WorldWideScience

Sample records for yttrium-containing advanced ceramics

  1. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.

    1999-01-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays 60 Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year

  2. Determination of copper oxidizing power in superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Pontaler, R.P.; Lebed', N.B.

    1989-01-01

    A new photometric method for determining the formal copper degree of oxidation and oxygen deficiency in superconducting high-temperature oxides containing yttrium, barium and copper is developed. The method is based on oxidation of Co(2) complex with EDTA by Cu(3) ions in acetrate buffer solution with pH 4.2-4.7 and allows one to determine 1-10% of Cu(3). Relative standard deviation when determining Cu(3) makes up 0.03-0.05. Using a qualitative reaction with the application of sodium vanadate hydrochloride solution the absence of peroxide compound in superconducting yttrium ceramics is ascertained

  3. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  4. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    Science.gov (United States)

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  5. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    Science.gov (United States)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  6. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Steere, D.W.; Clark, B.M.; Sundaram, S.K. [Alfred University, Terahertz and Millimeter Waves Laboratory (T-Lab), Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred, NY (United States); Gaume, R. [Townes Laser Institute and the NanoScience Technology Center, CREOL, The College of Optics and Photonics, Orlando, FL (United States)

    2017-08-15

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials. (orig.)

  7. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics; Vliyanie termoradiatsionnykh obrabotok na sintez vysokotempiraturnykh sverkhprovodyaschikh ittrievykh keramik

    Energy Technology Data Exchange (ETDEWEB)

    Bitenbaev, M I; Polyakov, A I [Inst. Yadernoj Fiziki Natsionalnogo Yadernogo Tsentra Respubliki Kazakhstan, Almaty (Kazakhstan)

    1999-07-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays {sup 60}Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year.

  8. Microstructure and defect chemistry of yttrium aluminium garnet ceramics

    International Nuclear Information System (INIS)

    Schuh, L.H.

    1989-01-01

    This thesis describes basic aspects concerning the defect chemistry and the microstructure of yttrium aluminium garnet ceramics. The work consists of three parts: a literature study, an experimental part and a section giving computer simulation data of defects. (author). 320 refs.; 68 figs.; 72 schemes; 32 tabs

  9. Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties

    Science.gov (United States)

    Tahara, Ryuki; Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2018-06-01

    Excellent corrosion-resistant materials have been strongly required to reduce particle contamination during the plasma process in semiconductor production. Yttrium oxyfluoride can be a candidate as highly corrosion-resistant material. In this study, three types of dense yttrium oxyfluoride ceramics with different oxygen contents, namely, YOF, Y5O4F7 and Y5O4F7 + YF3, were fabricated by hot pressing, and their mechanical, thermal, and electrical properties were evaluated. Y5O4F7 ceramics showed an excellent thermal stability up to 800 °C, a low loss factor, and volume resistivity comparable to conventional plasma-resistant oxides, such as Y2O3. From these results, yttrium oxyfluoride ceramics are strongly suggested to be used as electrostatic chucks in semiconductor production.

  10. Optical properties of ytterbium-doped yttrium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V.I.; Maksimov, R.N. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation); Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira 19, 620002 Ekaterinburg (Russian Federation); Osipov, V.V.; Shitov, V.A.; Lipchak, A.I. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation)

    2017-05-15

    Ytterbium-doped yttrium oxide (Yb:Y{sub 2}O{sub 3}) transparent ceramics with different sintering additives (Lu{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, or HfO{sub 2}) were fabricated using nanopowders produced by laser ablation. Transmission and photoluminescence spectra of the obtained ceramics were investigated at room temperature. Highest in-line transmittance was over 80% at the wavelength of 1060 nm for 2 mm thick Yb:Y{sub 2}O{sub 3} ceramics with zirconium and hafnium. Divalent Yb ions with the ground state electron configuration 4f{sup 13}6s were revealed. The absorption and emission bands caused by s <-> s transitions of these ions were observed in the IR spectral range of Yb{sup 3+} ions. The superposition of both Yb{sup 3+} and Yb{sup 2+} emission bands leads to an effective broadening of the whole luminescence band. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. III Advanced Ceramics and Applications Conference

    CERN Document Server

    Gadow, Rainer; Mitic, Vojislav; Obradovic, Nina

    2016-01-01

    This is the Proceedings of III Advanced Ceramics and Applications conference, held in Belgrade, Serbia in 2014. It contains 25 papers on various subjects regarding preparation, characterization and application of advanced ceramic materials.

  12. New hydrotalcite-like compounds containing yttrium

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.M.; Barriga, C.; Ulibarri, M.A. [Universidad de Cordoba (Spain)] [and others

    1997-01-01

    The synthesis of hydrotalcite-type compounds containing yttrium was carried out by the coprecipitation of Mg(II), Al(III), and Y(III) cations at 60 degrees C with strong alkaline solutions. Thermal treatments were applied and changes studied.

  13. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  14. Kinetics of yttrium dissolution from waste ceramic dust

    OpenAIRE

    STOPIC SRECKO R.; FRIEDRIH BERND G.

    2016-01-01

    Yttrium is a silvery transition metal and has similar chemical properties to lanthanoids. Because of this similarity, yttrium belongs to rare earth elements. Ytttrium and yttrium oxide are mostly used in fluoroscent lamps, production of electrodes, in electronic filters, lasers, superconductors and as additives in various materials to improve their properties. Yttrium is mainly recovered from the minerals monazite [(Ce,La,Th,Nd,Y)PO4] and xenotime YPO4.The presence of radioactive elements suc...

  15. Positron annihilation in transparent ceramics

    Science.gov (United States)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  16. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  17. Industrial precipitation of yttrium chloride and zirconyl chloride: Effect of pH on ceramic properties for yttria partially stabilised zirconia

    International Nuclear Information System (INIS)

    Carter, G.A.; Hart, R.D.; Rowles, M.; Ogden, M.I.; Buckley, C.E.

    2009-01-01

    Two 3 mol% partially stabilised zirconia (P-SZ) samples suitable for the SOFC market were manufactured from solutions through to ceramics using a method similar to a known industrial process. The only difference in preparation of the two 3 mol% P-SZ samples was the pH of precipitation which was set at pH 3 or 12. Particle size measurements by dynamic light scattering were used to characterise the precipitate and the filtration rates were investigated. Five point N 2 -BET was used to investigate the specific surface area before and after calcination with the response to temperature tracked. Similarly TGA/DTA investigation was used to determine the calcination point during all of these tests and it was found that both powders behaved similarly. XRD-Rietveld analysis incorporating in situ and ex situ calcination revealed that the pH 3 sample had more monoclinic phase present after calcination and sintering as a ceramic. Ceramic testing incorporating hardness (Vickers), toughness (K 1C ), MOR, density and grain sizing was carried out, all determined that the material produced at pH 12 was superior for SOFC applications than the pH 3 sample. Further investigation using TEM-EDS revealed that the processing of the pH 3 powder had allowed a lower concentration of the yttrium which was incorporated at approximately 2 mol% instead of the required 3. ICP-OES of the after filter liquor indicated that high concentrations of yttrium (797 ppm) were found in the solution with the wash solution having 149 ppm yttrium. In contrast the pH 12 samples had 7 ppm in both the after filter liquor and wash indicating that the yttrium is bound within the matrix more completely at the higher pH.

  18. Thermoelectric Properties of the Yttrium-Doped Ceramic Oxide SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Tamal Tahsin; Ur, Soon-Chul [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-01-15

    The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO{sub 3} at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO{sub 3}. The doping level in SrTiO{sub 3} was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO{sub 3} provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.

  19. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Science.gov (United States)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  20. Spectroscopic properties of Er/Nd co-doped yttrium lanthanum oxide transparent ceramics pumped at 980 nm

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yingjie; Yang, Qiuhong, E-mail: yangqiuhong@shu.edu.cn; Gui, Yan; Yuan, Ye; Lu, Qing

    2016-05-15

    (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} (x = 0, 0.001, 0.002, 0.005, 0.01) transparent ceramics were prepared by conventional ceramic processing. The Nd{sup 3+} content dependencies of mid-infrared, near infrared and up-conversion emission of Er{sup 3+} pumped at 980 nm were fully presented. Mechanism of energy transfer between Er{sup 3+} and Nd{sup 3+} was also demonstrated. The results showed that co-doping 0.1 at% Nd{sup 3+} into 1 at% Er{sup 3+} doped yttrium lanthanum oxide transparent ceramic enhanced the 2.7 μm emission significantly and meanwhile suppressed the 1.5 μm emission effectively which indicated an improvement in population inversion between Er:{sup 4}I{sub 11/2} and Er:{sup 4}I{sub 13/2}. Moreover, green up-conversion emission of Er{sup 3+} ion also showed a great improvement by co-doping 0.1 at% Nd{sup 3+}. Those great results were attributed to energy recycle from Er:{sup 4}I{sub 13/2} to Er:{sup 4}I{sub 11/2}. The energy recycle was mainly built by the two energy transfer between Er{sup 3+} and Nd{sup 3+} (one is from Er to Nd, another is in opposite way). So, Er/Nd co-doped yttrium lanthanum oxide transparent ceramic with Nd in low concentration can be considered as a promising laser material for ∼3 μm and up-conversion laser application. - Highlights: • (Er{sub 0.01}Nd{sub x}Y{sub 0.89-x}La{sub 0.1}){sub 2}O{sub 3} transparent ceramics were prepared. • The emission of 2.7 μm of Er{sup 3+} ion was significantly enhanced as x was 0.001. • The emission of 1.5 μm of Er{sup 3+} ion was suppressed greatly by co-doping Nd{sup 3+} ion. • Mechanism of Er–Nd energy transfer was discussed by the energy sketch.

  1. The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.

    Science.gov (United States)

    Cacaina, D; Ylänen, H; Simon, S; Hupa, M

    2008-03-01

    The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments.

  2. Solvent extraction studies on separation of yttrium from xenotime

    International Nuclear Information System (INIS)

    Singh, D.K.; Anitha, M.; Kain, V.

    2017-01-01

    Rare earths consists a group of 15 element from La to Lu in the periodic table and it also includes Sc and Y since they tend to occur in the same ore deposits as the lanthanides and exhibit similar chemical properties. The unique physical-chemical properties of the REEs render them important in applications as varies as high strength magnets, lighting phosphors, policing compounds and ceramics. In particular, yttrium finds numerous applications in many areas including superconductors, lasers, phosphors, nuclear reactors, astronavigation, ceramics etc. Yttrium is chemically similar to heavy rare earths (HRE: terbium, dysprosium, erbium, holmium, ytterbium, thulium and lutecium). Yttrium behaves like HRE due to similarity in ionic radius and finds place between Ho and Er. The cross current profile in terms of the plot of concentration of yttrium in raffinate as a function of contact number indicated the complete recovery of rare earths from nitrate solution of xenotime wet cake

  3. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  4. Photometric determination of yttrium in zirconium-containing materials

    International Nuclear Information System (INIS)

    Barbina, T.M.; Polezhaev, Yu.M.

    1984-01-01

    Comparative evaluation of the effect of different ways of eliminating the zirconium interfering effect on the results of yttrium photometric determination with arsenazo 2 in artificial mixtures of Y 2 O 3 and ZrO 2 , containing 5 and 10 mol.% Y 2 O 3 , has been carried out. The effect of Zr is eliminated by means of its precipitation by ammonium solution in the form of hydroxide and using camouflaging with 25% sulfosalicylic acid. Both ways do not provide a correct enough result. The use of non-reagent thermohydrolytic Zr precipitation during the analysis of zirconium-containing materials permits to obtain correct and well-reproducible results

  5. Interaction at interface between superconducting yttrium ceramics and copper or niobium

    International Nuclear Information System (INIS)

    Karpov, M.I.; Korzhov, V.P.; Medved', N.V.; Myshlyaeva, M.M.

    1992-01-01

    Light metallography, scanning electron microscopy and local energy dispersion analysis have been used to study the interaction of Y-ceramics with copper and niobium. Samples in the form of wire of two types were employed, that is, consisting of ceramic core YBaCuO and Cu shell or a ceramic core YBaCuO and bimetallic Cu/Nb shell. The interaction of the ceramics with the shell metal began already at 500 deg with the formation at the interafaces Cu-YBaCuO of oxide layers containing ceramic elements, and in the ceramic core - nonsuperconducting phases. A thin Al-layer placed between the ceramics and the shell appreciably decreased the reactability of the ceramics with respect to copper and niobium

  6. Obtainment of zirconium oxide and partially stabilized zirconium oxide with yttrium and rare earth oxides, from Brazilian zirconite, for ceramic aim

    International Nuclear Information System (INIS)

    Ribeiro, S.

    1991-05-01

    This work presents experimental results for processing of brazilian zirconite in order to obtain zirconium oxide with Yttrium and Rare Earth oxide by mutual coprecipitation for ceramics purposes. Due to analysis of experimental results was possible to obtain the optimum conditions for each one of technological route stage, such as: alkaline fusion; acid leaching; sulfactation and coprecipitation. (author)

  7. Unactivated yttrium tantalate phosphor

    International Nuclear Information System (INIS)

    Reddy, V.B.; Cheung, H.K.

    1992-01-01

    This patent describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing one or more additives of Rb and Al in an amount of between about 0.001 to 0.1 moles per mole of yttrium tantalate to improve brightness under X-radiation. This patent also describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing additives of Sr in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate and one or more of Rb and Al in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate the phosphor exhibiting a greater brightness under X-radiation than the phosphor absent Rb and Al

  8. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  9. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  10. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  11. Development of Advanced Ceramic Manufacturing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  12. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  13. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  14. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effect of yttrium on the oxide scale adherence of pre-oxidized silicon-containing heat-resistant alloy

    International Nuclear Information System (INIS)

    Yan Jingbo; Gao Yimin; Shen Yudi; Yang Fang; Yi Dawei; Ye Zhaozhong; Liang Long; Du Yingqian

    2011-01-01

    Highlights: → AE experiment shows yttrium has a beneficial effect on the pre-oxidized HP40 alloy. → Yttrium facilitates the formation of internal oxide after 10 h of oxidation. → Internal oxide changes the rupture behaviour of the oxide scale. → Twins form in the internal oxide and improve the binding strength of the scale. - Abstract: This paper investigates the effect of the rare earth element yttrium on the rupture behaviour of the oxide scale on the silicon-containing heat-resistant alloy during cooling. After 10 h of oxidation, yttrium is found to facilitate the formation of internal oxides (silica) at the scale-matrix interface. Due to the twinning observed by scanning transmission electron microscopy (STEM) in silica, the critical strain value for the scale failure can be dramatically improved, and the formation of cracks at the scale-matrix interface is inhibited.

  16. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  17. Yttrium aluminum garnet coating on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail: eduardo.nassar@unifran.edu.br

    2016-02-15

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu{sup 3+} onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min{sup −1} and evaporation led to deposition of different numbers of layers of the YAG:Eu{sup 3+} film onto the glass substrate from a YAG:Eu{sup 3+} powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu{sup 3+}. • The matrix was deposited as transparent films. • The YAG:Eu{sup 3+} was deposited by sol–gel process onto glass substrate.

  18. Yttrium aluminum garnet coating on glass substrate

    International Nuclear Information System (INIS)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J.

    2016-01-01

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu 3+ onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min −1 and evaporation led to deposition of different numbers of layers of the YAG:Eu 3+ film onto the glass substrate from a YAG:Eu 3+ powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu 3+ . • The matrix was deposited as transparent films. • The YAG:Eu 3+ was deposited by sol–gel process onto glass substrate.

  19. Advanced ceramic in structural engineering

    OpenAIRE

    Alonso Rodea, Jorge

    2012-01-01

    The work deals with "Advanced Ceramics in Structural Engineering”. Throughout this work we present the different types of ceramic that are currently in wider use, and the main research lines that are being followed. Ceramics have very interesting properties, both mechanical and electrical and refractory where we can find some of the most interesting points of inquiry. Through this work we try tounderstand this complex world, analyzing both general and specific properties of ...

  20. Advanced ceramic materials and their potential impact on the future

    International Nuclear Information System (INIS)

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  1. Current Research on Containment Technologies for Verification Activities: Advanced Tools for Maintaining Continuity of Knowledge

    International Nuclear Information System (INIS)

    Smartt, H.; Kuhn, M.; Krementz, D.

    2015-01-01

    The U.S. National Nuclear Security Administration (NNSA) Office of Non-proliferation and Verification Research and Development currently funds research on advanced containment technologies to support Continuity of Knowledge (CoK) objectives for verification regimes. One effort in this area is the Advanced Tools for Maintaining Continuity of Knowledge (ATCK) project. Recognizing that CoK assurances must withstand potential threats from sophisticated adversaries, and that containment options must therefore keep pace with technology advances, the NNSA research and development on advanced containment tools is an important investment. The two ATCK efforts underway at present address the technical containment requirements for securing access points (loop seals) and protecting defined volumes. Multiple U.S. national laboratories are supporting this project: Sandia National Laboratories (SNL), Savannah River National Laboratory (SRNL), and Oak Ridge National Laboratory (ORNL). SNL and SRNL are developing the ''Ceramic Seal,'' an active loop seal that integrates multiple advanced security capabilities and improved efficiency housed within a small-volume ceramic body. The development includes an associated handheld reader and interface software. Currently at the prototype stage, the Ceramic Seal will undergo a series of tests to determine operational readiness. It will be field tested in a representative verification trial in 2016. ORNL is developing the Whole Volume Containment Seal (WCS), a flexible conductive fabric capable of enclosing various sizes and shapes of monitored items. The WCS includes a distributed impedance measurement system for imaging the fabric surface area and passive tamper-indicating features such as permanent-staining conductive ink. With the expected technology advances from the Ceramic Seal and WCS, the ATCK project takes significant steps in advancing containment technologies to help maintain CoK for various verification

  2. Comparative study of the influence of the gas injection system on the Nd:yttrium-aluminum-garnet laser cutting of advanced oxide ceramics

    International Nuclear Information System (INIS)

    Quintero, F.; Pou, J.; Lusquinos, F.; Boutinguiza, M.; Soto, R.; Perez-Amor, M.

    2003-01-01

    Cutting of advanced oxide ceramics is still a difficult task. In this work, the possibility to effectively cut them using a Nd:YAG laser guided by an optical fiber is demonstrated. The key points are the aerodynamic interactions of the assist gas jet in the fusion laser cutting of ceramics. A comprehensive study of the influence of these aerodynamic interactions on the laser cutting of advanced oxide ceramics has been carried out. The characteristics of the heat affected zone (HAZ) were studied related to the efficiency of the assist gas to eject the molten material. It has been demonstrated that the HAZ can be avoided with a suitable design of the gas injection system combined with an appropriate selection of the values of the processing parameters. With the aim of improving the efficiency of the assist gas injection system, a new cutting head with an off-axis supersonic nozzle was developed. Furthermore, a comparison between the utilization of a conventional coaxial conical nozzle to inject the assist gas and the new system is presented. The results obtained give clear proof that the use of the new gas injection system leads to a great improvement on the cut quality by means of a more efficient removing of the molten material out of the cutting front. This result is of special interest in the laser fusion cutting of thick ceramic plates at high processing rates

  3. Photon CT scanning of advanced ceramic materials

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Ellingson, W.A.

    1987-02-01

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  4. Ceramic technology for advanced heat engines project: Semiannual progress report, October 1986-March 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report contains four subelements: (1) Monolithics, (2) Ceramic Composites, (3) Thermal and Wear Coatings, and (4) Joining. Ceramic research conducted within the Monolithics subelement currently includes work activities on green state ceramic fabrication, characterization, and densification and on structural, mechanical, and physical properties of these ceramics. Research conducted within the Ceramic Composites subelement currently includes silicon carbide and oxide-based composites, which, in addition to the work activities cited for Monolithics, include fiber synthesis and characterization. Research conducted in the Thermal and Wear Coatings subelement is currently limited to oxide-base coatings and involves coating synthesis, characterization, and determination of the mechanical and physical properties of the coatings. Research conducted in the Joining subelement currently includes studies of processes to produce strong stable joints between zirconia ceramics and iron-base alloys. A major objective of the research in the Materials and Processing project element is to systematically advance the understanding of the relationships between ceramic raw materials such as powders and reactant gases, the processing variables involved in producing the ceramic materials, and the resultant microstructures and physical and mechanical properties of the ceramic materials. Success in meeting this objective will provide US companies with new or improved ways for producing economical highly reliable ceramic components for advanced heat engines.

  5. Method for chromatographically recovering scandium and yttrium

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stoltz, R.A.

    1991-01-01

    This paper describes a method for chromatographically recovering scandium and yttrium from the residue of a sand chlorinator. It comprises: providing a residue from a sand chlorinator, the residue containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; digesting the residue with an acid to produce an aqueous liquid containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; feeding the metal containing liquid through a cation exchanger; eluding the cation exchanger with an acid eluant to to produce: a first eluate containing at least half of the total weight of the calcium and sodium in the feed liquid; a second eluate containing at least half of the total weight of the one or more radioactive metals in the feed liquid; a third eluate containing at least half of the yttrium in the feed liquid, and a fourth eluate containing at least half of the weight of the scandium in the feed liquid

  6. Photocatalysis of Yttrium Doped BaTiO3 Nanofibres Synthesized by Electrospinning

    Directory of Open Access Journals (Sweden)

    Zhenjiang Shen

    2015-01-01

    Full Text Available Yttrium doped barium titanate (BT nanofibres (NFs with significant photocatalytic effect were successfully synthesized by electrospinning. Considering the necessary factors for semiconductor photocatalysts, a well-designed procedure was carried out to produce yttrium doped BT (BYT NFs. In contrast to BYT ceramics powders and BT NFs, BYT NFs with pure perovskite phase showed much enhanced performance of photocatalysis. The surface modification in electrospinning and subsequent annealing, the surface spreading of transition metal yttrium, and the narrowed band gap energy in yttrium doping were all contributed to the final novel photocatalytic effect. This work provides a direct and efficient route to obtain doped NFs, which has a wide range of potential applications in areas based on complex compounds with specific surface and special doping effect.

  7. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  8. Influence of temporary organic bond nature on the properties of compacts and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ditts, A., E-mail: ditts@tpu.ru; Revva, I., E-mail: revva@tpu.ru; Pogrebenkov, V.; Kosolapov, A. [National Research Tomsk Polytechnic University, 30, Lenin Ave., Tomsk, 634050 (Russian Federation); Galashov, E. [Novosibirsk State University, 2, Pirogova Str., 630090, Novosibirsk (Russian Federation); Nepochatov, Y. [Holding JSC “NEVZ-Soyuz”, 220, Krasny Avenue, Novosibirsk, 634050 (Russian Federation)

    2016-01-15

    This work contains results of investigation of obtaining high thermally conductive ceramics from commercial powders of aluminum nitride and yttrium oxide by the method of monoaxial compaction of granulate. The principal scheme of preparation is proposed and technological properties of granulate are defined. Compaction conditions for simple items to use as heat removal in microelectronics and power electrical engineering have been established. Investigations of thermophysical properties of obtained ceramics and its structure by the XRD and SEM methods have been carried out. Ceramics with thermal conductivity from 172 to 174 W/m·K has been obtained as result of this work.

  9. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  10. Texture and deformation mechanism of yttrium

    International Nuclear Information System (INIS)

    Adamesku, R.A.; Grebenkin, S.V.; Stepanenko, A.V.

    1992-01-01

    X-ray pole figure analysis was applied to study texture and deformation mechanism in pure and commercial polycrystalline yttrium on cold working. It was found that in cast yttrium the texture manifected itself weakly enough both for pure and commercial metal. Analysis of the data obtained made it possible to assert that cold deformation of pure yttrium in the initial stage occurred mainly by slip the role of which decreased at strains higher than 36%. The texture of heavily deformed commercial yttrium contained two components, these were an 'ideal' basic orientation and an axial one with the angle of inclination about 20 deg. Twinning mechanism was revealed to be also possible in commercial yttrium

  11. Advanced ceramics in Brazil: actual stage and perspectives

    International Nuclear Information System (INIS)

    Zanotto, E.D.

    1986-11-01

    The development of advanced ceramics in Brazil, the perspectives of the world and Brazilian markets, the raw materials, the equipments for industry and research, the human resources, and the disposable technology, are presented. The researches on advanced ceramics in Brazil initiated in the sixty decade, with the nuclear fuel development and production projets. (M.C.K.) [pt

  12. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  13. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  14. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.

    Science.gov (United States)

    Placek, L M; Keenan, T J; Wren, A W

    2016-08-01

    The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. © The Author(s) 2016.

  15. Nuclear techniques in the development of advanced ceramic technologies

    International Nuclear Information System (INIS)

    Axe, J.D.; Hewat, A.W.; Maier, J.; Margaca, F.M.A.; Rauch, H.

    1999-01-01

    The importance of research, development and application of advanced materials is well understood by all developed and most developing countries. Amongst advanced materials, ceramics play a prominent role due to their specific chemical and physical properties. According to performance and importance, advanced ceramics can be classified as structural ceramics (mechanical function) and the so-called functional ceramics. In the latter class of materials, special electrical, chemical, thermal, magnetic and optical properties are of interest. The most valuable materials are multifunctional, for example, when structural ceramics combine beneficial mechanical properties with thermal and chemical sensitivity. Multifunctionality is characteristic of many composite materials (organic/inorganic composite). Additionally, properties of material can be changed by reducing its dimension (thin films, nanocrystalline ceramics). Nuclear techniques, found important applications in research and development of advanced ceramics. The use of neutron techniques has increased dramatically in recent years due to the development of advanced neutron sources, instrumentation and improved data analysis. Typical neutron techniques are neutron diffraction, neutron radiography, small angle neutron scattering and very small angle neutron scattering. Neutrons can penetrate deeply into most materials thus sampling their bulk properties. In determination of the crystal structure of HTSC, YBa 2 Cu 2 O 7 , XRD located the heavy metal atoms, but failed in finding many of the oxygen atoms, while the neutron diffraction located all atoms equally well in the crystal structure. Neutron diffraction is also unique for the determination of the magnetic structure of materials since the neutrons themselves have a magnetic moment. Application of small angle neutron scattering for the determination of the size of hydrocarbon aggregates within the zeolite channels is illustrated. (author)

  16. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  17. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    Science.gov (United States)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  18. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic

    Science.gov (United States)

    Lian, Jianyun; Ponchel, Freddy; Tiercelin, Nicolas; Chen, Ying; Rémiens, Denis; Lasri, Tuami; Wang, Genshui; Pernod, Philippe; Zhang, Wenbin; Dong, Xianlin

    2018-04-01

    In this paper, the converse magnetoelectric (CME) effect by electric field tuning of magnetization in an original heterostructure composed of a polycrystalline yttrium iron garnet (YIG) film and a lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramic is presented. The magnetic performances of the YIG films with different thicknesses under a DC electric field applied to the PMN-PZT ceramics and a bias magnetic field are investigated. All the magnetization-electric field curves are found to be in good agreement with the butterfly like strain curve of the PMN-PZT ceramic. Both the sharp deformation of about 2.5‰ of PMN-PZT and the easy magnetization switching of YIG are proposed to be the reasons for the strongest CME interaction in the composite at the small electric coercive field of PMN-PZT (4.1 kV/cm) and the small magnetic coercive field of YIG (20 Oe) where the magnetic susceptibility reaches its maximum value. A remarkable CME coefficient of 3.1 × 10-7 s/m is obtained in the system with a 600 nm-thick YIG film. This heterostructure combining multiferroics and partially magnetized ferrite concepts is able to operate under a small or even in the absence of an external bias magnetic field and is more compact and power efficient than the traditional magnetoelectric devices.

  19. Advanced ceramics: the present and the perspectives

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1990-04-01

    Development in the Brazilian and international areas of advanced ceramics is described, emphasizing its economic perspectivas and industrial applications. Results obtained by national institutions are reviewed, mainly in the context of those that pioneered the required high technology in this ceramic field. The rapid growth of the interest for those special materials, made more evident by ample information related to the superconducting ceramics great pontential for important practical applications, is one of the most significant characteristics of the area. (author) [pt

  20. Scale up issues involved with the ceramic waste form: ceramic-container interactions and ceramic cracking quantification

    International Nuclear Information System (INIS)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P. Jr.

    1999-01-01

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits

  1. Properties of zirconium ceramics and film stabilized by yttrium

    International Nuclear Information System (INIS)

    Korobova, N.

    2004-01-01

    Full text: Unstable zirconium dioxide phase transformation can be eliminated by stabilization of the cubic phase with an addition of a selected alkaline earth or rare-earth oxide. Stabilized ZrO 2 has been widely utilized in various high-temperature refractory applications. These stabilized ZrO 2 -base solid solutions also possess rather unique electrical properties, and as a result have considerable potential as solid electrolytes in galvanic and fuel cells and, possibly, as heating elements in high-temperature furnaces. The complex study of synthesis processes, structure and properties of metal alkoxide organic sols have been developed. These have allowed to create main principles of their formation and to show the practical realization of obtained theoretical and experimental results. The correlation between hydrolysis conditions of (Zr+Y) metal alkoxide sols and synthesis of stable colloid multi-component systems has been established. Systematic research of zirconium and yttrium bi-alkoxide electrophoretic deposition was conducted for the first time. The formation mechanism of electrophoretic deposits has been offered and general scientific principles of the electrophoretic process have been formulated. The model of gel deposits structure was proposed. It has enabled to analyze the main (for example, cluster) effects, which have been exhibited in technological procedure for thin film preparation. The structure investigation of stabilized zirconium dioxide thin films and ceramics has been studied. The researches were based on the comparative analysis of the initial gel microstructure and dried gel by the various drying methods. The new approach for drying of gel electrophoretic deposits was formulated theoretically and experimentally has been proved. The modeling of the aggregate kinetics as a type of 'cluster-cluster' has been proposed like a qualitative description of the process. The data of fractal dimensions of aggregates which have been formed at the

  2. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites

    Science.gov (United States)

    Ahmad, Iftikhar; Yazdani, Bahareh; Zhu, Yanqiu

    2015-01-01

    Ceramics suffer the curse of extreme brittleness and demand new design philosophies and novel concepts of manufacturing to overcome such intrinsic drawbacks, in order to take advantage of most of their excellent properties. This has been one of the foremost challenges for ceramic material experts. Tailoring the ceramics structures at nanometre level has been a leading research frontier; whilst upgrading via reinforcing ceramic matrices with nanomaterials including the latest carbon nanotubes (CNTs) and graphene has now become an eminent practice for advanced applications. Most recently, several new strategies have indeed improved the properties of the ceramics/CNT nanocomposites, such as by tuning with dopants, new dispersions routes and modified sintering methods. The utilisation of graphene in ceramic nanocomposites, either as a solo reinforcement or as a hybrid with CNTs, is the newest development. This article will summarise the recent advances, key difficulties and potential applications of the ceramics nanocomposites reinforced with CNTs and graphene. PMID:28347001

  3. Development in laser peening of advanced ceramics

    Science.gov (United States)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  4. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  5. Immobilization of INEL low-level radioactive wastes in ceramic containment materials

    International Nuclear Information System (INIS)

    Seymour, W.C.; Kelsey, P.V.

    1978-11-01

    INEL low-level radioactive wastes have an overall chemical composition that lends itself to self-containment in a ceramic-based material. Fewer chemical additives would be needed to process the wastes than to process high-level wastes or use a mixture containment method. The resulting forms of waste material could include a basalt-type glass or glass ceramic and a ceramic-type brick. Expected leach resistance is discussed in relationshp to data found in the literature for these materials and appears encouraging. An overview of possible processing steps for the ceramic materials is presented

  6. Ceramic applications in the advanced Stirling automotive engine

    Science.gov (United States)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  7. Thermal expansion of ceramic samples containing natural zeolite

    Science.gov (United States)

    Sunitrová, Ivana; Trník, Anton

    2017-07-01

    In this study the thermal expansion of ceramic samples made from natural zeolite is investigated. Samples are prepared from the two most commonly used materials in ceramic industry (kaolin and illite). The first material is Sedlec kaolin from Czech Republic, which contains more than 90 mass% of mineral kaolinite. The second one is an illitic clay from Tokaj area in Hungary, which contains about 80 mass% of mineral illite. Varying amount of the clay (0 % - 50 %) by a natural zeolite from Nižný Hrabovec (Slovak Republic), containing clinoptilolite as major mineral phase is replaced. The measurements are performed on cylindrical samples with a diameter 14 mm and a length about 35 mm by a horizontal push - rod dilatometer. Samples made from pure kaolin, illite and zeolite are also subjected to this analysis. The temperature regime consists from linear heating rate of 5 °C/min from 30 °C to 1100 °C. The results show that the relative shrinkage of ceramic samples increases with amount of zeolite in samples.

  8. Cold laser machining of nickel-yttrium stabilised zirconia cermets: Composition dependence

    International Nuclear Information System (INIS)

    Sola, D.; Gurauskis, J.; Pena, J.I.; Orera, V.M.

    2009-01-01

    Cold laser micromachining efficiency in nickel-yttrium stabilised zirconia cermets was studied as a function of cermet composition. Nickel oxide-yttrium stabilised zirconia ceramic plates obtained via tape casting technique were machined using 8-25 ns pulses of a Nd: YAG laser at the fixed wavelength of 1.064 μm and a frequency of 1 kHz. The morphology of the holes, etched volume, drill diameter, shape and depth were evaluated as a function of the processing parameters such as pulse irradiance and of the initial composition. The laser drilling mechanism was evaluated in terms of laser-material interaction parameters such as beam absorptivity, material spallation and the impact on the overall process discussed. By varying the nickel oxide content of the composite the optical absorption (-value is greatly modified and significantly affected the drilling efficiency of the green state ceramic substrates and the morphology of the holes. Higher depth values and improved drilled volume upto 0.2 mm 3 per pulse were obtained for substrates with higher optical transparency (lower optical absorption value). In addition, a laser beam self-focussing effect is observed for the compositions with less nickel oxide content. Holes with average diameter from 60 μm to 110 μm and upto 1 mm in depth were drilled with a high rate of 40 ms per hole while the final microstructure of the cermet obtained by reduction of the nickel oxide-yttrium stabilised zirconia composites remained unchanged.

  9. On the use of hydrogen peroxide as a masking agent for the determination of yttrium in uranium oxide - yttrium oxide mixture

    International Nuclear Information System (INIS)

    Rastogi, R.K.; Chaudhuri, N.K.; Rizvi, G.H.; Subramanian, M.S.

    1985-01-01

    The use of peroxide as a masking agent for uranium during the EDTA titration of yttrium in an yttrium-uranium mixture containing large amounts of uranium was investigated. High acetate ion concentration was necessary to keep the peroxy complex of uranium in solution during the titration. It was observed that uranium could be tolerated up to 500 mg in the determination of yttrium with 0.5 ml of 30% hydrogen peroxide in approx. 1M acetate medium. The precision and accuracy of the method based on 16 determinations of yttrium at 6-16 mg level in the presence of 300 mg uranium was found to be +-0.2%. (author)

  10. Yttrium and lanthanum recovery from low cerium carbonate, yttrium carbonate and yttrium concentrate

    International Nuclear Information System (INIS)

    Vasconcelos, Mari Estela de

    2006-01-01

    In this work, separation, enrichment and purification of lanthanum and yttrium were performed using as raw material a commercial low cerium rare earth concentrate named LCC (low cerium carbonate), an yttrium concentrate named 'yttrium carbonate', and a third concentrated known as 'yttrium earths oxide. The first two were industrially produced by the late NUCLEMON - NUCLEBRAS de Monazita e Associados Ltda, using Brazilian monazite. The 'yttrium earths oxide' come from a process for preparation of lanthanum during the course of the experimental work for the present thesis. The following techniques were used: fractional precipitation with urea; fractional leaching of the LCC using ammonium carbonate; precipitation of rare earth peroxycarbonates starting from the rare earth complex carbonates. Once prepared the enriched rare earth fractions the same were refined using the ion exchange chromatography with strong cationic resin without the use of retention ion and elution using the ammonium salt of ethylenediaminetetraacetic acid. With the association of the above mentioned techniques were obtained pure oxides of yttrium (>97,7%), lanthanum (99,9%), gadolinium (96,6%) and samarium (99,9%). The process here developed has technical and economic viability for the installation of a large scale unity. (author)

  11. New ceramics containing dispersants for improved fracture toughness

    Science.gov (United States)

    Nevitt, M.V.; Aldred, A.T.; Chan, Sai-Kit

    1985-07-01

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRBO/sub 4/, where R is a rare-earth element, B if Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  12. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    Science.gov (United States)

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  13. Polishing of silicon based advanced ceramics

    Science.gov (United States)

    Klocke, Fritz; Dambon, Olaf; Zunke, Richard; Waechter, D.

    2009-05-01

    Silicon based advanced ceramics show advantages in comparison to other materials due to their extreme hardness, wear and creep resistance, low density and low coefficient of thermal expansion. As a matter of course, machining requires high efforts. In order to reach demanded low roughness for optical or tribological applications a defect free surface is indispensable. In this paper, polishing of silicon nitride and silicon carbide is investigated. The objective is to elaborate scientific understanding of the process interactions. Based on this knowledge, the optimization of removal rate, surface quality and form accuracy can be realized. For this purpose, fundamental investigations of polishing silicon based ceramics are undertaken and evaluated. Former scientific publications discuss removal mechanisms and wear behavior, but the scientific insight is mainly based on investigations in grinding and lapping. The removal mechanisms in polishing are not fully understood due to complexity of interactions. The role of, e.g., process parameters, slurry and abrasives, and their influence on the output parameters is still uncertain. Extensive technological investigations demonstrate the influence of the polishing system and the machining parameters on the stability and the reproducibility. It is shown that the interactions between the advanced ceramics and the polishing systems is of great relevance. Depending on the kind of slurry and polishing agent the material removal mechanisms differ. The observed effects can be explained by dominating mechanical or chemo-mechanical removal mechanisms. Therefore, hypotheses to state adequate explanations are presented and validated by advanced metrology devices, such as SEM, AFM and TEM.

  14. Neutron activation determination of oxygen in ceramic materials on the basis of yttrium, barium and copper

    International Nuclear Information System (INIS)

    Goldshtein, M.M.; Yudelevich, I.G.

