nine parameters in the charged fermion sector and four in the neutrino sector. The family symmetry plays a preeminent role. (i) The model is ''natural''--we include all terms allowed by the symmetry. It restricts the number of arbitrary parameters and enforces many zeros in the effective mass matrices. (ii) Family symmetry breaking from U(2)xU(1)→U(1)→ nothing generates the family hierarchy. It also constrains squark and slepton mass matrices, thus ameliorating flavor violation resulting from squark and slepton loop contributions. (iii) It naturally gives large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data and small angle ν e -ν s mixing, consistent with the small mixing angle Mikheyev-Smirnov-Wolfenstein (MSW) solution to solar neutrino data. (iv) Finally, in this paper we assume minimal family symmetry-breaking vacuum expectation values (VEV's). As a result we cannot obtain a three neutrino solution to both atmospheric and solar neutrino oscillations. In addition, the solution discussed here cannot fit liquid scintillation neutrino detector (LSND) data even though this solution requires a sterile neutrino ν s . It is important to note, however, that with nonminimal family symmetry-breaking VEV's, a three neutrino solution is possible with the small mixing angle MSW solution to solar neutrino data and large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data. In the four neutrino case, nonminimal family VEV's may also permit a solution for LSND. The results with nonminimal family breaking are still under investigation and will be reported in a future paper. (c) 1999 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Parida, M.K.; Nayak, Bidyut Prava; Satpathy, Rajesh [Centre of Excellence in Theoretical and Mathematical Sciences,Siksha ‘O’ Anusandhan University,Khandagiri Square, Bhubaneswar 751030 (India); Awasthi, Ram Lal [Indian Institute of Science Education and Research,Knowledge City, Sector 81, SAS Nagar, Manauli 140306 (India)
2017-04-12
We discuss gauge coupling unification of SU(3){sub C}×SU(2){sub L}×U(1){sub Y} descending directly from non-supersymmetric SO(10) while providing solutions to the three outstanding problems of the standard model: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry for the stability and identification of dark matter in the model calls for high-scale spontaneous symmetry breaking through 126{sub H} Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. Being quadratic in the Majorana coupling, the seesaw formula predicts two distinct patterns of right-handed neutrino masses, one hierarchical and another not so hierarchical (or compact), when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RHν masses. A complete flavor analysis has been carried out to compute CP-asymmetries including washouts and solutions to Boltzmann equations have been utilised to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of right-handed neutrino masses. The SU(2){sub L} triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation 45{sub F} of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass ∼5×10{sup 7} GeV to achieve precision gauge coupling unification at the GUT mass scale M{sub U}{sup 0}=10{sup 15.56} GeV. Threshold corrections due to superheavy components of 126{sub H} and other representations are estimated and found to be
SLAM, a Mathematica interface for SUSY spectrum generators
International Nuclear Information System (INIS)
Marquard, Peter; Zerf, Nikolai
2013-09-01
We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m h max and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.
Heavy colored SUSY partners from deflected anomaly mediation
Energy Technology Data Exchange (ETDEWEB)
Wang, Fei [Department of Physics and Engineering, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China); Wang, Wenyu [Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology,Beijing 100124 (China); Yang, Jin Min; Zhang, Yang [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Academia Sinica,Beijing 100190 (China)
2015-07-27
We propose a deflected anomaly mediation scenario from SUSY QCD which can lead to both positive and negative deflection parameters (there is a smooth transition between these two deflection parameter regions by adjusting certain couplings). Such a scenario can naturally give a SUSY spectrum in which all the colored sparticles are heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven g{sub μ}−2 experiment and LHC data can be reconciled in this scenario. We also find that the parameter space for explaining the g{sub μ}−2 anomaly at 1σ level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.
SLAM, a Mathematica interface for SUSY spectrum generators
Energy Technology Data Exchange (ETDEWEB)
Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zerf, Nikolai [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics
2013-09-15
We present and publish a Mathematica package, which can be used to automatically obtain any numerical MSSM input parameter from SUSY spectrum generators, which follow the SLHA standard, like SPheno, SOFTSUSY or Suspect. The package enables a very comfortable way of numerical evaluations within the MSSM using Mathematica. It implements easy to use predefined high scale and low scale scenarios like mSUGRA or m{sub h}{sup max} and if needed enables the user to directly specify the input required by the spectrum generators. In addition it supports an automatic saving and loading of SUSY spectra to and from a SQL data base, avoiding the rerun of a spectrum generator for a known spectrum.
New two-dimensional integrable quantum models from SUSY intertwining
International Nuclear Information System (INIS)
Ioffe, M V; Negro, J; Nieto, L M; Nishnianidze, D N
2006-01-01
Supersymmetrical intertwining relations of second order in the derivatives are investigated for the case of supercharges with deformed hyperbolic metric g ik = diag(1, - a 2 ). Several classes of particular solutions of these relations are found. The corresponding Hamiltonians do not allow the conventional separation of variables, but they commute with symmetry operators of fourth order in momenta. For some of these models the specific SUSY procedure of separation of variables is applied
Search for compressed SUSY scenarios with the ATLAS detector
Maurer, Julien; The ATLAS collaboration
2017-01-01
Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This talk presents recent results of analyses explicitly targeting such “compressed” scenarios with a variety of experimental techniques. All results make use of proton-proton collisions collected at a centre of mass of 13 TeV with the ATLAS detector.
Search for compressed SUSY scenarios with the ATLAS detector
Maurer, Julien; The ATLAS collaboration
2017-01-01
Scenarios where multiple SUSY states are nearly degenerate in mass produce soft decay products, and they represent an experimental challenge for ATLAS. This contribution presented recent results of analyses explicitly targeting such ``compressed'' scenarios with a variety of experimental techniques. All results made use of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC.
SUSY Flat Directions - to get a VEV or not?
International Nuclear Information System (INIS)
Basboell, Anders
2010-01-01
We investigate the potential of SUSY flat directions (FDs). Large FD vacuum expectation values (VEVs) can delay thermalisation and solve the gravitino problem--if FDs decay perturbatively. This depends on how many and which directions get the VEVs. Recently the decay of the FDs have been studied with the VEVs as input. Here we look at how the VEVs come about--statistically and analytically.
Electroweak contributions to SUSY particle production processes at the LHC
International Nuclear Information System (INIS)
Mirabella, Edoardo
2009-01-01
In this thesis we have computed the electroweak contributions of O(α s α), O(α 2 ) and O(α s 2 ) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.
Flavour symmetries and SUSY soft breaking in the LHC era
International Nuclear Information System (INIS)
Vives, O
2008-01-01
The so-called supersymmetric flavour problem does not exist in isolation to the Standard Model flavour problem. We show that a realistic flavour symmetry can simultaneously solve both problems without ad hoc modifications of the SUSY model. Furthermore, departures from the SM expectations in these models can be used to discriminate among different possibilities. In particular we present the expected values for the electron EDM in a flavour model solving the supersymmetric flavour and CP problems
Precision natural SUSY at CEPC, FCC-ee, and ILC
International Nuclear Information System (INIS)
Fan, JiJi; Reece, Matthew; Wang, Lian-Tao
2015-01-01
Testing the idea of naturalness is and will continue to be one of the most important goals of high energy physics experiments. It will play a central role in the physics program of future colliders. In this paper, we present projections of the reach of natural SUSY at future lepton colliders: CEPC, FCC-ee and ILC. We focus on the observables which give the strongest reach, the electroweak precision observables (for left-handed stops), and Higgs to gluon and photon decay rates (for both left- and right-handed stops). There is a “blind spot” when the stop mixing parameter X t is approximately equal to the average stop mass. We argue that in natural scenarios, bounds on the heavy Higgs bosons from tree-level mixing effects that modify the hbb̄ coupling together with bounds from b→sγ play a complementary role in probing the blind spot region. For specific natural SUSY scenarios such as folded SUSY in which the top partners do not carry Standard Model color charges, electroweak precision observables could be the most sensitive probe. In all the scenarios discussed in this paper, the combined set of precision measurements will probe down to a few percent in fine-tuning.
Optimization of Markov chains for a SUSY fitter: Fittino
Energy Technology Data Exchange (ETDEWEB)
Prudent, Xavier [IKTP, Technische Universitaet, Dresden (Germany); Bechtle, Philip [DESY, Hamburg (Germany); Desch, Klaus; Wienemann, Peter [Universitaet Bonn (Germany)
2010-07-01
A Markov chains is a ''random walk'' algorithm which allows an efficient scan of a given profile and the search of the absolute minimum, even when this profil suffers from the presence of many secondary minima. This property makes them particularly suited to the study of Supersymmetry (SUSY) models, where minima have to be found in up-to 18-dimensional space for the general MSSM. Hence the SUSY fitter ''Fittino'' uses a Metropolis*Hastings Markov chain in a frequentist interpretation to study the impact of current low -energy measurements, as well as expected measurements from LHC and ILC, on the SUSY parameter space. The expected properties of an optimal Markov chain should be the independence of final results with respect to the starting point and a fast convergence. These two points can be achieved by optimizing the width of the proposal distribution, that is the ''average step length'' between two links in the chain. We developped an algorithm for the optimization of the proposal width, by modifying iteratively the width so that the rejection rate be around fifty percent. This optimization leads to a starting point independent chain as well as a faster convergence.
Implications of low and high energy measurements on SUSY models
Energy Technology Data Exchange (ETDEWEB)
Jegerlehner, Fred [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2012-04-15
New Physics searches at the LHC have increased significantly lower bounds on unknown particle masses. This increases quite dramatically the tension in the interpretation of the data: low energy precision data which are predicted accurately by the SM (LEP observables like M{sub W} or loop induced rare processes like B {yields}X{sub s}{gamma} or B{sub s}{yields}{mu}{sup +}{mu}{sup -}) and quantities exhibiting an observed discrepancy between SM theory and experiment, most significantly found for the muon g-2 seem to be in conflict now. (g-2){sub {mu}} appears to be the most precisely understood observable which at the same time reveals a 3-4 {sigma} deviation between theory and experiment and thus requires a significant new physics contribution. The hints for a Higgs of mass about 125 GeV, which is precisely what SUSY extensions of the SM predict, seem to provide a strong indication for SUSY. At the same time it brings into serious trouble the interpretation of the (g-2){sub {mu}} deviation as a SUSY contribution.
Higgs, Binos and Gluinos: Split Susy within Reach
Energy Technology Data Exchange (ETDEWEB)
Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP
2012-09-14
Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.
SUSY/non-SUSY duality in U(N gauge model with partially broken N=2 supersymmetry
Directory of Open Access Journals (Sweden)
Kazunobu Maruyoshi
2009-03-01
Full Text Available We study the vacuum structure of the U(N gauge model with partially broken N=2 supersymmetry. From the analysis of the classical vacua of this model, we point out that in addition to the ordinary N=1 supersymmetric vacua, there are vacua with negative gauge coupling constants, which preserve another N=1 supersymmetry. These latter vacua can be analyzed by using SUSY/non-SUSY duality which is recently proposed by Aganagic, Beem, Seo and Vafa. A dual description of these in UV is U(N gauge theory where the supersymmetry is broken by spurion superfields. Following them, we see that there are supersymmetry preserving vacua as well as supersymmetry breaking vacua of low energy effective theory.
Mart ja Mari-Ann Susi taotlevad omanikena Concordia pankrotti / Andri Maimets
Maimets, Andri
2003-01-01
Concordia Ülikooli rektori kohast loobunud Mart Susi ning prorektori ametikohalt lahkunud Mari-Ann Susi taotlevad neile kuuluvat ülikooli pidanud miljonivõlgades firma pankrotti. Hiljuti loodi õppejõududest, tudengitest js töötajatest mittetulundusühing Concordia Akadeemiline Ühisus (CAU), selle nõukogu esimees on Hagi Šein
Non-linear way to supersymmetry and N-extended SUSY
International Nuclear Information System (INIS)
Akulov, V.
2001-01-01
In this report I give a short historical review of some of the first steps that were done towards the invention of SUSY by the Kharkov team headed by D. Volkov. This article is dedicated to the memory of Prof. Yuri Golfand, whose ideas of SUSY inspired the most active developments in High Energy Physics over thirty years
Reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models
International Nuclear Information System (INIS)
Baer, Howard; Belyaev, Alexander; Krupovnickas, Tadas; Tata, Xerxes
2002-01-01
In supersymmetric models with gaugino mediated SUSY breaking (gMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m 1/2 is the only soft SUSY breaking term to receive contributions at the tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale M c beyond the GUT scale, and that additional renormalization group running takes place between M c and M GUT as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with gMSB. We use the Monte Carlo program ISAJET to simulate signals within the gMSB model, and compute the SUSY reach including cuts and triggers appropriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. At the CERN LHC, values of m 1/2 =1000 (1160) GeV can be probed with 10 (100) fb -1 of integrated luminosity, corresponding to a reach in terms of m g-tilde of 2150 (2500) GeV. The gMSB model and MSUGRA can likely only be differentiated at a linear e + e - collider with sufficient energy to produce sleptons and charginos
Implications for new physics from fine-tuning arguments 1. Application to SUSY and seesaw cases
International Nuclear Information System (INIS)
Alberto Casas, J.; Hidalgo, Irene; Espinosa, Jose R.
2004-01-01
We revisit the standard argument to estimate the scale of new physics (NP) beyond the SM, based on the sensitivity of the Higgs mass to quadratic divergences. Although this argument is arguably naive, the corresponding estimate, Λ SM SM . One can obtain more precise implications from fine-tuning arguments in specific examples of NP. Here we consider SUSY and right-handed (seesaw) neutrinos. SUSY is a typical example for which the previous general estimate is indeed conservative: the MSSM is fine-tuned a few %, even for soft masses of a few hundred GeV. In contrast, other SUSY scenarios, in particular those with low-scale SUSY breaking, can easily saturate the general bound on Λ SM . The seesaw mechanism requires large fine-tuning if M R > or approx.10 7 GeV, unless there is additional NP (SUSY being a favourite option). (author)
Electric dipole moments from spontaneous CP violation in SU(3)-flavoured SUSY
International Nuclear Information System (INIS)
Jones Perez, J
2009-01-01
The SUSY flavour problem is deeply related to the origin of flavour and hence to the origin of the SM Yukawa couplings themselves. Since all CP-violation in the SM is restricted to the flavour sector, it is possible that the SUSY CP problem is related to the origin of flavour as well. In this work, we present three variations of an SU(3) flavour model with spontaneous CP violation. Such models explain the hierarchy in the fermion masses and mixings, and predict the structure of the flavoured soft SUSY breaking terms. In such a situation, both SUSY flavour and CP problems do not exist. We use electric dipole moments and lepton flavour violation processes to distinguish between these models, and place constraints on the SUSY parameter space.
SUSY field theories in higher dimensions and integrable spin chains
International Nuclear Information System (INIS)
Gorsky, A.; Gukov, S.; Mironov, A.
1998-01-01
Five- and six-dimensional SUSY gauge theories, with one or two compactified directions, are discussed. The 5d theories with the matter hypermultiplets in the fundamental representation are associated with the twisted XXZ spin chain, while the group product case with bi-fundamental matter corresponds to the higher rank spin chains. The Riemann surfaces for 6d theories with fundamental matter and two compact directions are proposed to correspond to the XYZ spin chain based on the Sklyanin algebra. We also discuss the obtained results within the brane and geometrical engineering frameworks and explain the relation to the toric diagrams. (orig.)
Electroweak contributions to SUSY particle production processes at the LHC
Energy Technology Data Exchange (ETDEWEB)
Mirabella, Edoardo
2009-07-22
In this thesis we have computed the electroweak contributions of O({alpha}{sub s}{alpha}), O({alpha}{sup 2}) and O({alpha}{sub s}{sup 2}) to three different classes of processes leading to the hadronic production of the SUSY partners of quarks and gluons, i.e. squarks and gluinos. The theoretical framework is the Minimal Supersymmetric extension of the Standard Model, the MSSM. The three processes are gluino pair production, diagonal squark-antisquark and associated squark-gluino production.
Hilkka Punainen & Susi : mediakasvatuksellisen iPad-kirjan suunnittelu
Kontiola, Sanna
2012-01-01
Opinnäytetyön tavoitteena oli tehdä mediakasvatuksellinen iPad-kirja "Hilkka Punainen & Susi", jota voitaisiin käyttää kirjastoissa, kouluissa ja kotona mediakasvatuksen apuvälineenä. Mediakasvatus ei ole ainoastaan medioiden ja välineiden käyttötaidon opettelua, vaan myös sellaisten turvataitojen opettelua, joiden tarkoituksena on parantaa lasten taitoja selviytyä uhkaavissa tilanteissa ja ohjata heitä turvautumaan luotettaviin aikuisiin. Teoksella on useita mediakasvatuksellisia tasoja. Teo...
A continuous family of realistic SUSY SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bajc, Borut, E-mail: borut.bajc@ijs.si [J. Stefan Institute, Jamova cesta 39, 1000, Ljubljana (Slovenia)
2016-06-21
It is shown that the minimal renormalizable supersymmetric SU(5) is still realistic providing the supersymmetric scale is at least few tens of TeV or large R-parity violating terms are considered. In the first case the vacuum is metastable, and different consistency constraints can give a bounded allowed region in the tan β − m{sub susy} plane. In the second case the mass eigenstate electron (down quark) is a linear combination of the original electron (down quark) and Higgsino (heavy colour triplet), and the mass ratio of bino and wino is determined. Both limits lead to light gravitino dark matter.
SUSY-hierarchy of one-dimensional reflectionless potentials
International Nuclear Information System (INIS)
Maydanyuk, Sergei P.
2005-01-01
A class of one-dimensional reflectionless potentials is studied. It is found that all possible types of the reflectionless potentials can be combined into one SUSY-hierarchy with a constant potential. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general integral form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, is found and has a simple analytical view. It is supposed that any possible type of the reflectionless potential can be expressed through finite number of elementary functions (unlike some presentations of the reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series). An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e., which has the form V (x) = ± α/ vertical bar x-x 0 vertical bar n (where α and x 0 are constants, n is natural number), is fulfilled. It is shown that such a potential can be reflectionless at n = 2 only. A SUSY-hierarchy of the inverse power reflectionless potentials is constructed. Isospectral expansions of this hierarchy are analyzed
Overview of SUSY results from the ATLAS experiment
Directory of Open Access Journals (Sweden)
Federico Brazzale Simone
2014-04-01
Full Text Available The search for Supersymmetric extensions of the Standard Model (SUSY remains a hot topic in high energy phisycs in the light of the discovery of the Higgs boson with mass of 125 GeV. Supersymmetric particles can cancel out the quadratically-divergent loop corrections to the Higgs boson mass and can explain presence of Dark Matter in the Universe. Moreover, SUSY can unify the gauge couplings of the Standard Model at high energy scales. Under certain theoretical assumptions, some of the super-symmetric particles are preferred to be lighter than one TeV and their discovery can thus be accessible at the LHC. The recent results from searches for Supersymmetry with the ATLAS experiment which utilized up to 21 fb−1 of proton-proton collisions at a center of mass energy of 8 TeV are presented. These searches are focused on inclusive production of squarks and gluinos, on production of third generations squarks, and on electroweak production of charginos and neutralinos. Searches for long-lived particles and R-parity violation are also summarized in the document.
Possible constraints on SUSY-model parameters from direct dark matter search
International Nuclear Information System (INIS)
Bednyakov, V.A.; Kovalenko, S.G.
1993-01-01
We consider the SUSY-model neutralino as a dominant Dark Matter particle in the galactic halo and investigate some general issues of direct DM searches via elastic neutralino-nucleus scattering. On the basis of conventional assumptions about the nuclear and nucleon structure, without referring to a specific SUSY-model, we prove that it is impossible in principle to extract more than three constrains on fundamental SUSY-model parameters from the direct Dark Matter searches. Three types of Dark Matter detector probing different groups of parameters are recognized. 21 refs., 1 tab
The Higgs boson mass and SUSY spectra in 10D SYM theory with magnetized extra dimensions
Directory of Open Access Journals (Sweden)
Hiroyuki Abe
2014-11-01
Full Text Available We study the Higgs boson mass and the spectrum of supersymmetric (SUSY particles in the well-motivated particle physics model derived from a ten-dimensional supersymmetric Yang–Mills theory compactified on three factorizable tori with magnetic fluxes. This model was proposed in a previous work, where the flavor structures of the standard model including the realistic Yukawa hierarchies are obtained from non-hierarchical input parameters on the magnetized background. Assuming moduli- and anomaly-mediated contributions dominate the soft SUSY breaking terms, we study the precise SUSY spectra and analyze the Higgs boson mass in this mode, which are compared with the latest experimental data.
Large neutrino mixings in MSSM and SUSY GUTs: Democratic approach
International Nuclear Information System (INIS)
Shafi, Qaisar; Tavartkiladze, Zurab
2003-01-01
We show how, with aid from a U (1) flavor symmetry, the hierarchical structure in the charged fermion sector and a democratic approach for neutrinos that yields large solar and atmospheric neutrino mixings can be simultaneously realized in the MSSM framework. In SU(5), due to the unified multiplets, we encounter difficulties. Namely, democracy for the neutrinos leads to a wrong hierarchical pattern for charged fermion masses and mixings. We discuss how this is overcome in flipped SU(5). We then proceed to an example based on 5D SUSY SU(5) GUT in which the neutrino democracy idea can be realized. A crucial role is played by bulk states, the so-called 'copies', which are split by compactifying the fifth dimension on an S(1)/Z2 x Z'2 orbifold
SUSY-hierarchy of one-dimensional reflectionless potentials
Maydanyuk, Sergei P
2004-01-01
A class of one-dimensional reflectionless potentials, an absolute transparency of which is concerned with their belonging to one SUSY-hierarchy with a constant potential, is studied. An approach for determination of a general form of the reflectionless potential on the basis of construction of such a hierarchy by the recurrent method is proposed. A general form of interdependence between superpotentials with neighboring numbers of this hierarchy, opening a possibility to find new reflectionless potentials, have a simple analytical view and are expressed through finite number of elementary functions (unlike some reflectionless potentials, which are constructed on the basis of soliton solutions or are shape invariant in one or many steps with involving scaling of parameters, and are expressed through series), is obtained. An analysis of absolute transparency existence for the potential which has the inverse power dependence on space coordinate (and here tunneling is possible), i.e. which has the form $V(x) = \\p...
Some features of SUSY breaking in N=2 supergravity
International Nuclear Information System (INIS)
Cecotti, S.; Giradello, L.; Porrati, M.
1984-08-01
We discuss some features of SUSY breaking in N=2 Supergravity. Firstly, we show that in a general N=2 Sugra model (constructed according to the tensor calculus) all stationary points of the potential, at Λ=0, are fully supersymmetric if the compensating multiplet is not gauged. Thus a viable super-Higgs effect in N=2 supergravity can occur only in the presence of a Fayet-Iliopoulos term. Then we present an explicit model with two scales of breaking in anti-de Sitter space. Moreover, the ratio of the two gravitino masses is sliding i.e. not determined by the classical potential. In the extreme situation one of the gravitino mass equals √-Λ/3, and thus we have partial super-Higgs (in AdS space). The cosmological constant may be arranged to an arbitrary small value while keeping the mass of the heavy gravitino constant. (author)
International Nuclear Information System (INIS)
Hagedorn, Claudia; King, Stephen F.; Luhn, Christoph
2012-01-01
Following the recent results from Daya Bay and RENO, which measure the lepton mixing angle θ 13 l ≈0.15, we revisit a supersymmetric (SUSY) S 4 ×SU(5) model, which predicts tri-bimaximal (TB) mixing in the neutrino sector with θ 13 l being too small in its original version. We show that introducing one additional S 4 singlet flavon into the model gives rise to a sizable θ 13 l via an operator which leads to the breaking of one of the two Z 2 symmetries preserved in the neutrino sector at leading order (LO). The results of the original model for fermion masses, quark mixing and the solar mixing angle are maintained to good precision. The atmospheric and solar mixing angle deviations from TB mixing are subject to simple sum rule bounds.
Flavour and collider interplay for SUSY at LHC7
International Nuclear Information System (INIS)
Calibbi, L.; Hodgkinson, R.N.; Vives, O.; Jones Perez, J.; Masiero, A.
2012-01-01
The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb -1 run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as B s →μμ and μ→e γ. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models. (orig.)
SUSY long-lived massive particles. Detection and physics at the LHC
International Nuclear Information System (INIS)
Ambrosiano, S.; Mele, B.; Nisati, A.; Petrarca, S.; Polesello, G.; Rimoldi, A.; Salvini, G.
2001-01-01
It was drawn a possible scenario for the observation of massive long-lived charged particles at the LHC detector ATLAS. The required flexibility of the detector triggers and of the identification and reconstruction systems are discussed. As an example, it was focused on the measurement of the mass and lifetime of long-lived charged sleptons predicted in the framework of supersymmetric models with gauge-mediated supersymmetry (SUSY) breaking. In this case the next-to-lightest SUSY particle can be the light scalar partner of the tau lepton (τ 1 ), possibly decaying slowly into a gravitino. A wide region of the SUSY parameters space was explored. The accessible range and precision on the measurement of the SUSY breaking scale parameter of √ F achievable with a counting method are assessed [it
Supersymmetric grand unified theories from quarks to strings via SUSY GUTs
Raby, Stuart
2017-01-01
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...
SUSY WT identity in a lattice formulation of 2D N=(2,2) SYM
International Nuclear Information System (INIS)
Kadoh, Daisuke; Suzuki, Hiroshi
2010-01-01
We address some issues relating to a supersymmetric (SUSY) Ward-Takahashi (WT) identity in Sugino's lattice formulation of two-dimensional (2D) N=(2,2)SU(k) supersymmetric Yang-Mills theory (SYM). A perturbative argument shows that the SUSY WT identity in the continuum theory is reproduced in the continuum limit without any operator renormalization/mixing and tuning of lattice parameters. As application of the lattice SUSY WT identity, we show that a prescription for the Hamiltonian density in this lattice formulation, proposed by Kanamori, Sugino and Suzuki, is justified also from a perspective of an operator algebra among correctly-normalized supercurrents. We explicitly confirm the SUSY WT identity in the continuum limit to the first nontrivial order in a semi-perturbative expansion.
Effective Lagrangians for SUSY QCD with properties seen in perturbation theory
International Nuclear Information System (INIS)
Sharatchandra, H.S.
1984-06-01
We construct effective Lagrangians for supersymmetric QCD which properly incorporate the relevant Ward identities and possess features encountered in perturbation theory. This shows that the unusual scenarios, proposed for SUSY QCD, are not necessary. (author)
Interpretation of Higgs and Susy searches in MSUGRA and GMSB Models
International Nuclear Information System (INIS)
Vivie, J.B. de
1999-10-01
HIGGS and SUSY searches performed by the ALEPH Experiment at LEP are interpreted in the framework of two constrained R-parity conserving models: Minimal Supergravity and minimal Gauge Mediated Supersymmetry Breaking. (author)
Soft see-saw: Radiative origin of neutrino masses in SUSY theories
Directory of Open Access Journals (Sweden)
Luka Megrelidze
2017-01-01
Full Text Available Radiative neutrino mass generation within supersymmetric (SUSY construction is studied. The mechanism is considered where the lepton number violation is originating from the soft SUSY breaking terms. This requires MSSM extensions with states around the TeV scale. We present several explicit realizations based on extensions either by MSSM singlet or SU(2w triplet states. Besides some novelties of the proposed scenarios, various phenomenological implications are also discussed.
Prospects for SUSY discovery based on inclusive searches with the ATLAS detector
International Nuclear Information System (INIS)
Ventura, Andrea
2009-01-01
The search for Supersymmetry (SUSY) among the possible scenarios of new physics is one of the most relevant goals of the ATLAS experiment running at CERN's Large Hadron Collider. In the present work the expected prospects for discovering SUSY with the ATLAS detector are reviewed, in particular for the first fb -1 of collected integrated luminosity. All studies and results reported here are based on inclusive search analyses realized with Monte Carlo signal and background data simulated through the ATLAS apparatus.
The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning
Energy Technology Data Exchange (ETDEWEB)
Caron, Sascha [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands); Nikhef, Amsterdam (Netherlands); Kim, Jong Soo [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [UAM/CSIC, Instituto de Fisica Teorica, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Stienen, Bob [Radboud Universiteit, Institute for Mathematics, Astro- and Particle Physics IMAPP, Nijmegen (Netherlands)
2017-04-15
A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/. (orig.)
The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning
International Nuclear Information System (INIS)
Caron, Sascha; Kim, Jong Soo; Rolbiecki, Krzysztof; Ruiz de Austri, Roberto; Stienen, Bob
2017-01-01
A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/. (orig.)
International Nuclear Information System (INIS)
Jayaraman, Jambunatha; Lima Rodrigues, R. de
1994-01-01
In the context of the 3 D generalized SUSY model oscillator Hamiltonian of Celka and Hussin (CH), a generalized Dirac oscillator interaction is studied, that leads, in the non-relativistic limit considered for both signs of energy, to the CH's generalized 3 D SUSY oscillator. The relevance of this interaction to the CH's SUSY model and the SUSY breaking dependent on the Wigner parameter is brought out. (author). 6 refs
International Nuclear Information System (INIS)
Hagedorn, Claudia; Schmidt, Michael A.; Smirnov, Alexei Yu.
2009-01-01
In SO(10) grand unified theories the hierarchy which is present in the Dirac mass term of the neutrinos is generically as strong as the one in the up-type quark mass term. We propose a mechanism to partially or completely cancel this hierarchy in the light neutrino mass matrix in the seesaw context. The two main ingredients of the cancellation mechanism are the existence of three fermionic gauge singlets and of a discrete flavor symmetry G f which is broken at a higher scale than SO(10). Two realizations of the cancellation mechanism are presented. The realization based on the Frobenius group T 7 ≅Z 7 xZ 3 leads to a partial cancellation of the hierarchy and relates maximal 2-3 lepton mixing with the geometric hierarchy of the up-quark masses. In the realization with the group Σ(81) the cancellation is complete and tribimaximal lepton mixing is reproduced at the lowest order. In both cases, to fully accommodate the leptonic data we take into account additional effects such as effects of higher-dimensional operators involving more than one flavon. The heavy neutral fermion mass spectra are considered. For both realizations we analyze the flavon potential at the renormalizable level as well as ways to generate the Cabibbo angle.
Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua
International Nuclear Information System (INIS)
Froggatt, C.D.; Nevzorov, R.; Nielsen, H.B.; Thomas, A.W.
2014-01-01
The empirical mass of the Higgs boson suggests small to vanishing values of the quartic Higgs self-coupling and the corresponding beta function at the Planck scale, leading to degenerate vacua. This leads us to suggest that the measured value of the cosmological constant can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2) W ×U(1) Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than Λ QCD in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale
Split-Family SUSY, U(2)^5 Flavour Symmetry and Neutrino Physics
Jones-Pérez, Joel
2014-01-01
In split-family SUSY, one can use a U(2)^3 symmetry to protect flavour observables in the quark sector from SUSY contributions. However, attempts to extend this procedure to the lepton sector by using an analogous U(2)^5 symmetry fail to reproduce the neutrino data without introducing some form of fine-tuning. In this work, we solve this problem by shifting the U(2)^2 symmetry acting on leptons towards the second and third generations. This allows neutrino data to be reproduced without much difficulties, as well as protecting the leptonic flavour observables from SUSY. Key signatures are a $\\mu\\to e\\gamma$ branching ratio possibly observable in the near future, as well as having selectrons as the lightest sleptons.
Search for SUSY in the AMSB scenario with the DELPHI detector
Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.
2004-01-01
The DELPHI experiment at the LEP e+e- collider collected almost 700 pb^-1 at centre-of-mass energies above the Z0 mass pole and up to 208 GeV. Those data were used to search for SUSY in the Anomaly Mediated SUSY Breaking (AMSB) scenario with a flavour independent common sfermion mass parameter. The searches covered several possible signatures experimentally accessible at LEP, with either the neutralino, the sneutrino or the stau being the Lightest Supersymmetric Particle (LSP). They included: the search for nearly mass-degenerate chargino and neutralino, which is a typical feature of AMSB; the search for Standard-Model-like or invisibly decaying Higgs boson; the search for stable staus; the search for cascade decays of SUSY particles resulting in the LSP and a low multiplicity final state containing neutrinos. No evidence of a signal was found, and thus constraints were set in the space of the parameters of the model.