    1991-01-01

    A procedure of determining oxygen in superconducting materials on the basis of yttrium, barium and copper oxides with the application of 14 MeV-neutron activation was developed. The method is based on determining the relation between oxygen and yttrium in the compounds investigated. In order to minimize systematic errors, expressions accounting for spectrometer dead time under conditions of varying component activity are proposed. The procedure ensures determination of the relation between oxygen and yttrium with a relative error of 0.4% with NAA using a neutron generator. (author) 4 refs.; 1 fig

  15. Microstructure and tensile properties of yttrium nitride dispersion-strengthened 14Cr–3W ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Liqing [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Mechanical and Mining Engineering, University of Queensland, Brisbane 4067, QLD (Australia); Liu, Zuming, E-mail: lzm@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chen, Shiqi; Guo, Yang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2015-12-15

    Highlights: • Innovative nano yttrium nitride dispersion strengthened steels were fabricated. • Higher content of additives accelerate the steel-ceramic powder milling process more. • Steel with high content (3%) of YN dispersoids can obtain good performance at 500 °C. - Abstract: 14Cr–3W ferritic steel powders were mechanically milled with microscale yttrium nitride (YN) particles to fabricate particle dispersion-strengthened ferritic steels. After hot consolidation and annealing, the steel matrix was homogeneously dispersed with nano-scale YN particles. The steel containing 0.3 wt.% YN particles exhibited a yield strength of 1445 MPa at room temperature. Its total elongation was 10.3%, and the fracture surface exhibited mixed ductile and quasi-cleavage fracture morphologies. The steel with a much higher content of YN particles (3 wt.%) in its matrix was much stronger (1652 MPa) at room temperature at the cost of ductility. In particular, it exhibited a high yield strength (1350 MPa) with applicable ductility (total elongation > 10%) at 500 °C. This study has developed a new kind of reinforcement particle to fabricate high-performance ferritic steels.

  16. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  17. Investigations on the performance of ultrasonic drilling process with special reference to precision machining of advanced ceramics

    International Nuclear Information System (INIS)

    Adithan, M.; Laroiya, S.C.

    1997-01-01

    Advanced ceramics are assuming an important role in modern industrial technology. The applications and advantages of using advanced ceramics are many. There are several reasons why we should go in for machining of advanced ceramics after their compacting and sintering. These are discussed in this paper. However, precision machining of advanced ceramics must be economical. Critical technological issues to be addressed in cost effective machining of ceramics include design of machine tools, tooling arrangements, improved yield and precision, relationship of part dimensions and finish specifications to functional performance, and on-line inspection. Considering the above ultrasonic drilling is an important process used for the precision machining of advanced ceramics. Extensive studies on tool wear occurring in the ultrasonic machining of advanced ceramics have been carried out. In addition, production accuracy of holes drilled, surface finish obtained and surface integrity aspects in the machining of advanced ceramics have also been investigated. Some specific findings with reference to surface integrity are: a) there were no cracks or micro-cracks developed during or after ultrasonic machining of advanced ceramics, b) while machining Hexoloy alpha silicon carbide a recast layer is formed as a result of ultrasonic machining. This is attributed to the viscous heating resulting from high energy impacts during ultrasonic machining. While machining all other types of ceramics no such formation of recast layer was observed, and , c) there is no change in the microstructure of the advanced ceramics as a result of ultrasonic machining

  18. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fedotovs, A; Rogulis, U; Sarakovskis, A; Dimitrocenko, L, E-mail: andris-f@navigator.l [Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, LV-1063, Riga (Latvia)

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF{sub 3} crystalline phase.

  19. EPR of radiation defects in lithium-oxyfluoride glass ceramics

    Science.gov (United States)

    Fedotovs, A.; Rogulis, U.; Sarakovskis, A.; Dimitrocenko, L.

    2010-11-01

    We studied oxyfluoride composites based on lithium silicate glasses with yttrium fluorides and rare-earth dopants. The electron paramagnetic resonance (EPR) has been used to obtain information about radiation induced defects in these materials. Spectra have been measured before and after X-ray irradiation at room temperature and at liquid nitrogen temperature. Fluoride crystallites within samples were created by means of thermal treatment at specific temperatures. EPR spectra of radiation induced defects in oxyfluoride glass ceramics, in which crystallites have not been yet created, show no explicit hfs interaction of fluorine nuclei. However, in glass ceramics, which already contains fluoride crystallites, the hfs characteristic to fluorine nuclei appears in the EPR spectra. EPR hyperfine structure could be explained within a model of an F-type centre in YF3 crystalline phase.

  20. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  1. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    OpenAIRE

    Lago, Diana Carolina; Prado, Miguel Oscar

    2016-01-01

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the cry...

  2. ASTM Committee C28: International Standards for Properties and Performance of Advanced Ceramics-Three Decades of High-Quality, Technically-Rigorous Normalization

    Science.gov (United States)

    Jenkins, Michael G.; Salem, Jonathan A.

    2016-01-01

    Physical and mechanical properties and performance of advanced ceramics and glasses are difficult to measure correctly without the proper techniques. For over three decades, ASTM Committee C28 on Advanced Ceramics, has developed high-quality, technically-rigorous, full-consensus standards (e.g., test methods, practices, guides, terminology) to measure properties and performance of monolithic and composite ceramics that may be applied to glasses in some cases. These standards contain testing particulars for many mechanical, physical, thermal, properties and performance of these materials. As a result these standards are used to generate accurate, reliable, repeatable and complete data. Within Committee C28, users, producers, researchers, designers, academicians, etc. have written, continually updated, and validated through round-robin test programs, 50 standards since the Committee's founding in 1986. This paper provides a detailed retrospective of the 30 years of ASTM Committee C28 including a graphical pictogram listing of C28 standards along with examples of the tangible benefits of standards for advanced ceramics to demonstrate their practical applications.

  3. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  4. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  5. Structural and dielectric properties of yttrium substituted nickel ferrites

    International Nuclear Information System (INIS)

    Ognjanovic, Stevan M.; Tokic, Ivan; Cvejic, Zeljka; Rakic, Srdjan; Srdic, Vladimir V.

    2014-01-01

    Graphical abstract: - Highlights: • Dense NiFe 2−x Y x O 4 ceramics (with 0 ≤ x ≤ 0.3) were prepared. • Pure spinels were obtained for x ≤ 0.07 while for x ≥ 0.15 samples had secondary phases. • With addition of yttrium, ac conductivity slightly increased. • We suggest several effects that can explain the observed changes in ac conduction. • With addition of yttrium, dielectric constant increased while the tg δ decreased. - Abstract: The influence of Y 3+ ions on structural and dielectric properties of nickel ferrites (NiFe 2−x Y x O 4 , where 0 ≤ x ≤ 0.3) has been studied. The as-synthesized samples, prepared by the co-precipitation method, were analyzed by XRD and FTIR which suggested that Y 3+ ions were incorporated into the crystal lattice for all the samples. However, the XRD analysis of the sintered samples showed that secondary phases appear in the samples with x > 0.07. The samples have densities greater than 90% TD and the SEM images showed that the grain size decreases with the addition of yttrium. Dielectric properties measured from 150 to 25 °C in the frequency range of 100 Hz–1 MHz showed that the addition of yttrium slightly increases the ac conductivity and decreases the tg δ therefore making the materials better suited for the use in microwave devices

  6. Synthesis of Ceramic Protective Coatings for Chemical Plant Parts Operated in Hi-temperature and Corrosive/Erosive Environment

    International Nuclear Information System (INIS)

    Son, M. C.; Park, J. R.; Hong, K. T.; Seok, H. K.

    2005-01-01

    Some feasibility studies are conducted to produce an advanced ceramic coating, which reveals superior chemical and mechanical strength, on metal base structure used in chemical plant. This advanced coating on metallic frame can replace ceramic delivery pipe and reaction chamber used in chemical plant, which are operated in hi-temperature and corrosive/erosive environment. An dual spraying is adopted to reduce the residual stress in order to increase the coating thickness and the residual stress is estimated by in-situ manner. Then new methodology is tried to form special coating of yttrium aluminum garnet(YAG), which reveals hi-strength and low-creep rates at hi-temperature, superior anti-corrosion property, hi-stability against Alkali-Vapor corrosion, and so on, on iron base structure. To verify the formation of YAG during thermal spraying, XRD(X ray diffraction) technique was used

  7. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  8. Thermal conductivity of aluminum nitride ceramics. Waermeleitfaehigkeit von Aluminiumnitrid-Keramik

    Energy Technology Data Exchange (ETDEWEB)

    Ruessel, C.; Hofmann, T.; Limmer, G. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Werkstoffwissenschaften 3)

    Aluminium nitride ceramics made by the authors, as well as others produced commercially, mostly using yttrium oxide as an additive, were characterized with respect to their phase and chemical composition, their microstructure, and their thermal conductivity. It was shown that conventional ideas, especially with regard to the correlations between thermal conductivity and the oxygen content and the microstructure, could not withstand a critical examination. Instead, a connection can be seen between the oxygen not bound up in yttrium-aluminum garnet and thermal conductivity. Relatively low thermal conductivities were always observed when yttrium-aluminum garnet was present as a grain-boundary phase; in contrast, high values of thermal conductivity were seen when the yttrium-aluminum garnet was present in the form of isolated grains. (orig.).

  9. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  10. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  11. Dense cermets containing fine grained ceramics and their manufacture

    International Nuclear Information System (INIS)

    King, H.L.

    1986-01-01

    This patent describes a method of producing a ceramic-metal composite (cermet) containing boride-oxide ceramic having components of a first metal boride and a second metal oxide, which ceramic is in mixture in the cermet with elemental metal of the second metal, wherein the cermet is produced by sintering a reaction mixture of the first metal oxide, boron oxide and the elemental second metal. The improvement consists of: combining for the reaction mixture; A. (a) first metal oxide; (b) boron oxide; (c) ceramic component in very finely divided form; and (d) elemental second metal in very finely divided form and in an amount of at least a 100 percent molar excess beyond that amount stoichiometrically required to produce the second metal oxide during sintering; and B. sintering the reaction mixture in inert gas atmosphere

  12. Production of yttrium

    International Nuclear Information System (INIS)

    Day, J.G.

    1980-01-01

    A process is described for the production of yttrium metal, or of an alloy comprising a major proportion of yttrium, in which calcium (metal) and yttrium fluoride are reacted together by use of a submerged electric arc in a molten slag. (author)

  13. Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials

    Science.gov (United States)

    Singh, Mrityunjay

    2003-01-01

    Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.

  14. Ceramics among Eurasian hunter-gatherers: 32 000 years of ceramic technology use and the perception of containment

    Directory of Open Access Journals (Sweden)

    Mihael Budja

    2016-12-01

    Full Text Available We present two parallel and 32 000 years long trajectories of episodic ceramic technology use in Eurasian pre-Neolithic hunter-gatherer societies. In eastern, Asian trajectory the pottery was produced from the beginning. Ceramic figurines mark the western, European trajectory. The western predates the eastern for about eleven millennia. While ceramic cones and figurines first appeared in Central Europe at c. 31 000 cal BC the earliest vessels in eastern Asia was dated at c. 20 000 cal BC. We discuss women’s agency, perception of containment, ‘cross-craft interactions’, and evolution of private property that that may influenced the inventions of ceramic (pyrotechnology.

  15. Ceramic technology for advanced heat engines project. Semiannual progress report, April-September 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, new concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.

  16. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  17. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  18. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  19. Ceramic component for M.H.D electrode

    International Nuclear Information System (INIS)

    Marchant, D.D.; Bates, J.L.

    1980-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hfsub(x)Insub(y)Asub(z)O 2 where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a rare earth or yttrium. The rare earth may be Yb, Tb, Pr or Ce. The component is suitable for use in the fabrication of MHD electrodes or as the current lead-out portion of a composite electrode with other ceramic components. An MHD electrode comprises a cap of a known ceramic, e.g. stabilised zirconium or hafnium oxide or terbium stabilised hafnium, a current lead-out ceramic according to the invention, and a copper frame. (author)

  20. Advanced Ceramics for NASA's Current and Future Needs

    Science.gov (United States)

    Jaskowiak, Martha H.

    2006-01-01

    Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.

  1. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated

  2. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    Zhou Lin; Qin Ming; Chen Shengqi; Chen Bei

    2014-01-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  3. Survey of the patents intensity in advanced ceramics

    International Nuclear Information System (INIS)

    Rodrigues, C.S.; Oliveira, E.C. de; Pencinato, M.V.; Bandeira, R.J.; Ribeiro, E.

    1989-01-01

    A survey about a sectorial diagnostic of advanced ceramics, using patents of the Industrial Properties National Institute, as a reference documentation is presented. The mains points for generating technology in 80 decade are identified, by the institutions/company titularies of patents. (C.G.C.) [pt

  4. Preparation of yttrium iron garnet (YIG) by modified domestic iron oxide

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian

    2002-01-01

    Iron oxide by product of a local steel complex was modified to use for preparation of Yttrium iron garnet (YIG). The improvement was necessary to reduce impurities, especially the Si0 2 and Cl contents, which have deteriorative effects on magnetic properties and equipment used for preparation of the samples. The modified iron oxide was then mixed with Yttrium oxide of Merck Company in appropriate proportion to obtain a stoichiometric single phase YIG, using the conventional ceramic technique. XRD and SEM equipments were used to identify the resulting phases and microstructure respectively. Magnetic parameters were measured by VSM. Curie temperature of the samples was obtained by DTG (M) method. The results were compared with those obtained from samples that made by Merck iron oxide. There are small differences between the results. This was discussed according to extra pores and minute secondary phase in the samples made by domestic iron oxide. (Author)

  5. Coprecipitation of yttrium and aluminium hydroxide for preparation of yttrium aluminium garnet

    NARCIS (Netherlands)

    Vrolijk, J.W.G.A.; Willems, J.W.M.M.; Metselaar, R.

    1990-01-01

    Coprecipitation of yttrium and aluminium hydroxide for the preparation of pure yttrium aluminium garnet (YAG) powder with small grain size is the subject of this study. Starting materials are sulphates and chlorides of yttrium and aluminium. To obtain pure YAG (Y3Al5O12), the pH during flocculation

  6. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  7. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    Science.gov (United States)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  8. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  9. Bio-Corrosion Behavior of Ceramic Coatings Containing Hydroxyapatite on Mg-Zn-Ca Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Hong-Yan Ding

    2018-04-01

    Full Text Available Ceramic coatings containing hydroxyapatite (HA were fabricated on a biodegradable Mg66Zn29Ca5 magnesium alloy through micro-arc oxidation by adding HA particles into the electrolytes. The phase composition and surface morphology of the coatings were characterized by X-ray diffraction and scanning electron microscopy analyses, respectively. Electrochemical experiments and immersion tests were performed in Hank’s solution at 37 °C to measure the corrosion resistance of the coatings. Blood compatibility was evaluated by in vitro blood platelet adhesion tests and static water contact angle measurement. The results show that the typical ceramic coatings with a porous structure were prepared on the magnesium alloy surface with the main phases of MgO and MgSiO3 and a small amount of Mg3(PO42 and HA. The optimal surface morphology appeared at HA concentration of 0.4 g/L. The electrochemical experiments and immersion tests reveal a significant improvement in the corrosion resistance of the ceramic coatings containing HA compared with the coatings without HA or bare Mg66Zn29Ca5 magnesium alloy. The static water contact angle of the HA-containing ceramic coatings is 18.7°, which is lower than that of the coatings without HA (40.1°. The in vitro blood platelet adhesion tests indicate that the HA-containing ceramic coatings possess improved blood compatibility compared with the coatings without HA. Utilizing HA-containing ceramic coatings may be an effective way to improve the surface biocompatibility and corrosion resistance of magnesium alloys.

  10. Advanced ceramic composite for high energy resistors : Characterization of electrical and physical properties

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Naser, Tabatabaei; Ahmad, Rashtehizadeh

    2005-01-01

    There is a need to characterize and apply advanced materials to improve the performance of components used in pulse power systems. One area for innovation is the use of bulk electrically conductive ceramics for non-inductive, high energy and high power electrical resistors. Standard Ceramics Inc. has developed a unique silicon carbide structural ceramic composite which exhibits electrical conductivity. The new, new, conductive, bulk ceramic material has a controlled microstructure, which results in improved homogeneity, making the material suitable for use as a non-inductive, high energy resistor

  11. A thermal neutron scattering law for yttrium hydride

    Science.gov (United States)

    Zerkle, Michael; Holmes, Jesse

    2017-09-01

    Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  12. Mass synthesis of yttrium oxide nano-powders using radio frequency (RF) plasma

    International Nuclear Information System (INIS)

    Ghorui, S.; Sahasrabudhe, S.N.; Chakravarthy, Y.; Nagaraj, A.; Das, A.K.; Dhamale, G.

    2014-01-01

    Mass synthesis of nano-phase Yttrium Oxide (Y 2 O 3 ) from commercially available coarse grain powder is reported. Nano-sized high purity Y 2 O 3 is an important and critical constituent of ceramics like YAG (Yttrium aluminum garnet: Y 3 Al 5 O 12 ) for laser applications. The system is characterized in terms of its thermal and electrical behavior. Boltzmann plot technique is used to measure axial variation of temperature of the generated plasma. The synthesized particles are characterized in terms of XRD, SEM, TEM and BET analyses for qualification of the developed system. Major features observed are efficient conversion into nanometer-sized highly spherical particles, narrow size distribution, highly crystallite nature and highly pure phases. The particle distribution (from TEM) peaks within 20-30 nm. Average particle sizes determined from different methods like XRD, TEM and BET are very close to each other and point toward particle sizes within 20 to 30 nm

  13. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  14. Advancements in all-ceramics for dental restorations and their effect on the wear of opposing dentition

    Science.gov (United States)

    Rashid, Haroon; Sheikh, Zeeshan; Misbahuddin, Syed; Kazmi, Murtaza Raza; Qureshi, Sameer; Uddin, Muhammad Zuhaib

    2016-01-01

    Tooth wear is a process that is usually a result of tooth to tooth and/or tooth and restoration contact. The process of wear essentially becomes accelerated by the introduction of restorations inside the oral cavity, especially in case of opposing ceramic restorations. The newest materials have vastly contributed toward the interest in esthetic dental restorations and have been extensively studied in laboratories. However, despite the recent technological advancements, there has not been a valid in vivo method of evaluation involving clinical wear caused due to ceramics upon restored teeth and natural dentition. The aim of this paper is to review the latest advancements in all-ceramic materials, and their effect on the wear of opposing dentition. The descriptive review has been written after a thorough MEDLINE/PubMed search by the authors. It is imperative that clinicians are aware of recent advancements and that they should always consider the type of ceramic restorative materials used to maintain a stable occlusal relation. The ceramic restorations should be adequately finished and polished after the chair-side adjustment process of occlusal surfaces. PMID:28042280

  15. Evaluation of a high fracture toughness composite ceramic for dental applications

    NARCIS (Netherlands)

    Aboushelib, M.N.; Kleverlaan, C.J.; Feilzer, A.J.

    2008-01-01

    Purpose: The introduction of yttrium partially stabilized zirconia polycrystals (Y-TZP) has pushed the application limits of all-ceramic restorations. The mechanical properties of these materials can be further improved by the addition of a secondary dopant phase. The aim of this work was to

  16. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  17. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  18. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  19. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  20. Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite

    International Nuclear Information System (INIS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2011-01-01

    Glass-ceramics with finely dispersed zinc ferrite (ZnFe 2 O 4 ) nanocrystallites were obtained by heat treatment of x(ZnO,Fe 2 O 3 )(65-x)SiO 2 20(CaO,P 2 O 5 )15Na 2 O (6≤x≤21 mole%) glasses. X-ray diffraction patterns of the glass-ceramic samples revealed the presence of calcium sodium phosphate [NaCaPO 4 ] and zinc ferrite [ZnFe 2 O 4 ] as major crystalline phases. Zinc ferrite present in nanocrystalline form contributes to the magnetic properties of the glass-ceramic samples. Magnetic hysteresis cycles of the glass-ceramic samples were obtained with applied magnetic field sweeps of ±20 kOe and ±500 Oe, in order to evaluate the potential of these glass-ceramics for hyperthermia treatment of cancer. The evolution of magnetic properties in these samples, viz., from a partially paramagnetic to fully ferrimagnetic nature has been explored using magnetometry and X-ray diffraction studies. - Research highlights: → The glass-ceramics contain bone mineral and magnetic phases. → Calcium sodium phosphate and zinc ferrite nanocrystallites have been identified in all the sample. → With an increase in ZnO and Fe2O3 content, magnetic property of samples evolved from partially paramagnetic to fully ferrimagnetic nature. → Large magnetic hysteresis loops have been obtained for samples with high ZnO+Fe2O3 content.

  1. Survival of anterior cantilevered all-ceramic resin-bonded fixed dental prostheses made from zirconia ceramic.

    Science.gov (United States)

    Sasse, Martin; Kern, Matthias

    2014-06-01

    This study evaluated the clinical outcome of all-ceramic resin-bonded fixed dental prostheses (RBFDPs) with a cantilevered single-retainer design made from zirconia ceramic. Forty-two anterior RBFDPs with a cantilevered single-retainer design were made from yttrium oxide-stabilized zirconium oxide ceramic. RBFDPs were inserted using Panavia 21 TC as luting agent after air-abrasion of the ceramic bonding surface. During a mean observation time of 61.8 months two debondings occurred. Both RBFDPs were rebonded using Panavia 21 TC and are still in function. A caries lesion was detected at one abutment tooth during recall and was treated with a composite filling. Therefore, the overall six-year failure-free rate according to Kaplan-Meier was 91.1%. If only debonding was defined as failure the survival rate increased to 95.2%. Since all RBFDPs are still in function the overall survival rate was 100% after six years. Cantilevered zirconia ceramic RBFDPs showed promising results within the observation period. Single-retainer resin-bonded fixed dental prostheses made from zirconia ceramic show very good mid-term clinical survival rates. They should therefore be considered as a viable treatment alternative for the replacement of single missing anterior teeth especially as compared to an implant therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Diffusion of hydrogen in yttrium

    International Nuclear Information System (INIS)

    Vorobyov, V.V.; Ryabchikov, L.N.

    1966-01-01

    In this work the diffusion coefficients of hydrogen in yttrium were determined from the rate at which the hydrogen was released from yttrium samples under a vacuum at temperatures of 450 to 850 0 C and from the quantity of hydrogen retained by yttrium at hydrogen pressures below 5 x 10 - 4 mm Hg in the same temperature range

  3. Analysis of Prognostic Factors After Yttrium-90 Radioembolization of Advanced Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Inarrairaegui, Mercedes; Martinez-Cuesta, Antonio; Rodriguez, Macarena; Bilbao, J. Ignacio

    2010-01-01

    Purpose: To analyze which patient-, tumor-, and treatment-related factors may influence outcome after 90 Y radioembolization ( 90 Y-RE) for hepatocellular carcinoma (HCC). Patients and Methods: Seventy-two consecutive patients with advanced HCC treated with 90 Y-RE were studied to detect which factors may have influenced response to treatment and survival. Results: Median overall survival was 13 months (95% confidence interval, 9.6-16.3 months). In univariate analysis, survival was significantly better in patients with one to five lesions (19 vs. 8 months, p = 0.001) and in patients with alpha-fetoprotein 52 UI/mL, and their survival in the multivariate analysis was significantly worse (hazard ratio, 4.7; 95% confidence interval, 13-1.73) (p = 0.002). Conclusions: Yttrium-90 radioembolization results in control of target lesions in the majority of patients with HCC but does not prevent the development of new lesions. Survival of patients treated with 90 Y-RE seems to depend largely on factors related to the aggressiveness of the disease (number of nodules, levels of alpha-fetoprotein, and presence of microscopic disease).

  4. Thermal Properties of Transparent Yb-Doped YAG Ceramics at Elevated Temperatures

    Czech Academy of Sciences Publication Activity Database

    Hostaša, J.; Matějíček, Jiří; Nait-Ali, B.; Smith, D.S.; Pabst, W.; Esposito, L.

    2014-01-01

    Roč. 97, č. 8 (2014), s. 2602-2606 ISSN 0002-7820 Institutional support: RVO:61389021 Keywords : yttrium aluminium garnet * Yb:YAG * thermal diffusivity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.610, year: 2014 http://onlinelibrary.wiley.com/doi/10.1111/jace.13015/abstract

  5. 76 FR 11275 - In the Matter of Certain Ceramic Capacitors and Products Containing Same; Notice of Commission...

    Science.gov (United States)

    2011-03-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-692] In the Matter of Certain Ceramic Capacitors and Products Containing Same; Notice of Commission Determination To Review in Part A Final Initial... importation of certain ceramic capacitors and products containing the same by reason of infringement of...

  6. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    Science.gov (United States)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  7. Solubilization of advanced ceramic materials controlled by chemical analysis by means of atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Amarante Junior, A.

    1992-01-01

    This paper purpose is to show the techniques used in chemical analysis laboratory at Escola SENAI Mario Amato in the ceramic nucleus for opening and solubilization of Advanced Ceramic materials, where the elements in its majority are determined for atomic absorption spectroscopy. (author)

  8. Studies on yttrium-containing smart alloys

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Felix; Wegener, Tobias; Litnovsky, Andrey; Rasinski, Marcin; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany); Mayer, Joachim [Ernst Ruska-Centrum, 52425 Juelich (Germany)

    2016-07-01

    Tungsten is the main candidate as plasma-facing armour material for future fusion reactors, like DEMO. Advantages of tungsten include high melting point, high thermal conductivity, low tritium retention, and low erosion yield. A problem is oxide volatilisation under accidental conditions where the temperature of the first wall can reach 1200 K to 1450 K and air ingress occurs. Therefore smart tungsten alloys are developed. Smart alloys are supposed to preserve properties of tungsten during plasma operation coupled with suppressed tungsten oxide formation in case of an accident. Lab-scale tungsten-chromium-yttrium (W-Cr-Y) samples prepared by magnetron sputtering are used as model system. The mechanisms of oxidation and its dynamics are studied using a thermogravimetric system, focussed ion beam, and electron microscopy. A composition scan was conducted: The new material composition featuring W, ∝ 12 wt.% Cr, ∝ 0.3 wt.% Y showed strongest suppression of oxidation, no pores, and least internal oxidation. At 1273 K in argon-oxygen atmosphere an oxidation rate of 3 . 10{sup -6} mg{sup 2}cm{sup -4}s{sup -1} was measured. At 1473 K ternary W-Cr-Y alloys suppressed evaporation up to 20 min while for W-Cr evaporation was already evident after 5 min. Comparison of passivation in dry and humid atmosphere, at temperatures of 1073 K to 1473 K is performed.

  9. Far infrared reflectivity study of ceramic superconductors

    International Nuclear Information System (INIS)

    Memon, A.; Khan, M.N.; Al-Dallal, S.; Tanner, D.B.; Porter, C.D.

    1992-01-01

    In this paper, the authors report on a study of the far-infrared reflectivity of mixed rare earths and lanthnides ceramic superconductors RBa 2 Cu 3 O 7 in the normal state. The authors' results show that the strength of the phonon modes is reduced when yttrium is partially replaced by gadolinium and europium. Also the critical temperature of these mixed materials is reduced as indicated by the four probe technique

  10. PREFACE: 3rd International Congress on Ceramics (ICC3)

    Science.gov (United States)

    Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio

    2011-10-01

    Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the

  11. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  12. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  13. Structural differences of half-sandwich complexes of scandium and yttrium containing bulky substituents

    Czech Academy of Sciences Publication Activity Database

    Fridrichová, Adéla; Růžička, A.; Lamač, Martin; Horáček, Michal

    2017-01-01

    Roč. 76, FEB 2017 (2017), s. 62-66 ISSN 1387-7003 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : scandium * yttrium * half-sandwich Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.640, year: 2016

  14. Ceramics for Molten Materials Containment, Transfer and Handling on the Lunar Surface

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    As part of a project on Molten Materials Transfer and Handling on the Lunar Surface, molten materials containment samples of various ceramics were tested to determine their performance in contact with a melt of lunar regolith simulant. The test temperature was 1600 C with contact times ranging from 0 to 12 hours. Regolith simulant was pressed into cylinders with the approximate dimensions of 1.25 dia x 1.25cm height and then melted on ceramic substrates. The regolith-ceramic interface was examined after processing to determine the melt/ceramic interaction. It was found that the molten regolith wetted all oxide ceramics tested extremely well which resulted in chemical reaction between the materials in each case. Alumina substrates were identified which withstood contact at the operating temperature of a molten regolith electrolysis cell (1600 C) for eight hours with little interaction or deformation. This represents an improvement over alumina grades currently in use and will provide a lifetime adequate for electrolysis experiments lasting 24 hours or more. Two types of non-oxide ceramics were also tested. It was found that they interacted to a limited degree with the melt resulting in little corrosion. These ceramics, Sic and BN, were not wetted as well as the oxides by the melt, and so remain possible materials for molten regolith handling. Tests wing longer holding periods and larger volumes of regolith are necessary to determine the ultimate performance of the tested ceramics.

  15. Plasma spraying of bioactive glass-ceramics containing bovine bone

    Directory of Open Access Journals (Sweden)

    Annamária Dobrádi

    2017-06-01

    Full Text Available Natural bone derived glass-ceramics are promising biomaterials for implants. However, due to their price and weak mechanical properties they are preferably applied as coatings on load bearing implants. This paper describes result obtained by plasma spraying of bioactive glass-ceramics containing natural bone onto selected implant materials, such as stainless steel, alumina, and titanium alloy. Adhesion of plasma sprayed coating was tested by computed X-ray tomography and SEM of cross sections. The results showed defect free interface between the coating and substrate, without cracks or gaps. Dissolution rate of the coating in simulated body fluid (SBF was readily controlled by the bone additives (phase composition, as well as microstructure. The SBF treatment of the plasma sprayed coating did not influence the boundary between the coating and substrate.

  16. In vivo biofilm formation on different dental ceramics.

    Science.gov (United States)

    Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike

    2011-01-01

    To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.

  17. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    Science.gov (United States)

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  18. Processes leading to yttrium-barium cuprates formation in synthesis using nitrates

    International Nuclear Information System (INIS)

    Kulakov, A.B.; Tesker, A.M.; Zalishchanskij, M.E.; Tret'yakov, Yu.D.; Gipius, A.A.

    1989-01-01

    An attempt to determine sequence and conditions for transformations occuring at heating both of mechanical mixture of copper, yttrium and barium nitrates and salt product of sublimated dehydration of quick frozen solution of nitrates in question of correlation which corresponds to YBa 2 Cu 3 O 7-σ final compounds is made. It is shown that unlike individual nitrates their thermolysis in the mixture occurs at lower temperatures with mechanism variation of decomposition separate stages. Specimens of superconducting ceramics with 4.3 g/cm 3 density phase composition and oxygen content which correspond to YBa 2 Cu 3 O 6.85±0.05 formula are obtaied

  19. Advanced ceramic composite for high energy resistors. Characterization of electrical and physical properties

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Naser, Tabatabaei; Ahmad, Rashtehizadeh

    2005-01-01

    There is a need to characterize and apply advanced materials to improve the performance of components used in pulse power systems. One area of innovation is the use of bulk electrically conductive ceramics for non-inductive, high energy and high power electrical resistors. Standard Ceramics Inc. has developed a unique silicon carbide structural ceramic composite which exhibits electrical conductivity. The new conductive bulk ceramic material has a controlled microstructure, which results in improved homogeneity, making the material suitable for use as a non-inductive high energy resistor. This paper describes characterization of the material's physical and electrical properties and relates them to improvements in low-inductance, high temperature, high power density and high energy density resistors. The bulk resistor approach offers high reliability through better mechanical properties and simplicity of construction

  20. Fracture resistance of prepared premolars restored with bonded new lab composite and all-ceramic inlay/onlay restorations: Laboratory study.

    Science.gov (United States)

    Wafaie, Ramy Ahmed; Ibrahim Ali, Ashraf; Mahmoud, Salah Hasab

    2018-01-25

    To assess the influence of new light curing lab composite, lithium-disilicate glass-ceramic and yttrium-stabilized zirconia-based ceramic on the fracture resistance of maxillary premolars with class II inlay and onlay preparations. Seventy sound maxillary premolars were divided randomly into seven main groups. The first group was left intact (control group). The remaining six groups were prepared with inlay and onlay cavities and restored with lab composite (SR Nexco), lithium-disilicate glass-ceramic (IPS e.max Press) and yttrium-stabilized zirconia-based ceramic (ICE Zirkon). The restorations were cemented with luting resin composite (Variolink N). All specimens were thermocycled 5000 cycles between 5°C ± 2°C and 55°C ± 2°C and were then cyclic loaded for 500 000 cycles. The specimens were subjected to a compressive load in a universal testing machine using a metal sphere until fracture occurred. The results were analyzed by 2-way ANOVA and Tukey HSD post hoc tests. The level of significance was set at P  .05). However, statistically significant differences were found among the means of control group and the groups restored with lab composite inlays, lab composite onlays, pressable glass ceramic inlays and pressable glass ceramic onlays (P lab composite is used. Conversely, when a ceramic material being used, the prepared teeth for inlay and onlay restorations showed a comparable strength to the intact teeth especially zirconia ceramic. Premolar teeth restored with zirconia ceramic inlays and onlays exhibited fracture resistance comparable to intact teeth. © 2018 Wiley Periodicals, Inc.

  1. Hollow ceramic block: containment of water for thermal storage in passive solar design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Winship, C.T.

    1983-12-27

    The project activity has been the development of designs, material compositions and production procedures to manufacture hollow ceramic blocks which contain water (or other heat absorptive liquids). The blocks are designed to serve, in plurality, a dual purpose: as an unobtrusive and efficient thermal storage element, and as a durable and aesthetically appealing surface for floors and walls of passive solar building interiors. Throughout the grant period, numerous ceramic formulas have been tested for their workabilty, thermal properties, maturing temperatures and color. Blocks have been designed to have structural integrity, and textured surfaces. Methods of slip-casting and extrusion have been developed for manufacturing of the blocks. The thermal storage capacity of the water-loaded block has been demonstrated to be 2.25 times greater than that of brick and 2.03 times greater than that of concrete (taking an average of commonly used materials). Although this represents a technical advance in thermal storage, the decorative effects provided by application of the blocks lend them a more significant advantage by reducing constraints on interior design in passive solar architecture.

  2. Spectrophotometric determination of yttrium with 2-(2-thiazolylazo)-5-dimethylaminophenol

    International Nuclear Information System (INIS)

    Tsurumi, Chikao; Furuya, Keiichi.

    1975-01-01

    Spectrophotometric determination of small amounts of yttrium with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM) in the presence of zephiramine was investigated. The recommended procedures were as follows; 2.0 ml of water, 7.0 ml of TAM-methanolic solution (2x10 -4 mol/l) and 2.0 ml of zephiramine-aqueous solution (1x10 -2 mol/l) were added to a solution containing less than 35 μg of yttrium and its pH was adjusted to 8.0 with 0.1 mol/l ammonium chloride-0.1 mol/l ammonium hydroxide solution. The solution was transferred to a 25 ml volumetric flask and diluted to the mark with water. After 20 minutes, the absorbance at 575 nm against a reagent blank was measured. The color of yttrium-TAM complex is reddish-violet in the presence of zephiramine and is stable for 90 minutes after color development. The yttrium-TAM complex shows an absorption maximum at 575 nm. The absorbance at 575 nm is constant in a pH range from 7.5 to 8.3. The molar extinction coefficient at this wavelength is 7.2x10 4 l.mol -1 .cm -1 . The band obeys Beer's law up to the concentration of 1.4 μg/ml of yttrium. The molar ratio of yttrium to TAM in the complex is 1 : 2. A number of ions interfere with the determination can be masked by the addition of various masking agents and removed in terms of trioctylamine-xylene extraction. Manganese, tantalum, tin(II), citrate and tartrate ions interfere with the determination. (auth.)

  3. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids

    Directory of Open Access Journals (Sweden)

    Klaus G. Nickel

    2004-03-01

    Full Text Available Advanced ceramics are considered as components in energy related systems, because they are known to be strong, wear and corrosion resistant in many environments, even at temperatures well exceeding 1000 °C. However, the presence of additives or impurities in important ceramics, for example those based on Silicon Nitride (Si3N4 or Al2O3 makes them vulnerable to the corrosion by hot aqueous fluids. The temperatures in this type of corrosion range from several tens of centigrade to hydrothermal conditions above 100 °C. The corrosion processes in such media depend on both pH and temperature and include often partial leaching of the ceramics, which cannot be monitored easily by classical gravimetric or electrochemical methods. Successful corrosion penetration depth monitoring by polarized reflected light optical microscopy (color changes, Micro Raman Spectroscopy (luminescence changes and SEM (porosity changes will be outlined. The corrosion process and its kinetics are monitored best by microanalysis of cross sections, Raman spectroscopy and eluate chemistry changes in addition to mass changes. Direct cross-calibrations between corrosion penetration and mechanical strength is only possible for severe corrosion. The methods outlined should be applicable to any ceramics corrosion process with partial leaching by fluids, melts or slags.

  4. Yttrium 3-(4-nitrophenyl)-2-propenoate used as inhibitor against copper alloy corrosion in 0.1 M NaCl solution

    International Nuclear Information System (INIS)

    Nam, Nguyen Dang; Thang, Vo Quoc; Hoai, Nguyen To; Hien, Pham Van

    2016-01-01

    Highlights: • Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper. • A high inhibition performance is attributed to the forming protective inhibiting deposits. • Yttrium 3-(4-nitrophenyl)-2-propenoate mitigates corrosion by promoting random distribution of minor anodes. - Abstract: Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper alloy in 0.1 M chloride solution. The results show that the surface of copper alloy coupons exposed to solutions containing 0.45 mM yttrium 3-(4-nitrophenyl)-2-propenoate had no signs of corrosion attack due to protective film formation, whereas the surface of copper alloy coupons exposed to non-inhibitor and lower concentrations of yttrium 3-(4-nitrophenyl)-2-propenoate containing solutions were severely corroded. A high inhibition performance is attributed to the forming protective inhibiting deposits that slow down the electrochemical corrosion reactions and mitigate corrosion by promoting random distribution of minor anodes.

  5. Microimpurity composition of superconducting ceramics

    International Nuclear Information System (INIS)

    Zhiglov, Yu.S.; Poltoratskij, Yu.B.; Protsenko, A.N.; Tuchin, O.V.

    1989-01-01

    Using laser mass spectrometry, the microimpurity composition of YBa 2 Cu 3 O 7-y superconducting ceramics, prepared by routine solid-phase synthesis from extremely pure yttrium and copper oxides and BaCO 3 , is determined. The presence of F, Na, Al, P, Cl, S, K, Ca impurities, which concentration in specimens varies within 10 -3 +5x10 -3 at.% and also Si, Sr, Fe of about 1x10 -1 at.% is established. It is difficult to determine concentrations of C, N, H 2 O impurities because of the presence of background signals of residual gases in the chamber. Using the method of Auger electron spectroscopy, a surface layer of HTSC ceramics grain is studied. The availability of chlorine impurity, which amount considerably exceeds its volume concentration, is determined in near the surface layer. 2 refs.; 2 figs

  6. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  7. Synthesis and characterization of cerium containing iron phosphate based glass-ceramics

    Science.gov (United States)

    Deng, Yi; Liao, Qilong; Wang, Fu; Zhu, Hanzhen

    2018-02-01

    The structure and properties of xCeO2-(100-x)(40Fe2O3-60P2O5), where x = 0, 2, 4, 6 and 8 mol%, glass-ceramics prepared by melting and slow cooling method have been investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA) and the Product Consistency Test (PCT). The results show that the 40Fe2O3-60P2O5 sample is homogeneously amorphous and the sample containing 2 mol% CeO2 has a small amount of FePO4 phase embedded. For the sample containing up to 4 mol% CeO2, monazite CePO4 and a small amount of FePO4 appear. Spectra analysis show that the structure networks of the glass-ceramics mainly consist of orthophosphate, along with pyrophosphate and a small amount of metaphosphate units. Moreover, the leaching rates of Fe and Ce are about 3.5 × 10-5 g m-2 d-1 and 5.0 × 10-5 g m-2 d-1 respectively after immersion in deionized water at 90 °C for 56 days, indicating their good chemical durability. The conclusions imply that the prepared method may be a promising process to immobilize nuclear waste into glass-ceramic matrix.

  8. Single-source-precursor Synthesis and High-temperature Behavior of SiC Ceramics Containing Boron

    Science.gov (United States)

    Gui, Miaomiao; Fang, Yunhui; Yu, Zhaoju

    2014-12-01

    In this paper, a hyperbranched polyborocarbosilane (HPBCS) was prepared by a one-pot synthesis with Cl2Si(CH3)CH2Cl, Cl3SiCH2Cl and BCl3 as the starting materials. The obtained HPBCS was characterized by GPC, FT-IR and NMR, and was confirmed to have hyperbranched structures. The thermal property of the resulting HPBCS was investigated by TGA. The ceramic yield of the HPBCS is about 84% and that of the counterpart hyperbranched hydridopolycarbosilane is only 45%, indicating that the introduction of boron into the preceramic polymer significantly improved the ceramic yield. With the polymer-derived ceramic route, the final ceramics were annealed at 1800 °C in argon atmosphere for 2 h in order to characterize the microstructure and to evaluate the high-temperature behavior. The final ceramic microstructure was studied by XRD and SEM, indicating that the introduction of boron dramatically inhibits SiC crystallization. The boron-containing SiC ceramic shows excellent high-temperature behavior against decomposition and crystallization at 1800 °C.

  9. Elaboration of new ceramic composites containing glass fibre production wastes

    International Nuclear Information System (INIS)

    Rozenstrauha, I.; Sosins, G.; Krage, L.; Sedmale, G.; Vaiciukyniene, D.

    2013-01-01

    Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50 % of organic matter as well as waste glass from aluminium borosilicate glass fibre with relatively high softening temperature (> 600 degree centigrade). In order to elaborate different new ceramic products (porous or dense composites) the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia) with illite content in clay fraction up to 80-90 % was used as a matrix. The raw materials were investigated by differential-thermal (DTA) and XRD analysis. Ternary compositions were prepared from mixtures of 15 - 35 wt % of sludge, 20 wt % of waste glass and 45 - 65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 degree centigrade in different treatment conditions. Materials produced in temperature range 1090 - 1100 degree centigrade with the most optimal properties - porosity 38 - 52 %, water absorption 39 -47 % and bulk density 1.35 - 1.67 g/cm 3 were selected for production of porous ceramics and materials showing porosity 0.35 - 1.1 %, water absorption 0.7 - 2.6 % and bulk density 2.1 - 2.3 g/cm 3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM). By X-ray diffraction analysis (XRD) the quartz, diopside and anorthite crystalline phases were detected. (Author)

  10. Method of growing yttrium aluminate and/or lanthanide single crystals with perovskite structure

    International Nuclear Information System (INIS)

    Kvapil, Jiri; Perner, B.; Kvapil, Josef; Blazek, K.

    1989-01-01

    Single crystals of yttrium aluminate and/or lanthanide with perovskite structure are grown from melt in a vacuum at a pressure of gas residues of max. 0.01 Pa. The melt contains 1±0.05 gram-ions of aluminium per gram-ion of yttrium and/or lanthanides. The single crystals are then heated in a vacuum (0.01 Pa) at temperatures of 1,450 to 1,800 degC for 2 to 3 hours. (B.S.)

  11. Advanced ceramic composite for high energy resistors. Characterization of electrical and physical properties

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Naser, Tabatabaei

    2005-01-01

    Full text : There is a need to characterize and apply advanced materials to improve the performance of components used in pulse power systems. One area for innovation is the use of bulk electrically conductive ceramics for non-inductive, high energy and high power electrical resistors. Standard Ceramics, Inc. has developed a unique silicon carbide structural ceramic composite which exhibits electrical conductivity. The new conductive bulk ceramic material has a controlled microstructure, which results an improved homogeneity, making the material suitable for use as a non-inductive, high energy resistor. The new material has higher density, highee peak of temperature limit and greater physical strength compared with bulk ceramics currently used for pulsed power resistors. This paper describes characterization of the material's physical and electrical properties and relates them to improvements in low-power density, as compared to existing components would be expected and derived from specific properties such as good thermal conductivity, high strength, thermal shock resistance and high temperature capability. The bulk resistor approach that weas proposed offers high reliability through better mechanical properties and simplicity of construction

  12. Biological Activation of Inert Ceramics: Recent Advances Using Tailored Self-Assembled Monolayers on Implant Ceramic Surfaces

    Science.gov (United States)

    Böke, Frederik; Schickle, Karolina; Fischer, Horst

    2014-01-01

    High-strength ceramics as materials for medical implants have a long, research-intensive history. Yet, especially on applications where the ceramic components are in direct contact with the surrounding tissue, an unresolved issue is its inherent property of biological inertness. To combat this, several strategies have been investigated over the last couple of years. One promising approach investigates the technique of Self-Assembled Monolayers (SAM) and subsequent chemical functionalization to create a biologically active tissue-facing surface layer. Implementation of this would have a beneficial impact on several fields in modern implant medicine such as hip and knee arthroplasty, dental applications and related fields. This review aims to give a summarizing overview of the latest advances in this recently emerging field, along with thorough introductions of the underlying mechanism of SAMs and surface cell attachment mechanics on the cell side. PMID:28788687

  13. Studies for the yttrium determination by activation analysis, in the presence of lanthanides. Application of the substoichiometric technique

    International Nuclear Information System (INIS)

    Silva, D.I.T. da.

    1978-01-01

    Some methods using extraction chromatography for the separation of yttrium from the lanthanide elements were applied. The separation of yttrium was studied, using di-(2 ethylhexyl) orthophosphoric acid as stationary phase, Kieselguhr as support and HNO 3 of concentration between 4,5 and 5,0 N as the mobile phase. In these conditions, about 50% of pure yttrium was obtained. The substoichiometric technique was applied to the determination of yttrium. The elements was partially complexed and the Y 3 + ions were separated from the complex (EDTA-Y) - by means of a cationic resin. The sensitivity, precision and accuracy which can be expected in the analytical results were studied. The possibility of the analysis of a sample containing 1 part per million of yttrium with an error just above 8% was demonstrated. It was also shown that, admitting an error of 10%, it is possible to determine 60 parts per billion of yttrium [pt

  14. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    Science.gov (United States)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  15. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    International Nuclear Information System (INIS)

    Innocenzi, V.; De Michelis, I.; Ferella, F.; Vegliò, F.

    2013-01-01

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes

  16. An investigation of the element composition of superconducting ceramics by neutron activation and radiography methods

    International Nuclear Information System (INIS)

    Kist, A.A.; Flitsiyan, E.S.

    1994-01-01

    The neutron activation methods for determining the general composition and distribution of the main components in HTSC ceramics were developed. The conditions for the reduction of the analysis error were discussed. The dependences of the oxygen content and superconducting parameters of single-phase and polyphase yttrium ceramics on the regime of heat treatment in air were investigated. Variation in the oxygen content was found to have a nonmonotone character, depending on the temperature of quenching and annealing. Correlation between the character of the superconducting transition and the oxygen content was observed. During the heat treatment, reversible structural phase transitions proceed in the single-phase ceramics in the polyphase ceramics, the recrystallization processes occur, which result in homogenization of its structure

  17. Corrosion behaviors of ceramics against liquid sodium. Sodium corrosion characteristics of sintering additives

    International Nuclear Information System (INIS)

    Tachi, Yoshiaki; Kano, Shigeki; Hirakawa, Yasushi; Yoshida, Eiichi

    1998-01-01

    It has been progressed as the Frontier Materials Research to research and develop ceramics to apply for several components of fast breeder reactor using liquid sodium as coolant instead of metallic materials. Grain boundary of ceramics has peculiar properties compared with matrix because most of ceramics are produced by hardening and firing their raw powders. Some previous researchers indicated that ceramics were mainly corroded at grain boundaries by liquid sodium, and ceramics could not be used under corrosive environment. Thus, it is the most important for the usage of ceramics in liquid sodium to improve corrosion resistance of grain boundaries. In order to develop the advanced ceramics having good sodium corrosion resistance among fine ceramics, which have recently been progressed in quality and characteristics remarkably, sodium corrosion behaviors of typical sintering additives such as MgO, Y 2 O 3 and AlN etc. have been examined and evaluated. As a result, the followings have been clarified and some useful knowledge about developing advanced ceramics having good corrosion resistance against liquid sodium has been obtained. (1) Sodium corrosion behavior of MgO depended on Si content. Samples containing large amount of Si were corroded severely by liquid sodium, whereas others with low Si contents showed good corrosion resistance. (2) Both Y 2 O 3 and AlN, which contained little Si, showed good sodium corrosion resistance. (3) MgO, Y 2 O 3 and AlN are thought to be corroded by liquid sodium, if they contain some SiO 2 . Therefore, in order to improve sodium corrosion resistance, it is very important for these ceramics to prevent the contamination of matrix with SiO 2 through purity control of their raw powders. (author)

  18. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  19. Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations.

    Science.gov (United States)

    Siarampi, Eleni; Kontonasaki, Eleana; Andrikopoulos, Konstantinos S; Kantiranis, Nikolaos; Voyiatzis, George A; Zorba, Triantafillia; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2014-12-01

    Dental zirconia restorations should present long-term clinical survival and be in service within the oral environment for many years. However, low temperature degradation could affect their mechanical properties and survival. The aim of this study was to investigate the effect of in vitro aging on the flexural strength of yttrium-stabilized (Y-TZP) zirconia ceramics for ceramic restorations. One hundred twenty bar-shaped specimens were prepared from two ceramics (ZENO Zr (WI) and IPS e.max(®) ZirCAD (IV)), and loaded until fracture according to ISO 6872. The specimens from each ceramic (nx=60) were divided in three groups (control, aged for 5h, aged for 10h). One-way ANOVA was used to assess statistically significant differences among flexural strength values (Pceramics, however statistically significant was for the WI group (Pceramics presented a t→m phase transformation, with the m-phase increasing from 4 to 5% at 5h to around 15% after 10h. The significant reduction of the flexural strength after 10h of in vitro aging, suggests high fracture probability for one of the zirconia ceramics tested. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser

    DEFF Research Database (Denmark)

    Zhou, Binbin; Wei, Z.Y.; Zou, Y.W.

    2010-01-01

    A highly efficient diode-end-pumped femtosecond Yb:yttrium aluminum garnet (YAG) ceramic laser was demonstrated. Pumped by a 968 nm fiber-coupled diode laser, 1.9 W mode-locked output power at a repetition rate of 64.27 MHz was obtained with 3.5 W absorbed pump power, corresponding to a slope...... efficiency of 76%. Our measurement showed that the pulse duration was 418 fs with the central wavelength of 1048 nm....

  1. Tribology of ceramics: Report of the Committee on Tribology of Ceramics

    Science.gov (United States)

    1988-01-01

    The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.

  2. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  3. Sintering and annealing effects on undoped yttria transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Letue, Laetitia; Petit, Johan, E-mail: johan.petit@onera.fr; Ritti, Marie-Hélène; Lalanne, Sylvie; Landais, Stéphane

    2017-06-15

    Transparent yttrium oxide (Y{sub 2}O{sub 3}) ceramics were processed by several densifications steps without any doping species. The green bodies were obtained by the aqueous way and sintered at high temperature under vacuum and then under high pressure. We studied the effects of different sintering cycles and air annealing at different steps of the process on the density and the grain growth. We also focused on the reaction between yttria ceramics and BN-coated graphite crucible which occurs during HIP. We noted that a low heating rate and two annealing steps are necessary to improve our samples’ transparency. - Highlights: • The quality of transparent ceramics is compared with the tested process parameters. • Air annealing is critical when using a carbon environment in the process. • Intra-granular pores, and so the final transparency, are directly linked to the sintering heating rates.

  4. Preparation and properties of highly porous, biomorphic YSZ ceramics

    International Nuclear Information System (INIS)

    Rambo, C.R.; Cao, J.; Sieber, H.

    2004-01-01

    Highly porous, biomorphic YSZ (yttria-stabilized zirconia) ceramics were manufactured by infiltration of zirconium-oxychloride (ZrOCl 2 ·8H 2 O) sol into biological template structures derived from rattan and pine wood. 3-5 mol% yttrium nitrate (Y(NO 3 ) 3 ·5H 2 O) was added to the sol to stabilize the tetragonal ZrO 2 phase. After vacuum-assisted infiltration, the specimens were pyrolysed at 800 deg. C in N 2 atmosphere. Repeated infiltrations and subsequent annealing in air at temperatures up to 1550 deg. C yields the burn out of the biocarbon template and resulted in the formation of biomorphous YSZ ceramics, which maintained the microstructural features of the biological preform. Depending on the type of the biological template as well as the processing parameters, biomorphic ZrO 2 ceramics with an unidirected pore morphology and a large variety of microstructures can be obtained

  5. Microstructure and magnetic properties of yttrium alumina silicate glass microspheres containing iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Basak, C.B.; Prajapat, C.L.; Singh, M.R.

    2015-01-01

    Yttrium alumino-silicate glass microspheres have been used for localized delivery of high radiation dose to tissues in the treatment of hepatocellular carcinoma (BCC) and synovitis. 90 Y is a pure beta emitter with beta emission energy of 0.9367 MeV, average penetration range in tissue 2.5 mm, physical half-life of 64.2 h, thus an effective radioisotope for delivering high radiation dose to the tumor. The efficacy of radiotherapy can further be improved if the glass microspheres are doped with magnetic particles for targeted delivery of high radiation dose. Magnetic glass microspheres can also be utilized for cancer treatment using the magnetic heating of tumor cell. The magnetic glass microspheres are obtained from the glasses with nominal composition (64-x) SiO 2 -17Y 2 O 3 -19 Al 2 O 3 -xFe 2 O 3 (x=4-16 mol %). Density of glasses increases from 3.5g/cc to 3.8g/cc as iron oxide content is increased from 4 to 16 mol %. The glass transition temperature and peak crystallization temperature decreases as the iron oxide content increases. T g values of glass samples decreases with increase of Fe 2 O 3 , while SiO 2 content is decreased. SiO 2 is a network forming oxide and a decrease in the network former in glass lead to decrease in thermo-physical properties like T g . The development of ferrimagnetic crystallites in glasses arise from the conversion of iron oxide into magnetite, magnemite and hematite, which is influenced by the structural and ordering of magnetic particles. The microstructure of glass-ceramic exhibited the formation of 50-100 nm size particles. The magnetite and hematite are formed as major crystalline phases. The magnetization values increased with an increase of iron oxide content and attributed to formation of magnetite phase. Results have shown that the glass microspheres with magnetic properties can be used as potential materials for cancer treatment. (author)

  6. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium–yttrium organic frameworks

    International Nuclear Information System (INIS)

    Han Yinfeng; Fu Lianshe; Mafra, Luís; Shi, Fa-Nian

    2012-01-01

    Three mixed europium–yttrium organic frameworks: Eu 2−x Y x (Mel)(H 2 O) 6 (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu 3+ lifetime becomes longer in these MOFs than those of the Eu analog. - Graphical abstract: Three mixed europium and yttrium organic frameworks: Eu 2−x Y x (Mel)(H 2 O) 6 (Mel=mellitic acid) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu 3+ lifetime becomes longer in these MOFs than those of the Eu analog. Highlights: ► Three (4, 8)-flu topological mixed Eu and Y MOFs were synthesized under mild conditions. ► Metal ratios were refined by the single crystal data consistent with the EDS analysis. ► Mixed Eu and Y MOFs show longer lifetime and higher quantum efficiency than the Eu analog. ► Adding inert lanthanide into luminescent MOFs enlarges the field of luminescent MOFs.

  7. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  8. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  9. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  10. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1995-01-01

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si 3 N 4 -Mo-Si 3 N 4 . These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si 3 N 4 -Si 3 N 4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  11. Interaction of oxygen vacancies in yttrium germanates

    KAUST Repository

    Wang, Hao

    2012-01-01

    Forming a good Ge/dielectric interface is important to improve the electron mobility of a Ge metal oxide semiconductor field-effect transistor. A thin yttrium germanate capping layer can improve the properties of the Ge/GeO 2 system. We employ electronic structure calculations to investigate the effect of oxygen vacancies in yttrium-doped GeO 2 and the yttrium germanates Y 2Ge 2O 7 and Y 2GeO 5. The calculated densities of states indicate that dangling bonds from oxygen vacancies introduce in-gap states, but the system remains insulating. However, yttrium-doped GeO 2 becomes metallic under oxygen deficiency. Y-doped GeO 2, Y 2Ge 2O 7 and Y 2GeO 5 are calculated to be oxygen substoichiometric under low Fermi energy conditions. The use of yttrium germanates is proposed as a way to effectively passivate the Ge/dielectric interface. This journal is © 2012 the Owner Societies.

  12. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    Science.gov (United States)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  13. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: A review

    International Nuclear Information System (INIS)

    Salem, Riad; Hunter, Russell D.

    2006-01-01

    To present a critical review of yttrium-90 (TheraSphere) for the treatment of hepatocellular carcinoma (HCC). Medical literature databases (Medline, Cochrane Library, and CANCERLIT) were searched for available literature concerning the treatment of HCC with TheraSphere. These publications were reviewed for scientific and clinical validity. Studies pertaining to the use of yttrium-90 for HCC date back to the 1960s. The results from the early animal safety studies established a radiation exposure range of 50-100 Gy to be used in human studies. Phase I dose escalation studies followed, which were instrumental in delineating radiation dosimetry and safety parameters in humans. These early studies emphasized the importance of differential arteriolar density between hypervascular HCC and surrounding liver parenchyma. Current trends in research have focused on advancing techniques to safely implement this technology as an alternative to traditional methods of treating unresectable HCC, such as external beam radiotherapy, conformal beam radiotherapy, ethanol ablation, trans-arterial chemoembolization, and radiofrequency ablation. Yttrium-90 (TheraSphere) is an outpatient treatment option for HCC. Current and future research should focus on implementing multicenter phase II and III trials comparing TheraSphere with other therapies for HCC

  14. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: a review.

    Science.gov (United States)

    Salem, Riad; Hunter, Russell D

    2006-01-01

    To present a critical review of yttrium-90 (TheraSphere) for the treatment of hepatocellular carcinoma (HCC). Medical literature databases (Medline, Cochrane Library, and CANCERLIT) were searched for available literature concerning the treatment of HCC with TheraSphere. These publications were reviewed for scientific and clinical validity. Studies pertaining to the use of yttrium-90 for HCC date back to the 1960s. The results from the early animal safety studies established a radiation exposure range of 50-100 Gy to be used in human studies. Phase I dose escalation studies followed, which were instrumental in delineating radiation dosimetry and safety parameters in humans. These early studies emphasized the importance of differential arteriolar density between hypervascular HCC and surrounding liver parenchyma. Current trends in research have focused on advancing techniques to safely implement this technology as an alternative to traditional methods of treating unresectable HCC, such as external beam radiotherapy, conformal beam radiotherapy, ethanol ablation, trans-arterial chemoembolization, and radiofrequency ablation. Yttrium-90 (TheraSphere) is an outpatient treatment option for HCC. Current and future research should focus on implementing multicenter phase II and III trials comparing TheraSphere with other therapies for HCC.

  15. Final technical report to Department of Energy, Basic Energy Sciences. ''Oxide ceramic alloys and microlaminates'' (1996-1999) and ''Low temperature processing and kinetics of ceramics and ceramic matrix composites with large interfacial areas'' (1999-2000)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei

    2001-03-26

    We have discovered a novel two-step sintering method that opened up a low temperature processing window within which fully dense nanocrystalline yttrium oxide was obtained with no concurrent grain growth during final-stage sintering. We have developed a new method of processing laminate ceramics using deformation processing in the green state. We have lastly developed a colloidal processing technique to encapsulate biomolecules at ambient, neutral-pH, aqueous conditions.

  16. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  17. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  18. Use of the inverse temperature profile in microwave processing of advanced ceramics

    International Nuclear Information System (INIS)

    Binner, J.G.P.; Al-Dawery, I.A.; Aneziris, C.; Cross, T.E.

    1992-01-01

    Attempts are being made to exploit the inverse temperature profile which can be developed with microwave heating with respect to the processing of certain advanced ceramics. This paper discusses the results obtained to date during the microwave sintering of YBCO high-T c superconductors and the microwave reaction bonding of silicon nitride

  19. Preparation and properties of highly porous, biomorphic YSZ ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, C.R.; Cao, J.; Sieber, H

    2004-10-15

    Highly porous, biomorphic YSZ (yttria-stabilized zirconia) ceramics were manufactured by infiltration of zirconium-oxychloride (ZrOCl{sub 2}{center_dot}8H{sub 2}O) sol into biological template structures derived from rattan and pine wood. 3-5 mol% yttrium nitrate (Y(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O) was added to the sol to stabilize the tetragonal ZrO{sub 2} phase. After vacuum-assisted infiltration, the specimens were pyrolysed at 800 deg. C in N{sub 2} atmosphere. Repeated infiltrations and subsequent annealing in air at temperatures up to 1550 deg. C yields the burn out of the biocarbon template and resulted in the formation of biomorphous YSZ ceramics, which maintained the microstructural features of the biological preform. Depending on the type of the biological template as well as the processing parameters, biomorphic ZrO{sub 2} ceramics with an unidirected pore morphology and a large variety of microstructures can be obtained.

  20. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); De Michelis, Ida [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy)

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.

  1. Scandium, yttrium and the lanthanides

    International Nuclear Information System (INIS)

    Hart, F.A.

    1987-01-01

    This chapter on the chemistry of the coordination complexes of scandium, yttrium and the lanthanides includes sections on the nitrogen and oxygen donor ligands and complex halides of scandium, and the phosphorus and sulfur donor ligands of yttrium and the lanthanides. Complexes with the macrocylic ligands and with halides are also discussed. Sections on the NMR and electronic spectra of the lanthanides are also included. (UK)

  2. Features of solid solutions composition in magnesium with yttrium alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Tarytina, I.E.

    1983-01-01

    Additional data on features of yttrium solid solutions composition in magnesium in the course of their decomposition investigation in the case of aging are obtianed. The investigation has been carried out on the base of a binary magnesium-yttrium alloy the composition of which has been close to maximum solubility (at eutectic temperature) and magnesium-yttrium alloys additionally doped with zinc. It is shown that higher yttrium solubility in solid magnesium than it has been expected, issueing from the difference in atomic radii of these metals indicates electron yttrium-magnesium atoms interaction. In oversaturated magnesium-yttrium solid solutions at earlier decomposition stages Mg 3 Cd type ordering is observed. At aging temperatures up to 250 deg C and long exposures corresponding to highest strengthening in oversaturated magnesium yttrium solid solutions a rhombic crystal lattice phase with three symmetric orientations is formed

  3. ASTM Committee C28: International Standards for Properties and Performance of Advanced Ceramics, Three Decades of High-quality, Technically-rigorous Normalization

    Science.gov (United States)

    Jenkins, Michael G.; Salem, Jonathan A.

    2016-01-01

    Physical and mechanical properties and performance of advanced ceramics and glasses are difficult to measure correctly without the proper techniques. For over three decades, ASTM Committee C28 on Advanced Ceramics, has developed high quality, rigorous, full-consensus standards (e.g., test methods, practices, guides, terminology) to measure properties and performance of monolithic and composite ceramics that may be applied to glasses in some cases. These standards testing particulars for many mechanical, physical, thermal, properties and performance of these materials. As a result these standards provide accurate, reliable, repeatable and complete data. Within Committee C28 users, producers, researchers, designers, academicians, etc. have written, continually updated, and validated through round-robin test programs, nearly 50 standards since the Committees founding in 1986. This paper provides a retrospective review of the 30 years of ASTM Committee C28 including a graphical pictogram listing of C28 standards along with examples of the tangible benefits of advanced ceramics standards to demonstrate their practical applications.

  4. Extraction of nitrates of lanthanoids (3) of the yttrium group and yttrium (3) by trialkylbenzylammonium nitrate in toluene

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kovalev, S.V.; Keskinov, V.A.; Kopyrin, A.A.

    1997-01-01

    A study was made on extraction of nitrates of lanthanoids (3) of the yttrium group (terbium-lutetium) and yttrium (3) by trialkylbensylammonium nitrate in toluene at T=298.15 K pH 2. Extraction isotherms are described with account of formation of compound of (R 4 N) 2 [Ln(NO 3 ) 5 ] composition in organic phase. Values of extraction constants decreasing in terbium (3)-lutetium (3) series, were calculated. Value of extraction constant for yttrium (3) is close to the value of extraction constant for ytterbium (3). 13 refs., 2 figs., 3 tabs

  5. Novel ceramic coatings for containment of uranium and reactive molten metals

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Satpute, R.U.; Ramanathan, S.; Thiyagarajan, T.K.; Padmanabhan, P.V.A.; Kutty, T.R.G.

    2005-01-01

    Plasma sprayed aluminium oxide coatings, which are currently used for casting uranium metal are, however, not suitable for long duration handling of molten uranium and is also unstable under reducing conditions. Yttrium oxide and rare earth phosphates are suggested as promising materials for prevention of high temperature corrosion by molten metals. The present paper reports research efforts directed towards development of plasma sprayed coatings of yttria and lanthanum phosphate. Thermal spray grade powders of yttrium oxide and lanthanum phosphate, synthesized using locally available raw materials have been used as feedstock powders for plasma spray deposition. The coatings have been deposited using the indigenously developed 40 kW atmospheric plasma spray system and have been characterized. Results of preliminary experiments on compatibility of yttria and lanthanum phosphate with molten uranium are quite encouraging. (author)

  6. Enrichment of yttrium from rare earth concentrate by ammonium carbonate leaching and peroxide precipitation

    International Nuclear Information System (INIS)

    Vasconcellos, Mari E. de; Rocha, S.M.R. da; Pedreira, W.R.; Queiroz S, Carlos A. da; Abrao, Alcidio

    2006-01-01

    The rare earth elements (REE) solubility with ammonium carbonate vary progressively from element to element, the heavy rare earth elements (HRE) being more soluble than the light rare earth elements (LRE). Their solubility is function of the carbonate concentration and the kind of carbonate as sodium, potassium and ammonium. In this work, it is explored this ability of the carbonate for the dissolution of the REE and an easy separation of yttrium was achieved using the precipitation of the peroxide from complex yttrium carbonate. For this work is used a REE concentrate containing (%) Y 2 O 3 2.4, Dy 2 O 3 0.6, Gd 2 O 3 2.7, CeO 2 2.5, Nd 2 O 3 33.2, La 2 O 3 40.3, Sm 2 O 3 4.1 and Pr 6 O 11 7.5. The mentioned concentrate was produced industrially from the chemical treatment of monazite sand by NUCLEMON in Sao Paulo. The yttrium concentrate was treated with 200 g L -1 ammonium carbonate during 10 and 30 min at room temperature. The experiments indicated that a single leaching operation was sufficient to get a rich yttrium solution with about 60.3% Y 2 O 3 . In a second step, this yttrium solution was treated with an excess of hydrogen peroxide (130 volumes), cerium, praseodymium and neodymium peroxides being completely precipitated and separated from yttrium. Yttrium was recovered from the carbonate solution as the oxalate and finally as oxide. The final product is an 81% Y 2 O 3 . This separation envisages an industrial application. The work discussed the solubility of the REE using ammonium carbonate and the subsequent precipitation of the correspondent peroxides

  7. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  8. Yttrium synovectomy: a meta-analysis of the literature

    International Nuclear Information System (INIS)

    Jones, G.

    1993-01-01

    Yttrium synovectomy for chronic synovitis of the knee enjoys widespread usage in Australia with approximately 400 patients receiving yttrium-90 in 1991. Despite abundant anecdotal evidence of its efficacy there is a paucity of controlled trials and those that have been done have produced conflicting results and have been of insufficient sample size. To critically and quantitatively evaluate the published English literature on comparative trials of yttrium-90 therapy for chronic synovitis of the knee, the technique of meta-analysis was utilised. The literature search was carried out using the MeSH terms of synovectomy and knee; and yttrium. This was augmented by referring to reviews, current textbooks and back-references. Outcome measures varied between trials but could be grouped as treatment success. The Peto modification of Mantel and Haenszl was used for statistical pooling of data yielding a pooled odds ratio (OR). The literature search revealed ten controlled trials of which two were excluded from further analysis. It was found that yttrium was superior to placebo (OR 2.42, 95% CI 1.02-5.73) but it is recommended that this result should be interpreted with caution due to possible publication bias. It is concluded that there is insufficient evidence from comparative trials of yttrium in the English literature to show that yttrium synovectomy is convincingly superior to triamcinolone (OR 1.89, 95% CI 0.81-10.55) or other active modalities (OR 1.04, 95% CI 0.72-1.52). 25 refs., 4 tabs

  9. Use of acoustic emission technique to study the spalling behaviour of oxide scales on Ni-10Cr-8Al containing sulphur and/or yttrium impurity

    International Nuclear Information System (INIS)

    Khanna, A.S.; Quadakkers, W.J.; Jonas, H.

    1989-01-01

    It is now well established that the presence of small amounts of sulphur impurity in a NiCrAl-based alloy causes a deleterious effect on their high temperature oxidation behaviour. It is, however, not clear whether the adverse effect is due to a decrease in the spalling resistance of the oxide scale or due to an enhanced scale growth. In order to confirm which of the factors is dominating, two independent experimental techniques were used in the investigation of the oxidation behaviour of Ni-10Cr-8Al containing sulphur- and/or yttrium additions: conventional thermogravimetry, to study the scale growth rates and acoustic emission analysis to study the scale adherence. The results indicated that the dominant factor responsible for the deleterious effect of sulphur impurity on the oxidation of a Ni-10Cr-8Al alloy, was a significant change in the growth rate and the composition of the scale. Addition of yttrium improved the oxidation behaviour, not only by increasing the scale adherence, but also by reducing the scale growth due to gettering of sulphur. (orig.) [de

  10. Prototype Development of Remote Operated Hot Uniaxial Press (ROHUP) to Fabricate Advanced Tc-99 Bearing Ceramic Waste Forms - 13381

    Energy Technology Data Exchange (ETDEWEB)

    Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M. [University of Nevada - Las Vegas, Howard R. Hughes College of Engineering, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States); Hartmann, Thomas [University of Nevada - Las Vegas, Harry Reid Canter, 4505 S. Maryland Parkway, Box 454009, Las Vegas, NV 89154-4009 (United States)

    2013-07-01

    The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology. The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)

  11. Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Samer Al-Gharabli

    2018-05-01

    Full Text Available Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE, mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM, single-area electron diffraction (SAED analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20 and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20 and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.

  12. Ceramic waste forms for fuel-containing masses at Chernobyl

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1994-05-01

    The fuel materials originally in the core of the Chernobyl Unit 4 reactor are now present within the Ukrytie in three major forms: (1) very fine particles of fuel dispersed as dust (about 10 tonnes), (2) fragments of the destroyed core, and (3) lavas containing fuel, cladding, and other materials. All of these materials will need to be immobilized into waste forms suitable for final disposal. We propose a ceramic waste form system that could accommodate all three waste types with a single set of processing equipment. The waste form would include the mineral zirconolite for immobilization of actinide materials (including uranium), perovskite, nepheline, spinel, and other phases as dictated by the chemistry of the lava masses. Waste loadings as high as 50% U can be achieved if pyrochlore, a close relative of zirconolite, is used as the U host. The ceramic immobilization could be achieved with low additions of inert chemicals to minimize the final disposal volume while ensuring a durable product. The sequence of processing would be to collect and immobilize the fuel dust first. This material will require minimal preprocessing and will provide experience in the handling of the fuel materials. Core fragments would be processed next, using a cryogenic crushing stage to reduce the size prior to adding ceramic additives. The lavas would be processed last, which is compatible with the likely sequence of availability of materials and with the complexity of the operations. The lavas will require more adjustment of chemical additive composition than the other streams to ensure that the desired phases are produced in the waste form

  13. Study of brazilian market of advanvced ceramics

    International Nuclear Information System (INIS)

    Veiga, M.M.; Soares, P.S.M.; SIlva, A.P. da; Alvarinho, S.B.

    1989-01-01

    The brazilian actual market survey of advanced ceramics, divided in sectors according to their function is described. The electroelectronics, magnetics, optics, mechanics and nuclears ceramics are presented. A forecasting of the brazilian market in advanced ceramics are also mentioned. (C.G.C.) [pt

  14. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  15. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  16. Easy Debonding of Ceramic Brackets Bonded with a Light-Cured Orthodontic Adhesive Containing Microcapsules with a CO2 Laser.

    Science.gov (United States)

    Arima, Shiori; Namura, Yasuhiro; Tamura, Takahiko; Shimizu, Noriyoshi

    2018-03-01

    An easy debonding method for ceramic brackets using a light-cured Bis-GMA resin containing heat-expandable microcapsules and CO 2 laser was investigated. Ceramic brackets are used frequently in orthodontic treatment because of their desirable esthetic properties. However, the application of heavy force to ceramic brackets in debonding can fracture the tooth enamel and ceramic brackets, causing tooth pain. In total, 60 freshly extracted bovine permanent mandibular incisors were divided randomly into 10 groups of 6 specimens each, corresponding to the number of variables tested. Ceramic brackets were bonded to bovine permanent mandibular incisors using an orthodontic bonding agent containing heat-expandable microcapsules at different levels (0-30 wt%) and resin composite paste, and cured by a curing device. The bond strengths were measured before and after CO 2 laser irradiation, and the temperature increase in the pulp chamber in fresh human first premolars was also evaluated. With CO 2 laser irradiation for 5 sec to the bracket, the bond strength in the 25% microcapsule group decreased significantly, to ∼0.17-fold, compared with that of the no-laser group (p brackets, with less debonding time and enamel damage.

  17. Surface modifications induced by yttrium implantation on low manganese-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Univ. Blaise Pascal Clermont-Fd II, Le Puy en Velay (France). Lab. Vellave d' Elaboration et d' Etude des Materiaux; Haanapel, V.A.C.; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Health and Consumer Protection, Joint Research Center, The European Commission, 21020, Ispra (Italy)

    1999-12-15

    Low manganese-carbon steel samples were ion implanted with yttrium. Sample compositions and structures were investigated before and after yttrium implantations to determine the yttrium distribution in the sample. Yttrium implantation effects were characterized using several analytical and structural techniques such as X-ray photoelectron spectroscopy, reflection high energy electron diffraction, X-ray diffraction, glancing angle X-ray diffraction and Rutherford backscattering spectrometry. In this paper it is shown that correlation between composition and structural analyses provides an understanding of the main compounds induced by yttrium implantation in low manganese-carbon steel. (orig.)

  18. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  19. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  20. Raw materials for advanced ceramics: rare earths separation processes

    International Nuclear Information System (INIS)

    Ricci, D.R.; Nobre, J.S.M.; Paschoal, J.O.A.