Deletion analysis of susy-sl promoter for the identification of optimal promoter sequence
International Nuclear Information System (INIS)
Bacha, S.; Khatoon, A.; Asif, M.; Bshir, A.
2015-01-01
The promoter region of sucrose synthase (susy-Sl) was identified and isolated from tomato. The 5? deletion analysis was carried out for the identification of minimum optimal promoter. Transgenic lines of Arabidopsis thaliana were developed by floral dip method incorporating various promoter deletion cassettes controlling GUS reporter gene. GUS assay of transgenic tissues indicated that full length susy-Sl promoter and its deletion mutants were constitutively expressed in vegetative and floral tissues of A. thaliana. The expression was observed in roots, shoots and flowers of A. thaliana. Analysis of 5? deletion series of susy-Sl promoter showed that a minimum of 679 bp fragment of the promoter was sufficient to drive expression of GUS reporter gene in the major tissues of transgenic A. thaliana. (author)
Towards N = 2 SUSY homogeneous quantum cosmology; Einstein-Yang-Mills systems
International Nuclear Information System (INIS)
Donets, E.E.; Tentyukov, M.N.; Tsulaya, M.M.
1998-01-01
The application of N = 2 supersymmetric Quantum Mechanics for the quantization of homogeneous systems coupled with gravity is discussed. Starting with the superfield formulation of N = 2 SUSY sigma-model, Hermitian self-adjoint expressions for quantum Hamiltonians and Lagrangians for any signature of a sigma-model metric are obtained. This approach is then applied to coupled SU (2) Einstein-Yang-Mills (EYM) systems in axially-symmetric Bianchi - I,II,VIII, IX, Kantowski-Sachs and closed Friedmann-Robertson-Walker cosmological models. It is shown that all these models admit the embedding into N = 2 SUSY sigma-model with the explicit expressions for superpotentials, being direct sums of gravitational and Yang-Mills (YM) parts. In addition, YM parts of superpotentials exactly coincide with the corresponding Chern-Simons terms. The spontaneous SUSY breaking, caused by YM instantons in EYM systems is discussed in a number of examples
Bose-fermi symmetries and SUSY in nuclei
International Nuclear Information System (INIS)
Casten, R.F.
1986-01-01
Most of the comparison with theory has compared energy levels and we have seen many beautiful examples of one-to-one level correspondences, sometimes supported with a few B(E2) values. However, what we really need to check, the author thinks, is the structural correspondence, to make sure these levels really correspond to each other, and that the energy level agreement is not just accidental; for that we need to look at transfer reactions, and more B(E2)'s. This brings up the very important question of the transfer operator. The author hopes that its importance can be seen in recent cases where a few B(E2)'s for a few transfer strengths have substantially changed the correspondence between theoretical and experimental levels even though the overall energy level agreement is neither better or worse. So it's clearly sensitive to that question. Also cases have been seen now where several different supergroups have been applied to the same regions, U(6/4) and U(6/20) for example, to the mass 130 region, and so the question of the single-particle spaces and the single-particle energies is an important one. The question of microscopic understanding of the parameters and the interactions, these bose-fermi symmetries is important since it probes the underlying physical basis. And finally there have be some very interesting, what the author calls ''exotic'' extensions of bose-fermi symmetry ideas presented at this meeting. One is the extension to odd-odd nuclei, another is the generalized SUSY extension that can apply to transition regions, and this is the interesting beta decay calculations of Dobes that were reported yesterday, and probably some others the author has missed
Peccei-Quinn invariant singlet extended SUSY with anomalous U(1) gauge symmetry
Energy Technology Data Exchange (ETDEWEB)
Im, Sang Hui; Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon 305-811 (Korea, Republic of)
2015-05-13
Recent discovery of the SM-like Higgs boson with m{sub h}≃125 GeV motivates an extension of the minimal supersymmetric standard model (MSSM), which involves a singlet Higgs superfield with a sizable Yukawa coupling to the doublet Higgs superfields. We examine such singlet-extended SUSY models with a Peccei-Quinn (PQ) symmetry that originates from an anomalous U(1){sub A} gauge symmetry. We focus on the specific scheme that the PQ symmetry is spontaneously broken at an intermediate scale v{sub PQ}∼√(m{sub SUSY}M{sub Pl}) by an interplay between Planck scale suppressed operators and tachyonic soft scalar mass m{sub SUSY}∼√(D{sub A}) induced dominantly by the U(1){sub A}D-term D{sub A}. This scheme also results in spontaneous SUSY breaking in the PQ sector, generating the gaugino masses M{sub 1/2}∼√(D{sub A}) when it is transmitted to the MSSM sector by the conventional gauge mediation mechanism. As a result, the MSSM soft parameters in this scheme are induced mostly by the U(1){sub A}D-term and the gauge mediated SUSY breaking from the PQ sector, so that the sparticle masses can be near the present experimental bounds without causing the SUSY flavor problem. The scheme is severely constrained by the condition that a phenomenologically viable form of the low energy operators of the singlet and doublet Higgs superfields is generated by the PQ breaking sector in a way similar to the Kim-Nilles solution of the μ problem, and the resulting Higgs mass parameters allow the electroweak symmetry breaking with small tan β. We find two minimal models with two singlet Higgs superfields, satisfying this condition with a relatively simple form of the PQ breaking sector, and briefly discuss some phenomenological aspects of the model.
Long-lived and compressed SUSY searches at CMS and ATLAS
Barlow, Nick; The ATLAS collaboration
2015-01-01
Two challenging scenarios for SUSY searches at the LHC are when there are small mass differences between particles in the decay chain ("compressed" spectra) and where the SUSY particles have a non-negligible lifetime. The compressed case can be addressed by looking at events containing Initial State Radiation (ISR), while long-lifetimes can give rise to a wide range of possible detector signatures. This talk describes these diverse and interesting searches, performed by the ATLAS and CMS collaborations on the Run 1 LHC data.
Generalized Jaynes-Cummings Hamiltonians by shape-invariant hierarchies and their SUSY partners
International Nuclear Information System (INIS)
Hussin, V; Kuru, S; Negro, J
2006-01-01
A generalization of the matrix Jaynes-Cummings model in the rotating wave approximation is proposed by means of the shape-invariant hierarchies of scalar factorized Hamiltonians. A class of Darboux transformations (sometimes called SUSY transformations in this context) suitable for these generalized Jaynes-Cummings models is constructed. Finally one example is worked out using the methods developed
High scale parity invariance as a solution to the SUSY CP problem ...
Indian Academy of Sciences (India)
scale SUSY ДК model provides a solution to the CP problems of the MSSM. A minimal version of this .... the renormalizable seesaw model so that К-parity conservation remains automatic. Pramana – J. Phys., Vol ... from the Planck scale to ЪК in the squark sector is to split the third generation squarks slightly from the first two ...
Holographic entanglement entropy and entanglement thermodynamics of 'black' non-susy D3 brane
Bhattacharya, Aranya; Roy, Shibaji
2018-06-01
Like BPS D3 brane, the non-supersymmetric (non-susy) D3 brane of type IIB string theory is also known to have a decoupling limit and leads to a non-supersymmetric AdS/CFT correspondence. The throat geometry in this case represents a QFT which is neither conformal nor supersymmetric. The 'black' version of the non-susy D3 brane in the decoupling limit describes a QFT at finite temperature. Here we first compute the entanglement entropy for small subsystem of such QFT from the decoupled geometry of 'black' non-susy D3 brane using holographic technique. Then we study the entanglement thermodynamics for the weakly excited states of this QFT from the asymptotically AdS geometry of the decoupled 'black' non-susy D3 brane. We observe that for small subsystem this background indeed satisfies a first law like relation with a universal (entanglement) temperature inversely proportional to the size of the subsystem and an (entanglement) pressure normal to the entangling surface. Finally we show how the entanglement entropy makes a cross-over to the thermal entropy at high temperature.
Bremsstrahlung and Ion Beam Current Measurements with SuSI ECR Ion Source
International Nuclear Information System (INIS)
Ropponen, T.
2012-01-01
This series of slides presents: the Superconducting Source for Ions (SuSI), the X-ray measurement setup, the different collimation schemes, the flat B operation versus B(min) operation, and the impact of tuning ∇B while keeping fixed field profile
Naturalness in low-scale SUSY models and "non-linear" MSSM
Antoniadis, I; Ghilencea, D M
2014-01-01
In MSSM models with various boundary conditions for the soft breaking terms (m_{soft}) and for a higgs mass of 126 GeV, there is a (minimal) electroweak fine-tuning Delta\\approx 800 to 1000 for the constrained MSSM and Delta\\approx 500 for non-universal gaugino masses. These values, often regarded as unacceptably large, may indicate a problem of supersymmetry (SUSY) breaking, rather than of SUSY itself. A minimal modification of these models is to lower the SUSY breaking scale in the hidden sector (\\sqrt f) to few TeV, which we show to restore naturalness to more acceptable levels Delta\\approx 80 for the most conservative case of low tan_beta and ultraviolet boundary conditions as in the constrained MSSM. This is done without introducing additional fields in the visible sector, unlike other models that attempt to reduce Delta. In the present case Delta is reduced due to additional (effective) quartic higgs couplings proportional to the ratio m_{soft}/(\\sqrt f) of the visible to the hidden sector SUSY breaking...
B-L mediated SUSY breaking with radiative B-L symmetry breaking
International Nuclear Information System (INIS)
Kikuchi, Tatsuru; Kubo, Takayuki
2008-01-01
We explore a mechanism of radiative B-L symmetry breaking in analogous to the radiative electroweak symmetry breaking. The breaking scale of B-L symmetry is related to the neutrino masses through the see-saw mechanism. Once we incorporate the U(1) B-L gauge symmetry in SUSY models, the U(1) B-L gaugino, Z-tilde B-L appears, and it can mediate the SUSY breaking (Z-prime mediated SUSY breaking) at around the scale of 10 6 GeV. Then we find a links between the neutrino mass (more precisly the see-saw or B-L scale of order 10 6 GeV) and the Z-prime mediated SUSY breaking scale. It is also very interesting that the gluino at the weak scale becomes relatively light, and almost compressed mass spectra for the gaugino sector can be realized in this scenario, which is very interesting in scope of the LHC.
International Nuclear Information System (INIS)
Gato, B.; Leon, J.; Ramon-Medrano, M.
1984-01-01
We present a model for a SUSY GUT coupled to N=1 supergravity in which local supersymmetry breaks down in the gauge singlet sector. The constraints for the model to be physically acceptable are incompatible with inflation. The simultaneous breaking of local supersymmetry and gauge symmetry is proposed as a good prospect for inflation. (orig.)
SUSY method for the three-dimensional Schrödinger equation with effective mass
International Nuclear Information System (INIS)
Ioffe, M.V.; Kolevatova, E.V.; Nishnianidze, D.N.
2016-01-01
Highlights: • SUSY intertwining relations for the 3-dim Schrödinger equation with effective mass were studied. • The general solution of these intertwining relations with first order supercharges was obtained. • Four different options for parameters values were considered separately to find the mass functions and partner potentials. - Abstract: The three-dimensional Schrödinger equation with a position-dependent (effective) mass is studied in the framework of Supersymmetrical (SUSY) Quantum Mechanics. The general solution of SUSY intertwining relations with first order supercharges is obtained without any preliminary constraints. Several forms of coefficient functions of the supercharges are investigated and analytical expressions for the mass function and partner potentials are found. As usual for SUSY Quantum Mechanics with nonsingular superpotentials, the spectra of intertwined Hamiltonians coincide up to zero modes of supercharges, and the corresponding wave functions are connected by intertwining relations. All models are partially integrable by construction: each of them has at least one second order symmetry operator.
Decoupling limit and throat geometry of non-susy D3 brane
Energy Technology Data Exchange (ETDEWEB)
Nayek, Kuntal, E-mail: kuntal.nayek@saha.ac.in; Roy, Shibaji, E-mail: shibaji.roy@saha.ac.in
2017-03-10
Recently it has been shown by us that, like BPS Dp branes, bulk gravity gets decoupled from the brane even for the non-susy Dp branes of type II string theories indicating a possible extension of AdS/CFT correspondence for the non-supersymmetric case. In that work, the decoupling of gravity on the non-susy Dp branes has been shown numerically for the general case as well as analytically for some special case. Here we discuss the decoupling limit and the throat geometry of the non-susy D3 brane when the charge associated with the brane is very large. We show that in the decoupling limit the throat geometry of the non-susy D3 brane, under appropriate coordinate change, reduces to the Constable–Myers solution and thus confirming that this solution is indeed the holographic dual of a (non-gravitational) gauge theory discussed there. We also show that when one of the parameters of the solution takes a specific value, it reduces, under another coordinate change, to the five-dimensional solution obtained by Csaki and Reece, again confirming its gauge theory interpretation.
Constraints of chromoelectric dipole moments to natural SUSY type sfermion spectrum
Maekawa, Nobuhiro; Muramatsu, Yu; Shigekami, Yoshihiro
2017-06-01
We investigate the lower bounds of sfermion masses from the constraints of chromoelectric dipole moments (CEDMs) in the natural SUSY-type sfermion mass spectrum, in which stop mass mt ˜ is much smaller than the other sfermion masses m0. The natural SUSY-type sfermion mass spectrum has been studied since the supersymmetric (SUSY) flavor-changing neutral currents (FCNC) are suppressed because of large sfermion masses of the first two generations, and the weak scale is stabilized because of the light stop. However, this type of sfermion mass spectrum is severely constrained by CEDM, because the light stop contributions to the up quark CEDM are not decoupled in the limit m0→∞ , while the down quark CEDM is decoupled in the limit. It is important that the constraints are severe even if SUSY-breaking parameters (and Higgsino mass) are taken to be real because complex diagonalizing matrices of Yukawa matrices, which are from complex Yukawa couplings, generate nonvanishing C P phases in off-diagonal elements of sfermion mass matrices. We calculate the CEDM of up and down quarks numerically in the minimal SUSY standard model, and give the lower bounds for stop mass and the other sfermion masses. We show that the lower bound of stop mass becomes 7 TeV to satisfy the CEDM constraints from Hg EDM. The result is not acceptable if the weak scale stability is considered seriously. We show that if the up-type Yukawa couplings are taken to be real at the grand unification scale, the CEDM constraints are satisfied even if mt ˜˜1 TeV .
Energy Technology Data Exchange (ETDEWEB)
Nayak, Bidyut Prava; Parida, Mina Ketan [Siksha ' ' O' ' Anusandhan University, Centre of Excellence in Theoretical and Mathematical Sciences, Bhubaneswar, Odisha (India)
2015-05-15
The dominance of Type-II seesaw mechanism for the neutrino masses has attracted considerable attention because of a number of advantages. We show a novel approach to achieve Type-II seesaw dominance in nonsupersymmetric SO(10) grand unification where a low-mass Z' boson and specific patterns of right-handed neutrino masses are predicted within the accessible energy range of the Large Hadron Collider. In spite of the high value of the seesaw scale, M{sub Δ{sub L}} ≅ 10{sup 8}-10{sup 9} GeV, the model predicts new dominant contributions to neutrino-less double beta decay in the W{sub L}-W{sub L} channel close to the current experimental limits via exchanges of heavier singlet fermions used as essential ingredients of this model even when the light active neutrino masses are normally hierarchical or invertedly hierarchical. We obtain upper bounds on the lightest sterile neutrino mass m{sub s}
Identifying fake leptons in ATLAS while hunting SUSY in 8 TeV proton-proton collisions
Gillam, Thomas P S
For several theoretically and experimentally motivated reasons, super- symmetry (SUSY) has for some time been identified as an interesting candidate for a theory of fundamental particle physics beyond the Stan- dard Model. The ATLAS collaboration, of which I am a member, possess a detector emplaced in the Large Hadron Collider experiment at CERN. If SUSY does in fact describe our universe, then it is hoped that evidence of it will be visible in data collected in the ATLAS detector. I present an analysis looking for a particular signature that could indicate the presence of SUSY; events containing two like-charge leptons (e or μ). This signature benefits from having both low Standard Model backgrounds as well as potential to observe several SUSY scenarios, par- ticularly those involving strong production processes. These include pair production of squarks and gluinos. The latter of these are particularly relevant for the analysis presented herein since gluinos are Majorana fermions; hence they can decay to...
Energy Technology Data Exchange (ETDEWEB)
Bae, Kyu Jung [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon 34051 (Korea, Republic of); Baer, Howard; Serce, Hasan, E-mail: kyujungbae@ibs.re.kr, E-mail: baer@nhn.ou.edu, E-mail: serce@ou.edu [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)
2017-06-01
Under the expectation that nature is natural, we extend the Standard Model to include SUSY to stabilize the electroweak sector and PQ symmetry to stabilize the QCD sector. Then natural SUSY arises from a Kim-Nilles solution to the SUSY μ problem which allows for a little hierarchy where μ∼ f {sub a} {sup 2}/ M {sub P} {sub ∼} 100−300 GeV while the SUSY particle mass scale m {sub SUSY}∼ 1−10 TeV >> μ. Dark matter then consists of two particles: a higgsino-like WIMP and a SUSY DFSZ axion. The range of allowed axion mass values m {sub a} depends on the mixed axion-higgsino relic density. The range of m {sub a} is actually restricted in this case by limits on WIMPs from direct and indirect detection experiments. We plot the expected axion detection rate at microwave cavity experiments. The axion-photon-photon coupling is severely diminished by charged higgsino contributions to the anomalous coupling. In this case, the axion may retreat, at least temporarily, back into the regime of near invisibility. From our results, we urge new ideas for techniques which probe both deeper and more broadly into axion coupling versus axion mass parameter space.
Benchmark models, planes lines and points for future SUSY searches at the LHC
International Nuclear Information System (INIS)
AbdusSalam, S.S.; Allanach, B.C.; Dreiner, H.K.
2012-03-01
We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.
Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions
Energy Technology Data Exchange (ETDEWEB)
Wang, Fei [School of Physics, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Yang, Jin Min [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Zhang, Yang [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China)
2016-04-29
A radiative natural SUSY spectrum are proposed in the deflected anomaly mediation scenario with general messenger-matter interactions. Due to the contributions from the new interactions, positive slepton masses as well as a large |A{sub t}| term can naturally be obtained with either sign of deflection parameter and few messenger species (thus avoid the possible Landau pole problem). In this scenario, in contrast to the ordinary (radiative) natural SUSY scenario with under-abundance of dark matter (DM), the DM can be the mixed bino-higgsino and have the right relic density. The 125 GeV Higgs mass can also be easily obtained in our scenario. The majority of low EW fine tuning points can be covered by the XENON-1T direct detection experiments.
Mandelstam cuts and light-like Wilson loops in N=4 SUSY
Energy Technology Data Exchange (ETDEWEB)
Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2010-08-15
We perform an analytic continuation of the two-loop remainder function for the six-point planar MHV amplitude in N=4 SUSY, found by Goncharov, Spradlin, Vergu and Volovich from the light-like Wilson loop representation. The remainder function is continued into a physical region, where all but two energy invariants are negative. It turns out to be pure imaginary in the multi-Regge kinematics, which is in an agreement with the predictions based on the Steinmann relations for the Regge poles and Mandelstam cut contributions. The leading term reproduces correctly the expression calculated by one of the authors in the BFKL approach, while the subleading term presents a result, that was not yet found with the use of the unitarity techniques. This supports the applicability of the Wilson loop approach to the planar MHV amplitudes in N=4 SUSY. (orig.)
Mandelstam cuts and light-like Wilson loops in N=4 SUSY
International Nuclear Information System (INIS)
Lipatov, L.N.; Prygarin, A.
2010-08-01
We perform an analytic continuation of the two-loop remainder function for the six-point planar MHV amplitude in N=4 SUSY, found by Goncharov, Spradlin, Vergu and Volovich from the light-like Wilson loop representation. The remainder function is continued into a physical region, where all but two energy invariants are negative. It turns out to be pure imaginary in the multi-Regge kinematics, which is in an agreement with the predictions based on the Steinmann relations for the Regge poles and Mandelstam cut contributions. The leading term reproduces correctly the expression calculated by one of the authors in the BFKL approach, while the subleading term presents a result, that was not yet found with the use of the unitarity techniques. This supports the applicability of the Wilson loop approach to the planar MHV amplitudes in N=4 SUSY. (orig.)
A low energy dynamical SUSY breaking scenario motivated from superstring derived unification
Faraggi, Alon E.
1996-01-01
Recently there has been a resurgence of interest in gauge mediated dynamical supersymmetry breaking scenarios. I investigate how low energy dynamical SUSY breaking may arise from superstring models. In a three generation string derived model I propose that the unbroken hidden non--Abelian gauge group at the string scale is SU(3)_H with matter multiplets. Due to the small gauge content of the hidden gauge group the supersymmetry breaking scale may be consistent with the dynamical SUSY breaking scenarios. The messenger states are obtained in the superstring model from sectors which arise due to the ``Wilson--line'' breaking of the unifying non--Abelian gauge symmetry. An important property of the string motivated messenger states is the absence of superpotential terms with the Standard Model states. The stringy symmetries therefore forbid the flavor changing processes which may arise due to couplings between the messenger sector states and the Standard Model states. Motivated from the problem of string gauge co...
Benchmark models, planes lines and points for future SUSY searches at the LHC
Energy Technology Data Exchange (ETDEWEB)
AbdusSalam, S.S. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Allanach, B.C. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Dreiner, H.K. [Bonn Univ. (DE). Bethe Center for Theoretical Physics and Physikalisches Inst.] (and others)
2012-03-15
We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.
On the diversity of gauge mediation: footprints of dynamical SUSY breaking
International Nuclear Information System (INIS)
Abel, Steven; Jaeckel, Joerg; Khoze, Valentin V.; Matos, Luis
2009-01-01
Recent progress in realising dynamical supersymmetry breaking allows the construction of simple and calculable models of gauge mediation. We discuss the phenomenology of the particularly minimal case in which the mediation is direct, and show that there are generic new and striking predictions. These include new particles with masses comparable to those of the Standard Model superpartners, associated with the pseudo-Goldstone modes of the dynamical SUSY breaking sector. Consequently there is an unavoidable departure from the MSSM. In addition the gaugino masses are typically significantly lighter than the sfermions, and their mass ratios can be different from the pattern dictated by the gauge couplings in standard (i.e. explicit) gauge mediation. We investigate these features in two distinct realisations of the dynamical SUSY breaking sector.
Analytic properties of high energy production amplitudes in N=4 SUSY
International Nuclear Information System (INIS)
Lipatov, L.N.; Hamburg Univ.
2010-08-01
We investigate analytic properties of the six point planar amplitude in N=4 SUSY at the multi-Regge kinematics for final state particles. For inelastic processes the Steinmann relations play an important role because they give a possibility to fix the phase structure of the Regge pole and Mandelstam cut contributions. The analyticity and factorization constraints allow us to reproduce the two-loop correction to the 6- point BDS amplitude in N=4 SUSY obtained earlier in the leading logarithmic approximation with the use of the s-channel unitarity. The cut contribution has the Moebius invariant form in the transverse momentum subspace. The exponentiation hypothesis for the amplitude in the multi-Regge kinematics is also investigated in LLA. (orig.)
Prospects for R-Parity Conserving SUSY searches at the LHC
The ATLAS collaboration
2009-01-01
The talk reviews the current strategies to search for generic SUSY models with R-parity conservation in the ATLAS and CMS detectors at the LHC. The discovery reach in early data is presented for different search channels based on missing transverse momentum from undetected neutralinos and multiple jets. The talk will also describe the search for models of gauge-mediated supersymmetry breaking for which the NLSP is a neutralino decaying to a photon and a gravitino. In this scenario, the search strategy exploits the distinct signature of a non-pointing photon. Finally, we present recent work on techniques used to reconstruct the decays of SUSY particles at the LHC in early data, based on the selection of final-state exclusive decay chains.
Prospects for R-Parity Conserving SUSY searches at the LHC
Genest, Marie-Helene
2009-01-01
We review the current strategies to search for generic SUSY models with R-parity conservation in the ATLAS and CMS detectors at the LHC. The discovery reach in early data will be presented for the diﬀerent search channels based on missing transverse momentum from undetected neutralinos and multiple jets. We will also describe the search for models of gauge-mediated supersymmetry breaking for which the NLSP is a neutralino decaying to a photon and a gravitino. Finally, we will present recent work on techniques used to reconstruct the decays of SUSY particles at the LHC in early data, based on the selection of ﬁnal-state exclusive decay chains.
Benchmark Models, Planes, Lines and Points for Future SUSY Searches at the LHC
AbdusSalam, S S; Dreiner, H K; Ellis, J; Ellwanger, U; Gunion, J; Heinemeyer, S; Krämer, M; Mangano, M L; Olive, K A; Rogerson, S; Roszkowski, L; Schlaffer, M; Weiglein, G
2011-01-01
We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.
Analytic properties of high energy production amplitudes in N=4 SUSY
Energy Technology Data Exchange (ETDEWEB)
Lipatov, L.N. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik
2010-08-15
We investigate analytic properties of the six point planar amplitude in N=4 SUSY at the multi-Regge kinematics for final state particles. For inelastic processes the Steinmann relations play an important role because they give a possibility to fix the phase structure of the Regge pole and Mandelstam cut contributions. The analyticity and factorization constraints allow us to reproduce the two-loop correction to the 6- point BDS amplitude in N=4 SUSY obtained earlier in the leading logarithmic approximation with the use of the s-channel unitarity. The cut contribution has the Moebius invariant form in the transverse momentum subspace. The exponentiation hypothesis for the amplitude in the multi-Regge kinematics is also investigated in LLA. (orig.)
The fine-tuning cost of the likelihood in SUSY models
International Nuclear Information System (INIS)
Ghilencea, D.M.; Ross, G.G.
2013-01-01
In SUSY models, the fine-tuning of the electroweak (EW) scale with respect to their parameters γ i ={m 0 ,m 1/2 ,μ 0 ,A 0 ,B 0 ,…} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Δ of the usual likelihood L and the traditional fine-tuning measure Δ of the EW scale. A similar result is obtained for the integrated likelihood over the set {γ i }, that can be written as a surface integral of the ratio L/Δ, with the surface in γ i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Δ or equivalently, a small χ new 2 =χ old 2 +2lnΔ. This shows the fine-tuning cost to the likelihood (χ new 2 ) of the EW scale stability enforced by SUSY, that is ignored in data fits. A good χ new 2 /d.o.f.≈1 thus demands SUSY models have a fine-tuning amount Δ≪exp(d.o.f./2), which provides a model-independent criterion for acceptable fine-tuning. If this criterion is not met, one can thus rule out SUSY models without a further χ 2 /d.o.f. analysis. Numerical methods to fit the data can easily be adapted to account for this effect.
Extension of the SUSY Les Houches Accord 2 for see-saw mechanisms
International Nuclear Information System (INIS)
Basso, L.; Belyaev, A.; Chowdhury, D.; Ghosh, D.K.; Hirsch, M.; Khalil, S.; Moretti, S.; O'Leary, B.; Porod, W.; Staub, F.
2012-01-01
The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. (authors)
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-15
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.
Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron
International Nuclear Information System (INIS)
Carena, Marcela; Liu, Tao
2010-12-01
A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb -1 per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb -1 , our projection shows that evidence at the 3σ level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)
Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Carena, Marcela [Fermi National Accelerator Laboratory, Batavia, IL (United States); Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Draper, Patrick [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Liu, Tao [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; California Univ., Santa Barbara, CA (United States). Dept. of Physics; Wagner, Carlos E.M. [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Argonne National Laboratory, Argonne, IL (United States). HEP Div.; Chicago Univ., Chicago, IL (United States). KICP and Dept. of Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-12-15
A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)
Searching for vortex solutions in graphene within an N=2 SUSY framework
International Nuclear Information System (INIS)
Abreu, Everton M.C.; Assis, Leonardo P.G. de; Helayel-Neto, Jose Abdalla; Nogueira, Alvaro L.M.A.; Paschoal, Ricardo C.
2011-01-01
Full text: In a recent work, we proposed an N=1-D=3 supersymmetric (SUSY) extension of Jackiw's et al. chiral gauge theory for graphene. As a first approach, we explored the idea that the chiral gauge formulation for Dirac fermions in graphene could be a sector of a wider SUSY theoretical setup, namely, the N=1 π 3 -QED. As a matter of fact, adding a superpotential operator to the N=1 π 3 -QED prescription, properly endowed with the constitutive chiral gauge and discrete symmetries that prevail in Jackiw's proposal, allows for the recognition of the Yukawa-like terms, along with spontaneous symmetry breaking configurations and corresponding non-null mass eigenvalues to the physical degrees of freedom. However, the additional requirement of invariance under a global phase transformation (GPT), meant to be associated to the electric charge, severely constrains the superpotential, leading to the exclusion of the sector that contains Jackiw's operators. As we proceed to investigate how the GP symmetry could be accommodated in a SUSY formulation, in the work of Ref. [E.M.C. Abreu, M.A. De Andrade, L.P.G. de Assis, J.A. Helayel-Neto, A.L.M.A. Nogueira and R.C. Paschoal, N=2-D=3 Supersymmetry and the Electric Charge in Graphene] we assess the straightforward N=1-generalization of Jackiw-Pi's chiral gauge theory, obtained at the cost of adding an extra superfield to the original SUSY-π 3 -QED field content. Moreover, we are able to construct an N=2-D=3 further extension of the chiral gauge theory for electrons in graphene. Such an N=2 SUSY framework provides an algebraic structure rich enough to imply a set of equations that minimizes the energy functional, namely, the well-known Bogomol'nyi equations. In this work, by taking the action of one of the supersymmetry charges to be trivial, we obtain the proper set of Bogomol'nyi equations. We finally impose a vortex-like trial solution, as we wish to discuss the resulting non-perturbative spectrum of the present N=2 setup
Searching for vortex solutions in graphene within an N=2 SUSY framework
Energy Technology Data Exchange (ETDEWEB)
Abreu, Everton M.C. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. de Fisica; Andrade, Marco A. de [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil); Assis, Leonardo P.G. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Helayel-Neto, Jose Abdalla [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil); Nogueira, Alvaro L.M.A.; Paschoal, Ricardo C. [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil)
2011-07-01
Full text: In a recent work, we proposed an N=1-D=3 supersymmetric (SUSY) extension of Jackiw's et al. chiral gauge theory for graphene. As a first approach, we explored the idea that the chiral gauge formulation for Dirac fermions in graphene could be a sector of a wider SUSY theoretical setup, namely, the N=1 {pi}{sub 3}-QED. As a matter of fact, adding a superpotential operator to the N=1 {pi}{sub 3}-QED prescription, properly endowed with the constitutive chiral gauge and discrete symmetries that prevail in Jackiw's proposal, allows for the recognition of the Yukawa-like terms, along with spontaneous symmetry breaking configurations and corresponding non-null mass eigenvalues to the physical degrees of freedom. However, the additional requirement of invariance under a global phase transformation (GPT), meant to be associated to the electric charge, severely constrains the superpotential, leading to the exclusion of the sector that contains Jackiw's operators. As we proceed to investigate how the GP symmetry could be accommodated in a SUSY formulation, in the work of Ref. [E.M.C. Abreu, M.A. De Andrade, L.P.G. de Assis, J.A. Helayel-Neto, A.L.M.A. Nogueira and R.C. Paschoal, N=2-D=3 Supersymmetry and the Electric Charge in Graphene] we assess the straightforward N=1-generalization of Jackiw-Pi's chiral gauge theory, obtained at the cost of adding an extra superfield to the original SUSY-{pi}{sub 3}-QED field content. Moreover, we are able to construct an N=2-D=3 further extension of the chiral gauge theory for electrons in graphene. Such an N=2 SUSY framework provides an algebraic structure rich enough to imply a set of equations that minimizes the energy functional, namely, the well-known Bogomol'nyi equations. In this work, by taking the action of one of the supersymmetry charges to be trivial, we obtain the proper set of Bogomol'nyi equations. We finally impose a vortex-like trial solution, as we wish to discuss the resulting non
SUSI 62 A ROBUST AND SAFE PARACHUTE UAV WITH LONG FLIGHT TIME AND GOOD PAYLOAD
Directory of Open Access Journals (Sweden)
H. P. Thamm
2012-09-01
Full Text Available In many research areas in the geo-sciences (erosion, land use, land cover change, etc. or applications (e.g. forest management, mining, land management etc. there is a demand for remote sensing images of a very high spatial and temporal resolution. Due to the high costs of classic aerial photo campaigns, the use of a UAV is a promising option for obtaining the desired remote sensed information at the time it is needed. However, the UAV must be easy to operate, safe, robust and should have a high payload and long flight time. For that purpose, the parachute UAV SUSI 62 was developed. It consists of a steel frame with a powerful 62 cm3 2- stroke engine and a parachute wing. The frame can be easily disassembled for transportation or to replace parts. On the frame there is a gimbal mounted sensor carrier where different sensors, standard SLR cameras and/or multi-spectral and thermal sensors can be mounted. Due to the design of the parachute, the SUSI 62 is very easy to control. Two different parachute sizes are available for different wind speed conditions. The SUSI 62 has a payload of up to 8 kg providing options to use different sensors at the same time or to extend flight duration. The SUSI 62 needs a runway of between 10 m and 50 m, depending on the wind conditions. The maximum flight speed is approximately 50 km/h. It can be operated in a wind speed of up to 6 m/s. The design of the system utilising a parachute UAV makes it comparatively safe as a failure of the electronics or the remote control only results in the UAV coming to the ground at a slow speed. The video signal from the camera, the GPS coordinates and other flight parameters are transmitted to the ground station in real time. An autopilot is available, which guarantees that the area of investigation is covered at the desired resolution and overlap. The robustly designed SUSI 62 has been used successfully in Europe, Africa and Australia for scientific projects and also for
Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin
2018-04-01
Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.