    1990-01-01

    The importance of obtaining purified rare earths oxidesis related, mainly to the increasing use of these compounds as raw materials for advanced ceramics. Processes of rare earths separation and purification are almost always based on the solvent extraction, fractional precipitation and ion exchange chromatography techniques, whose association depends on the initial concentrate and on the desired purity. This paper describes some steps of fractionation of didymium carbonate by using the solvent extraction and fractional precipitation techniques. The experimental conditions presented here have enable the production of lantanium, neodimium - praseodimium, samarium - gadolinium and ytrium concentrates, which constitute the intermediate fractions of the overall process to obtain high purity rare earths. (author) [pt

  1. High temperature mechanical behaviour of glass-ceramics in the YSiAlON and ErSiAlON systems

    Energy Technology Data Exchange (ETDEWEB)

    Bondanini, A.; Massouras, G.; Besson, J.L. [ENSCI, Limoges (France). SPCTS

    2002-07-01

    The high temperature mechanical behaviour of oxynitride glass-ceramics in the YSiAlON and ErSiAlON systems was studied in the 950-1150 C temperature range under compressive stresses ranging from 20 to 100 MPa. The parent glass had a composition of 35 Y(or Er)-45 Si-20 Al-83 O-17 N in equivalent percent. Starting from these glasses, glass-ceramics were prepared using a two stage heat treatment: nucleation at the optimum nucleation temperature followed by crystal growth at 1050, 1150 or 1250 C. The two parent glasses had similar viscosities, with that of the Er-glass being slightly less than that of the Y-glass. After the devitrification treatment at 1050 C, B-phase (M{sub 2}SiAlO{sub 5}N) was the only crystalline phase formed in both systems. The creep behaviour was similar for the yttrium and the erbium materials. It was characterised by a long transient stage, due to the viscoelastic response of the residual glass, with recovered strain after unloading decreasing as loading time increased. The creep resistance was compared to that of the parent glasses in terms of apparent viscosity. The crystallisation of 75% of the glass resulted in an increase in viscosity such that a temperature some 100 C higher showed the same viscosity value. After heat treatment at 1150 C, the phase assemblage in the yttrium material changed with the formation of wollastonite and partial conversion of B-phase into Iw-phase. The apparent viscosity was 2 orders of magnitude higher than that of the samples heat treated at 1050 C and no strain recovery was observed upon unloading. In contrast, the erbium materials retained the same microstructure as after the heat treatment at 1050{sup b}C and there was no difference in the creep behaviour of the samples heat treated at 1050 or 1150 C. After a crystallisation treatment at 1250 C of the yttrium parent glass, the glass-ceramic consisted of yttrium aluminium garnet, N-apatite and {beta}-Y{sub 2}Si{sub 2}O{sub 7} and showed excellent creep

  2. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  3. Three-Point Bending Tests of Zirconia Core/Veneer Ceramics for Dental Restorations

    Directory of Open Access Journals (Sweden)

    Massimo Marrelli

    2013-01-01

    Full Text Available Introduction. The mechanical strength and the surface hardness of commercially available yttrium-doped zirconia were investigated. Furthermore, a comparative study of eight different ceramic veneers, to be used for the production of two-layered all-ceramic restorative systems, was carried out. Materials and Methods. Four types of zirconia specimens were analyzed, according to a standard ISO procedure (ISO 6872. Besides, two-layered zirconia-veneer specimens were prepared for three-point bending tests. Results. A strong effect of the surface roughness on the mechanical strength of zirconia specimens was observed. Finally, a comparative study of eight commercially available veneering ceramics shows different modes of failure between the selected veneers. Conclusion. The results indicate that close attention should be paid to the preparation of zirconia-based crowns and bridges by CAD/CAM process, because surface roughness has an important effect on the mechanical strength of the material. Finally, the results of the mechanical tests on two-layered specimens represent an important support to the choice of the veneering ceramic.

  4. Yttrium and rare earths separation by ion exchange resin

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Ayres, M.J.G.; Ribeiro, S.; Silva, G.L.J.P.; Silva, M.L.C.P.; Martins, A.H.

    1988-01-01

    The experimental results of yttrium and rare earths separation from Brazilian xenotime are presented. The research consist in five stage: 1) Preparation of yttrium, erbium and lutetium standard solutions, from solubilization of pure oxides 2) yttrium and rare earths separation by ion exchange chromatrography 3) Separation and recovery of EDTA 4) Precipitation and calcination and 4) Analytical control of process. (C.G.C.) [pt

  5. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  6. INFLUENCE OF REOXIDATION ON SILICA-CONTAINING BARIUM TITANATE CERAMICS FOR PTCR THERMISTORS PREPARED BY TAPE CASTING

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2016-03-01

    Full Text Available Silica-containing barium-rich BaTiO₃ ceramics for thermistors with a positive temperature coefficient of resistance are prepared by a tape-casting technique. The ceramics are sintered in a reducing atmosphere at low temperatures of 1175-1225°C. The influences of reoxidation are investigated after the reduced ceramics are reoxidized in air at 700-900°C. An anomalous correlation is illustrated between room temperature resistivity and reoxidation temperature. The anomaly results from the ferroelectricity rebuilding mechanism, which includes the spontaneous polarization theory and the ferroelectricity degradation caused by oxygen vacancies. The acceptor-state densities are estimated from the temperature-dependent resistivity. A critical temperature of 750-800°C is concluded for the grain boundary reoxidation.

  7. An Introduction to the Mechanical Properties of Ceramics

    Science.gov (United States)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  8. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cuccio, J.C.; Brehm, P.; Fang, H.T. [Allied-Signal Aerospace Co., Phoenix, AZ (United States). Garrett Engine Div.] [and others

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  9. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    Science.gov (United States)

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reaction of yttrium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Khokhlov, A.D.; Reznikova, N.F.

    1986-01-01

    It has been proved that heating of yttrium and tantalum in carbon dioxide to 500 and 800 0 C alters the gas phase composition, causing formation of carbon monoxide and reduction of oxygen content. A study of the thermal stability of yttrium polonides in carbon dioxide showed that yttrium sesqui- and monopolonides decompose at 400-430 0 C. The temperature dependence of the vapor pressure of polonium obtained upon decomposition of the referred polonides has been determined in a carbon dioxide environment radiotensometrically. The enthalpy of the process calculated from this dependence is close to the enthalpy of vaporization of elemental polonium in vacuo. The mechanism of the reactions has been suggested

  11. Advanced Containment System

    Science.gov (United States)

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2004-10-12

    An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

  12. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    International Nuclear Information System (INIS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100 deg. C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed

  13. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    Science.gov (United States)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  14. Yttrium implantation effects on extra low carbon steel and pure iron

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Clermont-Ferrand-2 Univ., Le Puy en Velay (France). Lab. Vellave d`Elaboration; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Advanced Materials, Joint Research Center, The European Commission, 21020, Ispra (Vatican City State, Holy See) (Italy); Josse-Courty, C. [Laboratoire de Recherche sur la Reactivite des Solides, UMR 56-13 CNRS, UFR Sciences et Techniques, 9 Avenue A. Savary, B.P. 400, 21011, Dijon Cedex (France)

    1999-05-25

    Extra low carbon steel and pure electrolytic iron samples were yttrium implanted using ion implantation technique. Compositions and structures of pure iron and steel samples were investigated before and after yttrium implantation by several analytical and structural techniques (RBS, SIMS, RHEED and XRD) to observe the yttrium implantation depth profiles in the samples. This paper shows the different effects of yttrium implantations (compositions and structures) according to the implanted sample nature. (orig.) 23 refs.

  15. Ceramic technologies for automotive industry: Current status and perspectives

    International Nuclear Information System (INIS)

    Okada, Akira

    2009-01-01

    The automotive industry has developed substantially through advances in mechanical technologies, and technologies such as electronics and advanced materials have also contributed to further advances in automobiles. The contribution of ceramic materials to automobile technologies ranges over driving performance, exhaust gas purification, and fuel efficiency improvements. Several ceramic components, such as knock sensors, oxygen sensors, exhaust gas catalysts, and silicon nitride parts for automotive engines, have been successfully applied to automobiles. This paper focuses on the contribution of ceramics to automotive technologies. It also mentions potential contributions in the future, including adiabatic turbo-compound diesels, ceramic gas turbines, fuel cells, and electric vehicles because ceramic technologies have been intensively involved in the challenge to achieve advanced power sources.

  16. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  17. Influence of cobalt oxide on structure and phase composition of zirconium-containing materials

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1986-01-01

    Effect of Co 3 O 4 addition in a quantity from 10 to 90% on microstructure, phase content, lattice parameter and structure of ZrO 2 ceramics spallings stabilized with yttrium oxide, is studied. It is found out that in the process of ceramics synthesis the formation of three-phased heterogeneous system of matrix type occurs. At cobalt oxide content within the range of 10-30% a matrix consist of ZrO 2 base solid solution, at cobalt oxide content from 50 to 90% it is a matrix base, at 40% Co 3 O 4 the regions with both type matrixes exist. Cobalt oxide introduction decreases the sintering temperature without loss in operation indices of heat sensitive ceramics for resistance transducers

  18. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  19. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    Science.gov (United States)

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  20. The preparation of UO2 ceramic microspheres with an advanced process (TGU)

    International Nuclear Information System (INIS)

    Xu Zhichang; Tang Yaping; Zhang Fuhong

    1994-04-01

    The UO 2 ceramic microspheres are the most important materials in the spherical fuel elements for high temperature reactor (HTR). An advanced process for preparation of UO 2 ceramic microspheres has been developed at Institute of Nuclear Energy Technology, Tsinghua University. This process known as total gelation process of uranium (TGU), is based on the traditional sol-gel process, external gelation process and internal gelation process of uranium (EGU and IGU), and has been selected as the production process. The result of batch test is described. Accordance with the requirements of quality control (QC) and quality assurance (QA), the stabilization of operating parameters and product quality is tested., The results on batch test have shown that as well as all of the operated parameters are fixed, then the product quality can be stable as well as the product specification can be met. When the colloidal flow rate and the vibration frequency of nozzle are fixed, the kernel's size is also fixed. When the sintering temperature and time are fixed, the product density is also fixed. When the hydrogen atmosphere is used, the O/U ratio is very near to stoichiometry. The performance and structure of UO 2 ceramic microspheres are also given

  1. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  2. Thermal decomposition of double selenates of lanthanides (III), yttrium (III) and ammonium

    International Nuclear Information System (INIS)

    Crespi, M.S.

    1989-01-01

    Double selenates of lanthanides, yttrium and ammonium were prepared by treating mixtures of simple selenates with equimolar amounts and then dried in a vacuum desiccator containing anhydrous calcium chloride, protected from light. The compounds were studied using the conventional analytical methods such as infrared absorption spectra, X-ray diffraction, differential thermal analysis (DTA), and thermogravimetry (TG). (author)

  3. The Y2BaCuO5 oxide as green pigment in ceramics

    International Nuclear Information System (INIS)

    Fernandez, F.; Colon, C.; Duran, A.; Barajas, R.; Llopis, J.; Paje, S.E.; Saez-Puche, R.; Julian, I.

    1998-01-01

    Fine particles of green yttrium-barium-copper-oxide pigments Y 2 BaCuO 5 have been prepared using two different synthesis methods. The process of combustion of mixed nitrates and urea needs a maximal temperature of 900 C and provides samples formed by aggregates of homogeneous small particles with a size of about 0.3 μm. However, the ceramic method requires 1050 C as synthesis temperature, and yields rather higher particle sizes. Even after grinding, these samples are formed by heterogeneous particles with mean sizes of about 3 μm. Diffuse reflectance spectra reveal that the samples obtained using the former method present a higher brilliancy, so they have been selected to be tested as green pigment in ceramics with good results. (orig.)

  4. N-m-nitrocinnamoylphenylhydroxyl-amine as reagent for amperometric determination of yttrium

    International Nuclear Information System (INIS)

    Oliferenko, G.L.; Gallaj, Z.A.; Sheina, N.M.; Shvedene, N.V.

    1983-01-01

    Possibility of using organic reagent of unsaturated N-arylsubstituted derivatives class of hydroxamic acids N-m-nitrocinnamoyl phenylhydroxylamire (NCPHA) for amperometric titration of yttrium using indication of e.t.p. by current of reagent oxidation on graphite electrode is investigated. Metal and the NCPHA form difficultly soluble complex with ratio of yttrium to the NCPHA, which is equal to 1:3. Buffer mixtures of 0.1MNH 3 +0.1MCH 3 COOH composis tion with pH 6.3-7.5 are optimal background solutions for amperometric titration of yttrium. The proposed method permits to determine 10-600 μkg of yttrium in the volume of 10 ml. Effect of the series of strange elements on titration of yttrium with NCPHA (Ca, Mg, Mn (2), Al, CU (2), Fe (3) REE and others) is studied. The developed method is used for yttrium determination in luminophores of Casub(n)-- Ysub(m)Fsub(z)xMn(2) (1-10%) composition

  5. Advanced industrial ceramic heat pipe recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Strumpf, H.J.; Stillwagon, T.L.; Kotchick, D.M.; Coombs, M.G.

    1988-01-01

    This paper summarizes the results of an investigation involving the use of ceramic heat pipe recuperators for high-temperature heat recovery from industrial furnaces. The function of the recuperator is to preheat combustion air with furnace exhaust gas. The heat pipe recuperator comprises a bundle of individual ceramic heat pipes acting in concert, with a partition separating the air and exhaust gas flow streams. Because each heat pipe is essentially an independent heat exchanger, the failure of a single tube does not compromise recuperator integrity, has only a minimal effect on overall heat exchanger performance and enables easier replacement of individual heat pipes. In addition, the heat pipe acts as an essentially isothermal heat transfer device, leading to a high thermodynamic efficiency. Cost estimates developed for heat pipe recuperator systems indicate favorable payback periods. Laboratory studies have demonstrated the feasibility of fabricating the required ceramic tubes, coating the inside of the tubes with CVD tungsten, and sealing the heat pipe with an electron-beam-welded or vacuum-brazed end cap.

  6. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  7. Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses

    International Nuclear Information System (INIS)

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Veglio, Francesco

    2011-01-01

    Highlights: → Recovery of yttrium from spent fluorescent lamps by sulphuric acid leaching. → The use of sulphuric acid allows to reduce calcium dissolutions. → Main contaminant of fluorescent powder are Si, Pb, Ca and Ba. → Hydrated yttrium oxalate, recovered by selective precipitation, is quite pure (>90%). → We have studied the whole process for the treatment of dangerous waste (plant capability). - Abstract: The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO 3 produces toxic vapours. A full factorial design is carried out with HCl and H 2 SO 4 to evaluate the influence of operating factors. HCl and H 2 SO 4 leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4 N H 2 SO 4 concentration and 90 deg. C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H 2 SO 4 medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized, besides the cost that is usually paid

  8. Yttrium doped BSCF membranes for oxygen separation

    DEFF Research Database (Denmark)

    Haworth, P.; Smart, S.; Glasscock, Julie

    2011-01-01

    This work investigates the partial substitution of yttrium in place of iron in BSCF to form Ba0.5Sr0.5Co0.8Fe0.2−xYxO3−δ, where x varied between 0 and 0.2. X-ray diffraction patterns showed the formation of a perovskite cubic phase structure up to x = 0.15, whilst the full substitution of yttrium...

  9. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  10. Advanced ceramics: evaluation of the ground surface Cerâmicas avançadas: avaliação da superfície polida

    Directory of Open Access Journals (Sweden)

    E. C. Bianchi

    2003-09-01

    Full Text Available The aim of this research is to evaluate the influence of grinding and cutting conditions on surfaces of advanced ceramics ground with diamond grinding wheels containing a binding resin bond. The quality surface was analyzed by Scanning Electron Microscopy (SEM.O objetivo desta pesquisa é a avaliação da influência das condições de usinagem na superfície gerada de cerâmicas avançadas retificadas com rebolo diamantado com ligante resinóide. A qualidade superficial foi analisada utilizando-se a Microscopia Eletrônica de Varredura (MEV

  11. Yttrium and lanthanum recovery from low cerium carbonate, yttrium carbonate and yttrium concentrate; Aproveitamento de itrio e lantanio de um carbonato de terras raras de baixo teor em cerio, de um carbonato de itrio e de um oxido de terras itricas

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Mari Estela de

    2006-07-01

    In this work, separation, enrichment and purification of lanthanum and yttrium were performed using as raw material a commercial low cerium rare earth concentrate named LCC (low cerium carbonate), an yttrium concentrate named 'yttrium carbonate', and a third concentrated known as 'yttrium earths oxide. The first two were industrially produced by the late NUCLEMON - NUCLEBRAS de Monazita e Associados Ltda, using Brazilian monazite. The 'yttrium earths oxide' come from a process for preparation of lanthanum during the course of the experimental work for the present thesis. The following techniques were used: fractional precipitation with urea; fractional leaching of the LCC using ammonium carbonate; precipitation of rare earth peroxycarbonates starting from the rare earth complex carbonates. Once prepared the enriched rare earth fractions the same were refined using the ion exchange chromatography with strong cationic resin without the use of retention ion and elution using the ammonium salt of ethylenediaminetetraacetic acid. With the association of the above mentioned techniques were obtained pure oxides of yttrium (>97,7%), lanthanum (99,9%), gadolinium (96,6%) and samarium (99,9%). The process here developed has technical and economic viability for the installation of a large scale unity. (author)

  12. Thermoanalytical study of the formation mechanism of yttria from yttrium acetate

    International Nuclear Information System (INIS)

    Farjas, J.; Camps, J.; Roura, P.; Ricart, S.; Puig, T.; Obradors, X.

    2011-01-01

    Highlights: → Thermal decomposition of yttrium acetate: three endothermic stages. → Intermediates: yttrium hydroxide and carbonate. → Product: cubic yttria (the degree of transformation is at least 99%). → The decomposition does not depend on the oxygen partial pressure. - Abstract: The processes involved in the thermal decomposition of yttrium acetate tetrahydrate, Y(CH 3 COO) 3 .4H 2 O, in air and in an inert atmosphere have been analyzed by thermoanalytical techniques (thermogravimetry, differential thermal analysis and evolved gas analysis) and by the structural characterization (X-ray diffraction, infrared spectroscopy, elemental analysis and scanning electron microscopy) of intermediates and final products. Decomposition of yttrium acetate is an endothermic transformation that takes place in a temperature range between 350 and 900 o C. The evolution of the mass during the decomposition process is not affected by the presence of oxygen. The process is initiated by the rupture of the bond between the metallic cation and the acetate ligand. This initial step (350-450 o C) involves the formation of amorphous yttrium hydroxide and yttrium carbonate and is characterized by a fast mass loss rate. A sudden decrease of the mass loss rate indicates a change in the decomposition kinetics that continues with the decomposition of yttrium hydroxide and yttrium carbonate. The main effect of an oxygen atmosphere is an intense exothermic process due to the combustion of organic species in the gas phase.

  13. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  14. Composite Laser Ceramics by Advanced Bonding Technology

    Science.gov (United States)

    Kamimura, Tomosumi; Honda, Sawao

    2018-01-01

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152

  15. Composite Laser Ceramics by Advanced Bonding Technology.

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin; Kamimura, Tomosumi; Honda, Sawao; Iwamoto, Yuji

    2018-02-09

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm². On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm². 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm²). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties.

  16. Advanced ceramic matrix composites for high energy x-ray generation

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2011-01-01

    High energy x-ray targets are the anodes used in high performance tubes, designed to work for long operating times and at high power. Such tubes are used in computed tomography (CT) scan machines. Usually the tubes used in CT scanners have to continuously work at high temperatures and for longer scan durations in order to get maximum information during a single scan. These anodes are composed of a refractory substrate which supports a refractory metallic coating. The present work is a review of the development of a ceramic metal composite based on aluminium nitride (AlN) and molybdenum for potential application as the substrate. This composite is surface engineered by coating with tungsten, the most popular material for high energy x-ray targets. To spray metallic coatings on the surface of ceramic matrix composites dc blown arc plasma is employed. The objective is to increase the performance and the life of an x-ray tube. Aluminium nitride-molybdenum ceramic matrix composites were produced by uniaxial hotpressing mixtures of AlN and Mo powders. These composites were characterized for their mechanical, thermal, electrical and micro-structural properties. An optimized composition was selected which contained 25 vol.% of metallic phase dispersed in the AlN matrix. These composites were produced in the actual size of an anode and coated with tungsten through dc blown arc plasma spraying. The results have shown that sintering of large size anodes is possible through uniaxial pressing, using a modified sintering cycle

  17. Treatment of wastewater containing phenol using a tubular ceramic membrane bioreactor.

    Science.gov (United States)

    Ersu, C B; Ong, S K

    2008-02-01

    The performance of a membrane bioreactor (MBR) with a tubular ceramic membrane for phenol removal was evaluated under varying hydraulic retention times (HRT) and a fixed sludge residence time (SRT) of 30 days. The tubular ceramic membrane was operated with a mode of 15 minutes of filtration followed by 15 seconds of permeate backwashing at a flux of 250 l m(-2)hr(-1) along with an extended backwashing of 30 seconds every 3 hours of operation, which maintained the transmembrane pressure (TMP) below 100 kPa. Using a simulated municipal wastewater with varying phenol concentrations, the chemical oxygen demand (COD) and phenol removals observed were greater than 88% with excellent suspended solids (SS) removal of 100% at low phenol concentrations (approx. 100 mg l(-1) of phenol). Step increases in phenol concentration showed that inhibition was observed between 600 to 800 mg l(-1) of phenol with decreased sludge production rate, mixed liquor suspended solids (MLSS) concentration, and removal performance. The sludge volume index (SVI) of the biomass increased to about 450 ml g(-1) for a phenol input concentration of 800 mg l(-1). When the phenol concentration was decreased to 100 mg l(-1), the ceramic tubular MBR was found to recover rapidly indicating that the MBR is a robust system retaining most of the biomass. Experimental runs using wastewater containing phenol indicated that the MBR can be operated safely without upsets for concentrations up to 600 mg l(-1) of phenol at 2-4 hours HRT and 30 days SRT.

  18. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  19. Studies on yttrium oxide coatings for corrosion protection against molten uranium

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Bhandari, Subhankar; Pragatheeswaran; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Kumar, Jay; Kutty, T.R.G.

    2012-01-01

    Yttrium oxide is resistant to corrosion by molten uranium and its alloys. Yttrium oxide is recommended as a protective oxide layer on graphite and metal components used for melting and processing uranium and its alloys. This paper presents studies on the efficacy of plasma sprayed yttrium oxide coatings for barrier applications against molten uranium

  20. Conversion of wood flour/SiO2/phenolic composite to porous SiC ceramic containing SiC whiskers

    Directory of Open Access Journals (Sweden)

    Li Zhong

    2013-01-01

    Full Text Available A novel wood flour/SiO2/phenolic composite was chosen to be converted into porous SiC ceramic containing SiC whiskers via carbothermal reduction. At 1550°C the composite is converted into porous SiC ceramic with pore diameters of 10~40μm, and consisting of β-SiC located at the position of former wood cell walls. β-SiC wire-like whiskers of less than 50 nm in diameter and several tens to over 100 μm in length form within the pores. The surface of the resulting ceramic is coated with β-SiC necklace-like whiskers with diameters of 1~2μm.

  1. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench

  2. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  3. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  4. Synthesis and Characterization of 8-Yttrium(III-Containing 81-Tungsto-8-Arsenate(III, [Y8(CH3COO(H2O18(As2W19O684(W2O62(WO4]43−

    Directory of Open Access Journals (Sweden)

    Masooma Ibrahim

    2015-06-01

    Full Text Available The 8-yttrium(III-containing 81-tungsto-8-arsenate(III [Y8(CH3COO(H2O18(As2W19O684(W2O62(WO4]43− (1 has been synthesized in a one-pot reaction of yttrium(III ions with [B-α-AsW9O33]9− in 1 M NaOAc/HOAc buffer at pH 4.8. Polyanion 1 is composed of four {As2W19O68} units, two {W2O10} fragments, one {WO6} group, and eight YIII ions. The hydrated cesium-sodium salt of 1 (CsNa-1 was characterized in the solid-state by single-crystal XRD, FT-IR spectroscopy, thermogravimetric and elemental analyses.

  5. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    Science.gov (United States)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  6. Novel titanium dioxide ceramics containing bismuth and antimony

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-06-01

    Full Text Available Here, we developed one kind of novel TiO2 ceramics with colossal dielectric constant by chemical modifications (Bi3+ and Sb5+, and discussed the physical origin for giant dielectric constant. Effects of Bi and/or Sb on their microstructure, dielectric properties as well as its frequency and temperature stability were studied in detail. It was found that their dielectric properties are strongly sensitive to (Bi,Sb contents, and colossal dielectric permittivity (CP (104∼105 together with low dielectric loss (∼5.7% can be obtained in a wide composition range. In addition, all the ceramics possessed good frequency (102∼106 Hz and temperature (−150–200 °C stability of dielectric properties. In addition, the defects caused by the Bi volatilization may be the reason for higher dielectric properties of (Bi0.5Sb0.5xTi1−xO2 ceramics with respect to (A0.5Sb0.5xTi1−xO2 (A = In, Pr, Dy, Sm, Gd, Yb, Ga, Al, Fe or Sc. According to the results of complex impedance and XPS, the electron-pinned defect-dipoles may be suitable to explain the CP phenomenon, and oxygen vacancies-induced by Bi3+&Sb5+ substitution for Ti4+ should be responsible for conduction mechanism. We believe that this profound investigation can benefit the development of TiO2 ceramics as a CP material.

  7. Evaluation of sol–gel based magnetic 45S5 bioglass and bioglass–ceramics containing iron oxide

    International Nuclear Information System (INIS)

    Shankhwar, Nisha; Srinivasan, A.

    2016-01-01

    Multicomponent oxide powders with nominal compositions of (45 − x)·SiO_2·24.5CaO·24.5Na_2O·6P_2O_5xFe_2O_3 (in wt.%) were prepared by a modified sol–gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol–gel products show fully amorphous structure for Fe_2O_3 substitutions up to 2 wt.%. Sol–gel derived 43SiO_2·24.5CaO·24.5Na_2O·6P_2O_5·2Fe_2O_3 glass (or bioglass 45S5 with SiO_2 substituted with 2 wt.% Fe_2O_3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1 h revealed the formation of a glass–ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol–gel glass and glass–ceramic samples. Sol–gel derived glass and glass–ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. - Highlights: • Bioglass 45S5 containing 2 wt.% Fe_2O_3 is prepared by sol–gel route. • Fully amorphous bioglass exhibits spontaneous magnetization. • Gel powders with more than 2 wt.% Fe_2O_3 formed glass–ceramics. • γ-Fe_2O_3 in bioglass transformed irreversibly to magnetite upon heat treatment. • In vitro bioactivity of sol–gel samples is superior to their bulk counterparts.

  8. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    International Nuclear Information System (INIS)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto

    2016-01-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  9. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto, E-mail: carlos.couto.sjc@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  10. Method for Waterproofing Ceramic Materials

    Science.gov (United States)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  11. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  12. Neodymium ion diffusion during sintering of Nd : YAG transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Joel P; Kuntz, Joshua D; Soules, Thomas F [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)

    2009-03-07

    Using an electron microprobe, we measured and characterized the Nd{sup 3+} ion diffusion across a boundary between Nd doped and undoped ceramic yttrium aluminium garnet (YAG) for different temperature ramps and hold times and temperatures. The results show significant Nd ion diffusion on the order of micrometres to tens of micrometres depending on the time and temperature of sintering. The data fit well a model including bulk diffusion, grain boundary diffusion and grain growth. Grain boundary diffusion dominates and grain growth limits grain boundary diffusion by reducing the total cross-sectional area of grain boundaries. (fast track communication)

  13. Spectroscopic properties of Er3+ and Yb3+ co-doped glass ceramics containing SrF2 nanocrystals

    International Nuclear Information System (INIS)

    Qiao Xvsheng; Fan Xianping; Wang Minquan; Zhang Xianghua

    2009-01-01

    The spectroscopic properties of Er 3+ /Yb 3+ co-doped 50SiO 2 -10Al 2 O 3 -20ZnF 2 -20SrF 2 glass and glass ceramic containing SrF 2 nanocrystals were investigated. The formation of SrF 2 nanocrystals in the glass ceramic was confirmed by XRD. The oscillator strengths for several transitions of the Er 3+ ions in the glass ceramic have been obtained and the Judd-Ofelt parameters were then determined. The XRD result and Judd-Ofelt parameters suggested that Er 3+ and Yb 3+ ions had efficiently enriched in the SrF 2 nanocrystals in the glass ceramic. The lifetime of excited states has been used to reveal the surroundings of luminescent Er 3+ and Yb 3+ and energy transfer (ET) mechanism between Er 3+ and Yb 3+ . Much stronger upconversion luminescence and longer lifetime of the Er 3+ /Yb 3+ co-doped glass ceramic were observed in comparison with the Er 3+ /Yb 3+ co-doped glass, which could be ascribed to more efficient ET from Yb 3+ to Er 3+ due to the enrichment of Yb 3+ and Er 3+ and the shortening of the distance between lanthanide ions in the precipitated SrF 2 nanocrystals.

  14. Thermal decomposition of yttrium(III) propionate and butyrate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2013-01-01

    The thermal decompositions of yttrium(III) propionate monohydrate (Y(C2H5CO2)3·H2O) and yttrium(III) butyrate dihydrate (Y(C3H7CO2)3·2H2O) were studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage microscopy. These two...

  15. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    Science.gov (United States)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  16. Adsorption of 14CO2 by ceramic with the composition YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Os'kina, T.E.; Soldatov, E.A.; Tret'yakov, Yu.D.; Kravchuk, A.I.; Eremina, E.A.

    1989-01-01

    The isotherms for 14 CO 2 absorption by a yttrium barium cuprate ceramic were determined as functions of stoichiometry, density, and carbon dioxide and water vapor tensions at room temperature. An empirical equation was found that related material absorption capacity to these factors over the parameter range investigated. The most significant factors and the effect of the interaction between carbon dioxide and water were identified. Data on absorption kinetics were used to compute the diffusion coefficient 14 CO 2 in YBa 2 Cu 3 O 6.45 , which equaled (1.87 ± 0.71)·10 -11 cm 2 /sec. The diffusion coefficient for water in this system was shown to be two orders of magnitude greater. This paper gives data on thermal decarbonization of the ceramic

  17. Flash sintering of ceramic materials

    Science.gov (United States)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  18. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  19. Evaluation of the effect of heavy rare earth elements on the microstructure and mechanical and electrical properties of zirconia - Yttria ceramics

    International Nuclear Information System (INIS)

    Lazar, Dolores Ribeiro Ricci

    2002-01-01

    The use of Yttria concentrates for synthesis and processing of zirconia based ceramics, applied as structural and solid electrolyte materials, was investigated in this work. Terbium, dysprosium, holmium, erbium and ytterbium are chemical elements, classified as heavy rare earths, that can be found in those concentrates due to their association with yttrium ores. The ceramic characteristics were compared to zirconia - Yttria and zirconia - Yttria - rare earth oxide systems. The dopant content was 3 and 9 mol%. The raw materials were prepared by the coprecipitation route using solutions from the chemical processing of zircon and monazite ores and obtained by dissolution of high purity rare earth oxides. In the first part of this work, calcination, milling and ceramic processing were studied to produce ceramics with densities up to 95% TD. Samples were prepared in optimized conditions for the evaluation of the effect of each heavy rare earth element. Powders were characterized by chemical analysis. X-ray diffraction, scanning and transmission electron microscopy, gas adsorption (BET) and laser diffraction for the determination of the agglomerate size distributions. Green pellets were characterized by mercury porosimetry and the sintering kinetic was studied by dilatometry. The characterization of the as-sintered pellets was performed by the apparent density measurement (Archimedes method). X-ray diffraction, microstructure analysis by scanning and transmission electron microscopy, Vickers indentation tests for hardness and fracture toughness determination, dynamic mechanical analysis for the elastic modulus measurement, and impedance spectroscopy for electrical resistivity measurement. It was observed that the presence of heavy rare earths in a concentrate containing 85 wt% of Yttria has no significant influence on the properties of zirconia based ceramics. TZP ceramics, containing 3 mol% of dopants, have grain size smaller than 0.4μm, and Vickers hardness and

  20. Spectroscopic study of local thermal effect in transparent glass ceramics containing nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the temperature-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.

  1. OPTIMIZATION OF ADVANCED FILTER SYSTEMS; TOPICAL

    International Nuclear Information System (INIS)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-01-01

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  2. Sulphuric Acid Resistant of Self Compacted Geopolymer Concrete Containing Slag and Ceramic Waste

    Directory of Open Access Journals (Sweden)

    Shafiq I.

    2017-01-01

    Full Text Available Malaysia is a one of the developing countries where the constructions of infrastructure is still ongoing, resulting in a high demand for concrete. In order to gain sustainability factors in the innovations for producing concrete, geopolymer concrete containing granulated blast-furnace slag and ceramics was selected as a cement replacement in concrete for this study. Since Malaysia had many ceramic productions and uses, the increment of the ceramic waste will also be high. Thus, a new idea to reuse this waste in construction materials have been tested by doing research on this waste. Furthermore, a previous research stated that Ordinary Portland Cement concrete has a lower durability compared to the geopolymer concrete. Geopolymer binders have been reported as being acid resistant and thus are a promising and alternative binder for sewer pipe manufacture. Lack of study regarding the durability of the geopolymer self-compacting concrete was also one of the problems. The waste will be undergoing a few processes in the laboratory in order to get it in the best form before undergoing the next process as a binder in geopolymer concrete. This research is very significant in order to apply the concept of sustainability in the construction field. In addition, the impact of this geopolymer binder is that it emits up to nine times less CO2 than Portland Cement.

  3. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guoqiang, E-mail: zhougq1982@163.com; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying [Hebei University, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2016-05-15

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  4. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  5. Sol gel synthesis for preparation of yttrium aluminium garnet

    NARCIS (Netherlands)

    Vrolijk, J.W.G.A.; Willems, J.W.M.M.; Metselaar, R.; With, de G.; Terpstra, R.A.; Metselaar, R.

    1989-01-01

    Sol-gel—synthesis for preparation of pure yttrium aluminium garnet powder with small grain size is subject of this ongoing study. Starting materials were sulfates and chlorides of yttrium and aluminium. To obtain pure YAG (Y3A1SO1Z) pH during hydrolysis as well as temperature during calcination and

  6. Performance of ceramics in ring/cylinder applications

    International Nuclear Information System (INIS)

    Dufrane, K.F.; Glaeser, W.A.

    1987-01-01

    In support of the efforts to apply ceramics to advanced heat engines, a study is being performed of the performance of ceramics at the ring/cylinder interface of advanced (low heat rejection) engines. The objective of the study, managed by the Oak Ridge National Laboratory, is to understand the basic mechanisms controlling the wear of ceramics and thereby identify means for applying ceramics effectively. Attempts to operate three different zirconias, silicon carbide, silicon nitride, and plasma-sprayed ceramic coatings without lubrication have not been successful because of excessive friction and high wear rates. Silicon carbide and silicon nitride perform well at ambient temperatures with fully formulated mineral oil lubrication, but are limited to temperatures of 500F because of the lack of suitable liquid lubricants for higher temperatures

  7. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  8. Piezoelectric ceramic material, containing PbNb2O6, K2Nb2O6

    International Nuclear Information System (INIS)

    Fesenko, E.G.; Filip'ev, V.S.; Razumovskaya, O.N.; Cherner, Ya.E.; Rudkovskaya, L.M.; Zav'yalov, V.P.; Molchanova, R.A.; Kryshtop, V.G.; Panich, A.E.; Servuli, V.A.

    1984-01-01

    A new piezoelectric ceramic material including PbNb 2 O 6 , K 2 Nb 2 O 6 is prepared. Above the new material contains Nb 2 O 5 . The invention relates to piezotechnique. The principal advantage of this material for acoustic converters is high anisotropy of piezoelectric properties as well as high Curie temperature (T C =539-553 deg C). The composition containing 93.96 mole% PbNb 2 O 6 ; 2.48 mole% K 2 Nb 2 O 6 and 3.56 mole% Nb 2 O 5 has optimum content of parameters

  9. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  10. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  11. Graphite furnace atomic absorption spectrometry with a tantalum boat for the determination of yttrium, samarium, and dysprosium in a mish metal

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro; Tamura, Shohei

    1982-01-01

    The determination of yttrium, samarium, and dysprodium by means of graphite-furnace atomic absorption spectrometry (AAS) was studied by a tantalum boat inserted into a graphite tube atomizer. These elements could not be determined by the use of a commercial graphite tube, In the atomization from a tantalum boat, better analytical sensitivities and negligible memory effects for these rare earths are obtained. The analytical sensitivities of yttrium, samarium, and dysprodium with the tantalum boat were 0.60 ng, 0.86 ng, and 0.17 ng respectively. This method was applied for the determination of yttrium, samarium, and dysprosium in a mish metal. The measurements were performed with slightly acidified solutions (0.01 mol dm 3 HCI or HNO 3 ). The sensitivities and the precisions for these elements decreased with increasing acid concentration. An enhancement in the sensitivities of yttrium and dysprosium upon the addition of a large excess of lanthanum, neodymium, and praseodymium salts were observed. The yttrium, samarium, and dysprosium in a mish metal were determined with both analytical curves of standard solutions containing an excess of lanthanum, cerium, and neodymium ions and of the standard addition. The precisions for this work were in the 3 - 9.3% range. (author)

  12. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  13. Advanced CerMet ceramic composites for medical applications.

    Science.gov (United States)

    Dittmer, Robert; Schaefer, Christian M; Fischer, Jean-Francois; Hausch, Ulrich; Troetzschel, Jens; Specht, Heiko

    2017-11-01

    Implantable active devices such as pacemakers are facing rigorous requirements. Because they reside within the body for years, materials applied in this surrounding must exhibit biocompatibility and extraordinary reliability. They also have to provide a number of functional properties. In this work we present a method that enables the realization of a highly complex profile of properties by means of a dual composite approach. Using multilayer technology, an electrical conductor is embedded into a ceramic matrix, thus, creating conductive paths that are insulated from each other. In addition to this macroscopically hybrid architecture, this approach features a second composite aspect: the conductor is not composed of a single metallic phase, but is a ceramic-metal mixture. Owing to its interpenetrating microstructure, this CerMet allows for a strong and hermetic integration of the conductor into the ceramic matrix otherwise impossible due to mismatch in thermal expansion. In fact, the CerMet ceramic composite exhibits a higher strength than the pure ceramic as revealed by a three-point bending test study. At the same time, the CerMet offers high and virtually metal-like conductor properties, enabling a down-scaling of the conductive paths to 150µm diameter and smaller. Furthermore, the described composite is biocompatible, non-magnetic, and chemically inert, which is vital for the application in active, implantable, medical devices. Beside the general fabrication route, we present the microstructural, functional, and mechanical properties of this newly developed class of dual composites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. radio embolization of yttrium 90 glass microspheres in treatment of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    El Fouly, A.H.A.