One-loop stabilization of the fuzzy four-sphere via softly broken SUSY
Energy Technology Data Exchange (ETDEWEB)
Steinacker, Harold C. [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)
2015-12-17
We describe a stabilization mechanism for fuzzy S{sub N}{sup 4} in the Euclidean IIB matrix model due to vacuum energy in the presence of a positive mass term. The one-loop effective potential for the radius contains an attractive contribution attributed to supergravity, while the mass term induces a repulsive contribution for small radius due to SUSY breaking. This leads to a stabilization of the radius. The mechanism should be pertinent to recent results on the genesis of 3+1-dimensional space-time in the Minkowskian IIB model.
Neutralino Dark Matter in non-universal and non-minimal SUSY
International Nuclear Information System (INIS)
King, S.F.
2010-01-01
We discuss neutralino dark matter in non-universal SUSY including the NUHM, SU(5) with non-universal gauginos. In the MSSM we argue from naturalness that non-universal soft mass parameters are preferred, with non-universal gaugino masses enabling supernatural dark matter beyond the MSSM, we also discuss neutralino dark matter in the U SSM and E 6 SSM. In the E 6 SSM a light neutralino LSP coming from the inert Higgsino and singlino sector is unavoidable and makes an attractive dark matter candidate.
Predictions from a flavour GUT model combined with a SUSY breaking sector
Antusch, Stefan; Hohl, Christian
2017-10-01
We discuss how flavour GUT models in the context of supergravity can be completed with a simple SUSY breaking sector, such that the flavour-dependent (non-universal) soft breaking terms can be calculated. As an example, we discuss a model based on an SU(5) GUT symmetry and A 4 family symmetry, plus additional discrete "shaping symmetries" and a ℤ 4 R symmetry. We calculate the soft terms and identify the relevant high scale input parameters, and investigate the resulting predictions for the low scale observables, such as flavour violating processes, the sparticle spectrum and the dark matter relic density.
Susy-QCD corrections to neutrlino pair production in association with a jet
Energy Technology Data Exchange (ETDEWEB)
Cullen, Gavin [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas; Heinrich, Gudrun [Max-Planck-Institut fuer Physik, Muenchen (Germany)
2012-12-15
We present the NLO Susy-QCD corrections to the production of a pair of the lightest neutralinos plus one jet at the LHC, appearing as a monojet signature in combination with missing energy. We fully include all non-resonant diagrams, i.e. we do not assume that production and decay factorise. We derive a parameter point based on the p19MSSM which is compatible with current experimental bounds and show distributions based on missing transverse energy and jet observables. Our results are produced with the program GoSam for automated one-loop calculations in combination with MadDipole/- MadGraph for the real radiation part.
SUSY-QCD corrections to Higgs boson production at hadron colliders
International Nuclear Information System (INIS)
Djouadi, A.; Spira, M.
1999-12-01
We analyze the next-to-leading order SUSY-QCD corrections to the production of Higgs particles at hadron colliders in supersymmetric extensions of the standard model. Besides the standard QCD corrections due to gluon exchange and emission, genuine supersymmetric corrections due to the virtual exchange of squarks and gluinos are present. At both the Tevatron and the LHC, these corrections are found to be small in the Higgs-strahlung, Drell-Yan-like Higgs pair production and vector boson fusion processes. (orig.)
Prospects for (non-SUSY) new physics with first LHC data
International Nuclear Information System (INIS)
Butterworth, Jonathan
2007-01-01
The ATLAS and CMS experiments will take first data soon. I consider here the prospects for new physics (excluding SUSY) with a few fb -1 of data. This means processes with signal cross sections of a few 100 fb or less, with clear and fairly simple signatures--precision comparison of data to Standard Model tails will take longer, needing more luminosity and very good understanding of detector calibrations, resolutions and trigger efficiencies. The approach I take here is signature rather than model based, but examples of models will be given
International Nuclear Information System (INIS)
Wichmann, K.
2009-01-01
Recently, Letters of Intent (LoI) for experiments at the International Linear Collider (ILC) have been submitted. Among the three proposals is the International Large Detector (ILD) concept which is at the focus of these studies. From various subjects addressed in the LoI, a wide spectrum of studies of SUSY particle properties is presented here. Most of them are benchmark reactions for the ILC and can be used both in physics studies and in work on detector design and optimization, respectively. All studies were performed with a full detector simulation using GEANT4, which is a great improvement compared to the previous results with much less detailed, so called f ast , simulation (SIMDET). The importance of this improved simulation is reflected in the results. The presented analyzes have been chosen to be the most challenging for the detector to study its performance and guide the detector development. Additionally an important problem of unavoidable beam induced backgrounds at linear colliders is addressed and ways of reducing its impact on physics studies are shown for an example SUSY analysis. (author)
Rencontres de Moriond QCD 2012: Searches for Dark Matter, SUSY and other exotic particles
CERN Bulletin
2012-01-01
The fact that SUSY and other new physics signals do not seem to hide in “obvious” places is bringing a healthy excitement to Moriond. Yesterday’s presentations confirmed that, with the 2012 LHC data, experiments will concentrate on searches for exotic particles that might decay into yet unexplored modes. In the meantime, they are setting unprecedented boundaries to regions where new particles (not just SUSY) could exist. The limits of what particle accelerators can bring to enlighten the mystery of Dark Matter were also presented and discussed. Each bar on the picture represents a decay channel that the ATLAS Collaboration (top) and the CMS Collaborations (bottom) have analysed. The value indicated on the scale (or on the relevant bar) defines the maximum mass that the particle in that search cannot have. Not knowing what kind of new physics we should really expect, and given the fact that it does not seem to be hiding in any of the obvious places, e...
Low-scale SUSY breaking and the (s)goldstino physics
Antoniadis, I.
2013-01-01
For a 4D N=1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K(Phi^i,Phi_j^*) and superpotential W(Phi^i) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino) superconformal symmetry breaking chiral superfield X. In the presence of more sources of supersymmetry breaking, we verify the conjecture that the goldstino superfield is the (infrared) limit of X for zero-momentum and Lambda->\\infty. (Lambda is the effective cut-off scale). We then study the constraint X^2=0, which in the one-field case is known to decouple a massive sgoldstino and thus provide an effective superfield description of the Akulov-Volkov action for the goldstino. In the presence of additional fields that contribute to SUSY breaking we identify conditions for which X^2=0 remains valid, in the effective theory below a large but finite sgoldstino mass. The conditions ensure that the effective expansion (in 1/Lambda) of the initial Lagrangian is not in ...
Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order
Cassel, S; Ross, G G
2010-01-01
In the framework of the Constrained Minimal Supersymmetric Standard Model (CMSSM) we evaluate the electroweak fine tuning measure that provides a quantitative test of supersymmetry as a solution to the hierarchy problem. Taking account of current experimental constraints we compute the fine tuning at two-loop order and determine the limits on the CMSSM parameter space and the measurements at the LHC most relevant in covering it. Without imposing the LEPII bound on the Higgs mass, it is shown that the fine tuning computed at two-loop has a minimum $\\Delta=8.8$ corresponding to a Higgs mass $m_h=114\\pm 2$ GeV. Adding the constraint that the SUSY dark matter relic density should be within present bounds we find $\\Delta=15$ corresponding to $m_h=114.7\\pm 2$ GeV and this rises to $\\Delta=17.8$ ($m_h=115.9\\pm 2$ GeV) for SUSY dark matter abundance within 3$\\sigma$ of the WMAP constraint. We extend the analysis to include the contribution of dark matter fine tuning. In this case the overall fine tuning and Higgs mas...
Fine-tuning implications for complementary dark matter and LHC SUSY searches
Cassel, S; Kraml, S; Lessa, A; Ross, G G
2011-01-01
The requirement that SUSY should solve the hierarchy problem without undue fine-tuning imposes severe constraints on the new supersymmetric states. With the MSSM spectrum and soft SUSY breaking originating from universal scalar and gaugino masses at the Grand Unification scale, we show that the low-fine-tuned regions fall into two classes that will require complementary collider and dark matter searches to explore in the near future. The first class has relatively light gluinos or squarks which should be found by the LHC in its first run. We identify the multijet plus E_T^miss signal as the optimal channel and determine the discovery potential in the first run. The second class has heavier gluinos and squarks but the LSP has a significant Higgsino component and should be seen by the next generation of direct dark matter detection experiments. The combined information from the 7 TeV LHC run and the next generation of direct detection experiments can test almost all of the CMSSM parameter space consistent with ...
Leptogenesis scenarios for natural SUSY with mixed axion-higgsino dark matter
International Nuclear Information System (INIS)
Bae, Kyu Jung; Baer, Howard; Serce, Hasan; Zhang, Yi-Fan
2016-01-01
Supersymmetric models with radiatively-driven electroweak naturalness require light higgsinos of mass ∼ 100–300 GeV . Naturalness in the QCD sector is invoked via the Peccei-Quinn (PQ) axion leading to mixed axion-higgsino dark matter. The SUSY DFSZ axion model provides a solution to the SUSY μ problem and the Little Hierarchy μ|| m 3/2 may emerge as a consequence of a mismatch between PQ and hidden sector mass scales. The traditional gravitino problem is now augmented by the axino and saxion problems, since these latter particles can also contribute to overproduction of WIMPs or dark radiation, or violation of BBN constraints. We compute regions of the T R vs. m 3/2 plane allowed by BBN, dark matter and dark radiation constraints for various PQ scale choices f a . These regions are compared to the values needed for thermal leptogenesis, non-thermal leptogenesis, oscillating sneutrino leptogenesis and Affleck-Dine leptogenesis. The latter three are allowed in wide regions of parameter space for PQ scale f a∼ 10 10 –10 12 GeV which is also favored by naturalness: f a ∼ √μM P /λ μ ∼ 10 10 –10 12 GeV . These f a values correspond to axion masses somewhat above the projected ADMX search regions
Non-simplified SUSY. {tau}-coannihilation at LHC and ILC
Energy Technology Data Exchange (ETDEWEB)
Berggren, M.; Cakir, A.; Krueger, D.; List, J.; Lobanov, A.; Melzer-Pellmann, I.A.
2013-07-15
Simplified models have become a widely used and important tool to cover the more diverse phenomenology beyond constrained SUSY models. However, they come with a substantial number of caveats themselves, and great care needs to be taken when drawing conclusions from limits based on the simplified approach. To illustrate this issue with a concrete example, we examine the applicability of simplified model results to a series of full SUSY model points which all feature a small {tau} -LSP mass difference, and are compatible with electroweak and flavor precision observables as well as current LHC results. Various channels have been studied using the Snowmass Combined LHC detector implementation in the Delphes simulation package, as well as the Letter of Intent or Technical Design Report simulations of the ILD detector concept at the ILC. We investigated both the LHC and ILC capabilities for discovery, separation and identification of all parts of the spectrum. While parts of the spectrum would be discovered at the LHC, there is substantial room for further discoveries and property determination at the ILC.
SU(2) symmetry and degeneracy from SUSY QM of a neutron in the magnetic field of a linear current
International Nuclear Information System (INIS)
Martinez, D.; Granados, V.D.; Mota, R.D.
2006-01-01
From SUSY ladder operators in momentum space of a neutron in the magnetic field of a linear current, we construct 2x2 matrix operators that together with the z-component of the total angular momentum satisfy the su(2) Lie algebra. We use this fact to explain the degeneracy of the energy spectrum
Calculation of the single lepton SUSY analysis limits in the cMSSM m0-m1/2 plane
Megas, Efstathios
2014-01-01
The goal of the summer student project was the calculation of the single lepton SUSY analysis limits in the cMSSM $m_0$-$m_{1/2}$ plane. To this end, the analysis code, the production of the ntuples and a familarization with the higgs combination tool was needed.
Energy Technology Data Exchange (ETDEWEB)
Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com [Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126 (Indonesia)
2014-09-30
Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.
Energy Technology Data Exchange (ETDEWEB)
Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id [Physics Study Program, University of Mataram, Jln. Majapahit 62 Mataram, NTB (Indonesia)
2016-04-19
We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.
DEFF Research Database (Denmark)
Bajc, Borut; Dondi, Nicola Andrea; Sannino, Francesco
2018-01-01
We investigate the short distance fate of distinct classes of not asymptotically free supersymmetric gauge theories. Examples include super QCD with two adjoint fields and generalised superpotentials, gauge theories without superpotentials and with two types of matter representation and semi-simp...
Hadronic EDMs in SUSY SU(5) GUTs with right-handed neutrinos
International Nuclear Information System (INIS)
Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru; Shimizu, Yasuhiro
2004-01-01
We discuss hadronic EDM constraints on the neutrino sector in the SUSY SU(5) GUT with the right-handed neutrinos. The hadronic EDMs are sensitive to the right-handed down-type squark mixings, especially between the second and third generations and between the first and third ones, compared with the other low-energy hadronic observables, and the flavor mixings are induced by the neutrino Yukawa interaction. The current experimental bound of the neutron EDM may imply that the right-handed tau neutrino mass is smaller than about 10 14 GeV in the minimal supergravity scenario, and it may be improved furthermore in future experiments, such as the deuteron EDM measurement
Squark production in R-symmetric SUSY with Dirac gluinos. NLO corrections
Energy Technology Data Exchange (ETDEWEB)
Diessner, Philip [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kotlarski, Wojciech [Technische Univ. Dresden (Germany). Inst. fuer Kern- und Teilchenphysik; Warsaw Univ. (Poland). Faculty of Physics; Liebschner, Sebastian; Stoeckinger, Dominik [Technische Univ. Dresden (Germany). Inst. fuer Kern- und Teilchenphysik
2017-11-15
R-symmetry leads to a distinct realisation of SUSY with a significantly modified coloured sector featuring a Dirac gluino and a scalar colour octet (sgluon). We present the impact of R-symmetry on squark production at the 13 TeV LHC. We study the total cross sections and their NLO corrections from all strongly interacting states, their dependence on the Dirac gluino mass and sgluon mass as well as their systematics for selected benchmark points. We find that tree-level cross sections in the R-symmetric model are reduced compared to the MSSM but the NLO K-factors are generally larger in the order of ten to twenty per cent. In the course of this work we derive the required DREG → DRED transition counterterms and necessary on-shell renormalisation constants. The real corrections are treated using FKS subtraction, with results cross checked against an independent calculation employing the two cut phase space slicing method.
The Challenge of Determining SUSY Parameters in Focus-Point-Inspired Cases
Rolbiecki, K.; Kalinowski, J.; Moortgat-Pick, G.
2006-01-01
We discuss the potential of combined LHC and ILC experiments for SUSY searches in a difficult region of the parameter space, in which all sfermion masses are above the TeV scale. Precision analyses of cross sections of light chargino production and forward--backward asymmetries of decay leptons and hadrons at the ILC, together with mass information on \\tilde{\\chi}^0_2 and squarks from the LHC, allow us to fit rather precisely the underlying fundamental gaugino/higgsino MSSM parameters and to constrain the masses of the heavy virtual sparticles. For such analyses the complete spin correlations between the production and decay processes have to be taken into account. We also took into account expected experimental uncertainties.
SUSY simplified models at 14, 33, and 100 TeV proton colliders
International Nuclear Information System (INIS)
Cohen, Timothy; Golling, Tobias; Hance, Mike; Henrichs, Anna; Howe, Kiel; Loyal, Joshua; Padhi, Sanjay; Wacker, Jay G.
2014-01-01
Results are presented for a variety of SUSY Simplified Models at the 14 TeV LHC as well as a 33 and 100 TeV proton collider. Our focus is on models whose signals are driven by colored production. We present projections of the upper limit and discovery reach in the gluino-neutralino (for both light and heavy flavor decays), squark-neutralino, and gluino-squark Simplified Model planes. Depending on the model a jets + E T miss , mono-jet, or same-sign di-lepton search is applied. The impact of pileup is explored. This study utilizes the Snowmass backgrounds and combined detector. Assuming 3000/,fb −1 of integrated luminosity, a gluino that decays to light flavor quarks can be discovered below 2.3 TeV at the 14 TeV LHC and below 11 TeV at a 100 TeV machine
Matching conditions and duality in N=1 SUSY gauge theories in the conformal window
International Nuclear Information System (INIS)
Kogan, I.I.; Shifman, M.; Vainshtein, A.
1996-01-01
We discuss duality in N=1 SUSY gauge theories in Seiberg close-quote s conformal window, 3N c /2 f c . The close-quote t Hooft consistency conditions, the basic tool for establishing the infrared duality, are considered taking into account higher order α corrections. The conserved (anomaly-free) R current is built to all orders in α. Although this current contains all orders in α the close-quote t Hooft consistency conditions for this current are shown to be one loop. This observation thus justifies Seiberg close-quote s matching procedure. We also briefly discuss the inequivalence of the open-quote open-quote electric close-quote close-quote and open-quote open-quote magnetic close-quote close-quote theories at short distances. copyright 1996 The American Physical Society
Stability of neutrino parameters and self-complementarity relation with varying SUSY breaking scale
Singh, K. Sashikanta; Roy, Subhankar; Singh, N. Nimai
2018-03-01
The scale at which supersymmetry (SUSY) breaks (ms) is still unknown. The present article, following a top-down approach, endeavors to study the effect of varying ms on the radiative stability of the observational parameters associated with the neutrino mixing. These parameters get additional contributions in the minimal supersymmetric model (MSSM). A variation in ms will influence the bounds for which the Standard Model (SM) and MSSM work and hence, will account for the different radiative contributions received from both sectors, respectively, while running the renormalization group equations (RGE). The present work establishes the invariance of the self complementarity relation among the three mixing angles, θ13+θ12≈θ23 against the radiative evolution. A similar result concerning the mass ratio, m2:m1 is also found to be valid. In addition to varying ms, the work incorporates a range of different seesaw (SS) scales and tries to see how the latter affects the parameters.
Squark production in R-symmetric SUSY with Dirac gluinos. NLO corrections
International Nuclear Information System (INIS)
Diessner, Philip; Kotlarski, Wojciech; Warsaw Univ.; Liebschner, Sebastian; Stoeckinger, Dominik
2017-11-01
R-symmetry leads to a distinct realisation of SUSY with a significantly modified coloured sector featuring a Dirac gluino and a scalar colour octet (sgluon). We present the impact of R-symmetry on squark production at the 13 TeV LHC. We study the total cross sections and their NLO corrections from all strongly interacting states, their dependence on the Dirac gluino mass and sgluon mass as well as their systematics for selected benchmark points. We find that tree-level cross sections in the R-symmetric model are reduced compared to the MSSM but the NLO K-factors are generally larger in the order of ten to twenty per cent. In the course of this work we derive the required DREG → DRED transition counterterms and necessary on-shell renormalisation constants. The real corrections are treated using FKS subtraction, with results cross checked against an independent calculation employing the two cut phase space slicing method.
Search for resonant sneutrino production in R-parity violating SUSY scenarios with CMS
Energy Technology Data Exchange (ETDEWEB)
Keller, Henning; Erdweg, Soeren; Gueth, Andreas; Hebbeker, Thomas; Meyer, Arnd; Mukherjee, Swagata [III. Physikalisches Institut A, RWTH Aachen (Germany)
2016-07-01
Supersymmetric models are among the most promising extensions of the standard model. In many models R-parity is said to be conserved. However, allowing R-parity violation can permit interesting final states and signatures that are not covered by SUSY scenarios with R-parity conservation. The decay of a resonant sneutrino to two standard model leptons of different flavour is analyzed. The focus lies on the electron-muon final state investigating the R-parity violating couplings and the mass of the resonantly produced sneutrino. The analysis is based on the 2015 data of proton-proton collisions corresponding to an integrated luminosity of 2.5 fb{sup -1} at a centre-of-mass energy of 13 TeV recorded with the CMS detector at the LHC.
PySLHA: a Pythonic interface to SUSY Les Houches accord data
International Nuclear Information System (INIS)
Buckley, Andy
2015-01-01
This paper describes the PySLHA package, a Python language module and program collection for reading, writing and visualising SUSY model data in the SLHA format. PySLHA can read and write SLHA data in a very general way, including the official SLHA2 extension and user customisations, and with arbitrarily deep indexing of data block entries and a dedicated, intuitive interface for particle data and decay information. The draft SLHA3 XSECTION feature is also fully supported. PySLHA can additionally read and write the legacy ISAWIG model format, and provides format conversion scripts. A publication-quality mass spectrum and decay chain plotting tool, slhaplot, is included in the package. (orig.)
Finding viable models in SUSY parameter spaces with signal specific discovery potential
Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi
2013-08-01
Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.
International Nuclear Information System (INIS)
Gipson, J.M.; Marshak, R.E.
1984-01-01
The supersymmetric versions of the left-right-symmetric SU/sub C/(4) x SU/sub L/(2) x SU/sub R/(2) Pati-Salam theory and the grand unified SO(10) theory are studied. In the minimal versions of these models the requirement of soft or spontaneous breaking of supersymmetry, together with renormalizibility, leads to an accidental global U(1) symmetry which leads to baryon-number conservation. A necessary condition for this symmetry to be broken is the existence of fields which are antisymmetric in at least two SU/sub C/(4) indices. The introduction of such fields may allow for observable neutron oscillation
International Nuclear Information System (INIS)
Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.
2016-01-01
The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential. (paper)
Automated calculation of sinθ{sub W} and M{sub W} from muon decay within FlexibleSUSY
Energy Technology Data Exchange (ETDEWEB)
Bach, Markus; Stoeckinger, Dominik [IKTP, TU Dresden (Germany); Voigt, Alexander [DESY, Hamburg (Germany)
2016-07-01
The spectrum generator generator FlexibleSUSY can be utilized to investigate a variety of supersymmetric and non-supersymmetric models. We present an implementation which calculates the weak mixing angle from the precisely measured muon decay, especially taking vertex and box diagram corrections of the respective model into account. This framework also offers a prediction of the W boson mass which can be compared to the experimental value and thus used to exclude parameter regions.
Cavallo, F R
1997-01-01
A search for these decays was carried out in the context of Gauge Mediated SUSY Breaking models, using the data collected by DELPHI in 1995 and 1996 at the center of mass energies of 133, 161 and 172 GeV. No evidence of these processes was found for a decay length ranging from ~ 1mm to ~ 20cm and limits were derived on the gravitino and scalar tau masses.
Heidegger, Constantin
2017-01-01
This poster reports on the search for the production of charginos and neutralinos in events with either two leptons of the same charge or three or more leptons using the full 2016 proton-proton collision dataset of $35.9\\,\\mathrm{fb}^{-1}$ at $\\sqrt{s}=13\\,\\mathrm{TeV}$ collected by the CMS detector. Exclusion limits at $95\\,\\%$ confidence level range between $450-1100\\,\\mathrm{GeV}$ depending on the SUSY scenario.
SUSY-QCD corrections to the (co)annihilation of neutralino dark matter within the MSSM
Energy Technology Data Exchange (ETDEWEB)
Meinecke, Moritz
2015-06-15
Based on experimental observations, it is nowadays assumed that a large component of the matter content in the universe is comprised of so-called cold dark matter. Furthermore, latest measurements of the temperature fluctuations of the cosmic microwave background provided an estimation of the dark matter relic density at a measurement error of one percent (concerning the experimental 1σ-error). The lightest neutralino χ 0{sub 1}, a particle which subsumes under the phenomenologically interesting category of weakly interacting massive particles, is a viable dark matter candidate for many supersymmetric (SUSY) models whose relic density Ω{sub χ} {sub 0{sub 1}} happens to lie quite naturally within the experimentally favored ballpark of dark matter. The high experimental precision can be used to constrain the SUSY parameter space to its cosmologically favored regions and to pin down phenomenologically interesting scenarios. However, to actually benefit from this progress on the experimental side it is also mandatory to minimize the theoretical uncertainties. An important quantity within the calculation of the neutralino relic density is the thermally averaged sum over different annihilation and coannihilation cross sections of the neutralino and further supersymmetric particles. It is now assumed and also partly proven that these cross sections can be subject to large loop corrections which can even shift the associated Ω{sub χ} {sub 0{sub 1}} by a factor larger than the current experimental error. However, most of these corrections are yet unknown. In this thesis, we calculate higher-order corrections for some of the most important (co)annihilation channels both within the framework of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) and investigate their impact on the final neutralino relic density Ω{sub χ} {sub 0{sub 1}}. More precisely, this work provides the full O(α{sub s}) corrections of supersymmetric quantum chromodynamics (SUSY
D-term contributions and CEDM constraints in E6 × SU(2)F × U(1)A SUSY GUT model
Shigekami, Yoshihiro
2017-11-01
We focus on E6 × SU(2)F × U(1)A supersymmetric (SUSY) grand unified theory (GUT) model. In this model, realistic Yukawa hierarchies and mixings are realized by introducing all allowed interactions with 𝓞(1) coefficients. Moreover, we can take stop mass is smaller than the other sfermion masses. This type of spectrum called by natural SUSY type sfermion mass spectrum can suppress the SUSY contributions to flavor changing neutral current (FCNC) and stabilize weak scale at the same time. However, light stop predicts large up quark CEDM and stop contributions are not decoupled. Since there is Kobayashi-Maskawa phase, stop contributions to the up quark CEDM is severely constrained even if all SUSY breaking parameters and Higgsino mass parameter μ are real. In this model, real up Yukawa couplings are realized at the GUT scale because of spontaneous CP violation. Therefore CEDM bounds are satisfied, although up Yukawa couplings are complex at the SUSY scale through the renormalization equation group effects. We calculated the CEDMs and found that EDM constraints can be satisfied even if stop mass is 𝓞(1) TeV. In addition, we investigate the size of D-terms in this model. Since these D-term contributions is flavor dependent, the degeneracy of sfermion mass spectrum is destroyed and the size of D-term is strongly constrained by FCNCs when SUSY breaking scale is the weak scale. However, SUSY breaking scale is larger than 1 TeV in order to obtain 125 GeV Higgs mass, and therefore sizable D-term contribution is allowed. Furthermore, we obtained the non-trivial prediction for the difference of squared sfermion mass.
The fine-tuning cost of the likelihood in SUSY models
Ghilencea, D M
2013-01-01
In SUSY models, the fine tuning of the electroweak (EW) scale with respect to their parameters gamma_i={m_0, m_{1/2}, mu_0, A_0, B_0,...} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Delta of the usual likelihood L and the traditional fine tuning measure Delta of the EW scale. A similar result is obtained for the integrated likelihood over the set {gamma_i}, that can be written as a surface integral of the ratio L/Delta, with the surface in gamma_i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Delta or equivalently, a small chi^2_{new}=chi^2_{old}+2*ln(Delta). This shows the fine-tuning cost to the likelihood ...
Top-squark in natural SUSY under current LHC run-2 data
Energy Technology Data Exchange (ETDEWEB)
Han, Chengcheng [University of Tokyo, Kavli IPMU (WPI), UTIAS, Kashiwa (Japan); Ren, Jie [Chinese Academy of Sciences, Computer Network Information Center, Beijing (China); Wu, Lei [Nanjing Normal University, Department of Physics and Institute of Theoretical Physics, Nanjing, Jiangsu (China); The University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yang, Jin Min [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Zhang, Mengchao [Institute for Basic Science (IBS), Center for Theoretical Physics and Universe, Taejon (Korea, Republic of)
2017-02-15
We utilize the recent LHC-13 TeV data to study the lower mass bound on the top-squark (stop) in natural supersymmetry. We recast the LHC sparticle inclusive search of (≥1)jets + E{sub T} with α{sub T} variable, the direct stop pair search (1-lepton channel and all-hadronic channel) and the monojet analyses. We find that these searches are complementary depending on stop and higgsino masses: for a heavy stop the all-hadronic stop pair search provides the strongest bound, for an intermediate stop the inclusive SUSY analysis with α{sub T} variable is most efficient, while for a compressed stop-higgsino scenario the monojet search plays the key role. Finally, the lower mass bound on a stop is: (1) 320 GeV for compressed stop-higgsino scenario (mass splitting less than 20 GeV); (2) 765 (860) GeV for higgsinos lighter than 300 (100) GeV. (orig.)
Muon g - 2 through a flavor structure on soft SUSY terms
International Nuclear Information System (INIS)
Flores-Baez, F.V.; Gomez Bock, M.; Mondragon, M.
2016-01-01
In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton-flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar soft-supersymmetric terms of the Lagrangian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavor mixing. The one-loop supersymmetric contributions to the leptonic flavor violating process τ → μγ are calculated in the physical basis, instead of using the well-known mass-insertion method. The flavor violating processes BR(l_i → l_jγ) are also obtained, in particular τ → μγ is well within the experimental bounds. We present the regions in parameter space where the muon g - 2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes. (orig.)
Intersecting branes, Higgs sector, and chirality from N = 4 SYM with soft SUSY breaking
Sperling, Marcus; Steinacker, Harold C.
2018-04-01
We consider SU( N ) N = 4 super Yang-Mills with cubic and quadratic soft SUSY breaking potential, such that the global SU(4) R is broken to SU(3) or further. As shown recently, this set-up supports a rich set of non-trivial vacua with the geometry of self-intersecting SU(3) branes in 6 extra dimensions. The zero modes on these branes can be interpreted as 3 generations of bosonic and chiral fermionic strings connecting the branes at their intersections. Here, we uncover a large class of exact solutions consisting of branes connected by Higgs condensates, leading to Yukawa couplings between the chiral fermionic zero modes. Under certain decoupling conditions, the backreaction of the Higgs on the branes vanishes exactly. The resulting physics is that of a spontaneously broken chiral gauge theory on branes with fluxes. In particular, we identify combined brane plus Higgs configurations which lead to gauge fields that couple to chiral fermions at low energy. This turns out to be quite close to the Standard Model and its constructions via branes in string theory. As a by-product, we construct a G 2-brane solution corresponding to a squashed fuzzy coadjoint orbit of G 2.
SUSY Higgs at the LHC large stop mixing effects and associated production
Bélanger, G; Sridhar, K
2000-01-01
We revisit the effect of the large stop mixing on the decay and production of the lightest SUSY Higgs at the LHC. We stress that whenever the inclusive 2-photon signature is substantially reduced, associated production, $Wh$ and $t\\bar t h$, with the subsequent decay of the Higgs into photons is enhanced and becomes an even more important discovery channel. We also point out that these reductions in the inclusive channel do not occur for the smallest Higgs mass where the significance is known to be lowest. We show that in such scenarios the Higgs can be produced in the decay of the heaviest stop. For not too heavy masses of the pseudo-scalar Higgs where the inclusive channel is even further reduced, we show that large stop mixing also allows the production of the pseudo-scalar Higgs through stop decays. These large mixing scenarios therefore offer much better prospects than previously thought. As a by-product we have recalculated stop1-stop1-h production at the LHC and give a first evaluation of stop1-stop1-Z...
Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events
Debnath, Dipsikha; Gainer, James S.; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-01
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain \\tilde{q}\\to {\\tilde{χ}}_2^0\\to \\tilde{ℓ}\\to {\\tilde{χ}}_1^0 , we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, \\overline{Σ} , which is the average RSD per unit area, calculated over the hypothesized boundary. We show that the location of the \\overline{Σ} maximum correlates very well with the true values of the new particle masses. Our approach represents the natural extension of the one-dimensional kinematic endpoint method to the relevant three dimensions of invariant mass phase space.