    2010-01-01

    Hepatocellular carcinoma (HCC) is a common cancer that typically occurs in the setting of cirrhosis and chronic hepatitis virus infections. HCC is considered currently as global problem; its incidence is expected to increase dramatically by the next few decades. More than 90 % of the accidentally diagnosed patients have non resectable tumor. Portal vein thrombosis, diffuse multifocal liver infiltration and large tumor burden are considered to be a great obstacle in front of the modern lines of treatment, even with Child A liver cirrhosis. Transarterial intrahepatic application of Yttrium-90 glass microspheres may allow effective local ablative treatment of patients with intrahepatic advanced hepatocellular carcinoma (HCC) with or without portal vein thrombosis. The aim of this open-label phase II study was to validate evidence on the safety and efficacy of this treatment in an European cohort of patients with locally advanced HCC such as (large tumor burden, multifocal distribution, portal vein thrombosis). And to assess the response rate according to different approved response assessment guidelines (WHO, RECIST and EASL). Patients and Methods Starting from November 2006 till March 2009, one hundred and eight advanced unresectable HCC patients with and without portal vein thrombosis were included in this prospective study. Yttrium-90 microspheres radiotherapy was performed in a lobar fashion through the right or left hepatic artery. In bilobar disease, right and left liver lobe were treated with 4-6 weeks intervals in between. Response rate was assessed according to different international response assessment criteria (WHO, RECIST and EASL) with sequential computed tomography scans till the last clinical visit or death. The safety of this technique was assessed according to the Common Toxicity Criteria version 3

  15. Use of the azeotropic distillation technique in the synthesis of zirconium post ceramics

    International Nuclear Information System (INIS)

    Ussui, V.; Lazar, D.R.R.; Menezes, F.; Menezes, C.A.B.; Paschoal, J.O.A.

    1996-01-01

    The azeotropic distillation technique has been used for treatment of coprecipitated zirconium and yttrium hydroxides, in order to synthesize weak agglomerated powders. Experiments were performed by preparing suspensions of this precipitate with organic solvents as toluene, isopropanol, butanol and ethanol, which were submitted to the distillation, to remove all the liquid phase. The obtained powders after drying and calcination, have been characterized by granulometric distribution and specific surface area determination. The densities of the ceramic bodies, obtained by pressing and sintering at 1500 deg C during 1 hour, have also been evaluated. (author)

  16. Spectrographic determination of strontium in yttrium-90 solutions

    International Nuclear Information System (INIS)

    Roca, M.; Capdevila, C.

    1970-01-01

    The copper spark method has been used for determining strontium in the concentration range 1-100 g/ml in yttrium-90 solutions containing 0,5 % or thereabouts of ammonium citrate. The influence of the citric acid as well as the ammonium citrate with regard to 2N HCL solutions has been studied: the citric acid enhances the line intensities of strontium. The employment of either barium or lanthanum as reference element compensates for this enhancement. Because of the increase in sensitivity mentioned above, the study of influence of the citric acid has been extended and several impurities usually determined in radioisotope solutions have been considered. (Author) 4 refs

  17. Recent advances in severe accident technology - direct containment heating in advanced light water reactors

    International Nuclear Information System (INIS)

    Fontana, M.H.

    1993-01-01

    The issues affecting high-pressure melt ejection (HPME) and the consequential containment pressurization from direct containment heating (DCH), as they affect advanced light water reactors (ALWRs), specifically advanced pressurized water reactors (APWRs), were reviewed by the U.S. Department of Energy Advanced Reactor Severe Accident Program (ARSAP). Recommendations from ARSAP regarding the design of APWRs to minimize DCH are embodied within the Electric Power Research Institute ALWR Utility Requirements Document, which specifies (a) a large, strong containment; (b) an in-containment refueling water storage tank; (c) a reactor cavity configuration that minimizes energy transport to the containment atmosphere; and (d) a reactor coolant system depressurization system. Experimental and analytical efforts, which have focused on current-generation plants, and analyses for APWRs were reviewed. Although DCH is a subject of continuous research and considerable uncertainties remain, it is the judgment of the ARSAP that reactors complying with the recommended design requirements would have a low probability of early containment failure due to HPME and DCH

  18. Luminescent properties of Eu{sup 3+}-doped glass ceramics containing BaCl{sub 2} nanocrystals under NUV excitation for White LED

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Han; Mo, Zhaojun, E-mail: mzjmzj163@163.com; Zhang, Xiaosong; Yuan, Linlin; Yan, Ming; Li, Lan, E-mail: lilan@tjut.edu.cn

    2016-07-15

    Eu{sup 3+} doped fluorozirconate glass ceramics containing BaCl{sub 2} nanocrystals were successfully fabricated by melt quenching method, and their structural and luminous properties were investigated. The existence of BaCl{sub 2} nanocrystals in the glass ceramics plays an important role on the improvement of luminescent properties. The emission intensity in glass ceramics was remarkably enhanced, which attributes to the phonon energy decrease by Eu{sup 3+} ions into BaCl{sub 2} nanocrystals. Meanwhile, the extended average fluorescence decay lifetime from 4.60 ms to 5.42 ms and the decreased Red/Orange ratio and spark splitting of {sup 7}F{sub 1} energy level also confirmed this view. Additionally, the excitation spectra showed that glass ceramics could be effectively excited by NUV light. The CIE chromaticity coordinates of glass ceramics (GC320) were calculated as (0.611, 0.371), which was close to the NTSC standard values for red (0.67, 0.33). The results suggested that the glass ceramics may be used as potential red phosphors under UV light excitation for white light-emitting diodes.

  19. Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization

    International Nuclear Information System (INIS)

    Yar, M.A.; Wahlberg, Sverker; Bergqvist, Hans; Salem, H.G.; Johnsson, Mats; Muhammed, Mamoun

    2011-01-01

    Nano-crystalline W-1%Y 2 O 3 (wt.%) powder was produced by a modified solution chemical reaction of ammonium paratungstate (APT) and yttrium nitrate. The precursor powder was found to consist of particles of bimodal morphology i.e. large APT-like particles up to 20 μm and rectangular yttrium containing ultrafine plates. After thermal processing tungsten crystals were evolved from W-O-Y plate like particles. spark plasma sintering (SPS) was used to consolidate the powder at 1100 and 1200 deg. C for different holding times in order to optimize the sintering conditions to yield high density but with reduced grain growth. Dispersion of yttrium oxide enhanced the sinterability of W powder with respect to lanthanum oxide. W-1%Y 2 O 3 composites with sub-micron grain size showed improved density and mechanical properties as compared to W-La 2 O 3 composites. Sample sintered in two steps showed improved density, due to longer holding time at lower temperature (900 deg. C) and less grain growth due to shorter holding time at higher temperature i.e. 1 min at 1100 deg. C.

  20. Corrosion Resistance of Murataite-Based Ceramics Containing Simulated Actinide/Rare Earth Fraction of High Level Waste

    International Nuclear Information System (INIS)

    Stefanovsky, S.V.; Varlakova, G.A.; Burlaka, O.A.; Stefanovsky, O.I.; Nikonov, B.S.; Yudintsev, S.V.

    2009-01-01

    Two samples of murataite-based ceramics containing simulated Actinide/Rare Earth (An/RE) fraction of high level waste (HLW) produced by a cold crucible inductive melting (CCIM) were tested using a single-pass-flow-through (SPFT) procedure. As-prepared and leached samples were examined by X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive system (SEM/EDS). The as-prepared ceramics were composed of murataite, perovskite and crichtonite as well as minor zirconolite and rutile (in one sample). Elemental concentrations at pH=2 and T=90 deg. C were measured and leach rates were calculated. Perovskite concentrating Ca and Ce-group REs (La, Ce, Pr, Nd) was found to be the lowest durable phase. Leach rates of Ca and Ce-group REs (Ce, Nd) from the sample with higher perovskite content were found to be higher than those of U and Zr by one to three orders of magnitude. Elemental leach rates from the ceramic with lower perovskite content are lower by up to 10 times. (authors)

  1. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    Science.gov (United States)

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  2. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    Science.gov (United States)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  3. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    International Nuclear Information System (INIS)

    Eloussifi, H.; Farjas, J.; Roura, P.; Ricart, S.; Puig, T.; Obradors, X.; Dammak, M.

    2013-01-01

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF 3 appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films

  4. Quantitative and Qualitative Assessment of Yttrium-90 PET/CT Imaging

    OpenAIRE

    Attarwala, Ali Asgar; Molina-Duran, Flavia; Büsing, Karen-Anett; Schönberg, Stefan O.; Bailey, Dale L.; Willowson, Kathy; Glatting, Gerhard

    2014-01-01

    Yttrium-90 is known to have a low positron emission decay of 32 ppm that may allow for personalized dosimetry of liver cancer therapy with (90)Y labeled microspheres. The aim of this work was to image and quantify (90)Y so that accurate predictions of the absorbed dose can be made. The measurements were performed within the QUEST study (University of Sydney, and Sirtex Medical, Australia). A NEMA IEC body phantom containing 6 fillable spheres (10-37 mm ∅) was used to measure the 90Y distribut...

  5. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  6. Attempts at treating rheumatoid arthritis with radioactive yttrium

    International Nuclear Information System (INIS)

    Scott, J.T.

    1979-01-01

    Two years' observations on 33 knee joints in 33 patients with rheumatoid arthritis did not prove a therapeutic effect of Y 90 , which was tested in a randomized study against non-radioactive yttrium. It was noticable that 9 knee joints of the isotope group but only one of the control group became unstable. Independent of the yttrium treatment, significant improvement was noticed in patients where fibrin clots had been washed out of the joints in the course of arthroscopies. (orig.) [de

  7. Process for recovering yttrium and lanthanides from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, J.A.; Weterings, C.A.

    1983-06-28

    Process for recovering yttrium and lanthanides from wet-process phosphoric acid by adding a flocculant to the phosphoric acid, separating out the resultant precipitate and then recovering yttrium and lanthanides from the precipitate. Uranium is recovered from the remaining phosphoric acid.

  8. Yttrium-90 - ED 4310

    International Nuclear Information System (INIS)

    Ammerich, M.; Frot, P.; Gambini, D.; Gauron, C.; Moureaux, P.; Herbelet, G.; Lahaye, T.; Pihet, P.; Rannou, A.; Vidal, E.

    2013-03-01

    This sheet presents the characteristics of yttrium-90, its origin, and its radio-physical and biological properties. It briefly describes its use in nuclear medicine. It indicates its dosimetric parameters for external exposure, cutaneous contamination, and internal exposure due to acute contamination or to chronic contamination. It indicates and comments the various exposure control techniques: ambient dose rate measurement, surface contamination measurement, atmosphere contamination. It addresses the means of protection: premise design, protection against external exposure and against internal exposure. It describes how areas are delimited and controlled within the premises: regulatory areas, controls to be performed. It addresses the personnel classification, training and medical survey. It addresses the issue of solid and liquid wastes and liquid or gaseous effluents. It briefly recalls the administrative procedures related to the authorization and declaration of possession and use of sealed and unsealed sources. It indicates regulatory aspects related to the transport of yttrium-90, describes what is to be done in case of incident or accident (for the different types of contamination or exposure)

  9. Ceramic component with reinforced protection against radiations

    International Nuclear Information System (INIS)

    Dubuisson, J.; Laville, H.; Le Gal, P.

    1986-01-01

    Ceramic components hardened against radiations are claimed (for example capacitors or ceramic substrates for semiconductors). They are prepared with a sintered ceramic containing a high proportion of heavy atoms (for instance barium titanate and a bismuth salt) provided with a glass layer containing a high proportion of light atoms. The two materials are joined by vitrification producing a diffusion zone at the interface [fr

  10. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  11. Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals

    International Nuclear Information System (INIS)

    Huang Lihui; Qin Guanshi; Arai, Yusuke; Jose, Rajan; Suzuki, Takenobu; Ohishi, Yasutake; Yamashita, Tatsuya; Akimoto, Yusuke

    2007-01-01

    Transparent Tb 3+ and Yb 3+ codoped oxyfluoride glass ceramics containing CaF 2 nanocrystals were prepared by melt quenching and subsequent heat treatment. Crystallization kinetics of CaF 2 nanocrystals was investigated by differential scanning calorimetric method. The average apparent activation energy E a of the crystallization was ∼498 kJ/mol. Moreover, the value of the Avrami exponent n was 1.01. These results suggest that the crystallization mechanism of CaF 2 is a diffusion controlled growth process of needles and plates of finite long dimensions. X-ray diffraction patterns and transmission electron microscopy image confirmed the CaF 2 nanocrystals in the glass ceramic. Ultraviolet (UV) and visible emission spectra of the as-made glass and the glass ceramic with an excitation of a 974 nm laser diode were recorded at room temperature. An intense UV emission at 381 nm was observed in the glass ceramic. The origin of the enhancement of the emission at 381 nm was investigated using spectroscopic technique and Judd-Ofelt analysis. The enhancement of the emission at 381 nm could be attributed to the change of the ligand field of Tb 3+ ions due to the incorporation of some Tb 3+ and Yb 3+ ions into CaF 2 nanocrystals in the glass ceramic

  12. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Science.gov (United States)

    Esfahani, Hamid; Ramakrishna, Seeram

    2017-01-01

    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined. PMID:29077074

  13. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Hamid Esfahani

    2017-10-01

    Full Text Available Ceramic nanofibers (NFs have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.

  14. Method for preparing corrosion-resistant ceramic shapes

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1979-12-07

    Ceramic shapes having impermeable tungsten coatings can be used for containing highly corrosive molten alloys and salts. The shapes are prepared by coating damp green ceramic shapes containing a small amount of yttria with a tungsten coating slip which has been adjusted to match the shrinkage rate of the green ceramic and which will fire to a theoretical density of at least 80% to provide an impermeable coating.

  15. Enabling new sensor applications for (V)HTRS by laser hybrid brazing of oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, F.; Rixecker, G. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Development; Herrmann, M.; Lippmann, W.; Hurtado, A. [Univ. of Technology, Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering

    2008-07-01

    The use of (very) high temperature reactors ((V)HTRs) requires a sensor technology suitable to withstand thermal loads both in normal operation mode and under incident conditions which may appear during service. Especially ceramic sensors are ideal to suit this purpose. A special sensor type that is based upon oxide ceramics is the high temperature oxygen sensor. Base material for this application is yttria-doped zirconia. At elevated temperatures (above 450 C) the activation energy of oxygen ions is sufficient to migrate in the ZrO{sub 2} lattice following an oxygen partial pressure gradient. This diffusion process is facilitated by the trivalent yttrium ions which give rise to a high concentration of oxygen vacancies. The macroscopical effect of the migration of the oxygen ions can be detected as a Nernst voltage or, alternatively, as an electrical current. Thus it is possible to compare the oxygen content of measured media with that of a known reference gas. To be able to produce such sensors both efficiently and in the desired quality, joining technologies adapted to ceramics are necessary. Laser-based technologies for brazing with glass or glass-ceramic solders are especially suitable, as they combine high precision with high throughput. They thus enable cost efficient production processes both for large and small lot sizes. (orig.)

  16. Yttrium addition for high temperatures stainless steel

    International Nuclear Information System (INIS)

    Furtado, Nelson Cesar Chaves Pinto

    1997-07-01

    The current work studied the effect of Yttrium on the microstructure of 2% Nb, modified - HP steel, with respect to its mechanical properties. Alloys were prepared with nominal Yttrium additions of 0,1% and 0,25%. Microstructural analyses and mechanical tests were undertaken in the as-cast condition and after ageing for 100 h at 700 deg C, 900 deg C and 1100 deg C. Structural characterization was performed by optical microscopy, scanning and transmission electron microscopy (SEM/TEM/EDS), X-ray diffractometry and X-ray photoelectron spectroscopy (XPS). Tensile testing was performed at room temperature and 871 deg C and creep testing at 925 deg C at a loading of 55 MPa. The material produced exhibited superior mechanical properties and surface oxidation resistance than traditional alloys of this class, even through gravity cast in a magnetic furnace. Agglomerates of Yttrium-rich phases were identifies in both as-cast and aged specimens, always associated with chromium carbides of characteristic morphologies. These morphologies, combined with the microstructural constituents, may have established the factors which resulted in the improved metallurgical stability of these alloys under the experimental testing conditions and temperatures which simulated real industrial service conditions and temperatures. (author)

  17. Evaluation of advanced containment features proposed to Korean SNPP

    International Nuclear Information System (INIS)

    Jin, Y.; Park, S.Y.; Kim, S.D.; Kim, D.H.

    1997-01-01

    Korean Standard Nuclear Power Plant (KSNP) has adopted many advanced design features to enhance its containment performance during severe accidents as well as to reduce changes of core damage. Robust design of containment and hydrogen mixing capability reduced containment failure probability significantly. In addition to these features, new systems are proposed for KSNP: advanced design of cavity geometry, reactor cavity flooding system, hydrogen igniter, and containment filtered venting system. Before these proposals are adopted to the KSNP, their effectiveness on containment performance has been assessed systematically. Containment event tree and sensitivity analysis are used to quantify the effectiveness of these design features. The overall results indicate that these new features do not improve the containment performance significantly except the containment filtered venting system. But adoption of the containment filtered venting system should be examined carefully because accidental failure of this system may result in undue risk to public. (author)

  18. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma.

    Science.gov (United States)

    Geschwind, Jean Francois H; Salem, Riad; Carr, Brian I; Soulen, Michael C; Thurston, Kenneth G; Goin, Kathleen A; Van Buskirk, Mark; Roberts, Carol A; Goin, James E

    2004-11-01

    Unresectable hepatocellular carcinoma is extremely difficult to treat. TheraSphere consists of yttrium-90 (a pure beta emitter) microspheres, which are injected into the hepatic arteries. This article reviews the safety and survival of patients with hepatocellular carcinoma who were treated with yttrium-90 microspheres. Eighty patients were selected from a database of 108 yttrium-90 microsphere-treated patients and were staged by using Child-Pugh, Okuda, and Cancer of the Liver Italian Program scoring systems. Patients were treated with local, regional, and whole-liver approaches. Survival from first treatment was analyzed with Kaplan-Meier and Cox regression methods. Adverse events and complications of treatment were coded by using the Southwest Oncology Group toxicity scoring system. Patients received liver doses ranging from 47 to 270 Gy. Thirty-two patients (40%) received more than 1 treatment. Survival correlated with pretreatment Cancer of the Liver Italian Program scores ( P = .002), as well as with the individual Cancer of the Liver Italian Program components, Child-Pugh class, alpha-fetoprotein levels, and percentage of tumor replacement. Patients classified as Okuda stage I (n = 54) and II (n = 26) had median survival durations and 1-year survival rates of 628 days and 63%, and 384 days and 51%, respectively ( P = .02). One patient died of liver failure judged as possibly related to treatment. Thus, in selected patients with hepatocellular carcinoma, yttrium-90 microsphere treatment is safe and well tolerated. On the basis of these results, a randomized controlled trial is warranted comparing yttrium-90 microsphere treatment with transarterial chemoembolization by using the Cancer of the Liver Italian Program system for prospective stratified randomization.

  19. Ceramic Technology Project semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work is organized into the following elements: materials and processing (monolithics [SiC, SiN], ceramic composites, thermal and wear coatings, joining), materials design methodology, data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, NDE), and technology transfer. Individual abstracts were prepared for the individual contributions.

  20. Processes of hydration aging of superconducting ceramics and problem of regeneration of properties

    International Nuclear Information System (INIS)

    Komarov, A.V.; Popov, V.P.; Tikhonov, P.A.

    1989-01-01

    The process of hydration aging (distilled water, saturated water vapors) of YBa 2 Cu 3 O 6.5+x specimens with T s of about 95 K was studied at 55 deg C and water vapors pressure of 119 mmHg. It is established that depending on exposure time and saturated vapors pressure, water affects electric properties of yttrium-barium ceramics with different degree of the effect reversibility. Valuable regeneration of the characteristics can occur only when the hydration process has not led to changes in the phase composition of the material. The mechanism of interaction between cermaics and water is given

  1. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Flintoff, J.F.

    1984-01-01

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 1000 0 C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm 3 , depending upon the formulation. Major phases are CaF 2 , CaZrTi 207 , CaTiO 3 , monoclinic ZrO 2 , and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO 2 , CaO, and SiO 2 ) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U 238 . The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO 2 . Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm 3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF 2 , Al 203 , and ZrSi 04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  2. High density Gd-substituted yttrium iron garnets by coprecipitation

    International Nuclear Information System (INIS)

    Lamastra, Francesca Romana; Bianco, Alessandra; Leonardi, Federica; Montesperelli, Giampiero; Nanni, Francesca; Gusmano, Gualtiero

    2008-01-01

    Gadolinium-substituted yttrium iron garnets are ferrite materials of primary importance in microwave engineering. Stoichiometric powders of nominal composition Y 2.6 Gd 0.4 Fe 5 O 12 (i.e. Fe/(Y + Gd) = 1.67) were prepared by reverse strike coprecipitation of metal nitrates. In order to investigate the influence of composition on phase formation, non-stoichiometric powders were also synthesised. On the basis of DTA/TGA analysis, dried coprecipitates were calcined between 600 deg. C and 1200 deg. C and then characterised by ICP, XRD and HT-XRD. Amorphous coprecipitates crystallise around 700 deg. C in cubic garnet phase along with small amounts of YFeO 3 and/or α-Fe 2 O 3 . Only iron-rich garnets, either pure or Gd-substituted, calcined at 1200 deg. C or above display a single-phase cubic garnet. According to thermal dilatometry results, calcined powders were sintered in air up to 1470 deg. C. The microstructure of sintered ceramics is made up of fine grains, the average size ranging between 3 μm and 13 μm. Density of sintered bodies ranged from 88% to 98%. Ferromagnetic resonance linewidth (ΔH -3dB ) ranged between 4352.9 A m -1 and 4392.7 A m -1 , depending on composition and microstructure

  3. Acid-base properties of ceramic powders

    International Nuclear Information System (INIS)

    Bleier, A.

    1983-01-01

    This chapter addresses the fundamental aspects of potentiometric titration, electrokinetics, and conductometric titration in evaluating surface and interfacial thermodynamic behavior. Emphasizes the characterization of aqueous systems which are pertinent to the processing of ceramic powders. Attempts to clarify the role of novel analytical techniques that will increasingly contribute to the advanced characterization of ceramic powders. Evaluates recently developed acid-base and complexation concepts and their applications to the processing of oxide ceramics

  4. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  5. APPLICATION OF SPHEROIDIZING «CHIPS»-MASTER ALLOY ON COPPER BASE CONTAINING NANOSCALE PARTICLES OF YTTRIUM OXIDE FOR HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The peculiarity of the technology of obtaining high-strength cast iron is application in out-furnace treatment various inoculants containing magnesium. In practice of foundry production spheroidizing master alloys based on ferrosilicon (Fe-Si-Mg type and «heavy» alloying alloys on copper and nickel base are widespread. The urgent issue is to improve their efficiency by increasing the degree of magnesium assimilation, reduction of specific consumption of additives, and minimizing dust and gas emissions during the process of spheroidizing treatment of liquid iron. One method of solving this problem is the use of inoculants in a compact form in which the process of dissolution proceeds more efficiently. For example, rapidly quenched granules or «chip»-inoculants are interesting to apply.The aim of present work was to study the peculiarities of production and application of «Chips»-inoculants on copper and magnesium base with additions of yttrium oxide. The principle of mechatronics was used, including the briquetting inoculants’ components after their mixing with the subsequent high-speed mechanical impact and obtaining plates with a thickness of 1–2 mm.Spheroidizing treatment of molten metal has been produced by ladle method using «Chips»-inoculants in the amount of 0.8%. Secondary graphitization inoculation was not performed. Studies have shown that when the spheroidizing treatment of ductile iron was performed with inoculants developed, the process of interaction of magnesium with the liquid melt runs steadily without significant pyroeffect and emissions of metal outside of the ladle.This generates a structure of spheroidal graphite of regular shape (SGf5. The presence in the inoculant of yttrium oxide has a positive impact on the spheroidal graphite counts and the tendency of high-strength cast iron to form «white» cast iron structure. Mechanical properties of the obtained alloy correspond to high-strength cast iron HSCI60.

  6. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  7. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    Science.gov (United States)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  8. Study of behaviour of lanthanum- and yttrium electrodes in chloride melts

    International Nuclear Information System (INIS)

    Shkol'nikov, S.I.; Tolypin, E.S.; Yur'ev, B.P.

    1984-01-01

    A study was made on the lanthanum- and yttrium behaviour in a mixture of molten potassium- and sodium chlorides at various temperatures. It is shown that the lanthanum- and yttrium behaviour in KCl-NaCl melt is similar to the behaviour of other metals. Their corrosion rate is much higher as compared to other metals and it grows rapidly with increasing melt temperature. The temperature growth by 200 deg C results in an increase in the corrosion rate almost by an order. The potentials of lanthanum- and yttrium electrodes at the instant they are immersed in the melt have more negative values than the potentials of alkali metals under similar conditions

  9. Preparation of 147Pm ceramic source core

    International Nuclear Information System (INIS)

    Mielcarski, M.

    1989-01-01

    Preparation of ceramic pellets containing fixed promethium-147 is described. Incorporation rate of 147 Pm into the ceramic material was determined. The leachability and vaporization of promethium from the obtained ceramics was investigated. The ceramic pellets prepared by the described procedure, mounted in special holders, can be applied as point sources in beta backscatter thickness gauges. (author)

  10. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    Science.gov (United States)

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  11. Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles

    International Nuclear Information System (INIS)

    Tian, Li; Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong; Lin, Jun

    2013-01-01

    Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF 4 to hexagonal NaYF 4 and to hexagonal Y(OH) 2.02 F 0.98 owing to ion exchange. - Highlights: • Novel Y(OH) 2.02 F 0.98 nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH) 2.02 F 0.98 . The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation

  12. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    Science.gov (United States)

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  13. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  14. Lanthanoid and yttrium tellurates

    Energy Technology Data Exchange (ETDEWEB)

    Gonalez, C G; Guedes de Carvalho, R A [Faculdade de Engenharia, Porto (Portugal). Centro de Engenharia Quimica

    1978-05-01

    Preparation in aqueous medium of all the lanthanoid (except Ce and Pm) and yttrium tellurates is described. Chemical analyses, solubilities at 25/sup 0/C in water and thermograms of all the products prepared were determined. X-ray diffractograms and DTA and DTG curves of La, Gd and Yb tellurates were obtained and commented. Partial volatilization of lanthanoid is observed in the thermal analysis of tellurates.

  15. Ceramic Technology Project. Semiannual progress report, April 1991--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  16. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  17. Applications of advanced electron microscopy techniques to the studies of radiation effects in ceramic materials

    International Nuclear Information System (INIS)

    Wang, L.M.

    1998-01-01

    This paper summarizes some recent results from the application of several advanced transmission electron microscopy (TEM) techniques to the studies of radiation effects in insulators with the main focus on radiation-induced amorphization. These techniques include in situ TEM during ion-beam irradiation at cryogenic and elevated temperatures, cross-sectional TEM, high-resolution TEM, and image simulation on partially damaged materials, as well as digital TEM with image processing and analysis. The combination of these techniques may often provide very detailed information about the microstructure evolution during energetic particle irradiation, especially at the early stages, which is unobtainable with any other analytical methods. These techniques have been successfully applied to the analysis of a large group of ion-beam-irradiated ceramics, including quartz, silicon carbides, uranium oxide, apatite, spinel and other complex mineral phases. The advantages and limitations of each technique, as well as some important technical details for the analysis of radiation damage in ceramics are presented. (orig.)

  18. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  19. Structural ceramics containing electric arc furnace dust.

    Science.gov (United States)

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern. Copyright © 2013 Elsevier B

  20. Magnetic structure of holmium-yttrium superlattices

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Cowley, R.A.

    1993-01-01

    We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show...... that the superlattices have high crystallographic integrity: the structural coherence length parallel to the growth direction is typically almost-equal-to 2000 angstrom, while the interfaces between the two elements are well defined and extend over approximately four lattice planes. The magnetic structures were...... determined using neutron-scattering techniques. The moments on the Ho3+ ions in the superlattices form a basal-plane helix. From an analysis of the superlattice structure factors of the primary magnetic satellites, we are able to determine separately the contributions made by the holmium and yttrium...

  1. CO2 and Nd:YAP laser interaction with lithium disilicate and Zirconia dental ceramics: A preliminary study

    Science.gov (United States)

    Rocca, Jean-Paul; Fornaini, Carlo; Brulat-Bouchard, Nathalie; Bassel Seif, Samy; Darque-Ceretti, Evelyne

    2014-04-01

    Lithium disilicate and Zirconia ceramics offer a high level of accuracy when used in prosthetic dentistry. Their bonding using different resins is highly dependent on micro-mechanical interlocking and adhesive chemical bonding. Investigation of the performances of high strength ceramics when their surface is modified for chemical and mechanical bonding is then required. The aim of this study is to investigate the possibility of using laser for surface treatment of different high strength CAD/CAM ceramics and thus to improve their mechanical and chemical properties. Thirty two CAD/CAM ceramic discs were divided into two different groups: lithium disilicate ceramics (IPS e.max CAD®, Ivoclar, Vivadent, Italy) and Zirconia ceramics (IPS e.max ZirCAD®, Ivoclar, Vivadent, Italy). The Laser surface treatment was performed by Carbon Dioxide laser (Dream Pulse Laser®, Daeshin Enterprise Corp., Korea) at 20 W, 25 W and 30 W CW and by Neodymium Yttrium Aluminum Perovskite laser (Nd:YAP Lokki®, Lobel Medical, France) at 10 W and 30 Hz. Physical modifications of the irradiated ceramic discs were observed by scanning electron microscopy (SEM) and chemically analyzed by Energy-Dispersive Spectroscopy (EDS). Surface wettability was tested using the water drop test and the crystalline structure was investigated using X-ray diffraction (XRD). The macroscopic observation showed a shinier structure in all the groups, while at the SEM observation only CO2 25 W and 30 W treated groups showed cracks and fissures. In the conditions of this study, CO2 laser and Nd:YAP laser with the parameters used create chemical and physical surface modifications of the ceramics, indicating the possibility of an improvement in adhesion of the tested ceramics.

  2. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals

    International Nuclear Information System (INIS)

    Yu, Yunlong; Li, Xiaoyan

    2016-01-01

    Highlights: • Glass ceramic containing ZnAl 2 O 4 and YF 3 nano-crystals is fabricated. • Mn 2+ and Pr 3+ are selectively incorporated into ZnAl 2 O 4 and YF 3 , respectively. • The luminescence color can be tuned by adjusting the excitation wavelength. - Abstract: Glass ceramic containing spinel ZnAl 2 O 4 :Mn 2+ and orthorhombic YF 3 :Pr 3+ nano-crystals has been successfully prepared by a melt-quenching technique. X-ray diffraction and transmission electron microscopy demonstrated that two nano-phases, i.e. ZnAl 2 O 4 and YF 3 , were homogeneously distributed among the glass matrix. Importantly, the selective incorporation of Pr 3+ ions into the Y 3+ nine-fold coordinated sites of YF 3 and the segregation of Mn 2+ dopants in the Zn 2+ tetrahedral sites of ZnAl 2 O 4 were confirmed based on the excitation/emission spectra and the crystal field calculation. Under blue light excitation, both Pr 3+ and Mn 2+ in the glass ceramic can be simultaneously excited, and emit red and green luminescence, respectively, owing to the suppression of energy transfer between them. The luminescence color of the obtained glass ceramic can be easily tuned by adjusting the excitation wavelength. These results indicate the potential application of the glass ceramic as converting phosphor to generate white-light after coupling with the blue LED chip.

  3. Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells

    International Nuclear Information System (INIS)

    Park, Ka-Young; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young

    2015-01-01

    Highlights: • Report effects of ceramic processing methods on the electrical conductivity of BZY. • Present effects of sintering aids on the conductivity and density of BZY. • CuO is the most effective sintering aid for the BZY. • Polymer gelation is the most effective method in terms of conductivity of BZY. • Grain boundary conductivity of the polymer gelation BZY is higher than others. - Abstract: In this study, we report the effects of various ceramic processing methods with different sintering aids on the relative density, crystallinity, microstructure, and electrical conductivity of proton conducting BaZr 0.85 Y 0.15 O 3−δ (BZY) pellets in details. First, the BZY ceramic pellets are fabricated by the solid-state reactive sintering by adding diverse sintering aids including CuO, NiO, ZnO, SnO, MgO, and Al 2 O 3 . Among these, CuO is found to be the most effective sintering aid in terms of the sintering temperature and total conductivity. However, transition metals as sintering aids have detrimental effects on the electrical conductivity of the BZY electrolytes. Second, the BZY electrolytes have been synthesized by four different methods: the solid-state, combustion, hydrothermal, and polymer gelation methods. The BZY pellets synthesized by the polymer gelation method exhibit dense microstructure with a high relative density of 95.3%. Moreover, the electrical conductivity of the BZY pellets synthesized by the polymer gelation method is higher than those prepared by the solid-state methods under the same test conditions: 1.28 × 10 −2 S cm −1 (by the polymer gelation method) vs. 0.53 × 10 −2 S cm −1 by the solid-state method at 600 °C in wet 5% H 2 in Ar

  4. Tensile Properties of Open Cell Ceramic Foams

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Řehořek, Lukáš; Chlup, Zdeněk

    2009-01-01

    Roč. 409, - (2009), s. 168-175 ISSN 1013-9826. [Fractography of Advanced Ceramics /3./. Stará Lesná, 07.09.2008-10.09.2008] R&D Projects: GA ČR(CZ) GA106/06/0724; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : tensile test * ceramics foam * open porosity * tensile strength Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  5. Separation of Yttrium from Rare Earth Concentrates in Fractional Hydroxide Precipitation

    International Nuclear Information System (INIS)

    Tri Handini; Purwoto; Mulyono

    2007-01-01

    Yttrium has been separated from rare earth concentrates by precipitation in fractional hydroxide using urea. The purpose of this research is to increase the yttrium rate resulting from the sedimentary process through separation of yttrium from other rare earth in fractional hydroxide precipitation using urea. In this research, we study the process variable of the concentration of urea, the ratio of feed volume to condensation volume of urea, as well as the temperature. Determination analysis of the rare earth rate is conducted using an X-ray spectrometer. The best result Y=92.89 % is obtained at a concentration of urea of 50 %, a level of precipitation of 3 times, and a temperature of 80°C. (author)

  6. Advanced containment research for the Canadian Nuclear Fuel Waste Management Program

    International Nuclear Information System (INIS)

    Onofrei, M.; Mathew, P.M.; McKay, P.; Hosaluk, L.J.; Oscarson, D.W.

    1986-09-01

    This document outlines the program on the development of advanced containment systems for the disposal of used fuel in a vault deep in plutonic rock. Possible advanced containment concepts, the strategy adopted in selecting potential container materials, and experimental programs currently underway or planned are presented. Most effort is currently directed toward developing long-term containment systems based on non-metallic materials and massive metal containers. The use of additional independent barriers to extend the lifetime of simple containment systems is also being evaluated. 58 refs

  7. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    International Nuclear Information System (INIS)

    Innocenzi, Valentina; De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Kopacek, Bernd; Vegliò, Francesco

    2013-01-01

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2 2 full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H 2 O 2 concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2 2 full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na 2 S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%

  8. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); De Michelis, Ida; Ferella, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); Beolchini, Francesca [Department of Marine Sciences, Polytechnic Institute of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy)

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.

  9. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  10. Pressure of saturated vapor of yttrium and zirconium acetylacetonates

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1984-08-01

    The static method and the flow method using /sup 91/Y and /sup 95/Zr radioactive indicators have been applied to determine pressure of saturated vapour of yttrium and zirconium acetylacetonates. Values of thermodynamic functions ..delta..Hsub(subl)=(98+-16)kJ/mol and ..delta..Ssub(subl.)=(155+-30)J/mol x K are calculated for sublimation of yttrium acetylacetonate. For sublimation of zirconium acetylacetonates ..delta..Hsub(subl) equals (116+-38) kJ/mol and ..delta..Ssub(subl) is equal to (198+-65) J/molxK.

  11. Oxidation studies of β-sialon ceramics containing amorphous and / or crystalline intergranular phases

    International Nuclear Information System (INIS)

    Persson, J.; Kall, P.O.; Jansson, K.; Nygren, M.

    1992-01-01

    β-sialon ceramics of equal overall compositions but containing amorphous, partly crystalline and almost completely crystalline intergranular phase(s) have been oxidized in oxygen at 1350 deg C for 20 hours. The obtained weight gain curves do not follow the parabolic rate law (ΔW/A 0 ) 2 = k p t + β. To the extent that crystallization occurs in the oxide scale during the oxidation experiment, the amorphous cross section area through which oxygen most easily diffuses will decrease with time. A brief description of this new rate law is given, and the obtained oxidation curves will be discussed within that framework. 4 refs., 2 tabs., 2 figs

  12. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  13. NASA/CARES dual-use ceramic technology spinoff applications

    Science.gov (United States)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  14. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  15. Advanced ceramics for nuclear heat utilization and energy harvesting

    International Nuclear Information System (INIS)

    Prakash, Deep; Purohit, R.D.; Sinha, P.K.

    2015-01-01

    In recent years concerns related to global warming and green house gas emissions have focused the attention towards lowering the carbon foot print of energy generation. In this scenario, nuclear energy is considered as one of the strongest options to take on the challenges. Further, the nuclear heat, originated from the fission of nuclear fuels may be utilized not only by conversion to electricity using conventional techniques, but also may be used for production of hydrogen by splitting water. In the endeavor of realizing sustainable energy generation technologies, ceramic materials find key role as critical components. This paper covers an overview of various ceramic materials which are potential candidates for energy and hydrogen generation devices. These include solid oxide fuel cells, thermoelectric oxides and sodium conducting beta-alumina for alkali metal thermoelectric converters (AMTEC). The materials, which are generally complex oxides often need to be synthesized using chemical methods for purity and compositional control. Further, ceramic materials offer advantages in terms of doping different cations to engineer defects and maneuver properties. Nonetheless, shaping of ceramics to complex components is a challenging task, due to which various techniques such as isopressing, tape-casting, extrusion, slurry coating, spray deposition etc. are employed. The paper also provides a highlight of fabrication techniques and demonstration of miniature devices which are at various stages of development. (author)

  16. Effective thermal conductivity of advanced ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: simone.pupeschi@kit.edu; Knitter, R.; Kamlah, M.

    2017-03-15

    As the knowledge of the effective thermal conductivity of ceramic breeder pebble beds under fusion relevant conditions is essential for the development of solid breeder blanket concepts, the EU advanced and reference lithium orthosilicate material were investigated with a newly developed experimental setup based on the transient hot wire method. The effective thermal conductivity was investigated in the temperature range RT–700 °C. Experiments were performed in helium and air atmospheres in the pressure range 0.12–0.4 MPa (abs.) under a compressive load up to 6 MPa. Results show a negligible influence of the chemical composition of the solid material on the bed’s effective thermal conductivity. A severe reduction of the effective thermal conductivity was observed in air. In both atmospheres an increase of the effective thermal conductivity with the temperature was detected, while the influence of the compressive load was found to be small. A clear dependence of the effective thermal conductivity on the pressure of the filling gas was observed in helium in contrast to air, where the pressure dependence was drastically reduced.

  17. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  18. Leaching behavior of glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1981-11-01

    Glass ceramic waste forms have been investigated as alternatives to borosilicate glasses for the immobilization of high-level radioactive waste at Pacific Northwest Laboratory (PNL). Three glass ceramic systems were investigated, including basalt, celsian, and fresnoite, each containing 20 wt % simulated high-level waste calcine. Static leach tests were performed on seven glass ceramic materials and one parent glass (before recrystallization). Samples were leached at 90 0 C for 3 to 28 days in deionized water and silicate water. The results, expressed in normalized elemental mass loss, (g/m 2 ), show comparable releases from celsian and fresnoite glass ceramics. Basalt glass ceramics demonstrated the lowest normalized elemental losses with a nominal release less than 2 g/m 2 when leached in polypropylene containers. The releases from basalt glass ceramics when leached in silicate water were nearly identical with those in deionized water. The overall leachability of celsian and fresnoite glass ceramics was improved when silicate water was used as the leachant

  19. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    Science.gov (United States)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  20. An experimental bioactive dental ceramic for metal-ceramic restorations: Textural characteristics and investigation of the mechanical properties.

    Science.gov (United States)

    Goudouri, Ourania-Menti; Kontonasaki, Eleana; Papadopoulou, Lambrini; Manda, Marianthi; Kavouras, Panagiotis; Triantafyllidis, Konstantinos S; Stefanidou, Maria; Koidis, Petros; Paraskevopoulos, Konstantinos M

    2017-02-01

    The aim of this study was the evaluation of the textural characteristics of an experimental sol-gel derived feldspathic dental ceramic, which has already been proven bioactive and the investigation of its flexural strength through Weibull Statistical Analysis. The null hypothesis was that the flexural strength of the experimental and the commercial dental ceramic would be of the same order, resulting in a dental ceramic with apatite forming ability and adequate mechanical integrity. Although the flexural strength of the experimental ceramics was not statistically significant different compared to the commercial one, the amount of blind pores due to processing was greater. The textural characteristics of the experimental ceramic were in accordance with the standard low porosity levels reported for dental ceramics used for fixed prosthetic restorations. Feldspathic dental ceramics with typical textural characteristics and advanced mechanical properties as well as enhanced apatite forming ability can be synthesized through the sol-gel method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Yttrium implantation and addition element effects on the oxidation behaviour of reference steels at 973 K

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H.; Cueff, R.; Issartel, C.; El Messki, S.; Perrier, S.; Riffard, F. [Lab. Vellave d' Elaboration et d' Etude des Materiaux, Univ. Blaise Pascal Clermont-Fd 2, Le Puy en Velay (France)

    2004-07-01

    Yttrium implantation effects on reference steels (extra low carbon and low manganese steel) were studied by rutherford backscattering spectrometry (RBS), reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD) and glancing angle X-ray diffraction (GAXRD). Thermogravimetry and in situ X-ray diffraction at 700 C and P{sub O2}=0.04 Pa for 24h were used to determine the yttrium implantation and addition element effects on sample oxidation resistance at high temperatures. This study clearly shows that yttrium implantation and subsequent high temperature oxidation induced the formation of several yttrium mixed oxides which closely depend on the reference steel addition elements. Moreover, these yttrium mixed oxides seem to be responsible for the improved reference steel oxidation resistance at high temperatures. (orig.)

  2. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  3. Elaboration of new ceramic composites containing glass fibre production wastes

    Directory of Open Access Journals (Sweden)

    Rozenstrauha, I.

    2013-04-01

    Full Text Available Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50% of organic matter as well as waste glass from aluminiumborosilicate glass fibre with relatively high softening temperature (> 600 ºC. In order to elaborate different new ceramic products (porous or dense composites the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia with illite content in clay fraction up to 80-90% was used as a matrix. The raw materials were investigated by differential-thermal (DTA and XRD analysis. Ternary compositions were prepared from mixtures of 15–35 wt % of sludge, 20 wt % of waste glass and 45–65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 ºC in different treatment conditions. Materials produced in temperature range 1090–1100 ºC with the most optimal properties - porosity 38-52%, water absorption 39–47% and bulk density 1.35–1.67 g/cm3 were selected for production of porous ceramics and materials showing porosity 0.35–1.1%, water absorption 0.7–2.6 % and bulk density 2.1–2.3 g/cm3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM. By X-ray diffraction analysis (XRD the quartz, diopside and anorthite crystalline phases were detected.Durante la obtención de ciertas fibras de vidrio se generan dos subproductos o residuos principalmente: Lodo de arcilla montmorillonítica capaz de adsorber el 50 % de materia orgánica y un vidrio silicato alumínico con temperatura de reblandecimiento relativamente alta (> 600 ºC. Con el fin de elaborar nuevos

  4. Structural ceramics containing electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, V.N., E-mail: vasta@teihal.gr [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece); General Department of Applied Sciences, School of Technological Applications, Technological Educational Institute of Sterea Ellada, GR 34400 Psahna (Greece); Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J. [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece)

    2013-11-15

    Highlights: • Zn is stabilized due to formation of ZnAl{sub 2}O{sub 4} spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in

  5. Structural ceramics containing electric arc furnace dust

    International Nuclear Information System (INIS)

    Stathopoulos, V.N.; Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J.

    2013-01-01

    Highlights: • Zn is stabilized due to formation of ZnAl 2 O 4 spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an

  6. Treatment of rheumatoid arthritis with 90yttrium. Follow up studies

    International Nuclear Information System (INIS)

    Teuber, J.; Baenkler, H.W.; Regler, G.; Erlangen-Nuernberg Univ., Erlangen

    1978-01-01

    90 Yttrium-silicate was injected into 131 knee-joints from patients with rheumatoid arthritis with stadium II-IV according to Steinbrocker. The observation period lasted until two years. After three months about 80% and after 24 months still more than 50% of the patients treated showed complete or partial remission. Side-effects as formerly observed with 198 -goldpreparations did not occur. Therefore the treatment with 90 Yttrium-silicate offers an alternative to surgical synovectomy. (orig.) [de

  7. An ICP AES method for determination of dysprosium and terbium in high purity yttrium oxide

    International Nuclear Information System (INIS)

    Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2011-01-01

    High purity yttrium finds interesting application in astronavigation, luminescence, nuclear energy and metallurgical industries. Most of these applications require yttrium oxide of highest purity. Consequently there is a need for production of high purity yttrium oxide. Separation and purification of yttrium from other rare earths is a challenging task due to their close chemical properties. Liquid-liquid extraction and ion exchange have been widely used in the production of yttrium oxide of highest purity. Determination of impurities, especially other rare earths, in ppm level is required for process development and chemical characterization of the high purity Y 2 O 3 . Many methods have been described in literature. However since the advent of ICP AES much work in this area has been carried out by this technique. This paper describes the work done for determination of dysprosium (Dy) and terbium (Tb) in yttrium oxide using a high resolution sequential ICP AES. Emission spectra of rare earth elements are very complex and due to this complexity it is important to select spectral interference free analyte lines for determination of rare earths in rare earth matrix. For the determination of Dy and Tb in Y 2 O 3 , sensitive lines of Dy and Tb are selected from the instrument wavelength table and spectral interference free emission lines for the determination is selected by scanning around the selected wavelengths using 5 g/L Y solution and 5 mg/L standard solutions of Dy and Tb prepared in 4% nitric acid. It is found 353.170 nm line of Dy and 350.917 nm line Tb is suitable for quantitative determination. The signal to background ratio increases with increase in matrix concentration, i.e. from 1 to 5 mg/L. The optimum forward power is determined and it is found to be 1100W for Dy and 1000W for Tb. The instrument is calibrated using matrix matched standards containing 5g/L of Y matrix. Samples are dissolved in nitric acid and Y concentration is maintained at 5g/L. Two

  8. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    Unknown

    Technical Education Faculty, Mersin University, 33480 Tarsus, Turkey. MS received 18 October 2005; revised 22 March 2006. Abstract. In this study, abrasive ... process were used to produce bio-active ceramics. Fracture toughness of studied ...

  9. Status of advanced containment systems for next generation water reactors

    International Nuclear Information System (INIS)

    1994-06-01

    The present IAEA status report is intended to provide information on the current status and development of containment systems of the next generation reactors for electricity production and, particularly, to highlight features which may be considered advanced, i.e. which present improved performance with evolutionary or innovative design solutions or new design approaches. The objectives of the present status report are: To present, on a concise and consistent basis, selected containment designs currently being developed in the world; to review and compare new approaches to the design bases for the containments, in order to identify common trends, that may eventually lead to greater worldwide consensus, to identify, list and compare existing design objectives for advanced containments, related to safety, availability, maintainability, plant life, decommissioning, economics, etc.; to describe the general approaches adopted in different advanced containments to cope with various identified challenges, both those included in the current design bases and those related to new events considered in the design; to briefly identify recent achievements and future needs for new or improved computer codes, standards, experimental research, prototype testing, etc. related to containment systems; to describe the outstanding features of some containments or specific solutions proposed by different parties and which are generally interesting to the international scientific community. 36 refs, 27 figs, 1 tab

  10. The 1/4 technical scale, continuous process of obtaining the ceramic uranium dioxide from ammonium polyuranates containing fluoride

    International Nuclear Information System (INIS)

    Wlodarski, R.

    1977-01-01

    Based on the laboratory results, the 1/4 technical apparatus for the continuous reduction and defluorination of ammonium polyuranate containing fluoride was designed and constructed. The possibility of obtaining the ceramic uranium dioxide in a continuous process has been confirmed. The main part of the apparatus used in this process was the horizontal tubular oven with the extruder transporting material. (author)

  11. Scandium, yttrium and the lanthanide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The hydroxide and oxide phases that exist for scandium(III) include scandium hydroxide, which likely has both amorphous and crystalline forms, ScOOH(s), and scandium oxide. This chapter presents the data selected for the stability constants of the polymeric hydrolysis species of scandium at zero ionic strength. The behaviour of yttrium, and the lanthanide metals, in the environment is largely dependent on their solution equilibria. Hydrolysis and other complexation reactions of yttrium and the lanthanide metals are important in the disposal of nuclear waste. The trivalent lanthanide metals include lanthanum(III) through lutetium(III). A number of studies have reported a tetrad effect for the geochemical behaviour of the lanthanide series, including stability constants and distribution coefficients. The solubility of many of the lanthanide hydroxide phases has been studied at fixed ionic strength. In studying the hydrolysis of cerium(IV), a number of studies have utilised oxidation-reduction reactions in determining the relevant stability constants.

  12. Assessment of the hazard to the public from anti-static brushes containing polonium-210 in the form of ceramic microspheres

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Wilkins, B.T.; Wrixon, A.D.

    1975-04-01

    Anti-static brushes containing polonium-210 in the form of ceramic microspheres have been tested and evaluated with regard to their availability to the general public. After summarising existing test information, results are given of routine leakage tests and special tests intended to simulate severe but credible abuse and accidents with these devices. It is found that the low levels of removable contamination and the possible loss of complete microspheres, although in principle undesirable, do not present a significant hazard. The containment integrity of ceramic microspheres under severe conditions (impact and fire) has been found unsatisfactory and it is considered possible that ICRP dose limits could be approached or even exceeded under these severe but credible abuse, accident or disposal conditions. The results of comparative tests with nonradioactive methods for static elimination did not demonstrate any adequate justification for the use of a radioactive material. The potential exposure from Staticmaster Brushes is therefore considered an unnecessary hazard to members of the public. (author)

  13. Effect of yttria addition on the stability of porous chromium oxide ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2013-01-01

    Porous chromium oxide (Cr 2 O 3 ) ceramics were prepared by oxidizing highly porous chromium carbides that were obtained by a reactive sintering method, and were evaluated at temperatures ranging from 375 °C to 625 °C in supercritical water (SCW) environments with a fixed pressure of 25–30 MPa. Reactive element yttrium was introduced to the porous oxide ceramic by adding various amounts of yttria of 5, 10 and 20 wt.%, respectively, prior to reactive sintering. The exposure in SCW shows that the porous chromium oxide is quite stable in SCW at 375 °C. However, the stability decreased with increasing temperature. It is well known that chromium oxide can be oxidized to soluble chromium (VI) species in SCW when oxygen is present. Adding yttria increases the stability of chromium oxide in SCW environments. However, adding yttria higher than 5 wt.% increased the weight loss of porous chromium oxide samples because of the direct dissociation of Y 2 O 3 in SCW.

  14. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications.

    Science.gov (United States)

    Dezfuli, Sina Naddaf; Huan, Zhiguang; Mol, Arjan; Leeflang, Sander; Chang, Jiang; Zhou, Jie

    2017-10-01

    The present research was aimed at developing magnesium-matrix composites that could allow effective control over their physiochemical and mechanical responses when in contact with physiological solutions. A biodegradable, bioactive ceramic - bredigite was chosen as the reinforcing phase in the composites, based on the hypothesis that the silicon- and magnesium-containing ceramic could protect magnesium from fast corrosion and at the same time stimulate cell proliferation. Methods to prepare composites with integrated microstructures - a prerequisite to achieve controlled biodegradation were developed. A systematic experimental approach was taken in order to elucidate the in vitro biodegradation mechanisms and kinetics of the composites. It was found that the composites with 20-40% homogenously dispersed bredigite particles, prepared from powders, could indeed significantly decrease the degradation rate of magnesium by up to 24 times. Slow degradation of the composites resulted in the retention of the mechanical integrity of the composites within the strength range of cortical bone after 12days of immersion in a cell culture medium. Cell attachment, cytotoxicity and bioactivity tests confirmed the stimulatory effects of bredigite embedded in the composites on the attachment, viability and differentiation of bone marrow stromal cells. Thus, the multiple benefits of adding bredigite to magnesium in enhancing degradation behavior, mechanical properties, biocompatibility and bioactivity were obtained. The results from this research showed the excellent potential of the bredigite-containing composites for bone implant applications, thus warranting further in vitro and in vivo research. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M Mohan; Gorin, Alexander [School of Engineering and Science, Curtin University of Technology, Sarawak (Malaysia); Abou-El-Hossein, K A, E-mail: mohan.m@curtin.edu.my [Mechanical and Aeronautical Department, Nelson Mandela Metropolitan University, Port Elegebeth, 6031 (South Africa)

    2011-02-15

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  16. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    International Nuclear Information System (INIS)

    Reddy, M Mohan; Gorin, Alexander; Abou-El-Hossein, K A

    2011-01-01

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  17. Advanced ceramic material for high temperature turbine tip seals

    Science.gov (United States)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  18. Using mixture design of experiments to assess the environmental impact of clay-based structural ceramics containing foundry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, M. [Department of Chemistry and Process and Resources Engineering, University of Cantabria, 39005 Santander (Spain); Department of Materials and Ceramics Engineering (CICECO), University of Aveiro, 3810-193 Aveiro (Portugal); Segadães, A.M. [Department of Materials and Ceramics Engineering (CICECO), University of Aveiro, 3810-193 Aveiro (Portugal); Andrés, A., E-mail: andresa@unican.es [Department of Chemistry and Process and Resources Engineering, University of Cantabria, 39005 Santander (Spain)

    2015-12-15

    Highlights: • Modelling of the environmental risk in terms of clay and by-products contents. • M-DoE and response surface plots enable quick comparison of three ceramic processes. • Basicity of the mixture increases the leaching, especially at low firing temperatures. • Liquid phase content plays a major role decreasing the leaching of Cr and Mo. • Together, M-DoE and phase diagrams enable better prediction of pollutants leaching. - Abstract: This work describes the leaching behavior of potentially hazardous metals from three different clay-based industrial ceramic products (wall bricks, roof tiles, and face bricks) containing foundry sand dust and Waelz slag as alternative raw materials. For each product, ten mixtures were defined by mixture design of experiments and the leaching of As, Ba, Cd, Cr, Cu, Mo, Ni, Pb, and Zn was evaluated in pressed specimens fired simulating the three industrial ceramic processes. The results showed that, despite the chemical, mineralogical and processing differences, only chrome and molybdenum were not fully immobilized during ceramic processing. Their leaching was modeled as polynomial equations, functions of the raw materials contents, and plotted as response surfaces. This brought to evidence that Cr and Mo leaching from the fired products is not only dependent on the corresponding contents and the basicity of the initial mixtures, but is also clearly related with the mineralogical composition of the fired products, namely the amount of the glassy phase, which depends on both the major oxides contents and the firing temperature.

  19. Creep fracture and creep-fatigue fracture in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Suresh, S.

    1993-01-01

    This paper summarizes recent advances in the areas of subcritical crack growth in ceramics subjected to static and cyclic loads at elevated temperatures. Attention is devoted to the specific role of pre-existing and in-situ-formed glass films in influencing creep fracture and creep-fatigue fracture. Experimental results on the effects of cyclic frequency and load ratio, along with detailed transmission electron microscopy of crack-tip and crack-wake damage are highlighted. Some general conclusions are drawn about the dependence of high-temperature damage tolerance on interfacial glass films and about the susceptibility of ceramic materials to cyclic fatigue fracture

  20. Evaluation of sol-gel based magnetic 45S5 bioglass and bioglass-ceramics containing iron oxide.

    Science.gov (United States)

    Shankhwar, Nisha; Srinivasan, A

    2016-05-01

    Multicomponent oxide powders with nominal compositions of (45-x)·SiO2·24.5CaO·24.5Na2O·6P2O5xFe2O3 (in wt.%) were prepared by a modified sol-gel procedure. X-ray diffraction (XRD) patterns and high resolution transmission electron microscope images of the sol-gel products show fully amorphous structure for Fe2O3 substitutions up to 2 wt.%. Sol-gel derived 43SiO2·24.5CaO·24.5Na2O·6P2O5·2Fe2O3 glass (or bioglass 45S5 with SiO2 substituted with 2 wt.% Fe2O3), exhibited magnetic behavior with a coercive field of 21 Oe, hysteresis loop area of 33.25 erg/g and saturation magnetization of 0.66 emu/g at an applied field of 15 kOe at room temperature. XRD pattern of this glass annealed at 850 °C for 1h revealed the formation of a glass-ceramic containing sodium calcium silicate and magnetite phases in nanocrystalline form. Temperature dependent magnetization and room temperature electron spin resonance data have been used to obtain information on the magnetic phase and distribution of iron ions in the sol-gel glass and glass-ceramic samples. Sol-gel derived glass and glass-ceramic exhibit in-vitro bioactivity by forming a hydroxyapatite surface layer under simulated physiological conditions and their bio-response is superior to their melt quenched bulk counterparts. This new form of magnetic bioglass and bioglass ceramics opens up new and more effective biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. ELECTRON MICROSCOPIC INVESTIGATION OF YTTRIUM ALUMINUM GARNET POWDERS Y3AL5O12, SYNTHESIZED BY SOL–GEL METHOD

    Directory of Open Access Journals (Sweden)

    A. E. Baranchikov

    2015-09-01

    diffractometers, radiation λCu Kα. Carl Zeiss NVision 40 electron microscope was used for the study by scanning electron microscopy (SEM. The results indicate significant effects of additives in the original acetate - nitrate solutions on the size and morphology of the particles during the synthesis of powders of yttrium aluminum garnet by sol-gel method. Relatively large particles not susceptible to the mutual sintering were obtained by using ethylene glycol and ammonium lauryl sulfate as additives. Practical Relevance. Powders of yttrium aluminum garnet synthesized by the sol-gel method using ethylene glycol and ammonium lauryl sulfate as additives can be of the greatest interest for creation of YAG:Nd3+ laser ceramics.

  2. PRELIMINARY STUDY OF CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Billings, A.; Brinkman, K.; Marra, J.

    2010-09-22

    The Savannah River National Laboratory (SRNL) developed a series of ceramic waste forms for the immobilization of Cesium/Lanthanide (CS/LN) and Cesium/Lanthanide/Transition Metal (CS/LN/TM) waste streams anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores, zirconolite, and other minor metal titanate phases. Identification of excess Al{sub 2}O{sub 3} via X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. XRD and SEM/EDS results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD, and had phase assemblages that were closer to the initial targets. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms. Initial studies of radiation damage tolerance using ion beam irradiation at Los

  3. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    Science.gov (United States)

    Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.

    2017-03-01

    The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  4. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    Directory of Open Access Journals (Sweden)

    Suchopár M.

    2017-01-01

    Full Text Available The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW performed intensive studies of several simple accelerator-driven system (ADS setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  5. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    Science.gov (United States)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  6. Fluorimetric determination of yttrium by methyl-bis(8-hydraxy--- 2-quinolyl)amine

    International Nuclear Information System (INIS)

    Golovina, A.P.; Kachin, S.V.; Runov, V.K.; Fakeeva, O.A.

    1982-01-01

    Using a method of mathematical Box-Wilson experiment planning the optimum conditions of yttrium fluorimetric determination by methyl-bis (8-hydroxy-2-quinolyl) amine (pH 7.5, csub(R)=1.4x10sup(-5) M) with the determination limit=0.05 μg/ml are found. An extraction-fluorimetric method of yttrium determination by methyl-bis (8-hydroxy-2-quinolyl) amine is developed. The extraction has been realized with aliphatic alcohols at pH > 11. The method is characteristic of the lowest determination limit (0.01 μg/ml) as compared with the known ones. The possibility is shown of yttrium determination in the presence of 5000-multiple aluminium contents, stoichiometric contents of La, Lu, Fe (3), U (6), tartrates, citrates

  7. Achievement report for fiscal 1992. Research and development of ceramic gas turbine (Portable regenerative double-shaft ceramic gas turbine for portable power generation); 1992 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Kahanshiki hatsuden'yo saiseishiki ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-05-01

    Research and development has been advanced on a ceramic gas turbine (CGT) with an output of 300-kW class and thermal efficiency of 42% or higher. Activities were performed in the following three fields: 1) research of heat resistant ceramic members, 2) research of elementary technologies, and 3) studies on design, prototype fabrication, and operation. In Item 1, research was performed on forming the heat resistant ceramic members, and all-ceramic members constituting the basic type gas turbine were fabricated. Improvements were given on the problems discovered in the heat shock test, and the hot spin test. In Item 2, elementary researches were made on the basic technologies for the ceramic gas turbine, such as on the heat exchanger, combustor, and ceramic turbine, wherein discussions were given on improvement of mechanical strength and performance. In Item 3, design and prototype fabrication were performed on the basic type ceramic gas turbine, based on the results of research operations on the basic type (metallic gas turbine). Adjustment operations were launched on some of the components. (NEDO)

  8. Metal-ceramic joint assembly

    Science.gov (United States)

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  9. Advances in Applied Ceramics: Guest editorial

    OpenAIRE

    Hazell, P. J.

    2010-01-01

    The development, engineering, and testing of ceramic armour systems and materials has been carried out during the past 50 years and dates back to the pioneering work of M. L. Wilkins and his colleagues [1]. Arguably, the first indications that such armour would be ballistically efficient were seen much earlier than Wilkins when, in 1918 Maj Neville Monroe‐Hopkins found that a thin layer of enamel improved the ballistic performance of a thin steel plate [2]. Indeed, many earl...

  10. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Brinkman, K.

    2011-09-22

    its stability may be rate dependent, therefore limiting the activity of the waste for which it can be employed. Overall, these preliminary results indicate good radiation damage tolerance for the crystalline ceramic materials. The PCT results showed that, for all of the waste forms tested, the normalized release values for most of the elements measured, including all of the lanthanides and noble metals, were either very small or below the instrument detection limits. Elevated normalized release values were measured only for Cs, Mo, and Rb. It is difficult to draw further conclusions from these data until a benchmark material is developed for the PCT with this type of waste form. Calcined, simulated CS/LN/TM High Mo waste without additives had relatively low normalized release values for Cs, Mo, and Rb. A review of the chemical composition data for this sample showed that these elements were well retained after the calcination. Therefore, it will be useful to further characterize the calcined material to determine what form these elements are in after calcining. This, along with single phase studies on Cs containing crystal structures such as hollandite, should provide insight into the most ideal phases to incorporate these elements to produce a durable waste form.

  11. Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.

    Science.gov (United States)

    Sentuerk, U; von Roth, P; Perka, C

    2016-01-01

    The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.

  12. Accelerated damage studies of titanate ceramics containing simulated PW-4b and JW-A waste

    International Nuclear Information System (INIS)

    Hart, K.P.; Vance, E.R.; Lumpkin, G.R.; Mitamura, H.; Matsumoto, S.; Banba, T.

    1999-01-01

    Ceramic waste forms are affected by radiation damage, primarily arising from aloha-decay processes that can lead to volume expansion and amorphization of the component crystalline phases. The understanding of the extent and impact of these effects on the overall durability of the waste form is critical to the prediction of their long-term performance under repository conditions. Since 1985 ANSTO and JAERI have carried out joint studies on the use of 244 Cm to simulate alpha-radiation damage in ceramic waste forms. These studies have focussed on synroc formulations doped with simulated PW-4b and JW-A wastes. The studies have established the relationship between density change and irradiation levels for Synroc containing JW-A and PW-4b wastes. The storage of samples at 200 C halves the rate of decrease in the density of the samples compared to that measured at room temperature. This effect is consistent with that found for natural samples where the amorphization of natural samples stored under crustal conditions is lower, by factors between 2 and 4, than that measured for samples from accelerated doping experiments stored at room temperature. (J.P.N.)

  13. Impacts of yttrium substitution on FMR line-width and magnetic properties of nickel spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ishaque, M., E-mail: ishaqdgk1@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ali, Irshad; Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Iqbal, M. Asif [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); College of E & ME, National University of Science and Technology, Islamabad (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2015-05-15

    The influence of yttrium (Y) substitution on ferromagnetic resonance (FMR), initial permeability, and magnetic properties of NiFe{sub 2}O{sub 4} ferrites were investigated. It was observed that the FMR line-width decreases with yttrium contents for the substitution level 0≤×≤0.06. Beyond this, the FMR line-width increases with yttrium contents. The nominal composition NiY{sub 0.12}Fe{sub 1.88}O{sub 4} exhibited the smallest FMR line-width ~282 Oe. A significant change in FMR position of nickel–yttrium (Ni–Y) ferrites was observed and it found to exist between 4150 and 4600 Oe. The saturation magnetization was observed to decrease with the increase of yttrium contents and this was referred to the redistribution of cations on octahedral. The coercivity increased from 15 Oe to 59 Oe by increasing the yttrium concentration. The initial permeability decreased from 110 to 35 at 1 MHz by the incorporation of yttrium and this was attributed to the smaller grains which may obstruct the domain wall movement and impede the domain wall motion. The magnetic loss factors of substituted samples exhibit decreasing behavior in the frequency range 1 kHz to 10 MHz. The smaller FMR line-width and reduced magnetic loss factor of the investigated samples suggest the possible use of these materials in high frequency applications. - Highlights: • Influence of Y{sup 3+} substitution on the properties of nickel ferrites is investigated. • Very small FMR line-width (282 Oe) is exhibited by these substituted ferrites. • Fourfold increase in coercivity was observed for NiY{sub 0.24}Fe{sub 1.76}O{sub 4} ferrites.

  14. Viscoplastic Constitutive Theory Demonstrated for Monolithic Ceramic Materials

    Science.gov (United States)

    Janosik, Lesley A.

    1999-01-01

    Development of accurate three-dimensional (multiaxial) inelastic stress-strain models is critical in utilizing advanced ceramics for challenging 21st century high-temperature structural applications. The current state of the art uses elastic stress fields as a basis for both subcritical crack growth and creep life prediction efforts aimed at predicting the time dependent reliability response of ceramic components subjected to elevated service temperatures. However, to successfully design components that will meet tomorrow's challenging requirements, design engineers must recognize that elastic predictions are inaccurate for these materials when subjected to high-temperature service conditions such as those encountered in advanced heat engine components. Analytical life prediction methodologies developed for advanced ceramics and other brittle materials must employ accurate constitutive models that capture the inelastic response exhibited by these materials at elevated service temperatures. A constitutive model recently developed at the NASA Lewis Research Center helps address this issue by accounting for the time-dependent (inelastic) material deformation phenomena (e.g., creep, rate sensitivity, and stress relaxation) exhibited by monolithic ceramics exposed to high-temperature service conditions. In addition, the proposed formulation is based on a threshold function that is sensitive to hydrostatic stress and allows different behavior in tension and compression, reflecting experimental observations obtained for these material systems.

  15. Ceramic Technology Project, semiannual progress report for October 1993 through March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1994-09-01

    The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Conservation and Renewable Energy. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. In July 1990, the original plan was updated through the estimated completion of development in 1993. The original objective of the project was to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. During the course of the Ceramic Technology Project, remarkable progress has been made in the development of reliable structural ceramics. The direction of the Ceramic Technology Project is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned.

  16. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Savazzini-Reis, A.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2016-01-01

    The Brazilian red ceramic industry monthly consumes about 10.3 million tons of clay, its main raw material. In most potteries, characterization of the clay is made empirically, which can result in tiles and blocks not according to standards. This sense, this paper aims to characterize clays used in the manufacturing of red ceramic products in factory located in Colatina-ES, which appears as a ceramic pole with about twenty small and midsize industries. The clays were characterized by: Xray fluorescence, X-ray diffraction, thermal analysis (TG/DSC), granulometry and Atterberg limits. Specimens of clay and mixture containing four clays were shaped. Specimens were shaped, dried at 110°C, and burned in a kiln for 24 h. The ceramics and mechanical characteristics were evaluated: flexural strength, water absorption, apparent porosity, apparent specific mass and shrinkage by drying and firing. The characterization showed that kaolinitic clay presents high plasticity, but high porosity. The mixture formed by the four clays does not meet the requirements of the Brazilian standard clays for red ceramic. (author)

  17. Advanced ceramic coating development for industrial/utility gas turbines. Final report, 11 Mar 1979-1 Sep 1981

    International Nuclear Information System (INIS)

    Vogan, J.W.; Stetson, A.R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO 2 .82O 3 , CaO.TiO 2 , 2CaO.SiO 2 , and MgO.Al 2 O 3 . The best overall results were obtained with a CaO.TiO 2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO 2 .8Y 2 O 3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines

  18. Yttrium-90

    International Nuclear Information System (INIS)

    Ammerich, Marc; Frot, Patricia; Gambini, Denis-Jean; Gauron, Christine; Moureaux, Patrick; Herbelet, Gilbert; Lahaye, Thierry; Pihet, Pascal; Rannou, Alain; Vial, Eric

    2013-03-01

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with Yttrium-90

  19. Profile of yttrium segregation in BaCe0,9Y0,1O3-δ as function of sintering temperature

    International Nuclear Information System (INIS)

    Hosken, C.M.; Souza, D.P.F. de

    2010-01-01

    Researches on solid oxide fuel cells indicate barium cerate perovskite as a very attractive material for using as electrolyte due to its high protonic conductivity. The objective of this work is investigate the yttrium segregation during sintering of BaCe 0,9 Y 0,1 O 3-δ doped with Zn O as a sintering aid. The powders were prepared by citrate process. Powders were isostatic pressed into pellets and sintered in air at 1200, 1275, 1325 and 1400 deg C. The samples were characterized by scanning electron microscopy, X-ray diffraction and impedance spectroscopy. Secondary phase containing Yttrium and Cerium was detected as sintering temperature increased. Increase of the lattice parameter and activation energy for electrical conductivity were also detected on samples sintered at 1400 deg C. (author)

  20. Cleanability evaluation of ceramic glazes with nanometer far-infrared materials using contact angle measurement.

    Science.gov (United States)

    Wang, Lijuan; Liang, Jinsheng; Di, Xingfu; Tang, Qingguo

    2014-05-01

    The cleanability of easy-to-clean ceramic glazes doped with nanometer far-infrared materials was compared with that of some high-quality household ceramic glazes from the market. The cleanability was evaluated by the contact angle measurement using a sessile drop method with a Dataphysics OCA-30 contact angle analyzer. The results showed that the difference of contact angles of water on the glazes before soiling and after cleaning could be used as a parameter for evaluating the cleanability of the glazes. The relationship between cleanability and surface properties, such as surface free energy and surface topography, was investigated. The surface free energy of the samples and their components were calculated using van Oss acid-base approach. By measuring advancing and receding contact angles, the contact angle hysteresis of the ceramic glazes due to the surface topography was investigated. It was shown that the cleanability of ceramic glazes containing nanometer far-infrared materials (NFIM) is better than that of household ceramic glazes from market, due to a higher ratio of electron-acceptor parameter to electron-donor parameter, which led to the effect of water hydration as well as better hydrophilic property and increased smoothness. The contact angle measurement not only accurately evaluates the cleanability of the ceramic glazes, but also has a contribution to the study of cleanability theory. Moreover, this method is simple, convenient and less sample-consumption.

  1. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  2. Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers.

    Science.gov (United States)

    Fiocco, L; Bernardo, E; Colombo, P; Cacciotti, I; Bianco, A; Bellucci, D; Sola, A; Cannillo, V

    2014-08-01

    Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests. © 2013 Wiley Periodicals, Inc.

  3. Microstructure of SiC ceramics fabricated by pyrolysis of electron beam irradiated polycarbomethylsilane containing precursors

    International Nuclear Information System (INIS)

    Xu Yunshu; Tanaka, Shigeru

    2003-01-01

    A modified gel-casting method was developed to form the ceramics precursor matrix by using polycarbomehylsilane (PCMS) and SiC powder. The polymer precursor was mixed with SiC powder in toluene, and then the slurry samples were cast into designed shapes. The pre-ceramic samples were then irradiated by 2.0 MeV electron beam generated by a Cockcroft-Walton type accelerator in He gas flow to about 15 MGy. The cured samples were pyrolyzed and sintered into SiC ceramics at 1300degC in Ar gas. The modified gel-casting method leaves almost no internal stress in the pre-ceramic samples, and the electron beam curing not only diminished the amount of pyrolysis gaseous products but also enhanced the interface binding of the polymer converted SiC and the grains of SiC powder. Optical microscope, AFM and SEM detected no visible internal or surface cracks in the final SiC ceramics matrix. A maximum value of 122 MPa of flexural strength of the final SiC ceramics was achieved. (author)

  4. Processing of porous zirconia ceramics by direct consolidation with starch

    International Nuclear Information System (INIS)

    Garrido, Liliana B; Albano, Maria P

    2008-01-01

    Porous ceramics are used especially for those environments with high temperatures, heavy wear and in a corrosive medium. Zirconium-based materials are useful for such applications as sensors, filters, support for catalytic reactions, porous components for sofc and in biomedical applications. A conventional method for producing porous ceramics consists of the addition and later decomposition by calcination (pyrolisis) of different organic materials that act as pore formers. Several wet processing possibilities have been developed. Among these is a technique of direct consolidation with starch. This process begins with the preparation of an aqueous suspension of the ceramic with the dispersants needed to stabilize it, to which the starch is added. After casting in a waterproof mold, the suspension thermally hardens into the desired shape. The dry compacts undergo the sintering cycle to obtain pieces almost in their final form. This study aims to optimize the processing of porous zirconium ceramics using starch as a pore and binder forming agent. Zirconium with 3% yttrium molar stabilized in tetragonal phase was used. The aqueous suspensions (52-55% vol) of the zirconium-starch mixtures with different compositions were stabilized with a commercial solution of ammonium polyacrylate as a dispersant and were hardened in plastic molds at 90 o C for 30 min. The influence of added volume of starch on the physical characteristics of the pieces in green state was established while maintaining the temperature, the gelling time and the conditions of constant drying. The sintering was carried out at 1000-1500 o C-2h. The characteristics of the sintered product were evaluated by measuring density, volumetric contraction, intrusion of Hg and the evolution of the crystalline phases by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microstructural properties of ceramic (pore volume, the relation between open and closed porosity, size distribution, morphology of

  5. Ceramics technology for advanced industrial gas turbines

    International Nuclear Information System (INIS)

    Anson, D.; Sheppard, W.J.; DeCorso, M.; Parks, W.J. Jr.

    1991-01-01

    Recent developments in the fabrication of high strength ceramic materials and in their application to automotive and aerospace gas turbine engines may lead also to significant improvements in the performance of industrial gas turbines. This paper presents a brief review of the improvements projected in a study initiated by the U.S. Department of Energy. The future costs of power generated by small gas turbines (up to 25 MW) are predicted, as well as the potential for fuel savings. Gas turbines in this size range are used extensively for gas compression and for cogeneration, as well as in a variety of more diverse applications. This paper includes results of analyses of the ways in which changes in gas turbine cost and performance are likely to affect market penetration. These results lead to predictions of future savings in U.S. fuel consumption in the industrial sector that would result. The paper also presents a brief overview of the scope of a suggested R and D program, with an appropriate schedule, which would provide a technical basis for achieving the projected results. Important parts of this program would cover ceramic design and fabrication technology, engine development and demonstration, and combustion technology

  6. Cathodoluminescence properties of yttrium aluminum garnet doped with Eu2+ and Eu3+ ions

    International Nuclear Information System (INIS)

    Trofimov, A. N.; Petrova, M. A.; Zamoryanskaya, M. V.