Constraining SUSY models with Fittino using measurements before, with and beyond the LHC
Energy Technology Data Exchange (ETDEWEB)
Bechtle, Philip [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Desch, Klaus; Uhlenbrock, Mathias; Wienemann, Peter [Bonn Univ. (Germany). Physikalisches Inst.
2009-07-15
We investigate the constraints on Supersymmetry (SUSY) arising from available precision measurements using a global fit approach.When interpreted within minimal supergravity (mSUGRA), the data provide significant constraints on the masses of supersymmetric particles (sparticles), which are predicted to be light enough for an early discovery at the Large Hadron Collider (LHC). We provide predicted mass spectra including, for the first time, full uncertainty bands. The most stringent constraint is from the measurement of the anomalous magnetic moment of the muon. Using the results of these fits, we investigate to which precision mSUGRA and more general MSSM parameters can be measured by the LHC experiments with three different integrated luminosities for a parameter point which approximately lies in the region preferred by current data. The impact of the already available measurements on these precisions, when combined with LHC data, is also studied. We develop a method to treat ambiguities arising from different interpretations of the data within one model and provide a way to differentiate between values of different digital parameters of a model (e. g. sign({mu}) within mSUGRA). Finally, we show how measurements at a linear collider with up to 1 TeV centre-of-mass energy will help to improve precision by an order of magnitude. (orig.)
Metastable SUSY breaking, de Sitter moduli stabilisation and Kaehler moduli inflation
International Nuclear Information System (INIS)
Krippendorf, Sven; Quevedo, Fernando
2009-01-01
We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N = 1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kaehler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kaehler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kaehler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.
Large tan β in gauge-mediated SUSY-breaking models
International Nuclear Information System (INIS)
Rattazzi, R.
1997-01-01
We explore some topics in the phenomenology of gauge-mediated SUSY-breaking scenarios having a large hierarchy of Higgs VEVs, v U /v D = tan β>>1. Some motivation for this scenario is first presented. We then use a systematic, analytic expansion (including some threshold corrections) to calculate the μ-parameter needed for proper electroweak breaking and the radiative corrections to the B-parameter, which fortuitously cancel at leading order. If B = 0 at the messenger scale then tan β is naturally large and calculable; we calculate it. We then confront this prediction with classical and quantum vacuum stability constraints arising from the Higgs-slepton potential, and indicate the preferred values of the top quark mass and messenger scale(s). The possibility of vacuum instability in a different direction yields an upper bound on the messenger mass scale complementary to the familiar bound from gravitino relic abundance. Next, we calculate the rate for b→sγ and show the possibility of large deviations (in the direction currently favored by experiment) from standard-model and small tan β predictions. Finally, we discuss the implications of these findings and their applicability to future, broader and more detailed investigations. (orig.)
Debnath, Dipsikha; Kilic, Can; Kim, Doojin; Matchev, Konstantin T.; Yang, Yuan-Pao
2017-06-19
We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\\tilde q\\to \\tilde\\chi^0_2\\to \\tilde \\ell \\to \\tilde \\chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. We develop an algorithm for detecting this boundary, which uses the geometric properties of the Voronoi tessellation of the data, and in particular, the relative standard deviation (RSD) of the volumes of the neighbors for each Voronoi cell in the tessellation. We propose a new observable, $\\bar\\Sigma$, which is ...
Natural inflation in SUSY and gauge-mediated curvature of the flat directions
Dvali, Gia
1996-01-01
Supersymmetric theories often include the non-compact directions in the field space along which the tree level potential grows only up to a certain limited value (determined by the mass scale of the theory) and then stays constant for the arbitrarily large expectation value of the field parametrizing the direction. Above the critical value, the tree-level curvature is large and positive in the other directions. Such plateaux are natural candidates for the hybrid inflaton. The non-zero F-term density along the plateau spontaneously breaks SUSY and induces the one-loop logarithmic slope for the inflaton potential. The coupling of the inflaton to the Higgs fields in the complex representations of the gauge group, may result in a radiatively induced Fayet--Iliopoulos D-term during inflation, which destabilizes some of the squark and slepton flat directions. Corresponding soft masses can be larger than the Hubble parameter and thus, play a crucial role for the Affleck--Dine baryogenesis.
SUSY non-Abelian gauge models: exact beta function from one loop of perturbation theory
International Nuclear Information System (INIS)
Shifman, M.A.; Vajnshtejn, A.I.; Zakharov, V.I.
1985-01-01
The method for calculating the exact β function (to all orders in the coupling constant) proposed earlier in supersymmetric electrodynamics is extended. The starting point is the observation that the low-energy effective action is exhausted by one loop provided that the theory is regularized supersymmetrically both in the ultraviolet and infrared domains in four dimensions. The Pouli-Villars method of the ultraviolet regularization is used. Two methods for the infrared regularization are considered. The first one - quantization in a box with a finite volume L 3 - is universally applicable to anygauge theory. The second method is based on the effective Higgs mechanism for mass generation and requires the presence of certain matter superfields in the lagrangian. Within this method the necessary condition is the existence of flat directions, so called valeys, along which the vacuum energy vanishes. The theory is quantized near epsilon non-vanishing value of the scalar field from the bottom of the valley. After calculating the one-loop effective action one and the same exact expression is obtained for the β function within the both approaches, and it also coincides with our earlier result extracted from instanton calculus. A few remarks on the problem of anomalies in SUSY gauge theories are presented
Non-simplified SUSY. τ-coannihilation at LHC and ILC
Energy Technology Data Exchange (ETDEWEB)
Berggren, M.; Kruecker, D.; List, J.; Melzer-Pellmann, I.A.; Seitz, C. [DESY, Hamburg (Germany); Cakir, A. [DESY, Hamburg (Germany); Istanbul Technical University, Department of Physics Engineering, Istanbul (Turkey); Samani, B.S. [DESY, Hamburg (Germany); IPM, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Wayand, S. [KIT IEKP, Karlsruhe (Germany)
2016-04-15
If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small τ-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and the ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states. (orig.)
Multiscale N=2 SUSY field theories, integrable systems and their stringy/brane origin
International Nuclear Information System (INIS)
Gorsky, A.; Gukov, S.; Mironov, A.
1998-01-01
We discuss supersymmetric Yang-Mills theories with multiple scales in the brane language. The issue concerns N=2 SUSY gauge theories with massive fundamental matter including the UV finite case of n f =2n c , theories involving products of SU(n) gauge groups with bifundamental matter, and systems with several parameters similar to Λ QCD . We argue that the proper integrable systems are, accordingly, twisted XXX SL(2) spin chain, SL(p) magnets and degenerations of the spin Calogero system. The issue of symmetries underlying integrable systems is addressed. Relations with the monopole systems are specially discussed. Brane pictures behind all these integrable structures in the IIB and M-theory are suggested. We argue that degrees of freedom in integrable systems are related to KK excitations in M-theory or D-particles in the IIA string theory, which substitute the infinite number of instantons in the field theory. This implies the presence of more BPS states in the low-energy sector. (orig.)
Viable and testable SUSY GUTs with Yukawa unification the case of split trilinears
Guadagnoli, Diego; Straub, David M
2009-01-01
We explore general SUSY GUT models with exact third-generation Yukawa unification, but where the requirement of universal soft terms at the GUT scale is relaxed. We consider the scenario in which the breaking of universality inherits from the Yukawa couplings, i.e. is of minimal flavor violating (MFV) type. In particular, the MFV principle allows for a splitting between the up-type and the down-type soft trilinear couplings. We explore the viability of this trilinear splitting scenario by means of a fitting procedure to electroweak observables, quark masses as well as flavor-changing neutral current processes. Phenomenological viability singles out one main scenario. This scenario is characterized by a sizable splitting between the trilinear soft terms and a large mu term. Remarkably, this scenario does not invoke a partial decoupling of the sparticle spectrum, as in the case of universal soft terms, but instead it requires part of the spectrum, notably the lightest stop, the gluino and the lightest charginos...
Muon g - 2 through a flavor structure on soft SUSY terms
Energy Technology Data Exchange (ETDEWEB)
Flores-Baez, F.V. [Universidad Autonoma de Nuevo Leon, UANL Ciudad Universitaria, FCFM, San Nicolas de los Garza, Nuevo Leon (Mexico); Gomez Bock, M. [Universidad de las Americas Puebla, UDLAP, Ex-Hacienda Sta. Catarina Martir, DAFM, Cholula, Puebla (Mexico); Mondragon, M. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Apdo. Postal 20-364, Mexico, D.F. (Mexico)
2016-10-15
In this work we analyze the possibility to explain the muon anomalous magnetic moment discrepancy within theory and experiment through lepton-flavor violation processes. We propose a flavor extended MSSM by considering a hierarchical family structure for the trilinear scalar soft-supersymmetric terms of the Lagrangian, present at the SUSY breaking scale. We obtain analytical results for the rotation mass matrix, with the consequence of having non-universal slepton masses and the possibility of leptonic flavor mixing. The one-loop supersymmetric contributions to the leptonic flavor violating process τ → μγ are calculated in the physical basis, instead of using the well-known mass-insertion method. The flavor violating processes BR(l{sub i} → l{sub j}γ) are also obtained, in particular τ → μγ is well within the experimental bounds. We present the regions in parameter space where the muon g - 2 problem is either entirely solved or partially reduced through the contribution of these flavor violating processes. (orig.)
International Nuclear Information System (INIS)
Nakayama, Yu
2008-01-01
We show a calculable example of stable supersymmetry (SUSY) breaking models with O(10) eV gravitino mass based on the combination of D-term gauge mediation and U(1)' mediation. A potential problem of the negative mass squared for the SUSY standard model (SSM) sfermions in the D-term gauge mediation is solved by the contribution from the U(1)' mediation. On the other hand, the splitting between the SSM gauginos and sfermions in the U(1)' mediation is circumvented by the contributions from the D-term gauge mediation. Since the U(1)' mediation does not introduce any new SUSY vacua, we achieve a completely stable model under thermal effects. Our model, therefore, has no cosmological difficulty
Liu, Yang; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is a well motivated extension of the Standard Model (SM) that postulates the existence of a superpartner for each SM particle. A search for strongly produced SUSY particles decaying to a pair of two isolated \\textbf{same-sign leptons (SS)} or \\textbf{three leptons (3L)} has been carried out using the complete data set collected by the ATLAS experiment in 2015-16 at 13 TeV ($36.5 fb^{-1}$). The analysis benefits from a low SM background and uses looser kinematic requirements compared to other beyond the SM (BSM) searches which increases its sensitivity to scenarios with small mass differences between the SUSY particles, or in which R-parity is not conserved. The results are interpreted in the context of \\textbf{R-parity conserving (RPC)} or \\textbf{R-parity violating (RPV)} simplified signal models
International Nuclear Information System (INIS)
Cari, C; Suparmi, A; Yunianto, M; Pratiwi, B N
2016-01-01
The Dirac equation of q-deformed hyperbolic Manning Rosen potential in D dimension was solved by using Supersymmetric Quantum Mechanics (SUSY QM). The D dimensional relativistic energy spectra were obtained by using SUSY QM and shape invariant properties and D dimensional wave functions of q-deformed hyperbolic Manning Rosen potential were obtained by using the SUSY raising and lowering operators. In the nonrelativistic limit, the relativistic energy spectra for exact spin symmetry case reduced into nonrelativistic energy spectra and so for the wave functions. In the classical regime, the partition function, the vibrational specific heat, and the vibrational mean energy of some diatomic molecules were calculated from the non-relativistic energy spectra with the help of error function and imaginary error function. (paper)
The minimal SUSY B−L model: simultaneous Wilson lines and string thresholds
Energy Technology Data Exchange (ETDEWEB)
Deen, Rehan; Ovrut, Burt A. [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Purves, Austin [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Department of Physics, Manhattanville College,2900 Purchase Street, Purchase, NY 10577 (United States)
2016-07-08
In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B−L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ℤ{sub 3}×ℤ{sub 3} Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional “left-right” sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an “average unification” mass 〈M{sub U}〉. The present analysis is 1) more “natural” than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from 〈M{sub U}〉 to the electroweak scale — being subjected, sequentially, to the requirement of radiative B−L and electroweak symmetry breaking, the present experimental lower bounds on the B−L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ∼125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.
Gluino reach and mass extraction at the LHC in radiatively-driven natural SUSY
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard; Savoy, Michael; Sengupta, Dibyashree [University of Oklahoma, Department of Physics and Astronomy, Norman, OK (United States); Barger, Vernon [University of Wisconsin, Department of Physics, Madison, WI (United States); Gainer, James S.; Tata, Xerxes [University of Hawaii, Department of Physics and Astronomy, Honolulu, HI (United States); Huang, Peisi [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); HEP Division, Argonne National Laboratory, Argonne, IL (United States); Texas A and M University, Mitchell Institute for Fundamental Physics and Astronomy, College Station, TX (United States)
2017-07-15
Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the 10% level while respecting LHC sparticle and Higgs mass constraints. Gluino and top-squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above m{sub h} ∝ 125 GeV. Within the RNS framework, gluinos dominantly decay via g → tt{sub 1}{sup *}, anti tt{sub 1} → t anti tZ{sub 1,2} or t anti bW{sub 1}{sup -} + c.c., where the decay products of the higgsino-like W{sub 1} and Z{sub 2} are very soft. Gluino pair production is, therefore, signaled by events with up to four hard b-jets and large E{sub T}. We devise a set of cuts to isolate a relatively pure gluino sample at the (high-luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for m{sub g} < 2400 (2800) GeV for an integrated luminosity of 300 (3000) fb{sup -1}. We also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of m{sub g} with a statistical precision of 2-5% (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5σ discovery is possible at the LHC. (orig.)
Direct SUSY dark matter detection-theoretical rates due to the spin
International Nuclear Information System (INIS)
Vergados, J D
2004-01-01
The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus direct dark matter detection, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). The relevant cross sections arise out of two mechanisms: (i) the coherent mode, due to the scalar interaction and (ii) the spin contribution arising from the axial current. In this paper we will focus on the spin contribution, which is expected to dominate for light targets. For both modes it is possible to obtain detectable rates, but in most models the expected rates are much lower than the present experimental goals. So one should exploit two characteristic signatures of the reaction, namely the modulation effect and in directional experiments the correlation of the event rates with the sun's motion. In standard non-directional experiments the modulation is small, less than 2 per cent. In the case of the directional event rates we would like to suggest that the experiments exploit two features of the process, which are essentially independent of the SUSY model employed, namely: (1) the forward-backward asymmetry, with respect to the sun's direction of motion, is very large and (2) the modulation is much larger, especially if the observation is made in a plane perpendicular to the sun's velocity. In this case the difference between maximum and minimum can be larger than 40 per cent and the phase of the earth at the maximum is direction dependent
Search for beyond standard model physics (non-SUSY) in final states with photons at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Palencia, Jose Enrique; /Fermilab
2009-01-01
We present the results of searches for non-standard model phenomena in photon final states. These searches use data from integrated luminosities of {approx} 1-4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several BSM models (excluding SUSY) for events containing photons.
AUTHOR|(SzGeCERN)731691
This thesis describes the jet smearing method, a data-driven technique for estimating the multijet background to Supersymmetry (SUSY) searches using the ATLAS detector at the Large Hadron Collider (LHC). The final 2011 and 2012 “ATLAS jets, missing transverse energy and zero leptons analysis” searches for SUSY are also documented. These analyses used the full ATLAS 2011 4.7 fb^{-1} $\\sqrt{s}$ = 7 TeV and 2012 20.3 fb$^{-1}$ $\\sqrt{s}$ = 8 TeV data sets. No statistically significant excess was found in either of these analyses; therefore, 95% C.L. mass exclusion limits were set on the mSUGRA/CMSSM m$_{0}$-m$_{1/2}$ and $m_{\\tilde{q}}$-$m_{\\tilde{g}}$ mass planes, and the simplified squark-gluino-neutralino pMSSM model. The jet smearing method was used in these analyses to estimate the multijet distributions of the Signal, Validation and Control Regions and also to calculate the multijet background Transfer Factors. This thesis also describes the missing transverse energy (E$_{miss}^{T}$ ) performance studi...
Leptogenesis as an origin of hot dark matter and baryon asymmetry in the E6 inspired SUSY models
Nevzorov, R.
2018-04-01
We explore leptogenesis within the E6 inspired U (1) extension of the MSSM in which exact custodial symmetry forbids tree-level flavour-changing transitions and the most dangerous baryon and lepton number violating operators. This supersymmetric (SUSY) model involves extra exotic matter beyond the MSSM. In the simplest phenomenologically viable scenarios the lightest exotic fermions are neutral and stable. These states should be substantially lighter than 1eV forming hot dark matter in the Universe. The low-energy effective Lagrangian of the SUSY model under consideration possesses an approximate global U(1)E symmetry associated with the exotic states. The U(1)E symmetry is explicitly broken because of the interactions between the right-handed neutrino superfields and exotic matter supermultiplets. As a consequence the decays of the lightest right-handed neutrino/sneutrino give rise to both U(1)E and U(1) B - L asymmetries. When all right-handed neutrino/sneutrino are relatively light ∼106-107GeV the appropriate amount of the baryon asymmetry can be induced via these decays if the Yukawa couplings of the lightest right-handed neutrino superfields to the exotic matter supermultiplets vary between ∼10-4-10-3.
Álvarez-Gaumé, Luis; Jimenez, Raul
We show how general initial conditions for small field inflation can be obtained in multi-field models. This is provided by non-linear angular friction terms in the inflaton that provide a phase of non-slow-roll inflation before the slow-roll inflation phase. This in turn provides a natural mechanism to star small-field slow-roll at nearly zero velocity for arbitrary initial conditions. We also show that there is a relation between the scale of SUSY breaking sqrt (f) and the amount of non-gaussian fluctuations generated by the inflaton. In particular, we show that in the local non-gaussian shape there exists the relation sqrt (f) = 10^{13} GeV sqrt (f_NL). With current observational limits from Planck, and adopting the minimum amount of non-gaussian fluctuations allowed by single-field inflation, this provides a very tight constraint for the SUSY breaking energy scale sqrt (f) = 3-7 x 10^{13} GeV at 95% confidence. Further limits, or detection, from next year's Planck polarisation data will further tighten th...
Energy Technology Data Exchange (ETDEWEB)
Kaminska, Anna [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ross, Graham G. [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Schmidt-Hoberg, Kai [European Lab. for Particle Physics (CERN), Geneva (Switzerland)
2013-08-15
For the case of the MSSM and the most general form of the NMSSM (GNMSSM) we determine the reduction in the fine tuning that follows from allowing gaugino masses to be non-degenerate at the unification scale, taking account of the LHC8 bounds on SUSY masses, the Higgs mass bound, gauge coupling unification and the requirement of an acceptable dark matter density. We show that low-fine tuned points fall in the region of gaugino mass ratios predicted by specific unified and string models. For the case of the MSSM the minimum fine tuning is still large, approximately 1:60 allowing for a 3 GeV uncertainty in the Higgs mass (1:500 for the central value), but for the GNMSSM it is below 1:20. We find that the spectrum of SUSY states corresponding to the low-fine tuned points in the GNMSSM is often compressed, weakening the LHC bounds on coloured states. The prospect for testing the remaining low-fine-tuned regions at LHC14 is discussed.
Kaminska, Anna; Schmidt-Hoberg, Kai
2013-01-01
For the case of the MSSM and the most general form of the NMSSM (GNMSSM) we determine the reduction in the fine tuning that follows from allowing gaugino masses to be non-degenerate at the unification scale, taking account of the LHC8 bounds on SUSY masses, the Higgs mass bound, gauge coupling unification and the requirement of an acceptable dark matter density. We show that low-fine tuned points fall in the region of gaugino mass ratios predicted by specific unified and string models. For the case of the MSSM the minimum fine tuning is still large, approximately 1:60 allowing for a 3 GeV uncertainty in the Higgs mass (1:500 for the central value), but for the GNMSSM it is below 1:20. We find that the spectrum of SUSY states corresponding to the low-fine tuned points in the GNMSSM is often compressed, weakening the LHC bounds on coloured states. The prospect for testing the remaining low-fine-tuned regions at LHC14 is discussed.
Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw
Abada, A; Romao, J C; Teixeira, A M
2010-01-01
We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in $ \\chi_2^0\\to \\tilde \\ell \\,\\ell \\to \\ell \\,\\ell\\,\\chi_1^0$ decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Worki...
Schulte, Jan-Frederik
2017-01-01
Searches for Supersymmetry (SUSY) in events with two opposite-sign same-flavour leptons offer sensitivity to the production of sleptons or Z bosons in the cascade decays of initially produced heavy SUSY particles. In the considered models, this signature is accompanied by the presence of several jets and high missing transverse energy. Analysing their respective datasets recorded at √ s = 8 TeV, the ATLAS and CMS collaborations previously reported deviations from the pre- dicted Standard Model backgrounds in this final state, with significances between 2.6 and 3.0 σ . However, these excesses had been observed in different regions of the dilepton invariant mass. The dataset recorded with the CMS detector at √ s = 13 TeV in 2015, corresponding to 2.3 fb − 1 , offers the opportunity to substantiate or refute these interesting hints for new phenomena. Unfor- tunately, no significant deviation from the background estimates are observed in either of the two selections which had shown excesses in the √ s = ...
Mart Susi müüb Concordia ülikooli hüvanguks Kolu mõisa / Sigrid Laev
Laev, Sigrid
2003-01-01
Concordia ülikooli rektor Mart Susi pani müüki endale kuuluva Kolu mõisa, et sellest saadava rahaga katta ülikooli vajadusi. Tallinna Pedagoogikaülikool on Concordia ostmisest huvitatud. Concordia ülikooli tudengid on teinud üleskutse ühinemiseks, et kooli tuleviku suhtes kaasa rääkida
DEFF Research Database (Denmark)
Merryman Boncori, John Peter; Dall, Jørgen; Ahlstrøm, A. P.
2010-01-01
This paper describes the validation of an ice-motion processing chain developed for the PROMICE project – a long-term program funded by the Danish ministry of Climate and Energy to monitor the mass budget of the Greenland ice-sheet. The processor, named SUSIE, (Scripts and Utilities for SAR Ice...
Calculating the renormalisation group equations of a SUSY model with Susyno
Fonseca, Renato M.
2012-10-01
Susyno is a Mathematica package dedicated to the computation of the 2-loop renormalisation group equations of a supersymmetric model based on any gauge group (the only exception being multiple U(1) groups) and for any field content. Program summary Program title: Susyno Catalogue identifier: AEMX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30829 No. of bytes in distributed program, including test data, etc.: 650170 Distribution format: tar.gz Programming language: Mathematica 7 or higher. Computer: All systems that Mathematica 7+ is available for (PC, Mac). Operating system: Any platform supporting Mathematica 7+ (Windows, Linux, Mac OS). Classification: 4.2, 5, 11.1. Nature of problem: Calculating the renormalisation group equations of a supersymmetric model involves using long and complicated general formulae [1, 2]. In addition, to apply them it is necessary to know the Lagrangian in its full form. Building the complete Lagrangian of models with small representations of SU(2) and SU(3) might be easy but in the general case of arbitrary representations of an arbitrary gauge group, this task can be hard, lengthy and error prone. Solution method: The Susyno package uses group theoretical functions to calculate the super-potential and the soft-SUSY-breaking Lagrangian of a supersymmetric model, and calculates the two-loop RGEs of the model using the general equations of [1, 2]. Susyno works for models based on any representation(s) of any gauge group (the only exception being multiple U(1) groups). Restrictions: As the program is based on the formalism of [1, 2], it shares its limitations. Running time can also be a significant restriction, in particular for models with many fields. Unusual features
Threshold corrections to dimension-six proton decay operators in non-minimal SUSY SU(5 GUTs
Directory of Open Access Journals (Sweden)
Borut Bajc
2016-09-01
Full Text Available We calculate the high and low scale threshold corrections to the D=6 proton decay mode in supersymmetric SU(5 grand unified theories with higher-dimensional representation Higgs multiplets. In particular, we focus on a missing-partner model in which the grand unified group is spontaneously broken by the 75-dimensional Higgs multiplet and the doublet–triplet splitting problem is solved. We find that in the missing-partner model the D=6 proton decay rate gets suppressed by about 60%, mainly due to the threshold effect at the GUT scale, while the SUSY-scale threshold corrections are found to be less prominent when sfermions are heavy.
SUSY search using trilepton events from p bar p collisions at √s = 1.8 TeV
International Nuclear Information System (INIS)
1993-08-01
In a preliminary analysis, we have looked for evidence of the production and decay of SUSY chargino-neutralino (often referred to as Wino-Zino) pairs into the trilepton events using 11.1 pb -1 of p bar p collision data at √s = 1.8 TeV collected in 1992--1993 by CDF. Using all possible electron and muon decay channels, we observe two events which pass our trilepton criteria. Assuming, for the purposes of a conservative limit, that these events are all signal events, we exclude a point in the parameter space of the Minimal Supersymmetric Standard Model (MSSM) which corresponds to the limit of sensitivity of LEP measurements. Systematic errors have not been included in the result. Larger data samples and a more careful treatment should allow a large region of MSSM parameter space to be explored using the trilepton channel
Search for SUSY using the missing ET signature with the ATLAS and CMS experiments at the LHC
International Nuclear Information System (INIS)
Janus, M.
2014-01-01
In this paper, a selection of current searches for supersymmetric particles in proton-proton collisions at the Large Hadron Collider (LHC) at √(s)= 7 TeV with the ATLAS and CMS detectors is presented. All these searches apply a requirement on large missing transverse energy, which is a signature of many SUSY scenarios. Many different final states sensitive to gluino and first and second generation squark production are discussed, including purely hadronic final states as well as with leptons or photons. As no excesses beyond Standard Model predictions have been found, further searches are anticipated, especially in final states that are sensitive to the production of super-partners of the third generation fermions or of the electroweak bosons. (author)
S-duality, deconstruction and confinement for a marginal deformation of N=4 SUSY Yang-Mills
International Nuclear Information System (INIS)
Dorey, Nick
2004-01-01
We study an exactly marginal deformation of N=4 SUSY Yang-Mills with gauge group U(N) using field theory and string theory methods. The classical theory has a Higgs branch for rational values of the deformation parameter. We argue that the quantum theory also has an S-dual confining branch which cannot be seen classically. The low-energy effective theory on these branches is a six-dimensional non-commutative gauge theory with sixteen supercharges. Confinement of magnetic and electric charges, on the Higgs and confining branches respectively, occurs due to the formation of BPS-saturated strings in the low energy theory. The results also suggest a new way of deconstructing Little String Theory as a large-N limit of a confining gauge theory in four dimensions. (author)
SARAH goes left and right looking beyond the Standard Model and meets SUSY
Energy Technology Data Exchange (ETDEWEB)
Opferkuch, Toby Oliver
2017-07-07
Progress in the search for physics beyond the Standard Model (BSM) proceeds through two main avenues. The first requires the development of models that address the host of theoretical and experimental deficiencies of the Standard Model (SM). The second avenue requires scrutinising these models against all available data as well as checks for theoretical consistency. Unfortunately there exists a large number of strongly motivated models as well as an absence of any signs illuminating the correct path nature has chosen. With the lack of a clear direction, automated tools provide an effective means to test as many models as possible. In this thesis we demonstrate how the SARAH framework can be used in this context as well as its adaptability for confronting unexpected hints of new physics, such as the diphoton excess, that have arisen at the Large Hadron Collider (LHC) over the previous years. We then turn to more theoretical constraints namely, studying the stability of the electroweak vacuum in minimal supersymmetric models. Here we studied the impact of previously neglected directions when including non-standard vacuum expectation values. In the second half of this thesis we consider low-scale left-right symmetric models both with and without supersymmetry. In the non-supersymmetric case we consider constraints arising from charged lepton flavour violation. We have significantly improved existing parametrisations allowing for the new Yukawa couplings to be determined as a function of the underlying model parameters. The last scenario we consider is a model based on SO(10) unification at the high-scale. We build a complete model with TeV-scale breaking of the left-right phase studying in detail the phenomenology.
SUSY breaking mediation mechanisms and (g-2)μ, B→Xsγ, B→Xsl+l- and Bs→μ+μ-
International Nuclear Information System (INIS)
Baek, Seungwon; Ko, P.; Song, Wan Young
2003-01-01
We show that there are qualitative differences in correlations among (g-2)μ, B→X s γ, B→X l + l - and B s →μ + μ - in various SUSY breaking mediation mechanisms: minimal supergravity (mSUGRA), gauge mediation (GMSB), anomaly mediation (AMSB), guagino mediation (g-tildeMSB), weakly and strongly interacting string theories, and D brane models. After imposing the direct search limits on the Higgs boson and SUSY particle search limits and B→X s γ branching ratio, we find all the scenarios can accommodate the aμ≡(g-2)μ/2 in the range of (a few tens) x 10 -10 , and predict that the branching ratio for B→X s l + l - can differ from the standard model (SM) prediction by ±20% but no more. On the other hand, the B s →μ + μ - is sensitive to the SUSY breaking mediation mechanisms through the pseudoscalar and stop masses (m A and mt-tilde 1 ), and the stop mixing angle. In the GMSB with a small messenger number, the AMSB, the g-tildeMSB and the noscale scenarios, one finds that B(B s →μ + μ - ) -8 , which is below the search limit at the Tevatron Run II. Only the mSUGRA or string inspired models can generate a large branching ratio for this decay. (author)
Search for Higgs Bosons in SUSY Cascades in CMS and Dark Matter with Non-universal Gaugino Masses
Huitu, Katri; Laamanen, Jari; Lehti, Sami; Roy, Sourov; Salminen, Tapio
2008-01-01
In grand unified theories (GUT), non-universal boundary conditions for the gaugino masses may arise at the unification scale, and affect the observability of the neutral MSSM Higgs bosons (h/H/A) at the LHC. The implications of such non-universal gaugino masses are investigated for the Higgs boson production in the SUSY cascade decay chain gluino --> squark quark, squark --> neutralino_2 quark, neutralino_2 --> neutralino_1 h/H/A, h/H/A --> b b-bar produced in pp interactions. In the singlet representation with universal gaugino masses only the light Higgs boson can be produced in this cascade with the parameter region of interest for us, while with non-universal gaugino masses heavy neutral MSSM Higgs boson production may dominate. The allowed parameter space in the light of the WMAP constraints on the cold dark matter relic density is investigated in the above scenarios for gaugino mass parameters. We also demonstrate that combination of representations can give the required amount of dark matter in any poi...
Besjes, Geert Jan; Caron, Sascha
In this thesis, a search for new elementary particles predicted by a theory called supersymmetry (SUSY), which attempts to address shortcomings in our current description of particle physics, the Standard Model, is presented. No events incompatible with the Standard Model are observed, however. The results obtained in this search are also used in fits to a larger supersymmetric model, and combined with different analyses to obtain improved limits on simplified models. In addition, prospects for a similar search at the proposed high-luminosity LHC are discussed. Finally, HistFitter is presented, a program developed to perform searches in high-energy physics. Supersymmetry is searched for in a decay channel with 2 to 6 jets, missing energy, and no leptons in the final state. The coupling of squarks and gluinos to the strong force leads to a final state with many jets, in which the lightest supersymmetric particle produced in the cascade decay escapes the detector unseen. The analysis is designed using 15 signa...
New minimal SO(10) GUT: A theory for all epochs
Indian Academy of Sciences (India)
[16,17] and are also reported in these proceedings in the contributions of Ila Garg and ..... maintaining realism in the fermion and GUT SSB sector and accounting for low- and .... a lily already well enamelled: as maintained by these authors.
New minimal SO(10) GUT: A theory for all epochs
Indian Academy of Sciences (India)
2016-01-07
Jan 7, 2016 ... Measurable or near measurable level of tensor perturbations – and thus large inflaton mass scale – may be accommodated within the NMSGUT by supersymmetric see-saw inflation based on an LHN flat direction inflaton if the Higgs component contains contributions from heavy Higgs components.