    2007-01-01

    Yttrium aluminium garnet (YAG) doped with Eu 2+ and Eu 3+ ions is very interesting as a phosphor for conversion of light-emitting diode light for white light sources. The europium ion occupies the structural position of yttrium in yttrium aluminium garnet and has valence state Eu 3+ . Our sample was doped with Zr 4+ , which is why some of the europium ions had valence state Eu 2+ . As a rule, luminescence of Eu 3+ ions is observed in the orange and red range of spectrum. The luminescence of Eu 2+ in yttrium aluminum garnet is characterized by an intensive broad band with maximum of intensity at about 560 nm (green color). In this work, we studied the intensity and decay time dependences on europium concentration, and the influence of excitation power density on the cathodoluminescence of the sample. The most interesting result is the change of visible cathodoluminescence color in dependence on the density of the exciting power

  7. Effect of simulated mastication on the surface roughness of three ceramic systems.

    Science.gov (United States)

    Amer, Rafat; Kürklü, Duygu; Johnston, William

    2015-08-01

    Zirconia complete coverage crowns are being widely used as restorations because of their high strength and improved esthetics. Data are sparse about the change in surface roughness of this ceramic material after repeated mastication cycles of opposing enamel. The purpose of this study was to investigate changes in the surface roughness after being subjected to 3-body wear-opposing human enamel of 3 types of ceramics: dense sintered yttrium-stabilized zirconia (Z); lithium disilicate (L); and a conventional low-fusing feldspathic porcelain (P) treated to impart a rough, smooth, or glazed surface. Twenty-four specimens of each of the Z and L ceramic were sectioned from computer-aided design and computer-aided manufacturing blocks into rectangular plates (15×12×2 mm). Twenty-four specimens of the feldspathic porcelain were formed into disks (12-mm diameter) from powders compressed in a silicone mold. All specimens (n=72) were prepared according to the manufacturers' recommendations. Specimens of each ceramic group were placed into 1 of 3 groups: group R, rough surface finish; group S, smooth surface finish; and group G, glazed surface finish. A total of 72 specimens (9 groups with 8 specimens each) was placed in a 3-body wear simulator, with standardized enamel specimens (n=72) acting as the substrate. The changes in surface roughness of the ceramic specimens were evaluated after 50,000 cycles. Data were analyzed by a repeated measures 3-way ANOVA mixed procedure with the Satterthwaite method for degrees of freedom and maximum likelihood estimation of the covariance parameters (α=.05). Data showed that the PS group exhibited the largest change in surface roughness, becoming significantly rougher (P<.004). The LR group became significantly smoother (P=.012). The surfaces of monolithic zirconia ceramic and lithium disilicate did not become as rough as the surface of conventional feldspathic porcelain after enamel wear. Copyright © 2015 Editorial Council for the

  8. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  9. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  10. Method for production of transparent yttrium oxide

    International Nuclear Information System (INIS)

    Dutta, S.K.; Gazza, G.A.

    1975-01-01

    The method comprises vacuum hot pressing the yttrium oxide (Y 2 O 3 ) powder in a graphite die at temperatures of between 1300 to 1500 0 C and uniaxial pressures of between 5000 to 7000 psi, for a period of 1 to 2 hours. (U.S.)

  11. Kinetics and mechanism of the low-temperature yttrium-aluminium garnet synthesis

    International Nuclear Information System (INIS)

    Ivakin, Yu.D.; Danchevskaya, M.N.; Yanchenko, P.A.; Murav'eva, G.P.

    2000-01-01

    Kinetics and formation mechanism of finely crystalline yttrium-aluminium garnet (YAG) during hydrothermal and hot steam treatment of stoichiometric mixture of oxides in the range of temperature 200-400 Deg C and pressures of 1.5-26 MPa were studied. It is ascertained that formation of YAG occurs via intermediate stage of Y(OH) 3 structure formation, whereas the aluminia component is X-ray amorphous. Kinetics of YAG formation is described by the equation of solid phase transformation with the limiting stage of nucleation. The YAG formed contains 7-5 % of water, which corresponds to hydrogarnet structure. Unit cell parameters of the YAG samples synthesized are somewhat high and after heating up to 1200 Deg C they decrease [ru

  12. Modern trends in engineering ceramics: review of transformation toughening in zirconia based ceramics

    International Nuclear Information System (INIS)

    Khan, A.A.

    1998-01-01

    The investigation of zirconia has continued to attract the interest of ever increasing number of scientists and solid evidence of commercial applications for the engineering ceramic is now available. To use zirconia to its full potential, the properties of the oxide have been modified extensively by the addition of cubic stabilizing oxides. These can be added in amounts sufficient to form a partially stabilized zirconia (PSZ) or to form a fully stabilized zirconia, which has a cubic structure at room temperature. The addition of varying amounts of cubic oxides, particularly MgO, CaO, Y sub 2 O sub 3, has allowed the development of novel and innovative ceramic materials. In this article an overview of the recent advances in zirconia based engineering materials is presented. It is shown that intelligent control of the composition and microstructure can lead the the production of extremely though ceramic materials, a property which is generally thought to be the major weak point of ceramics vis a vis other class of materials. (author)

  13. Study of decomposition kinetics of volatile β-diketonates of yttrium, barium and copper in flow reactor

    International Nuclear Information System (INIS)

    Devyatykh, G.G.; Gavrishchuk, E.M.; Gibin, A.M.; Dadanov, A.Yu.; Dzyubenko, N.G.; Kaul', A.R.; Nichiporuk, R.V.; Snezhko, N.T.; Ul'yanov, A.A.

    1990-01-01

    Heterogeneous oxidative decomposition of adduct of yttrium acetylacetonate with o-phenanthroline, copper acetylacetonate and barium dipivaloylmethanate in a flow-type reactor was carried out. The basic kinetic characteristics of chemical precipitation processes of films of yttrium, copper and barium oxides, which are components of high-temperature superconductors, were obtained. The values of activation energy of precipitation process of yttrium, copper and barium oxides constituted 76±10, 108±15, 81±12 (t 600 deg C) respectively

  14. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  15. Development of Zr-containing advanced reduced-activation alloy (ARAA) as structural material for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Y.B., E-mail: borobang@gmail.com [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kang, S.H. [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, D.W. [Nuclear Fusion Engineering Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Jeong, Y.H. [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Żywczak, A. [AGH University of Science and Technology, Academic Centre of Materials and Nanotechnology, Kraków (Poland); Rhee, C.K. [Nuclear Materials Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • Creep and impact resistances of reduced activation ferritic–martensitic steel are enhanced by the addition of Zr. • A 5 ton scale heat of Zr containing RAFM steel, ARAA, has been produced for material property evaluation. • The physical, thermal, magnetic and mechanical properties of ARAA are quite similar to those of Eurofer 97. - Abstract: Korea has developed an advanced reduced-activation alloy (ARAA) as a structural material for helium-cooled ceramic reflector test blanket module (HCCR-TBM) applications. The present paper describes the history of alloy development and the properties of ARAA, which has been produced at a 5 t scale using vacuum induction melting and electro-slag re-melting methods. ARAA is a 9Cr–1.2W based ferritic–martensitic steel with 0.01 wt.% Zr. The mechanical properties, thermal properties and physical and magnetic properties of ARAA show similar temperature dependencies to those observed for Eurofer 97. However, ARAA exhibits a much longer creep–rupture time than conventional RAFM steel, which suggests a positive effect on Zr addition. The enhanced creep strength of ARAA by the addition of Zr is attributed to the reduced temperature-dependence of the yield strength.

  16. Positive effect of yttrium on the reduction of pores in cast Al alloy

    International Nuclear Information System (INIS)

    Hua, Guomin; Ahmadi, Hojat; Nouri, Meisam; Li, Dongyang

    2015-01-01

    Mechanical and electrochemical properties of Al alloys can be improved by adding a small amount of rare-earth such as yttrium. Here we demonstrate that adding yttrium also helps suppress the porosity in cast Al alloys, thus minimizing its detrimental effect on mechanical properties of the alloys. The mechanism behind is elucidated based on the hydrogen binding energies and the diffusion activation energies of hydrogen atoms in Al and Al–Y phases, calculated using the first-principle method. - Highlights: • The porosity of commercial Al alloy can be reduced by additive yttrium. • Formed Al 3 Y phase helps reduce homogeneous nucleation of hydrogen bubbles. • Formed Al 3 Y and Al 2 Y phases could suppress the growth of hydrogen bubbles

  17. Application and study of advanced network technology in large container inspection system

    International Nuclear Information System (INIS)

    Li Zheng; Kang Kejun; Gao Wenhuan; Wang Jingjin

    1996-01-01

    Large Container Inspection System (LCIS) based on radiation imaging technology is a powerful tool for the customs to check the contents inside a large container without opening it. An image distributed network system is composed of center manager station, image acquisition station, environment control station, inspection processing station, check-in station, check-out station, database station by using advanced network technology. Mass data, such as container image data, container general information, manifest scanning data, commands and status, must be on-line transferred between different stations. Advanced network technology and software programming technique are presented

  18. Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets.

    Science.gov (United States)

    Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza

    2017-01-01

    Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice.

  19. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    Science.gov (United States)

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  20. Preparation and study of the critical-mass-free plutonium ceramics with neutron poisons Hf, Gd and Li

    International Nuclear Information System (INIS)

    Timoefeeva, L.F.; Orlov, V.K.; Malyukov, E.E.; Molomin, V.I.; Zhmak, V.A.; Semova, E.A.; Shishkov, N.V.; Nadykto, B.A.

    2002-01-01

    Powder sintering was used to produce homogeneous type oxide ceramics of Pu with Hf, Gd and Li 6 . In all the ceramics, there is the number of neutron poison (Hf, Gd and Li) atoms per plutonium atom needed, according to the physical calculation, for them to be free of critical mass. PuO 2 stabilizers high-temperature modifications of cubic HfO 2 or hexagonal Gd 2 O 3 , however, at the ratio given by the physical calculation, the plutonium is insufficient for their full stabilization. Addition of yttrium oxide as an additive stabilizing the fcc phase of HfO 2 resulted in cubic solid solution (Pu, Hf, Y)O 2-x . Pu/Li/Hf and Pu/Li/Si ceramics produced by sintering of PuO 2 and compound Li 2 HfO 3 or 6 Li 4 SiO 4 powders is characterized with presence of two phases. The method of differential thermal analysis demonstrated the phase stability of (Pu-Hf, Pu-Gd, Pu-Li-Hf) oxide ceramics in the 20-1500degC temperature range. Ceramic (Pu/Li/Si) has several endothermal effects. Tests in boiling water solutions of various composition suggest that the specimens of Pu, Hf oxides and ternary oxides (Pu, Hf, Y)O 2 are less stable in weakly acidic media than in weakly alkaline medium and distilled water. The obtained results were used as a basis to estimate the assumed solid solution region boundaries for binary Hf, Pu and ternary Hf, Pu, Y oxides on the side of HfO 2 . (author)

  1. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  2. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  3. Synthesis and luminescence properties of glass ceramics containing MSiO3:Eu2+ (M=Ca, Sr, Ba) phosphors for white LED

    International Nuclear Information System (INIS)

    Cui Zhiguang; Jia Guohua; Deng Degang; Hua Youjie; Zhao Shilong; Huang Lihui; Wang Huanping; Ma Hongping; Xu Shiqing

    2012-01-01

    Eu 2+ doped silicate glasses were prepared of the system 52SiO 2 -48MO: xEu 2+ (in molar ratio, M=Ca, Sr, Ba; x=1, 3, 5, 7, 9) by a high temperature melt-quenching method in a reducing atmosphere. Glass ceramics containing MSiO 3 :Eu 2+ (M=Ca, Sr, Ba) nano-phosphors were obtained after the heat treatment of the glass samples. The excitation, emission spectra and lifetime decay curves of 4f 6 5d 1 →4f 7 of Eu 2+ were measured and interpreted with respect to their crystal structures and multi-site occupations of divalent europium in the hosts. Their excitation bands mainly extend from 450 to 250 nm, which is adaptable to the main emission region of the UV LED chip. With UV light excitation, the Eu 2+ emission in CaSiO 3 , SrSiO 3 and BaSiO 3 shows blue, green and yellow colors centered at 440, 505 and 555 nm, respectively. The critical Eu 2+ concentration was studied and determined to be x=5 for both CaSiO 3 and SrSiO 3 and x=7 for BaSiO 3 phosphors. The results show that the Eu 2+ doped glass ceramic phosphors containing MSiO 3 (M=Ca, Sr, Ba) nano-crystals can be used as potential matrix materials for a high power white LED pumped by the UV LED chip. - Highlights: → Glass ceramic containing MSiO 3 :Eu 2+ (M=Ca, Sr, Ba) phosphors prepared. → Derived phosphors emit intensively blue, green and yellow colors. → Their luminescence properties and crystal structures have been investigated. → Concentration quenching effects observed and analyzed. → Potential application for UV chip exciting white LED evaluated.

  4. Containment integrity analysis for the (W) advanced AP600

    International Nuclear Information System (INIS)

    Gagnon, A.F.; Howe, K.S.

    1989-01-01

    This paper reports that since 1987, Westinghouse has been performing containment cooling analyses in support of the Advanced AP600 plant design. This program was intended to verify the feasibility of the passive containment cooling system features of the AP600 design. To support this design, containment analyses of the AP600 containment for a large break LOCA and a large Steam Line Break were performed. The transient results indicate the feasibility of the passive containment design by demonstrating the capability to remove sufficient heat to limit containment atmosphere conditions to within acceptable limits following these postulated accidents. These results also indicate that the PCCS can reduce containment pressure to less than one-quarter design pressure at 24 hours following the most severe accident scenario thereby minimizing containment leakage concerns

  5. High-performance ceramics - state of the art and trends of development

    International Nuclear Information System (INIS)

    Gadow, R.; Keizer, K; Burggraaf, A.J.; Boch, P.; Chartier, T.; Thomann, H.

    1989-01-01

    This paper contains 4 lectures on the following topics: 1. fiber and whisker reinforced ceramics (R. Gadow), 2. ceramic membranes (K. Keizer, A.J. Burggraf), 3. ceramic processing techniques: The case of tape casting (P. Bach, T. Chartier), 4. ceramic superconductors (H. Thomann). Three contributions are separately analyzed for the ENERGIE database. (MM) [de

  6. Treatment of acromegaly by yttrium implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hibbert, J.; Shaheen, O.H.

    1977-01-01

    Yttrium implantation is one of the many ways of treating acromegaly. The advantages are the minor nature of the procedure and the fact that pituitary replacement is not as commonly required as after hypophysectomy. Thus in young female patients menstruation may be resumed following treatment and pregnancy has occurred. The procedure is not as free from complications as external irradiation but the response is more satisfactory.

  7. Preparation, characterization and thermal behaviour study of double selenates of lanthanides, yttrium and beryllium

    International Nuclear Information System (INIS)

    Ribeiro, C.A.

    1988-01-01

    The lanthanides (III) and yttrium (III) double selenates were studied using common analytical methods, atomic absorption, X-ray diffraction infra-red absorption, thermogravimetry and differential thermal analysis. These compounds were prepared from the mixture of lanthanides (III) and yttrium (III) selenates aqueous solution and basic beryllium selenates aqueous solution, obeying equimolar relation (1:1) to the cation

  8. Scaling up the microwave firing of ceramics

    International Nuclear Information System (INIS)

    Wroe, F.C.R.

    1993-01-01

    EA Technology, through a comprehensive R ampersand D program, is developing new microwave furnace technology focused on the ceramics processing industries. Using a combination of computer modelling, experimentation and feasibility studies, EA Technology has developed processes and procedures for firing large ceramic components. The aim of this work is to describe the investigation of the firing of ceramic products such as bricks, pottery, refractories, and industrial ceramics, using advanced processing techniques to produce and maintain uniformity of temperature throughout the components and kiln environment. This has achieved the goal of producing uniform microstructures and low thermal stress by careful control of the firing cycle. This paper illustrates the feasibility of microwave-assisted firing and shows it to be economically viable in terms of energy costs and process control. 6 refs., 1 fig

  9. The electronic conduction of glass and glass ceramics containing various transition metal oxides

    International Nuclear Information System (INIS)

    Yoshida, T.; Matsuno, Y.

    1980-01-01

    Nb 2 O 5 -V 2 O 5 -P 2 O 5 glasses containing only Group Va oxides have been investigated to elucidate their electronic conduction and structure, as compared with other glasses obtained by the addition of various transition metal oxides to vanadium phosphate. The P 2 O 5 introduction for Nb 2 O 5 in this glass with the same amount of V 2 O 5 increased the conductivity about two times. Glass ceramics having high conductivity increased by two orders of magnitude and the activation energy for conduction decreased from about 0.5 to 0.2 eV. The crystals were confirmed to be (V,Nb) 2 O 5 and Nb phosphate, one of which was highly conductive and developed a pillar-like shape with a length of more than 20 μm. (orig.)

  10. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  11. Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Zhou, Zhiwei; Liu, Binglong; Xie, Tengfei; Liu, Jing; Kou, Huamin; Shi, Yun; Pan, Yubai; Guo, Jingkun

    2015-12-01

    The sintering behavior of neodymium doped yttrium aluminum garnet (Nd:YAG) ceramics was investigated on the basis of densification trajectory, microstructure evolution and transmittance. Nd:YAG ceramics with in-line transmittance of 83.9% at 1064 nm and 82.5% at 400 nm were obtained by direct cold isostatic pressing (CIP) at 250 MPa and solid-state reactive sintering at 1790 °C for 30 h under vacuum. Compared with the porosity and the average pore diameter of the sample from uniaxial dry-pressing followed by CIP, those from direct CIP are much smaller. The samples pressed at 250 MPa were sintered from 1500 °C to 1750 °C for 0.5-20 h to study their sintering behavior. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. The relative density and the grain size increase with the increase of sintering time and temperature, and the sintering behavior is more sensitive to temperature than holding time. The mechanism controlling densification and grain growth at sintering temperature of 1550 °C is grain boundary diffusion.

  12. Advanced Turbine Technology Applications Project (ATTAP)

    Science.gov (United States)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  13. ATTAP/AGT101 - Year 2 progress in ceramic technology development

    Science.gov (United States)

    Kidwell, J. R.; Lindberg, L. J.; Morey, R. E.

    1990-01-01

    The progress made by the Advanced Turbine Technology Applications Project (ATTAP) is summarized, with emphasis on the following areas: ceramic materials assessment and characterization, ceramic impact damage assessment, ceramic combustor evaluation, turbine inlet particle separator development, impact-tolerant turbine designs, and net-shape ceramic component fabrications. In the evolutionary ceramics development in the Automotive Gas Turbine (AGT101) and ATTAP programs initial designs were conceived to reduce stresses by using well-established criteria: bodies of revolution were preferred over nonaxisymmetric geometries, sharp corners were avoided, the contact area between components was kept as large as possible, and small parts were preferred over large when feasible. Projects discussed include: initial ceramic component fabrication by ceramic suppliers in 1990, engine test to 1371 C in 1991, 100-hr test bed engine durability test in 1991, and 300-hr test bed engine durability in 1992.

  14. Improvement of the oxidation resistance of Tribaloy T-800 alloy by the additions of yttrium and aluminium

    International Nuclear Information System (INIS)

    Zhang, Y.-D.; Zhang, C.; Lan, H.; Hou, P.Y.; Yang, Z.-G.

    2011-01-01

    Research highlights: → The additions of yttrium (Y) reduced the oxidation rate of Tribaloy T-800 alloy. → Y promoted selective oxidation of Cr due to refinement of alloy phase size. → The oxidation rate was further reduced by Y plus Al with a protective Al 2 O 3 scale. → The positive effect of Y and Al being more pronounced at the higher temperature. - Abstract: The microstructures and oxidation behaviour of the modified Tribaloy T-800 alloys by additions of yttrium and yttrium plus aluminium have been studied. At the presence of yttrium alone, the oxidation rate decreased, and the selective oxidation of chromium was promoted, which was related to the refinement of alloy phase size. The addition of yttrium plus aluminium further reduced the oxidation rate. The selective oxidation of chromium and aluminium were both promoted significantly. The benefits were especially pronounced at 1000 o C, with the formation of protective alumina external layer and no internal oxides, which may be detrimental to the alloy mechanical property.

  15. Comparison of internal friction in high Tc superconductors and CuO

    International Nuclear Information System (INIS)

    Gzowski, O.; Davoli, I.; Stizza, S.; Mancini, G.; Kusz, B.; Barczynski, R.; Gazda, M.; Sadowski, W.; Murawski, L.

    1990-01-01

    This paper reports on the internal friction and shielding effect in CuO, superconducting yttrium and bismuth ceramics and yttrium monocrystal that have been measured. Several features, some of them common for all specimens, have been found

  16. Study on stability of labeled yttrium-90 with lipiodol by chemical extraction for liver cancer

    International Nuclear Information System (INIS)

    Mu, P.Y.; Jiang, X.L.; Chen, J.; Zhu, Y.J.

    2005-01-01

    Liver cancer, particularly hepatocellular carcinoma, is one of the most common malignant diseases in many developed and developing countries. It is also one of the most common diseases endangering the people's lives and health heavily. Surgery is very effective in early-stage patients. Unfortunately, there is less than 10% of the patients with hepatocellular carcinoma fitting for surgical therapy. Instead of surgical therapy, other methods are considered for patients in whom surgery may not work well. Systemic administration of chemotherapeutic agents is not often considered in liver cancer patients, due to discouraging result and adverse side effects. Also, hepatocellular carcinoma is not keen on usual radioactive therapy. However, method of inner interventional radioactive nuclide is a potential way to cure liver tumors. Hepatocellular carcinoma would be cured with inner interventional radioactive nuclide, which is a hot topic in experimental research on hepatocellular carcinoma at home and abroad. The purpose of the study is to label Yttrium-90 with lipiodol by means of the chemical extraction method and research the stability of labeled Yttrium-90 ( 90 Y-P204-Lipiodol) in serum of a newly-born cattle and human's blood. We chose to label steady yttrium with lipiodol, because radioactive yttrium has great nuclear character for liver cancer, yttrium-90 can eradiate pure β radial, and it's half time is 64 hours. Average energy of it is 0.93 Mev, the highest energy is 2.27 Mev. Yttrium-90 can be labeled with lipiodol by means of the chemical extraction method, which is mature in chemical techniques, combined with method of radioactive nuclide labeled in. nuclear medicine. At first, yttrium-90 is extracted in certain condition(pH, temperature, whisk time, whisk frequency, etc ) after adding yttrium-90 solution. We use some distilled water to balance the labeled organic phase twice, and test the stability of labeled yttrium-90 in serum of a newly-born cattle and

  17. Effect of added zinc on the properties of cobalt-containing ceramic pigments prepared from layered double hydroxides

    International Nuclear Information System (INIS)

    Perez-Bernal, M.E.; Ruano-Casero, R.J.; Rives, V.

    2009-01-01

    Layered double hydroxides (LDHs) with the hydrotalcite-type structure containing Co and Al, or Zn, Co and Al in the brucite-like layers and carbonate in the interlayer have been prepared by coprecipitation. The Zn/Co molar ratio was kept to 1 in all samples, while the divalent/trivalent molar ratio was varied from 2/1 to 1/2. The samples have been characterised by element chemical analysis, powder X-ray diffraction, differential thermal and thermogravimetric analysis, temperature-programmed reduction and FT-IR spectroscopy. A single hydrotalcite-like phase is formed for samples with molar ratio 2/1, which crystallinity decreases as the Al content is increased, developing small amounts of diaspore and dawsonite and probably an additional amorphous phase. Calcination at 1200 deg. C in air led to formation of spinels; a small amount of NaAlO 2 was observed in the Al-rich samples, which was removed by washing. The nature of the spinels formed (containing Co II , Co III , Al III and Zn II ) strongly depends on the cations molar ratio in the starting materials and the calcination treatment, leading to a partial oxidation of Co II species to Co III ones. Colour properties (L*a*b*) of the original and calcined solids have been measured. While the original samples show a pink colour (lighter for the series containing Zn), the calcined Co,Al samples show a dark blue colour and the Zn,Co,Al ones a green colour. Changes due to the different molar ratios within a given calcined series are less evident than between samples with the same composition in different series. These calcined materials could be usable as ceramic pigments. - Abstract: Mixed oxides from layered double hydroxides (LDHs) with the hydrotalcite-type structure containing Co and Al or Zn, Co and Al in the brucite-like layers are potential candidates for ceramic pigments with tunable colour properties. Display Omitted

  18. Dose rate measurements in the beta-photon radiation field from UO2 pellets and glazed ceramics containing uranium

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1986-01-01

    In the nuclear fuel cycle, the handling of UO 2 pellets results in a significant exposure, mainly due to beta rays. Depth dose distributions have been investigated at source-to-detector distances of 5 to 80 cm using LiF detectors of different thicknesses. Detailed data for the dose equivalent quantities H(0.07), H(3) and H(10) are presented. These data are compared with those found for the use of glazed tiles and ceramics containing natural uranium. (author)

  19. Effect of yttrium chromite doping on its resistance to high-temperature salt and gas corrosions

    International Nuclear Information System (INIS)

    Oryshich, I.V.; Poryadchenko, N.E.; Rakitskij, A.N.; Bega, N.D.

    1996-01-01

    Effect of yttrium chromite doping with 2-4 group metal oxides on the corrosion resistance in the air at 1300 C during 5 hours and in sodium chloride and sulfate melts at 900 C during 20 hours is investigated. A notable increase of corrosion resistance is achieved under complex doping with zirconium and magnesium oxides in a quantity, close to solubility in yttrium oxide and solubility by aluminium oxide. Doping with calcium and strontium oxides in the quantities, dose to solubility in yttrium oxide does not produce any notable effect, and at higher concentrations it reduces the corrosion resistance in media indicated. Refs. 8, refs. 2, tabs. 1

  20. Yttrium-90 resin microspheres and their use in the treatment of intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Filippi, Luca; Schillaci, Orazio; Cianni, Roberto; Bagni, Oreste

    2018-04-01

    Intrahepatic cholangiocarcinoma (ICC) is a severe and rapidly progressive hepatic tumor. Surgery is often impracticable due to locally advanced presentation. On the other hand, chemotherapy has demonstrated only limited effectiveness. For these reasons, liver-directed therapies have been successfully applied for treating ICC. In particular, radioembolization with Yttrium-90 ( 90 Y)-labeled spheres has been reported to be a promising therapeutic approach for this neoplasia. Two commercial forms of 90 Y-labeled spheres are available: glass (TheraSphere ® ) and resin (SIR-Spheres ® ) microspheres. The aim of the present paper is to review the existing literature on the use of the resin microspheres for the treatment of unresectable and chemorefractory ICC, focusing on the methodology, clinical applications and side effects.

  1. The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    He, Minqiang; Li, Weibing [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xia, Jiexiang, E-mail: xjx@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Li; Di, Jun [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Hui [School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Yin, Sheng [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Huaming, E-mail: lhm@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Mengna [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China)

    2015-03-15

    Graphical abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Highlights: • Yttrium (Y)-doped BiOBr composites have been synthesized via solvothermal method in the presence of reactable ionic liquid [C16mim]Br. • The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of ciprofloxacin (CIP) and rhodamine B (RhB). • The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br). Their structures, morphologies and optical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest

  2. Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Silva Maurício A.P.

    2002-01-01

    Full Text Available The vitreous domain was established in the PbF2-CdF2-B2O 3 system from melting and quenching experiments. Er3+ containing glasses were prepared and glass ceramics were obtained by selected heat-treatments. Lead fluoride was identified (beta-PbF2 as the crystalline phase. Structural studies were performed in some glassy and partially crystallized samples by means of X-ray Diffraction (XRD and Extended X-ray Absorption Fine Structure (EXAFS measurements. The role of Cd2+ and Pb2+ atoms on the glass network formation and also on the crystallization behavior was put forward by these techniques. After crystallization Er3+ atoms segregated in the crystal phase.

  3. Preparation of high purity yttrium single crystals by electrotransport

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Ionov, A.M.; Pustovit, A.N.; Sikharulidse, G.G.

    1981-01-01

    The possibility of obtaining yttrium crystals of high purity by the method of solid state electrotransport (SSE) was investigated in the present work. The behaviour of low contents of iron, aluminium, silicon, tantalum, copper, silver and vanadium as metallic impurities was studied using mass spectrometry. It is shown that all the impurities investigated, except copper, migrate to the anode. During electrotransfer a purification with respect to these impurities by a factor of 4 - 6 is obtained. It is proposed that the diffusion coefficients of the metallic impurities investigated are anomalously high and that the behaviour of the impurities during SSE in adapters necessitates further investigation. By using a three-stage process with intermediate removal of the anode end yttrium single crystals with a resistance ratio rho 293 /rhosub(4.2)=570 were produced. (Auth.)

  4. Cordierite Glass-Ceramics for Dielectric Materials

    International Nuclear Information System (INIS)

    Siti Mazatul Azwa Saiyed Mohd Nurddin; Selamat, Malek; Ismail, Abdullah

    2007-01-01

    The objective of this project is to examine the potential of using Malaysian silica sand deposit as SiO2 raw material in producing cordierite glass-ceramics (2MgO-2Al2O3-5SiO2) for dielectric materials. Upgraded silica sands from Terengganu and ex-mining land in Perak were used in the test-works. The glass batch of the present work has a composition of 45.00% SiO2, 24.00% Al2O3, 15.00% MgO and 8.50% TiO2 as nucleation agent. From the differential thermal analysis results, the crystallization temperature was found to start around 900 deg. C. The glass samples were heat-treated at 900 deg. C and 1000 deg. C. The X-ray diffraction analysis (XRD) results showed glass-ceramics from Terengganu samples containing mainly cordierite and minor β-quartz crystals. However, glass-ceramics from ex-mining land samples contained mainly α-quartz and minor cordierite crystals. Glass-ceramics with different crystal phases exhibit different mechanical, dielectric and thermal properties. Based on the test works, both silica sand deposits, can be potentially used to produce dielectric material component

  5. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    Science.gov (United States)

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Chemical vapor deposition of refractory metals and ceramics III

    International Nuclear Information System (INIS)

    Gallois, B.M.; Lee, W.Y.; Pickering, M.A.

    1995-01-01

    The papers contained in this volume were originally presented at Symposium K on Chemical Vapor Deposition of Refractory Metals and Ceramics III, held at the Fall Meeting of the Materials Research Society in Boston, Massachusetts, on November 28--30, 1994. This symposium was sponsored by Morton International Inc., Advanced Materials, and by The Department of Energy-Oak Ridge National Laboratory. The purpose of this symposium was to exchange scientific information on the chemical vapor deposition (CVD) of metallic and ceramic materials. CVD technology is receiving much interest in the scientific community, in particular, to synthesize new materials with tailored chemical composition and physical properties that offer multiple functionality. Multiphase or multilayered films, functionally graded materials (FGMs), ''smart'' material structures and nanocomposites are some examples of new classes of materials being produced via CVD. As rapid progress is being made in many interdisciplinary research areas, this symposium is intended to provide a forum for reporting new scientific results and addressing technological issues relevant to CVD materials and processes. Thirty four papers have been processed separately for inclusion on the data base

  7. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  8. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  9. Microstructures and luminescent properties of Ce-doped transparent mica glass-ceramics

    International Nuclear Information System (INIS)

    Taruta, Seiichi; Iwasaki, Yoshitomo; Nishikiori, Hiromasa; Yamakami, Tomohiko; Yamaguchi, Tomohiro; Kitajima, Kunio; Okada, Kiyoshi

    2012-01-01

    Highlights: ► Ce-doped transparent glass-ceramics and their parent glasses. ► TEM and STEM images for the microstructures. ► Each mica crystal did not contain Ce uniformly. ► Emission due to Ce 3+ ions in the glass phase and/or Ce 3+ ions in the mica crystals. - Abstract: Transparent mica glass-ceramics were prepared by heating parent glasses that had been doped with 0.5–15 mol% CeO 2 . During the melting and heat treatment, Ce 4+ ions in the specimens were reduced to Ce 3+ ions, and one or both of these ion species were then replaced with Li + ions in the interlayers of the separated mica crystals. However, scanning transmission electron microscope (STEM) and Z-contrast imaging revealed that the mica crystals did not contain the same amount of Ce. On excitation at 254 nm, the parent glasses and glass-ceramics emitted blue light, which originated from the 5d to 4f transition of the Ce 3+ ions. The emission of the glass-ceramic containing a smaller amount of Ce was attributed to the Ce 3+ ions in both the glass phase and the mica crystals, whereas that of the glass-ceramics containing a larger amount of Ce was caused mainly by Ce 3+ ions in the mica crystals. The dependence of the emission band of the parent glasses on the amount of Ce was a unique feature of the Ce-doped transparent mica glass-ceramics and was not observed in previous studies of Eu-doped parent glasses and mica glass-ceramics.

  10. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    Science.gov (United States)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  11. Plutonium and surrogate fission products in a composite ceramic waste form

    International Nuclear Information System (INIS)

    Esh, D. W.; Frank, S. M.; Goff, K. M.; Johnson, S. G.; Moschetti, T. L.; O'Holleran, T.

    1999-01-01

    Argonne National Laboratory is developing a ceramic waste form to immobilize salt containing fission products and transuranic elements. Preliminary results have been presented for ceramic waste forms containing surrogate fission products such as cesium and the lanthanides. In this work results from scanning electron microscopy/energy dispersive spectroscopy and x-ray diffraction are presented in greater detail for ceramic waste forms containing surrogate fission products. Additionally, results for waste forms containing plutonium and surrogate fission products are presented. Most of the surrogate fission products appear to be silicates or aluminosilicates whereas the plutonium is usually found in an oxide form. There is also evidence for the presence of plutonium within the sodalite phase although the chemical speciation of the plutonium is not known

  12. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  13. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao

    2014-01-01

    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  14. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    Science.gov (United States)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  15. Numerical modelling of evaporation in a ceramic layer in the tape casting process

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri

    2016-01-01

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes, a Represent......Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of tape cast ceramics. This process contains mass, momentum and energy exchange between the porous medium and the free-flow region. In order to analyze such interaction processes...

  16. Experimental investigation on shrinkage and surface replication of injection moulded ceramic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2014-01-01

    Ceramic moulded parts are increasingly being used in advanced components and devices due to their unprecedented material and performance attributes. The surface finish, replication quality and material shrinkage are of immense importance for moulded ceramic parts intended for precision applications....... The current paper presents a thorough investigation on the process of ceramic moulding where it systematically characterizes the surface replication and shrinkage behaviours of precision moulded ceramic components. The test parts are moulded from Catamold TZP-A which is Y2O3-stabilised ZrO2 having widespread...... distribution for the moulded ceramic parts is presented....

  17. Microstructure and enhanced dielectric properties of yttrium and zirconium co-doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zunping, E-mail: xzp16213@163.com [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qiang, Hua [College of Electromechanical Engineering, Chongqing College of Humanities, Science and Technology, Chongqing 401524 (China); Chen, Yi; Chen, Zhiqian [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China)

    2017-04-15

    CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics doped with Y{sub 2}O{sub 3}, ZrO{sub 2}, and (Y{sub 2}O{sub 3}+ZrO{sub 2}) were prepared by the citrate-nitrate combustion derived powders in order to investigate the effect of dopants on the microstructure and electrical properties. The results showed that giant dielectric response was enhanced by co-doping of Y{sup 3+} and Zr{sup 4+} ions at the Ti site. Y{sub 2}O{sub 3} and ZrO{sub 2} additive can inhibit the grain growth. Compared with other samples, (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doped ceramics exhibit a dense and homogenous fine-grained microstructure. A much better temperature and frequency stability of dielectric properties were realized in these ceramics. The dielectric loss (tan δ) < 0.05 in the frequency range of 200 Hz–60 kHz at room temperature, and in the temperature range of 15–72 °C at 10 kHz was successfully accomplished in (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doped CCTO ceramics. Low tan δ ∼0.039 and high dielectric constant (ε{sub r} ∼10196) were observed at room temperature and 10 kHz for the above ceramic samples, and the characteristic frequency shifts to higher frequency with increasing measuring temperature. The present results indicate that (Y{sub 2}O{sub 3}+ZrO{sub 2}) co-doping may improve the dielectric properties and increase the grain boundary resistance of CCTO. - Highlights: • Y and Zr co-doped CCTO exhibits a dense and homogenous fine-grained microstructure. • Y and Zr co-doped CCTO performs a lower dielectric loss in wide-range of frequency. • Temperature and frequency stability of dielectric properties were greatly enhanced.

  18. Electrochemical corrosion of lanthanum chromite and yttrium chromite in coal slag

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, D.D.; Bates, J.L.

    1981-01-01

    Lanthanum chromites have long been considered as electrodes for magnetohydrodynamic (MHD) generator channels. These chromites, when doped with divalent ions such as Ca, Mg or Sr, have adequate electronic and electrical conductivity (2), and melting points greater than 2500/sup 0/K. However, above approx. 1850/sup 0/K, selective vapor loss of chromium results in the formation of a La/sub 2/O/sub 3/ phase. The La/sub 2/O/sub 3/ is hydroscopic at room temperature, resulting in a large volume change and loss of mechanical integrity when exposed to H/sub 2/O. The analogous yttrium chromites have thermal and electrical properties similar to that for the lanthanum chromites. Although vapor loss of Cr results in the formation of Y/sub 2/O/sub 3/, this oxide does not hydrate. Corrosion studies of yttrium chromite compositions show that doped YCrO/sub 3/ may be a viable MHD electrode. An electrochemical corrosion study of both magnesium-doped lanthanum and yttrium chromites in synthetic coal slag electrolytes is described. Possible chemical and electrochemical degradation phenomena, as well as the relative rates of corrosion are emphasized.

  19. Electrical machining method of insulating ceramics

    International Nuclear Information System (INIS)

    Fukuzawa, Y.; Mohri, N.; Tani, T.

    1999-01-01

    This paper describes a new electrical discharge machining method for insulating ceramics using an assisting electrode with either a sinking electrical discharge machine or a wire electrical discharge machine. In this method, the metal sheet or mesh is attached to the ceramic surface as an assisting material for the discharge generation around the insulator surface. When the machining condition changes from the attached material to the workpiece, a cracked carbon layer is formed on the workpiece surface. As this layer has an electrical conductivity, electrical discharge occurs in working oil between the tool electrode and the surface of the workpiece. The carbon is formed from the working oil during this electrical discharge. Even after the material is machined, an electrical discharge occurs in the gap region between the tool electrode and the ceramic because an electrically conductive layer is generated continuously. Insulating ceramics can be machined by the electrical discharge machining method using the above mentioned surface modification phenomenon. In this paper the authors show a machined example demonstrating that the proposed method is available for machining a complex shape on insulating ceramics. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  20. High performance yttrium-doped BSCF hollow fibre membranes

    DEFF Research Database (Denmark)

    Haworth, P.; Smart, S.; Glasscock, Julie

    2012-01-01

    measurements in air was similar for both compositions, suggesting that the higher oxygen fluxes obtained for BSCFY hollow fibres could be attributed to the higher non-stoichiometry due to yttrium addition to the BSCF crystal structure. In addition, the improvement of oxygen fluxes for small wall thickness (∼0...