International Nuclear Information System (INIS)
Francescone, David; Akula, Sujeet; Altunkaynak, Baris; Nath, Pran
2015-01-01
Sparticle mass hierarchies contain significant information regarding the origin and nature of supersymmetry breaking. The hierarchical patterns are severely constrained by electroweak symmetry breaking as well as by the astrophysical and particle physics data. They are further constrained by the Higgs boson mass measurement. The sparticle mass hierarchies can be used to generate simplified models consistent with the high scale models. In this work we consider supergravity models with universal boundary conditions for soft parameters at the unification scale as well as supergravity models with nonuniversalities and delineate the list of sparticle mass hierarchies for the five lightest sparticles. Simplified models can be obtained by a truncation of these, retaining a smaller set of lightest particles. The mass hierarchies and their truncated versions enlarge significantly the list of simplified models currently being used in the literature. Benchmarks for a variety of supergravity unified models appropriate for SUSY searches at future colliders are also presented. The signature analysis of two benchmark models has been carried out and a discussion of the searches needed for their discovery at LHC Run-II is given. An analysis of the spin-independent neutralino-proton cross section exhibiting the Higgs boson mass dependence and the hierarchical patterns is also carried out. It is seen that a knowledge of the spin-independent neutralino-proton cross section and the neutralino mass will narrow down the list of the allowed sparticle mass hierarchies. Thus dark matter experiments along with analyses for the LHC Run-II will provide strong clues to the nature of symmetry breaking at the unification scale.
International Nuclear Information System (INIS)
Misra, Aalok; Shukla, Pramod
2010-01-01
We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP 4 [1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the 'big' divisor Σ B (as opposed to the 'small' divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 12 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.
Misra, Aalok; Shukla, Pramod
2010-03-01
We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the “big” divisor ΣB (as opposed to the “small” divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of [1] (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of [1] (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.
Tornambe, Peter; The ATLAS collaboration
2017-01-01
Supersymmetry (SUSY) is one of the most studied theories to extend the Standard Model (SM) beyond the electroweak scale. If R-parity is conserved, SUSY particles are produced in pairs and the lightest supersymmetric particle (LSP), which is typically the lightest neutrino $\\tilde{\\chi}_1^0$, is stable. In many models the LSP can be a suitable candidate for dark matter. This poster presents a search for supersymmetric phenomena in final states with two leptons (electrons or muons) of the same electric charge or three leptons, jets and missing transverse energy. While the same-sign or three leptons signature is present in many SUSY scenarios, SM processes leading to such events have very small cross-sections. Therefore, this analysis benefits from a small SM background in the signal regions leading to a good sensitivity especially in SUSY scenarios with compressed mass spectra or in which the R-parity is not conserved. Except from the prompt production of same-sign lepton pairs or three leptons, the main source...
Highlights on SUSY phenomenology
International Nuclear Information System (INIS)
Masiero, Antonio
2004-01-01
In spite of the extraordinary success of the Standard Model (SM) supplemented with massive neutrinos in accounting for the whole huge bulk of phenomenology which has been accumulating in the last three decades, there exist strong theoretical reasons in particle physics and significant 'observational' hints in astroparticle physics for new physics beyond it. My lecture is devoted to a critical assessment of our belief in such new physics at the electroweak scale, in particular identifying it with low-energy supersymmetric extensions of the SM. I'll explain why we have concrete hopes that this decade will shed definite light on what stands behind the phenomenon of electroweak symmetry breaking
International Nuclear Information System (INIS)
Shifman, M.A.; Vainstejn, A.I.; Zakharov, V.I.
1985-01-01
This survey is a written version of lectures given at the Bakuriani Workshop on High Energy Physics, January, 1985. The authors discuss the recent discovery on a new phenomenon - dynamical symmetry breaking in supersymmetric gauge theories with matter - which is generated by instantons. Under a certain choice of the matter multiplets the gauge invariance is inevitably spontaneously broken, gauge bosons acquire masses, the evolution of the running coupling constant is frozen and there is a weak coupling regime. Sometimes the pattern includes also spontaneous supersymmetry breaking. Both basic aspects of the mechanism and particular dynamical scenarios realized in typical models are described
International Nuclear Information System (INIS)
Gibbons, G.W.; Rietdijk, R.H.; Holten, J.W. van
1993-01-01
Spinning particles in curved space-time can have fermionic symmetries generated by the square root of bosonic constants of motion other than the Hamiltonian. We present a general analysis of the conditions under which such new supersymmetries appear, and discuss the Poisson-Dirac algebra of the resulting set of charges, including the conditions of closure of the new algebra. An example of a new non-trivial supersymmetry is found in black-hole solutions of the Kerr-Newman type and corresponds to the Killing-Yano tensor, which plays an important role in solving the Dirac equation in these black-hole metrics. (orig.)
Indian Academy of Sciences (India)
Amitava Datta
2017-10-05
Oct 5, 2017 ... out in details how the production of strongly interacting sparticles can ... C2 is large have masses ∼1 TeV (see [1] for a lucid exposition ... the Planck satellites have accurately measured the. DM relic .... plane corresponding to.
International Nuclear Information System (INIS)
Datta, Amitava
2017-01-01
The searches for supersymmetry at the Large Hadron Collider (LHC) have so far yielded only null results and have considerably tightened the bounds on the sparticle masses. This has generated some skepticism in the literature regarding the ‘naturalness of SUSY’ which qualitatively requires some sparticles to be relatively light. Re-examining some of the bounds from LHC searches, it is argued with specific examples that the above skepticism is a red herring because (i) a quantitative and universally accepted definition of ‘naturalness’ is not available and (ii) even if some conventional definitions of naturalness is accepted at their face values, the alleged tension with the apparently stringent LHC bounds wither away once the strong assumptions, by no means compelling, underlying such bounds are relaxed. (author)
Theoretical developments in SUSY
International Nuclear Information System (INIS)
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)
Theoretical developments in SUSY
Energy Technology Data Exchange (ETDEWEB)
Shifman, M. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)
2009-01-15
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)
Theoretical Developments in SUSY
Shifman, M.
2009-01-01
I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.
International Nuclear Information System (INIS)
Gosdzik, Bjoern
2011-03-01
In November 2009 the ATLAS experiment started operation at the Large Hadron Collider (LHC) at CERN. The detector is optimized to search for the Higgs Boson and new physics at the TeV scale. Until the end of the data-taking period with proton-proton collisions on November 3rd, 2010, the ATLAS detector recorded an integrated luminosity of 45.0 pb -1 at a center-of-mass energy of √(s) = 7 TeV. In many signals of the Standard Model and new physics (e.g. SUSY and Higgs) τ-leptons play an important role. A cut-based approach for the identification of hadronically decaying τ-leptons is being used, particularly for the first data-taking period. Using Monte Carlo Data, the development of a cut-based identification method for hadronically decaying τ-lepton with the ATLAS detector at the Large Hadron Collider (LHC) with a center-of-mass energy of √(s) = 14 TeV is presented. The separation of signal and the large QCD jet background is a challenge to the identification of hadronically decaying τ-lepton. The identification is separated into two methods: the calorimeter-based method uses exclusive calorimeter information, while the calorimeter+track-based method combines calorimeter and tracking information. The cut optimization is separately accomplished for τ candidates with one charged decay product (1-prong) and τ candidates with three charged decay products (3-prong). Additionally the optimisation is split into bins of the visible transverse energy of the τ candidate (E T vis ). First of all the optimization is presented and afterwards the performance of the cut-based identification method is discussed. The reconstruction efficiency for τ-leptons is determined by comparing first data corresponding to an integrated luminosity of 244 nb -1 and Monte Carlo simulation. The effect of systematic uncertainties is investigated. The CP violation predicted by the Standard Model is not sufficient to explain the matter - anti-matter asymmetry in the universe of the order of
Energy Technology Data Exchange (ETDEWEB)
Gosdzik, Bjoern
2011-03-15
In November 2009 the ATLAS experiment started operation at the Large Hadron Collider (LHC) at CERN. The detector is optimized to search for the Higgs Boson and new physics at the TeV scale. Until the end of the data-taking period with proton-proton collisions on November 3rd, 2010, the ATLAS detector recorded an integrated luminosity of 45.0 pb{sup -1} at a center-of-mass energy of {radical}(s) = 7 TeV. In many signals of the Standard Model and new physics (e.g. SUSY and Higgs) {tau}-leptons play an important role. A cut-based approach for the identification of hadronically decaying {tau}-leptons is being used, particularly for the first data-taking period. Using Monte Carlo Data, the development of a cut-based identification method for hadronically decaying {tau}-lepton with the ATLAS detector at the Large Hadron Collider (LHC) with a center-of-mass energy of {radical}(s) = 14 TeV is presented. The separation of signal and the large QCD jet background is a challenge to the identification of hadronically decaying {tau}-lepton. The identification is separated into two methods: the calorimeter-based method uses exclusive calorimeter information, while the calorimeter+track-based method combines calorimeter and tracking information. The cut optimization is separately accomplished for {tau} candidates with one charged decay product (1-prong) and {tau} candidates with three charged decay products (3-prong). Additionally the optimisation is split into bins of the visible transverse energy of the {tau} candidate (E{sub T}{sup vis}). First of all the optimization is presented and afterwards the performance of the cut-based identification method is discussed. The reconstruction efficiency for {tau}-leptons is determined by comparing first data corresponding to an integrated luminosity of 244 nb{sup -1} and Monte Carlo simulation. The effect of systematic uncertainties is investigated. The CP violation predicted by the Standard Model is not sufficient to explain the matter
Energy Technology Data Exchange (ETDEWEB)
Gosdzik, Bjoern
2011-03-15
In November 2009 the ATLAS experiment started operation at the Large Hadron Collider (LHC) at CERN. The detector is optimized to search for the Higgs Boson and new physics at the TeV scale. Until the end of the data-taking period with proton-proton collisions on November 3rd, 2010, the ATLAS detector recorded an integrated luminosity of 45.0 pb{sup -1} at a center-of-mass energy of {radical}(s) = 7 TeV. In many signals of the Standard Model and new physics (e.g. SUSY and Higgs) {tau}-leptons play an important role. A cut-based approach for the identification of hadronically decaying {tau}-leptons is being used, particularly for the first data-taking period. Using Monte Carlo Data, the development of a cut-based identification method for hadronically decaying {tau}-lepton with the ATLAS detector at the Large Hadron Collider (LHC) with a center-of-mass energy of {radical}(s) = 14 TeV is presented. The separation of signal and the large QCD jet background is a challenge to the identification of hadronically decaying {tau}-lepton. The identification is separated into two methods: the calorimeter-based method uses exclusive calorimeter information, while the calorimeter+track-based method combines calorimeter and tracking information. The cut optimization is separately accomplished for {tau} candidates with one charged decay product (1-prong) and {tau} candidates with three charged decay products (3-prong). Additionally the optimisation is split into bins of the visible transverse energy of the {tau} candidate (E{sub T}{sup vis}). First of all the optimization is presented and afterwards the performance of the cut-based identification method is discussed. The reconstruction efficiency for {tau}-leptons is determined by comparing first data corresponding to an integrated luminosity of 244 nb{sup -1} and Monte Carlo simulation. The effect of systematic uncertainties is investigated. The CP violation predicted by the Standard Model is not sufficient to explain the matter
Bhattacharya, Saptaparna
2015-01-01
The Large Hadron Collider (LHC) has had a very successful data-taking phase with Run 1. After the discovery of the Higgs, confirming the predictions of the Standard Model (SM), the focus is on finding new physics, especially in the context of supersymmetry (SUSY). One of the potential hiding places of natural SUSY is in models with compressed spectra, that is, models where the mass difference between the parent SUSY particle and the Lightest Supersymmetric Particle (LSP) is small. Such signals are characterized by low transverse momentum (p${_T}$) objects, low hadronic activity and missing transverse energy (MET). In this analysis, we focus on di-lepton final states, specifically in the low p${_T}$ regime. We use 7.4 fb$^{-1}$ of parked data collected at $\\sqrt{s}$ = 8 TeV. The analysis is enabled by the use of triggers that place no restrictions on the di-lepton p${_T}$, instead relying on methods like Initial State Radiation (ISR) tagging by triggering on a high p${_T}$ photon, to reduce the trigger rate....
SUSY confronts LHC results - LHC results confront SUSY?
International Nuclear Information System (INIS)
Feigl, B.; Zeppenfeld, D.; Rzenak, H.
2014-01-01
Two of the key points of the LHC research program are searches for supersymmetry on the one hand and Higgs boson searches on the other hand. Though usually treated separately, if supersymmetry is realized in nature, the searches might be entangled. We first give a brief status of the validity of supersymmetric models. Then we discuss how Higgs boson searches might be affected by the existence of supersymmetric particles not yet directly detected. We focus on the search channels with the Higgs boson decay mode H → WW where data driven background estimation methods are applied. (authors)
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, Felix [SISSA/ISAS, Trieste (Italy); Kraml, Sabine; Kulkarni, Suchita; Smith, Christopher [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Cedex (France)
2014-09-15
An inverted mass hierarchy in the squark sector, as in so-called ''natural supersymmetry'', requires non-universal boundary conditions at the mediation scale of supersymmetry breaking. We propose a formalism to define such boundary conditions in a basis-independent manner and apply it to generic scenarios where the third-generation squarks are light, while the first two-generation squarks are heavy and near-degenerate. We show that not only is our formalism particularly well suited to study such hierarchical squark mass patterns, but in addition the resulting soft terms at the TeV scale are manifestly compatible with the principle of minimal flavour violation, and thus automatically obey constraints from flavour physics. (orig.)
International Nuclear Information System (INIS)
Chertok, Maxwell
1998-01-01
CDF and D0 have performed searches for Supersymmetry with data collected at √s = 1.8 TeV during the years 1992-95. These searches are based on detector signatures: events with appreciable missing transverse energy plus jets with or without dileptons can signal squark and gluino production; the spectacular signature of trilepton events can result from the production of charginos and neutralinos; and the inclusion of R parity violation can produce events with like-sign dileptons and no missing transverse energy. Results from these analyses are presented
International Nuclear Information System (INIS)
Sawyer, L.; Texas Univ., Arlington, TX
1993-06-01
Searches for evidence of supersymmetric particles, and other phenomena beyond the Standard Model, are well underway with the D0 detector at the Tevatron. The D0 detector has good central tracking, excellent energy and missing E T resolution, hermetic calorimetry, and wide muon coverage. Preliminary results from searches for gluino/squark production and first generation leptoquark production are presented, based on a small fraction of the data taken to date
CERN. Geneva
2012-01-01
We present a summary of the recent results of searches for supersymmetry conducted by the CMS experiment. Several searches are reported using complementary final states and methods. The results presented include searches for stops and sbottoms, production of charginos and neutralinos, and R-parity violating signatures. Several of them are the first results of their kind from CMS, while others increased the mass reach significantly over previously published results from the LHC.
Zwirner, F
1992-01-01
We summarize the present status of low-energy supersymmetry, exemplified by the Minimal Supersymmetric extension of the Standard Model (MSSM). We review the searches for Supersymmetric particles and supersymmetric Higgs bosons. We conclude with some comments on the open theoretical problems related to spontaneous supersymmetry breaking in the underlying fundamental theory.
Mesino oscillation in MFV SUSY
Energy Technology Data Exchange (ETDEWEB)
Berger, Joshua [Cornell University, Department of Physics, LEPP, Ithaca, NY (United States); SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Csaki, Csaba; Grossman, Yuval; Heidenreich, Ben [Cornell University, Department of Physics, LEPP, Ithaca, NY (United States)
2013-04-15
R-parity violating supersymmetry in a Minimal Flavor Violation paradigm can produce same-sign dilepton signals via direct sbottom-LSP pair production. Such signals arise when the sbottom hadronizes and the resulting mesino oscillates into an antimesino. The first bounds on the sbottom mass are placed in this scenario using current LHC results. (orig.)
AUTHOR|(INSPIRE)INSPIRE-00415586
In 2012, the Higgs boson was discovered by the Large Hadron Collider (LHC) experiment at CERN. However, to derive the observed Higgs mass (125 GeV) in the Standard Model (SM), fine tuning between the bare Higgs mass and the radiative correction required. The SM has another problem, which is the absence of the particles constituting the dark matter (DM) indicated by the cosmological observation. One of the candidates of the theory which can solve these problems is the Supersymmetry (SUSY). If the scalar top quark (stop, $\\tilde{t}$), which is the superpartner of the SM top quark, exists and has the mass below 1 TeV, the level of fine tuning can be significantly reduced because the radiative correction of the top quark loop can be canceled by the radiative correction of the stop loop. In addition, the neutralino ($\\tilde{\\chi}^{0}_{1}$), which is the neutral lightest supersymmetric particle (LSP) can become a candidate of the DM. The LHC experiment searched for the stop pair production in a $pp \\rightarrow \\ti...
Signatures of non-universal soft breaking sfermion masses at Hadron colliders
International Nuclear Information System (INIS)
Datta, Amitava; Datta, Aseshkrishna; Parida, M.K.
1997-12-01
We identify several mass patterns, within the framework of N = 1 SUGRA with nonuniversal soft breaking masses for the sfermions, which may significantly alter SUSY signals and the current squark-gluino mass limits from the Tevatron. These effects are illustrated in a SO(10) SUSY GUT with an intermediate mass scale, but the conclusions are also valid in SUSU SO(10) models with grand deserts. (author)
Experimental results on SUSY searches with top
Eifert, Till
2014-01-01
Searches for supersymmetric partner particles of the top and bottom quarks at the Large Hadron Collider are reviewed. The focus is on the status of searches for a relatively light partner of the top quark performed by the CMS and ATLAS Collaborations. No excess beyond Standard Model expectations is observed and exclusion limits are set on the masses of supersymmetric particles.
GUTs, SUSY GUTs and SUPER GUTs
International Nuclear Information System (INIS)
Gaillard, M.K.
1982-07-01
We review the motivations for extending grand unified theories with particular emphasis on supersymmetry and its phenomenological and cosmological fallout, and comment on the relevance of quantum gravity. 67 references
SUSY anomaly in quantum-mechanical systems
International Nuclear Information System (INIS)
Smilga, A.V.
1987-01-01
Explicit examples of supersymmetric systems involving finite numbers of degrees of freedom where quantum supersymmetry algebra cannot be preserved on the classical level, are constructed. Resolving the ordering ambiguities in different ways leads either to a modified algebra or to a reduced algebra, or totally destroys supersymmetry
Is (Low Energy) SUSY still Alive?
International Nuclear Information System (INIS)
Gladyshev, A V; Kazakov, D I
2014-01-01
Supersymmetry, a new symmetry that relates bosons and fermions in particle physics, still escapes observation. Search for supersymmetry is one of the main aims of the Large Hadron Collider. The other possible manifestation of supersymmetry is the Dark Matter in the Universe. The present lectures contain a brief introduction to supersymmetry in particle physics. The main notions of supersymmetry are introduced. The supersymmetric extension of the Standard Model -- the Minimal Supersymmetric Standard Model -- is considered in more detail. Phenomenological features of the Minimal Supersymmetric Standard Model as well as possible experimental signatures of supersymmetry at the Large Hadron Collider are described. The present limits on supersymmetric particles are presented and the allowed region of parameter space of the MSSM is shown
Hidden SUSY from precision gauge unification
Energy Technology Data Exchange (ETDEWEB)
Krippendorf, Sven; Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Winkler, Martin Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-06-15
We revisit the implications of naturalness and gauge unification in the MSSM. We find that precision unification of the couplings in connection with a small {mu} parameter requires a highly compressed gaugino pattern as it is realized in mirage mediation. Due to the small mass difference between gluino and LSP, collider limits on the gluino mass are drastically relaxed. Without further assumptions, the relic density of the LSP is very close to the observed dark matter density due to coannihilation effects.
Exceptional polynomials and SUSY quantum mechanics
Indian Academy of Sciences (India)
Abstract. We show that for the quantum mechanical problem which admit classical Laguerre/. Jacobi polynomials as solutions for the Schrödinger equations (SE), will also admit exceptional. Laguerre/Jacobi polynomials as solutions having the same eigenvalues but with the ground state missing after a modification of the ...
SUSY in processes with flavour violation
International Nuclear Information System (INIS)
Matak, P.
2009-01-01
I this work we present our first results of the calculation of the branching ratio for rare B 0 s meson di-muon decay. High energy physicists studied flavour changing processes in past decades very intensively. The reason is large sensitivity of such a processes on the contributions of the beyond Standard Model theories, where the amplitudes of flavour changing processes could be enhanced up to several orders by the new particle content. Most of their contributions come from extended Higgs sector. As an example of such a theory and we could say the most favourite one, is the Minimal Supersymmetric Standard Model (MSSM). We choose the B 0 s → μ + μ - decay because of its experimental accessibility at LHC. Observation of this process will probably be one of the first signals of new particle physics. We started in our work with short introduction to the idea of supersymmetry, including its motivation in particle physics. Then, in the second chapter, we present the proper calculation of the decay amplitude and branching ration. In all calculations we used MS-renormalization scheme. (author)
Higgs and SUSY searches at future colliders
Indian Academy of Sciences (India)
... searches at future colliders, particularly comparing and contrasting the capabilities of LHC and next linear collider (NLC), including the aspects of Higgs searches in supersymmetric theories. I will also discuss how the search and study of sparticles other than the Higgs can be used to give information about the parameters ...
Searches for SUSY signals at ATLAS
Meloni, Federico; The ATLAS collaboration
2017-01-01
The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to pro- vide an integrated luminosity of 3000 fb−1 in ten years, a factor 10 more than what will be collected by 2023. This high statistics will allow ATLAS to improve searches for new physics at the TeV scale. The search prospects for Supersymmetry are presented, with a programme spanning from strong to electroweak production of sparticles.
Non-SUSY Searches at the Tevatron
International Nuclear Information System (INIS)
Strologas, John
2011-01-01
We present recent results from searches for new physics beyond supersymmetry performed at the Tevatron accelerator at Fermilab. The CDF and D0 analyses presented here utilized data of integrated luminosity up to 6 fb -1 . We cover leptonic and bosonic resonances interpreted in the Randall-Sundrum graviton and new-boson models, rare final states, and the search for vector-like quarks. The search for new phenomena beyond the weak-scale supersymmetry is a vital part of the Fermilab program. Both CDF and D0 experiments at the Tevatron collider actively look for signals not expected by the standard model (SM) or minimal supersymmetric models. The searches can be sorted in three categories: (a) searches for generic resonances that can be interpreted in several new-physics models; (b) searches for exotic combinations of final-state objects or abnormal kinematics (not necessarily predicted by current theories); and (c) model-dependent searches that test a particular theory. We present here latest results from all these categories: searches for new dilepton and diboson resonances (interpreted as gravitons and new gauge bosons), searches for anomalous γ + E T + X production, and searches for vector-like quarks.
Susy theories and QCD: numerical approaches
International Nuclear Information System (INIS)
Ita, Harald
2011-01-01
We review on-shell and unitarity methods and discuss their application to precision predictions for Large Hadron Collider (LHC) physics. Being universal and numerically robust, these methods are straightforward to automate for next-to-leading-order computations within standard model and beyond. Several state-of-the-art results including studies of (W/Z+3)-jet and (W+4)-jet production have explicitly demonstrated the effectiveness of the unitarity method for describing multi-parton scattering. Here we review central ideas needed to obtain efficient numerical implementations. This includes on-shell loop-level recursions, the unitarity method, color management and further refined tricks. (review)
SUSY and Dark Matter Results from ATLAS
Sandaker, H
2013-01-01
New results from LHC are increasingly challenging the limits of the Standard Model of particle physics. Some of the most attractive scenarios for new physics are Supersymmet- ric models. In addition to solving some of the shortcomings of the Standard Model (e.g. hierarchy problem, Higgs mass corrections, gauge coupling unification) they also provide a suitable Dark Matter candidate, which could be produced at the LHC. We present the latest searches for Supersymmetry in events with high-energy final states and large missing transverse momentum for 4.7 fb−1 of proton-proton collisions at √s = 7 TeV as recorded by the ATLAS detector at the Large Hadron Collider. The data is interpreted in models where the Dark Matter candidate is dominantly produced in cascade decays of heavier unstable supersymmetric particles together with high-pT Standard Model parti- cles. We also present more model-independent searches for one single highly energetic jet or photon together with large amount of missing energy, showing th...
López, Jorge L; Zichichi, A
1994-01-01
The determination of the most straightforward evidence for the existence of the Superworld requires a guide for non-experts (especially experimental physicists) for them to make their own judgement on the value of such predictions. For this purpose we review the most basic results of Super-Grand unification in a simple and clear way. We focus the attention on two specific models and their predictions. These two models represent an example of a direct comparison between a traditional unified-theory and a string-inspired approach to the solution of the many open problems of the Standard Model. We emphasize that viable models must satisfy {\\em all} available experimental constraints and be as simple as theoretically possible. The two well defined supergravity models, $SU(5)$ and $SU(5)\\times U(1)$, can be described in terms of only a few parameters (five and three respectively) instead of the more than twenty needed in the MSSM model, \\ie, the Minimal Supersymmetric extension of the Standard Model. A case of spe...
Kohtumine minevikus pilguga tulevikku / Heli Susi
Susi, Heli, 1929-
2009-01-01
Reisist Moskvasse detsembris 2008 A. Solženitsõni 90. sünniaastapäevale pühendatud näituse avamisele. Näituse "Eesti saar Gulagi arhipelaagis" koostas ajakirja Вышгород peatoimetaja Ljudmila Gluškovskaja koostöös fondiraamatukoguga Русское Зарубежье. 25. märtsil 2009 avati sama näitus Eesti Rahvusraamatukogus
BSM searches (SUSY and Exotic) from ATLAS
ATLAS Collaboration; The ATLAS collaboration
2015-01-01
Searches for new physics beyond the Standard Model (SM) at the LHC are mainly driven by two approaches: a signature-based search where one looks for a deviation from the SM prediction in event yield or kinematic properties, and a more theory-oriented approach where the search is designed to look for specific signatures/topologies predicted by certain beyond standard model (BSM ) scenarios. Typical examples for the latter are searches for Supersymmetry and other BSM theories with extended symmetries. Supersymmetry predicts a new partner for every SM particle. An extension to the SM by introducing new gauge or global symmetries (including in Hidden Sector) usually leads to the presence of new heavy gauge bosons. Extensive searches for such particles have been performed in ATLAS at LHC in the context of Supersymmetry, Extended Gauge models, Technicolor, Little Higgs, Extra Dimensions, Left-Right symmetric models, and many other BSM scenarios. Highlights from these searches are presented.
τ polarization in SUSY cascade decays
International Nuclear Information System (INIS)
Choi, S.Y.; Hagiwara, K.; Kim, Y.G.
2006-12-01
τ leptons emitted in cascade decays of supersymmetric particles are polarized. The polarization may be exploited to determine spin and mixing properties of the neutralinos and stau particles involved. (orig.)
SUSY breaking mediation by throat fields
International Nuclear Information System (INIS)
Bruemmer, F.; Hebecker, A.; Trapletti, M.
2006-01-01
We investigate, in the general framework of KKLT, the mediation of supersymmetry breaking by fields propagating in the strongly warped region of the compactification manifold ('throat fields'). Such fields can couple both to the supersymmetry breaking sector at the IR end of the throat and to the visible sector at the UV end. We model the supersymmetry breaking sector by a chiral superfield which develops an F term vacuum expectation value (also responsible for the uplift). It turns out that the mediation effect of vector multiplets propagating in the throat can compete with modulus-anomaly mediation. Moreover, such vector fields are naturally present as the gauge fields arising from isometries of the throat (most notably the SO(4) isometry of the Klebanov-Strassler solution). Their mediation effect is important in spite of their large 4d mass. The latter is due to the breaking of the throat isometry by the compact manifold at the UV end of the throat. The contribution from heavy chiral superfields is found to be subdominant
Prospects for early SUSY searches at Lhc
International Nuclear Information System (INIS)
Borjanovic, I.
2009-01-01
Search for the physics beyond the Standard Model is one of the most relevant goals of the CMS and Atlas experiments at the Large Hadron Collider at CERN. Prospects for early R-parity conserving supersymmetry discovery and mass measurements with the CMS and Atlas detector for the first fb -1 of data are presented. All the presented studies are based on realistic Monte Carlo simulations.
Hidden SUSY from precision gauge unification
International Nuclear Information System (INIS)
Krippendorf, Sven; Nilles, Hans Peter
2013-06-01
We revisit the implications of naturalness and gauge unification in the MSSM. We find that precision unification of the couplings in connection with a small μ parameter requires a highly compressed gaugino pattern as it is realized in mirage mediation. Due to the small mass difference between gluino and LSP, collider limits on the gluino mass are drastically relaxed. Without further assumptions, the relic density of the LSP is very close to the observed dark matter density due to coannihilation effects.
SUSY Searches with the ATLAS Experiment
AUTHOR|(INSPIRE)INSPIRE-00236698; The ATLAS collaboration
2016-01-01
The Standard Model describes the elementary particles and their interactions. Supersymmetry, a symmetry beyond those included in SM, could resolve some shortcomings of Standard Model. It can provide a solution to the hierarchy problem and a candidate for Dark Matter. The Large Hadron Collider has the potential to produce some of the particles predicted by supersymmetry. This document presents searches for supersymmetric particles in proton-proton collision data recorded by the ATLAS experiment. The analyses are done using $\\mathscr{L}=3.2$~fb$^{-1}$ proton-proton collisions at $\\sqrt{s}=13$~TeV collected in 2015. Also, searches performed using up to $\\mathscr{L}=20.3$~fb$^{-1}$ dataset at $\\sqrt{s}=7$ and 8~TeV collected in 2011 and 2012 are presented.
SUSY dark matter: Beyond the standard paradigm
International Nuclear Information System (INIS)
Sandick, Pearl
2016-01-01
Within the framework of the Minimal Supersymmetric Standard Model (MSSM), we explore a decoupling of the parameters into separate sectors that determine consistency with collider data, the abundance of dark matter, and potential signatures at direct dark matter searches. We consider weak-scale bino-like neutralino dark matter, and find that annihilations via light slepton exchange present a viable mechanism for obtaining the appropriate dark matter abundance assuming a thermal history. Constraints and prospects for discovery of these models are discussed, including the possibility that direct dark matter searches may be sensitive to these models if light squarks exhibit left-right mixing. Differences between the scenarios presented here and the typical expectations for the MSSM are discussed.
Superfield tadpole method for SUSY effective potential
International Nuclear Information System (INIS)
Srivastava, P.P.
1983-01-01
Superfield formulation of Weinberg's tadpole method to compute the effective potential in supersymmetric theories is illustrated by considering the general renormalizable action involving only chiral scalar superfields. Unconstrained superfield potentials are introduced to simplify the ''effective'' superfield propagator which is derived in a compact form. (orig.)
Susy Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators
International Nuclear Information System (INIS)
Skands, P.; Allanach, B.C.; Baer, H.
2003-11-01
An accord specifying generic file structures for 1) supersymmetric model specifications and input parameters, 2) electroweak scale supersymmetric mass and coupling spectra, and 3) decay tables is defined, to provide a universal interface between spectrum calculation programs, decay packages, and high energy physics event generators. (orig.)
Status of LHC Searches for SUSY without R-Parity
International Nuclear Information System (INIS)
Franceschini, Roberto
2015-01-01
In this contribution we briefly review the status of current searches for supersymmetry at the Large Hadron Collider, focusing especially on viable sub-TeV colored superpartners which can appear in nonstandard scenarios. The presented material covers mostly signals that do not crucially rely on the presence of large missing transverse momentum, with special emphasis on R-parity violating supersymmetry. For some scenarios the prospects for the next run of the Large Hadron Collider and future machines are also presented
Dark matter in a constrained E6 inspired SUSY model
International Nuclear Information System (INIS)
Athron, P.; Harries, D.; Nevzorov, R.; Williams, A.G.
2016-01-01
We investigate dark matter in a constrained E 6 inspired supersymmetric model with an exact custodial symmetry and compare with the CMSSM. The breakdown of E 6 leads to an additional U(1) N symmetry and a discrete matter parity. The custodial and matter symmetries imply there are two stable dark matter candidates, though one may be extremely light and contribute negligibly to the relic density. We demonstrate that a predominantly Higgsino, or mixed bino-Higgsino, neutralino can account for all of the relic abundance of dark matter, while fitting a 125 GeV SM-like Higgs and evading LHC limits on new states. However we show that the recent LUX 2016 limit on direct detection places severe constraints on the mixed bino-Higgsino scenarios that explain all of the dark matter. Nonetheless we still reveal interesting scenarios where the gluino, neutralino and chargino are light and discoverable at the LHC, but the full relic abundance is not accounted for. At the same time we also show that there is a huge volume of parameter space, with a predominantly Higgsino dark matter candidate that explains all the relic abundance, that will be discoverable with XENON1T. Finally we demonstrate that for the E 6 inspired model the exotic leptoquarks could still be light and within range of future LHC searches.
A new approach to Naturalness in SUSY models
Ghilencea, D M
2013-01-01
We review recent results that provide a new approach to the old problem of naturalness in supersymmetric models, without relying on subjective definitions for the fine-tuning associated with {\\it fixing} the EW scale (to its measured value) in the presence of quantum corrections. The approach can address in a model-independent way many questions related to this problem. The results show that naturalness and its measure (fine-tuning) are an intrinsic part of the likelihood to fit the data that {\\it includes} the EW scale. One important consequence is that the additional {\\it constraint} of fixing the EW scale, usually not imposed in the data fits of the models, impacts on their overall likelihood to fit the data (or chi^2/ndf, ndf: number of degrees of freedom). This has negative implications for the viability of currently popular supersymmetric extensions of the Standard Model.
SUSY and BSM Higgs boson searches with ATLAS and CMS
Dasu, S
2012-01-01
Results of searches for super-symmetric and other beyond the Standard Model Higgs boson searches from ATLAS and CMS experiments at the LHC arc presented. Some Standard Model (SM) higgs searches are reinterpreted in SM with four quark generations and fermio phobic models. Stringent limits) covering a large portion of the allowed parameter space in (MA, tan/3) plane are set for MSSM neutral higgs bosons decaying to T-lepton pairs, and charged higgs boson decaying to TV. Limits are set on a light NMSSM neutral higgs boson and on doubly charged higgs bosons predicted in some models are also set.
Strong Sector in non-minimal SUSY model
Directory of Open Access Journals (Sweden)
Costantini Antonio
2016-01-01
Full Text Available We investigate the squark sector of a supersymmetric theory with an extended Higgs sector. We give the mass matrices of stop and sbottom, comparing the Minimal Supersymmetric Standard Model (MSSM case and the non-minimal case. We discuss the impact of the extra superfields on the decay channels of the stop searched at the LHC.
Instantons and the vacuum condensates of SUSY-gauge theories
International Nuclear Information System (INIS)
Schmidt, M.G.
1987-01-01
In the supersymmetric gauge theories the ''non-renormalization'' theorem guarantees that some quantities which are zero in lowest order remain zero in higher orders of perturbation theory. I show that such quantities get nonvanishing contributions from instanton-induced interactions. Also, no cut-off in the size of instantons is needed. 28 refs., 12 figs. (author)
Polarization effects in early SUSY searches at the CERN LHC
Energy Technology Data Exchange (ETDEWEB)
Wang, Kai; Wang, Liucheng; Xu, Tao; Zhang, Liangliang [Zhejiang University, Department of Physics, Zhejiang Institute of Modern Physics, Hangzhou, Zhejiang (China)
2015-06-15
An on-shell effective theory (OSET) approach has been widely used in searches of various supersymmetric signals, in particular, gluino/squark pairs with long cascade decay chains in which complete matrix element calculations may encounter high dimensional integrations. On the other hand, leptons from polarized chargino decays may show a significant boost effect in some scenarios and simulation without polarization information may underestimate or overestimate the lepton p{sub T} cut efficiencies in the first place. We study the polarization effects in leptonic decaying charginos from squarks or gluinos. Taking the polarization effects into account, we find it still justifiable to take only the OSET approach for a large parameter region, for instance, the first two generation squarks due to indistinguishable final states as well as a flat angular distribution in the motion of the lepton. On the other hand, we use the leptonic stop to illustrate the feature and find that the lepton p{sub T} cut efficiencies in cross section measurements can have maximally 25 % reduction or maximally 17 % enhancement in comparison with the kinematics-only approach. The signal rates after the cuts simulated by OSET are then underestimated/overestimated and the real bound on the squark/gluino should be more stringent or loose for a specific choice of the chargino and one can take the simulated efficiencies as a fast-simulation factor to multiply to the OSET simulated results. (orig.)
Confronting SUSY models with LHC data via electroweakino production
International Nuclear Information System (INIS)
Arina, Chiara; Chala, Mikael; Martin-Lozano, Victor; Bonn Univ.; Nardini, Germano
2016-12-01
We investigate multi-lepton signals produced by ElectroWeakino (EWino) decays in the MSSM and the TMSSM scenarios with sfermions, gluinos and non Standard Model Higgses at the TeV scale, being the Bino electroweak-scale dark matter. We recast the present LHC constraints on EWinos for these models and we find that wide MSSM and TMSSM parameter regions prove to be allowed. We forecast the number of events expected in the signal regions of the experimental multi-lepton analyses in the next LHC runs. The correlations among these numbers will help to determine whether future deviations in multi-lepton data are ascribable to the EWinos, as well as the supersymmetric model they originate from.
SUSY formalism for the symmetric double well potential
Indian Academy of Sciences (India)
Using first- and second-order supersymmetric Darboüx formalism and starting with symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique.
Extended SUSY quantum mechanics, intertwining operators and coherent states
International Nuclear Information System (INIS)
Bagarello, F.
2008-01-01
We propose an extension of supersymmetric quantum mechanics which produces a family of isospectral Hamiltonians. Our procedure slightly extends the idea of intertwining operators. Several examples of the construction are given. Further, we show how to build up vector coherent states of the Gazeau-Klauder type associated to our Hamiltonians
Results on SUSY and Higgs searches at CMS
CERN. Geneva
2011-01-01
We present the results of searches for Supersymmetry and the Higgs boson performed using data collected in 2010 by the CMS experiment at the LHC in pp-collisions at a centre-of-mass energy of 7 TeV. Searches for Supersymmetry are performed in all-hadronic final states with jets and missing transverse energy and in final states including one or more isolated leptons or photons. No evidence for new physics is observed and limits are set on the predictions of a range of Supersymmetric scenarios. The results of searches for the Higgs boson are presented and limits set.
Sgoldstino-less inflation and low energy SUSY breaking
Energy Technology Data Exchange (ETDEWEB)
Argurio, Riccardo [Physique Théorique et Mathématique and International Solvay Institutes, Université Libre de Bruxelles, CP231, B-1050 Brussels (Belgium); Coone, Dries; Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Heurtier, Lucien, E-mail: rargurio@ulb.ac.be, E-mail: a.a.coone@rug.nl, E-mail: lucien.heurtier@ulb.ac.be, E-mail: alberto.mariotti@vub.ac.be [Service de Physique Théorique, Université Libre de Bruxelles, CP225, B-1050 Brussels (Belgium)
2017-07-01
We assess the range of validity of sgoldstino-less inflation in a scenario of low energy supersymmetry breaking. We first analyze the consistency conditions that an effective theory of the inflaton and goldstino superfields should satisfy in order to be faithfully described by a sgoldstino-less model. Enlarging the scope of previous studies, we investigate the case where the effective field theory cut-off, and hence also the sgoldstino mass, are inflaton-dependent. We then introduce a UV complete model where one can realize successfully sgoldstino-less inflation and gauge mediation of supersymmetry breaking, combining the α-attractor mechanism and a weakly coupled model of spontaneous breaking of supersymmetry. In this class of models we find that, given current limits on superpartner masses, the gravitino mass has a lower bound of the order of the MeV, i.e. we cannot reach very low supersymmetry breaking scales. On the plus side, we recognize that in this framework, one can derive the complete superpartner spectrum as well as compute inflation observables, the reheating temperature, and address the gravitino overabundance problem. We then show that further constraints come from collider results and inflation observables. Their non trivial interplay seems a staple feature of phenomenological studies of supersymmetric inflationary models.
sUsY dark matter - a collider physicist's perspective
Indian Academy of Sciences (India)
The cryogenic detector measures both phonon and ionization, ... 2.2 Indirect detections and the dark matter profile in the galaxy .... On the other hand, positrons lose its energy quickly by synchrotron radiation and ... In addition, effects of.
Anatomy of new SUSY breaking holographic RG flows
Energy Technology Data Exchange (ETDEWEB)
Argurio, Riccardo [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [International Center of Theoretical Physics (ICTP),Strada Costiera 11, I 34014 Trieste (Italy); Redigolo, Diego [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Sorbonne Universités, UPMC University Paris 06, UMR 7589, LPTHE,F-75005, Paris (France); CNRS, UMR 7589, LPTHE,F-75005, Paris (France)
2015-03-17
We find and thoroughly study new supergravity domain wall solutions which are holographic realizations of supersymmetry breaking strongly coupled gauge theories. We set ourselves in an N=2 gauged supergravity with a minimal content in order to reproduce a dual N=1 effective SCFT which has a U(1){sub R} symmetry, a chiral operator whose components are responsible for triggering the RG flow, and an additional U(1){sub F} symmetry. We present a full three dimensional parameter space of solutions, which generically break supersymmetry. Some known solutions are recovered for specific sets of values of the parameters, with the new solutions interpolating between them. The generic backgrounds being singular, we provide a stability test of their dual theories by showing that there are no tachyonic resonances in the two point correlators. We compute the latter by holographic renormalization. We also carefully analyze the appearance of massless modes, such as the dilaton and the R axion, when the respective symmetries are spontaneously broken, and their lifting when the breaking is explicit. We further comment on the application of such class of backgrounds as archetypes of strongly coupled hidden sectors for gauge mediation of supersymmetry breaking. In particular, we show that it is possible to model in this way all types of hierarchies between the visible sector gaugino and sfermion masses.
Experimental prospects for SUSY in e+e-
International Nuclear Information System (INIS)
Settles, R.
1995-01-01
Hopes for detecting supersymmetry in e + e - annihilations are reviewed using examples from several workshops on present and future colliders. MSSM, the simplest model of minimal supersymmetry with grand unification is studied. Chances for discovering the higgs sector at LEP and at a future 500 GeV e + e - linear collider are cited along with ways for measuring the higgs' properties; similary for the supersymmetric partners of the presently-known elementary particles. Once discovered, examples are given as to how to attack the spartner spectroscopy and MSSM parameters at the e + e - linear collider. The complementarity of these measurements to those at pp colliders is emphasized. (orig.)
SARAH 4: A tool for (not only SUSY) model builders
Staub, Florian
2014-06-01
We present the new version of the Mathematica package SARAH which provides the same features for a non-supersymmetric model as previous versions for supersymmetric models. This includes an easy and straightforward definition of the model, the calculation of all vertices, mass matrices, tadpole equations, and self-energies. Also the two-loop renormalization group equations for a general gauge theory are now included and have been validated with the independent Python code PyR@TE. Model files for FeynArts, CalcHep/CompHep, WHIZARD and in the UFO format can be written, and source code for SPheno for the calculation of the mass spectrum, a set of precision observables, and the decay widths and branching ratios of all states can be generated. Furthermore, the new version includes routines to output model files for Vevacious for both, supersymmetric and non-supersymmetric, models. Global symmetries are also supported with this version and by linking Susyno the handling of Lie groups has been improved and extended.
Genetic algorithms and experimental discrimination of SUSY models
International Nuclear Information System (INIS)
Allanach, B.C.; Quevedo, F.; Grellscheid, D.
2004-01-01
We introduce genetic algorithms as a means to estimate the accuracy required to discriminate among different models using experimental observables. We exemplify the technique in the context of the minimal supersymmetric standard model. If supersymmetric particles are discovered, models of supersymmetry breaking will be fit to the observed spectrum and it is beneficial to ask beforehand: what accuracy is required to always allow the discrimination of two particular models and which are the most important masses to observe? Each model predicts a bounded patch in the space of observables once unknown parameters are scanned over. The questions can be answered by minimising a 'distance' measure between the two hypersurfaces. We construct a distance measure that scales like a constant fraction of an observable, since that is how the experimental errors are expected to scale. Genetic algorithms, including concepts such as natural selection, fitness and mutations, provide a solution to the minimisation problem. We illustrate the efficiency of the method by comparing three different classes of string models for which the above questions could not be answered with previous techniques. The required accuracy is in the range accessible to the Large Hadron Collider (LHC) when combined with a future linear collider (LC) facility. The technique presented here can be applied to more general classes of models or observables. (author)
Confronting SUSY models with LHC data via electroweakino production
Energy Technology Data Exchange (ETDEWEB)
Arina, Chiara [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain,B-1348 Louvain-la-Neuve (Belgium); Chala, Mikael [Deutsches Elektronen Synchrotron,Notkestrasse 85, D-22603, Hamburg (Germany); Martín-Lozano, Víctor [Departamento de Física Teórica & Instituto de Física Teórica UAM/CSIC,Universidad Autónoma de Madrid,E-28049, Madrid (Spain); Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nußallee 12, 53115, Bonn (Germany); Nardini, Germano [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2016-12-29
We investigate multi-lepton signals produced by ElectroWeakino (EWino) decays in the MSSM and the TMSSM scenarios with sfermions, gluinos and non Standard Model Higgses at the TeV scale, with dark matter due to electroweak-scale Binos. We recast the present LHC constraints on EWinos for these models and we find that wide MSSM and TMSSM parameter regions prove to be allowed. We forecast the number of events expected in the signal regions of the experimental multi-lepton analyses in the next LHC runs. The correlations among these numbers will help to determine whether future deviations in multi-lepton data are ascribable to the EWinos, as well as the supersymmetric model they originate from.
Cardy formula for 4d SUSY theories and localization
Energy Technology Data Exchange (ETDEWEB)
Pietro, Lorenzo Di [Perimeter Institute for Theoretical Physics,Caroline Street N 31, Waterloo (Canada); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Herzl street 234, Rehovot (Israel); Honda, Masazumi [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Herzl street 234, Rehovot (Israel)
2017-04-11
We study 4d N=1 supersymmetric theories on a compact Euclidean manifold of the form S{sup 1}×M{sub 3}. Partition functions of gauge theories on this background can be computed using localization, and explicit formulas have been derived for different choices of the compact manifold M{sub 3}. Taking the limit of shrinking S{sup 1}, we present a general formula for the limit of the localization integrand, derived by simple effective theory considerations, generalizing the result of https://www.doi.org/10.1007/JHEP07(2016)025. The limit is given in terms of an effective potential for the holonomies around the S{sup 1}, whose minima determine the asymptotic behavior of the partition function. If the potential is minimized in the origin, where it vanishes, the partition function has a Cardy-like behavior fixed by Tr(R), while a nontrivial minimum gives a shift in the coefficient. In all the examples that we consider, the origin is a minimum if Tr(R)≤0.
1/N expansion in SUSY CPsup(N-1) model
International Nuclear Information System (INIS)
Krivoshchekov, V.K.; Medvedev, P.B.
1983-01-01
The 1/N expansion for supersymmetric two-dimensional CPsup(N-1) model has been constructed in the superfield formalism. The subtraction procedure and the way to choose manifestly supersymmetric gauge is formulated to define UV and IR regular Green functions for any given order in 1/N
sUsY dark matter - a collider physicist's perspective
Indian Academy of Sciences (India)
new particles that constitute the dark matter in the universe. On the other hand, .... gamma signal is robust, because it cannot have any astrophysical origin. ... and the produced antiprotons propagate to our solar system without too much loss.
Dark matter and the Higgs in natural SUSY
Energy Technology Data Exchange (ETDEWEB)
Basirnia, Aria; Macaluso, Sebastian; Shih, David [NHETC, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)
2017-03-14
Null results from dark matter (DM) direct detection experiments and the 125 GeV Higgs both pose serious challenges to minimal supersymmetry. In this paper, we propose a simple extension of the MSSM that economically solves both problems: a “dark sector” consisting of a singlet and a pair of SU(2) doublets. Loops of the dark sector fields help lift the Higgs mass to 125 GeV consistent with naturalness, while the lightest fermion in the dark sector can be viable thermal relic DM, provided that it is mostly singlet. The DM relic abundance is controlled by s-wave annihilation to tops and Higgsinos, leading to a tight relation between the relic abundance and the spin-dependent direct detection cross section. As a result, the model will be fully probed by the next generation of direct detection experiments. Finally we discuss the discovery potential at LHC Run II.
Is it SUSY? -first steps after an LHC discovery
CERN. Geneva
2008-01-01
A missing energy discovery is possible at the LHC in the first year of running. The origin of such a signal could be any of a huge number of models of supersymmetry, or non-supersymmetric models with extra dimensions or "little Higgs". Recently we have developed a realistic strategy to rapidly narrow the list of candidate theories at, or close to, the moment of discovery. The strategy is based on robust ratios of inclusive counts of simple physics objects. We studied specific cases showing discrimination of look- alike models in simulated data sets that are at least 10 to 100 times smaller than used in previous studies. We discriminate supersymmetry models from non-supersymmetric look-alikes with only 100 pb-1 of simulated data, using combinations of observables that trace back to differences in spin.
Searches for electroweak SUSY with ATLAS at HL-LHC
Amoroso, Simone; The ATLAS collaboration
2018-01-01
The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start in 2026 and to pro- vide an integrated luminosity of 3000 fb$^{−1}$ in ten years, a factor 10 more than what will be collected by 2023. This high statistics will allow ATLAS to improve searches for new physics at the TeV scale. In this talk search prospects for the electroweak production of supersymmetric particles are presented.
Combining high-scale inflation with low-energy SUSY
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan [Basel Univ. (Switzerland). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Halter, Sebastian [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut
2011-12-15
We propose a general scenario for moduli stabilization where low-energy supersymmetry can be accommodated with a high scale of inflation. The key ingredient is that the stabilization of the modulus field during and after inflation is not associated with a single, common scale, but relies on two different mechanisms. We illustrate this general scenario in a simple example, where during inflation the modulus is stabilized with a large mass by a Kaehler potential coupling to the field which provides the inflationary vacuum energy via its F-term. After inflation, the modulus is stabilized, for instance, by a KKLT superpotential. (orig.)
The di-photon excess in a perturbative SUSY model
Energy Technology Data Exchange (ETDEWEB)
Benakli, Karim, E-mail: kbenakli@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Darmé, Luc, E-mail: darme@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France); Goodsell, Mark D., E-mail: goodsell@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Harz, Julia, E-mail: jharz@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Sorbonne Universités, Institut Lagrange de Paris (ILP), 98 bis Boulevard Arago, 75014 Paris (France)
2016-10-15
We show that a 750 GeV di-photon excess as reported by the ATLAS and CMS experiments can be reproduced by the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM) without the need of any ad-hoc addition of new states. The scalar resonance is identified with the spin-0 partner of the Dirac bino. We perform a thorough analysis of constraints coming from the mixing of the scalar with the Higgs boson, the stability of the vacuum and the requirement of perturbativity of the couplings up to very high energy scales. We exhibit examples of regions of the parameter space that respect all the constraints while reproducing the excess. We point out how trilinear couplings that are expected to arise in supersymmetry-breaking mediation scenarios, but were ignored in the previous literature on the subject, play an important role.
Search for SUSY in final states with photons at CMS
Directory of Open Access Journals (Sweden)
Ntomari Eleni
2013-05-01
Full Text Available Résumé The Compact Muon Solenoid (CMS collaboration has developed a complete program of searches beyond the Standard Model (SM covering a wide range of final states. This document focuses on searches in final states with photons and missing transverse energy ETmiss organised in three analyses. The first two include comparison of the ETmiss distribution (isolation sideband method in events with either at least two photons plus at least one hadronic jet, or at least one photon plus at least two hadronic jets. The third analysis corresponds to a new approach, the Jet-Gamma Balance (JGB method, for events with at least one photon plus at least three hadronic jets.We observe no significant deviations from the SM expectation and thus derive upper limits on the signal cross section at the 95% confidence level (CL for a range of squark, gluino and neutralino mass points in the Gauge Mediated Supersymmetry Breaking scenario.
Global fits of GUT-scale SUSY models with GAMBIT
Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; de Austri, Roberto Ruiz; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin
2017-12-01
We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the constrained minimal supersymmetric standard model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of dark matter in all three models, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos.
Extracting SUSY parameters from selectron and chargino production
International Nuclear Information System (INIS)
Diaz, M.A.
1997-08-01
We review the extraction of fundamental supersymmetric parameters from experimental observables related to the detection of charginos and selectrons at e + e - colliders. We consider supergravity models with universal scalar and gaugino masses and radiatively broken electroweak symmetry. Two scenarios are considered: (a) the lightest chargino is light enough to be produced at LEP2, and (b) the right handed selectron is light enough to be produced at LEP2. We show how the validity of supergravity models can be tested even if experimental errors are large. Interesting differences between the spectrum in the two scenarios are pointed out. (author). 16 refs, 9 figs
Finite temperature susy GUT phase transitions determined by radiative corrections
International Nuclear Information System (INIS)
Kripfganz, J.; Perlt, H.
1983-01-01
Studying the 2-loop perturbative contribution to the free energy of supersymmetric grand unified theories, SU(3)xSU(2)xU(1) is found to be the prefered low temperature phase. The transition temperature is still within the weak coupling regime. (author)
Finite temperature susy GUT phase transitions determined by radiative corrections
International Nuclear Information System (INIS)
Kripfganz, J.; Perlt, H.
1983-02-01
Studying the 2-loop perturbative contribution to the free energy of grand unified theories a sequence of phase transitions is found, with SU(3)xSU(2)xU(1) being the prefered low temperature phase. The transition temperatures are still within the weak coupling regime. (author)
Recent Results on SUSY and Exotica Searches at the LHC
Grout, Zara Jane; The ATLAS collaboration
2015-01-01
A review is presented of searches for Beyond the Standard Model (BSM) physics at the ATLAS and CMS experiments at the Large Hadron Collider (LHC) with emphasis on most recent results. This includes a summary of Supersymmetry searches covering strong, electroweak, and R-parity violating scenarios, and a range of exotica searches including heavy boson searches, extra dimensions, and long-lived particles. The status of BSM physics after the first data-taking period (Run 1) of the LHC and the prospects for the second data-taking period (Run 2), beginning in 2015, are discussed.
Probing SUSY effects in K S 0 → μ + μ -
Chobanova, Veronika; D'Ambrosio, Giancarlo; Kitahara, Teppei; Martínez, Miriam Lucio; Santos, Diego Martínez; Fernández, Isabel Suárez; Yamamoto, Kei
2018-05-01
We explore supersymmetric contributions to the decay K S 0 → μ + μ -, in light of current experimental data. The Standard Model (SM) predicts B({K}_S^0\\to {μ}+{μ}-)≈ 5× {10}^{-12} . We find that contributions arising from flavour violating Higgs penguins can enhance the branching fraction up to ≈ 35 × 10-12 within different scenarios of the Minimal Supersymmetric Standard Model (MSSM), as well as suppress it down to ≈ 0 .78 × 10-12. Regions with fine-tuned parameters can bring the branching fraction up to the current experimental upper bound, 8 × 10-10. The mass degeneracy of the heavy Higgs bosons in MSSM induces correlations between B({K}_S^0\\to {μ}+{μ}-)and B({K}_L^0\\to {μ}+{μ}-) . Predictions for the CP asymmetry in K 0 → μ + μ - decays in the context of MSSM are also given, and can be up to eight times bigger than in the SM.
Global fits of GUT-scale SUSY models with GAMBIT
Energy Technology Data Exchange (ETDEWEB)
Athron, Peter [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); Mahmoudi, Farvah [Univ Lyon, Univ Lyon 1, CNRS, ENS de Lyon, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); Theoretical Physics Department, CERN, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Ruiz de Austri, Roberto [IFIC-UV/CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of Physics, Camperdown, NSW (Australia); Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration
2017-12-15
We present the most comprehensive global fits to date of three supersymmetric models motivated by grand unification: the constrained minimal supersymmetric standard model (CMSSM), and its Non-Universal Higgs Mass generalisations NUHM1 and NUHM2. We include likelihoods from a number of direct and indirect dark matter searches, a large collection of electroweak precision and flavour observables, direct searches for supersymmetry at LEP and Runs I and II of the LHC, and constraints from Higgs observables. Our analysis improves on existing results not only in terms of the number of included observables, but also in the level of detail with which we treat them, our sampling techniques for scanning the parameter space, and our treatment of nuisance parameters. We show that stau co-annihilation is now ruled out in the CMSSM at more than 95% confidence. Stop co-annihilation turns out to be one of the most promising mechanisms for achieving an appropriate relic density of dark matter in all three models, whilst avoiding all other constraints. We find high-likelihood regions of parameter space featuring light stops and charginos, making them potentially detectable in the near future at the LHC. We also show that tonne-scale direct detection will play a largely complementary role, probing large parts of the remaining viable parameter space, including essentially all models with multi-TeV neutralinos. (orig.)
Preheating Mechanism in F-term SUSY Hybrid Inflation
International Nuclear Information System (INIS)
Mazumdar, Arindam
2012-01-01
Supersymmetric F-term hybrid inflation is one of the most popular models of inflation. Preheating process occurs in this model via two different mechanism. Firstly the standard parametric resonance and secondly, the tachyonic preheating. Generally tachyonic preheating dominates the parametric resonance for this type of models. For different values of the parameters of the theory dominance of tachyonic preheating can vary.
Non-SUSY BSM Searches: Recent Results from ATLAS & CMS
Malek, Fairouz; The ATLAS collaboration
2015-01-01
The Standard Model of particle physics is a sensational success, especially since the discovery the 125 GeV Higgs boson. However, there are still numerous unanswered questions… Why is the Higgs so light? Do the interactions couplings unify and how can gravity be included? Why three fermion generations? What is dark matter? Theories Beyond the Standard Model (BSM), such as Grand Unified Theories, Extra Dimensions or Technicolour are trying to answer these questions. In this talk, we will focus on the most recent results obtained by the ATLAS and CMS experiments at the LHC for BSM searches, excluding Higgs and supersymmetry searches. New results in Dark matter, heavy narrow bosons, new heavy quarks and 3rd generation lepto-quarks will be presented. A brief summary of the perspectives at 14 Tev and at HL-LHC will be shown.
Dynamical SUSY breaking in meta-stable vacua
International Nuclear Information System (INIS)
Intriligator, Kenneth; Seiberg, Nathan; Shih, David
2006-01-01
Dynamical supersymmetry breaking in a long-lived meta-stable vacuum is a phenomenologically viable possibility. This relatively unexplored avenue leads to many new models of dynamical supersymmetry breaking. Here, we present a surprisingly simple class of models with meta-stable dynamical supersymmetry breaking: N = 1 supersymmetric QCD, with massive flavors. Though these theories are strongly coupled, we definitively demonstrate the existence of meta-stable vacua by using the free-magnetic dual. Model building challenges, such as large flavor symmetries and the absence of an R-symmetry, are easily accommodated in these theories. Their simplicity also suggests that broken supersymmetry is generic in supersymmetric field theory and in the landscape of string vacua
Strong Production SUSY Searches at ATLAS and CMS
Marshall, Z L
2015-01-01
The results of searches for strongly-produced supersymmetry at the Large Hadron Collider by the ATLAS and CMS collaborations are presented. Several of the historically strongest zero-and one-lepton final state searches have been updated to include multi-bin fits and combinations. In addition, new two-lepton final state search results are shown from CMS and ATLAS, which show 2.6 and 3.0 standard deviation excesses, respectively, above the standard model expectation, albeit in different regions of phase space. Both collaborations have also shown new searches that cover areas uncovered by previous searches, in both searches for light stops and searches for stealth supersymmetry.
SUSY QM from three domain walls in a scalar potential
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima; Lima, A.F. de [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Centro de Tecnologia. Unidade Academica de Fisica]. E-mail: aerlima@df.ufcg.edu.br; Bezerra de Mello, E.R.; Bezerra, V.B. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Fisica]. E-mails: emello@fisica.ufpb.br; valdir@fisica.ufpb.br
2007-07-01
We investigate the linear classical stability of Bogomol'nyi-Prasad-Sommerfield (BPS) on three domain wall solutions in a system of three coupled real scalar fields, for a general positive potential with a square form. From a field theoretic superpotential evaluated on the domain states, the connection between the supersymmetric quantum mechanics involving three-component eigenfunctions and the stability equation associated with three classical configurations is elaborated. (author)
On SUSY breaking and χSB from string duals
International Nuclear Information System (INIS)
Gomis, Jaume
2002-01-01
We find regular string duals of three-dimensional N=1 SYM with a Chern-Simons interaction at level k for SO and Sp gauge groups. Using the string dual we exactly reproduce the conjectured pattern of supersymmetry breaking proposed by Witten by showing that there is dynamical supersymmetry breaking for k 2h →Z 2 by analyzing the symmetries of the string solution
Short distance modifications to Newton's law in SUSY braneworld scenarios
International Nuclear Information System (INIS)
Palma, G.A.
2007-10-01
In braneworld models coming from string theory one generally encounters massless scalar degrees of freedom -moduli- parameterizing the volume of small compact extra-dimensions. Here we discuss the effects of such moduli on Newton's law for a fairly general 5-D supersymmetric braneworld scenario with a bulk scalar field φ.We show that the Newtonian potential describing the gravitational interaction between two bodies localized on the visible brane picks up a non-trivial contribution at short distances that depends on the shape of the superpotential W(φ) of the theory. In particular, we compute this contribution for dilatonic braneworld scenarios W(φ) ∝ e αφ (where a is a constant) and discuss the particular case of 5-D Heterotic M-theory. (orig.)
Recent Results on SUSY and Exotica Searches at the LHC
Directory of Open Access Journals (Sweden)
Grout Zara
2015-01-01
Full Text Available A review is presented of searches for Beyond the Standard Model (BSM physics at the ATLAS and CMS experiments at the Large Hadron Collider (LHC with emphasis on most recent results. This includes a summary of Supersymmetry searches covering strong, electroweak, and R-parity violating scenarios, and a range of exotica searches including heavy boson searches, extra dimensions, and long-lived particles. The status of BSM physics after the first data-taking period (Run 1 of the LHC and the prospects for the second data-taking period (Run 2, beginning in 2015, are discussed.
Extended tree-level gauge mediation
DEFF Research Database (Denmark)
Monaco, M.; Nardecchia, M.; Romanino, A.
2011-01-01
Tree-level gauge mediation (TGM) is a scenario of SUSY breaking in which the tree-level exchange of heavy (possibly GUT) vector fields generates flavor-universal sfermion masses. In this work we extend this framework to the case of E(6) that is the natural extension of the minimal case studied so...... if the gauge group does not contain SU(5). If SUSY breaking is mediated purely by the U(1) generator that commutes with SO(10) we obtain universal sfermion masses and thus can derive the CMSSM boundary conditions in a novel scenario....
International Nuclear Information System (INIS)
Calibbi, L.; Faccia, A.; Masiero, A.; Vempati, S. K.
2006-01-01
We analyze the complementarity between lepton flavor violation (LFV) and LHC experiments in probing the supersymmetric (SUSY) grand unified theories (GUT) when neutrinos get a mass via the seesaw mechanism. Our analysis is performed in an SO(10) framework, where at least one neutrino Yukawa coupling is necessarily as large as the top Yukawa coupling. Our study thoroughly takes into account the whole renormalization group running, including the GUT and the right-handed neutrino mass scales, as well as the running of the observable neutrino spectrum. We find that the upcoming (MEG, SuperKEKB) and future (PRISM/PRIME, super flavor factory) LFV experiments will be able to test such SUSY framework for SUSY masses to be explored at the LHC and, in some cases, even beyond the LHC sensitivity reach
Toward the realistic three-generation model in the (2,0) heterotic string compactification
International Nuclear Information System (INIS)
Asatryan, H.M.; Murayama, A.
1992-01-01
In this paper, the three generation models with SUSY SO(10) or SU(5) GUTs derived from the (2,0) compactification of E 8 x E' 8 heterotic string, the massless matter field spectra at the GUT scale M X and the breaking directions of GUT symmetries are discussed. A pseudo-left-right symmetric Pati-Salam model is naturally deduced in the SUSY SO(10) GUT and shown to have an interesting property, M x ≅ M P1 , M R ≅ 10 10 GeV and M S ( the scale of superpartner masses) ≅ 10 4 GeV, as a result of the renormalization group equation analysis using the new precise LEP data
Early universe cosmology. In supersymmetric extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Baumann, Jochen Peter
2012-03-19
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss
Early universe cosmology. In supersymmetric extensions of the standard model
International Nuclear Information System (INIS)
Baumann, Jochen Peter
2012-01-01
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) η-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss the
SUSY signals at DESY HERA in the no-scale flipped SU(5) supergravity model
Energy Technology Data Exchange (ETDEWEB)
Lopez, J.L.; Nanopoulos, D.V.; Wang, X.; Zichichi, A. (Center for Theoretical Physics, Department of Physics, Texas A M University, College Station, Texas 77843-4242 (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, Texas 77381 (United States) CERN, Geneva (Switzerland))
1993-11-01
Sparticle production and detection at DESY HERA are studied within the recently proposed no-scale flipped SU(5) supergravity model. Among the various reaction channels that could lead to sparticle production at HERA, only the following are within its limit of sensitivity in this model: [ital e][sup [minus
Signatures of SUSY dark matter at the LHC and in the spectra of cosmic rays
International Nuclear Information System (INIS)
Olzem, J.