  1. Fatigue of dental ceramics.

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Reactive Processing of Environment Conscious, Biomorphic Ceramics: A Novel and Eco-friendly Route to Advanced Ceramic

    Science.gov (United States)

    Singh, M.

    2002-01-01

    Environment-conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that can be produced with renewable resources (wood) and wood wastes (wood sawdust). These materials have tailorable properties with numerous potential applications. Silicon carbide-based ecoceramics have been fabricated by the infiltration of wood-derived carbonaceous preforms with oxide and silicon based materials. The wood-derived carbonaceous preforms have been shown to be quite useful in producing porous or dense materials with different microstructures and compositions. The microstructure and mechanical properties (flexural strength, fracture toughness, elastic modulus, and compressive strength) of a wide variety of Sic-based ecoceramics have been measured. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. In this presentation the fabrication approach, microstructure, and thermomechanical properties of a wide variety of Sic-based Ecoceramics will be reported.

  3. Ceramic residue for producing cements, method for the production thereof, and cements containing same

    OpenAIRE

    Sánchez de Rojas, María Isabel; Frías, Moisés; Asensio, Eloy; Medina Martínez, César

    2014-01-01

    [EN] The invention relates to a ceramic residue produced from construction and demolition residues, as a puzzolanic component of cements. The invention also relates to a method for producing said ceramic residues and to another method of producing cements using said residues. This type of residue is collected in recycling plants, where it is managed. This invention facilitates a potential commercial launch.

  4. Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-88 monoclonal antibodies: critical factors in determining in vivo survival and organ toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, R.W.; Raubitschek, A.; Mirzadeh, S.; Brechbiel, M.W.; Junghaus, R.; Gansow, O.A.; Waldmann, T.A. (Center for Biologics Evaluation and Research, FDA, Bethesda, MD (USA))

    1989-05-15

    One factor that is critical to the potential effectiveness of radioimmunotherapy is the design of radiometal-chelated antibodies that will be stable in vivo. Stability in vivo depends on the condition that both the chelate linkage and radiolabeling procedures not alter antibody specificity and biodistribution. In addition, synthesis and selection of the chelating agent is critical for each radiometal in order to prevent inappropriate release of the radiometal in vivo. In the present study, we compare the in vivo stability of seven radioimmunoconjugates that use different polyaminocarboxylate chelating agents to complex yttrium-88 to the mouse anti-human interleukin-2 receptor monoclonal antibody, anti-Tac. Chelate linkage and radiolabeling procedures did not alter the immunospecificity of anti-Tac. In order to assess whether yttrium was inappropriately released from the chelate-coupled antibody in vivo, iodine-131-labeled and yttrium-88 chelate-coupled antibodies were simultaneously administered to the same animals to correlate the decline in yttrium and radioiodinated antibody activity. The four stable yttrium-88 chelate-coupled antibodies studied displayed similar iodine-131 and yttrium-88 activity, indicating minimal elution of yttrium-88 from the complex. In contrast, the unstable yttrium-88 chelate-coupled antibodies had serum yttrium-88 activities that declined much more rapidly than their iodine-131 activities, suggesting loss of the radiolabel yttrium-88 from the chelate. Furthermore, high rates of yttrium-88 elution correlated with deposition in bone. Four chelating agents emerged as promising immunotherapeutic reagents: isothiocyanate benzyl DTPA and its derivatives 1B3M, MX, and 1M3B.

  5. Ageing of low-firing prehistoric ceramics in hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Petra Zemenová

    2012-03-01

    Full Text Available Remains of a prehistoric ceramic object, a moon-shaped idol from the Bronze Age found in archaeological site Zdiby near Prague in the Czech Republic, were studied especially in terms of the firing temperature. Archaeological ceramics was usually fired at temperatures below 1000 °C. It contained unstable non-crystalline products, residua after calcination of clay components of a ceramic material. These products as metakaolinite can undergo a reverse rehydration to a structure close to kaolinite. The aim of this work was to prove whether the identified kaolinite in archaeological ceramics is a product of rehydration. The model compound containing high amount of kaolinite was prepared in order to follow its changes during calcination and hydrothermal treatment. Archaeological ceramics and the model compound were treated by hydrothermal ageing and studied by XRF, XRD and IR analyses. It was proved that the presence of kaolinite in the border-parts of the archaeological object was not a product of rehydration, but that it originated from the raw materials.

  6. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  7. Quantum design and synthesis of a boron-oxygen-yttrium phase

    International Nuclear Information System (INIS)

    Music, Denis; Chirita, Valeriu; Kreissig, Ulrich; Czigany, Zsolt; Schneider, Jochen M.; Helmersson, Ulf

    2003-01-01

    Ab initio calculations are used to design a crystalline boron-oxygen-yttrium (BOY) phase. The essential constituent is yttrium substituting for oxygen in the boron suboxide structure (BO 0.17 ) with Y/B and O/B ratios of 0.07. The calculations predict that the BOY phase is 0.36 eV/atom more stable than crystalline BO 0.17 and experiments confirm the formation of crystalline thin films. The BOY phase was synthesized with reactive rf magnetron sputtering and identified with x-ray and selected area electron diffraction. Films with Y/B ratios ranging from 0.10 to 0.32, as determined via elastic recoil detection analysis, were grown over a wide range of temperatures (300-600 deg. C) and found to withstand 1000 deg. C

  8. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  9. Fabrication and electrical characterization of 15% yttrium-doped barium zirconate-nitrate freeze drying method combined with vacuum heating

    International Nuclear Information System (INIS)

    Imashuku, Susumu; Uda, Tetsuya; Nose, Yoshitaro; Awakura, Yasuhiro

    2011-01-01

    Research highlights: → Very fine 15% yttrium-doped barium zirconate powder of particle size about 30 nm was obtained by synthesizing at 500 deg. C in vacuum from powder mixed by the nitrate freeze-drying method. → Large and homogeneous grains of 15% yttrium-doped barium zirconate were easily obtained using the synthesized powder. → Grain boundary resistance was not inversely proportional to the grain size as theoretically expected. → Specific grain boundary conductivity varies with samples because impurities and/or evaporation loss of barium oxide might affect the grain-boundary resistance in 15% yttrium-doped barium zirconate. - Abstract: We applied a nitrate freeze-drying method to obtain a fine synthesized powder of 15% yttrium-doped barium zirconate. Fine 15% yttrium-doped barium zirconate powder of particle size about 30 nm was obtained by synthesizing at 500 deg. C in vacuum from a powder mixed by the nitrate freeze-drying method. However, we could not obtain such fine powder by synthesizing in air. Using the powder synthesized in vacuum, large and homogeneous grains of 15% yttrium-doped barium zirconate were easily obtained after sintering. Then, the bulk and grain boundary resistance were evaluated by AC 2-terminal measurement of sample in the form of bar and pellet and DC 4-terminal measurement of bar-shape sample. The grain boundary resistance was not inversely proportional to the grain size as theoretically expected. We concluded that specific grain boundary conductivity varies with samples. Some impurities, evaporation loss of barium oxide and/or other unexpected reasons might affect the grain boundary resistance in 15% yttrium-doped barium zirconate.

  10. Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Vannier, M.W.; Ackerman, J.L.; Sawicka, B.D.; Gronemeyer, S.; Kriz, R.J.

    1987-01-01

    Advanced nondestructive evaluation methods are being developed to characterize ceramic materials and allow improvement of process technology. If one can spatially determine porosity, map organic binder/plasticizer distributions, measure average through-volume and in-plane density, as well as detect inclusions, process and machining operations may be modified to enhance the reliability of ceramics. Two modes of X-ray tomographic imaging -- advanced film (analog) tomography and computed tomography -- are being developed to provide flaw detection and density profile mapping capability. Nuclear magnetic resonance imaging is being developed to determine porosity and map the distribution of organic binder/plasticizer. Ultrasonic backscatter and through-transmission are being developed to measure average through-thickness densities and detect surface inclusions

  11. Encapsulation of sacrificial silicon containing particles for SH oxide ceramics via a boehmite precursor route

    NARCIS (Netherlands)

    Carabat, A.L.; Van der Zwaag, S.; Sloof, W.G.

    2013-01-01

    Easy crack propagation in oxide ceramic coatings limits their application in high temperature environment (e.g. such as engines and gas turbine components) [1]. In order to overcome this problem, incorporation of sacrificial particles into an oxide ceramic coating may be a viable option. Particles

  12. High-speed, low-damage grinding of advanced ceramics Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A. [Eaton Corp., Willoughby Hills, OH (United States). Mfg. Technologies Center; Malkin, S. [Univ. of Massachusetts (United States)

    1995-03-01

    In manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. Most of these costs arise from the conventional multi-step grinding process with numerous grinding wheels and additional capital equipment, perishable dressing tools, and labor. In an attempt to reduce structural ceramic grinding costs, a feasibility investigation was undertaken to develop a single step, roughing-finishing process suitable for producing high-quality silicon nitride ceramic parts at high material removal rates at lower cost than traditional, multi-stage grinding. This feasibility study employed combined use of laboratory grinding tests, mathematical grinding models, and characterization of resultant material surface condition. More specifically, this Phase 1 final report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding and the conditions necessary to achieve the small grain depths of cut necessary for low damage grinding while operating at relatively high material removal rates. Particular issues addressed include determining effects of wheel speed and material removal rate on resulting mode of material removal (ductile or brittle fracture), limiting grinding forces, calculation of approximate grinding zone temperatures developed during HSLD grinding, and developing the experimental systems necessary for determining HSLD grinding energy partition relationships. In addition, practical considerations for production utilization of the HSLD process are also discussed.

  13. Ceramic technology report. Semi-annual progress report, April 1994--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1995-06-01

    The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Energy Efficiency and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

  14. Thermal decomposition of Yttrium(III) isovalerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao

    2016-01-01

    The thermal behaviour of yttrium(III) isovalerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, FTIR-spectroscopy, hot-stage optical microscopy and X-ray diffraction with a laboratory Cu-tube source as well as with a synchrotron radiation source...

  15. The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian, J.; Tavakoli, R.

    2015-01-01

    Superparamagnetic Y-substituted magnetite (Y x Fe 3–x O 4 ,with x=0.00, 0.10, 0.15, 0.20 and 0.40) nanoparticles were synthesized via hydrothermal reduction route in the presence of citric acid. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM) and gradient field thermomagnetic measurement. The results showed that a minimum amount of citric acid is required to obtain single phase Y-substituted magnetite nanoparticles. Citric acid acts as a modulator and reducing agent in the formation of spinel structure and controls nanoparticle size and crystallinity. Mean crystallite sizes of the single-phase powders were estimated by Williamson–Hall method. Curie temperature measurement of the samples shows that as yttrium content increases, the Curie temperature decreases. Magnetic measurements show that the saturation magnetization of the samples decreases as x increases up to 0.15 and then increases to x=0.20 and finally decreases again for x=0.40. - Highlights: • Single phase yttrium substituted magnetite nanoparticles were synthesized by hydrothermal-reduction route. • Citric acid plays a key role in reduction of Fe 3+ to Fe 2+ , which is necessary for the formation of magnetite phase. • It is possible to substitute yttrium ions for iron ones as high as x=0.4 by hydrothermal reduction route. • Pure magnetite nanoparticles prepared by this route has a high saturation magnetization. • Yttrium substituted magnetite nanoparticles are superparamagnet at room temperature

  16. Tribological effects of yttrium and nitrogen ion implantation on a precipitation hardening stainless steel

    International Nuclear Information System (INIS)

    Alonso, F.; Arizaga, A.; Garcia, A.; Onate, J.I.

    1994-01-01

    Yttrium, nitrogen and combined yttrium and nitrogen implantations have been carried out on an ASTM A286 precipitation hardening iron base alloy to evaluate the benefits in their tribological behaviour. Microindentation tests have shown a significant 20%-60% increment in hardness on the nitrogen implanted material, with a limited improvement in elastic recovery of the indentation. An abrasive test on the same material has also produced a 50% reduction in scratch depth. Y + and Y + +N + implantations also hardened the material but to a lesser extent. Reciprocating ball on disk friction and wear testing at 400 C resulted in very severe damage in all cases. X-ray photoelectron spectroscopy analyses combined with Ar sputtering have disclosed that nitrogen is mainly in a nitrided form, yttrium remains oxidized at the surface, below which there is an apparent increase in the metallic bond. ((orig.))

  17. Naturally Occurring Radionuclides in Pottery, Ceramic and Glasswares Produced in Bangladesh

    International Nuclear Information System (INIS)

    Chowdhury, M.I.; Reaz, Rafia; Kamal, M.; Alam, M.N.; Mustafa, M.N.

    2005-01-01

    The concentrations of naturally occurring radionuclides were measured using gamma spectrometry in the finished products of pottery, glass, ceramic and tiles. Ceramic and pottery utensils, tiles, basin and glassware contained naturally occurring radionuclides. Pottery is produced from local clay materials, but ceramic, tiles, basin and glassware's are made from both local and imported raw materials. Radium and thorium radionuclides are concentrated during the making of pottery from the clay materials due to calcination. Radionuclides concentrated more in the highly calcined pottery products than the low calcined products. Glassware products contained very low quantities of radionuclides comparing with the ceramic and pottery products. Study on radioactivity in the pottery, ceramic and glassware products is important in the assessment of possible radiological hazards to human health. The knowledge is essential for the development of standards and guidelines for the use and management of these materials. (author)

  18. Exporting advanced service tech to Europe

    International Nuclear Information System (INIS)

    Naredo, F.P.

    1991-01-01

    The concept of Westinghouse's European Service Center (ESC), located at Nivelles, Belgium, to bring advanced services and maintenance technologies to European customers is described. Laser-welded sleeving to repair degraded steam generator tubes employing pulsed Neodymium Yttrium Aluminium Garnet (Nd:YAG) laser, which Westinghouse has developed for 22mm tubing is mentioned. U-bend heat treatment (UBHT) technology was also brought to Europe by Westinghouse

  19. Facility for continuous CVD coating of ceramic fibers

    International Nuclear Information System (INIS)

    Moore, A.W.

    1992-01-01

    The development of new and improved ceramic fibers has spurred the development and application of ceramic composites with improved strength, strength/weight ratio, toughness, and durability at increasingly high temperatures. For many systems, the ceramic fibers can be used without modification because their properties are adequate for the chosen application. However, in order to take maximum advantage of the fiber properties, it is often necessary to coat the ceramic fibers with materials of different composition and properties. Examples include (1) boron nitride coatings on a ceramic fiber, such as Nicalon silicon carbide, to prevent reaction with the ceramic matrix during fabrication and to enhance fiber pullout and increase toughness when the ceramic composite is subjected to stress; (2) boron nitride coatings on ceramic yarns, such as Nicalon for use as thermal insulation panels in an aerodynamic environment, to reduce abrasion of the Nicalon and to inhibit the oxidation of free carbon contained within the Nicalon; and (3) ceramic coatings on carbon yarns and carbon-carbon composites to permit use of these high-strength, high-temperature materials in oxidizing environments at very high temperatures. This paper describes a pilot-plant-sized CVD facility for continuous coating of ceramic fibers and some of the results obtained so far with this equipment

  20. Engineering high power induction plasma unit at BARC for mass synthesis of refractory nano-ceramics

    International Nuclear Information System (INIS)

    Ghorui, S.; Sahasrabudhe, S.N.; Dhamale, G.; Das, A.K.

    2013-01-01

    Atmospheric pressure RF thermal plasma sources are gaining increasing importance for production of high purity novel nano-materials in different high-end technological applications. Inherent electrode-less features of the discharge together with the large volume and high energy density of the produced plasma ensures contamination free process environment and mass production ability. Reported herewith is the development of an indigenous induction plasma system for mass synthesis of nanopowders of refractory ceramic materials. The system has been tested for continuous synthesis of Al 2 O 3 nano-powder at a rate of more than 600 gm per hour and checked for its viability for bulk production of nano-particles of other refractory ceramics like Yttrium oxide and Neodymium Oxide. From collected evidences, the process of formation of the nano-particles is identified as the evaporation and subsequent homogeneous nucleation. Major features observed for alumina are complete conversion into highly spherical nano-sized particles, small particle sizes, very narrow size distribution, highly crystallite nature and mixed phases depending on the zone of collection. For alumina, the particles are found to exhibit a uni-modal distribution with peak near 15 nm

  1. Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic

    Science.gov (United States)

    Seidel, Sabrina; Patzig, Christian; Wisniewski, Wolfgang; Gawronski, Antje; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2016-01-01

    The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics. PMID:27734918

  2. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2015-04-01

    Full Text Available The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs. Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  3. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers.

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-04-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  4. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  5. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  6. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  7. Preparation of polycrystalline lithium-yttrium fluoride for subsequent mono crystallization

    International Nuclear Information System (INIS)

    Kowalczyk, E.; Radomski, J.; Diduszko, R.; Iwanejko, J.; Kowalczyk, Z.; Grasza, K.

    1994-01-01

    High purity lithium-yttrium (YLF) doped with rare earth elements (Nd, Pr, Ho or Tm) was obtained in a two-stage synthesis consisting of (1) reaction of ammonium fluoride with a mixture of lithium carbonate, yttrium oxide, and oxides of lanthanides, and (2) heating of the obtained reaction products at a temperature of about 700 C in an inert gas atmosphere. The phase and chemical purities of the obtained materials were characterized by X-ray diffraction and mass spectrometry techniques. Single crystal growth tests were carried out by means of the Bridgman method. The results showed that the proposed method for manufacture of polycrystalline YLF doped with rare earth elements is appropriate in principle but some parameters of the preparation process are to be more strictly defined. (author). 9 refs, 4 figs, 1 tab

  8. Preparation of polycrystalline lithium-yttrium fluoride for subsequent mono crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, E.; Radomski, J.; Diduszko, R.; Iwanejko, J. [Institute of Vacuum Technology, Warsaw (Poland); Kowalczyk, Z. [Warsaw Univ. (Poland); Grasza, K. [Polska Akademia Nauk, Warsaw (Poland). Inst. Fizyki

    1994-12-31

    High purity lithium-yttrium (YLF) doped with rare earth elements (Nd, Pr, Ho or Tm) was obtained in a two-stage synthesis consisting of (1) reaction of ammonium fluoride with a mixture of lithium carbonate, yttrium oxide, and oxides of lanthanides, and (2) heating of the obtained reaction products at a temperature of about 700 C in an inert gas atmosphere. The phase and chemical purities of the obtained materials were characterized by X-ray diffraction and mass spectrometry techniques. Single crystal growth tests were carried out by means of the Bridgman method. The results showed that the proposed method for manufacture of polycrystalline YLF doped with rare earth elements is appropriate in principle but some parameters of the preparation process are to be more strictly defined. (author). 9 refs, 4 figs, 1 tab.

  9. Thermal decomposition of yttrium(III) hexanoate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Attique, Fahmida

    2015-01-01

    The thermal decomposition of yttrium(III) hexanoate (Y(C5H11CO2)3)·xH2O in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction at a laboratory Cu-tube source and in-situ experiments at a synchrotron radiation source as well as hot...

  10. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  11. Near net shape, low cost ceramic valves for advanced engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Pidria, M.; Merlone, E.; Parussa, F. [Fiat Research Centre, Orbassano (Italy); Handelsman, J.; Gorodnev, A. [Ceracom Materials Ltd., Yavneh (Israel)

    2003-07-01

    Future gasoline and diesel engines with electro-hydraulic or electro-mechanical valve control systems require the development of lighter valves to achieve the best results in terms of increased performances, lower fuel consumption and overall efficiency. Ceramic materials can adequately satisfy the required mechanical and thermal properties, nevertheless they still lack as far as manufacturing costs are concerned. Objective of the work was the development of a low-cost forming and sintering process, to produce near-net shape ceramic valves thus requiring very low finishing operations and significantly minimizing material waste. Between available technical ceramic materials, silicon nitride has been chosen to replace conventional steels and Ni-based alloys for the exhaust valves application. The work was then devoted to (i) the selection of the best starting materials composition, taking into account the requirements of a cost effective and high volume production, (ii) the development of an innovative pressure-injection molding process to produce near-net shape parts via a thermosetting feedstock and (iii) the optimization of a proper pressure-less sintering route to obtain cost-competitive, real scale components with adequate final density and mechanical properties. (orig.)

  12. Yttrium Nitrate mediated Nitration of Phenols at room temperature in ...

    Indian Academy of Sciences (India)

    The described method is selective for phenols. ... the significant cause of post translational modification that can ... decades, significant attention was paid on nitration of phenols to .... Progress of the reaction can be noted visually. Yttrium.

  13. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyi [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Zhu, Yong, E-mail: y.zhu@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Chen, Youping; Song, Han; Huang, Pengcheng [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Dao, Dzung Viet [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia)

    2017-06-15

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  14. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    International Nuclear Information System (INIS)

    Wang, Boyi; Zhu, Yong; Chen, Youping; Song, Han; Huang, Pengcheng; Dao, Dzung Viet

    2017-01-01

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  15. Stabilization of low-level mixed waste in chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.; Sarkar, A.V.

    1994-06-01

    Mixed waste streams, which contain both chemical and radioactive wastes, are one of the important categories of DOE waste streams needing stabilization for final disposal. Recent studies have shown that chemically bonded phosphate ceramics may have the potential for stabilizing these waste streams, particularly those containing volatiles and pyrophorics. Such waste streams cannot be stabilized by conventional thermal treatment methods such as vitrification. Phosphate ceramics may be fabricated at room temperature into durable, hard and dense materials. For this reason room-temperature-setting phosphate ceramic waste forms are being developed to stabilize these to ''problem waste streams.''

  16. Ceramic superconductivity research at Alfred Univ

    International Nuclear Information System (INIS)

    Snyder, R.L.

    1990-01-01

    A survey of the science and technology advances made by the research groups at Alfred will be presented. These ranges on the technology side from the first melt-textured and glass ceramic superconductors to recently demonstrating that 123 thin films can be deposited below the superconducting transition at atmospheric pressure using an aerosol plasma deposition technique. On the science side advances in understanding have come from looking at the crystal structures, high and low temperature reactions, phase equilibria, effects of doping and XRD standards. Recent advances will be summarized

  17. Lack of rise in serum prolactin following yttrium-90 interstitial irradiation for acromegaly

    International Nuclear Information System (INIS)

    Clark, A.J.L.; Chahal, P.; Mashiter, K.; Joplin, G.F.

    1983-01-01

    The authors have investigated the possibility that the increase in serum PRL levels observed in patients with acromegaly treated with external irradiation could be due to damage to the hypothalamus or portal vessels, by comparing the effects of yttrium-90 interstitial irradiation, which is highly localised and does not normally extend to the hypothalamus, in a similar series of patients. These results are consistent with the hypothesis; a less likely explanation is that an overgrowth of radio-resistant PRL-secreting tumour cells is occurring after external irradiation, but not after yttrium-90 implantation. (author)

  18. Lack of rise in serum prolactin following yttrium-90 interstitial irradiation for acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Clark, A.J.L.; Chahal, P.; Mashiter, K.; Joplin, G.F. (Royal Postgraduate Medical School, London (UK))

    1983-11-01

    The authors have investigated the possibility that the increase in serum PRL levels observed in patients with acromegaly treated with external irradiation could be due to damage to the hypothalamus or portal vessels, by comparing the effects of yttrium-90 interstitial irradiation, which is highly localised and does not normally extend to the hypothalamus, in a similar series of patients. These results are consistent with the hypothesis; a less likely explanation is that an overgrowth of radio-resistant PRL-secreting tumour cells is occurring after external irradiation, but not after yttrium-90 implantation.

  19. Polymorphism and electrical behaviour of yttrium thin films

    International Nuclear Information System (INIS)

    Kaul, U.K.; Srivastava, O.N.

    1978-01-01

    It appears that the thickness-resistivity behaviour of yttrium embodying a thickness-dependent polymorphic phase transition can be explained in terms of surface scattering by taking into account the effect of the change in phase. It is interesting to note that, as a result of the polymorphic transition, the resistivity-thickness curve has an unusual shape. (Auth.)

  20. Encapsulation of spent nuclear fuel in ceramic materials

    International Nuclear Information System (INIS)

    Forberg, S.; Westermark, T.

    1983-03-01

    The international situation with regard to deposition of spent nuclear fuel is surveyed, with emphasis on encapsulation in ceramic materials. The feasibility and advantages of ceramic containers, thermodynamic stable in groundwater, are discussed as well as the possibility to ensure that stability for longevity by engineered measures. The design prerequisite are summarized and suggestions are made for a conceptual design, comprising rutile containers with stacks of coiled fuel pins. A novel technique is suggested for the homogeneous sealing of rutile containers at low temperatures. acceptable also for the fuel pin package. Key points are given for research, demonstration and verifications of the design foundations and for future improvements. Of which a few ideas are exemplified. (author)

  1. Radiation protection data sheets for the use of Strontium 90-Yttrium 90 in unsealed sources

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This radiation protection data sheet is intended for supervisors and staff in the different medical, hospital, pharmaceutical, university and industrial laboratories and departments where Strontium 90-Yttrium 90 is handled, and also for all those involved in risk prevention in this field. It provides essential data on radiation protection measures during the use of Strontium 90-Yttrium 90 in unsealed sources: physical characteristics, risk assessment, administrative procedures, recommendations, regulations and bibliography

  2. Development of glass ceramics for the incorporation of fission products

    International Nuclear Information System (INIS)

    De, A.K.; Luckscheiter, B.; Lutze, W.; Malow, G.; Schiewer, E.

    1976-01-01

    Spontaneous devitrification of fission-product-containing borosilicate glasses can be avoided by controlled crystallization after melting. Glass ceramics have been developed from a vitrified simulated waste and further improvement of product properties was achieved. In particular perovskite, h-celsian, diopside and eucryptite glass ceramics were prepared. These contained leach resistant host phases which exhibited considerable enrichment of long-lived fission products. All products showed increased impact resistance, but the thermal expansion was only slightly improved

  3. MCrAlY bond coat with enhanced Yttrium layer

    Science.gov (United States)

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  4. Effect of vanadium and yttrium doping on BSCCO superconductors

    International Nuclear Information System (INIS)

    Mohamed, S.B.; Halim, S.A.; Azhan, H.; Sidek, H.A.A; Tee, T.W.; Hassan, Z.A.

    1999-01-01

    The effect of vanadium and yttrium doping on the superconductivity is investigated. The doping was done on the calcium site ranging from x=0.00-0.10. The temperature dependence of electrical resistance and AC susceptibility measurements were made on these samples. The zero resistance for vanadium doped samples varied from 107 K (x = 0.00) to 68.5K (x = 0.10), whereas for yttrium doped samples it varied from 107 K (x = 0.00) to 54K (x 0.10). The volume fraction of the 2223 phase for both dopalit decreases witli increasing doping concentration. The nature of the temperature derivative of the resistance curves indicates the presence of a superconducting transition between grains coupled by weak links. The AC susceptibility data show enrichment of the volume fraction of the low Tc phase at higher compositions. The presence of low Tc phase (∼70 K) is visible in the susceptibility data. X-ray diffraction confirms the presence of mixed phases in the samples. (author)

  5. NIR optimized dual mode photoluminescence in Nd doped Y{sub 2}O{sub 3} ceramic phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sukul, Prasenjit Prasad; Mahata, Manoj Kumar; Kumar, Kaushal, E-mail: kumar.bhu@gmail.com

    2017-05-15

    Authors here report the dual mode photo luminescence emission in neodymium doped yttrium oxide ceramic phosphor upon 808 nm diode laser excitation. Single cubic phase Nd{sup 3+} doped Y{sub 2}O{sub 3} phosphor was synthesized using urea assisted combustion route. Nd{sup 3+} doped Y{sub 2}O{sub 3} ceramic phosphor has given photoluminescence in a wide wavelength range covering near infrared window (850–1100 nm) to the visible region i.e. green (525 nm) and red (680 nm) upon 808 nm diode laser excitation. The two most intense bands on 808 nm excitation were observed at 750 nm and 1064 nm due to the upconversion and downconversion emission processes. The sample was also tested for emission using 980 nm and intense green emission due to the trace presence of Er{sup 3+} in the raw materials was seen in the sample. The excitation power dependent upconversion measurements have shown that transitions {sup 4}F{sub 9/2}→{sup 4}I{sub 9/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 9/2} are thermally coupled and can be used to estimate the sample temperature using Boltzmann relation.

  6. Yttrium and lanthanides in human lung fluids, probing the exposure to atmospheric fallout

    Energy Technology Data Exchange (ETDEWEB)

    Censi, P., E-mail: censi@unipa.it [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Tamburo, E. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); Speziale, S. [Deutsches GeoForschungsZentrum, Telegrafenberg, Potsdam, 14473 (Germany); Zuddas, P. [Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Randazzo, L.A. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Punturo, R. [Dipartimento di Scienze Geologiche, Universita di Catania, Corso Italia, 55 - 95129 Catania (Italy); Cuttitta, A. [I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); Arico, P. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy)

    2011-02-28

    Inhalation of airborne particles can produce crystallization of phosphatic microcrysts in intraaveolar areas of lungs, sometimes degenerating into pulmonary fibrosis. Results of this study indicate that these pathologies are induced by interactions between lung fluids and inhaled atmospheric dust in people exposed to volcanic dust ejected from Mount Etna in 2001. Here, the lung solid-liquid interaction is evaluated by the distribution of yttrium and lanthanides (YLn) in fluid bronchoalveolar lavages on selected individuals according the classical geochemical approaches. We found that shale-normalised patterns of yttrium and lanthanides have a 'V shaped' feature corresponding to the depletion of elements from Nd to Tb when compared to the variable enrichments of heavy lanthanides, Y, La and Ce. These features and concurrent thermodynamic simulations suggest that phosphate precipitation can occur in lungs due to interactions between volcanic particles and fluids. We propose that patterns of yttrium and lanthanides can represent a viable explanation of some pathology observed in patients after prolonged exposure to atmospheric fallout and are suitable to become a diagnostic parameter of chemical environmental stresses.

  7. Abscopal Effects and Yttrium-90 Radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Ghodadra, Anish; Bhatt, Sumantha [University Pittsburgh School of Medicine, Department of Radiology (United States); Camacho, Juan C. [Emory University School of Medicine, Department of Radiology and Imaging Sciences (United States); Kim, Hyun S., E-mail: kevin.kim@yale.edu [University Pittsburgh School of Medicine, Department of Radiology (United States)

    2016-07-15

    We present the case of an 80-year-old male with squamous cell carcinoma with bilobar hepatic metastases who underwent targeted Yttrium-90 radioembolization of the right hepatic lobe lesion. Subsequently, there was complete regression of the nontargeted, left hepatic lobe lesion. This may represent the first ever reported abscopal effect in radioembolization. The abscopal effect refers to the phenomenon of tumor response in nontargeted sites after targeted radiotherapy. In this article, we briefly review the immune-mediated mechanisms responsible for the abscopal effect.

  8. Tribology of ceramics and composites materials science perspective

    CERN Document Server

    Basu, Bikramjit

    2011-01-01

    This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

  9. A new f.c.c. phase in yttrium films

    International Nuclear Information System (INIS)

    Kaul, V.K.; Srivastava, O.N.

    1976-01-01

    A new polymorphic phase characterised by a face-centered cubic structure, with lattice parameter 5.83 +- 0.02A, has been identified in thin films of yttrium. Electron diffraction evidence and electrical resistivity measurements have been carried out in order to detect the new f.c.c. phase. (Auth.)

  10. The influence of implanted yttrium on the cyclic oxidation behaviour of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Riffard, F. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France)]. E-mail: riffard@iut.u-clermont1.fr; Buscail, H. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Caudron, E. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Cueff, R. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Issartel, C. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Perrier, S. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France)

    2006-03-15

    High-temperature alloys are frequently used in power plants, gasification systems, petrochemical industry, combustion processes and in aerospace applications. Depending on the application, materials are subjected to corrosive atmospheres and thermal cycling. In the present work, thermal cycling was carried out in order to study the influence of implanted yttrium on the oxide scale adherence on 304 steel specimens oxidised in air at 1273 K. In situ X-ray diffraction indicates that the oxides formed at 1273 K are different on blank specimens compared to implanted specimens. Glancing angle XRD allows to analyse the oxide scale composition after cooling to room temperature. Experimental results show that yttrium implantation at a nominal dose of 10{sup 17} ions cm{sup -2} does not improve significantly the cyclic oxidation behaviour of the austenitic AISI 304 steel. However, it appears that yttrium implantation remarkably enhance the oxidation resistance during isothermal oxidation. It reduces the transient oxidation stage and the parabolic oxidation rate constant by one order of magnitude.

  11. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  12. Interfacing design and making of Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2014-01-01

    investigates the idea of an interactive digital design tool for designing wall like composition with 3d ceramics and is working on two levels. One which has to do with a digital interactive system that responds on the movement of the hands; at a certain distance the user’s hands appear on a monitor screen......This research investigates the relationship between crafting materiality and digital representation, and how experiential knowledge of crafts rooted in ceramics can be transformed and utilized in the use of digital technologies. Thus the research refers to the overall theme Materiality...... and Aesthetics in the conference. Digital technology as 3D printing with ceramic allows to bridge from the digital design environment to fabrication. At the same time novel digital means can create new interfaces between the human, space and the material. Here advances in 3d motion capture technology and sensors...

  13. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    Science.gov (United States)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of

  14. Synthesis and characterization of a boron-containing precursor for ZrB{sub 2} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Tao, X.Y.; Xiang, Z.; Zhou, S.; Zhu, Y. [China Univ. of Mining and Technology, Xuzhou (China). School of Materials Science and Engineering; Qiu, W.; Zhao, T. [Chinese Academy of Sciences, Beijing (China). Lab. of Advanced Polymer Materials

    2016-07-01

    A precursor for ZrB{sub 2} ceramic was successfully synthesized in a chemical reaction between polyzirconoxanesal (PZS) and boric acid. The molecular structure of the precursor, thermal properties and the pyrolysis behavior of the precursor were investigated. The results showed that the as-synthesized precursor was a polymer based on Zr-O-C-B bonds. The precursor was stable in air atmosphere and soluble in common organic solvents. The ceramic yield of the precursor at 1200 C was around 65.5 % under N{sub 2} atmosphere. The derived ceramics obtained at 1200 C were composed of B{sub 2}O{sub 3}, ZrO{sub 2} and carbon. When the temperature was increased up to 1300 C, peaks of ZrC emerged owing to carbothermal reduction. m-ZrO{sub 2} and t-ZrO{sub 2} disappeared when the pyrolysis temperature was increased to above 1400 C. ZrB{sub 2} became the predominant phase when the pyrolysis temperature was increased up to 1500 C.

  15. Polymer-Derived Silicon Oxycarbide Ceramics as Promising Next-Generation Sustainable Thermoelectrics.

    Science.gov (United States)

    Kousaalya, Adhimoolam Bakthavachalam; Zeng, Xiaoyu; Karakaya, Mehmet; Tritt, Terry; Pilla, Srikanth; Rao, Apparao M

    2018-01-24

    We demonstrate the potential of polymer-derived ceramics (PDC) as next-generation sustainable thermoelectrics. Thermoelectric behavior of polymer-derived silicon oxycarbide (SiOC) ceramics (containing hexagonal boron nitride (h-BN) as filler) was studied as a function of measurement temperature. SiOC, sintered at 1300 °C exhibited invariant low thermal conductivity (∼1.5 W/(m·K)) over 30-600 °C, coupled with a small increase in both Seebeck coefficient and electrical conductivity, with increase in measurement temperature (30-150 °C). SiOC ceramics containing 1 wt % h-BN showed the highest Seebeck coefficient (-33 μV/K) for any PDC thus far.

  16. Corrosion behavior of pyroclore-rich titanate ceramics for plutonium disposition; impurity effects

    International Nuclear Information System (INIS)

    Bakel, A. J.

    1999-01-01

    The baseline ceramic contains Ti, U, Ca, Hf, Gd, and Ce, and is made up of only four phases, pyrochlore, zirconolite, rutile, and brannerite. The impurities present in the three other ceramics represent impurities expected in the feed, and result in different phase distributions. The results from 3 day, 90 C MCC-1 tests with impurity ceramics were significantly different than the results from tests with the baseline ceramic. Overall, the addition of impurities to these titanate ceramics alters the phase distributions, which in turn, affects the corrosion behavior

  17. Separation coefficients of liquid-vapor in systems formed by yttrium chloride with some impurities

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Nisel'son, L.A.; Telegin, G.F.

    1990-01-01

    Using equilibrium Rayleigh distillation in the 800-950 deg C temperature range, separation coefficients of liquid-vapor for systems, formed by yttrium chloride with Co, Cr, Ni, Mn, Fe, Cu, Na, K, Mg, Ca, Li impurities are determined. The impurity concentration lies within 0.02-0.4 mass. % limits of each impurity, and total impurity concentration does not exceed 1 mass. %. The tested impurities, except for calcium, are more volatile than the base, yttrium trichloride. In most systems negative deviation from the Raoult's law is observed

  18. Ceramic heat exchangers. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The bibliography contains citations concerning the development, fabrication, and performance of ceramic heat exchangers. References discuss applications in coal-fired gas turbine power plants. Topics cover high temperature corrosion resistance, fracture properties, nondestructive evaluations, thermal shock and fatigue, silicon carbide-based ceramics, and composite joining. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  20. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy

    International Nuclear Information System (INIS)

    Florio, Daniel Zanetti de

    1998-01-01

    ZrO 2 :8 mol %Y 2 O 3 solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO 2 produced at a Pilot Plant at IPEN and 99.9% pure Y 2 O 3 of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)