2007-01-01
This thesis discusses the search for supersymmetry at the future Large Hadron Collider (LHC) and the ongoing construction of one of the four large LHC experiments, the Compact Muon Solenoid (CMS), and focuses on the detection of signals from the annihilation of supersymmetric dark matter in the spectra of cosmic rays. The final steps of assembly of 1061 silicon microstrip detector modules for the CMS tracker endcaps are performed at the 1. Physikalisches Institut B at the RWTH Aachen. A laser test facility for these modules was developed and is described in this thesis. In contrast to test procedures based only on the evaluation of pedestal and noise data, the test facility relies on the generation of signals in the silicon sensors by infrared laser illumination. The fully automatic test facility provides high throughput and easy operation for the series production of the modules. Its performance is validated by investigating a reference module with artificially prepared defects of three types: open wirebonds, short-circuited strips and pinholes. It is shown that all defects are clearly detected. In addition to defect detection, an indication for the type of defect is provided. In a further validation step, nine modules from a prototype series are investigated with the laser test facility. Confirming the earlier results on the reference module, defective strips are reliably identified. This thesis describes a novel approach of positron identification with the space-borne AMS-01 experiment, namely through the detection of bremsstrahlung conversion in a silicon microstrip detector. In order to obtain the highest positron selection efficiency possible, novel combinatorial track finding algorithms were developed, particularly optimized for the signature of converted bremsstrahlung. By applying restrictions on the invariant mass of particles the background to the positron sample is largely eliminated. The remaining background contamination is determined from large samples of Monte Carlo data taking into account the effects of the geomagnetic field. In order to remove atmospheric secondaries from the positron and electron samples, a precise method involving trajectory backtracing in the magnetic field of the Earth was developed and is applied individually to all positron and electron candidates. The positron fraction e + /(e + +e - ) is calculated for particle momenta in the range from 1 to 50 GeV/c. In addition to the positron fraction, the absolute fluxes of positrons and electrons are calculated from the event samples of the present analysis. For this purpose, a method was developed which allows the determination of the geomagnetic transmission as a function of momentum and direction of incidence with high accuracy. Finally, the positron fraction results from this analysis have been combined with results from earlier experiments. (orig.)
International Nuclear Information System (INIS)
Greiner, M.; Soff, G.
1992-12-01
The electromagnetic creation of various exotic particles in ultrarelativistic heavy-ion collisions is discussed. The production of intermediate mass Higgs bosons of the minimal supersymmetric extension of the Standard Model is enhanced over the Standard Model Higgs boson formation for certain model parameter choices and as a consequence might be detectable at LCH and SSC. We also investigate the electromagnetic generation of supersymmetric fermions and bosons as well as glueballs, mesons and fermions. (orig.)
Effective operators in SUSY, superfield constraints and searches for a UV completion
Dudas, E.
2015-01-01
We discuss the role of a class of higher dimensional operators in 4D N=1 supersymmetric effective theories. The Lagrangian in such theories is an expansion in momenta below the scale of "new physics" ($\\Lambda$) and contains the effective operators generated by integrating out the "heavy states" above $\\Lambda$ present in the UV complete theory. We go beyond the "traditional" leading order in this momentum expansion (in $\\partial/\\Lambda$). Keeping manifest supersymmetry and using superfield {\\it constraints} we show that the corresponding higher dimensional (derivative) operators in the sectors of chiral, linear and vector superfields of a Lagrangian can be "unfolded" into second-order operators. The "unfolded" formulation has only polynomial interactions and additional massive superfields, some of which are ghost-like if the effective operators were {\\it quadratic} in fields. Using this formulation, the UV theory emerges naturally and fixes the (otherwise unknown) coefficient and sign of the initial (higher...
Mass quantization in quantum and susy cosmological models with matter content
International Nuclear Information System (INIS)
Ortiz, C; Socorro, J; Tkach, V I; Torres, J; Rosales, J
2005-01-01
We present the study of the quantum closed Friedmann-Robertson-Walker (FRW) cosmological model with a matter content given by a perfect fluid with barotropic state equation p = γρ The Wheeler-DeWitt equation is viewed as the Schroedinger equation for the linear harmonic oscillator with energy E. Such type of Universe has quantized masses of the order of the Planck mass and harmonic oscillator wave functions. Then, we consider the n = 2 supersymmetric superfield approach for the same model and obtain a normalizable wave function (at zero energy) of the universe. Besides, the mass parameter spectrum is found in the Schroedinger picture, being similar to those obtained by other methods, using a black hole system
A new two-faced scalar solution and cosmological SUSY breaking
International Nuclear Information System (INIS)
Shmakova, Marina
2010-01-01
We propose a possible new way to resolve the long standing problem of strong supersymmetry breaking coexisting with a small cosmological constant. We consider a scalar component of a minimally coupled N = 1 supermultiplet in a general Friedmann-Robertson-Walker (FRW) expanding universe. We argue that a tiny term, proportional to H 2 ∼ 10 -122 in Plank's units, appearing in the field equations due to this expansion will provide both, the small vacuum energy and the heavy mass of the scalar supersymmetric partner. We present a non-perturbative solution for the scalar field with an unusual dual-frequency behavior. This solution has two characteristic mass scales related to the Hubble parameter as H 1/4 and H 1/2 measured in Plank's units.
Reducing the fine-tuning of gauge-mediated SUSY breaking
Energy Technology Data Exchange (ETDEWEB)
Casas, J.A.; Moreno, Jesus M. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Robles, Sandra [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); Rolbiecki, Krzysztof [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Warsaw, Faculty of Physics, Warsaw (Poland)
2016-08-15
Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A{sub t} = 0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A{sub t} ≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A{sub t} at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called ''little A{sub t}{sup 2}/m{sup 2} problem'', i.e. the fact that a large A{sub t}-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning. (orig.)
Susi hotelli kõrvale kerkib 30-meetrine tuletorn / Erki Varma
Varma, Erki
2002-01-01
Sõjaväearhitekt Johann Ostrat (1894-1979) kavandas 1936. a. Tallinna Sõjamäele viie hektari suuruse pargi, mille kohal oleks kõrgunud 130 m lift ja igavese tulega torn. Jüriöö Pargi Fond kavatseb planeeritud tuletorni valmis ehitada
Searches for rare top processes and decay and third generation SUSY
Zambito, Stefano; The ATLAS collaboration
2018-01-01
Many models of new physics, including natural models of Supersymmetry and vector-like quarks, predict processes that would be visible at the LHC in events with third generation quarks. These include searches for stop and sbottom particles in a variety of decay modes, as well as for flavour-changing neutral current top-quark decays. The modeling of the Standard Model backgrounds to these processes is difficult and vital to the success of the searches. This talk presents recent results from ATLAS and CMS on searches for rare top processes and stop and sbottom pair production, using the data collected during the LHC Run 2.
Bäcklund Transformations in 10D SUSY Yang-Mills Theories
Gervais, Jean-Loup
A Bäcklund transformation is derived for the Yang's type (super) equations previously derived (hep-th/9811108) by M. Saveliev and the author, from the ten-dimensional super-Yang-Mills field equations in an on-shell light cone gauge. It is shown to be based upon a particular gauge transformation satisfying nonlinear conditions which ensure that the equations retain the same form. These Yang's type field equations are shown to be precisely such that they automatically provide a solution of these conditions. This Bäcklund transformation is similar to the one proposed by A. Leznov for self-dual Yang-Mills in four dimensions. In the introduction a personal recollection on the birth of supersymmetry is given.
Search for SUSY in same-sign di-lepton events with the CMS detector
Energy Technology Data Exchange (ETDEWEB)
Stein, Matthias
2012-07-15
In this thesis a search for new physics is presented, based on events with two isolated same-sign leptons (muons and electrons), jets, and missing transverse energy. The analyzed data corresponds to an integrated luminosity of 1.1 fb{sup -1} and is collected with the CMS detector in proton-proton collisions at the LHC with a center-of-mass energy of 7 TeV. A counting experiment is established by developing an event selection in order to select signal events in three different channels ({mu}{mu}, e{mu} and ee), while rejecting the Standard Model background as efficiently as possible. Standard Model background contributions are classified into several categories and estimated using different techniques. A total of 7 events is observed in data, being in agreement with the Standard Model background prediction of 11{+-}1(stat.){+-}2.7(syst.) events. Hence, no evidence for new physics is found. The observations are utilized to constrain the cMSSM by setting upper exclusion limits on possible signal contributions. The technical part of this theses contributes to the planned upgrade of the CMS experiment, by giving a motivation for a certain readout design of the hadronic calorimeter, in order to improve the performance of the detector in future. (orig.)
Simultaneous B and L violation: new signatures from RPV-SUSY
International Nuclear Information System (INIS)
Faroughy, Cyrus; Prabhu, Siddharth; Zheng, Bob
2015-01-01
Studies of R-parity violating (RPV) supersymmetry typically assume that nucleon stability is protected by approximate baryon number (B) or lepton number (L) conservation. We present a new class of RPV models that violate B and L simultaneously (BLRPV), without inducing rapid nucleon decay. These models feature an approximate Z 2 e ×Z 2 μ ×Z 2 τ flavor symmetry, which forbids 2-body nucleon decay and ensures that flavor antisymmetric LLE c couplings are the only non-negligible L-violating operators. Nucleons are predicted to decay through N→Keμν and n→eμν; the resulting bounds on RPV couplings are rather mild. Novel collider phenomenology arises because the superpartners can decay through both L-violating and B-violating couplings. This can lead to, for example, final states with high jet multiplicity and multiple leptons of different flavor, or a spectrum in which depending on the superpartner, either B or L violating decays dominate. BLRPV can also provide a natural setting for displaced ν̃→μe decays, which evade many existing collider searches for RPV supersymmetry.
Simultaneous B and L violation: new signatures from RPV-SUSY
Energy Technology Data Exchange (ETDEWEB)
Faroughy, Cyrus [Department of Physics and Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States); Prabhu, Siddharth [Department of Physics, Yale University,New Haven, CT 06511 (United States); Zheng, Bob [Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor, MI 48109 (United States)
2015-06-11
Studies of R-parity violating (RPV) supersymmetry typically assume that nucleon stability is protected by approximate baryon number (B) or lepton number (L) conservation. We present a new class of RPV models that violate B and L simultaneously (BLRPV), without inducing rapid nucleon decay. These models feature an approximate Z{sub 2}{sup e}×Z{sub 2}{sup μ}×Z{sub 2}{sup τ} flavor symmetry, which forbids 2-body nucleon decay and ensures that flavor antisymmetric LLE{sup c} couplings are the only non-negligible L-violating operators. Nucleons are predicted to decay through N→Keμν and n→eμν; the resulting bounds on RPV couplings are rather mild. Novel collider phenomenology arises because the superpartners can decay through both L-violating and B-violating couplings. This can lead to, for example, final states with high jet multiplicity and multiple leptons of different flavor, or a spectrum in which depending on the superpartner, either B or L violating decays dominate. BLRPV can also provide a natural setting for displaced ν̃→μe decays, which evade many existing collider searches for RPV supersymmetry.
BRST invariant PV regularization of SUSY Yang–Mills and SUGRA
Indian Academy of Sciences (India)
2012-06-08
Jun 8, 2012 ... (PV) regularization of supersymmetric theories and its applications, and I often ... internal quantum numbers, and Fi , Da are auxiliary fields. .... and M is an auxiliary field (the normalization for M used here differs by a factor −1.
αs from hadron multiplicities via SUSY-like relation between anomalous dimensions
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Kotikov, Anatoly V.
2017-02-01
We recover in QCD an amazingly simple relationship between the anomalous dimensions, resummed through next-to-next-to-leading-logarithmic order, in the Dokshitzer-Gribov-Lipatov- Altarelli-Parisi evolution equations for the first Mellin moments D q,g (μ 2 ) of the quark and gluon fragmentation functions, which correspond to the average hadron multiplicities in jets initiated by quarks and gluons, respectively. This relationship, which is independent of the number of quark flavors, dramatically improves previous treatments by allowing for an exact solution of the evolution equations. So far, such relationships have only been known from supersymmetric QCD, where C F /C A = 1. This also allows us to extend our knowledge of the ratio D - g (μ 2 )/D - q (μ 2 ) of the minus components by one order in √(α s ). Exploiting available next-to-next-to-next-to-leading-order information on the ratio D g + (μ 2 )/D q + (μ 2 ) of the dominant plus components, we fit the world data of D q,g (μ 2 ) for charged hadrons measured in e + e - annihilation to obtain α s (5) (M Z )=0.1205 +0.016 -0.0020 .
SUSY shape-invariant Hamiltonians for the generalized dirac-coulomb problem
International Nuclear Information System (INIS)
Rodrigues, R. de Lima; Vaidya, Arvind Narayan
2007-02-01
A spin 1/2 relativistic particle described by a general potential in terms of the sum of the Coulomb potential with a Lorentz scalar potential is investigated via supersymmetry in quantum mechanics. (author)
A note on positive energy theorem for spaces with asymptotic SUSY compactification
International Nuclear Information System (INIS)
Dai Xianzhe
2005-01-01
We extend the higher dimensional positive mass theorem in [Dai, X., Commun. Math. Phys. 244, 335-345 (2004)] to the Lorentzian setting. This includes the original higher dimensional positive energy theorem whose spinor proof is given in [Witten, E., Commun. Math. Phys. 80, 381-402 (1981)] and [Parker, T., and Taubes, C., Commun. Math. Phys. 84, 223-238 (1982)] for dimension 4 and in [Zhang, X., J. Math. Phys. 40, 3540-3552 (1999)] for dimension 5
A Meta-analysis of the 8 TeV ATLAS and CMS SUSY Searches
Nachman, Benjamin
2015-01-01
Between the ATLAS and CMS collaborations at the LHC, hundreds of individual event selections have been measured in the data to look for evidence of supersymmetry at a center of mass energy of 8 TeV. While there is currently no significant evidence for any particular model of supersymmetry, the large number of searches should have produced some large statistical fluctuations. By analyzing the distribution of p-values from the various searches, we determine that the number of excesses is consistent with the Standard Model only hypothesis. However, we do find a significant shortage of signal regions with far fewer observed events than expected in both the ATLAS and CMS datasets. While not as compelling as a surplus of excesses, the lack of deficits could be a hint of new physics already in the 8 TeV datasets.
Report of the Beyond the MSSM Subgroup for the Tevatron Run II SUSY/Higgs Workshop
Ambrosanio, S.; Brignole, A.; Castro, A.; Chertok, M.B.; Cheung, King-man; Clavelli, L.; Cutts, D.; Cvetic, Mirjam; Dooling, D.; Dreiner, Herbert K.; Dutta, Bhaskar; Ellwanger, U.; Everett, L.L.; Feruglio, F.; Giudice, G.F.; Gunion, J.F.; Hewett, J.L.; Hugonie, C.; Kang, K.; Kang, S.K.; Landsberg, Greg L.; Langacker, P.; Mangano, Michelangelo L.; McKay, D.; Mohapatra, R.N.; Mrenna, S.; Muller, D.J.; Rattazzi, R.; Rizzo, T.; Wang, J.W.; Wells, J.D.; Zwirner, F.
2000-01-01
There are many low-energy models of supersymmetry breaking parameters which are motivated by theoretical and experimental considerations. Here, we discuss some of the lesser-known theories of low-energy supersymmetry, and outline their phenomenological consequences. In some cases, these theories have more gauge symmetry or particle content than the Minimal Supersymmetric Standard Model. In other cases, the parameters of the Lagrangian are unusual compared to commonly accepted norms (e.g., Wino LSP, heavy gluino LSP, light gluino, etc.). The phenomenology of supersymmetry varies greatly between the different models. Correspondingly, particular aspects of the detectors assume greater or lesser importance. Detection of supersymmetry and the determination of all parameters may well depend upon having the widest possible view of supersymmetry phenomenology.
Gauging MSSM global symmetries and SUSY breaking in de Sitter vacuum
Antoniadis, Ignatios
2016-01-01
We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and five operators that violate B and L.
Kiä kaetas eläjit, kas susi? / Jan Rahman
Rahman, Jan
2005-01-01
Filmidest : "Hunt" Autor-režissöör Priit Valkna. Allfilm : ETV, 2003 ; "Kaetajad" Autor-režissöör Priit Valkna. Allfilm, 2004.Kaetamise ja libahundiks jooksmise juhtumist Võrumaa Luutsniku külas
SUSY-QCD corrections to scalar quark pair production in e+e- annihilation
International Nuclear Information System (INIS)
Eberl, H.; Bartl, A.; Majerotto, W.
1996-01-01
We calculate the supersymmetric O(α s ) QCD corrections to the cross section e + e - →q i q j (i,j=1,2) within the minimal supersymmetric standard model. We pay particular attention to the case of the left-right squark mixing and to the renormalization of the mixing angle. The corrections due to gluino exchange turn out to be smaller than those due to gluon exchange, but they can be significant at higher energies, even for a gluino mass of a few hundred GeV. (orig.)
Complementarity of WIMP Sensitivity with direct SUSY, Monojet and Dark Matter Searches in the MSSM
Arbey, Alexandre; Mahmoudi, Farvah
2014-01-01
This letter presents new results on the combined sensitivity of the LHC and underground dark matter search experiments to the lightest neutralino as WIMP candidate in the minimal Supersymmetric extension of the Standard Model. We show that monojet searches significantly extend the sensitivity to the neutralino mass in scenarios where scalar quarks are nearly degenerate in mass with it. The inclusion of the latest bound by the LUX experiment on the neutralino-nucleon spin-independent scattering cross section expands this sensitivity further, highlighting the remarkable complementarity of jets/$\\ell$s+MET and monojet at LHC and dark matter searches in probing models of new physics with a dark matter candidate. The qualitative results of our study remain valid after accounting for theoretical uncertainties.
Energy Technology Data Exchange (ETDEWEB)
Calkins, Mathew; Gates, D.E.A.; Gates, S. James Jr. [Center for String and Particle Theory, Department of Physics, University of Maryland,College Park, MD 20742-4111 (United States); Golding, William M. [Sensors and Electron Devices Directorate, US Army Research Laboratory,Adelphi, Maryland 20783 (United States)
2015-04-13
Starting with valise supermultiplets obtained from 0-branes plus field redefinitions, valise adinkra networks, and the “Garden Algebra,” we discuss an architecture for algorithms that (starting from on-shell theories and, through a well-defined computation procedure), search for off-shell completions. We show in one dimension how to directly attack the notorious “off-shell auxiliary field” problem of supersymmetry with algorithms in the adinkra network-world formulation.
Status and prospects of light bino-higgsino dark matter in natural SUSY
Energy Technology Data Exchange (ETDEWEB)
Abdughani, Murat; Yang, Jin Min [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beingjing (China); Wu, Lei [Nanjing Normal University, Department of Physics and Institude of Theoretical Physics, Nanjing, Jiangsu (China)
2018-01-15
Given the recent progress in dark matter direction detection experiments, we examine a light bino-higgsino dark matter (DM) scenario (M{sub 1} < 100 GeV and μ < 300 GeV) in natural supersymmetry with the electroweak fine tuning measure Δ{sub EW} < 30. By imposing various constraints, we note that: (i) For sign(μ/M{sub 1}) = +1, the parameter space allowed by the DM relic density and collider bounds can almost be excluded by the very recent spin-independent (SI) scattering cross-section limits from the XENON1T (2017) experiment. (ii) For sign(μ/M{sub 1}) = -1, the SI limits can be evaded due to the cancelation effects in the hχ{sup 0}{sub 1}χ{sup 0}{sub 1} coupling, while rather stringent constraints come from the PandaX-II (2016) spin-dependent (SD) scattering cross-section limits, which can exclude the higgsino mass vertical stroke μ vertical stroke and the LSP mass m{sub χ{sup 0}{sub 1}} up to about 230 and 37 GeV, respectively. Furthermore, the surviving parameter space will be fully covered by the projected XENON1T experiment or the future trilepton searches at the HL-LHC. (orig.)
Profumo di SUSY: Suggestive Correlations in the ATLAS and CMS High Jet Multiplicity Data
Li, Tianjun; Nanopoulos, Dimitri V; Walker, Joel W
2011-01-01
We present persistently amassing evidence that the CMS and ATLAS Collaborations may indeed be already registering supersymmetry events at the Large Hadron Collider (LHC). Our analysis is performed in the context of a highly phenomenologically favorable model named No-Scale F-SU(5), which represents the unification of the F-lipped SU(5) Grand Unified Theory (GUT), two pairs of hypothetical TeV-scale vector-like supersymmetric multiplets derived out of F-Theory, and the dynamically established boundary conditions of No-Scale supergravity. We document highly suggestive correlations between the first inverse femtobarn of observations by CMS and ATLAS, where seductive excesses in multijet events, particularly those with nine or more jets, are unambiguously accounted for by a precision Monte-Carlo simulation of the F-SU(5) model space. This intimate correspondence is optimized by a unified gaugino mass in the neighborhood of M_{1/2}=518 GeV. We supplement this analysis by extrapolating for the expected data profile...
Dynamical SUSY Breaking at Meta-Stable Minima from D-branes at Obstructed Geometries
Franco, S; Franco, Sebastian; Uranga, Angel M .
2006-01-01
We study the existence of long-lived meta-stable supersymmetry breaking vacua in gauge theories with massless quarks, upon the addition of extra massive flavors. A simple realization is provided by a modified version of SQCD with N_{f,0} < N_c massless flavors, N_{f,1} massive flavors and additional singlet chiral fields. This theory has local meta-stable minima separated from a runaway behavior at infinity by a potential barrier. We find further examples of such meta-stable minima in flavored versions of quiver gauge theories on fractional branes at singularities with obstructed complex deformations, and study the case of the dP_1 theory in detail. Finally, we provide an explicit String Theory construction of such theories. The additional flavors arise from D7-branes on non-compact 4-cycles of the singularity, for which we find a new efficient description using dimer techniques.
Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation
Krippendorf, Sven
2009-01-01
We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario als...
Phenomenology of the minimal ЛЗ(10) sUsY model
Indian Academy of Sciences (India)
the quarks and leptons of one family are contained in a 16 dimensional spinor ... *This talk is based on the work in collaboration with T Blahzek, R Derm ihsek, L Rosz- kowski, R Ruiz de .... We discuss these two unexpected benefits below.
Cluster-enriched Yang-Baxter equation from SUSY gauge theories
Yamazaki, Masahito
2018-04-01
We propose a new generalization of the Yang-Baxter equation, where the R-matrix depends on cluster y-variables in addition to the spectral parameters. We point out that we can construct solutions to this new equation from the recently found correspondence between Yang-Baxter equations and supersymmetric gauge theories. The S^2 partition function of a certain 2d N=(2,2) quiver gauge theory gives an R-matrix, whereas its FI parameters can be identified with the cluster y-variables.
Search for SUSY in gauge mediated and anomaly mediated supersymmetry breaking models
International Nuclear Information System (INIS)
Nunnnemann, Thomas
2004-01-01
In this note, recent results on the search for Gauge Mediated Supersymmetry Breaking (GMSB) and Anomaly Mediated Supersymmetry Breaking (AMSB) at the LEP and Tevatron colliders are summarized. We report on DOe's search for GMSB in di-photon events with large missing transverse energy and discuss the sensitivity of similar searches based on future Tevatron integrated luminosities. (orig.)
Space-time dependent couplings In N = 1 SUSY gauge theories: Anomalies and central functions
International Nuclear Information System (INIS)
Babington, J.; Erdmenger, J.
2005-01-01
We consider N = 1 supersymmetric gauge theories in which the couplings are allowed to be space-time dependent functions. Both the gauge and the superpotential couplings become chiral superfields. As has recently been shown, a new topological anomaly appears in models with space-time dependent gauge coupling. Here we show how this anomaly may be used to derive the NSVZ β-function in a particular, well-determined renormalisation scheme, both without and with chiral matter. Moreover we extend the topological anomaly analysis to theories coupled to a classical curved superspace background, and use it to derive an all-order expression for the central charge c, the coefficient of the Weyl tensor squared contribution to the conformal anomaly. We also comment on the implications of our results for the central charge a expected to be of relevance for a four-dimensional C-theorem. (author)
Search for SUSY in same-sign di-lepton events with the CMS detector
International Nuclear Information System (INIS)
Stein, Matthias
2012-07-01
In this thesis a search for new physics is presented, based on events with two isolated same-sign leptons (muons and electrons), jets, and missing transverse energy. The analyzed data corresponds to an integrated luminosity of 1.1 fb -1 and is collected with the CMS detector in proton-proton collisions at the LHC with a center-of-mass energy of 7 TeV. A counting experiment is established by developing an event selection in order to select signal events in three different channels (μμ, eμ and ee), while rejecting the Standard Model background as efficiently as possible. Standard Model background contributions are classified into several categories and estimated using different techniques. A total of 7 events is observed in data, being in agreement with the Standard Model background prediction of 11±1(stat.)±2.7(syst.) events. Hence, no evidence for new physics is found. The observations are utilized to constrain the cMSSM by setting upper exclusion limits on possible signal contributions. The technical part of this theses contributes to the planned upgrade of the CMS experiment, by giving a motivation for a certain readout design of the hadronic calorimeter, in order to improve the performance of the detector in future. (orig.)
SUSY see-saw and NMSO(10)GUT inflation after BICEP2
Indian Academy of Sciences (India)
2016-01-13
Jan 13, 2016 ... Recently, BICEP2, a telescope mounted at the south pole for background imaging of cosmic extragalatic polarization claimed the detection of the signal of primordial gravitational waves. The gravitational waves active during the inflationary epoch produce polarization in cosmic microwave background.
A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model
Ellis, John; Pilaftsis, Apostolos
2010-01-01
We analyze the constraints imposed by experimental upper limits on electric dipole moments (EDMs) within the Maximally CP- and Minimally Flavour-Violating (MCPMFV) version of the MSSM. Since the MCPMFV scenario has 6 non-standard CP-violating phases, in addition to the CP-odd QCD vacuum phase \\theta_QCD, cancellations may occur among the CP-violating contributions to the three measured EDMs, those of the Thallium, neutron and Mercury, leaving open the possibility of relatively large values of the other CP-violating observables. We develop a novel geometric method that uses the small-phase approximation as a starting point, takes the existing EDM constraints into account, and enables us to find maximal values of other CP-violating observables, such as the EDMs of the Deuteron and muon, the CP-violating asymmetry in b --> s \\gamma decay, and the B_s mixing phase. We apply this geometric method to provide upper limits on these observables within specific benchmark supersymmetric scenarios, including extensions t...
SUGRA-GUT motivated SUSY search in the dielectron channel at D0
International Nuclear Information System (INIS)
1996-09-01
In this paper we present a search for events consistent with the production and decay of supersymmetric particles in the Supergravity- GUT framework in the D null detector at Fermilab. We examine the 1994-95 Run 1B data for events containing two or more electrons, two or more jets, and a substantial missing transverse energy. This is complementary to the search in the canonical jets and missing transverse energy channel. We observe 2 events in 92.9 pb -1 or the Run 1B data consistent with the estimated total background contribution of 3.0 ± 1.3 events from the Standard Model. The non- observation of excess events has been interpreted as an excluded region on the two-dimensional m 0 - m 1/2 plane
Non-SUSY Beyond Standard Model Searches: Recent Results from ATLAS and CMS
International Nuclear Information System (INIS)
Malek, Fairouz
2015-01-01
The Standard Model of particle physics is a sensational success, especially since the discovery of the 125 GeV Higgs boson. However, there are still numerous unanswered questions. Why is the Higgs so light? Do the interactions couplings unify and how can gravity be included? Why three fermion generations? What is dark matter? Theories Beyond the Standard Model (BSM), such as Grand Unified Theories, Extra Dimensions or Technicolour are trying to answer these questions. In these proceedings, we will focus on the most recent results obtained by the ATLAS and CMS experiments at the LHC for BSM searches, excluding Higgs and supersymmetry searches. New results on Dark Matter, heavy narrow-width resonances, new heavy quarks and third generation leptoquarks are presented. A summary of the prospects at 14 TeV and at the High Luminosity LHC period is given. (paper)
Non-SUSY Beyond Standard Model Searches: Recent Results from ATLAS and CMS
Malek, Fairouz
2015-01-01
The Standard Model of particle physics is a sensational success, especially since the discovery of the 125 GeV Higgs boson. However, there are still numerous unanswered questions. Why is the Higgs so light? Do the interactions couplings unify and how can gravity be included? Why three fermion generations? What is dark matter? Theories Beyond the Standard Model (BSM), such as Grand Unified Theories, Extra Dimensions or Technicolour are trying to answer these questions. In this proceedings, we ...
Muon anomalous magnetic moment in SUSY B−L model with inverse seesaw
Directory of Open Access Journals (Sweden)
Shaaban Khalil
2016-12-01
Full Text Available Motivated by the tension between the Higgs mass and muon g−2 in minimal supersymmetric standard model (MSSM, we analyze the muon g−2 in supersymmetric B−L extension of the standard model (BLSSM with inverse seesaw mechanism. In this model, the Higgs mass receives extra important radiative corrections proportional to large neutrino Yukawa coupling. We point out that muon g−2 also gets significant contribution, due to the constructive interferences of light neutralino effects. The light neutralinos are typically the MSSM Bino like and the supersymmetric partner of U(1B−L gauge boson (B˜′-ino. We show that with universal soft supersymmetry breaking terms, the muon g−2 resides within 2σ of the measured value, namely ∼20×10−10, with Higgs mass equal to 125 GeV.
Search for long lived particles at the LHC (SUSY+exotics physics scenarios)
Romanowska-Rybinska, Katarzyna
2012-01-01
Many models of physics Beyond the Standard Model (BSM) predict the existence of new heavy particles with long lifetimes. These particles come in many different types, but have one thing in common, they have very unique signatures at LHC experiments, which makes them easily distinguishable from Standard Model (SM) particles. Finding the signal of any of them would be a clear sign of BSM physics. In this paper we present search strategies and results of seven searches for long-lived exotic particles of different types, both charged and neutral, performed by the ATLAS and CMS experiments with 2011 pp collision data taken at LHC energy $\\sqrt{s}$ = 7 TeV.
Generalized ladder operators for the Dirac-Coulomb problem via SUSY QM
International Nuclear Information System (INIS)
Rodrigues, R. de Lima; Universidade Federal de Campina Grande, PB
2003-12-01
The supersymmetry in quantum mechanics and shape invariance condition are applied as an algebraic method to solving the Dirac-Coulomb problem. The ground state and the excited states are investigated via new generalized ladder operators. (author)
Non-SUSY Beyond Standard Model Searches: Recent Results from ATLAS and CMS
Malek, Fairouz; The ATLAS collaboration
2015-01-01
The Standard Model of particle physics is a sensational success, especially since the discovery of the 125 GeV Higgs boson. However, there are still numerous unanswered questions. Why is the Higgs so light? Do the interactions couplings unify and how can gravity be included? Why three fermion generations? What is dark matter? Theories Beyond the Standard Model (BSM), such as Grand Unified Theories, Extra Dimensions or Technicolour are trying to answer these questions. In this proceedings, we will focus on the most recent results obtained by the ATLAS and CMS experiments at the LHC for BSM searches, excluding Higgs and supersymmetry searches. New results on Dark matter, heavy narrow bosons, new heavy quarks and third generation leptoquarks are presented. A summary of the prospects at 14 TeV and at the High Luminosity LHC period is given.
A SUSY inspired simplified model for the 750 GeV diphoton excess
Energy Technology Data Exchange (ETDEWEB)
Gabrielli, E. [Dipart. di Fisica Teorica, Università di Trieste, Strada Costiera 11, I-34151 Trieste (Italy); INFN, Sezione di Trieste, Via Valerio 2, I-34127 Trieste (Italy); NICPB, Rävala 10, Tallinn 10143 (Estonia); Kannike, K., E-mail: kannike@cern.ch [NICPB, Rävala 10, Tallinn 10143 (Estonia); Mele, B. [INFN, Sezione di Roma, c/o Dipart. di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 2, I-00185 Rome (Italy); Raidal, M. [NICPB, Rävala 10, Tallinn 10143 (Estonia); Institute of Physics, University of Tartu (Estonia); Spethmann, C.; Veermäe, H. [NICPB, Rävala 10, Tallinn 10143 (Estonia)
2016-05-10
The evidence for a new neutral scalar particle from the 750 GeV diphoton excess, and the absence of any other signal of new physics at the LHC so far, suggests the existence of new coloured scalars. To study this possibility, we propose a supersymmetry inspired simplified model, extending the Standard Model with a singlet scalar and with heavy scalar fields carrying both colour and electric charges – new scalar quarks. To allow the latter to decay, and to generate the dark matter of the Universe, we also add a neutral fermion to the particle content. We show that this model provides a two-parameter fit to the observed diphoton excess consistently with cosmology, while the allowed parameter space is bounded by the consistency of the model. In the context of our simplified model this implies the existence of other supersymmetric particles accessible at the LHC, rendering this scenario falsifiable.
Signatures of SUSY dark matter at the LHC and in the spectra of cosmic rays
Energy Technology Data Exchange (ETDEWEB)
Olzem, J.
2007-02-27
This thesis discusses the search for supersymmetry at the future Large Hadron Collider (LHC) and the ongoing construction of one of the four large LHC experiments, the Compact Muon Solenoid (CMS), and focuses on the detection of signals from the annihilation of supersymmetric dark matter in the spectra of cosmic rays. The final steps of assembly of 1061 silicon microstrip detector modules for the CMS tracker endcaps are performed at the 1. Physikalisches Institut B at the RWTH Aachen. A laser test facility for these modules was developed and is described in this thesis. In contrast to test procedures based only on the evaluation of pedestal and noise data, the test facility relies on the generation of signals in the silicon sensors by infrared laser illumination. The fully automatic test facility provides high throughput and easy operation for the series production of the modules. Its performance is validated by investigating a reference module with artificially prepared defects of three types: open wirebonds, short-circuited strips and pinholes. It is shown that all defects are clearly detected. In addition to defect detection, an indication for the type of defect is provided. In a further validation step, nine modules from a prototype series are investigated with the laser test facility. Confirming the earlier results on the reference module, defective strips are reliably identified. This thesis describes a novel approach of positron identification with the space-borne AMS-01 experiment, namely through the detection of bremsstrahlung conversion in a silicon microstrip detector. In order to obtain the highest positron selection efficiency possible, novel combinatorial track finding algorithms were developed, particularly optimized for the signature of converted bremsstrahlung. By applying restrictions on the invariant mass of particles the background to the positron sample is largely eliminated. The remaining background contamination is determined from large samples of Monte Carlo data taking into account the effects of the geomagnetic field. In order to remove atmospheric secondaries from the positron and electron samples, a precise method involving trajectory backtracing in the magnetic field of the Earth was developed and is applied individually to all positron and electron candidates. The positron fraction e{sup +}/(e{sup +}+e{sup -}) is calculated for particle momenta in the range from 1 to 50 GeV/c. In addition to the positron fraction, the absolute fluxes of positrons and electrons are calculated from the event samples of the present analysis. For this purpose, a method was developed which allows the determination of the geomagnetic transmission as a function of momentum and direction of incidence with high accuracy. Finally, the positron fraction results from this analysis have been combined with results from earlier experiments. (orig.)
Searching for the standard model in the string landscape: SUSY GUTs
Raby, Stuart
2011-03-01
The standard model is the theory describing all observational data from the highest energies to the largest distances. (There is, however, one caveat: additional forms of energy, not part of the standard model, known as dark matter and dark energy must be included in order to describe the Universe at galactic scales and larger.) High energies refers to physics at the highest energy particle accelerators, including CERN's LEP II (which ceased operation in 2000 to begin construction of the Large Hadron Collider now in operation) and Fermilab's Tevatron, as well as to the energies obtained in particle jets created in so-called active galactic nuclei scattered throughout the visible Universe. Some of these extra-galactic particles bombard our own Earth in the form of cosmic rays, or super-energetic protons which scatter off nucei in the upper atmosphere. String theory is, on the other hand, an unfinished theoretical construct which attempts to describe all matter and their interactions in terms of the harmonic oscillations of open and/or closed strings. It is regarded as unfinished since at present it is a collection of ideas, tied together by powerful consistency conditions, called dualities, with the ultimate goal of finding the completed string theory. At the moment we only have descriptions which are valid in different mutually exclusive limits with names such as type I, IIA, IIB, heterotic, M and F theory. The string landscape has been described in the pages of many scholarly and popular works. It is perhaps best understood as the collection of possible solutions to the string equations; albeit these solutions look totally different in the different limiting descriptions. What do we know about the string landscape? We know that there are such a large number of possible solutions that the only way to represent this number is as 10500 or a 1 followed by 500 zeros. Note that this is not a precise value since the uncertainty is given by a number just as large. Moreover, we know that most of these string states look nothing like the standard model. They have the wrong matter and wrong forces. Moreover, they are not off by a small amount, they are totally wrong. So the question becomes, does string theory really describe our observable world? In order to address this question, one must find at least one string state that resembles it. One possibility is that our observable world is in fact a unique string state. If this is the case, then the problem becomes one of finding the proverbial needle in the largest possible haystack! On the other hand, there may be many states which are sufficiently close to the observable world, and we need only to understand why we are in this finite subspace of the string landscape. And perhaps there are good reasons why this subspace is preferred over 99.999 999 999...% of the myriad of non-standard-model-like string states. Perhaps, just by confining our attention to this subspace we can learn something about our observable world which we cannot learn otherwise. Thus the goal of this work is to understand what it takes to find the standard model in the string landscape.
Searching for the standard model in the string landscape: SUSY GUTs
International Nuclear Information System (INIS)
Raby, Stuart
2011-01-01
The standard model is the theory describing all observational data from the highest energies to the largest distances. (There is, however, one caveat: additional forms of energy, not part of the standard model, known as dark matter and dark energy must be included in order to describe the Universe at galactic scales and larger.) High energies refers to physics at the highest energy particle accelerators, including CERN's LEP II (which ceased operation in 2000 to begin construction of the Large Hadron Collider now in operation) and Fermilab's Tevatron, as well as to the energies obtained in particle jets created in so-called active galactic nuclei scattered throughout the visible Universe. Some of these extra-galactic particles bombard our own Earth in the form of cosmic rays, or super-energetic protons which scatter off nucei in the upper atmosphere. String theory is, on the other hand, an unfinished theoretical construct which attempts to describe all matter and their interactions in terms of the harmonic oscillations of open and/or closed strings. It is regarded as unfinished since at present it is a collection of ideas, tied together by powerful consistency conditions, called dualities, with the ultimate goal of finding the completed string theory. At the moment we only have descriptions which are valid in different mutually exclusive limits with names such as type I, IIA, IIB, heterotic, M and F theory. The string landscape has been described in the pages of many scholarly and popular works. It is perhaps best understood as the collection of possible solutions to the string equations; albeit these solutions look totally different in the different limiting descriptions. What do we know about the string landscape? We know that there are such a large number of possible solutions that the only way to represent this number is as 10 500 or a 1 followed by 500 zeros. Note that this is not a precise value since the uncertainty is given by a number just as large. Moreover, we know that most of these string states look nothing like the standard model. They have the wrong matter and wrong forces. Moreover, they are not off by a small amount, they are totally wrong. So the question becomes, does string theory really describe our observable world? In order to address this question, one must find at least one string state that resembles it. One possibility is that our observable world is in fact a unique string state. If this is the case, then the problem becomes one of finding the proverbial needle in the largest possible haystack! On the other hand, there may be many states which are sufficiently close to the observable world, and we need only to understand why we are in this finite subspace of the string landscape. And perhaps there are good reasons why this subspace is preferred over 99.999 999 999...% of the myriad of non-standard-model-like string states. Perhaps, just by confining our attention to this subspace we can learn something about our observable world which we cannot learn otherwise. Thus the goal of this work is to understand what it takes to find the standard model in the string landscape.
Anomaly mediated SUSY breaking scenarios in the light of cosmology and in the dark (matter)
Arbey, A; Tarhini, A
2011-01-01
Anomaly mediation is a popular and well motivated supersymmetry breaking scenario. Different possible detailed realisations of this set-up are studied and actively searched for at colliders. Apart from limits coming from flavour, low energy physics and direct collider searches, these models are usually constrained by the requirement of reproducing the observations on dark matter density in the universe. We reanalyse these bounds and in particular we focus on the dark matter bounds both considering the standard cosmological model and alternative cosmological scenarios. These scenarios do not change the observable cosmology but relic dark matter density bounds strongly depend on them. We consider few benchmark points excluded by standard cosmology dark matter bounds and suggest that loosening the dark matter constraints is necessary in order to avoid a too strong (cosmological) model dependence in the limits that are obtained for these models. We also discuss briefly the implications for phenomenology and in pa...
N=4 SUSY Yang-Mills: Three loops made simple(r)
Energy Technology Data Exchange (ETDEWEB)
Dokshitzer, Yu.L. [LPTHE, Universities of Paris-VI and VII and CNRS, Paris (France); Marchesini, G. [University of Milano-Bicocca and INFN Sezione di Milano-Bicocca, Milan (Italy)]. E-mail: marchesini@mib.infn.it
2007-03-15
We construct universal parton evolution equation that produces space- and time-like anomalous dimensions for the maximally super-symmetric N=4 Yang-Mills field theory model, and find that its kernel satisfies the Gribov-Lipatov reciprocity relation in three loops. Given a simple structure of the evolution kernel, this should help to generate the major part of multi-loop contributions to QCD anomalous dimensions, due to classical soft gluon radiation effects.
High scale parity invariance as a solution to the SUSY CP problem ...
Indian Academy of Sciences (India)
It is shown that if the supersymmetric Standard Model (MSSM) emerges as the low energy limit of a high scale left–right symmetric gauge structure, the number of uncontrollable CP violating phases of MSSM are drastically reduced. In particular it guarantees the vanishing of the dangerous phases that were at the root of the ...
Can the ''doublet-triplet splitting'' problem be solved without doublet-triplet splitting?
International Nuclear Information System (INIS)
Dvali, G.R.
1992-03-01
We consider a new possible mechanism for the natural solution of the doublet-triplet splitting problem in SUSY GUTs. In contrast to the usually discussed scenarios, in our case the GUT symmetry breaking does not provide any splitting between the Higgs doublet and the triplet masses. The weak doublet and its colour triplet partner both remain light, but the triplet automatically occurs decoupled from the quark and lepton superfields and cannot induce proton decay. The advantage of the above scenarios is the absence at the GUT scale of the baryon number violating the tree level d = 5 and d = 6 operators via the colour-triple exchange. It is shown that in flipped SU(5) GUT they do not appear at any scale. In the SO(10) model, such operators can be induced after SUSY breaking but are strongly suppressed. (author). 22 refs, 2 figs
Fermion masses and Higgs physics in grand unified theories
Energy Technology Data Exchange (ETDEWEB)
Bhatti, Abdul Aziz
2010-03-12
The Standard model of particle physics is a very successful theory of strong weak and electromagnetic interactions. This theory is perturbative at sufficiently high energies and renormalizable thus it describes these interactions at quantum level. However it has a number of limitations, one being the fact that it has 28 free parameters assuming massive neutrinos. Within the Standard model these parameters can not be explained, however they can be accommodated in the standard theory. Particularly the masses of the fermions are not predicted by the theory. The existence of the neutrino masses can be regarded as the first glimpse of the physics beyond the standard model. In this thesis we have described the quark and lepton masses and mixings in context of non-SUSY SO(10) and four zero texture (FZT). In the four zero texture case the fermion masses and mixing can be related. We have made some predictions using tribimaximal mixing, the near tribimaximal (TBM) mixing and the triminimal parameterization. Our results show that under the TBM the neutrinos have normal, but weak hierarchy. Under near tribimaximal mixing and the triminimal parameterization we find that the neutrino masses in general increase, if the value of solar angle increases from its TBM value and vice versa. It appears that the neutrinos become more and more degenerate for solar angle values higher than TBM value and hierarchical for lower values of solar angle. We also briefly discuss neutrino parameters in the SUSY SO(10) theories. An overview of SUSY SO(10) theories and proton decay is also presented. (orig.)
Impact of physical properties at very high energy scales on the superparticle mass spectrum
International Nuclear Information System (INIS)
Baer, H.; Diaz, M.; Quintana, P.; Tata, X.
2000-01-01
We survey a variety of proposals for new physics at high scales that serve to relate the multitude of soft supersymmetry breaking parameters of the MSSM. We focus on models where the new physics results in non-universal soft parameters, in sharp contrast with the usually assumed mSUGRA framework. These include (i) SU(5) and SO(10) grand unified (GUT) models, (ii) the MSSM plus a right-handed neutrino, (iii) models with effective supersymmetry, (iv) models with anomaly-mediated SUSY breaking and gaugino mediated SUSY breaking, (v) models with non-universal soft terms due to string dynamics, and (vi) models based on M-theory. We outline the physics behind these models, point out some distinctive features of the weak scale sparticle spectrum, and allude to implications for collider experiments. To facilitate future studies, for each of these scenarios, we describe how collider events can be generated using the program ISAJET. Our hope is that detailed studies of a variety of alternatives will help point to the physics underlying SUSY breaking and how this is mediated to the observable sector, once sparticles are discovered and their properties measured. (author)
Supersymmetric seesaw inflection
International Nuclear Information System (INIS)
Aulakh, Charanjit S.; Garg, Ila
2013-01-01
We showed that Supersymmetric Unified theories which explain small neutrino masses via renormalizable Type-I-see-saw mechanism can also support slow roll inflection point inflation. In such a scenario inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, slepton and right handed sneutrino. The scale of inflation is set by right handed neutrino mass M υc ∼10 6 10 12 GeV and inflation parameters are determined in terms of Dirac and Majorana couplings responsible for neutrino masses. The fine tuning conditions to have effective slow roll inflation are determined in terms of superpotential parameters (Dirac and Majorana couplings). This is in contrast to MSSM or Dirac neutrino inflection scenarios where fine tuning conditions are on soft Susy breaking parameters. In our case M υc ≫ M Susy , so soft Susy breaking parameters have hardly any role to play in fine tuning. The fine tuning conditions are thus radiatively stable due to nonrenormalization theorems. Reheating occurs via instant preheating which dumps all the inflation energy into MSSM degrees of freedom giving a high reheat temperature T rh ≅ M υc 10 6 GeV ∼ 10 1l 10 15 GeV. We also examined how this scenario can be embedded in realistic New Minimal Supersymmetric SO(10) Grand Unified Theory. (author)
Discrete symmetries in the heterotic-string landscape
International Nuclear Information System (INIS)
Athanasopoulos, P
2015-01-01
We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ 2 × ℤ 2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories. (paper)
Discrete symmetries in the heterotic-string landscape
Athanasopoulos, P.
2015-07-01
We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ2 × ℤ2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories.
Supermatrix models for M-theory based on osp(1 vertical bar 32, R)
International Nuclear Information System (INIS)
Bagnoud, Maxime; Carlevaro, Luca; Bilal, Adel
2002-01-01
Taking seriously the hypothesis that the full symmetry algebra of M-theory is osp(1 vertical bar 32, R), we derive the supersymmetry transformations for all fields that appear in 11- and 12-dimensional realizations and give the associated SUSY algebras. We study the background-independent osp(1 vertical bar 32, R) cubic matrix model action expressed in terms of representations of the Lorentz groups SO(10,2) and SO(10,1). We explore further the 11-dimensional case and compute an effective action for the BFSS-like degrees of freedom. We find the usual BFSS action with additional terms incorporating couplings to transverse 5-branes, as well as a mass-term and an infinite tower of higher-order interactions
International Nuclear Information System (INIS)
Kuroki, Tsunehide; Sugino, Fumihiko
2017-01-01
In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Impact of SUSY-QCD corrections on neutralino-stop co-annihilation and the neutralino relic density
Energy Technology Data Exchange (ETDEWEB)
Harz, Julia [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Herrmann, Bjoern [Savoie Univ./CNRS, Annecy-le-Vieux (France). LAPTh; Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Kovarik, Karol [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Theoretische Physik; Le Boulc' h, Quentin [Grenoble Univ./CNRS-IN2P3/INPG, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie
2013-02-15
We have calculated the full O({alpha}{sub s}) supersymmetric QCD corrections to neutralino-stop coannihilation into electroweak vector and Higgs bosons within the Minimal Supersymmetric Standard Model (MSSM).We performed a parameter study within the phenomenological MSSM and demonstrated that the studied co-annihilation processes are phenomenologically relevant, especially in the context of a 126 GeV Higgs-like particle. By means of an example scenario we discuss the effect of the full next-to-leading order corrections on the co-annihilation cross section and show their impact on the predicted neutralino relic density. We demonstrate that the impact of these corrections on the cosmologically preferred region of parameter space is larger than the current experimental uncertainty of WMAP data.
Higgs, di-Higgs and tri-Higgs production via SUSY processes at the LHC with 14 TeV
van Beekveld, M.; Beenakker, W.; Caron, S.; Castelijn, R.; Lanfermann, M.; Struebig, A.
2015-01-01
We have systematically investigated the production of a Higgs boson with a mass of about 125 GeV in the decays of supersymmetric particles within the phenomenological MSSM (pMSSM). We find regions of parameter space that are consistent with all world data and that predict a sizeable rate of
Directory of Open Access Journals (Sweden)
Tsunehide Kuroki
2017-06-01
Full Text Available In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Energy Technology Data Exchange (ETDEWEB)
Kuroki, Tsunehide, E-mail: kuroki@dg.kagawa-nct.ac.jp [General Eduction, National Institute of Technology, Kagawa College, 551 Kohda, Takuma-cho, Mitoyo, Kagawa 769-1192 (Japan); Sugino, Fumihiko, E-mail: fusugino@gmail.com [Okayama Institute for Quantum Physics, Furugyocho 1-7-36, Naka-ku, Okayama 703-8278 (Japan)
2017-06-15
In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Energy Technology Data Exchange (ETDEWEB)
Gates, D.E.A. [Jefferson Physical Laboratory, Harvard University,17 Oxford St., Cambridge, MA, 02138 (United States); Gates, James S. Jr. [Center for String and Particle Theory, Dept. of Physics, University of Maryland, 4150 Campus Dr., College Park, MD, 20472 (United States); Department of Physics and Astronomy, Dartmouth College,6127 College St., Hanover, NH, 03755 (United States); Stiffler, Kory [Department of Chemistry, Physics, and Astronomy, Indiana University Northwest, 3400 Broadway, Gary, Indiana, 46408 (United States)
2016-08-10
We present an expanded and detailed discussion of the mathematical tools required to cull and filter representations of the Coxeter Group BC{sub 4} into providing bases for the construction of minimal off-shell representations of the 4D, N = 1 spacetime supersymmetry algebra.
White, M J; Parker, M A
2005-01-01
We address the problem of mass measurements of supersymmetric particles at the Large Hadron Collider, using the ATLAS detector as an example. By using Markov Chain sampling techniques to combine standard measurements of kinematic edges in the invariant mass distributions of decay products with a measurement of a missing $p_T$ cross-section, we show that the precision of mass measurements at the LHC can be dramatically improved, even when we do not assume that we have measured the kinematic endpoints precisely, or that we have identified exactly which particles are involved in the decay chain causing the endpoints. The generality of the technique is demonstrated in a preliminary investigation of a non-universal SUGRA model, in which we relax the requirements of mSUGRA by breaking the degeneracy of the GUT scale gaugino masses. The model studied is compatible with the WMAP limits on dark matter relic density.
Reach of the high-energy LHC for gluinos and top squarks in SUSY models with light Higgsinos
Baer, Howard; Barger, Vernon; Gainer, James S.; Serce, Hasan; Tata, Xerxes
2017-12-01
We examine the top squark (stop) and gluino reach of the proposed 33 TeV energy upgrade of the Large Hadron Collider (LHC33) in the Minimal Supersymmetric Standard Model (MSSM) with light Higgsinos and relatively heavy electroweak gauginos. In our analysis, we assume that stops decay to Higgsinos via t˜1→t Z˜1, t˜1→t Z˜2, and t˜1→b W˜1 with branching fractions in the ratio 1 ∶1 ∶2 (expected if the decay occurs dominantly via the superpotential Yukawa coupling), while gluinos decay via g ˜→t t˜1 or via three-body decays to third-generation quarks plus Higgsinos. These decay patterns are motivated by models of natural supersymmetry where Higgsinos are expected to be close in mass to mZ, but gluinos may be as heavy as 5-6 TeV, and stops may have masses up to ˜3 TeV . We devise cuts to optimize the signals from stop and gluino pair production at LHC33. We find that experiments at LHC33 should be able to discover stops with >5 σ significance if mt˜1<2.3 (2.8) [3.2] TeV for an integrated luminosity of 0.3 (1) [3 ] ab-1 . The corresponding reach for gluinos extends to 5 (5.5) [6] TeV. These results imply that experiments at LHC33 should be able to discover at least one of the stop or gluino pair signals even with an integrated luminosity of 0.3 ab-1 for natural supersymmetry models with no worse than 3% electroweak fine-tuning and quite likely both gluinos and stops for an integrated luminosity of 3 ab-1 .
International Nuclear Information System (INIS)
Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.
1995-01-01
Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)
Non-universal gaugino mass GUT models in the light of dark matter and LHC constraints
International Nuclear Information System (INIS)
Chakrabortty, Joydeep; Mohanty, Subhendra; Rao, Soumya
2014-01-01
We perform a comprehensive study of SU(5), SO(10) and E(6) supersymmetric GUT models where the gaugino masses are generated through the F-term breaking vacuum expectation values of the non-singlet scalar fields. In these models the gauginos are non-universal at the GUT scale unlike in the mSUGRA scenario. We discuss the properties of the LSP which is stable and a viable candidate for cold dark matter. We look for the GUT scale parameter space that leads to the the lightest SM like Higgs mass in the range of 122–127 GeV compatible with the observations at ATLAS and CMS, the relic density in the allowed range of WMAP-PLANCK and compatible with other constraints from colliders and direct detection experiments. We scan universal scalar (m 0 G ), trilinear coupling A 0 and SU(3) C gaugino mass (M 3 G ) as the independent free parameters for these models. Based on the gaugino mass ratios at the GUT scale, we classify 25 SUSY GUT models and find that of these only 13 models satisfy the dark matter and collider constraints. Out of these 13 models there is only one model where there is a sizeable SUSY contribution to muon (g−2)
Neutrino oscillations from discrete non-Abelian family symmetries
International Nuclear Information System (INIS)
Schmaltz, M.
1994-11-01
The author discusses a SUSY-GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10) x Δ(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (1) they offer a solution to the solar neutrino problem, (2) the tau neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (3) they suggest a positive result for the ν μ → ν τ oscillation searches by the CHORUS and NOMAD collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. Well-known and once successful mass and angle relations, such as the SU(5) relation λ b GUT = λ t GUT , are found to be in conflict with the current experimental status. Attempts to correct these relations seem to lead to rather contrived models
Neutrino oscillations from discrete non-Abelian family symmetries
International Nuclear Information System (INIS)
Schmaltz, M.
1995-01-01
I disuss a SUSY GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10)xΔ(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (i) they offer a solution to the solar neutrino problem, (ii) the τ neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (iii) they suggest a positive result for the ν μ →ν τ oscillation searches by the CHORUS and NOMAD Collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. The predictions from well-known mass and angle relations, such as the relation λ b GUT =λ τ GUT , fail in many cases. Attempts to correct these relations seem to lead to rather contrived models
Neutrino physics and the flavor problem
International Nuclear Information System (INIS)
King, S. F.; Peddie, I. N. R.
2004-01-01
We consider the problem of trying to understand the recently measured neutrino data simultaneously with understanding the hierarchical form of quark and charged-lepton Yukawa matrices. We summarize the data that a successful model of neutrino mass must predict, and then move on to attempting to do so in the context of spontaneously broken 'family' symmetries. We consider first an abelian U(1) family symmetry, which appears in the context of a type-I string model. Then we consider a model based on a non-abelian SU(3) F , which is the maximal family group consistent with an SO(10) GUT. In this case, the symmetry is more constraining, and is examined in the context of SUSY field theory.
The lepton flavor violating exclusive b bar → s bar ℓi- ℓj+ decays in SUSY without R-parity
Sheng, Jin-Huan; Song, Jia-Jia; Wang, Ru-Min; Yang, Ya-Dong
2018-05-01
Inspired by the recent anomaly measurements of the lepton-flavor violating decays h → μτ and the lepton flavor non-universality in decays b bar → s bar ℓ-ℓ+, we investigate the lepton flavor violating exclusive b bar → s bar ℓi- ℓj+ (i ≠ j and ℓ = e , μ , τ) decays within supersymmetry. Relevant R-parity violating couplings are constrained by using the latest experimental upper limits on the branching ratios of Bs → ℓi- ℓj+ and B →K (*) ℓi- ℓ j + flavor changing neutral current processes, and we find that all relevant branching ratios are very sensitive to the moduli of the squark and sneutrino exchange coupling products. In addition, the constrained lepton number violating effects on the dilepton invariant mass spectra, the single lepton polarization asymmetries and the differential forward-backward asymmetries are also studied. These lepton-flavor violating B decays could be used for the search of lepton flavor violation at the running LHC and the forthcoming Belle-II.
A search for SUSY particles in e+e- annihilations at √s=50-60.8 GeV
International Nuclear Information System (INIS)
Sakai, Y.; Abe, K.; Fujii, Y.; Higashi, Y.; Kim, S.K.; Kurihara, Y.; Maki, A.; Nozaki, T.; Omori, T.; Sagawa, H.; Sugimoto, Y.; Takaiwa, Y.; Terada, S.; Gu, P.; Cheng, C.P.; Li, J.; Li, Y.K.; Mao, Z.P.; Ye, M.H.; Xu, Y.T.; Zhu, Y.C.; Imlay, R.; Kirk, P.; Lim, J.; McNeil, R.R.; Metcalf, W.; Myung, S.S.; Lusin, S.; Rosenfeld, C.; Wang, A.T.M.; Wilson, S.; Frautschi, M.; Kagan, H.; Kass, R.; Trahern, C.G.; Breedon, R.E.; Kim, G.N.; Ko, W.; Lander, R.L.; Maeshima, K.; Malchow, R.L.; Smith, J.R.; Stuart, D.; Williams, M.C.S.; Kajino, F.; Perticone, D.; Poling, R.; Thomas, T.; Ishi, Y.; Miyano, K.; Miyata, H.; Sasaki, T.; Yamashita, Y.; Bacala, A.; Auchincloss, P.; Blanis, D.; Bodek, A.; Budd, H.; Eno, S.; Harada, H.; Ho, Y.H.; Kim, Y.K.; Kumita, T.; Mori, T.; Shaw, N.M.; Sill, A.; Thorndike, E.H.; Ueno, K.; Zheng, H.W.; Fry, C.A.; Olsen, S.L.; Itoh, H.; Kobayashi, S.; Murakami, A.; Toyoshima, K.; Kang, J.S.; Kim, H.J.; Lee, M.H.; Han, D.H.; Kim, E.J.; Son, D.; Kojima, T.; Matsumoto, S.; Tanaka, R.; Yamagishi, Y.; Yasuda, T.; Yokota, H.; Ishizuka, T.; Ohta, K.
1990-01-01
Searches for the pair production of the supersymmetric partner particles of leptons, quarks, and non-minimal Higgs have been made in e + e - annihilations at center-of-mass energies between 50 and 60.8 GeV using the AMY detector at TRISTAN. No evidence for their existence is observed and 95% CL mass limits are presented. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kniehl, B.A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Maniatis, M. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Weber, M.M. [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany)
2010-09-15
The discovery of charged Higgs bosons is of particular importance, since their existence is predicted by supersymmetry and they are absent in the Standard Model (SM). If the charged Higgs bosons are too heavy to be produced in pairs at future linear colliders, single production associated with a top and a bottom quark is enhanced in parts of the parameter space. We present the next-to-leading-order calculation in supersymmetric QCD within the minimal supersymmetric SM (MSSM), completing a previous calculation of the SM-QCD corrections. In addition to the usual approach to perform the loop integration analytically, we apply a numerical approach based on the Bernstein-Tkachov theorem. In this framework, we avoid some of the generic problems connected with the analytical method. (orig.)
The lepton flavor violating exclusive b¯→s¯ℓi−ℓj+ decays in SUSY without R-parity
Directory of Open Access Journals (Sweden)
Jin-Huan Sheng
2018-05-01
Full Text Available Inspired by the recent anomaly measurements of the lepton-flavor violating decays h→μτ and the lepton flavor non-universality in decays b¯→s¯ℓ−ℓ+, we investigate the lepton flavor violating exclusive b¯→s¯ℓi−ℓj+(i≠j and ℓ=e,μ,τ decays within supersymmetry. Relevant R-parity violating couplings are constrained by using the latest experimental upper limits on the branching ratios of Bs→ℓi−ℓj+ and B→K(⁎ℓi−ℓj+ flavor changing neutral current processes, and we find that all relevant branching ratios are very sensitive to the moduli of the squark and sneutrino exchange coupling products. In addition, the constrained lepton number violating effects on the dilepton invariant mass spectra, the single lepton polarization asymmetries and the differential forward–backward asymmetries are also studied. These lepton-flavor violating B decays could be used for the search of lepton flavor violation at the running LHC and the forthcoming Belle-II.
Dhuria, Mansi; Misra, Aalok
2013-02-01
Using the (nearly) Ricci-flat Swiss-Cheese metric of Misra (2012) [1], in the context of a mobile space-time filling D3-brane restricted to a nearly special Lagrangian sub-manifold (in the large volume limit, the pull-back of the Kähler form close to zero and the real part of the pull-back of e, θ=π/2 times the nowhere-vanishing holomorphic three-form providing the volume form on the three-cycle) of the "big" divisor with (fluxed stacks of) space-time filling D7-branes also wrapping the "big" divisor (corresponding to a local minimum), we provide an explicit identification of the electron and the u-quark, as well as their SU (2-singlet cousins, with fermionic superpartners of four Wilson line moduli; their superpartners turn out to be very heavy, the Higgsino-mass parameter turns out to be large, one obtains one light (with a mass of 125 GeV) and one heavy Higgs and the gluino is long lived (from a collider point of view) providing a possible realization of "μ-Split Supersymmetry". By explicitly calculating the lifetimes of decays of the co-NLSPs - the first generation squark/slepton and a neutralino - to the LSP - the gravitino - as well as gravitino decays, we verify that BBN constraints relevant to the former as well as the requirement of the latter to be (more than) the age of the universe, are satisfied. For the purpose of calculation of the gravitino relic density in terms of the neutralino/slepton relic density, we evaluate the latter by evaluating the neutralino/slepton (co-)annihilation cross sections and hence show that the former satisfies the requirement for a dark matter candidate.
International Nuclear Information System (INIS)
Dhuria, Mansi; Misra, Aalok
2013-01-01
Using the (nearly) Ricci-flat Swiss-Cheese metric of Misra (2012) [1], in the context of a mobile space–time filling D3-brane restricted to a nearly special Lagrangian sub-manifold (in the large volume limit, the pull-back of the Kähler form close to zero and the real part of the pull-back of e −iθ , θ=(π)/2 times the nowhere-vanishing holomorphic three-form providing the volume form on the three-cycle) of the “big” divisor with (fluxed stacks of) space–time filling D7-branes also wrapping the “big” divisor (corresponding to a local minimum), we provide an explicit identification of the electron and the u-quark, as well as their SU(2) L -singlet cousins, with fermionic superpartners of four Wilson line moduli; their superpartners turn out to be very heavy, the Higgsino-mass parameter turns out to be large, one obtains one light (with a mass of 125 GeV) and one heavy Higgs and the gluino is long lived (from a collider point of view) providing a possible realization of “μ-Split Supersymmetry”. By explicitly calculating the lifetimes of decays of the co-NLSPs – the first generation squark/slepton and a neutralino – to the LSP – the gravitino – as well as gravitino decays, we verify that BBN constraints relevant to the former as well as the requirement of the latter to be (more than) the age of the universe, are satisfied. For the purpose of calculation of the gravitino relic density in terms of the neutralino/slepton relic density, we evaluate the latter by evaluating the neutralino/slepton (co-)annihilation cross sections and hence show that the former satisfies the requirement for a dark matter candidate.